ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentSkipListMap.java
Revision: 1.26
Committed: Thu May 26 18:03:45 2005 UTC (19 years ago) by dl
Branch: MAIN
Changes since 1.25: +9 -2 lines
Log Message:
Undo wrong change

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package java.util.concurrent;
8 import java.util.*;
9 import java.util.concurrent.atomic.*;
10
11 /**
12 * A scalable concurrent {@link ConcurrentNavigableMap} implementation.
13 * The map is sorted according to the {@linkplain Comparable natural
14 * ordering} of its keys, or by a {@link Comparator} provided at map
15 * creation time, depending on which constructor is used.
16 *
17 * <p>This class implements a concurrent variant of <a
18 * href="http://www.cs.umd.edu/~pugh/">SkipLists</a> providing
19 * expected average <i>log(n)</i> time cost for the
20 * <tt>containsKey</tt>, <tt>get</tt>, <tt>put</tt> and
21 * <tt>remove</tt> operations and their variants. Insertion, removal,
22 * update, and access operations safely execute concurrently by
23 * multiple threads. Iterators are <i>weakly consistent</i>, returning
24 * elements reflecting the state of the map at some point at or since
25 * the creation of the iterator. They do <em>not</em> throw {@link
26 * ConcurrentModificationException}, and may proceed concurrently with
27 * other operations. Ascending key ordered views and their iterators
28 * are faster than descending ones.
29 *
30 * <p>All <tt>Map.Entry</tt> pairs returned by methods in this class
31 * and its views represent snapshots of mappings at the time they were
32 * produced. They do <em>not</em> support the <tt>Entry.setValue</tt>
33 * method. (Note however that it is possible to change mappings in the
34 * associated map using <tt>put</tt>, <tt>putIfAbsent</tt>, or
35 * <tt>replace</tt>, depending on exactly which effect you need.)
36 *
37 * <p>Beware that, unlike in most collections, the <tt>size</tt>
38 * method is <em>not</em> a constant-time operation. Because of the
39 * asynchronous nature of these maps, determining the current number
40 * of elements requires a traversal of the elements. Additionally,
41 * the bulk operations <tt>putAll</tt>, <tt>equals</tt>, and
42 * <tt>clear</tt> are <em>not</em> guaranteed to be performed
43 * atomically. For example, an iterator operating concurrently with a
44 * <tt>putAll</tt> operation might view only some of the added
45 * elements.
46 *
47 * <p>This class and its views and iterators implement all of the
48 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
49 * interfaces. Like most other concurrent collections, this class does
50 * <em>not</em> permit the use of <tt>null</tt> keys or values because some
51 * null return values cannot be reliably distinguished from the absence of
52 * elements.
53 *
54 * <p>This class is a member of the
55 * <a href="{@docRoot}/../guide/collections/index.html">
56 * Java Collections Framework</a>.
57 *
58 * @author Doug Lea
59 * @param <K> the type of keys maintained by this map
60 * @param <V> the type of mapped values
61 * @since 1.6
62 */
63 public class ConcurrentSkipListMap<K,V> extends AbstractMap<K,V>
64 implements ConcurrentNavigableMap<K,V>,
65 Cloneable,
66 java.io.Serializable {
67 /*
68 * This class implements a tree-like two-dimensionally linked skip
69 * list in which the index levels are represented in separate
70 * nodes from the base nodes holding data. There are two reasons
71 * for taking this approach instead of the usual array-based
72 * structure: 1) Array based implementations seem to encounter
73 * more complexity and overhead 2) We can use cheaper algorithms
74 * for the heavily-traversed index lists than can be used for the
75 * base lists. Here's a picture of some of the basics for a
76 * possible list with 2 levels of index:
77 *
78 * Head nodes Index nodes
79 * +-+ right +-+ +-+
80 * |2|---------------->| |--------------------->| |->null
81 * +-+ +-+ +-+
82 * | down | |
83 * v v v
84 * +-+ +-+ +-+ +-+ +-+ +-+
85 * |1|----------->| |->| |------>| |----------->| |------>| |->null
86 * +-+ +-+ +-+ +-+ +-+ +-+
87 * v | | | | |
88 * Nodes next v v v v v
89 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
90 * | |->|A|->|B|->|C|->|D|->|E|->|F|->|G|->|H|->|I|->|J|->|K|->null
91 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
92 *
93 * The base lists use a variant of the HM linked ordered set
94 * algorithm. See Tim Harris, "A pragmatic implementation of
95 * non-blocking linked lists"
96 * http://www.cl.cam.ac.uk/~tlh20/publications.html and Maged
97 * Michael "High Performance Dynamic Lock-Free Hash Tables and
98 * List-Based Sets"
99 * http://www.research.ibm.com/people/m/michael/pubs.htm. The
100 * basic idea in these lists is to mark the "next" pointers of
101 * deleted nodes when deleting to avoid conflicts with concurrent
102 * insertions, and when traversing to keep track of triples
103 * (predecessor, node, successor) in order to detect when and how
104 * to unlink these deleted nodes.
105 *
106 * Rather than using mark-bits to mark list deletions (which can
107 * be slow and space-intensive using AtomicMarkedReference), nodes
108 * use direct CAS'able next pointers. On deletion, instead of
109 * marking a pointer, they splice in another node that can be
110 * thought of as standing for a marked pointer (indicating this by
111 * using otherwise impossible field values). Using plain nodes
112 * acts roughly like "boxed" implementations of marked pointers,
113 * but uses new nodes only when nodes are deleted, not for every
114 * link. This requires less space and supports faster
115 * traversal. Even if marked references were better supported by
116 * JVMs, traversal using this technique might still be faster
117 * because any search need only read ahead one more node than
118 * otherwise required (to check for trailing marker) rather than
119 * unmasking mark bits or whatever on each read.
120 *
121 * This approach maintains the essential property needed in the HM
122 * algorithm of changing the next-pointer of a deleted node so
123 * that any other CAS of it will fail, but implements the idea by
124 * changing the pointer to point to a different node, not by
125 * marking it. While it would be possible to further squeeze
126 * space by defining marker nodes not to have key/value fields, it
127 * isn't worth the extra type-testing overhead. The deletion
128 * markers are rarely encountered during traversal and are
129 * normally quickly garbage collected. (Note that this technique
130 * would not work well in systems without garbage collection.)
131 *
132 * In addition to using deletion markers, the lists also use
133 * nullness of value fields to indicate deletion, in a style
134 * similar to typical lazy-deletion schemes. If a node's value is
135 * null, then it is considered logically deleted and ignored even
136 * though it is still reachable. This maintains proper control of
137 * concurrent replace vs delete operations -- an attempted replace
138 * must fail if a delete beat it by nulling field, and a delete
139 * must return the last non-null value held in the field. (Note:
140 * Null, rather than some special marker, is used for value fields
141 * here because it just so happens to mesh with the Map API
142 * requirement that method get returns null if there is no
143 * mapping, which allows nodes to remain concurrently readable
144 * even when deleted. Using any other marker value here would be
145 * messy at best.)
146 *
147 * Here's the sequence of events for a deletion of node n with
148 * predecessor b and successor f, initially:
149 *
150 * +------+ +------+ +------+
151 * ... | b |------>| n |----->| f | ...
152 * +------+ +------+ +------+
153 *
154 * 1. CAS n's value field from non-null to null.
155 * From this point on, no public operations encountering
156 * the node consider this mapping to exist. However, other
157 * ongoing insertions and deletions might still modify
158 * n's next pointer.
159 *
160 * 2. CAS n's next pointer to point to a new marker node.
161 * From this point on, no other nodes can be appended to n.
162 * which avoids deletion errors in CAS-based linked lists.
163 *
164 * +------+ +------+ +------+ +------+
165 * ... | b |------>| n |----->|marker|------>| f | ...
166 * +------+ +------+ +------+ +------+
167 *
168 * 3. CAS b's next pointer over both n and its marker.
169 * From this point on, no new traversals will encounter n,
170 * and it can eventually be GCed.
171 * +------+ +------+
172 * ... | b |----------------------------------->| f | ...
173 * +------+ +------+
174 *
175 * A failure at step 1 leads to simple retry due to a lost race
176 * with another operation. Steps 2-3 can fail because some other
177 * thread noticed during a traversal a node with null value and
178 * helped out by marking and/or unlinking. This helping-out
179 * ensures that no thread can become stuck waiting for progress of
180 * the deleting thread. The use of marker nodes slightly
181 * complicates helping-out code because traversals must track
182 * consistent reads of up to four nodes (b, n, marker, f), not
183 * just (b, n, f), although the next field of a marker is
184 * immutable, and once a next field is CAS'ed to point to a
185 * marker, it never again changes, so this requires less care.
186 *
187 * Skip lists add indexing to this scheme, so that the base-level
188 * traversals start close to the locations being found, inserted
189 * or deleted -- usually base level traversals only traverse a few
190 * nodes. This doesn't change the basic algorithm except for the
191 * need to make sure base traversals start at predecessors (here,
192 * b) that are not (structurally) deleted, otherwise retrying
193 * after processing the deletion.
194 *
195 * Index levels are maintained as lists with volatile next fields,
196 * using CAS to link and unlink. Races are allowed in index-list
197 * operations that can (rarely) fail to link in a new index node
198 * or delete one. (We can't do this of course for data nodes.)
199 * However, even when this happens, the index lists remain sorted,
200 * so correctly serve as indices. This can impact performance,
201 * but since skip lists are probabilistic anyway, the net result
202 * is that under contention, the effective "p" value may be lower
203 * than its nominal value. And race windows are kept small enough
204 * that in practice these failures are rare, even under a lot of
205 * contention.
206 *
207 * The fact that retries (for both base and index lists) are
208 * relatively cheap due to indexing allows some minor
209 * simplifications of retry logic. Traversal restarts are
210 * performed after most "helping-out" CASes. This isn't always
211 * strictly necessary, but the implicit backoffs tend to help
212 * reduce other downstream failed CAS's enough to outweigh restart
213 * cost. This worsens the worst case, but seems to improve even
214 * highly contended cases.
215 *
216 * Unlike most skip-list implementations, index insertion and
217 * deletion here require a separate traversal pass occuring after
218 * the base-level action, to add or remove index nodes. This adds
219 * to single-threaded overhead, but improves contended
220 * multithreaded performance by narrowing interference windows,
221 * and allows deletion to ensure that all index nodes will be made
222 * unreachable upon return from a public remove operation, thus
223 * avoiding unwanted garbage retention. This is more important
224 * here than in some other data structures because we cannot null
225 * out node fields referencing user keys since they might still be
226 * read by other ongoing traversals.
227 *
228 * Indexing uses skip list parameters that maintain good search
229 * performance while using sparser-than-usual indices: The
230 * hardwired parameters k=1, p=0.5 (see method randomLevel) mean
231 * that about one-quarter of the nodes have indices. Of those that
232 * do, half have one level, a quarter have two, and so on (see
233 * Pugh's Skip List Cookbook, sec 3.4). The expected total space
234 * requirement for a map is slightly less than for the current
235 * implementation of java.util.TreeMap.
236 *
237 * Changing the level of the index (i.e, the height of the
238 * tree-like structure) also uses CAS. The head index has initial
239 * level/height of one. Creation of an index with height greater
240 * than the current level adds a level to the head index by
241 * CAS'ing on a new top-most head. To maintain good performance
242 * after a lot of removals, deletion methods heuristically try to
243 * reduce the height if the topmost levels appear to be empty.
244 * This may encounter races in which it possible (but rare) to
245 * reduce and "lose" a level just as it is about to contain an
246 * index (that will then never be encountered). This does no
247 * structural harm, and in practice appears to be a better option
248 * than allowing unrestrained growth of levels.
249 *
250 * The code for all this is more verbose than you'd like. Most
251 * operations entail locating an element (or position to insert an
252 * element). The code to do this can't be nicely factored out
253 * because subsequent uses require a snapshot of predecessor
254 * and/or successor and/or value fields which can't be returned
255 * all at once, at least not without creating yet another object
256 * to hold them -- creating such little objects is an especially
257 * bad idea for basic internal search operations because it adds
258 * to GC overhead. (This is one of the few times I've wished Java
259 * had macros.) Instead, some traversal code is interleaved within
260 * insertion and removal operations. The control logic to handle
261 * all the retry conditions is sometimes twisty. Most search is
262 * broken into 2 parts. findPredecessor() searches index nodes
263 * only, returning a base-level predecessor of the key. findNode()
264 * finishes out the base-level search. Even with this factoring,
265 * there is a fair amount of near-duplication of code to handle
266 * variants.
267 *
268 * For explanation of algorithms sharing at least a couple of
269 * features with this one, see Mikhail Fomitchev's thesis
270 * (http://www.cs.yorku.ca/~mikhail/), Keir Fraser's thesis
271 * (http://www.cl.cam.ac.uk/users/kaf24/), and Hakan Sundell's
272 * thesis (http://www.cs.chalmers.se/~phs/).
273 *
274 * Given the use of tree-like index nodes, you might wonder why
275 * this doesn't use some kind of search tree instead, which would
276 * support somewhat faster search operations. The reason is that
277 * there are no known efficient lock-free insertion and deletion
278 * algorithms for search trees. The immutability of the "down"
279 * links of index nodes (as opposed to mutable "left" fields in
280 * true trees) makes this tractable using only CAS operations.
281 *
282 * Notation guide for local variables
283 * Node: b, n, f for predecessor, node, successor
284 * Index: q, r, d for index node, right, down.
285 * t for another index node
286 * Head: h
287 * Levels: j
288 * Keys: k, key
289 * Values: v, value
290 * Comparisons: c
291 */
292
293 private static final long serialVersionUID = -8627078645895051609L;
294
295 /**
296 * Special value used to identify base-level header
297 */
298 private static final Object BASE_HEADER = new Object();
299
300 /**
301 * The topmost head index of the skiplist.
302 */
303 private transient volatile HeadIndex<K,V> head;
304
305 /**
306 * The comparator used to maintain order in this map, or null
307 * if using natural ordering.
308 * @serial
309 */
310 private final Comparator<? super K> comparator;
311
312 /**
313 * Seed for simple random number generator. Not volatile since it
314 * doesn't matter too much if different threads don't see updates.
