ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentSkipListMap.java
Revision: 1.31
Committed: Tue May 31 14:02:47 2005 UTC (19 years ago) by dl
Branch: MAIN
Changes since 1.30: +79 -42 lines
Log Message:
Reduce generics warnings

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package java.util.concurrent;
8 import java.util.*;
9 import java.util.concurrent.atomic.*;
10
11 /**
12 * A scalable concurrent {@link ConcurrentNavigableMap} implementation.
13 * The map is sorted according to the {@linkplain Comparable natural
14 * ordering} of its keys, or by a {@link Comparator} provided at map
15 * creation time, depending on which constructor is used.
16 *
17 * <p>This class implements a concurrent variant of <a
18 * href="http://www.cs.umd.edu/~pugh/">SkipLists</a> providing
19 * expected average <i>log(n)</i> time cost for the
20 * <tt>containsKey</tt>, <tt>get</tt>, <tt>put</tt> and
21 * <tt>remove</tt> operations and their variants. Insertion, removal,
22 * update, and access operations safely execute concurrently by
23 * multiple threads. Iterators are <i>weakly consistent</i>, returning
24 * elements reflecting the state of the map at some point at or since
25 * the creation of the iterator. They do <em>not</em> throw {@link
26 * ConcurrentModificationException}, and may proceed concurrently with
27 * other operations. Ascending key ordered views and their iterators
28 * are faster than descending ones.
29 *
30 * <p>All <tt>Map.Entry</tt> pairs returned by methods in this class
31 * and its views represent snapshots of mappings at the time they were
32 * produced. They do <em>not</em> support the <tt>Entry.setValue</tt>
33 * method. (Note however that it is possible to change mappings in the
34 * associated map using <tt>put</tt>, <tt>putIfAbsent</tt>, or
35 * <tt>replace</tt>, depending on exactly which effect you need.)
36 *
37 * <p>Beware that, unlike in most collections, the <tt>size</tt>
38 * method is <em>not</em> a constant-time operation. Because of the
39 * asynchronous nature of these maps, determining the current number
40 * of elements requires a traversal of the elements. Additionally,
41 * the bulk operations <tt>putAll</tt>, <tt>equals</tt>, and
42 * <tt>clear</tt> are <em>not</em> guaranteed to be performed
43 * atomically. For example, an iterator operating concurrently with a
44 * <tt>putAll</tt> operation might view only some of the added
45 * elements.
46 *
47 * <p>This class and its views and iterators implement all of the
48 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
49 * interfaces. Like most other concurrent collections, this class does
50 * <em>not</em> permit the use of <tt>null</tt> keys or values because some
51 * null return values cannot be reliably distinguished from the absence of
52 * elements.
53 *
54 * <p>This class is a member of the
55 * <a href="{@docRoot}/../guide/collections/index.html">
56 * Java Collections Framework</a>.
57 *
58 * @author Doug Lea
59 * @param <K> the type of keys maintained by this map
60 * @param <V> the type of mapped values
61 * @since 1.6
62 */
63 public class ConcurrentSkipListMap<K,V> extends AbstractMap<K,V>
64 implements ConcurrentNavigableMap<K,V>,
65 Cloneable,
66 java.io.Serializable {
67 /*
68 * This class implements a tree-like two-dimensionally linked skip
69 * list in which the index levels are represented in separate
70 * nodes from the base nodes holding data. There are two reasons
71 * for taking this approach instead of the usual array-based
72 * structure: 1) Array based implementations seem to encounter
73 * more complexity and overhead 2) We can use cheaper algorithms
74 * for the heavily-traversed index lists than can be used for the
75 * base lists. Here's a picture of some of the basics for a
76 * possible list with 2 levels of index:
77 *
78 * Head nodes Index nodes
79 * +-+ right +-+ +-+
80 * |2|---------------->| |--------------------->| |->null
81 * +-+ +-+ +-+
82 * | down | |
83 * v v v
84 * +-+ +-+ +-+ +-+ +-+ +-+
85 * |1|----------->| |->| |------>| |----------->| |------>| |->null
86 * +-+ +-+ +-+ +-+ +-+ +-+
87 * v | | | | |
88 * Nodes next v v v v v
89 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
90 * | |->|A|->|B|->|C|->|D|->|E|->|F|->|G|->|H|->|I|->|J|->|K|->null
91 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
92 *
93 * The base lists use a variant of the HM linked ordered set
94 * algorithm. See Tim Harris, "A pragmatic implementation of
95 * non-blocking linked lists"
96 * http://www.cl.cam.ac.uk/~tlh20/publications.html and Maged
97 * Michael "High Performance Dynamic Lock-Free Hash Tables and
98 * List-Based Sets"
99 * http://www.research.ibm.com/people/m/michael/pubs.htm. The
100 * basic idea in these lists is to mark the "next" pointers of
101 * deleted nodes when deleting to avoid conflicts with concurrent
102 * insertions, and when traversing to keep track of triples
103 * (predecessor, node, successor) in order to detect when and how
104 * to unlink these deleted nodes.
105 *
106 * Rather than using mark-bits to mark list deletions (which can
107 * be slow and space-intensive using AtomicMarkedReference), nodes
108 * use direct CAS'able next pointers. On deletion, instead of
109 * marking a pointer, they splice in another node that can be
110 * thought of as standing for a marked pointer (indicating this by
111 * using otherwise impossible field values). Using plain nodes
112 * acts roughly like "boxed" implementations of marked pointers,
113 * but uses new nodes only when nodes are deleted, not for every
114 * link. This requires less space and supports faster
115 * traversal. Even if marked references were better supported by
116 * JVMs, traversal using this technique might still be faster
117 * because any search need only read ahead one more node than
118 * otherwise required (to check for trailing marker) rather than
119 * unmasking mark bits or whatever on each read.
120 *
121 * This approach maintains the essential property needed in the HM
122 * algorithm of changing the next-pointer of a deleted node so
123 * that any other CAS of it will fail, but implements the idea by
124 * changing the pointer to point to a different node, not by
125 * marking it. While it would be possible to further squeeze
126 * space by defining marker nodes not to have key/value fields, it
127 * isn't worth the extra type-testing overhead. The deletion
128 * markers are rarely encountered during traversal and are
129 * normally quickly garbage collected. (Note that this technique
130 * would not work well in systems without garbage collection.)
131 *
132 * In addition to using deletion markers, the lists also use
133 * nullness of value fields to indicate deletion, in a style
134 * similar to typical lazy-deletion schemes. If a node's value is
135 * null, then it is considered logically deleted and ignored even
136 * though it is still reachable. This maintains proper control of
137 * concurrent replace vs delete operations -- an attempted replace
138 * must fail if a delete beat it by nulling field, and a delete
139 * must return the last non-null value held in the field. (Note:
140 * Null, rather than some special marker, is used for value fields
141 * here because it just so happens to mesh with the Map API
142 * requirement that method get returns null if there is no
143 * mapping, which allows nodes to remain concurrently readable
144 * even when deleted. Using any other marker value here would be
145 * messy at best.)
146 *
147 * Here's the sequence of events for a deletion of node n with
148 * predecessor b and successor f, initially:
149 *
150 * +------+ +------+ +------+
151 * ... | b |------>| n |----->| f | ...
152 * +------+ +------+ +------+
153 *
154 * 1. CAS n's value field from non-null to null.
155 * From this point on, no public operations encountering
156 * the node consider this mapping to exist. However, other
157 * ongoing insertions and deletions might still modify
158 * n's next pointer.
159 *
160 * 2. CAS n's next pointer to point to a new marker node.
161 * From this point on, no other nodes can be appended to n.
162 * which avoids deletion errors in CAS-based linked lists.
163 *
164 * +------+ +------+ +------+ +------+
165 * ... | b |------>| n |----->|marker|------>| f | ...
166 * +------+ +------+ +------+ +------+
167 *
168 * 3. CAS b's next pointer over both n and its marker.
169 * From this point on, no new traversals will encounter n,
170 * and it can eventually be GCed.
171 * +------+ +------+
172 * ... | b |----------------------------------->| f | ...
173 * +------+ +------+
174 *
175 * A failure at step 1 leads to simple retry due to a lost race
176 * with another operation. Steps 2-3 can fail because some other
177 * thread noticed during a traversal a node with null value and
178 * helped out by marking and/or unlinking. This helping-out
179 * ensures that no thread can become stuck waiting for progress of
180 * the deleting thread. The use of marker nodes slightly
181 * complicates helping-out code because traversals must track
182 * consistent reads of up to four nodes (b, n, marker, f), not
183 * just (b, n, f), although the next field of a marker is
184 * immutable, and once a next field is CAS'ed to point to a
185 * marker, it never again changes, so this requires less care.
186 *
187 * Skip lists add indexing to this scheme, so that the base-level
188 * traversals start close to the locations being found, inserted
189 * or deleted -- usually base level traversals only traverse a few
190 * nodes. This doesn't change the basic algorithm except for the
191 * need to make sure base traversals start at predecessors (here,
192 * b) that are not (structurally) deleted, otherwise retrying
193 * after processing the deletion.
194 *
195 * Index levels are maintained as lists with volatile next fields,
196 * using CAS to link and unlink. Races are allowed in index-list
197 * operations that can (rarely) fail to link in a new index node
198 * or delete one. (We can't do this of course for data nodes.)
199 * However, even when this happens, the index lists remain sorted,
200 * so correctly serve as indices. This can impact performance,
201 * but since skip lists are probabilistic anyway, the net result
202 * is that under contention, the effective "p" value may be lower
203 * than its nominal value. And race windows are kept small enough
204 * that in practice these failures are rare, even under a lot of
205 * contention.
206 *
207 * The fact that retries (for both base and index lists) are
208 * relatively cheap due to indexing allows some minor
209 * simplifications of retry logic. Traversal restarts are
210 * performed after most "helping-out" CASes. This isn't always
211 * strictly necessary, but the implicit backoffs tend to help
212 * reduce other downstream failed CAS's enough to outweigh restart
213 * cost. This worsens the worst case, but seems to improve even
214 * highly contended cases.
215 *
216 * Unlike most skip-list implementations, index insertion and
217 * deletion here require a separate traversal pass occuring after
218 * the base-level action, to add or remove index nodes. This adds
219 * to single-threaded overhead, but improves contended
220 * multithreaded performance by narrowing interference windows,
221 * and allows deletion to ensure that all index nodes will be made
222 * unreachable upon return from a public remove operation, thus
223 * avoiding unwanted garbage retention. This is more important
224 * here than in some other data structures because we cannot null
225 * out node fields referencing user keys since they might still be
226 * read by other ongoing traversals.
227 *
228 * Indexing uses skip list parameters that maintain good search
229 * performance while using sparser-than-usual indices: The
230 * hardwired parameters k=1, p=0.5 (see method randomLevel) mean
231 * that about one-quarter of the nodes have indices. Of those that
232 * do, half have one level, a quarter have two, and so on (see
233 * Pugh's Skip List Cookbook, sec 3.4). The expected total space
234 * requirement for a map is slightly less than for the current
235 * implementation of java.util.TreeMap.
236 *
237 * Changing the level of the index (i.e, the height of the
238 * tree-like structure) also uses CAS. The head index has initial
239 * level/height of one. Creation of an index with height greater
240 * than the current level adds a level to the head index by
241 * CAS'ing on a new top-most head. To maintain good performance
242 * after a lot of removals, deletion methods heuristically try to
243 * reduce the height if the topmost levels appear to be empty.
244 * This may encounter races in which it possible (but rare) to
245 * reduce and "lose" a level just as it is about to contain an
246 * index (that will then never be encountered). This does no
247 * structural harm, and in practice appears to be a better option
248 * than allowing unrestrained growth of levels.
249 *
250 * The code for all this is more verbose than you'd like. Most
251 * operations entail locating an element (or position to insert an
252 * element). The code to do this can't be nicely factored out
253 * because subsequent uses require a snapshot of predecessor
254 * and/or successor and/or value fields which can't be returned
255 * all at once, at least not without creating yet another object
256 * to hold them -- creating such little objects is an especially
257 * bad idea for basic internal search operations because it adds
258 * to GC overhead. (This is one of the few times I've wished Java
259 * had macros.) Instead, some traversal code is interleaved within
260 * insertion and removal operations. The control logic to handle
261 * all the retry conditions is sometimes twisty. Most search is
262 * broken into 2 parts. findPredecessor() searches index nodes
263 * only, returning a base-level predecessor of the key. findNode()
264 * finishes out the base-level search. Even with this factoring,
265 * there is a fair amount of near-duplication of code to handle
266 * variants.
267 *
268 * For explanation of algorithms sharing at least a couple of
269 * features with this one, see Mikhail Fomitchev's thesis
270 * (http://www.cs.yorku.ca/~mikhail/), Keir Fraser's thesis
271 * (http://www.cl.cam.ac.uk/users/kaf24/), and Hakan Sundell's
272 * thesis (http://www.cs.chalmers.se/~phs/).
273 *
274 * Given the use of tree-like index nodes, you might wonder why
275 * this doesn't use some kind of search tree instead, which would
276 * support somewhat faster search operations. The reason is that
277 * there are no known efficient lock-free insertion and deletion
278 * algorithms for search trees. The immutability of the "down"
279 * links of index nodes (as opposed to mutable "left" fields in
280 * true trees) makes this tractable using only CAS operations.
281 *
282 * Notation guide for local variables
283 * Node: b, n, f for predecessor, node, successor
284 * Index: q, r, d for index node, right, down.
285 * t for another index node
286 * Head: h
287 * Levels: j
288 * Keys: k, key
289 * Values: v, value
290 * Comparisons: c
291 */
292
293 private static final long serialVersionUID = -8627078645895051609L;
294
295 /**
296 * Special value used to identify base-level header
297 */
298 private static final Object BASE_HEADER = new Object();
299
300 /**
301 * The topmost head index of the skiplist.