315 */
316 private transient int randomSeed;
317
318 /** Lazily initialized key set */
319 private transient KeySet keySet;
320 /** Lazily initialized entry set */
321 private transient EntrySet entrySet;
322 /** Lazily initialized values collection */
323 private transient Values values;
324 /** Lazily initialized descending key set */
325 private transient DescendingKeySet descendingKeySet;
326 /** Lazily initialized descending entry set */
327 private transient DescendingEntrySet descendingEntrySet;
328
329 /**
330 * Initializes or resets state. Needed by constructors, clone,
331 * clear, readObject. and ConcurrentSkipListSet.clone.
332 * (Note that comparator must be separately initialized.)
333 */
334 final void initialize() {
335 keySet = null;
336 entrySet = null;
337 values = null;
338 descendingEntrySet = null;
339 descendingKeySet = null;
340 randomSeed = (int) System.nanoTime();
341 head = new HeadIndex<K,V>(new Node<K,V>(null, BASE_HEADER, null),
342 null, null, 1);
343 }
344
345 /** Updater for casHead */
346 private static final
347 AtomicReferenceFieldUpdater<ConcurrentSkipListMap, HeadIndex>
348 headUpdater = AtomicReferenceFieldUpdater.newUpdater
349 (ConcurrentSkipListMap.class, HeadIndex.class, "head");
350
351 /**
352 * compareAndSet head node
353 */
354 private boolean casHead(HeadIndex<K,V> cmp, HeadIndex<K,V> val) {
355 return headUpdater.compareAndSet(this, cmp, val);
356 }
357
358 /* ---------------- Nodes -------------- */
359
360 /**
361 * Nodes hold keys and values, and are singly linked in sorted
362 * order, possibly with some intervening marker nodes. The list is
363 * headed by a dummy node accessible as head.node. The value field
364 * is declared only as Object because it takes special non-V
365 * values for marker and header nodes.
366 */
367 static final class Node<K,V> {
368 final K key;
369 volatile Object value;
370 volatile Node<K,V> next;
371
372 /**
373 * Creates a new regular node.
374 */
375 Node(K key, Object value, Node<K,V> next) {
376 this.key = key;
377 this.value = value;
378 this.next = next;
379 }
380
381 /**
382 * Creates a new marker node. A marker is distinguished by
383 * having its value field point to itself. Marker nodes also
384 * have null keys, a fact that is exploited in a few places,
385 * but this doesn't distinguish markers from the base-level
386 * header node (head.node), which also has a null key.
387 */
388 Node(Node<K,V> next) {
389 this.key = null;
390 this.value = this;
391 this.next = next;
392 }
393
394 /** Updater for casNext */
395 static final AtomicReferenceFieldUpdater<Node, Node>
396 nextUpdater = AtomicReferenceFieldUpdater.newUpdater
397 (Node.class, Node.class, "next");
398
399 /** Updater for casValue */
400 static final AtomicReferenceFieldUpdater<Node, Object>
401 valueUpdater = AtomicReferenceFieldUpdater.newUpdater
402 (Node.class, Object.class, "value");
403
404 /**
405 * compareAndSet value field
406 */
407 boolean casValue(Object cmp, Object val) {
408 return valueUpdater.compareAndSet(this, cmp, val);
409 }
410
411 /**
412 * compareAndSet next field
413 */
414 boolean casNext(Node<K,V> cmp, Node<K,V> val) {
415 return nextUpdater.compareAndSet(this, cmp, val);
416 }
417
418 /**
419 * Returns true if this node is a marker. This method isn't
420 * actually called in any current code checking for markers
421 * because callers will have already read value field and need
422 * to use that read (not another done here) and so directly
423 * test if value points to node.
424 * @param n a possibly null reference to a node
425 * @return true if this node is a marker node
426 */
427 boolean isMarker() {
428 return value == this;
429 }
430
431 /**
432 * Returns true if this node is the header of base-level list.
433 * @return true if this node is header node
434 */
435 boolean isBaseHeader() {
436 return value == BASE_HEADER;
437 }
438
439 /**
440 * Tries to append a deletion marker to this node.
441 * @param f the assumed current successor of this node
442 * @return true if successful
443 */
444 boolean appendMarker(Node<K,V> f) {
445 return casNext(f, new Node<K,V>(f));
446 }
447
448 /**
449 * Helps out a deletion by appending marker or unlinking from
450 * predecessor. This is called during traversals when value
451 * field seen to be null.
452 * @param b predecessor
453 * @param f successor
454 */
455 void helpDelete(Node<K,V> b, Node<K,V> f) {
456 /*
457 * Rechecking links and then doing only one of the
458 * help-out stages per call tends to minimize CAS
459 * interference among helping threads.
460 */
461 if (f == next && this == b.next) {
462 if (f == null || f.value != f) // not already marked
463 appendMarker(f);
464 else
465 b.casNext(this, f.next);
466 }
467 }
468
469 /**
470 * Returns value if this node contains a valid key-value pair,
471 * else null.
472 * @return this node's value if it isn't a marker or header or
473 * is deleted, else null.
474 */
475 V getValidValue() {
476 Object v = value;
477 if (v == this || v == BASE_HEADER)
478 return null;
479 return (V)v;
480 }
481
482 /**
483 * Creates and returns a new SimpleImmutableEntry holding current
484 * mapping if this node holds a valid value, else null.
485 * @return new entry or null
486 */
487 AbstractMap.SimpleImmutableEntry<K,V> createSnapshot() {
488 V v = getValidValue();
489 if (v == null)
490 return null;
491 return new AbstractMap.SimpleImmutableEntry<K,V>(key, v);
492 }
493 }
494
495 /* ---------------- Indexing -------------- */
496
497 /**
498 * Index nodes represent the levels of the skip list. To improve
499 * search performance, keys of the underlying nodes are cached.
500 * Note that even though both Nodes and Indexes have
501 * forward-pointing fields, they have different types and are
502 * handled in different ways, that can't nicely be captured by
503 * placing field in a shared abstract class.
504 */
505 static class Index<K,V> {
506 final K key;
507 final Node<K,V> node;
508 final Index<K,V> down;
509 volatile Index<K,V> right;
510
511 /**
512 * Creates index node with given values.
513 */
514 Index(Node<K,V> node, Index<K,V> down, Index<K,V> right) {
515 this.node = node;
516 this.key = node.key;
517 this.down = down;
518 this.right = right;
519 }
520
521 /** Updater for casRight */
522 static final AtomicReferenceFieldUpdater<Index, Index>
523 rightUpdater = AtomicReferenceFieldUpdater.newUpdater
524 (Index.class, Index.class, "right");
525
526 /**
527 * compareAndSet right field
528 */
529 final boolean casRight(Index<K,V> cmp, Index<K,V> val) {
530 return rightUpdater.compareAndSet(this, cmp, val);
531 }
532
533 /**
534 * Returns true if the node this indexes has been deleted.
535 * @return true if indexed node is known to be deleted
536 */
537 final boolean indexesDeletedNode() {
538 return node.value == null;
539 }
540
541 /**
542 * Tries to CAS newSucc as successor. To minimize races with
543 * unlink that may lose this index node, if the node being
544 * indexed is known to be deleted, it doesn't try to link in.
545 * @param succ the expected current successor
546 * @param newSucc the new successor
547 * @return true if successful
548 */
549 final boolean link(Index<K,V> succ, Index<K,V> newSucc) {
550 Node<K,V> n = node;
551 newSucc.right = succ;
552 return n.value != null && casRight(succ, newSucc);
553 }
554
555 /**
556 * Tries to CAS right field to skip over apparent successor
557 * succ. Fails (forcing a retraversal by caller) if this node
558 * is known to be deleted.
559 * @param succ the expected current successor
560 * @return true if successful
561 */
562 final boolean unlink(Index<K,V> succ) {
563 return !indexesDeletedNode() && casRight(succ, succ.right);
564 }
565 }
566
567 /* ---------------- Head nodes -------------- */
568
569 /**
570 * Nodes heading each level keep track of their level.
571 */
572 static final class HeadIndex<K,V> extends Index<K,V> {
573 final int level;
574 HeadIndex(Node<K,V> node, Index<K,V> down, Index<K,V> right, int level) {
575 super(node, down, right);
576 this.level = level;
577 }
578 }
579
580 /* ---------------- Comparison utilities -------------- */
581
582 /**
583 * Represents a key with a comparator as a Comparable.
584 *
585 * Because most sorted collections seem to use natural ordering on
586 * Comparables (Strings, Integers, etc), most internal methods are
587 * geared to use them. This is generally faster than checking
588 * per-comparison whether to use comparator or comparable because
589 * it doesn't require a (Comparable) cast for each comparison.
590 * (Optimizers can only sometimes remove such redundant checks
591 * themselves.) When Comparators are used,
592 * ComparableUsingComparators are created so that they act in the
593 * same way as natural orderings. This penalizes use of
594 * Comparators vs Comparables, which seems like the right
595 * tradeoff.
596 */
597 static final class ComparableUsingComparator<K> implements Comparable<K> {
598 final K actualKey;
599 final Comparator<? super K> cmp;
600 ComparableUsingComparator(K key, Comparator<? super K> cmp) {
601 this.actualKey = key;
602 this.cmp = cmp;
603 }
604 public int compareTo(K k2) {
605 return cmp.compare(actualKey, k2);
606 }
607 }
608
609 /**
610 * If using comparator, return a ComparableUsingComparator, else
611 * cast key as Comparator, which may cause ClassCastException,
612 * which is propagated back to caller.
613 */
614 private Comparable<? super K> comparable(Object key) throws ClassCastException {
615 if (key == null)
616 throw new NullPointerException();
617 if (comparator != null)
618 return new ComparableUsingComparator<K>((K)key, comparator);
619 else
620 return (Comparable<? super K>)key;
621 }
622
623 /**
624 * Compares using comparator or natural ordering. Used when the
625 * ComparableUsingComparator approach doesn't apply.
626 */
627 int compare(K k1, K k2) throws ClassCastException {
628 Comparator<? super K> cmp = comparator;
629 if (cmp != null)
630 return cmp.compare(k1, k2);
631 else
632 return ((Comparable<? super K>)k1).compareTo(k2);
633 }
634
635 /**
636 * Returns true if given key greater than or equal to least and
637 * strictly less than fence, bypassing either test if least or
638 * fence are null. Needed mainly in submap operations.
639 */
640 boolean inHalfOpenRange(K key, K least, K fence) {
641 if (key == null)
642 throw new NullPointerException();
643 return ((least == null || compare(key, least) >= 0) &&
644 (fence == null || compare(key, fence) < 0));
645 }
646
647 /**
648 * Returns true if given key greater than or equal to least and less
649 * or equal to fence. Needed mainly in submap operations.
650 */
651 boolean inOpenRange(K key, K least, K fence) {
652 if (key == null)
653 throw new NullPointerException();
654 return ((least == null || compare(key, least) >= 0) &&
655 (fence == null || compare(key, fence) <= 0));
656 }
657
658 /* ---------------- Traversal -------------- */
659
660 /**
661 * Returns a base-level node with key strictly less than given key,
662 * or the base-level header if there is no such node. Also
663 * unlinks indexes to deleted nodes found along the way. Callers
664 * rely on this side-effect of clearing indices to deleted nodes.
665 * @param key the key
666 * @return a predecessor of key
667 */
668 private Node<K,V> findPredecessor(Comparable<? super K> key) {
669 for (;;) {
670 Index<K,V> q = head;
671 for (;;) {
672 Index<K,V> d, r;
673 if ((r = q.right) != null) {
674 if (r.indexesDeletedNode()) {
675 if (q.unlink(r))
676 continue; // reread r
677 else
678 break; // restart
679 }
680 if (key.compareTo(r.key) > 0) {
681 q = r;
682 continue;
683 }
684 }
685 if ((d = q.down) != null)
686 q = d;
687 else
688 return q.node;
689 }
690 }
691 }
692
693 /**
694 * Returns node holding key or null if no such, clearing out any
695 * deleted nodes seen along the way. Repeatedly traverses at
696 * base-level looking for key starting at predecessor returned
697 * from findPredecessor, processing base-level deletions as
698 * encountered. Some callers rely on this side-effect of clearing
699 * deleted nodes.
700 *
701 * Restarts occur, at traversal step centered on node n, if:
702 *
703 * (1) After reading n's next field, n is no longer assumed
704 * predecessor b's current successor, which means that
705 * we don't have a consistent 3-node snapshot and so cannot
706 * unlink any subsequent deleted nodes encountered.
707 *
708 * (2) n's value field is null, indicating n is deleted, in
709 * which case we help out an ongoing structural deletion
710 * before retrying. Even though there are cases where such
711 * unlinking doesn't require restart, they aren't sorted out
712 * here because doing so would not usually outweigh cost of
713 * restarting.
714 *
715 * (3) n is a marker or n's predecessor's value field is null,
716 * indicating (among other possibilities) that
717 * findPredecessor returned a deleted node. We can't unlink
718 * the node because we don't know its predecessor, so rely
719 * on another call to findPredecessor to notice and return
720 * some earlier predecessor, which it will do. This check is
721 * only strictly needed at beginning of loop, (and the
722 * b.value check isn't strictly needed at all) but is done
723 * each iteration to help avoid contention with other
724 * threads by callers that will fail to be able to change
725 * links, and so will retry anyway.
726 *
727 * The traversal loops in doPut, doRemove, and findNear all
728 * include the same three kinds of checks. And specialized
729 * versions appear in doRemoveFirst, doRemoveLast, findFirst, and
730 * findLast. They can't easily share code because each uses the
731 * reads of fields held in locals occurring in the orders they
732 * were performed.
733 *
734 * @param key the key
735 * @return node holding key, or null if no such
736 */
737 private Node<K,V> findNode(Comparable<? super K> key) {
738 for (;;) {
739 Node<K,V> b = findPredecessor(key);
740 Node<K,V> n = b.next;
741 for (;;) {
742 if (n == null)
743 return null;
744 Node<K,V> f = n.next;
745 if (n != b.next) // inconsistent read
746 break;
747 Object v = n.value;
748 if (v == null) { // n is deleted
749 n.helpDelete(b, f);
750 break;
751 }
752 if (v == n || b.value == null) // b is deleted
753 break;
754 int c = key.compareTo(n.key);
755 if (c < 0)
756 return null;
757 if (c == 0)
758 return n;
759 b = n;
760 n = f;
761 }
762 }
763 }
764
765 /**
766 * Specialized variant of findNode to perform Map.get. Does a weak
767 * traversal, not bothering to fix any deleted index nodes,
768 * returning early if it happens to see key in index, and passing
769 * over any deleted base nodes, falling back to getUsingFindNode
770 * only if it would otherwise return value from an ongoing
771 * deletion. Also uses "bound" to eliminate need for some
772 * comparisons (see Pugh Cookbook). Also folds uses of null checks
773 * and node-skipping because markers have null keys.
774 * @param okey the key
775 * @return the value, or null if absent
776 */
777 private V doGet(Object okey) {
778 Comparable<? super K> key = comparable(okey);
779 K bound = null;
780 Index<K,V> q = head;
781 for (;;) {
782 K rk;
783 Index<K,V> d, r;
784 if ((r = q.right) != null &&
785 (rk = r.key) != null && rk != bound) {
786 int c = key.compareTo(rk);
787 if (c > 0) {
788 q = r;
789 continue;
790 }
791 if (c == 0) {
792 Object v = r.node.value;
793 return (v != null)? (V)v : getUsingFindNode(key);
794 }
795 bound = rk;
796 }
797 if ((d = q.down) != null)
798 q = d;
799 else {
800 for (Node<K,V> n = q.node.next; n != null; n = n.next) {
801 K nk = n.key;
802 if (nk != null) {
803 int c = key.compareTo(nk);
804 if (c == 0) {
805 Object v = n.value;
806 return (v != null)? (V)v : getUsingFindNode(key);
807 }
808 if (c < 0)
809 return null;
810 }
811 }
812 return null;
813 }
814 }
815 }
816
817 /**
818 * Performs map.get via findNode. Used as a backup if doGet
819 * encounters an in-progress deletion.
820 * @param key the key
821 * @return the value, or null if absent
822 */
823 private V getUsingFindNode(Comparable<? super K> key) {
824 /*
825 * Loop needed here and elsewhere in case value field goes
826 * null just as it is about to be returned, in which case we
827 * lost a race with a deletion, so must retry.
828 */
829 for (;;) {
830 Node<K,V> n = findNode(key);
831 if (n == null)
832 return null;
833 Object v = n.value;
834 if (v != null)
835 return (V)v;
836 }
837 }
838
839 /* ---------------- Insertion -------------- */
840
841 /**
842 * Main insertion method. Adds element if not present, or
843 * replaces value if present and onlyIfAbsent is false.
844 * @param kkey the key
845 * @param value the value that must be associated with key
846 * @param onlyIfAbsent if should not insert if already present
847 * @return the old value, or null if newly inserted
848 */
849 private V doPut(K kkey, V value, boolean onlyIfAbsent) {
850 Comparable<? super K> key = comparable(kkey);
851 for (;;) {
852 Node<K,V> b = findPredecessor(key);
853 Node<K,V> n = b.next;
854 for (;;) {
855 if (n != null) {
856 Node<K,V> f = n.next;
857 if (n != b.next) // inconsistent read
858 break;;
859 Object v = n.value;
860 if (v == null) { // n is deleted
861 n.helpDelete(b, f);
862 break;
863 }
864 if (v == n || b.value == null) // b is deleted
865 break;
866 int c = key.compareTo(n.key);
867 if (c > 0) {
868 b = n;
869 n = f;
870 continue;
871 }
872 if (c == 0) {
873 if (onlyIfAbsent || n.casValue(v, value))
874 return (V)v;
875 else
876 break; // restart if lost race to replace value
877 }
878 // else c < 0; fall through
879 }
880
881 Node<K,V> z = new Node<K,V>(kkey, value, n);
882 if (!b.casNext(n, z))
883 break; // restart if lost race to append to b
884 int level = randomLevel();
885 if (level > 0)
886 insertIndex(z, level);
887 return null;
888 }
889 }
890 }
891
892 /**
893 * Returns a random level for inserting a new node.
894 * Hardwired to k=1, p=0.5, max 31.
895 *
896 * This uses a cheap pseudo-random function that according to
897 * http://home1.gte.net/deleyd/random/random4.html was used in
898 * Turbo Pascal. It seems the fastest usable one here. The low
899 * bits are apparently not very random (the original used only
900 * upper 16 bits) so we traverse from highest bit down (i.e., test
901 * sign), thus hardly ever use lower bits.
902 */
903 private int randomLevel() {
904 int level = 0;
905 int r = randomSeed;
906 randomSeed = r * 134775813 + 1;
907 if (r < 0) {
908 while ((r <<= 1) > 0)
909 ++level;
910 }
911 return level;
912 }
913
914 /**
915 * Creates and adds index nodes for the given node.
916 * @param z the node
917 * @param level the level of the index
918 */
919 private void insertIndex(Node<K,V> z, int level) {
920 HeadIndex<K,V> h = head;
921 int max = h.level;
922
923 if (level <= max) {
924 Index<K,V> idx = null;
925 for (int i = 1; i <= level; ++i)
926 idx = new Index<K,V>(z, idx, null);
927 addIndex(idx, h, level);
928
929 } else { // Add a new level
930 /*
931 * To reduce interference by other threads checking for
932 * empty levels in tryReduceLevel, new levels are added
933 * with initialized right pointers. Which in turn requires
934 * keeping levels in an array to access them while
935 * creating new head index nodes from the opposite
936 * direction.
937 */
938 level = max + 1;
939 Index<K,V>[] idxs = (Index<K,V>[])new Index[level+1];
940 Index<K,V> idx = null;
941 for (int i = 1; i <= level; ++i)
942 idxs[i] = idx = new Index<K,V>(z, idx, null);
943
944 HeadIndex<K,V> oldh;
945 int k;
946 for (;;) {
947 oldh = head;
948 int oldLevel = oldh.level;
949 if (level <= oldLevel) { // lost race to add level
950 k = level;
951 break;
952 }
953 HeadIndex<K,V> newh = oldh;
954 Node<K,V> oldbase = oldh.node;
955 for (int j = oldLevel+1; j <= level; ++j)
956 newh = new HeadIndex<K,V>(oldbase, newh, idxs[j], j);
957 if (casHead(oldh, newh)) {
958 k = oldLevel;
959 break;
960 }
961 }
962 addIndex(idxs[k], oldh, k);
963 }
964 }
965
966 /**
967 * Adds given index nodes from given level down to 1.
968 * @param idx the topmost index node being inserted
969 * @param h the value of head to use to insert. This must be
970 * snapshotted by callers to provide correct insertion level
971 * @param indexLevel the level of the index
972 */
973 private void addIndex(Index<K,V> idx, HeadIndex<K,V> h, int indexLevel) {
974 // Track next level to insert in case of retries
975 int insertionLevel = indexLevel;
976 Comparable<? super K> key = comparable(idx.key);
977
978 // Similar to findPredecessor, but adding index nodes along
979 // path to key.
980 for (;;) {
981 Index<K,V> q = h;
982 Index<K,V> t = idx;
983 int j = h.level;
984 for (;;) {
985 Index<K,V> r = q.right;
986 if (r != null) {
987 // compare before deletion check avoids needing recheck
988 int c = key.compareTo(r.key);
989 if (r.indexesDeletedNode()) {
990 if (q.unlink(r))
991 continue;
992 else
993 break;
994 }
995 if (c > 0) {
996 q = r;
997 continue;
998 }
999 }
1000
1001 if (j == insertionLevel) {
1002 // Don't insert index if node already deleted
1003 if (t.indexesDeletedNode()) {
1004 findNode(key); // cleans up
1005 return;
1006 }
1007 if (!q.link(r, t))
1008 break; // restart
1009 if (--insertionLevel == 0) {
1010 // need final deletion check before return
1011 if (t.indexesDeletedNode())
1012 findNode(key);
1013 return;
1014 }
1015 }
1016
1017 if (j > insertionLevel && j <= indexLevel)
1018 t = t.down;
1019 q = q.down;
1020 --j;
1021 }
1022 }
1023 }
1024
1025 /* ---------------- Deletion -------------- */
1026
1027 /**
1028 * Main deletion method. Locates node, nulls value, appends a
1029 * deletion marker, unlinks predecessor, removes associated index
1030 * nodes, and possibly reduces head index level.
1031 *
1032 * Index nodes are cleared out simply by calling findPredecessor.
1033 * which unlinks indexes to deleted nodes found along path to key,
1034 * which will include the indexes to this node. This is done
1035 * unconditionally. We can't check beforehand whether there are
1036 * index nodes because it might be the case that some or all
1037 * indexes hadn't been inserted yet for this node during initial
1038 * search for it, and we'd like to ensure lack of garbage
1039 * retention, so must call to be sure.
1040 *
1041 * @param okey the key
1042 * @param value if non-null, the value that must be
1043 * associated with key
1044 * @return the node, or null if not found
1045 */
1046 private V doRemove(Object okey, Object value) {
1047 Comparable<? super K> key = comparable(okey);
1048 for (;;) {
1049 Node<K,V> b = findPredecessor(key);
1050 Node<K,V> n = b.next;
1051 for (;;) {
1052 if (n == null)
1053 return null;
1054 Node<K,V> f = n.next;
1055 if (n != b.next) // inconsistent read
1056 break;
1057 Object v = n.value;
1058 if (v == null) { // n is deleted
1059 n.helpDelete(b, f);
1060 break;
1061 }
1062 if (v == n || b.value == null) // b is deleted
1063 break;
1064 int c = key.compareTo(n.key);
1065 if (c < 0)
1066 return null;
1067 if (c > 0) {
1068 b = n;
1069 n = f;
1070 continue;
1071 }
1072 if (value != null && !value.equals(v))
1073 return null;
1074 if (!n.casValue(v, null))
1075 break;
1076 if (!n.appendMarker(f) || !b.casNext(n, f))
1077 findNode(key); // Retry via findNode
1078 else {
1079 findPredecessor(key); // Clean index
1080 if (head.right == null)
1081 tryReduceLevel();
1082 }
1083 return (V)v;
1084 }
1085 }
1086 }
1087
1088 /**
1089 * Possibly reduce head level if it has no nodes. This method can
1090 * (rarely) make mistakes, in which case levels can disappear even
1091 * though they are about to contain index nodes. This impacts
1092 * performance, not correctness. To minimize mistakes as well as
1093 * to reduce hysteresis, the level is reduced by one only if the
1094 * topmost three levels look empty. Also, if the removed level
1095 * looks non-empty after CAS, we try to change it back quick
1096 * before anyone notices our mistake! (This trick works pretty
1097 * well because this method will practically never make mistakes
1098 * unless current thread stalls immediately before first CAS, in
1099 * which case it is very unlikely to stall again immediately
1100 * afterwards, so will recover.)
1101 *
1102 * We put up with all this rather than just let levels grow
1103 * because otherwise, even a small map that has undergone a large
1104 * number of insertions and removals will have a lot of levels,
1105 * slowing down access more than would an occasional unwanted
1106 * reduction.
1107 */
1108 private void tryReduceLevel() {
1109 HeadIndex<K,V> h = head;
1110 HeadIndex<K,V> d;
1111 HeadIndex<K,V> e;
1112 if (h.level > 3 &&
1113 (d = (HeadIndex<K,V>)h.down) != null &&
1114 (e = (HeadIndex<K,V>)d.down) != null &&
1115 e.right == null &&
1116 d.right == null &&
1117 h.right == null &&
1118 casHead(h, d) && // try to set
1119 h.right != null) // recheck
1120 casHead(d, h); // try to backout
1121 }
1122
1123 /**
1124 * Version of remove with boolean return. Needed by view classes
1125 */
1126 boolean removep(Object key) {
1127 return doRemove(key, null) != null;
1128 }
1129
1130 /* ---------------- Finding and removing first element -------------- */
1131
1132 /**
1133 * Specialized variant of findNode to get first valid node.
1134 * @return first node or null if empty
1135 */
1136 Node<K,V> findFirst() {
1137 for (;;) {
1138 Node<K,V> b = head.node;
1139 Node<K,V> n = b.next;
1140 if (n == null)
1141 return null;
1142 if (n.value != null)
1143 return n;
1144 n.helpDelete(b, n.next);
1145 }
1146 }
1147
1148 /**
1149 * Removes first entry; returns its key
1150 * @return null if empty or first key
1151 */
1152 K doRemoveFirstKey() {
1153 for (;;) {
1154 Node<K,V> b = head.node;
1155 Node<K,V> n = b.next;
1156 if (n == null)
1157 return null;
1158 Node<K,V> f = n.next;
1159 if (n != b.next)
1160 continue;
1161 Object v = n.value;
1162 if (v == null) {
1163 n.helpDelete(b, f);
1164 continue;
1165 }
1166 if (!n.casValue(v, null))
1167 continue;
1168 if (!n.appendMarker(f) || !b.casNext(n, f))
1169 findFirst(); // retry
1170 clearIndexToFirst();
1171 K key = n.key;
1172 return key;
1173 }
1174 }
1175
1176 /**
1177 * Removes first entry; returns its snapshot.
1178 * @return null if empty, else key,value entry
1179 */
1180 Map.Entry<K,V> doRemoveFirstEntry() {
1181 for (;;) {
1182 Node<K,V> b = head.node;
1183 Node<K,V> n = b.next;
1184 if (n == null)
1185 return null;
1186 Node<K,V> f = n.next;
1187 if (n != b.next)
1188 continue;
1189 Object v = n.value;
1190 if (v == null) {
1191 n.helpDelete(b, f);
1192 continue;
1193 }
1194 if (!n.casValue(v, null))
1195 continue;
1196 if (!n.appendMarker(f) || !b.casNext(n, f))
1197 findFirst(); // retry
1198 clearIndexToFirst();
1199 K key = n.key;
1200 return new AbstractMap.SimpleImmutableEntry<K,V>(key, (V)v);
1201 }
1202 }
1203
1204 /**
1205 * Clears out index nodes associated with deleted first entry.
1206 * Needed by doRemoveFirst.
1207 */
1208 private void clearIndexToFirst() {
1209 for (;;) {
1210 Index<K,V> q = head;
1211 for (;;) {
1212 Index<K,V> r = q.right;
1213 if (r != null && r.indexesDeletedNode() && !q.unlink(r))
1214 break;
1215 if ((q = q.down) == null) {
1216 if (head.right == null)
1217 tryReduceLevel();
1218 return;
1219 }
1220 }
1221 }
1222 }
1223
1224 /**
1225 * Removes first entry; returns key or null if empty.