302 */
303 private transient volatile HeadIndex<K,V> head;
304
305 /**
306 * The comparator used to maintain order in this map, or null
307 * if using natural ordering.
308 * @serial
309 */
310 private final Comparator<? super K> comparator;
311
312 /**
313 * Seed for simple random number generator. Not volatile since it
314 * doesn't matter too much if different threads don't see updates.
315 */
316 private transient int randomSeed;
317
318 /** Lazily initialized key set */
319 private transient KeySet keySet;
320 /** Lazily initialized entry set */
321 private transient EntrySet entrySet;
322 /** Lazily initialized values collection */
323 private transient Values values;
324 /** Lazily initialized descending key set */
325 private transient DescendingKeySet descendingKeySet;
326 /** Lazily initialized descending entry set */
327 private transient DescendingEntrySet descendingEntrySet;
328
329 /**
330 * Initializes or resets state. Needed by constructors, clone,
331 * clear, readObject. and ConcurrentSkipListSet.clone.
332 * (Note that comparator must be separately initialized.)
333 */
334 final void initialize() {
335 keySet = null;
336 entrySet = null;
337 values = null;
338 descendingEntrySet = null;
339 descendingKeySet = null;
340 randomSeed = (int) System.nanoTime();
341 head = new HeadIndex<K,V>(new Node<K,V>(null, BASE_HEADER, null),
342 null, null, 1);
343 }
344
345 /** Updater for casHead */
346 private static final
347 AtomicReferenceFieldUpdater<ConcurrentSkipListMap, HeadIndex>
348 headUpdater = AtomicReferenceFieldUpdater.newUpdater
349 (ConcurrentSkipListMap.class, HeadIndex.class, "head");
350
351 /**
352 * compareAndSet head node
353 */
354 private boolean casHead(HeadIndex<K,V> cmp, HeadIndex<K,V> val) {
355 return headUpdater.compareAndSet(this, cmp, val);
356 }
357
358 /* ---------------- Nodes -------------- */
359
360 /**
361 * Nodes hold keys and values, and are singly linked in sorted
362 * order, possibly with some intervening marker nodes. The list is
363 * headed by a dummy node accessible as head.node. The value field
364 * is declared only as Object because it takes special non-V
365 * values for marker and header nodes.
366 */
367 static final class Node<K,V> {
368 final K key;
369 volatile Object value;
370 volatile Node<K,V> next;
371
372 /**
373 * Creates a new regular node.
374 */
375 Node(K key, Object value, Node<K,V> next) {
376 this.key = key;
377 this.value = value;
378 this.next = next;
379 }
380
381 /**
382 * Creates a new marker node. A marker is distinguished by
383 * having its value field point to itself. Marker nodes also
384 * have null keys, a fact that is exploited in a few places,
385 * but this doesn't distinguish markers from the base-level
386 * header node (head.node), which also has a null key.
387 */
388 Node(Node<K,V> next) {
389 this.key = null;
390 this.value = this;
391 this.next = next;
392 }
393
394 /** Updater for casNext */
395 static final AtomicReferenceFieldUpdater<Node, Node>
396 nextUpdater = AtomicReferenceFieldUpdater.newUpdater
397 (Node.class, Node.class, "next");
398
399 /** Updater for casValue */
400 static final AtomicReferenceFieldUpdater<Node, Object>
401 valueUpdater = AtomicReferenceFieldUpdater.newUpdater
402 (Node.class, Object.class, "value");
403
404 /**
405 * compareAndSet value field
406 */
407 boolean casValue(Object cmp, Object val) {
408 return valueUpdater.compareAndSet(this, cmp, val);
409 }
410
411 /**
412 * compareAndSet next field
413 */
414 boolean casNext(Node<K,V> cmp, Node<K,V> val) {
415 return nextUpdater.compareAndSet(this, cmp, val);
416 }
417
418 /**
419 * Returns true if this node is a marker. This method isn't
420 * actually called in any current code checking for markers
421 * because callers will have already read value field and need
422 * to use that read (not another done here) and so directly
423 * test if value points to node.
424 * @param n a possibly null reference to a node
425 * @return true if this node is a marker node
426 */
427 boolean isMarker() {
428 return value == this;
429 }
430
431 /**
432 * Returns true if this node is the header of base-level list.
433 * @return true if this node is header node
434 */
435 boolean isBaseHeader() {
436 return value == BASE_HEADER;
437 }
438
439 /**
440 * Tries to append a deletion marker to this node.
441 * @param f the assumed current successor of this node
442 * @return true if successful
443 */
444 boolean appendMarker(Node<K,V> f) {
445 return casNext(f, new Node<K,V>(f));
446 }
447
448 /**
449 * Helps out a deletion by appending marker or unlinking from
450 * predecessor. This is called during traversals when value
451 * field seen to be null.
452 * @param b predecessor
453 * @param f successor
454 */
455 void helpDelete(Node<K,V> b, Node<K,V> f) {
456 /*
457 * Rechecking links and then doing only one of the
458 * help-out stages per call tends to minimize CAS
459 * interference among helping threads.
460 */
461 if (f == next && this == b.next) {
462 if (f == null || f.value != f) // not already marked
463 appendMarker(f);
464 else
465 b.casNext(this, f.next);
466 }
467 }
468
469 /**
470 * Returns value if this node contains a valid key-value pair,
471 * else null.
472 * @return this node's value if it isn't a marker or header or
473 * is deleted, else null.
474 */
475 V getValidValue() {
476 Object v = value;
477 if (v == this || v == BASE_HEADER)
478 return null;
479 return (V)v;
480 }
481
482 /**
483 * Creates and returns a new SimpleImmutableEntry holding current
484 * mapping if this node holds a valid value, else null.
485 * @return new entry or null
486 */
487 AbstractMap.SimpleImmutableEntry<K,V> createSnapshot() {
488 V v = getValidValue();
489 if (v == null)
490 return null;
491 return new AbstractMap.SimpleImmutableEntry<K,V>(key, v);
492 }
493 }
494
495 /* ---------------- Indexing -------------- */
496
497 /**
498 * Index nodes represent the levels of the skip list. To improve
499 * search performance, keys of the underlying nodes are cached.
500 * Note that even though both Nodes and Indexes have
501 * forward-pointing fields, they have different types and are
502 * handled in different ways, that can't nicely be captured by
503 * placing field in a shared abstract class.
504 */
505 static class Index<K,V> {
506 final K key;
507 final Node<K,V> node;
508 final Index<K,V> down;
509 volatile Index<K,V> right;
510
511 /**
512 * Creates index node with given values.
513 */
514 Index(Node<K,V> node, Index<K,V> down, Index<K,V> right) {
515 this.node = node;
516 this.key = node.key;
517 this.down = down;
518 this.right = right;
519 }
520
521 /** Updater for casRight */
522 static final AtomicReferenceFieldUpdater<Index, Index>
523 rightUpdater = AtomicReferenceFieldUpdater.newUpdater
524 (Index.class, Index.class, "right");
525
526 /**
527 * compareAndSet right field
528 */
529 final boolean casRight(Index<K,V> cmp, Index<K,V> val) {
530 return rightUpdater.compareAndSet(this, cmp, val);
531 }
532
533 /**
534 * Returns true if the node this indexes has been deleted.
535 * @return true if indexed node is known to be deleted
536 */
537 final boolean indexesDeletedNode() {
538 return node.value == null;
539 }
540
541 /**
542 * Tries to CAS newSucc as successor. To minimize races with
543 * unlink that may lose this index node, if the node being
544 * indexed is known to be deleted, it doesn't try to link in.
545 * @param succ the expected current successor
546 * @param newSucc the new successor
547 * @return true if successful
548 */
549 final boolean link(Index<K,V> succ, Index<K,V> newSucc) {
550 Node<K,V> n = node;
551 newSucc.right = succ;
552 return n.value != null && casRight(succ, newSucc);
553 }
554
555 /**
556 * Tries to CAS right field to skip over apparent successor
557 * succ. Fails (forcing a retraversal by caller) if this node
558 * is known to be deleted.
559 * @param succ the expected current successor
560 * @return true if successful
561 */
562 final boolean unlink(Index<K,V> succ) {
563 return !indexesDeletedNode() && casRight(succ, succ.right);
564 }
565 }
566
567 /* ---------------- Head nodes -------------- */
568
569 /**
570 * Nodes heading each level keep track of their level.
571 */
572 static final class HeadIndex<K,V> extends Index<K,V> {
573 final int level;
574 HeadIndex(Node<K,V> node, Index<K,V> down, Index<K,V> right, int level) {
575 super(node, down, right);
576 this.level = level;
577 }
578 }
579
580 /* ---------------- Comparison utilities -------------- */
581
582 /**
583 * Represents a key with a comparator as a Comparable.
584 *
585 * Because most sorted collections seem to use natural ordering on
586 * Comparables (Strings, Integers, etc), most internal methods are
587 * geared to use them. This is generally faster than checking
588 * per-comparison whether to use comparator or comparable because
589 * it doesn't require a (Comparable) cast for each comparison.
590 * (Optimizers can only sometimes remove such redundant checks
591 * themselves.) When Comparators are used,
592 * ComparableUsingComparators are created so that they act in the
593 * same way as natural orderings. This penalizes use of
594 * Comparators vs Comparables, which seems like the right
595 * tradeoff.
596 */
597 static final class ComparableUsingComparator<K> implements Comparable<K> {
598 final K actualKey;
599 final Comparator<? super K> cmp;
600 ComparableUsingComparator(K key, Comparator<? super K> cmp) {
601 this.actualKey = key;
602 this.cmp = cmp;
603 }
604 public int compareTo(K k2) {
605 return cmp.compare(actualKey, k2);
606 }
607 }
608
609 /**
610 * If using comparator, return a ComparableUsingComparator, else
611 * cast key as Comparator, which may cause ClassCastException,
612 * which is propagated back to caller.
613 */
614 private Comparable<? super K> comparable(Object key) throws ClassCastException {
615 if (key == null)
616 throw new NullPointerException();
617 if (comparator != null)
618 return new ComparableUsingComparator<K>((K)key, comparator);
619 else
620 return (Comparable<? super K>)key;
621 }
622
623 /**
624 * Compares using comparator or natural ordering. Used when the
625 * ComparableUsingComparator approach doesn't apply.
626 */
627 int compare(K k1, K k2) throws ClassCastException {
628 Comparator<? super K> cmp = comparator;
629 if (cmp != null)
630 return cmp.compare(k1, k2);
631 else
632 return ((Comparable<? super K>)k1).compareTo(k2);
633 }
634
635 /**
636 * Returns true if given key greater than or equal to least and
637 * strictly less than fence, bypassing either test if least or
638 * fence are null. Needed mainly in submap operations.
639 */
640 boolean inHalfOpenRange(K key, K least, K fence) {
641 if (key == null)
642 throw new NullPointerException();
643 return ((least == null || compare(key, least) >= 0) &&
644 (fence == null || compare(key, fence) < 0));
645 }
646
647 /**
648 * Returns true if given key greater than or equal to least and less
649 * or equal to fence. Needed mainly in submap operations.
650 */
651 boolean inOpenRange(K key, K least, K fence) {
652 if (key == null)
653 throw new NullPointerException();
654 return ((least == null || compare(key, least) >= 0) &&
655 (fence == null || compare(key, fence) <= 0));
656 }
657
658 /* ---------------- Traversal -------------- */
659
660 /**
661 * Returns a base-level node with key strictly less than given key,
662 * or the base-level header if there is no such node. Also
663 * unlinks indexes to deleted nodes found along the way. Callers
664 * rely on this side-effect of clearing indices to deleted nodes.
665 * @param key the key
666 * @return a predecessor of key
667 */
668 private Node<K,V> findPredecessor(Comparable<? super K> key) {
669 for (;;) {
670 Index<K,V> q = head;
671 for (;;) {
672 Index<K,V> d, r;
673 if ((r = q.right) != null) {
674 if (r.indexesDeletedNode()) {
675 if (q.unlink(r))
676 continue; // reread r
677 else
678 break; // restart
679 }
680 if (key.compareTo(r.key) > 0) {
681 q = r;
682 continue;
683 }
684 }
685 if ((d = q.down) != null)
686 q = d;
687 else
688 return q.node;
689 }
690 }
691 }
692
693 /**
694 * Returns node holding key or null if no such, clearing out any
695 * deleted nodes seen along the way. Repeatedly traverses at
696 * base-level looking for key starting at predecessor returned
697 * from findPredecessor, processing base-level deletions as
698 * encountered. Some callers rely on this side-effect of clearing
699 * deleted nodes.
700 *
701 * Restarts occur, at traversal step centered on node n, if:
702 *
703 * (1) After reading n's next field, n is no longer assumed
704 * predecessor b's current successor, which means that
705 * we don't have a consistent 3-node snapshot and so cannot
706 * unlink any subsequent deleted nodes encountered.
707 *
708 * (2) n's value field is null, indicating n is deleted, in
709 * which case we help out an ongoing structural deletion
710 * before retrying. Even though there are cases where such
711 * unlinking doesn't require restart, they aren't sorted out
712 * here because doing so would not usually outweigh cost of
713 * restarting.
714 *
715 * (3) n is a marker or n's predecessor's value field is null,
716 * indicating (among other possibilities) that
717 * findPredecessor returned a deleted node. We can't unlink
718 * the node because we don't know its predecessor, so rely
719 * on another call to findPredecessor to notice and return
720 * some earlier predecessor, which it will do. This check is
721 * only strictly needed at beginning of loop, (and the
722 * b.value check isn't strictly needed at all) but is done
723 * each iteration to help avoid contention with other
724 * threads by callers that will fail to be able to change
725 * links, and so will retry anyway.
726 *
727 * The traversal loops in doPut, doRemove, and findNear all
728 * include the same three kinds of checks. And specialized
729 * versions appear in findFirst, and findLast and their
730 * variants. They can't easily share code because each uses the
731 * reads of fields held in locals occurring in the orders they
732 * were performed.