1226 */
1227 K pollFirstKey() {
1228 return doRemoveFirstKey();
1229 }
1230
1231 /* ---------------- Finding and removing last element -------------- */
1232
1233 /**
1234 * Specialized version of find to get last valid node.
1235 * @return last node or null if empty
1236 */
1237 Node<K,V> findLast() {
1238 /*
1239 * findPredecessor can't be used to traverse index level
1240 * because this doesn't use comparisons. So traversals of
1241 * both levels are folded together.
1242 */
1243 Index<K,V> q = head;
1244 for (;;) {
1245 Index<K,V> d, r;
1246 if ((r = q.right) != null) {
1247 if (r.indexesDeletedNode()) {
1248 q.unlink(r);
1249 q = head; // restart
1250 }
1251 else
1252 q = r;
1253 } else if ((d = q.down) != null) {
1254 q = d;
1255 } else {
1256 Node<K,V> b = q.node;
1257 Node<K,V> n = b.next;
1258 for (;;) {
1259 if (n == null)
1260 return (b.isBaseHeader())? null : b;
1261 Node<K,V> f = n.next; // inconsistent read
1262 if (n != b.next)
1263 break;
1264 Object v = n.value;
1265 if (v == null) { // n is deleted
1266 n.helpDelete(b, f);
1267 break;
1268 }
1269 if (v == n || b.value == null) // b is deleted
1270 break;
1271 b = n;
1272 n = f;
1273 }
1274 q = head; // restart
1275 }
1276 }
1277 }
1278
1279
1280 /**
1281 * Specialized version of doRemove for last entry.
1282 * @param keyOnly if true return key, else return SimpleImmutableEntry
1283 * @return null if empty, last key if keyOnly true, else key,value entry
1284 */
1285 Object doRemoveLast(boolean keyOnly) {
1286 for (;;) {
1287 Node<K,V> b = findPredecessorOfLast();
1288 Node<K,V> n = b.next;
1289 if (n == null) {
1290 if (b.isBaseHeader()) // empty
1291 return null;
1292 else
1293 continue; // all b's successors are deleted; retry
1294 }
1295 for (;;) {
1296 Node<K,V> f = n.next;
1297 if (n != b.next) // inconsistent read
1298 break;
1299 Object v = n.value;
1300 if (v == null) { // n is deleted
1301 n.helpDelete(b, f);
1302 break;
1303 }
1304 if (v == n || b.value == null) // b is deleted
1305 break;
1306 if (f != null) {
1307 b = n;
1308 n = f;
1309 continue;
1310 }
1311 if (!n.casValue(v, null))
1312 break;
1313 K key = n.key;
1314 Comparable<? super K> ck = comparable(key);
1315 if (!n.appendMarker(f) || !b.casNext(n, f))
1316 findNode(ck); // Retry via findNode
1317 else {
1318 findPredecessor(ck); // Clean index
1319 if (head.right == null)
1320 tryReduceLevel();
1321 }
1322 if (keyOnly)
1323 return key;
1324 else
1325 return new AbstractMap.SimpleImmutableEntry<K,V>(key, (V)v);
1326 }
1327 }
1328 }
1329
1330 /**
1331 * Specialized variant of findPredecessor to get predecessor of
1332 * last valid node. Needed by doRemoveLast. It is possible that
1333 * all successors of returned node will have been deleted upon
1334 * return, in which case this method can be retried.
1335 * @return likely predecessor of last node
1336 */
1337 private Node<K,V> findPredecessorOfLast() {
1338 for (;;) {
1339 Index<K,V> q = head;
1340 for (;;) {
1341 Index<K,V> d, r;
1342 if ((r = q.right) != null) {
1343 if (r.indexesDeletedNode()) {
1344 q.unlink(r);
1345 break; // must restart
1346 }
1347 // proceed as far across as possible without overshooting
1348 if (r.node.next != null) {
1349 q = r;
1350 continue;
1351 }
1352 }
1353 if ((d = q.down) != null)
1354 q = d;
1355 else
1356 return q.node;
1357 }
1358 }
1359 }
1360
1361 /**
1362 * Removes last entry; returns key or null if empty.
1363 */
1364 K pollLastKey() {
1365 return (K)doRemoveLast(true);
1366 }
1367
1368 /* ---------------- Relational operations -------------- */
1369
1370 // Control values OR'ed as arguments to findNear
1371
1372 private static final int EQ = 1;
1373 private static final int LT = 2;
1374 private static final int GT = 0; // Actually checked as !LT
1375
1376 /**
1377 * Utility for ceiling, floor, lower, higher methods.
1378 * @param kkey the key
1379 * @param rel the relation -- OR'ed combination of EQ, LT, GT
1380 * @return nearest node fitting relation, or null if no such
1381 */
1382 Node<K,V> findNear(K kkey, int rel) {
1383 Comparable<? super K> key = comparable(kkey);
1384 for (;;) {
1385 Node<K,V> b = findPredecessor(key);
1386 Node<K,V> n = b.next;
1387 for (;;) {
1388 if (n == null)
1389 return ((rel & LT) == 0 || b.isBaseHeader())? null : b;
1390 Node<K,V> f = n.next;
1391 if (n != b.next) // inconsistent read
1392 break;
1393 Object v = n.value;
1394 if (v == null) { // n is deleted
1395 n.helpDelete(b, f);
1396 break;
1397 }
1398 if (v == n || b.value == null) // b is deleted
1399 break;
1400 int c = key.compareTo(n.key);
1401 if ((c == 0 && (rel & EQ) != 0) ||
1402 (c < 0 && (rel & LT) == 0))
1403 return n;
1404 if ( c <= 0 && (rel & LT) != 0)
1405 return (b.isBaseHeader())? null : b;
1406 b = n;
1407 n = f;
1408 }
1409 }
1410 }
1411
1412 /**
1413 * Returns SimpleImmutableEntry for results of findNear.
1414 * @param kkey the key
1415 * @param rel the relation -- OR'ed combination of EQ, LT, GT
1416 * @return Entry fitting relation, or null if no such
1417 */
1418 AbstractMap.SimpleImmutableEntry<K,V> getNear(K kkey, int rel) {
1419 for (;;) {
1420 Node<K,V> n = findNear(kkey, rel);
1421 if (n == null)
1422 return null;
1423 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
1424 if (e != null)
1425 return e;
1426 }
1427 }
1428
1429 /**
1430 * Returns ceiling, or first node if key is <tt>null</tt>.
1431 */
1432 Node<K,V> findCeiling(K key) {
1433 return (key == null)? findFirst() : findNear(key, GT|EQ);
1434 }
1435
1436 /**
1437 * Returns lower node, or last node if key is <tt>null</tt>.
1438 */
1439 Node<K,V> findLower(K key) {
1440 return (key == null)? findLast() : findNear(key, LT);
1441 }
1442
1443 /**
1444 * Returns key for results of findNear after screening to ensure
1445 * result is in given range. Needed by submaps.
1446 * @param kkey the key
1447 * @param rel the relation -- OR'ed combination of EQ, LT, GT
1448 * @param least minimum allowed key value
1449 * @param fence key greater than maximum allowed key value
1450 * @return Key fitting relation, or <tt>null</tt> if no such
1451 */
1452 K getNearKey(K kkey, int rel, K least, K fence) {
1453 K key = kkey;
1454 // Don't return keys less than least
1455 if ((rel & LT) == 0) {
1456 if (compare(key, least) < 0) {
1457 key = least;
1458 rel = rel | EQ;
1459 }
1460 }
1461
1462 for (;;) {
1463 Node<K,V> n = findNear(key, rel);
1464 if (n == null || !inHalfOpenRange(n.key, least, fence))
1465 return null;
1466 K k = n.key;
1467 V v = n.getValidValue();
1468 if (v != null)
1469 return k;
1470 }
1471 }
1472
1473
1474 /**
1475 * Returns SimpleImmutableEntry for results of findNear after
1476 * screening to ensure result is in given range. Needed by
1477 * submaps.
1478 * @param kkey the key
1479 * @param rel the relation -- OR'ed combination of EQ, LT, GT
1480 * @param least minimum allowed key value
1481 * @param fence key greater than maximum allowed key value
1482 * @return Entry fitting relation, or <tt>null</tt> if no such
1483 */
1484 Map.Entry<K,V> getNearEntry(K kkey, int rel, K least, K fence) {
1485 K key = kkey;
1486 // Don't return keys less than least
1487 if ((rel & LT) == 0) {
1488 if (compare(key, least) < 0) {
1489 key = least;
1490 rel = rel | EQ;
1491 }
1492 }
1493
1494 for (;;) {
1495 Node<K,V> n = findNear(key, rel);
1496 if (n == null || !inHalfOpenRange(n.key, least, fence))
1497 return null;
1498 K k = n.key;
1499 V v = n.getValidValue();
1500 if (v != null)
1501 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
1502 }
1503 }
1504
1505 /**
1506 * Finds and removes least element of subrange.
1507 * @param least minimum allowed key value
1508 * @param fence key greater than maximum allowed key value
1509 * @return least Entry, or <tt>null</tt> if no such
1510 */
1511 Map.Entry<K,V> removeFirstEntryOfSubrange(K least, K fence) {
1512 for (;;) {
1513 Node<K,V> n = findCeiling(least);
1514 if (n == null)
1515 return null;
1516 K k = n.key;
1517 if (fence != null && compare(k, fence) >= 0)
1518 return null;
1519 V v = doRemove(k, null);
1520 if (v != null)
1521 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
1522 }
1523 }
1524
1525 /**
1526 * Finds and removes greatest element of subrange.
1527 * @param least minimum allowed key value
1528 * @param fence key greater than maximum allowed key value
1529 * @return least Entry, or <tt>null</tt> if no such
1530 */
1531 Map.Entry<K,V> removeLastEntryOfSubrange(K least, K fence) {
1532 for (;;) {
1533 Node<K,V> n = findLower(fence);
1534 if (n == null)
1535 return null;
1536 K k = n.key;
1537 if (least != null && compare(k, least) < 0)
1538 return null;
1539 V v = doRemove(k, null);
1540 if (v != null)
1541 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
1542 }
1543 }
1544
1545
1546
1547 /* ---------------- Constructors -------------- */
1548
1549 /**
1550 * Constructs a new, empty map, sorted according to the
1551 * {@linkplain Comparable natural ordering} of the keys.
1552 */
1553 public ConcurrentSkipListMap() {
1554 this.comparator = null;
1555 initialize();
1556 }
1557
1558 /**
1559 * Constructs a new, empty map, sorted according to the specified
1560 * comparator.
1561 *
1562 * @param comparator the comparator that will be used to order this map.
1563 * If <tt>null</tt>, the {@linkplain Comparable natural
1564 * ordering} of the keys will be used.
1565 */
1566 public ConcurrentSkipListMap(Comparator<? super K> comparator) {
1567 this.comparator = comparator;
1568 initialize();
1569 }
1570
1571 /**
1572 * Constructs a new map containing the same mappings as the given map,
1573 * sorted according to the {@linkplain Comparable natural ordering} of
1574 * the keys.
1575 *
1576 * @param m the map whose mappings are to be placed in this map
1577 * @throws ClassCastException if the keys in <tt>m</tt> are not
1578 * {@link Comparable}, or are not mutually comparable
1579 * @throws NullPointerException if the specified map or any of its keys
1580 * or values are null
1581 */
1582 public ConcurrentSkipListMap(Map<? extends K, ? extends V> m) {
1583 this.comparator = null;
1584 initialize();
1585 putAll(m);
1586 }
1587
1588 /**
1589 * Constructs a new map containing the same mappings and using the
1590 * same ordering as the specified sorted map.
1591 *
1592 * @param m the sorted map whose mappings are to be placed in this
1593 * map, and whose comparator is to be used to sort this map
1594 * @throws NullPointerException if the specified sorted map or any of
1595 * its keys or values are null
1596 */
1597 public ConcurrentSkipListMap(SortedMap<K, ? extends V> m) {
1598 this.comparator = m.comparator();
1599 initialize();
1600 buildFromSorted(m);
1601 }
1602
1603 /**
1604 * Returns a shallow copy of this <tt>ConcurrentSkipListMap</tt>
1605 * instance. (The keys and values themselves are not cloned.)
1606 *
1607 * @return a shallow copy of this map
1608 */
1609 public ConcurrentSkipListMap<K,V> clone() {
1610 ConcurrentSkipListMap<K,V> clone = null;
1611 try {
1612 clone = (ConcurrentSkipListMap<K,V>) super.clone();
1613 } catch (CloneNotSupportedException e) {
1614 throw new InternalError();
1615 }
1616
1617 clone.initialize();
1618 clone.buildFromSorted(this);
1619 return clone;
1620 }
1621
1622 /**
1623 * Streamlined bulk insertion to initialize from elements of
1624 * given sorted map. Call only from constructor or clone
1625 * method.
1626 */
1627 private void buildFromSorted(SortedMap<K, ? extends V> map) {
1628 if (map == null)
1629 throw new NullPointerException();
1630
1631 HeadIndex<K,V> h = head;
1632 Node<K,V> basepred = h.node;
1633
1634 // Track the current rightmost node at each level. Uses an
1635 // ArrayList to avoid committing to initial or maximum level.
1636 ArrayList<Index<K,V>> preds = new ArrayList<Index<K,V>>();
1637
1638 // initialize
1639 for (int i = 0; i <= h.level; ++i)
1640 preds.add(null);
1641 Index<K,V> q = h;
1642 for (int i = h.level; i > 0; --i) {
1643 preds.set(i, q);
1644 q = q.down;
1645 }
1646
1647 Iterator<? extends Map.Entry<? extends K, ? extends V>> it =
1648 map.entrySet().iterator();
1649 while (it.hasNext()) {
1650 Map.Entry<? extends K, ? extends V> e = it.next();
1651 int j = randomLevel();
1652 if (j > h.level) j = h.level + 1;
1653 K k = e.getKey();
1654 V v = e.getValue();
1655 if (k == null || v == null)
1656 throw new NullPointerException();
1657 Node<K,V> z = new Node<K,V>(k, v, null);
1658 basepred.next = z;
1659 basepred = z;
1660 if (j > 0) {
1661 Index<K,V> idx = null;
1662 for (int i = 1; i <= j; ++i) {
1663 idx = new Index<K,V>(z, idx, null);
1664 if (i > h.level)
1665 h = new HeadIndex<K,V>(h.node, h, idx, i);
1666
1667 if (i < preds.size()) {
1668 preds.get(i).right = idx;
1669 preds.set(i, idx);
1670 } else
1671 preds.add(idx);
1672 }
1673 }
1674 }
1675 head = h;
1676 }
1677
1678 /* ---------------- Serialization -------------- */
1679
1680 /**
1681 * Save the state of this map to a stream.