733 *
734 * @param key the key
735 * @return node holding key, or null if no such
736 */
737 private Node<K,V> findNode(Comparable<? super K> key) {
738 for (;;) {
739 Node<K,V> b = findPredecessor(key);
740 Node<K,V> n = b.next;
741 for (;;) {
742 if (n == null)
743 return null;
744 Node<K,V> f = n.next;
745 if (n != b.next) // inconsistent read
746 break;
747 Object v = n.value;
748 if (v == null) { // n is deleted
749 n.helpDelete(b, f);
750 break;
751 }
752 if (v == n || b.value == null) // b is deleted
753 break;
754 int c = key.compareTo(n.key);
755 if (c < 0)
756 return null;
757 if (c == 0)
758 return n;
759 b = n;
760 n = f;
761 }
762 }
763 }
764
765 /**
766 * Specialized variant of findNode to perform Map.get. Does a weak
767 * traversal, not bothering to fix any deleted index nodes,
768 * returning early if it happens to see key in index, and passing
769 * over any deleted base nodes, falling back to getUsingFindNode
770 * only if it would otherwise return value from an ongoing
771 * deletion. Also uses "bound" to eliminate need for some
772 * comparisons (see Pugh Cookbook). Also folds uses of null checks
773 * and node-skipping because markers have null keys.
774 * @param okey the key
775 * @return the value, or null if absent
776 */
777 private V doGet(Object okey) {
778 Comparable<? super K> key = comparable(okey);
779 K bound = null;
780 Index<K,V> q = head;
781 for (;;) {
782 K rk;
783 Index<K,V> d, r;
784 if ((r = q.right) != null &&
785 (rk = r.key) != null && rk != bound) {
786 int c = key.compareTo(rk);
787 if (c > 0) {
788 q = r;
789 continue;
790 }
791 if (c == 0) {
792 Object v = r.node.value;
793 return (v != null)? (V)v : getUsingFindNode(key);
794 }
795 bound = rk;
796 }
797 if ((d = q.down) != null)
798 q = d;
799 else {
800 for (Node<K,V> n = q.node.next; n != null; n = n.next) {
801 K nk = n.key;
802 if (nk != null) {
803 int c = key.compareTo(nk);
804 if (c == 0) {
805 Object v = n.value;
806 return (v != null)? (V)v : getUsingFindNode(key);
807 }
808 if (c < 0)
809 return null;
810 }
811 }
812 return null;
813 }
814 }
815 }
816
817 /**
818 * Performs map.get via findNode. Used as a backup if doGet
819 * encounters an in-progress deletion.
820 * @param key the key
821 * @return the value, or null if absent
822 */
823 private V getUsingFindNode(Comparable<? super K> key) {
824 /*
825 * Loop needed here and elsewhere in case value field goes
826 * null just as it is about to be returned, in which case we
827 * lost a race with a deletion, so must retry.
828 */
829 for (;;) {
830 Node<K,V> n = findNode(key);
831 if (n == null)
832 return null;
833 Object v = n.value;
834 if (v != null)
835 return (V)v;
836 }
837 }
838
839 /* ---------------- Insertion -------------- */
840
841 /**
842 * Main insertion method. Adds element if not present, or
843 * replaces value if present and onlyIfAbsent is false.
844 * @param kkey the key
845 * @param value the value that must be associated with key
846 * @param onlyIfAbsent if should not insert if already present
847 * @return the old value, or null if newly inserted
848 */
849 private V doPut(K kkey, V value, boolean onlyIfAbsent) {
850 Comparable<? super K> key = comparable(kkey);
851 for (;;) {
852 Node<K,V> b = findPredecessor(key);
853 Node<K,V> n = b.next;
854 for (;;) {
855 if (n != null) {
856 Node<K,V> f = n.next;
857 if (n != b.next) // inconsistent read
858 break;;
859 Object v = n.value;
860 if (v == null) { // n is deleted
861 n.helpDelete(b, f);
862 break;
863 }
864 if (v == n || b.value == null) // b is deleted
865 break;
866 int c = key.compareTo(n.key);
867 if (c > 0) {
868 b = n;
869 n = f;
870 continue;
871 }
872 if (c == 0) {
873 if (onlyIfAbsent || n.casValue(v, value))
874 return (V)v;
875 else
876 break; // restart if lost race to replace value
877 }
878 // else c < 0; fall through
879 }
880
881 Node<K,V> z = new Node<K,V>(kkey, value, n);
882 if (!b.casNext(n, z))
883 break; // restart if lost race to append to b
884 int level = randomLevel();
885 if (level > 0)
886 insertIndex(z, level);
887 return null;
888 }
889 }
890 }
891
892 /**
893 * Returns a random level for inserting a new node.
894 * Hardwired to k=1, p=0.5, max 31.
895 *
896 * This uses a cheap pseudo-random function that according to
897 * http://home1.gte.net/deleyd/random/random4.html was used in
898 * Turbo Pascal. It seems the fastest usable one here. The low
899 * bits are apparently not very random (the original used only
900 * upper 16 bits) so we traverse from highest bit down (i.e., test
901 * sign), thus hardly ever use lower bits.
902 */
903 private int randomLevel() {
904 int level = 0;
905 int r = randomSeed;
906 randomSeed = r * 134775813 + 1;
907 if (r < 0) {
908 while ((r <<= 1) > 0)
909 ++level;
910 }
911 return level;
912 }
913
914 /**
915 * Creates and adds index nodes for the given node.
916 * @param z the node
917 * @param level the level of the index
918 */
919 private void insertIndex(Node<K,V> z, int level) {
920 HeadIndex<K,V> h = head;
921 int max = h.level;
922
923 if (level <= max) {
924 Index<K,V> idx = null;
925 for (int i = 1; i <= level; ++i)
926 idx = new Index<K,V>(z, idx, null);
927 addIndex(idx, h, level);
928
929 } else { // Add a new level
930 /*
931 * To reduce interference by other threads checking for
932 * empty levels in tryReduceLevel, new levels are added
933 * with initialized right pointers. Which in turn requires
934 * keeping levels in an array to access them while
935 * creating new head index nodes from the opposite
936 * direction.
937 */
938 level = max + 1;
939 Index<K,V>[] idxs = (Index<K,V>[])new Index[level+1];
940 Index<K,V> idx = null;
941 for (int i = 1; i <= level; ++i)
942 idxs[i] = idx = new Index<K,V>(z, idx, null);
943
944 HeadIndex<K,V> oldh;
945 int k;
946 for (;;) {
947 oldh = head;
948 int oldLevel = oldh.level;
949 if (level <= oldLevel) { // lost race to add level
950 k = level;
951 break;
952 }
953 HeadIndex<K,V> newh = oldh;
954 Node<K,V> oldbase = oldh.node;
955 for (int j = oldLevel+1; j <= level; ++j)
956 newh = new HeadIndex<K,V>(oldbase, newh, idxs[j], j);
957 if (casHead(oldh, newh)) {
958 k = oldLevel;
959 break;
960 }
961 }
962 addIndex(idxs[k], oldh, k);
963 }
964 }
965
966 /**
967 * Adds given index nodes from given level down to 1.
968 * @param idx the topmost index node being inserted
969 * @param h the value of head to use to insert. This must be
970 * snapshotted by callers to provide correct insertion level
971 * @param indexLevel the level of the index
972 */
973 private void addIndex(Index<K,V> idx, HeadIndex<K,V> h, int indexLevel) {
974 // Track next level to insert in case of retries
975 int insertionLevel = indexLevel;
976 Comparable<? super K> key = comparable(idx.key);
977
978 // Similar to findPredecessor, but adding index nodes along
979 // path to key.
980 for (;;) {
981 Index<K,V> q = h;
982 Index<K,V> t = idx;
983 int j = h.level;
984 for (;;) {
985 Index<K,V> r = q.right;
986 if (r != null) {
987 // compare before deletion check avoids needing recheck
988 int c = key.compareTo(r.key);
989 if (r.indexesDeletedNode()) {
990 if (q.unlink(r))
991 continue;
992 else
993 break;
994 }
995 if (c > 0) {
996 q = r;
997 continue;
998 }
999 }
1000
1001 if (j == insertionLevel) {
1002 // Don't insert index if node already deleted
1003 if (t.indexesDeletedNode()) {
1004 findNode(key); // cleans up
1005 return;
1006 }
1007 if (!q.link(r, t))
1008 break; // restart
1009 if (--insertionLevel == 0) {
1010 // need final deletion check before return
1011 if (t.indexesDeletedNode())
1012 findNode(key);
1013 return;
1014 }
1015 }
1016
1017 if (j > insertionLevel && j <= indexLevel)
1018 t = t.down;
1019 q = q.down;
1020 --j;
1021 }
1022 }
1023 }
1024
1025 /* ---------------- Deletion -------------- */
1026
1027 /**
1028 * Main deletion method. Locates node, nulls value, appends a
1029 * deletion marker, unlinks predecessor, removes associated index
1030 * nodes, and possibly reduces head index level.
1031 *
1032 * Index nodes are cleared out simply by calling findPredecessor.
1033 * which unlinks indexes to deleted nodes found along path to key,
1034 * which will include the indexes to this node. This is done
1035 * unconditionally. We can't check beforehand whether there are
1036 * index nodes because it might be the case that some or all
1037 * indexes hadn't been inserted yet for this node during initial
1038 * search for it, and we'd like to ensure lack of garbage
1039 * retention, so must call to be sure.
1040 *
1041 * @param okey the key
1042 * @param value if non-null, the value that must be
1043 * associated with key
1044 * @return the node, or null if not found
1045 */
1046 private V doRemove(Object okey, Object value) {
1047 Comparable<? super K> key = comparable(okey);
1048 for (;;) {
1049 Node<K,V> b = findPredecessor(key);
1050 Node<K,V> n = b.next;
1051 for (;;) {
1052 if (n == null)
1053 return null;
1054 Node<K,V> f = n.next;
1055 if (n != b.next) // inconsistent read
1056 break;
1057 Object v = n.value;
1058 if (v == null) { // n is deleted
1059 n.helpDelete(b, f);
1060 break;
1061 }
1062 if (v == n || b.value == null) // b is deleted
1063 break;
1064 int c = key.compareTo(n.key);
1065 if (c < 0)
1066 return null;
1067 if (c > 0) {
1068 b = n;
1069 n = f;
1070 continue;
1071 }
1072 if (value != null && !value.equals(v))
1073 return null;
1074 if (!n.casValue(v, null))
1075 break;
1076 if (!n.appendMarker(f) || !b.casNext(n, f))
1077 findNode(key); // Retry via findNode
1078 else {
1079 findPredecessor(key); // Clean index
1080 if (head.right == null)
1081 tryReduceLevel();
1082 }
1083 return (V)v;
1084 }
1085 }
1086 }
1087
1088 /**
1089 * Possibly reduce head level if it has no nodes. This method can
1090 * (rarely) make mistakes, in which case levels can disappear even
1091 * though they are about to contain index nodes. This impacts
1092 * performance, not correctness. To minimize mistakes as well as
1093 * to reduce hysteresis, the level is reduced by one only if the
1094 * topmost three levels look empty. Also, if the removed level
1095 * looks non-empty after CAS, we try to change it back quick
1096 * before anyone notices our mistake! (This trick works pretty
1097 * well because this method will practically never make mistakes
1098 * unless current thread stalls immediately before first CAS, in
1099 * which case it is very unlikely to stall again immediately
1100 * afterwards, so will recover.)
1101 *
1102 * We put up with all this rather than just let levels grow
1103 * because otherwise, even a small map that has undergone a large
1104 * number of insertions and removals will have a lot of levels,
1105 * slowing down access more than would an occasional unwanted
1106 * reduction.
1107 */
1108 private void tryReduceLevel() {
1109 HeadIndex<K,V> h = head;
1110 HeadIndex<K,V> d;
1111 HeadIndex<K,V> e;
1112 if (h.level > 3 &&
1113 (d = (HeadIndex<K,V>)h.down) != null &&
1114 (e = (HeadIndex<K,V>)d.down) != null &&
1115 e.right == null &&
1116 d.right == null &&
1117 h.right == null &&
1118 casHead(h, d) && // try to set
1119 h.right != null) // recheck
1120 casHead(d, h); // try to backout
1121 }
1122
1123 /**
1124 * Version of remove with boolean return. Needed by view classes
1125 */
1126 boolean removep(Object key) {
1127 return doRemove(key, null) != null;
1128 }
1129
1130 /* ---------------- Finding and removing first element -------------- */
1131
1132 /**
1133 * Specialized variant of findNode to get first valid node.
1134 * @return first node or null if empty
1135 */
1136 Node<K,V> findFirst() {
1137 for (;;) {
1138 Node<K,V> b = head.node;
1139 Node<K,V> n = b.next;
1140 if (n == null)
1141 return null;
1142 if (n.value != null)
1143 return n;
1144 n.helpDelete(b, n.next);
1145 }
1146 }
1147
1148 /**
1149 * Removes first entry; returns its key. Note: The
1150 * mostly-redundant methods for removing first and last keys vs
1151 * entries exist to avoid needless creation of Entry nodes when
1152 * only the key is needed. The minor reduction in overhead is
1153 * worth the minor code duplication.
1154 * @return null if empty, else key of first entry
1155 */
1156 K pollFirstKey() {
1157 for (;;) {
1158 Node<K,V> b = head.node;
1159 Node<K,V> n = b.next;
1160 if (n == null)
1161 return null;
1162 Node<K,V> f = n.next;
1163 if (n != b.next)
1164 continue;
1165 Object v = n.value;
1166 if (v == null) {
1167 n.helpDelete(b, f);
1168 continue;
1169 }
1170 if (!n.casValue(v, null))
1171 continue;
1172 if (!n.appendMarker(f) || !b.casNext(n, f))
1173 findFirst(); // retry
1174 clearIndexToFirst();
1175 return n.key;
1176 }
1177 }
1178
1179 /**
1180 * Removes first entry; returns its snapshot.
1181 * @return null if empty, else snapshot of first entry
1182 */
1183 Map.Entry<K,V> doRemoveFirstEntry() {
1184 for (;;) {
1185 Node<K,V> b = head.node;
1186 Node<K,V> n = b.next;
1187 if (n == null)
1188 return null;
1189 Node<K,V> f = n.next;
1190 if (n != b.next)
1191 continue;
1192 Object v = n.value;
1193 if (v == null) {
1194 n.helpDelete(b, f);
1195 continue;
1196 }
1197 if (!n.casValue(v, null))
1198 continue;
1199 if (!n.appendMarker(f) || !b.casNext(n, f))
1200 findFirst(); // retry
1201 clearIndexToFirst();
1202 return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, (V)v);
1203 }
1204 }
1205
1206 /**
1207 * Clears out index nodes associated with deleted first entry.
1208 */
1209 private void clearIndexToFirst() {
1210 for (;;) {
1211 Index<K,V> q = head;
1212 for (;;) {
1213 Index<K,V> r = q.right;
1214 if (r != null && r.indexesDeletedNode() && !q.unlink(r))
1215 break;
1216 if ((q = q.down) == null) {
1217 if (head.right == null)
1218 tryReduceLevel();
1219 return;
1220 }
1221 }
1222 }
1223 }
1224
1225
1226 /* ---------------- Finding and removing last element -------------- */
1227
1228 /**
1229 * Specialized version of find to get last valid node.
1230 * @return last node or null if empty
1231 */
1232 Node<K,V> findLast() {
1233 /*
1234 * findPredecessor can't be used to traverse index level
1235 * because this doesn't use comparisons. So traversals of
1236 * both levels are folded together.
1237 */
1238 Index<K,V> q = head;
1239 for (;;) {
1240 Index<K,V> d, r;
1241 if ((r = q.right) != null) {
1242 if (r.indexesDeletedNode()) {
1243 q.unlink(r);
1244 q = head; // restart
1245 }
1246 else
1247 q = r;
1248 } else if ((d = q.down) != null) {
1249 q = d;
1250 } else {
1251 Node<K,V> b = q.node;
1252 Node<K,V> n = b.next;
1253 for (;;) {
1254 if (n == null)
1255 return (b.isBaseHeader())? null : b;
1256 Node<K,V> f = n.next; // inconsistent read
1257 if (n != b.next)
1258 break;
1259 Object v = n.value;
1260 if (v == null) { // n is deleted
1261 n.helpDelete(b, f);
1262 break;
1263 }
1264 if (v == n || b.value == null) // b is deleted
1265 break;
1266 b = n;
1267 n = f;
1268 }
1269 q = head; // restart
1270 }
1271 }
1272 }
1273
1274 /**
1275 * Specialized variant of findPredecessor to get predecessor of
1276 * last valid node. Needed by doRemoveLast. It is possible that
1277 * all successors of returned node will have been deleted upon
1278 * return, in which case this method can be retried.
1279 * @return likely predecessor of last node
1280 */
1281 private Node<K,V> findPredecessorOfLast() {
1282 for (;;) {
1283 Index<K,V> q = head;
1284 for (;;) {
1285 Index<K,V> d, r;
1286 if ((r = q.right) != null) {
1287 if (r.indexesDeletedNode()) {
1288 q.unlink(r);
1289 break; // must restart
1290 }
1291 // proceed as far across as possible without overshooting
1292 if (r.node.next != null) {
1293 q = r;
1294 continue;
1295 }
1296 }
1297 if ((d = q.down) != null)
1298 q = d;
1299 else
1300 return q.node;
1301 }
1302 }
1303 }
1304
1305 /**
1306 * Specialized version of doRemove for last key.
1307 * @return null if empty, else the last key
1308 */
1309 K pollLastKey() {
1310 for (;;) {
1311 Node<K,V> b = findPredecessorOfLast();
1312 Node<K,V> n = b.next;
1313 if (n == null) {
1314 if (b.isBaseHeader()) // empty
1315 return null;
1316 else
1317 continue; // all b's successors are deleted; retry
1318 }
1319 for (;;) {
1320 Node<K,V> f = n.next;
1321 if (n != b.next) // inconsistent read
1322 break;
1323 Object v = n.value;
1324 if (v == null) { // n is deleted
1325 n.helpDelete(b, f);
1326 break;
1327 }
1328 if (v == n || b.value == null) // b is deleted
1329 break;
1330 if (f != null) {
1331 b = n;
1332 n = f;
1333 continue;
1334 }
1335 if (!n.casValue(v, null))
1336 break;
1337 K key = n.key;
1338 Comparable<? super K> ck = comparable(key);
1339 if (!n.appendMarker(f) || !b.casNext(n, f))
1340 findNode(ck); // Retry via findNode
1341 else {
1342 findPredecessor(ck); // Clean index
1343 if (head.right == null)
1344 tryReduceLevel();
1345 }
1346 return key;
1347 }
1348 }
1349 }
1350
1351 /**
1352 * Specialized version of doRemove for last.
1353 * @return null if empty, else snapshot of the last entry
1354 */
1355 Map.Entry<K,V> doRemoveLastEntry() {
1356 for (;;) {
1357 Node<K,V> b = findPredecessorOfLast();
1358 Node<K,V> n = b.next;
1359 if (n == null) {
1360 if (b.isBaseHeader()) // empty
1361 return null;
1362 else
1363 continue; // all b's successors are deleted; retry
1364 }
1365 for (;;) {
1366 Node<K,V> f = n.next;
1367 if (n != b.next) // inconsistent read
1368 break;
1369 Object v = n.value;
1370 if (v == null) { // n is deleted
1371 n.helpDelete(b, f);
1372 break;
1373 }
1374 if (v == n || b.value == null) // b is deleted
1375 break;
1376 if (f != null) {
1377 b = n;
1378 n = f;
1379 continue;
1380 }
1381 if (!n.casValue(v, null))
1382 break;
1383 K key = n.key;
1384 Comparable<? super K> ck = comparable(key);
1385 if (!n.appendMarker(f) || !b.casNext(n, f))
1386 findNode(ck); // Retry via findNode
1387 else {
1388 findPredecessor(ck); // Clean index
1389 if (head.right == null)
1390 tryReduceLevel();
1391 }
1392 return new AbstractMap.SimpleImmutableEntry<K,V>(key, (V)v);
1393 }
1394 }
1395 }
1396
1397 /* ---------------- Relational operations -------------- */
1398
1399 // Control values OR'ed as arguments to findNear
1400
1401 private static final int EQ = 1;
1402 private static final int LT = 2;
1403 private static final int GT = 0; // Actually checked as !LT
1404
1405 /**
1406 * Utility for ceiling, floor, lower, higher methods.
1407 * @param kkey the key
1408 * @param rel the relation -- OR'ed combination of EQ, LT, GT
1409 * @return nearest node fitting relation, or null if no such
1410 */
1411 Node<K,V> findNear(K kkey, int rel) {
1412 Comparable<? super K> key = comparable(kkey);
1413 for (;;) {
1414 Node<K,V> b = findPredecessor(key);
1415 Node<K,V> n = b.next;
1416 for (;;) {
1417 if (n == null)
1418 return ((rel & LT) == 0 || b.isBaseHeader())? null : b;
1419 Node<K,V> f = n.next;
1420 if (n != b.next) // inconsistent read
1421 break;
1422 Object v = n.value;
1423 if (v == null) { // n is deleted
1424 n.helpDelete(b, f);
1425 break;
1426 }
1427 if (v == n || b.value == null) // b is deleted
1428 break;
1429 int c = key.compareTo(n.key);
1430 if ((c == 0 && (rel & EQ) != 0) ||
1431 (c < 0 && (rel & LT) == 0))
1432 return n;
1433 if ( c <= 0 && (rel & LT) != 0)
1434 return (b.isBaseHeader())? null : b;
1435 b = n;
1436 n = f;
1437 }
1438 }
1439 }
1440
1441 /**
1442 * Returns SimpleImmutableEntry for results of findNear.
1443 * @param kkey the key
1444 * @param rel the relation -- OR'ed combination of EQ, LT, GT
1445 * @return Entry fitting relation, or null if no such
1446 */
1447 AbstractMap.SimpleImmutableEntry<K,V> getNear(K kkey, int rel) {
1448 for (;;) {
1449 Node<K,V> n = findNear(kkey, rel);
1450 if (n == null)
1451 return null;
1452 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
1453 if (e != null)
1454 return e;
1455 }
1456 }
1457
1458 /**
1459 * Returns ceiling, or first node if key is <tt>null</tt>.
1460 */
1461 Node<K,V> findCeiling(K key) {
1462 return (key == null)? findFirst() : findNear(key, GT|EQ);
1463 }
1464
1465 /**
1466 * Returns lower node, or last node if key is <tt>null</tt>.
1467 */
1468 Node<K,V> findLower(K key) {
1469 return (key == null)? findLast() : findNear(key, LT);
1470 }
1471
1472 /**
1473 * Returns key for results of findNear after screening to ensure
1474 * result is in given range. Needed by submaps.
1475 * @param kkey the key
1476 * @param rel the relation -- OR'ed combination of EQ, LT, GT
1477 * @param least minimum allowed key value
1478 * @param fence key greater than maximum allowed key value
1479 * @return Key fitting relation, or <tt>null</tt> if no such
1480 */
1481 K getNearKey(K kkey, int rel, K least, K fence) {
1482 K key = kkey;
1483 // Don't return keys less than least
1484 if ((rel & LT) == 0) {
1485 if (compare(key, least) < 0) {
1486 key = least;
1487 rel = rel | EQ;
1488 }
1489 }
1490
1491 for (;;) {
1492 Node<K,V> n = findNear(key, rel);
1493 if (n == null || !inHalfOpenRange(n.key, least, fence))
1494 return null;
1495 K k = n.key;
1496 V v = n.getValidValue();
1497 if (v != null)
1498 return k;
1499 }
1500 }
1501
1502
1503 /**
1504 * Returns SimpleImmutableEntry for results of findNear after
1505 * screening to ensure result is in given range. Needed by
1506 * submaps.
1507 * @param kkey the key
1508 * @param rel the relation -- OR'ed combination of EQ, LT, GT
1509 * @param least minimum allowed key value
1510 * @param fence key greater than maximum allowed key value
1511 * @return Entry fitting relation, or <tt>null</tt> if no such
1512 */
1513 Map.Entry<K,V> getNearEntry(K kkey, int rel, K least, K fence) {
1514 K key = kkey;
1515 // Don't return keys less than least
1516 if ((rel & LT) == 0) {
1517 if (compare(key, least) < 0) {
1518 key = least;
1519 rel = rel | EQ;
1520 }
1521 }
1522
1523 for (;;) {
1524 Node<K,V> n = findNear(key, rel);
1525 if (n == null || !inHalfOpenRange(n.key, least, fence))
1526 return null;
1527 K k = n.key;
1528 V v = n.getValidValue();
1529 if (v != null)
1530 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
1531 }
1532 }
1533
1534 /**
1535 * Finds and removes least element of subrange.
1536 * @param least minimum allowed key value
1537 * @param fence key greater than maximum allowed key value
1538 * @return least Entry, or <tt>null</tt> if no such
1539 */
1540 Map.Entry<K,V> removeFirstEntryOfSubrange(K least, K fence) {
1541 for (;;) {
1542 Node<K,V> n = findCeiling(least);
1543 if (n == null)
1544 return null;
1545 K k = n.key;
1546 if (fence != null && compare(k, fence) >= 0)
1547 return null;
1548 V v = doRemove(k, null);
1549 if (v != null)
1550 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
1551 }
1552 }
1553
1554 /**
1555 * Finds and removes greatest element of subrange.
1556 * @param least minimum allowed key value
1557 * @param fence key greater than maximum allowed key value
1558 * @return least Entry, or <tt>null</tt> if no such
1559 */
1560 Map.Entry<K,V> removeLastEntryOfSubrange(K least, K fence) {
1561 for (;;) {
1562 Node<K,V> n = findLower(fence);
1563 if (n == null)
1564 return null;
1565 K k = n.key;
1566 if (least != null && compare(k, least) < 0)
1567 return null;
1568 V v = doRemove(k, null);
1569 if (v != null)
1570 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
1571 }
1572 }
1573
1574
1575
1576 /* ---------------- Constructors -------------- */
1577
1578 /**
1579 * Constructs a new, empty map, sorted according to the
1580 * {@linkplain Comparable natural ordering} of the keys.
1581 */
1582 public ConcurrentSkipListMap() {
1583 this.comparator = null;
1584 initialize();
1585 }
1586
1587 /**
1588 * Constructs a new, empty map, sorted according to the specified
1589 * comparator.
1590 *
1591 * @param comparator the comparator that will be used to order this map.
1592 * If <tt>null</tt>, the {@linkplain Comparable natural
1593 * ordering} of the keys will be used.
1594 */
1595 public ConcurrentSkipListMap(Comparator<? super K> comparator) {
1596 this.comparator = comparator;
1597 initialize();
1598 }
1599
1600 /**
1601 * Constructs a new map containing the same mappings as the given map,
1602 * sorted according to the {@linkplain Comparable natural ordering} of
1603 * the keys.
1604 *
1605 * @param m the map whose mappings are to be placed in this map
1606 * @throws ClassCastException if the keys in <tt>m</tt> are not
1607 * {@link Comparable}, or are not mutually comparable
1608 * @throws NullPointerException if the specified map or any of its keys
1609 * or values are null
1610 */
1611 public ConcurrentSkipListMap(Map<? extends K, ? extends V> m) {
1612 this.comparator = null;
1613 initialize();
1614 putAll(m);
1615 }
1616
1617 /**
1618 * Constructs a new map containing the same mappings and using the
1619 * same ordering as the specified sorted map.