1682 *
1683 * @serialData The key (Object) and value (Object) for each
1684 * key-value mapping represented by the map, followed by
1685 * <tt>null</tt>. The key-value mappings are emitted in key-order
1686 * (as determined by the Comparator, or by the keys' natural
1687 * ordering if no Comparator).
1688 */
1689 private void writeObject(java.io.ObjectOutputStream s)
1690 throws java.io.IOException {
1691 // Write out the Comparator and any hidden stuff
1692 s.defaultWriteObject();
1693
1694 // Write out keys and values (alternating)
1695 for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1696 V v = n.getValidValue();
1697 if (v != null) {
1698 s.writeObject(n.key);
1699 s.writeObject(v);
1700 }
1701 }
1702 s.writeObject(null);
1703 }
1704
1705 /**
1706 * Reconstitute the map from a stream.
1707 */
1708 private void readObject(final java.io.ObjectInputStream s)
1709 throws java.io.IOException, ClassNotFoundException {
1710 // Read in the Comparator and any hidden stuff
1711 s.defaultReadObject();
1712 // Reset transients
1713 initialize();
1714
1715 /*
1716 * This is nearly identical to buildFromSorted, but is
1717 * distinct because readObject calls can't be nicely adapted
1718 * as the kind of iterator needed by buildFromSorted. (They
1719 * can be, but doing so requires type cheats and/or creation
1720 * of adaptor classes.) It is simpler to just adapt the code.
1721 */
1722
1723 HeadIndex<K,V> h = head;
1724 Node<K,V> basepred = h.node;
1725 ArrayList<Index<K,V>> preds = new ArrayList<Index<K,V>>();
1726 for (int i = 0; i <= h.level; ++i)
1727 preds.add(null);
1728 Index<K,V> q = h;
1729 for (int i = h.level; i > 0; --i) {
1730 preds.set(i, q);
1731 q = q.down;
1732 }
1733
1734 for (;;) {
1735 Object k = s.readObject();
1736 if (k == null)
1737 break;
1738 Object v = s.readObject();
1739 if (v == null)
1740 throw new NullPointerException();
1741 K key = (K) k;
1742 V val = (V) v;
1743 int j = randomLevel();
1744 if (j > h.level) j = h.level + 1;
1745 Node<K,V> z = new Node<K,V>(key, val, null);
1746 basepred.next = z;
1747 basepred = z;
1748 if (j > 0) {
1749 Index<K,V> idx = null;
1750 for (int i = 1; i <= j; ++i) {
1751 idx = new Index<K,V>(z, idx, null);
1752 if (i > h.level)
1753 h = new HeadIndex<K,V>(h.node, h, idx, i);
1754
1755 if (i < preds.size()) {
1756 preds.get(i).right = idx;
1757 preds.set(i, idx);
1758 } else
1759 preds.add(idx);
1760 }
1761 }
1762 }
1763 head = h;
1764 }
1765
1766 /* ------ Map API methods ------ */
1767
1768 /**
1769 * Returns <tt>true</tt> if this map contains a mapping for the specified
1770 * key.
1771 *
1772 * @param key key whose presence in this map is to be tested
1773 * @return <tt>true</tt> if this map contains a mapping for the specified key
1774 * @throws ClassCastException if the specified key cannot be compared
1775 * with the keys currently in the map
1776 * @throws NullPointerException if the specified key is null
1777 */
1778 public boolean containsKey(Object key) {
1779 return doGet(key) != null;
1780 }
1781
1782 /**
1783 * Returns the value to which this map maps the specified key, or
1784 * <tt>null</tt> if the map contains no mapping for the key.
1785 *
1786 * @param key key whose associated value is to be returned
1787 * @return the value to which this map maps the specified key, or
1788 * <tt>null</tt> if the map contains no mapping for the key
1789 * @throws ClassCastException if the specified key cannot be compared
1790 * with the keys currently in the map
1791 * @throws NullPointerException if the specified key is null
1792 */
1793 public V get(Object key) {
1794 return doGet(key);
1795 }
1796
1797 /**
1798 * Associates the specified value with the specified key in this map.
1799 * If the map previously contained a mapping for the key, the old
1800 * value is replaced.
1801 *
1802 * @param key key with which the specified value is to be associated
1803 * @param value value to be associated with the specified key
1804 * @return the previous value associated with the specified key, or
1805 * <tt>null</tt> if there was no mapping for the key
1806 * @throws ClassCastException if the specified key cannot be compared
1807 * with the keys currently in the map
1808 * @throws NullPointerException if the specified key or value is null
1809 */
1810 public V put(K key, V value) {
1811 if (value == null)
1812 throw new NullPointerException();
1813 return doPut(key, value, false);
1814 }
1815
1816 /**
1817 * Removes the mapping for this key from this map if present.
1818 *
1819 * @param key key for which mapping should be removed
1820 * @return the previous value associated with the specified key, or
1821 * <tt>null</tt> if there was no mapping for the key
1822 * @throws ClassCastException if the specified key cannot be compared
1823 * with the keys currently in the map
1824 * @throws NullPointerException if the specified key is null
1825 */
1826 public V remove(Object key) {
1827 return doRemove(key, null);
1828 }
1829
1830 /**
1831 * Returns <tt>true</tt> if this map maps one or more keys to the
1832 * specified value. This operation requires time linear in the
1833 * map size.
1834 *
1835 * @param value value whose presence in this map is to be tested
1836 * @return <tt>true</tt> if a mapping to <tt>value</tt> exists;
1837 * <tt>false</tt> otherwise
1838 * @throws NullPointerException if the specified value is null
1839 */
1840 public boolean containsValue(Object value) {
1841 if (value == null)
1842 throw new NullPointerException();
1843 for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1844 V v = n.getValidValue();
1845 if (v != null && value.equals(v))
1846 return true;
1847 }
1848 return false;
1849 }
1850
1851 /**
1852 * Returns the number of key-value mappings in this map. If this map
1853 * contains more than <tt>Integer.MAX_VALUE</tt> elements, it
1854 * returns <tt>Integer.MAX_VALUE</tt>.
1855 *
1856 * <p>Beware that, unlike in most collections, this method is
1857 * <em>NOT</em> a constant-time operation. Because of the
1858 * asynchronous nature of these maps, determining the current
1859 * number of elements requires traversing them all to count them.
1860 * Additionally, it is possible for the size to change during
1861 * execution of this method, in which case the returned result
1862 * will be inaccurate. Thus, this method is typically not very
1863 * useful in concurrent applications.
1864 *
1865 * @return the number of elements in this map
1866 */
1867 public int size() {
1868 long count = 0;
1869 for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1870 if (n.getValidValue() != null)
1871 ++count;
1872 }
1873 return (count >= Integer.MAX_VALUE)? Integer.MAX_VALUE : (int)count;
1874 }
1875
1876 /**
1877 * Returns <tt>true</tt> if this map contains no key-value mappings.
1878 * @return <tt>true</tt> if this map contains no key-value mappings
1879 */
1880 public boolean isEmpty() {
1881 return findFirst() == null;
1882 }
1883
1884 /**
1885 * Removes all of the mappings from this map.
1886 */
1887 public void clear() {
1888 initialize();
1889 }
1890
1891 /**
1892 * Returns a {@link Set} view of the keys contained in this map.
1893 * The set's iterator returns the keys in ascending order.
1894 * The set is backed by the map, so changes to the map are
1895 * reflected in the set, and vice-versa. The set supports element
1896 * removal, which removes the corresponding mapping from the map,
1897 * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1898 * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
1899 * operations. It does not support the <tt>add</tt> or <tt>addAll</tt>
1900 * operations.
1901 *
1902 * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1903 * that will never throw {@link ConcurrentModificationException},
1904 * and guarantees to traverse elements as they existed upon
1905 * construction of the iterator, and may (but is not guaranteed to)
1906 * reflect any modifications subsequent to construction.
1907 *
1908 * @return a set view of the keys contained in this map, sorted in
1909 * ascending order
1910 */
1911 public Set<K> keySet() {
1912 /*
1913 * Note: Lazy initialization works here and for other views
1914 * because view classes are stateless/immutable so it doesn't
1915 * matter wrt correctness if more than one is created (which
1916 * will only rarely happen). Even so, the following idiom
1917 * conservatively ensures that the method returns the one it
1918 * created if it does so, not one created by another racing
1919 * thread.
1920 */
1921 KeySet ks = keySet;
1922 return (ks != null) ? ks : (keySet = new KeySet());
1923 }
1924
1925 /**
1926 * Returns a {@link Set} view of the keys contained in this map.
1927 * The set's iterator returns the keys in descending order.
1928 * The set is backed by the map, so changes to the map are
1929 * reflected in the set, and vice-versa. The set supports element
1930 * removal, which removes the corresponding mapping from the map,
1931 * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1932 * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
1933 * operations. It does not support the <tt>add</tt> or <tt>addAll</tt>
1934 * operations.
1935 *
1936 * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1937 * that will never throw {@link ConcurrentModificationException},
1938 * and guarantees to traverse elements as they existed upon
1939 * construction of the iterator, and may (but is not guaranteed to)
1940 * reflect any modifications subsequent to construction.
1941 */
1942 public Set<K> descendingKeySet() {
1943 /*
1944 * Note: Lazy initialization works here and for other views
1945 * because view classes are stateless/immutable so it doesn't
1946 * matter wrt correctness if more than one is created (which
1947 * will only rarely happen). Even so, the following idiom
1948 * conservatively ensures that the method returns the one it
1949 * created if it does so, not one created by another racing
1950 * thread.
1951 */
1952 DescendingKeySet ks = descendingKeySet;
1953 return (ks != null) ? ks : (descendingKeySet = new DescendingKeySet());
1954 }
1955
1956 /**
1957 * Returns a {@link Collection} view of the values contained in this map.
1958 * The collection's iterator returns the values in ascending order
1959 * of the corresponding keys.
1960 * The collection is backed by the map, so changes to the map are
1961 * reflected in the collection, and vice-versa. The collection
1962 * supports element removal, which removes the corresponding
1963 * mapping from the map, via the <tt>Iterator.remove</tt>,
1964 * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
1965 * <tt>retainAll</tt> and <tt>clear</tt> operations. It does not
1966 * support the <tt>add</tt> or <tt>addAll</tt> operations.
1967 *
1968 * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1969 * that will never throw {@link ConcurrentModificationException},
1970 * and guarantees to traverse elements as they existed upon
1971 * construction of the iterator, and may (but is not guaranteed to)
1972 * reflect any modifications subsequent to construction.
1973 */
1974 public Collection<V> values() {
1975 Values vs = values;
1976 return (vs != null) ? vs : (values = new Values());
1977 }
1978
1979 /**
1980 * Returns a {@link Set} view of the mappings contained in this map.
1981 * The set's iterator returns the entries in ascending key order.
1982 * The set is backed by the map, so changes to the map are
1983 * reflected in the set, and vice-versa. The set supports element
1984 * removal, which removes the corresponding mapping from the map,
1985 * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1986 * <tt>removeAll</tt>, <tt>retainAll</tt> and <tt>clear</tt>
1987 * operations. It does not support the <tt>add</tt> or
1988 * <tt>addAll</tt> operations.
1989 *
1990 * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1991 * that will never throw {@link ConcurrentModificationException},
1992 * and guarantees to traverse elements as they existed upon
1993 * construction of the iterator, and may (but is not guaranteed to)
1994 * reflect any modifications subsequent to construction.
1995 *
1996 * <p>The <tt>Map.Entry</tt> elements returned by
1997 * <tt>iterator.next()</tt> do <em>not</em> support the
1998 * <tt>setValue</tt> operation.
1999 *
2000 * @return a set view of the mappings contained in this map,
2001 * sorted in ascending key order
2002 */
2003 public Set<Map.Entry<K,V>> entrySet() {
2004 EntrySet es = entrySet;
2005 return (es != null) ? es : (entrySet = new EntrySet());
2006 }
2007
2008 /**
2009 * Returns a {@link Set} view of the mappings contained in this map.
2010 * The set's iterator returns the entries in descending key order.
2011 * The set is backed by the map, so changes to the map are
2012 * reflected in the set, and vice-versa. The set supports element
2013 * removal, which removes the corresponding mapping from the map,
2014 * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
2015 * <tt>removeAll</tt>, <tt>retainAll</tt> and <tt>clear</tt>
2016 * operations. It does not support the <tt>add</tt> or
2017 * <tt>addAll</tt> operations.
2018 *
2019 * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
2020 * that will never throw {@link ConcurrentModificationException},
2021 * and guarantees to traverse elements as they existed upon
2022 * construction of the iterator, and may (but is not guaranteed to)
2023 * reflect any modifications subsequent to construction.
2024 *
2025 * <p>The <tt>Map.Entry</tt> elements returned by
2026 * <tt>iterator.next()</tt> do <em>not</em> support the
2027 * <tt>setValue</tt> operation.
2028 */
2029 public Set<Map.Entry<K,V>> descendingEntrySet() {
2030 DescendingEntrySet es = descendingEntrySet;
2031 return (es != null) ? es : (descendingEntrySet = new DescendingEntrySet());
2032 }
2033
2034 /* ---------------- AbstractMap Overrides -------------- */
2035
2036 /**
2037 * Compares the specified object with this map for equality.
2038 * Returns <tt>true</tt> if the given object is also a map and the
2039 * two maps represent the same mappings. More formally, two maps
2040 * <tt>m1</tt> and <tt>m2</tt> represent the same mappings if
2041 * <tt>m1.keySet().equals(m2.keySet())</tt> and for every key
2042 * <tt>k</tt> in <tt>m1.keySet()</tt>, <tt> (m1.get(k)==null ?
2043 * m2.get(k)==null : m1.get(k).equals(m2.get(k))) </tt>. This
2044 * operation may return misleading results if either map is
2045 * concurrently modified during execution of this method.