1620 *
1621 * @param m the sorted map whose mappings are to be placed in this
1622 * map, and whose comparator is to be used to sort this map
1623 * @throws NullPointerException if the specified sorted map or any of
1624 * its keys or values are null
1625 */
1626 public ConcurrentSkipListMap(SortedMap<K, ? extends V> m) {
1627 this.comparator = m.comparator();
1628 initialize();
1629 buildFromSorted(m);
1630 }
1631
1632 /**
1633 * Returns a shallow copy of this <tt>ConcurrentSkipListMap</tt>
1634 * instance. (The keys and values themselves are not cloned.)
1635 *
1636 * @return a shallow copy of this map
1637 */
1638 public ConcurrentSkipListMap<K,V> clone() {
1639 ConcurrentSkipListMap<K,V> clone = null;
1640 try {
1641 clone = (ConcurrentSkipListMap<K,V>) super.clone();
1642 } catch (CloneNotSupportedException e) {
1643 throw new InternalError();
1644 }
1645
1646 clone.initialize();
1647 clone.buildFromSorted(this);
1648 return clone;
1649 }
1650
1651 /**
1652 * Streamlined bulk insertion to initialize from elements of
1653 * given sorted map. Call only from constructor or clone
1654 * method.
1655 */
1656 private void buildFromSorted(SortedMap<K, ? extends V> map) {
1657 if (map == null)
1658 throw new NullPointerException();
1659
1660 HeadIndex<K,V> h = head;
1661 Node<K,V> basepred = h.node;
1662
1663 // Track the current rightmost node at each level. Uses an
1664 // ArrayList to avoid committing to initial or maximum level.
1665 ArrayList<Index<K,V>> preds = new ArrayList<Index<K,V>>();
1666
1667 // initialize
1668 for (int i = 0; i <= h.level; ++i)
1669 preds.add(null);
1670 Index<K,V> q = h;
1671 for (int i = h.level; i > 0; --i) {
1672 preds.set(i, q);
1673 q = q.down;
1674 }
1675
1676 Iterator<? extends Map.Entry<? extends K, ? extends V>> it =
1677 map.entrySet().iterator();
1678 while (it.hasNext()) {
1679 Map.Entry<? extends K, ? extends V> e = it.next();
1680 int j = randomLevel();
1681 if (j > h.level) j = h.level + 1;
1682 K k = e.getKey();
1683 V v = e.getValue();
1684 if (k == null || v == null)
1685 throw new NullPointerException();
1686 Node<K,V> z = new Node<K,V>(k, v, null);
1687 basepred.next = z;
1688 basepred = z;
1689 if (j > 0) {
1690 Index<K,V> idx = null;
1691 for (int i = 1; i <= j; ++i) {
1692 idx = new Index<K,V>(z, idx, null);
1693 if (i > h.level)
1694 h = new HeadIndex<K,V>(h.node, h, idx, i);
1695
1696 if (i < preds.size()) {
1697 preds.get(i).right = idx;
1698 preds.set(i, idx);
1699 } else
1700 preds.add(idx);
1701 }
1702 }
1703 }
1704 head = h;
1705 }
1706
1707 /* ---------------- Serialization -------------- */
1708
1709 /**
1710 * Save the state of this map to a stream.
1711 *
1712 * @serialData The key (Object) and value (Object) for each
1713 * key-value mapping represented by the map, followed by
1714 * <tt>null</tt>. The key-value mappings are emitted in key-order
1715 * (as determined by the Comparator, or by the keys' natural
1716 * ordering if no Comparator).
1717 */
1718 private void writeObject(java.io.ObjectOutputStream s)
1719 throws java.io.IOException {
1720 // Write out the Comparator and any hidden stuff
1721 s.defaultWriteObject();
1722
1723 // Write out keys and values (alternating)
1724 for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1725 V v = n.getValidValue();
1726 if (v != null) {
1727 s.writeObject(n.key);
1728 s.writeObject(v);
1729 }
1730 }
1731 s.writeObject(null);
1732 }
1733
1734 /**
1735 * Reconstitute the map from a stream.
1736 */
1737 private void readObject(final java.io.ObjectInputStream s)
1738 throws java.io.IOException, ClassNotFoundException {
1739 // Read in the Comparator and any hidden stuff
1740 s.defaultReadObject();
1741 // Reset transients
1742 initialize();
1743
1744 /*
1745 * This is nearly identical to buildFromSorted, but is
1746 * distinct because readObject calls can't be nicely adapted
1747 * as the kind of iterator needed by buildFromSorted. (They
1748 * can be, but doing so requires type cheats and/or creation
1749 * of adaptor classes.) It is simpler to just adapt the code.
1750 */
1751
1752 HeadIndex<K,V> h = head;
1753 Node<K,V> basepred = h.node;
1754 ArrayList<Index<K,V>> preds = new ArrayList<Index<K,V>>();
1755 for (int i = 0; i <= h.level; ++i)
1756 preds.add(null);
1757 Index<K,V> q = h;
1758 for (int i = h.level; i > 0; --i) {
1759 preds.set(i, q);
1760 q = q.down;
1761 }
1762
1763 for (;;) {
1764 Object k = s.readObject();
1765 if (k == null)
1766 break;
1767 Object v = s.readObject();
1768 if (v == null)
1769 throw new NullPointerException();
1770 K key = (K) k;
1771 V val = (V) v;
1772 int j = randomLevel();
1773 if (j > h.level) j = h.level + 1;
1774 Node<K,V> z = new Node<K,V>(key, val, null);
1775 basepred.next = z;
1776 basepred = z;
1777 if (j > 0) {
1778 Index<K,V> idx = null;
1779 for (int i = 1; i <= j; ++i) {
1780 idx = new Index<K,V>(z, idx, null);
1781 if (i > h.level)
1782 h = new HeadIndex<K,V>(h.node, h, idx, i);
1783
1784 if (i < preds.size()) {
1785 preds.get(i).right = idx;
1786 preds.set(i, idx);
1787 } else
1788 preds.add(idx);
1789 }
1790 }
1791 }
1792 head = h;
1793 }
1794
1795 /* ------ Map API methods ------ */
1796
1797 /**
1798 * Returns <tt>true</tt> if this map contains a mapping for the specified
1799 * key.
1800 *
1801 * @param key key whose presence in this map is to be tested
1802 * @return <tt>true</tt> if this map contains a mapping for the specified key
1803 * @throws ClassCastException if the specified key cannot be compared
1804 * with the keys currently in the map
1805 * @throws NullPointerException if the specified key is null
1806 */
1807 public boolean containsKey(Object key) {
1808 return doGet(key) != null;
1809 }
1810
1811 /**
1812 * Returns the value to which this map maps the specified key, or
1813 * <tt>null</tt> if the map contains no mapping for the key.
1814 *
1815 * @param key key whose associated value is to be returned
1816 * @return the value to which this map maps the specified key, or
1817 * <tt>null</tt> if the map contains no mapping for the key
1818 * @throws ClassCastException if the specified key cannot be compared
1819 * with the keys currently in the map
1820 * @throws NullPointerException if the specified key is null
1821 */
1822 public V get(Object key) {
1823 return doGet(key);
1824 }
1825
1826 /**
1827 * Associates the specified value with the specified key in this map.
1828 * If the map previously contained a mapping for the key, the old
1829 * value is replaced.
1830 *
1831 * @param key key with which the specified value is to be associated
1832 * @param value value to be associated with the specified key
1833 * @return the previous value associated with the specified key, or
1834 * <tt>null</tt> if there was no mapping for the key
1835 * @throws ClassCastException if the specified key cannot be compared
1836 * with the keys currently in the map
1837 * @throws NullPointerException if the specified key or value is null
1838 */
1839 public V put(K key, V value) {
1840 if (value == null)
1841 throw new NullPointerException();
1842 return doPut(key, value, false);
1843 }
1844
1845 /**
1846 * Removes the mapping for this key from this map if present.
1847 *
1848 * @param key key for which mapping should be removed
1849 * @return the previous value associated with the specified key, or
1850 * <tt>null</tt> if there was no mapping for the key
1851 * @throws ClassCastException if the specified key cannot be compared
1852 * with the keys currently in the map
1853 * @throws NullPointerException if the specified key is null
1854 */
1855 public V remove(Object key) {
1856 return doRemove(key, null);
1857 }
1858
1859 /**
1860 * Returns <tt>true</tt> if this map maps one or more keys to the
1861 * specified value. This operation requires time linear in the
1862 * map size.
1863 *
1864 * @param value value whose presence in this map is to be tested
1865 * @return <tt>true</tt> if a mapping to <tt>value</tt> exists;
1866 * <tt>false</tt> otherwise
1867 * @throws NullPointerException if the specified value is null
1868 */
1869 public boolean containsValue(Object value) {
1870 if (value == null)
1871 throw new NullPointerException();
1872 for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1873 V v = n.getValidValue();
1874 if (v != null && value.equals(v))
1875 return true;
1876 }
1877 return false;
1878 }
1879
1880 /**
1881 * Returns the number of key-value mappings in this map. If this map
1882 * contains more than <tt>Integer.MAX_VALUE</tt> elements, it
1883 * returns <tt>Integer.MAX_VALUE</tt>.
1884 *
1885 * <p>Beware that, unlike in most collections, this method is
1886 * <em>NOT</em> a constant-time operation. Because of the
1887 * asynchronous nature of these maps, determining the current
1888 * number of elements requires traversing them all to count them.
1889 * Additionally, it is possible for the size to change during
1890 * execution of this method, in which case the returned result
1891 * will be inaccurate. Thus, this method is typically not very
1892 * useful in concurrent applications.
1893 *
1894 * @return the number of elements in this map
1895 */
1896 public int size() {
1897 long count = 0;
1898 for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1899 if (n.getValidValue() != null)
1900 ++count;
1901 }
1902 return (count >= Integer.MAX_VALUE)? Integer.MAX_VALUE : (int)count;
1903 }
1904
1905 /**
1906 * Returns <tt>true</tt> if this map contains no key-value mappings.
1907 * @return <tt>true</tt> if this map contains no key-value mappings
1908 */
1909 public boolean isEmpty() {
1910 return findFirst() == null;
1911 }
1912
1913 /**
1914 * Removes all of the mappings from this map.
1915 */
1916 public void clear() {
1917 initialize();
1918 }
1919
1920 /**
1921 * Returns a {@link Set} view of the keys contained in this map.
1922 * The set's iterator returns the keys in ascending order.
1923 * The set is backed by the map, so changes to the map are
1924 * reflected in the set, and vice-versa. The set supports element
1925 * removal, which removes the corresponding mapping from the map,
1926 * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1927 * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
1928 * operations. It does not support the <tt>add</tt> or <tt>addAll</tt>
1929 * operations.
1930 *
1931 * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1932 * that will never throw {@link ConcurrentModificationException},
1933 * and guarantees to traverse elements as they existed upon
1934 * construction of the iterator, and may (but is not guaranteed to)
1935 * reflect any modifications subsequent to construction.
1936 *
1937 * @return a set view of the keys contained in this map, sorted in
1938 * ascending order
1939 */
1940 public Set<K> keySet() {
1941 /*
1942 * Note: Lazy initialization works here and for other views
1943 * because view classes are stateless/immutable so it doesn't
1944 * matter wrt correctness if more than one is created (which
1945 * will only rarely happen). Even so, the following idiom
1946 * conservatively ensures that the method returns the one it
1947 * created if it does so, not one created by another racing
1948 * thread.
1949 */
1950 KeySet ks = keySet;
1951 return (ks != null) ? ks : (keySet = new KeySet());
1952 }
1953
1954 /**
1955 * Returns a {@link Set} view of the keys contained in this map.
1956 * The set's iterator returns the keys in descending order.
1957 * The set is backed by the map, so changes to the map are
1958 * reflected in the set, and vice-versa. The set supports element
1959 * removal, which removes the corresponding mapping from the map,
1960 * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1961 * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
1962 * operations. It does not support the <tt>add</tt> or <tt>addAll</tt>
1963 * operations.
1964 *
1965 * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1966 * that will never throw {@link ConcurrentModificationException},
1967 * and guarantees to traverse elements as they existed upon
1968 * construction of the iterator, and may (but is not guaranteed to)
1969 * reflect any modifications subsequent to construction.
1970 */
1971 public Set<K> descendingKeySet() {
1972 /*
1973 * Note: Lazy initialization works here and for other views
1974 * because view classes are stateless/immutable so it doesn't
1975 * matter wrt correctness if more than one is created (which
1976 * will only rarely happen). Even so, the following idiom
1977 * conservatively ensures that the method returns the one it
1978 * created if it does so, not one created by another racing
1979 * thread.
1980 */
1981 DescendingKeySet ks = descendingKeySet;
1982 return (ks != null) ? ks : (descendingKeySet = new DescendingKeySet());
1983 }
1984
1985 /**
1986 * Returns a {@link Collection} view of the values contained in this map.
1987 * The collection's iterator returns the values in ascending order
1988 * of the corresponding keys.
1989 * The collection is backed by the map, so changes to the map are
1990 * reflected in the collection, and vice-versa. The collection
1991 * supports element removal, which removes the corresponding
1992 * mapping from the map, via the <tt>Iterator.remove</tt>,
1993 * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
1994 * <tt>retainAll</tt> and <tt>clear</tt> operations. It does not
1995 * support the <tt>add</tt> or <tt>addAll</tt> operations.
1996 *
1997 * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1998 * that will never throw {@link ConcurrentModificationException},
1999 * and guarantees to traverse elements as they existed upon
2000 * construction of the iterator, and may (but is not guaranteed to)
2001 * reflect any modifications subsequent to construction.
2002 */
2003 public Collection<V> values() {
2004 Values vs = values;
2005 return (vs != null) ? vs : (values = new Values());
2006 }
2007
2008 /**
2009 * Returns a {@link Set} view of the mappings contained in this map.
2010 * The set's iterator returns the entries in ascending key order.
2011 * The set is backed by the map, so changes to the map are
2012 * reflected in the set, and vice-versa. The set supports element
2013 * removal, which removes the corresponding mapping from the map,
2014 * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
2015 * <tt>removeAll</tt>, <tt>retainAll</tt> and <tt>clear</tt>
2016 * operations. It does not support the <tt>add</tt> or
2017 * <tt>addAll</tt> operations.
2018 *
2019 * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
2020 * that will never throw {@link ConcurrentModificationException},
2021 * and guarantees to traverse elements as they existed upon
2022 * construction of the iterator, and may (but is not guaranteed to)
2023 * reflect any modifications subsequent to construction.
2024 *
2025 * <p>The <tt>Map.Entry</tt> elements returned by
2026 * <tt>iterator.next()</tt> do <em>not</em> support the
2027 * <tt>setValue</tt> operation.
2028 *
2029 * @return a set view of the mappings contained in this map,
2030 * sorted in ascending key order
2031 */
2032 public Set<Map.Entry<K,V>> entrySet() {
2033 EntrySet es = entrySet;
2034 return (es != null) ? es : (entrySet = new EntrySet());
2035 }
2036
2037 /**
2038 * Returns a {@link Set} view of the mappings contained in this map.
2039 * The set's iterator returns the entries in descending key order.
2040 * The set is backed by the map, so changes to the map are
2041 * reflected in the set, and vice-versa. The set supports element
2042 * removal, which removes the corresponding mapping from the map,
2043 * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
2044 * <tt>removeAll</tt>, <tt>retainAll</tt> and <tt>clear</tt>
2045 * operations. It does not support the <tt>add</tt> or
2046 * <tt>addAll</tt> operations.
2047 *
2048 * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
2049 * that will never throw {@link ConcurrentModificationException},
2050 * and guarantees to traverse elements as they existed upon
2051 * construction of the iterator, and may (but is not guaranteed to)
2052 * reflect any modifications subsequent to construction.
2053 *
2054 * <p>The <tt>Map.Entry</tt> elements returned by
2055 * <tt>iterator.next()</tt> do <em>not</em> support the
2056 * <tt>setValue</tt> operation.
2057 */
2058 public Set<Map.Entry<K,V>> descendingEntrySet() {
2059 DescendingEntrySet es = descendingEntrySet;
2060 return (es != null) ? es : (descendingEntrySet = new DescendingEntrySet());
2061 }
2062
2063 /* ---------------- AbstractMap Overrides -------------- */
2064
2065 /**
2066 * Compares the specified object with this map for equality.
2067 * Returns <tt>true</tt> if the given object is also a map and the
2068 * two maps represent the same mappings. More formally, two maps
2069 * <tt>m1</tt> and <tt>m2</tt> represent the same mappings if
2070 * <tt>m1.keySet().equals(m2.keySet())</tt> and for every key
2071 * <tt>k</tt> in <tt>m1.keySet()</tt>, <tt> (m1.get(k)==null ?
2072 * m2.get(k)==null : m1.get(k).equals(m2.get(k))) </tt>. This
2073 * operation may return misleading results if either map is
2074 * concurrently modified during execution of this method.
2075 *
2076 * @param o object to be compared for equality with this map
2077 * @return <tt>true</tt> if the specified object is equal to this map
2078 */
2079 public boolean equals(Object o) {
2080 if (o == this)
2081 return true;
2082 if (!(o instanceof Map))
2083 return false;
2084 Map<?,?> m = (Map<?,?>) o;
2085 try {
2086 for (Map.Entry<K,V> e : this.entrySet())
2087 if (! e.getValue().equals(m.get(e.getKey())))
2088 return false;
2089 for (Map.Entry<?,?> e : m.entrySet()) {
2090 Object k = e.getKey();
2091 Object v = e.getValue();
2092 if (k == null || v == null || !v.equals(get(k)))
2093 return false;
2094 }
2095 return true;
2096 } catch (ClassCastException unused) {
2097 return false;
2098 } catch (NullPointerException unused) {
2099 return false;
2100 }
2101 }
2102
2103 /* ------ ConcurrentMap API methods ------ */
2104
2105 /**
2106 * {@inheritDoc}
2107 *
2108 * @return the previous value associated with the specified key,
2109 * or <tt>null</tt> if there was no mapping for the key
2110 * @throws ClassCastException if the specified key cannot be compared
2111 * with the keys currently in the map
2112 * @throws NullPointerException if the specified key or value is null
2113 */
2114 public V putIfAbsent(K key, V value) {
2115 if (value == null)
2116 throw new NullPointerException();
2117 return doPut(key, value, true);
2118 }
2119
2120 /**
2121 * {@inheritDoc}
2122 *
2123 * @throws ClassCastException if the specified key cannot be compared
2124 * with the keys currently in the map
2125 * @throws NullPointerException if the specified key is null
2126 */
2127 public boolean remove(Object key, Object value) {
2128 if (value == null)
2129 return false;
2130 return doRemove(key, value) != null;
2131 }
2132
2133 /**
2134 * {@inheritDoc}
2135 *
2136 * @throws ClassCastException if the specified key cannot be compared
2137 * with the keys currently in the map
2138 * @throws NullPointerException if any of the arguments are null
2139 */
2140 public boolean replace(K key, V oldValue, V newValue) {
2141 if (oldValue == null || newValue == null)
2142 throw new NullPointerException();
2143 Comparable<? super K> k = comparable(key);
2144 for (;;) {
2145 Node<K,V> n = findNode(k);
2146 if (n == null)
2147 return false;
2148 Object v = n.value;
2149 if (v != null) {
2150 if (!oldValue.equals(v))
2151 return false;
2152 if (n.casValue(v, newValue))
2153 return true;
2154 }
2155 }
2156 }
2157
2158 /**
2159 * {@inheritDoc}
2160 *
2161 * @return the previous value associated with the specified key,
2162 * or <tt>null</tt> if there was no mapping for the key
2163 * @throws ClassCastException if the specified key cannot be compared
2164 * with the keys currently in the map
2165 * @throws NullPointerException if the specified key or value is null
2166 */
2167 public V replace(K key, V value) {
2168 if (value == null)
2169 throw new NullPointerException();
2170 Comparable<? super K> k = comparable(key);
2171 for (;;) {
2172 Node<K,V> n = findNode(k);
2173 if (n == null)
2174 return null;
2175 Object v = n.value;
2176 if (v != null && n.casValue(v, value))
2177 return (V)v;
2178 }
2179 }
2180
2181 /* ------ SortedMap API methods ------ */
2182
2183 public Comparator<? super K> comparator() {
2184 return comparator;
2185 }
2186
2187 /**
2188 * @throws NoSuchElementException {@inheritDoc}
2189 */
2190 public K firstKey() {
2191 Node<K,V> n = findFirst();
2192 if (n == null)
2193 throw new NoSuchElementException();
2194 return n.key;
2195 }
2196
2197 /**
2198 * @throws NoSuchElementException {@inheritDoc}
2199 */
2200 public K lastKey() {
2201 Node<K,V> n = findLast();
2202 if (n == null)
2203 throw new NoSuchElementException();
2204 return n.key;
2205 }
2206
2207 /**
2208 * @throws ClassCastException {@inheritDoc}
2209 * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is null
2210 * @throws IllegalArgumentException {@inheritDoc}
2211 */
2212 public ConcurrentNavigableMap<K,V> navigableSubMap(K fromKey, K toKey) {
2213 if (fromKey == null || toKey == null)
2214 throw new NullPointerException();
2215 return new ConcurrentSkipListSubMap<K,V>(this, fromKey, toKey);
2216 }
2217
2218 /**
2219 * @throws ClassCastException {@inheritDoc}
2220 * @throws NullPointerException if <tt>toKey</tt> is null
2221 * @throws IllegalArgumentException {@inheritDoc}
2222 */
2223 public ConcurrentNavigableMap<K,V> navigableHeadMap(K toKey) {
2224 if (toKey == null)
2225 throw new NullPointerException();
2226 return new ConcurrentSkipListSubMap<K,V>(this, null, toKey);
2227 }
2228
2229 /**
2230 * @throws ClassCastException {@inheritDoc}
2231 * @throws NullPointerException if <tt>fromKey</tt> is null
2232 * @throws IllegalArgumentException {@inheritDoc}
2233 */
2234 public ConcurrentNavigableMap<K,V> navigableTailMap(K fromKey) {
2235 if (fromKey == null)
2236 throw new NullPointerException();
2237 return new ConcurrentSkipListSubMap<K,V>(this, fromKey, null);
2238 }
2239
2240 /**
2241 * Equivalent to {@link #navigableSubMap} but with a return type
2242 * conforming to the <tt>SortedMap</tt> interface.
2243 *
2244 * <p>{@inheritDoc}
2245 *
2246 * @throws ClassCastException {@inheritDoc}
2247 * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is null
2248 * @throws IllegalArgumentException {@inheritDoc}
2249 */
2250 public SortedMap<K,V> subMap(K fromKey, K toKey) {
2251 return navigableSubMap(fromKey, toKey);
2252 }
2253
2254 /**
2255 * Equivalent to {@link #navigableHeadMap} but with a return type
2256 * conforming to the <tt>SortedMap</tt> interface.
2257 *
2258 * <p>{@inheritDoc}
2259 *
2260 * @throws ClassCastException {@inheritDoc}
2261 * @throws NullPointerException if <tt>toKey</tt> is null
2262 * @throws IllegalArgumentException {@inheritDoc}
2263 */
2264 public SortedMap<K,V> headMap(K toKey) {
2265 return navigableHeadMap(toKey);
2266 }
2267
2268 /**
2269 * Equivalent to {@link #navigableTailMap} but with a return type
2270 * conforming to the <tt>SortedMap</tt> interface.
2271 *
2272 * <p>{@inheritDoc}
2273 *
2274 * @throws ClassCastException {@inheritDoc}
2275 * @throws NullPointerException if <tt>fromKey</tt> is null
2276 * @throws IllegalArgumentException {@inheritDoc}
2277 */
2278 public SortedMap<K,V> tailMap(K fromKey) {
2279 return navigableTailMap(fromKey);
2280 }
2281
2282 /* ---------------- Relational operations -------------- */
2283
2284 /**
2285 * Returns a key-value mapping associated with the greatest key
2286 * strictly less than the given key, or <tt>null</tt> if there is
2287 * no such key. The returned entry does <em>not</em> support the
2288 * <tt>Entry.setValue</tt> method.
2289 *
2290 * @throws ClassCastException {@inheritDoc}
2291 * @throws NullPointerException if the specified key is null
2292 */
2293 public Map.Entry<K,V> lowerEntry(K key) {
2294 return getNear(key, LT);
2295 }
2296
2297 /**
2298 * @throws ClassCastException {@inheritDoc}
2299 * @throws NullPointerException if the specified key is null
2300 */
2301 public K lowerKey(K key) {
2302 Node<K,V> n = findNear(key, LT);
2303 return (n == null)? null : n.key;
2304 }
2305
2306 /**
2307 * Returns a key-value mapping associated with the greatest key
2308 * less than or equal to the given key, or <tt>null</tt> if there
2309 * is no such key. The returned entry does <em>not</em> support
2310 * the <tt>Entry.setValue</tt> method.
2311 *
2312 * @param key the key
2313 * @throws ClassCastException {@inheritDoc}
2314 * @throws NullPointerException if the specified key is null
2315 */
2316 public Map.Entry<K,V> floorEntry(K key) {
2317 return getNear(key, LT|EQ);
2318 }
2319
2320 /**
2321 * @param key the key
2322 * @throws ClassCastException {@inheritDoc}
2323 * @throws NullPointerException if the specified key is null
2324 */
2325 public K floorKey(K key) {
2326 Node<K,V> n = findNear(key, LT|EQ);
2327 return (n == null)? null : n.key;
2328 }
2329
2330 /**
2331 * Returns a key-value mapping associated with the least key
2332 * greater than or equal to the given key, or <tt>null</tt> if
2333 * there is no such entry. The returned entry does <em>not</em>
2334 * support the <tt>Entry.setValue</tt> method.
2335 *
2336 * @throws ClassCastException {@inheritDoc}
2337 * @throws NullPointerException if the specified key is null
2338 */
2339 public Map.Entry<K,V> ceilingEntry(K key) {
2340 return getNear(key, GT|EQ);
2341 }
2342
2343 /**
2344 * @throws ClassCastException {@inheritDoc}
2345 * @throws NullPointerException if the specified key is null
2346 */
2347 public K ceilingKey(K key) {
2348 Node<K,V> n = findNear(key, GT|EQ);
2349 return (n == null)? null : n.key;
2350 }
2351
2352 /**
2353 * Returns a key-value mapping associated with the least key
2354 * strictly greater than the given key, or <tt>null</tt> if there
2355 * is no such key. The returned entry does <em>not</em> support
2356 * the <tt>Entry.setValue</tt> method.
2357 *
2358 * @param key the key
2359 * @throws ClassCastException {@inheritDoc}
2360 * @throws NullPointerException if the specified key is null
2361 */
2362 public Map.Entry<K,V> higherEntry(K key) {
2363 return getNear(key, GT);
2364 }
2365
2366 /**
2367 * @param key the key
2368 * @throws ClassCastException {@inheritDoc}
2369 * @throws NullPointerException if the specified key is null
2370 */
2371 public K higherKey(K key) {
2372 Node<K,V> n = findNear(key, GT);
2373 return (n == null)? null : n.key;
2374 }
2375
2376 /**
2377 * Returns a key-value mapping associated with the least
2378 * key in this map, or <tt>null</tt> if the map is empty.
2379 * The returned entry does <em>not</em> support
2380 * the <tt>Entry.setValue</tt> method.
2381 */
2382 public Map.Entry<K,V> firstEntry() {
2383 for (;;) {
2384 Node<K,V> n = findFirst();
2385 if (n == null)
2386 return null;
2387 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
2388 if (e != null)
2389 return e;
2390 }
2391 }
2392
2393 /**
2394 * Returns a key-value mapping associated with the greatest
2395 * key in this map, or <tt>null</tt> if the map is empty.
2396 * The returned entry does <em>not</em> support
2397 * the <tt>Entry.setValue</tt> method.