2046 *
2047 * @param o object to be compared for equality with this map
2048 * @return <tt>true</tt> if the specified object is equal to this map
2049 */
2050 public boolean equals(Object o) {
2051 if (o == this)
2052 return true;
2053 if (!(o instanceof Map))
2054 return false;
2055 Map<?,?> m = (Map<?,?>) o;
2056 try {
2057 for (Map.Entry<K,V> e : this.entrySet())
2058 if (! e.getValue().equals(m.get(e.getKey())))
2059 return false;
2060 for (Map.Entry<?,?> e : m.entrySet()) {
2061 Object k = e.getKey();
2062 Object v = e.getValue();
2063 if (k == null || v == null || !v.equals(get(k)))
2064 return false;
2065 }
2066 return true;
2067 } catch (ClassCastException unused) {
2068 return false;
2069 } catch (NullPointerException unused) {
2070 return false;
2071 }
2072 }
2073
2074 /* ------ ConcurrentMap API methods ------ */
2075
2076 /**
2077 * {@inheritDoc}
2078 *
2079 * @return the previous value associated with the specified key,
2080 * or <tt>null</tt> if there was no mapping for the key
2081 * @throws ClassCastException if the specified key cannot be compared
2082 * with the keys currently in the map
2083 * @throws NullPointerException if the specified key or value is null
2084 */
2085 public V putIfAbsent(K key, V value) {
2086 if (value == null)
2087 throw new NullPointerException();
2088 return doPut(key, value, true);
2089 }
2090
2091 /**
2092 * {@inheritDoc}
2093 *
2094 * @throws ClassCastException if the specified key cannot be compared
2095 * with the keys currently in the map
2096 * @throws NullPointerException if the specified key is null
2097 */
2098 public boolean remove(Object key, Object value) {
2099 if (value == null)
2100 return false;
2101 return doRemove(key, value) != null;
2102 }
2103
2104 /**
2105 * {@inheritDoc}
2106 *
2107 * @throws ClassCastException if the specified key cannot be compared
2108 * with the keys currently in the map
2109 * @throws NullPointerException if any of the arguments are null
2110 */
2111 public boolean replace(K key, V oldValue, V newValue) {
2112 if (oldValue == null || newValue == null)
2113 throw new NullPointerException();
2114 Comparable<? super K> k = comparable(key);
2115 for (;;) {
2116 Node<K,V> n = findNode(k);
2117 if (n == null)
2118 return false;
2119 Object v = n.value;
2120 if (v != null) {
2121 if (!oldValue.equals(v))
2122 return false;
2123 if (n.casValue(v, newValue))
2124 return true;
2125 }
2126 }
2127 }
2128
2129 /**
2130 * {@inheritDoc}
2131 *
2132 * @return the previous value associated with the specified key,
2133 * or <tt>null</tt> if there was no mapping for the key
2134 * @throws ClassCastException if the specified key cannot be compared
2135 * with the keys currently in the map
2136 * @throws NullPointerException if the specified key or value is null
2137 */
2138 public V replace(K key, V value) {
2139 if (value == null)
2140 throw new NullPointerException();
2141 Comparable<? super K> k = comparable(key);
2142 for (;;) {
2143 Node<K,V> n = findNode(k);
2144 if (n == null)
2145 return null;
2146 Object v = n.value;
2147 if (v != null && n.casValue(v, value))
2148 return (V)v;
2149 }
2150 }
2151
2152 /* ------ SortedMap API methods ------ */
2153
2154 public Comparator<? super K> comparator() {
2155 return comparator;
2156 }
2157
2158 /**
2159 * @throws NoSuchElementException {@inheritDoc}
2160 */
2161 public K firstKey() {
2162 Node<K,V> n = findFirst();
2163 if (n == null)
2164 throw new NoSuchElementException();
2165 return n.key;
2166 }
2167
2168 /**
2169 * @throws NoSuchElementException {@inheritDoc}
2170 */
2171 public K lastKey() {
2172 Node<K,V> n = findLast();
2173 if (n == null)
2174 throw new NoSuchElementException();
2175 return n.key;
2176 }
2177
2178 /**
2179 * @throws ClassCastException {@inheritDoc}
2180 * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is null
2181 * @throws IllegalArgumentException {@inheritDoc}
2182 */
2183 public ConcurrentNavigableMap<K,V> navigableSubMap(K fromKey, K toKey) {
2184 if (fromKey == null || toKey == null)
2185 throw new NullPointerException();
2186 return new ConcurrentSkipListSubMap<K,V>(this, fromKey, toKey);
2187 }
2188
2189 /**
2190 * @throws ClassCastException {@inheritDoc}
2191 * @throws NullPointerException if <tt>toKey</tt> is null
2192 * @throws IllegalArgumentException {@inheritDoc}
2193 */
2194 public ConcurrentNavigableMap<K,V> navigableHeadMap(K toKey) {
2195 if (toKey == null)
2196 throw new NullPointerException();
2197 return new ConcurrentSkipListSubMap<K,V>(this, null, toKey);
2198 }
2199
2200 /**
2201 * @throws ClassCastException {@inheritDoc}
2202 * @throws NullPointerException if <tt>fromKey</tt> is null
2203 * @throws IllegalArgumentException {@inheritDoc}
2204 */
2205 public ConcurrentNavigableMap<K,V> navigableTailMap(K fromKey) {
2206 if (fromKey == null)
2207 throw new NullPointerException();
2208 return new ConcurrentSkipListSubMap<K,V>(this, fromKey, null);
2209 }
2210
2211 /**
2212 * Equivalent to {@link #navigableSubMap} but with a return type
2213 * conforming to the <tt>SortedMap</tt> interface.
2214 *
2215 * <p>{@inheritDoc}
2216 *
2217 * @throws ClassCastException {@inheritDoc}
2218 * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is null
2219 * @throws IllegalArgumentException {@inheritDoc}
2220 */
2221 public SortedMap<K,V> subMap(K fromKey, K toKey) {
2222 return navigableSubMap(fromKey, toKey);
2223 }
2224
2225 /**
2226 * Equivalent to {@link #navigableHeadMap} but with a return type
2227 * conforming to the <tt>SortedMap</tt> interface.
2228 *
2229 * <p>{@inheritDoc}
2230 *
2231 * @throws ClassCastException {@inheritDoc}
2232 * @throws NullPointerException if <tt>toKey</tt> is null
2233 * @throws IllegalArgumentException {@inheritDoc}
2234 */
2235 public SortedMap<K,V> headMap(K toKey) {
2236 return navigableHeadMap(toKey);
2237 }
2238
2239 /**
2240 * Equivalent to {@link #navigableTailMap} but with a return type
2241 * conforming to the <tt>SortedMap</tt> interface.
2242 *
2243 * <p>{@inheritDoc}
2244 *
2245 * @throws ClassCastException {@inheritDoc}
2246 * @throws NullPointerException if <tt>fromKey</tt> is null
2247 * @throws IllegalArgumentException {@inheritDoc}
2248 */
2249 public SortedMap<K,V> tailMap(K fromKey) {
2250 return navigableTailMap(fromKey);
2251 }
2252
2253 /* ---------------- Relational operations -------------- */
2254
2255 /**
2256 * Returns a key-value mapping associated with the greatest key
2257 * strictly less than the given key, or <tt>null</tt> if there is
2258 * no such key. The returned entry does <em>not</em> support the
2259 * <tt>Entry.setValue</tt> method.
2260 *
2261 * @throws ClassCastException {@inheritDoc}
2262 * @throws NullPointerException if the specified key is null
2263 */
2264 public Map.Entry<K,V> lowerEntry(K key) {
2265 return getNear(key, LT);
2266 }
2267
2268 /**
2269 * @throws ClassCastException {@inheritDoc}
2270 * @throws NullPointerException if the specified key is null
2271 */
2272 public K lowerKey(K key) {
2273 Node<K,V> n = findNear(key, LT);
2274 return (n == null)? null : n.key;
2275 }
2276
2277 /**
2278 * Returns a key-value mapping associated with the greatest key
2279 * less than or equal to the given key, or <tt>null</tt> if there
2280 * is no such key. The returned entry does <em>not</em> support
2281 * the <tt>Entry.setValue</tt> method.
2282 *
2283 * @param key the key
2284 * @throws ClassCastException {@inheritDoc}
2285 * @throws NullPointerException if the specified key is null
2286 */
2287 public Map.Entry<K,V> floorEntry(K key) {
2288 return getNear(key, LT|EQ);
2289 }
2290
2291 /**
2292 * @param key the key
2293 * @throws ClassCastException {@inheritDoc}
2294 * @throws NullPointerException if the specified key is null
2295 */
2296 public K floorKey(K key) {
2297 Node<K,V> n = findNear(key, LT|EQ);
2298 return (n == null)? null : n.key;
2299 }
2300
2301 /**
2302 * Returns a key-value mapping associated with the least key
2303 * greater than or equal to the given key, or <tt>null</tt> if
2304 * there is no such entry. The returned entry does <em>not</em>
2305 * support the <tt>Entry.setValue</tt> method.
2306 *
2307 * @throws ClassCastException {@inheritDoc}
2308 * @throws NullPointerException if the specified key is null
2309 */
2310 public Map.Entry<K,V> ceilingEntry(K key) {
2311 return getNear(key, GT|EQ);
2312 }
2313
2314 /**
2315 * @throws ClassCastException {@inheritDoc}
2316 * @throws NullPointerException if the specified key is null
2317 */
2318 public K ceilingKey(K key) {
2319 Node<K,V> n = findNear(key, GT|EQ);
2320 return (n == null)? null : n.key;
2321 }
2322
2323 /**
2324 * Returns a key-value mapping associated with the least key
2325 * strictly greater than the given key, or <tt>null</tt> if there
2326 * is no such key. The returned entry does <em>not</em> support
2327 * the <tt>Entry.setValue</tt> method.
2328 *
2329 * @param key the key
2330 * @throws ClassCastException {@inheritDoc}
2331 * @throws NullPointerException if the specified key is null
2332 */
2333 public Map.Entry<K,V> higherEntry(K key) {
2334 return getNear(key, GT);
2335 }
2336
2337 /**
2338 * @param key the key
2339 * @throws ClassCastException {@inheritDoc}
2340 * @throws NullPointerException if the specified key is null
2341 */
2342 public K higherKey(K key) {
2343 Node<K,V> n = findNear(key, GT);
2344 return (n == null)? null : n.key;
2345 }
2346
2347 /**
2348 * Returns a key-value mapping associated with the least
2349 * key in this map, or <tt>null</tt> if the map is empty.
2350 * The returned entry does <em>not</em> support
2351 * the <tt>Entry.setValue</tt> method.
2352 */
2353 public Map.Entry<K,V> firstEntry() {
2354 for (;;) {
2355 Node<K,V> n = findFirst();
2356 if (n == null)
2357 return null;
2358 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
2359 if (e != null)
2360 return e;
2361 }
2362 }
2363
2364 /**
2365 * Returns a key-value mapping associated with the greatest
2366 * key in this map, or <tt>null</tt> if the map is empty.
2367 * The returned entry does <em>not</em> support
2368 * the <tt>Entry.setValue</tt> method.
2369 */
2370 public Map.Entry<K,V> lastEntry() {
2371 for (;;) {
2372 Node<K,V> n = findLast();
2373 if (n == null)
2374 return null;
2375 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
2376 if (e != null)
2377 return e;
2378 }
2379 }
2380
2381 /**
2382 * Removes and returns a key-value mapping associated with
2383 * the least key in this map, or <tt>null</tt> if the map is empty.
2384 * The returned entry does <em>not</em> support
2385 * the <tt>Entry.setValue</tt> method.
2386 */
2387 public Map.Entry<K,V> pollFirstEntry() {
2388 return doRemoveFirstEntry();
2389 }
2390
2391 /**
2392 * Removes and returns a key-value mapping associated with
2393 * the greatest key in this map, or <tt>null</tt> if the map is empty.
2394 * The returned entry does <em>not</em> support
2395 * the <tt>Entry.setValue</tt> method.
2396 */
2397 public Map.Entry<K,V> pollLastEntry() {
2398 return (AbstractMap.SimpleImmutableEntry<K,V>)doRemoveLast(false);
2399 }
2400
2401
2402 /* ---------------- Iterators -------------- */
2403
2404 /**
2405 * Base of ten kinds of iterator classes:
2406 * ascending: {map, submap} X {key, value, entry}
2407 * descending: {map, submap} X {key, entry}
2408 */
2409 abstract class Iter {
2410 /** the last node returned by next() */
2411 Node<K,V> last;
2412 /** the next node to return from next(); */
2413 Node<K,V> next;
2414 /** Cache of next value field to maintain weak consistency */
2415 Object nextValue;
2416
2417 Iter() {}
2418
2419 public final boolean hasNext() {
2420 return next != null;
2421 }
2422
2423 /** Initializes ascending iterator for entire range. */
2424 final void initAscending() {
2425 for (;;) {
2426 next = findFirst();
2427 if (next == null)
2428 break;
2429 nextValue = next.value;
2430 if (nextValue != null && nextValue != next)
2431 break;
2432 }
2433 }
2434
2435 /**
2436 * Initializes ascending iterator starting at given least key,
2437 * or first node if least is <tt>null</tt>, but not greater or
2438 * equal to fence, or end if fence is <tt>null</tt>.
2439 */
2440 final void initAscending(K least, K fence) {
2441 for (;;) {
2442 next = findCeiling(least);
2443 if (next == null)
2444 break;
2445 nextValue = next.value;
2446 if (nextValue != null && nextValue != next) {
2447 if (fence != null && compare(fence, next.key) <= 0) {
2448 next = null;
2449 nextValue = null;
2450 }
2451 break;
2452 }
2453 }
2454 }
2455 /** Advances next to higher entry. */
2456 final void ascend() {
2457 if ((last = next) == null)
2458 throw new NoSuchElementException();
2459 for (;;) {
2460 next = next.next;
2461 if (next == null)
2462 break;
2463 nextValue = next.value;
2464 if (nextValue != null && nextValue != next)
2465 break;
2466 }
2467 }
2468
2469 /**
2470 * Version of ascend for submaps to stop at fence
2471 */
2472 final void ascend(K fence) {
2473 if ((last = next) == null)
2474 throw new NoSuchElementException();
2475 for (;;) {
2476 next = next.next;
2477 if (next == null)
2478 break;
2479 nextValue = next.value;
2480 if (nextValue != null && nextValue != next) {
2481 if (fence != null && compare(fence, next.key) <= 0) {
2482 next = null;
2483 nextValue = null;
2484 }
2485 break;
2486 }
2487 }
2488 }
2489
2490 /** Initializes descending iterator for entire range. */
2491 final void initDescending() {
2492 for (;;) {
2493 next = findLast();
2494 if (next == null)
2495 break;
2496 nextValue = next.value;
2497 if (nextValue != null && nextValue != next)
2498 break;
2499 }
2500 }
2501
2502 /**
2503 * Initializes descending iterator starting at key less
2504 * than or equal to given fence key, or
2505 * last node if fence is <tt>null</tt>, but not less than
2506 * least, or beginning if least is <tt>null</tt>.