2398 */
2399 public Map.Entry<K,V> lastEntry() {
2400 for (;;) {
2401 Node<K,V> n = findLast();
2402 if (n == null)
2403 return null;
2404 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
2405 if (e != null)
2406 return e;
2407 }
2408 }
2409
2410 /**
2411 * Removes and returns a key-value mapping associated with
2412 * the least key in this map, or <tt>null</tt> if the map is empty.
2413 * The returned entry does <em>not</em> support
2414 * the <tt>Entry.setValue</tt> method.
2415 */
2416 public Map.Entry<K,V> pollFirstEntry() {
2417 return doRemoveFirstEntry();
2418 }
2419
2420 /**
2421 * Removes and returns a key-value mapping associated with
2422 * the greatest key in this map, or <tt>null</tt> if the map is empty.
2423 * The returned entry does <em>not</em> support
2424 * the <tt>Entry.setValue</tt> method.
2425 */
2426 public Map.Entry<K,V> pollLastEntry() {
2427 return doRemoveLastEntry();
2428 }
2429
2430
2431 /* ---------------- Iterators -------------- */
2432
2433 /**
2434 * Base of ten kinds of iterator classes:
2435 * ascending: {map, submap} X {key, value, entry}
2436 * descending: {map, submap} X {key, entry}
2437 */
2438 abstract class Iter {
2439 /** the last node returned by next() */
2440 Node<K,V> last;
2441 /** the next node to return from next(); */
2442 Node<K,V> next;
2443 /** Cache of next value field to maintain weak consistency */
2444 Object nextValue;
2445
2446 Iter() {}
2447
2448 public final boolean hasNext() {
2449 return next != null;
2450 }
2451
2452 /** Initializes ascending iterator for entire range. */
2453 final void initAscending() {
2454 for (;;) {
2455 next = findFirst();
2456 if (next == null)
2457 break;
2458 nextValue = next.value;
2459 if (nextValue != null && nextValue != next)
2460 break;
2461 }
2462 }
2463
2464 /**
2465 * Initializes ascending iterator starting at given least key,
2466 * or first node if least is <tt>null</tt>, but not greater or
2467 * equal to fence, or end if fence is <tt>null</tt>.
2468 */
2469 final void initAscending(K least, K fence) {
2470 for (;;) {
2471 next = findCeiling(least);
2472 if (next == null)
2473 break;
2474 nextValue = next.value;
2475 if (nextValue != null && nextValue != next) {
2476 if (fence != null && compare(fence, next.key) <= 0) {
2477 next = null;
2478 nextValue = null;
2479 }
2480 break;
2481 }
2482 }
2483 }
2484 /** Advances next to higher entry. */
2485 final void ascend() {
2486 if ((last = next) == null)
2487 throw new NoSuchElementException();
2488 for (;;) {
2489 next = next.next;
2490 if (next == null)
2491 break;
2492 nextValue = next.value;
2493 if (nextValue != null && nextValue != next)
2494 break;
2495 }
2496 }
2497
2498 /**
2499 * Version of ascend for submaps to stop at fence
2500 */
2501 final void ascend(K fence) {
2502 if ((last = next) == null)
2503 throw new NoSuchElementException();
2504 for (;;) {
2505 next = next.next;
2506 if (next == null)
2507 break;
2508 nextValue = next.value;
2509 if (nextValue != null && nextValue != next) {
2510 if (fence != null && compare(fence, next.key) <= 0) {
2511 next = null;
2512 nextValue = null;
2513 }
2514 break;
2515 }
2516 }
2517 }
2518
2519 /** Initializes descending iterator for entire range. */
2520 final void initDescending() {
2521 for (;;) {
2522 next = findLast();
2523 if (next == null)
2524 break;
2525 nextValue = next.value;
2526 if (nextValue != null && nextValue != next)
2527 break;
2528 }
2529 }
2530
2531 /**
2532 * Initializes descending iterator starting at key less
2533 * than or equal to given fence key, or
2534 * last node if fence is <tt>null</tt>, but not less than
2535 * least, or beginning if least is <tt>null</tt>.
2536 */
2537 final void initDescending(K least, K fence) {
2538 for (;;) {
2539 next = findLower(fence);
2540 if (next == null)
2541 break;
2542 nextValue = next.value;
2543 if (nextValue != null && nextValue != next) {
2544 if (least != null && compare(least, next.key) > 0) {
2545 next = null;
2546 nextValue = null;
2547 }
2548 break;
2549 }
2550 }
2551 }
2552
2553 /** Advances next to lower entry. */
2554 final void descend() {
2555 if ((last = next) == null)
2556 throw new NoSuchElementException();
2557 K k = last.key;
2558 for (;;) {
2559 next = findNear(k, LT);
2560 if (next == null)
2561 break;
2562 nextValue = next.value;
2563 if (nextValue != null && nextValue != next)
2564 break;
2565 }
2566 }
2567
2568 /**
2569 * Version of descend for submaps to stop at least
2570 */
2571 final void descend(K least) {
2572 if ((last = next) == null)
2573 throw new NoSuchElementException();
2574 K k = last.key;
2575 for (;;) {
2576 next = findNear(k, LT);
2577 if (next == null)
2578 break;
2579 nextValue = next.value;
2580 if (nextValue != null && nextValue != next) {
2581 if (least != null && compare(least, next.key) > 0) {
2582 next = null;
2583 nextValue = null;
2584 }
2585 break;
2586 }
2587 }
2588 }
2589
2590 public void remove() {
2591 Node<K,V> l = last;
2592 if (l == null)
2593 throw new IllegalStateException();
2594 // It would not be worth all of the overhead to directly
2595 // unlink from here. Using remove is fast enough.
2596 ConcurrentSkipListMap.this.remove(l.key);
2597 }
2598
2599 }
2600
2601 final class ValueIterator extends Iter implements Iterator<V> {
2602 ValueIterator() {
2603 initAscending();
2604 }
2605 public V next() {
2606 Object v = nextValue;
2607 ascend();
2608 return (V)v;
2609 }
2610 }
2611
2612 final class KeyIterator extends Iter implements Iterator<K> {
2613 KeyIterator() {
2614 initAscending();
2615 }
2616 public K next() {
2617 Node<K,V> n = next;
2618 ascend();
2619 return n.key;
2620 }
2621 }
2622
2623 class SubMapValueIterator extends Iter implements Iterator<V> {
2624 final K fence;
2625 SubMapValueIterator(K least, K fence) {
2626 initAscending(least, fence);
2627 this.fence = fence;
2628 }
2629
2630 public V next() {
2631 Object v = nextValue;
2632 ascend(fence);
2633 return (V)v;
2634 }
2635 }
2636
2637 final class SubMapKeyIterator extends Iter implements Iterator<K> {
2638 final K fence;
2639 SubMapKeyIterator(K least, K fence) {
2640 initAscending(least, fence);
2641 this.fence = fence;
2642 }
2643
2644 public K next() {
2645 Node<K,V> n = next;
2646 ascend(fence);
2647 return n.key;
2648 }
2649 }
2650
2651 final class DescendingKeyIterator extends Iter implements Iterator<K> {
2652 DescendingKeyIterator() {
2653 initDescending();
2654 }
2655 public K next() {
2656 Node<K,V> n = next;
2657 descend();
2658 return n.key;
2659 }
2660 }
2661
2662 final class DescendingSubMapKeyIterator extends Iter implements Iterator<K> {
2663 final K least;
2664 DescendingSubMapKeyIterator(K least, K fence) {
2665 initDescending(least, fence);
2666 this.least = least;
2667 }
2668
2669 public K next() {
2670 Node<K,V> n = next;
2671 descend(least);
2672 return n.key;
2673 }
2674 }
2675
2676 /**
2677 * Entry iterators use the same trick as in ConcurrentHashMap and
2678 * elsewhere of using the iterator itself to represent entries,
2679 * thus avoiding having to create entry objects in next().
2680 */
2681 abstract class EntryIter extends Iter implements Map.Entry<K,V> {
2682 /** Cache of last value returned */
2683 Object lastValue;
2684
2685 EntryIter() {
2686 }
2687
2688 public K getKey() {
2689 Node<K,V> l = last;
2690 if (l == null)
2691 throw new IllegalStateException();
2692 return l.key;
2693 }
2694
2695 public V getValue() {
2696 Object v = lastValue;
2697 if (last == null || v == null)
2698 throw new IllegalStateException();
2699 return (V)v;
2700 }
2701
2702 public V setValue(V value) {
2703 throw new UnsupportedOperationException();
2704 }
2705
2706 public boolean equals(Object o) {
2707 // If not acting as entry, just use default.
2708 if (last == null)
2709 return super.equals(o);
2710 if (!(o instanceof Map.Entry))
2711 return false;
2712 Map.Entry e = (Map.Entry)o;
2713 return (getKey().equals(e.getKey()) &&
2714 getValue().equals(e.getValue()));
2715 }
2716
2717 public int hashCode() {
2718 // If not acting as entry, just use default.
2719 if (last == null)
2720 return super.hashCode();
2721 return getKey().hashCode() ^ getValue().hashCode();
2722 }
2723
2724 public String toString() {
2725 // If not acting as entry, just use default.
2726 if (last == null)
2727 return super.toString();
2728 return getKey() + "=" + getValue();
2729 }
2730 }
2731
2732 final class EntryIterator extends EntryIter
2733 implements Iterator<Map.Entry<K,V>> {
2734 EntryIterator() {
2735 initAscending();
2736 }
2737 public Map.Entry<K,V> next() {
2738 lastValue = nextValue;
2739 ascend();
2740 return this;
2741 }
2742 }
2743
2744 final class SubMapEntryIterator extends EntryIter
2745 implements Iterator<Map.Entry<K,V>> {
2746 final K fence;
2747 SubMapEntryIterator(K least, K fence) {
2748 initAscending(least, fence);
2749 this.fence = fence;
2750 }
2751
2752 public Map.Entry<K,V> next() {
2753 lastValue = nextValue;
2754 ascend(fence);
2755 return this;
2756 }
2757 }
2758
2759 final class DescendingEntryIterator extends EntryIter
2760 implements Iterator<Map.Entry<K,V>> {
2761 DescendingEntryIterator() {
2762 initDescending();
2763 }
2764 public Map.Entry<K,V> next() {
2765 lastValue = nextValue;
2766 descend();
2767 return this;
2768 }
2769 }
2770
2771 final class DescendingSubMapEntryIterator extends EntryIter
2772 implements Iterator<Map.Entry<K,V>> {
2773 final K least;
2774 DescendingSubMapEntryIterator(K least, K fence) {
2775 initDescending(least, fence);
2776 this.least = least;
2777 }
2778
2779 public Map.Entry<K,V> next() {
2780 lastValue = nextValue;
2781 descend(least);
2782 return this;
2783 }
2784 }
2785
2786 // Factory methods for iterators needed by submaps and/or
2787 // ConcurrentSkipListSet
2788
2789 Iterator<K> keyIterator() {
2790 return new KeyIterator();
2791 }
2792
2793 Iterator<K> descendingKeyIterator() {
2794 return new DescendingKeyIterator();
2795 }
2796
2797 SubMapEntryIterator subMapEntryIterator(K least, K fence) {
2798 return new SubMapEntryIterator(least, fence);
2799 }
2800
2801 DescendingSubMapEntryIterator descendingSubMapEntryIterator(K least, K fence) {
2802 return new DescendingSubMapEntryIterator(least, fence);
2803 }
2804
2805 SubMapKeyIterator subMapKeyIterator(K least, K fence) {
2806 return new SubMapKeyIterator(least, fence);
2807 }
2808
2809 DescendingSubMapKeyIterator descendingSubMapKeyIterator(K least, K fence) {
2810 return new DescendingSubMapKeyIterator(least, fence);
2811 }
2812
2813 SubMapValueIterator subMapValueIterator(K least, K fence) {
2814 return new SubMapValueIterator(least, fence);
2815 }
2816
2817 /* ---------------- Views -------------- */
2818
2819 class KeySet extends AbstractSet<K> {
2820 public Iterator<K> iterator() {
2821 return new KeyIterator();
2822 }
2823 public boolean isEmpty() {
2824 return ConcurrentSkipListMap.this.isEmpty();
2825 }
2826 public int size() {
2827 return ConcurrentSkipListMap.this.size();
2828 }
2829 public boolean contains(Object o) {
2830 return ConcurrentSkipListMap.this.containsKey(o);
2831 }
2832 public boolean remove(Object o) {
2833 return ConcurrentSkipListMap.this.removep(o);
2834 }
2835 public void clear() {
2836 ConcurrentSkipListMap.this.clear();
2837 }
2838 public Object[] toArray() {
2839 Collection<K> c = new ArrayList<K>();
2840 for (Iterator<K> i = iterator(); i.hasNext(); )
2841 c.add(i.next());
2842 return c.toArray();
2843 }
2844 public <T> T[] toArray(T[] a) {
2845 Collection<K> c = new ArrayList<K>();
2846 for (Iterator<K> i = iterator(); i.hasNext(); )
2847 c.add(i.next());
2848 return c.toArray(a);
2849 }
2850 }
2851
2852 class DescendingKeySet extends KeySet {
2853 public Iterator<K> iterator() {
2854 return new DescendingKeyIterator();
2855 }
2856 }
2857
2858 final class Values extends AbstractCollection<V> {
2859 public Iterator<V> iterator() {
2860 return new ValueIterator();
2861 }
2862 public boolean isEmpty() {
2863 return ConcurrentSkipListMap.this.isEmpty();
2864 }
2865 public int size() {
2866 return ConcurrentSkipListMap.this.size();
2867 }
2868 public boolean contains(Object o) {
2869 return ConcurrentSkipListMap.this.containsValue(o);
2870 }
2871 public void clear() {
2872 ConcurrentSkipListMap.this.clear();
2873 }
2874 public Object[] toArray() {
2875 Collection<V> c = new ArrayList<V>();
2876 for (Iterator<V> i = iterator(); i.hasNext(); )
2877 c.add(i.next());
2878 return c.toArray();
2879 }
2880 public <T> T[] toArray(T[] a) {
2881 Collection<V> c = new ArrayList<V>();
2882 for (Iterator<V> i = iterator(); i.hasNext(); )
2883 c.add(i.next());
2884 return c.toArray(a);
2885 }
2886 }
2887
2888 class EntrySet extends AbstractSet<Map.Entry<K,V>> {
2889 public Iterator<Map.Entry<K,V>> iterator() {
2890 return new EntryIterator();
2891 }
2892 public boolean contains(Object o) {
2893 if (!(o instanceof Map.Entry))
2894 return false;
2895 Map.Entry<K,V> e = (Map.Entry<K,V>)o;
2896 V v = ConcurrentSkipListMap.this.get(e.getKey());
2897 return v != null && v.equals(e.getValue());
2898 }
2899 public boolean remove(Object o) {
2900 if (!(o instanceof Map.Entry))
2901 return false;
2902 Map.Entry<K,V> e = (Map.Entry<K,V>)o;
2903 return ConcurrentSkipListMap.this.remove(e.getKey(),
2904 e.getValue());
2905 }
2906 public boolean isEmpty() {
2907 return ConcurrentSkipListMap.this.isEmpty();
2908 }
2909 public int size() {
2910 return ConcurrentSkipListMap.this.size();
2911 }
2912 public void clear() {
2913 ConcurrentSkipListMap.this.clear();
2914 }
2915 public Object[] toArray() {
2916 Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>();
2917 for (Map.Entry<K,V> e : this)
2918 c.add(new AbstractMap.SimpleEntry<K,V>(e.getKey(),
2919 e.getValue()));
2920 return c.toArray();
2921 }
2922 public <T> T[] toArray(T[] a) {
2923 Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>();
2924 for (Map.Entry<K,V> e : this)
2925 c.add(new AbstractMap.SimpleEntry<K,V>(e.getKey(),
2926 e.getValue()));
2927 return c.toArray(a);
2928 }
2929 }
2930
2931 class DescendingEntrySet extends EntrySet {
2932 public Iterator<Map.Entry<K,V>> iterator() {
2933 return new DescendingEntryIterator();
2934 }
2935 }
2936
2937 /**
2938 * Submaps returned by {@link ConcurrentSkipListMap} submap operations
2939 * represent a subrange of mappings of their underlying
2940 * maps. Instances of this class support all methods of their
2941 * underlying maps, differing in that mappings outside their range are
2942 * ignored, and attempts to add mappings outside their ranges result
2943 * in {@link IllegalArgumentException}. Instances of this class are
2944 * constructed only using the <tt>subMap</tt>, <tt>headMap</tt>, and
2945 * <tt>tailMap</tt> methods of their underlying maps.