2507 */
2508 final void initDescending(K least, K fence) {
2509 for (;;) {
2510 next = findLower(fence);
2511 if (next == null)
2512 break;
2513 nextValue = next.value;
2514 if (nextValue != null && nextValue != next) {
2515 if (least != null && compare(least, next.key) > 0) {
2516 next = null;
2517 nextValue = null;
2518 }
2519 break;
2520 }
2521 }
2522 }
2523
2524 /** Advances next to lower entry. */
2525 final void descend() {
2526 if ((last = next) == null)
2527 throw new NoSuchElementException();
2528 K k = last.key;
2529 for (;;) {
2530 next = findNear(k, LT);
2531 if (next == null)
2532 break;
2533 nextValue = next.value;
2534 if (nextValue != null && nextValue != next)
2535 break;
2536 }
2537 }
2538
2539 /**
2540 * Version of descend for submaps to stop at least
2541 */
2542 final void descend(K least) {
2543 if ((last = next) == null)
2544 throw new NoSuchElementException();
2545 K k = last.key;
2546 for (;;) {
2547 next = findNear(k, LT);
2548 if (next == null)
2549 break;
2550 nextValue = next.value;
2551 if (nextValue != null && nextValue != next) {
2552 if (least != null && compare(least, next.key) > 0) {
2553 next = null;
2554 nextValue = null;
2555 }
2556 break;
2557 }
2558 }
2559 }
2560
2561 public void remove() {
2562 Node<K,V> l = last;
2563 if (l == null)
2564 throw new IllegalStateException();
2565 // It would not be worth all of the overhead to directly
2566 // unlink from here. Using remove is fast enough.
2567 ConcurrentSkipListMap.this.remove(l.key);
2568 }
2569
2570 }
2571
2572 final class ValueIterator extends Iter implements Iterator<V> {
2573 ValueIterator() {
2574 initAscending();
2575 }
2576 public V next() {
2577 Object v = nextValue;
2578 ascend();
2579 return (V)v;
2580 }
2581 }
2582
2583 final class KeyIterator extends Iter implements Iterator<K> {
2584 KeyIterator() {
2585 initAscending();
2586 }
2587 public K next() {
2588 Node<K,V> n = next;
2589 ascend();
2590 return n.key;
2591 }
2592 }
2593
2594 class SubMapValueIterator extends Iter implements Iterator<V> {
2595 final K fence;
2596 SubMapValueIterator(K least, K fence) {
2597 initAscending(least, fence);
2598 this.fence = fence;
2599 }
2600
2601 public V next() {
2602 Object v = nextValue;
2603 ascend(fence);
2604 return (V)v;
2605 }
2606 }
2607
2608 final class SubMapKeyIterator extends Iter implements Iterator<K> {
2609 final K fence;
2610 SubMapKeyIterator(K least, K fence) {
2611 initAscending(least, fence);
2612 this.fence = fence;
2613 }
2614
2615 public K next() {
2616 Node<K,V> n = next;
2617 ascend(fence);
2618 return n.key;
2619 }
2620 }
2621
2622 final class DescendingKeyIterator extends Iter implements Iterator<K> {
2623 DescendingKeyIterator() {
2624 initDescending();
2625 }
2626 public K next() {
2627 Node<K,V> n = next;
2628 descend();
2629 return n.key;
2630 }
2631 }
2632
2633 final class DescendingSubMapKeyIterator extends Iter implements Iterator<K> {
2634 final K least;
2635 DescendingSubMapKeyIterator(K least, K fence) {
2636 initDescending(least, fence);
2637 this.least = least;
2638 }
2639
2640 public K next() {
2641 Node<K,V> n = next;
2642 descend(least);
2643 return n.key;
2644 }
2645 }
2646
2647 /**
2648 * Entry iterators use the same trick as in ConcurrentHashMap and
2649 * elsewhere of using the iterator itself to represent entries,
2650 * thus avoiding having to create entry objects in next().
2651 */
2652 abstract class EntryIter extends Iter implements Map.Entry<K,V> {
2653 /** Cache of last value returned */
2654 Object lastValue;
2655
2656 EntryIter() {
2657 }
2658
2659 public K getKey() {
2660 Node<K,V> l = last;
2661 if (l == null)
2662 throw new IllegalStateException();
2663 return l.key;
2664 }
2665
2666 public V getValue() {
2667 Object v = lastValue;
2668 if (last == null || v == null)
2669 throw new IllegalStateException();
2670 return (V)v;
2671 }
2672
2673 public V setValue(V value) {
2674 throw new UnsupportedOperationException();
2675 }
2676
2677 public boolean equals(Object o) {
2678 // If not acting as entry, just use default.
2679 if (last == null)
2680 return super.equals(o);
2681 if (!(o instanceof Map.Entry))
2682 return false;
2683 Map.Entry e = (Map.Entry)o;
2684 return (getKey().equals(e.getKey()) &&
2685 getValue().equals(e.getValue()));
2686 }
2687
2688 public int hashCode() {
2689 // If not acting as entry, just use default.
2690 if (last == null)
2691 return super.hashCode();
2692 return getKey().hashCode() ^ getValue().hashCode();
2693 }
2694
2695 public String toString() {
2696 // If not acting as entry, just use default.
2697 if (last == null)
2698 return super.toString();
2699 return getKey() + "=" + getValue();
2700 }
2701 }
2702
2703 final class EntryIterator extends EntryIter
2704 implements Iterator<Map.Entry<K,V>> {
2705 EntryIterator() {
2706 initAscending();
2707 }
2708 public Map.Entry<K,V> next() {
2709 lastValue = nextValue;
2710 ascend();
2711 return this;
2712 }
2713 }
2714
2715 final class SubMapEntryIterator extends EntryIter
2716 implements Iterator<Map.Entry<K,V>> {
2717 final K fence;
2718 SubMapEntryIterator(K least, K fence) {
2719 initAscending(least, fence);
2720 this.fence = fence;
2721 }
2722
2723 public Map.Entry<K,V> next() {
2724 lastValue = nextValue;
2725 ascend(fence);
2726 return this;
2727 }
2728 }
2729
2730 final class DescendingEntryIterator extends EntryIter
2731 implements Iterator<Map.Entry<K,V>> {
2732 DescendingEntryIterator() {
2733 initDescending();
2734 }
2735 public Map.Entry<K,V> next() {
2736 lastValue = nextValue;
2737 descend();
2738 return this;
2739 }
2740 }
2741
2742 final class DescendingSubMapEntryIterator extends EntryIter
2743 implements Iterator<Map.Entry<K,V>> {
2744 final K least;
2745 DescendingSubMapEntryIterator(K least, K fence) {
2746 initDescending(least, fence);
2747 this.least = least;
2748 }
2749
2750 public Map.Entry<K,V> next() {
2751 lastValue = nextValue;
2752 descend(least);
2753 return this;
2754 }
2755 }
2756
2757 // Factory methods for iterators needed by submaps and/or
2758 // ConcurrentSkipListSet
2759
2760 Iterator<K> keyIterator() {
2761 return new KeyIterator();
2762 }
2763
2764 Iterator<K> descendingKeyIterator() {
2765 return new DescendingKeyIterator();
2766 }
2767
2768 SubMapEntryIterator subMapEntryIterator(K least, K fence) {
2769 return new SubMapEntryIterator(least, fence);
2770 }
2771
2772 DescendingSubMapEntryIterator descendingSubMapEntryIterator(K least, K fence) {
2773 return new DescendingSubMapEntryIterator(least, fence);
2774 }
2775
2776 SubMapKeyIterator subMapKeyIterator(K least, K fence) {
2777 return new SubMapKeyIterator(least, fence);
2778 }
2779
2780 DescendingSubMapKeyIterator descendingSubMapKeyIterator(K least, K fence) {
2781 return new DescendingSubMapKeyIterator(least, fence);
2782 }
2783
2784 SubMapValueIterator subMapValueIterator(K least, K fence) {
2785 return new SubMapValueIterator(least, fence);
2786 }
2787
2788 /* ---------------- Views -------------- */
2789
2790 class KeySet extends AbstractSet<K> {
2791 public Iterator<K> iterator() {
2792 return new KeyIterator();
2793 }
2794 public boolean isEmpty() {
2795 return ConcurrentSkipListMap.this.isEmpty();
2796 }
2797 public int size() {
2798 return ConcurrentSkipListMap.this.size();
2799 }
2800 public boolean contains(Object o) {
2801 return ConcurrentSkipListMap.this.containsKey(o);
2802 }
2803 public boolean remove(Object o) {
2804 return ConcurrentSkipListMap.this.removep(o);
2805 }
2806 public void clear() {
2807 ConcurrentSkipListMap.this.clear();
2808 }
2809
2810 public Object[] toArray() {
2811 Collection<K> c = new ArrayList<K>();
2812 for (Iterator<K> i = iterator(); i.hasNext(); )
2813 c.add(i.next());
2814 return c.toArray();
2815 }
2816 public <T> T[] toArray(T[] a) {
2817 Collection<K> c = new ArrayList<K>();
2818 for (Iterator<K> i = iterator(); i.hasNext(); )
2819 c.add(i.next());
2820 return c.toArray(a);
2821 }
2822 }
2823
2824 class DescendingKeySet extends KeySet {
2825 public Iterator<K> iterator() {
2826 return new DescendingKeyIterator();
2827 }
2828 }
2829
2830 final class Values extends AbstractCollection<V> {
2831 public Iterator<V> iterator() {
2832 return new ValueIterator();
2833 }
2834 public boolean isEmpty() {
2835 return ConcurrentSkipListMap.this.isEmpty();
2836 }
2837 public int size() {
2838 return ConcurrentSkipListMap.this.size();
2839 }
2840 public boolean contains(Object o) {
2841 return ConcurrentSkipListMap.this.containsValue(o);
2842 }
2843 public void clear() {
2844 ConcurrentSkipListMap.this.clear();
2845 }
2846 public Object[] toArray() {
2847 Collection<V> c = new ArrayList<V>();
2848 for (Iterator<V> i = iterator(); i.hasNext(); )
2849 c.add(i.next());
2850 return c.toArray();
2851 }
2852 public <T> T[] toArray(T[] a) {
2853 Collection<V> c = new ArrayList<V>();
2854 for (Iterator<V> i = iterator(); i.hasNext(); )
2855 c.add(i.next());
2856 return c.toArray(a);
2857 }
2858 }
2859
2860 class EntrySet extends AbstractSet<Map.Entry<K,V>> {
2861 public Iterator<Map.Entry<K,V>> iterator() {
2862 return new EntryIterator();
2863 }
2864 public boolean contains(Object o) {
2865 if (!(o instanceof Map.Entry))
2866 return false;
2867 Map.Entry<K,V> e = (Map.Entry<K,V>)o;
2868 V v = ConcurrentSkipListMap.this.get(e.getKey());
2869 return v != null && v.equals(e.getValue());
2870 }
2871 public boolean remove(Object o) {
2872 if (!(o instanceof Map.Entry))
2873 return false;
2874 Map.Entry<K,V> e = (Map.Entry<K,V>)o;
2875 return ConcurrentSkipListMap.this.remove(e.getKey(),
2876 e.getValue());
2877 }
2878 public boolean isEmpty() {
2879 return ConcurrentSkipListMap.this.isEmpty();
2880 }
2881 public int size() {
2882 return ConcurrentSkipListMap.this.size();
2883 }
2884 public void clear() {
2885 ConcurrentSkipListMap.this.clear();
2886 }
2887
2888 public Object[] toArray() {
2889 Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>();
2890 for (Map.Entry<K,V> e : this)
2891 c.add(new AbstractMap.SimpleEntry<K,V>(e.getKey(),
2892 e.getValue()));
2893 return c.toArray();
2894 }
2895 public <T> T[] toArray(T[] a) {
2896 Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>();
2897 for (Map.Entry<K,V> e : this)
2898 c.add(new AbstractMap.SimpleEntry<K,V>(e.getKey(),
2899 e.getValue()));
2900 return c.toArray(a);
2901 }
2902 }
2903
2904 class DescendingEntrySet extends EntrySet {
2905 public Iterator<Map.Entry<K,V>> iterator() {
2906 return new DescendingEntryIterator();
2907 }
2908 }
2909
2910 /**
2911 * Submaps returned by {@link ConcurrentSkipListMap} submap operations
2912 * represent a subrange of mappings of their underlying
2913 * maps. Instances of this class support all methods of their
2914 * underlying maps, differing in that mappings outside their range are
2915 * ignored, and attempts to add mappings outside their ranges result
2916 * in {@link IllegalArgumentException}. Instances of this class are
2917 * constructed only using the <tt>subMap</tt>, <tt>headMap</tt>, and
2918 * <tt>tailMap</tt> methods of their underlying maps.
2919 */
2920 static class ConcurrentSkipListSubMap<K,V> extends AbstractMap<K,V>
2921 implements ConcurrentNavigableMap<K,V>, java.io.Serializable {
2922
2923 private static final long serialVersionUID = -7647078645895051609L;
2924
2925 /** Underlying map */
2926 private final ConcurrentSkipListMap<K,V> m;
2927 /** lower bound key, or null if from start */
2928 private final K least;
2929 /** upper fence key, or null if to end */
2930 private final K fence;
2931 // Lazily initialized view holders
2932 private transient Set<K> keySetView;
2933 private transient Set<Map.Entry<K,V>> entrySetView;
2934 private transient Collection<V> valuesView;
2935 private transient Set<K> descendingKeySetView;
2936 private transient Set<Map.Entry<K,V>> descendingEntrySetView;
2937
2938 /**
2939 * Creates a new submap.
2940 * @param least inclusive least value, or <tt>null</tt> if from start
2941 * @param fence exclusive upper bound or <tt>null</tt> if to end
2942 * @throws IllegalArgumentException if least and fence nonnull
2943 * and least greater than fence
2944 */
2945 ConcurrentSkipListSubMap(ConcurrentSkipListMap<K,V> map,
2946 K least, K fence) {
2947 if (least != null &&
2948 fence != null &&
2949 map.compare(least, fence) > 0)
2950 throw new IllegalArgumentException("inconsistent range");
2951 this.m = map;
2952 this.least = least;
2953 this.fence = fence;
2954 }
2955
2956 /* ---------------- Utilities -------------- */
2957
2958 boolean inHalfOpenRange(K key) {
2959 return m.inHalfOpenRange(key, least, fence);
2960 }
2961
2962 boolean inOpenRange(K key) {
2963 return m.inOpenRange(key, least, fence);
2964 }
2965
2966 ConcurrentSkipListMap.Node<K,V> firstNode() {
2967 return m.findCeiling(least);
2968 }
2969
2970 ConcurrentSkipListMap.Node<K,V> lastNode() {
2971 return m.findLower(fence);
2972 }
2973
2974 boolean isBeforeEnd(ConcurrentSkipListMap.Node<K,V> n) {
2975 return (n != null &&
2976 (fence == null ||
2977 n.key == null || // pass by markers and headers
2978 m.compare(fence, n.key) > 0));
2979 }
2980
2981 void checkKey(K key) throws IllegalArgumentException {
2982 if (!inHalfOpenRange(key))
2983 throw new IllegalArgumentException("key out of range");
2984 }
2985
2986 /**
2987 * Returns underlying map. Needed by ConcurrentSkipListSet
2988 * @return the backing map
2989 */
2990 ConcurrentSkipListMap<K,V> getMap() {
2991 return m;
2992 }
2993
2994 /**
2995 * Returns least key. Needed by ConcurrentSkipListSet
2996 * @return least key or <tt>null</tt> if from start
2997 */
2998 K getLeast() {
2999 return least;
3000 }
3001
3002 /**
3003 * Returns fence key. Needed by ConcurrentSkipListSet
3004 * @return fence key or <tt>null</tt> if to end
3005 */
3006 K getFence() {
3007 return fence;
3008 }
3009
3010
3011 /* ---------------- Map API methods -------------- */
3012
3013 public boolean containsKey(Object key) {
3014 K k = (K)key;
3015 return inHalfOpenRange(k) && m.containsKey(k);
3016 }
3017
3018 public V get(Object key) {
3019 K k = (K)key;
3020 return ((!inHalfOpenRange(k)) ? null : m.get(k));
3021 }
3022
3023 public V put(K key, V value) {
3024 checkKey(key);
3025 return m.put(key, value);
3026 }
3027
3028 public V remove(Object key) {
3029 K k = (K)key;
3030 return (!inHalfOpenRange(k))? null : m.remove(k);
3031 }
3032
3033 public int size() {
3034 long count = 0;
3035 for (ConcurrentSkipListMap.Node<K,V> n = firstNode();
3036 isBeforeEnd(n);
3037 n = n.next) {
3038 if (n.getValidValue() != null)
3039 ++count;
3040 }
3041 return count >= Integer.MAX_VALUE? Integer.MAX_VALUE : (int)count;
3042 }
3043
3044 public boolean isEmpty() {
3045 return !isBeforeEnd(firstNode());
3046 }
3047
3048 public boolean containsValue(Object value) {
3049 if (value == null)
3050 throw new NullPointerException();
3051 for (ConcurrentSkipListMap.Node<K,V> n = firstNode();
3052 isBeforeEnd(n);
3053 n = n.next) {
3054 V v = n.getValidValue();
3055 if (v != null && value.equals(v))
3056 return true;
3057 }
3058 return false;
3059 }
3060
3061 public void clear() {
3062 for (ConcurrentSkipListMap.Node<K,V> n = firstNode();
3063 isBeforeEnd(n);
3064 n = n.next) {
3065 if (n.getValidValue() != null)
3066 m.remove(n.key);
3067 }
3068 }
3069
3070 /* ---------------- ConcurrentMap API methods -------------- */
3071
3072 public V putIfAbsent(K key, V value) {
3073 checkKey(key);
3074 return m.putIfAbsent(key, value);
3075 }
3076
3077 public boolean remove(Object key, Object value) {
3078 K k = (K)key;
3079 return inHalfOpenRange(k) && m.remove(k, value);
3080 }
3081
3082 public boolean replace(K key, V oldValue, V newValue) {
3083 checkKey(key);
3084 return m.replace(key, oldValue, newValue);
3085 }
3086
3087 public V replace(K key, V value) {
3088 checkKey(key);
3089 return m.replace(key, value);
3090 }
3091
3092 /* ---------------- SortedMap API methods -------------- */
3093
3094 public Comparator<? super K> comparator() {
3095 return m.comparator();
3096 }
3097
3098 public K firstKey() {
3099 ConcurrentSkipListMap.Node<K,V> n = firstNode();
3100 if (isBeforeEnd(n))
3101 return n.key;
3102 else
3103 throw new NoSuchElementException();
3104 }
3105
3106 public K lastKey() {
3107 ConcurrentSkipListMap.Node<K,V> n = lastNode();
3108 if (n != null) {
3109 K last = n.key;
3110 if (inHalfOpenRange(last))
3111 return last;
3112 }
3113 throw new NoSuchElementException();
3114 }
3115
3116 public ConcurrentNavigableMap<K,V> navigableSubMap(K fromKey, K toKey) {
3117 if (fromKey == null || toKey == null)
3118 throw new NullPointerException();
3119 if (!inOpenRange(fromKey) || !inOpenRange(toKey))
3120 throw new IllegalArgumentException("key out of range");
3121 return new ConcurrentSkipListSubMap<K,V>(m, fromKey, toKey);
3122 }
3123
3124 public ConcurrentNavigableMap<K,V> navigableHeadMap(K toKey) {
3125 if (toKey == null)
3126 throw new NullPointerException();
3127 if (!inOpenRange(toKey))
3128 throw new IllegalArgumentException("key out of range");
3129 return new ConcurrentSkipListSubMap<K,V>(m, least, toKey);
3130 }
3131
3132 public ConcurrentNavigableMap<K,V> navigableTailMap(K fromKey) {
3133 if (fromKey == null)
3134 throw new NullPointerException();
3135 if (!inOpenRange(fromKey))
3136 throw new IllegalArgumentException("key out of range");
3137 return new ConcurrentSkipListSubMap<K,V>(m, fromKey, fence);
3138 }
3139
3140 public SortedMap<K,V> subMap(K fromKey, K toKey) {
3141 return navigableSubMap(fromKey, toKey);
3142 }
3143
3144 public SortedMap<K,V> headMap(K toKey) {
3145 return navigableHeadMap(toKey);
3146 }
3147
3148 public SortedMap<K,V> tailMap(K fromKey) {
3149 return navigableTailMap(fromKey);
3150 }
3151
3152 /* ---------------- Relational methods -------------- */
3153
3154 public Map.Entry<K,V> ceilingEntry(K key) {
3155 return m.getNearEntry(key, m.GT|m.EQ, least, fence);
3156 }
3157
3158 public K ceilingKey(K key) {
3159 return m.getNearKey(key, m.GT|m.EQ, least, fence);
3160 }
3161
3162 public Map.Entry<K,V> lowerEntry(K key) {
3163 return m.getNearEntry(key, m.LT, least, fence);
3164 }
3165
3166 public K lowerKey(K key) {
3167 return m.getNearKey(key, m.LT, least, fence);
3168 }
3169
3170 public Map.Entry<K,V> floorEntry(K key) {
3171 return m.getNearEntry(key, m.LT|m.EQ, least, fence);
3172 }
3173
3174 public K floorKey(K key) {
3175 return m.getNearKey(key, m.LT|m.EQ, least, fence);
3176 }
3177
3178 public Map.Entry<K,V> higherEntry(K key) {
3179 return m.getNearEntry(key, m.GT, least, fence);
3180 }
3181
3182 public K higherKey(K key) {
3183 return m.getNearKey(key, m.GT, least, fence);
3184 }
3185
3186 public Map.Entry<K,V> firstEntry() {
3187 for (;;) {
3188 ConcurrentSkipListMap.Node<K,V> n = firstNode();
3189 if (!isBeforeEnd(n))
3190 return null;
3191 Map.Entry<K,V> e = n.createSnapshot();
3192 if (e != null)
3193 return e;
3194 }
3195 }
3196
3197 public Map.Entry<K,V> lastEntry() {
3198 for (;;) {
3199 ConcurrentSkipListMap.Node<K,V> n = lastNode();
3200 if (n == null || !inHalfOpenRange(n.key))
3201 return null;
3202 Map.Entry<K,V> e = n.createSnapshot();
3203 if (e != null)
3204 return e;
3205 }
3206 }
3207
3208 public Map.Entry<K,V> pollFirstEntry() {
3209 return m.removeFirstEntryOfSubrange(least, fence);
3210 }
3211
3212 public Map.Entry<K,V> pollLastEntry() {
3213 return m.removeLastEntryOfSubrange(least, fence);
3214 }
3215
3216 /* ---------------- Submap Views -------------- */
3217
3218 public Set<K> keySet() {
3219 Set<K> ks = keySetView;
3220 return (ks != null) ? ks : (keySetView = new KeySetView());
3221 }
3222
3223 class KeySetView extends AbstractSet<K> {
3224 public Iterator<K> iterator() {
3225 return m.subMapKeyIterator(least, fence);
3226 }
3227 public int size() {
3228 return ConcurrentSkipListSubMap.this.size();
3229 }
3230 public boolean isEmpty() {
3231 return ConcurrentSkipListSubMap.this.isEmpty();
3232 }
3233 public boolean contains(Object k) {
3234 return ConcurrentSkipListSubMap.this.containsKey(k);
3235 }
3236 public Object[] toArray() {
3237 return new ArrayList<K>(this).toArray();
3238 }
3239 public <T> T[] toArray(T[] a) {
3240 return new ArrayList<K>(this).toArray(a);
3241 }
3242 }
3243
3244 public Set<K> descendingKeySet() {
3245 Set<K> ks = descendingKeySetView;
3246 return (ks != null) ? ks : (descendingKeySetView = new DescendingKeySetView());
3247 }
3248
3249 class DescendingKeySetView extends KeySetView {
3250 public Iterator<K> iterator() {
3251 return m.descendingSubMapKeyIterator(least, fence);
3252 }
3253 }
3254
3255 public Collection<V> values() {
3256 Collection<V> vs = valuesView;
3257 return (vs != null) ? vs : (valuesView = new ValuesView());
3258 }
3259
3260 class ValuesView extends AbstractCollection<V> {
3261 public Iterator<V> iterator() {
3262 return m.subMapValueIterator(least, fence);
3263 }
3264 public int size() {
3265 return ConcurrentSkipListSubMap.this.size();
3266 }
3267 public boolean isEmpty() {
3268 return ConcurrentSkipListSubMap.this.isEmpty();
3269 }
3270 public boolean contains(Object v) {
3271 return ConcurrentSkipListSubMap.this.containsValue(v);
3272 }
3273 public Object[] toArray() {
3274 Collection<V> c = new ArrayList<V>();
3275 for (Iterator<V> i = iterator(); i.hasNext(); )
3276 c.add(i.next());
3277 return c.toArray();
3278 }
3279 public <T> T[] toArray(T[] a) {
3280 Collection<V> c = new ArrayList<V>();
3281 for (Iterator<V> i = iterator(); i.hasNext(); )
3282 c.add(i.next());
3283 return c.toArray(a);
3284 }
3285 }
3286
3287 public Set<Map.Entry<K,V>> entrySet() {
3288 Set<Map.Entry<K,V>> es = entrySetView;
3289 return (es != null) ? es : (entrySetView = new EntrySetView());
3290 }
3291
3292 class EntrySetView extends AbstractSet<Map.Entry<K,V>> {
3293 public Iterator<Map.Entry<K,V>> iterator() {
3294 return m.subMapEntryIterator(least, fence);
3295 }
3296 public int size() {
3297 return ConcurrentSkipListSubMap.this.size();
3298 }
3299 public boolean isEmpty() {
3300 return ConcurrentSkipListSubMap.this.isEmpty();
3301 }
3302 public boolean contains(Object o) {
3303 if (!(o instanceof Map.Entry))
3304 return false;
3305 Map.Entry<K,V> e = (Map.Entry<K,V>) o;
3306 K key = e.getKey();
3307 if (!inHalfOpenRange(key))
3308 return false;
3309 V v = m.get(key);
3310 return v != null && v.equals(e.getValue());
3311 }
3312 public boolean remove(Object o) {
3313 if (!(o instanceof Map.Entry))
3314 return false;
3315 Map.Entry<K,V> e = (Map.Entry<K,V>) o;
3316 K key = e.getKey();
3317 if (!inHalfOpenRange(key))
3318 return false;
3319 return m.remove(key, e.getValue());
3320 }
3321 public Object[] toArray() {
3322 Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>();
3323 for (Map.Entry<K,V> e : this)
3324 c.add(new AbstractMap.SimpleEntry<K,V>(e.getKey(),
3325 e.getValue()));
3326 return c.toArray();
3327 }
3328 public <T> T[] toArray(T[] a) {
3329 Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>();
3330 for (Map.Entry<K,V> e : this)
3331 c.add(new AbstractMap.SimpleEntry<K,V>(e.getKey(),
3332 e.getValue()));
3333 return c.toArray(a);
3334 }
3335 }
3336
3337 public Set<Map.Entry<K,V>> descendingEntrySet() {
3338 Set<Map.Entry<K,V>> es = descendingEntrySetView;
3339 return (es != null) ? es : (descendingEntrySetView = new DescendingEntrySetView());
3340 }
3341
3342 class DescendingEntrySetView extends EntrySetView {
3343 public Iterator<Map.Entry<K,V>> iterator() {
3344 return m.descendingSubMapEntryIterator(least, fence);
3345 }
3346 }
3347 }
3348 }