2946 */
2947 static class ConcurrentSkipListSubMap<K,V> extends AbstractMap<K,V>
2948 implements ConcurrentNavigableMap<K,V>, java.io.Serializable {
2949
2950 private static final long serialVersionUID = -7647078645895051609L;
2951
2952 /** Underlying map */
2953 private final ConcurrentSkipListMap<K,V> m;
2954 /** lower bound key, or null if from start */
2955 private final K least;
2956 /** upper fence key, or null if to end */
2957 private final K fence;
2958 // Lazily initialized view holders
2959 private transient Set<K> keySetView;
2960 private transient Set<Map.Entry<K,V>> entrySetView;
2961 private transient Collection<V> valuesView;
2962 private transient Set<K> descendingKeySetView;
2963 private transient Set<Map.Entry<K,V>> descendingEntrySetView;
2964
2965 /**
2966 * Creates a new submap.
2967 * @param least inclusive least value, or <tt>null</tt> if from start
2968 * @param fence exclusive upper bound or <tt>null</tt> if to end
2969 * @throws IllegalArgumentException if least and fence nonnull
2970 * and least greater than fence
2971 */
2972 ConcurrentSkipListSubMap(ConcurrentSkipListMap<K,V> map,
2973 K least, K fence) {
2974 if (least != null &&
2975 fence != null &&
2976 map.compare(least, fence) > 0)
2977 throw new IllegalArgumentException("inconsistent range");
2978 this.m = map;
2979 this.least = least;
2980 this.fence = fence;
2981 }
2982
2983 /* ---------------- Utilities -------------- */
2984
2985 boolean inHalfOpenRange(K key) {
2986 return m.inHalfOpenRange(key, least, fence);
2987 }
2988
2989 boolean inOpenRange(K key) {
2990 return m.inOpenRange(key, least, fence);
2991 }
2992
2993 ConcurrentSkipListMap.Node<K,V> firstNode() {
2994 return m.findCeiling(least);
2995 }
2996
2997 ConcurrentSkipListMap.Node<K,V> lastNode() {
2998 return m.findLower(fence);
2999 }
3000
3001 boolean isBeforeEnd(ConcurrentSkipListMap.Node<K,V> n) {
3002 return (n != null &&
3003 (fence == null ||
3004 n.key == null || // pass by markers and headers
3005 m.compare(fence, n.key) > 0));
3006 }
3007
3008 void checkKey(K key) throws IllegalArgumentException {
3009 if (!inHalfOpenRange(key))
3010 throw new IllegalArgumentException("key out of range");
3011 }
3012
3013 /**
3014 * Returns underlying map. Needed by ConcurrentSkipListSet
3015 * @return the backing map
3016 */
3017 ConcurrentSkipListMap<K,V> getMap() {
3018 return m;
3019 }
3020
3021 /**
3022 * Returns least key. Needed by ConcurrentSkipListSet
3023 * @return least key or <tt>null</tt> if from start
3024 */
3025 K getLeast() {
3026 return least;
3027 }
3028
3029 /**
3030 * Returns fence key. Needed by ConcurrentSkipListSet
3031 * @return fence key or <tt>null</tt> if to end
3032 */
3033 K getFence() {
3034 return fence;
3035 }
3036
3037
3038 /* ---------------- Map API methods -------------- */
3039
3040 public boolean containsKey(Object key) {
3041 K k = (K)key;
3042 return inHalfOpenRange(k) && m.containsKey(k);
3043 }
3044
3045 public V get(Object key) {
3046 K k = (K)key;
3047 return ((!inHalfOpenRange(k)) ? null : m.get(k));
3048 }
3049
3050 public V put(K key, V value) {
3051 checkKey(key);
3052 return m.put(key, value);
3053 }
3054
3055 public V remove(Object key) {
3056 K k = (K)key;
3057 return (!inHalfOpenRange(k))? null : m.remove(k);
3058 }
3059
3060 public int size() {
3061 long count = 0;
3062 for (ConcurrentSkipListMap.Node<K,V> n = firstNode();
3063 isBeforeEnd(n);
3064 n = n.next) {
3065 if (n.getValidValue() != null)
3066 ++count;
3067 }
3068 return count >= Integer.MAX_VALUE? Integer.MAX_VALUE : (int)count;
3069 }
3070
3071 public boolean isEmpty() {
3072 return !isBeforeEnd(firstNode());
3073 }
3074
3075 public boolean containsValue(Object value) {
3076 if (value == null)
3077 throw new NullPointerException();
3078 for (ConcurrentSkipListMap.Node<K,V> n = firstNode();
3079 isBeforeEnd(n);
3080 n = n.next) {
3081 V v = n.getValidValue();
3082 if (v != null && value.equals(v))
3083 return true;
3084 }
3085 return false;
3086 }
3087
3088 public void clear() {
3089 for (ConcurrentSkipListMap.Node<K,V> n = firstNode();
3090 isBeforeEnd(n);
3091 n = n.next) {
3092 if (n.getValidValue() != null)
3093 m.remove(n.key);
3094 }
3095 }
3096
3097 /* ---------------- ConcurrentMap API methods -------------- */
3098
3099 public V putIfAbsent(K key, V value) {
3100 checkKey(key);
3101 return m.putIfAbsent(key, value);
3102 }
3103
3104 public boolean remove(Object key, Object value) {
3105 K k = (K)key;
3106 return inHalfOpenRange(k) && m.remove(k, value);
3107 }
3108
3109 public boolean replace(K key, V oldValue, V newValue) {
3110 checkKey(key);
3111 return m.replace(key, oldValue, newValue);
3112 }
3113
3114 public V replace(K key, V value) {
3115 checkKey(key);
3116 return m.replace(key, value);
3117 }
3118
3119 /* ---------------- SortedMap API methods -------------- */
3120
3121 public Comparator<? super K> comparator() {
3122 return m.comparator();
3123 }
3124
3125 public K firstKey() {
3126 ConcurrentSkipListMap.Node<K,V> n = firstNode();
3127 if (isBeforeEnd(n))
3128 return n.key;
3129 else
3130 throw new NoSuchElementException();
3131 }
3132
3133 public K lastKey() {
3134 ConcurrentSkipListMap.Node<K,V> n = lastNode();
3135 if (n != null) {
3136 K last = n.key;
3137 if (inHalfOpenRange(last))
3138 return last;
3139 }
3140 throw new NoSuchElementException();
3141 }
3142
3143 public ConcurrentNavigableMap<K,V> navigableSubMap(K fromKey, K toKey) {
3144 if (fromKey == null || toKey == null)
3145 throw new NullPointerException();
3146 if (!inOpenRange(fromKey) || !inOpenRange(toKey))
3147 throw new IllegalArgumentException("key out of range");
3148 return new ConcurrentSkipListSubMap<K,V>(m, fromKey, toKey);
3149 }
3150
3151 public ConcurrentNavigableMap<K,V> navigableHeadMap(K toKey) {
3152 if (toKey == null)
3153 throw new NullPointerException();
3154 if (!inOpenRange(toKey))
3155 throw new IllegalArgumentException("key out of range");
3156 return new ConcurrentSkipListSubMap<K,V>(m, least, toKey);
3157 }
3158
3159 public ConcurrentNavigableMap<K,V> navigableTailMap(K fromKey) {
3160 if (fromKey == null)
3161 throw new NullPointerException();
3162 if (!inOpenRange(fromKey))
3163 throw new IllegalArgumentException("key out of range");
3164 return new ConcurrentSkipListSubMap<K,V>(m, fromKey, fence);
3165 }
3166
3167 public SortedMap<K,V> subMap(K fromKey, K toKey) {
3168 return navigableSubMap(fromKey, toKey);
3169 }
3170
3171 public SortedMap<K,V> headMap(K toKey) {
3172 return navigableHeadMap(toKey);
3173 }
3174
3175 public SortedMap<K,V> tailMap(K fromKey) {
3176 return navigableTailMap(fromKey);
3177 }
3178
3179 /* ---------------- Relational methods -------------- */
3180
3181 public Map.Entry<K,V> ceilingEntry(K key) {
3182 return m.getNearEntry(key, m.GT|m.EQ, least, fence);
3183 }
3184
3185 public K ceilingKey(K key) {
3186 return m.getNearKey(key, m.GT|m.EQ, least, fence);
3187 }
3188
3189 public Map.Entry<K,V> lowerEntry(K key) {
3190 return m.getNearEntry(key, m.LT, least, fence);
3191 }
3192
3193 public K lowerKey(K key) {
3194 return m.getNearKey(key, m.LT, least, fence);
3195 }
3196
3197 public Map.Entry<K,V> floorEntry(K key) {
3198 return m.getNearEntry(key, m.LT|m.EQ, least, fence);
3199 }
3200
3201 public K floorKey(K key) {
3202 return m.getNearKey(key, m.LT|m.EQ, least, fence);
3203 }
3204
3205 public Map.Entry<K,V> higherEntry(K key) {
3206 return m.getNearEntry(key, m.GT, least, fence);
3207 }
3208
3209 public K higherKey(K key) {
3210 return m.getNearKey(key, m.GT, least, fence);
3211 }
3212
3213 public Map.Entry<K,V> firstEntry() {
3214 for (;;) {
3215 ConcurrentSkipListMap.Node<K,V> n = firstNode();
3216 if (!isBeforeEnd(n))
3217 return null;
3218 Map.Entry<K,V> e = n.createSnapshot();
3219 if (e != null)
3220 return e;
3221 }
3222 }
3223
3224 public Map.Entry<K,V> lastEntry() {
3225 for (;;) {
3226 ConcurrentSkipListMap.Node<K,V> n = lastNode();
3227 if (n == null || !inHalfOpenRange(n.key))
3228 return null;
3229 Map.Entry<K,V> e = n.createSnapshot();
3230 if (e != null)
3231 return e;
3232 }
3233 }
3234
3235 public Map.Entry<K,V> pollFirstEntry() {
3236 return m.removeFirstEntryOfSubrange(least, fence);
3237 }
3238
3239 public Map.Entry<K,V> pollLastEntry() {
3240 return m.removeLastEntryOfSubrange(least, fence);
3241 }
3242
3243 /* ---------------- Submap Views -------------- */
3244
3245 public Set<K> keySet() {
3246 Set<K> ks = keySetView;
3247 return (ks != null) ? ks : (keySetView = new KeySetView());
3248 }
3249
3250 class KeySetView extends AbstractSet<K> {
3251 public Iterator<K> iterator() {
3252 return m.subMapKeyIterator(least, fence);
3253 }
3254 public int size() {
3255 return ConcurrentSkipListSubMap.this.size();
3256 }
3257 public boolean isEmpty() {
3258 return ConcurrentSkipListSubMap.this.isEmpty();
3259 }
3260 public boolean contains(Object k) {
3261 return ConcurrentSkipListSubMap.this.containsKey(k);
3262 }
3263 public Object[] toArray() {
3264 Collection<K> c = new ArrayList<K>();
3265 for (Iterator<K> i = iterator(); i.hasNext(); )
3266 c.add(i.next());
3267 return c.toArray();
3268 }
3269 public <T> T[] toArray(T[] a) {
3270 Collection<K> c = new ArrayList<K>();
3271 for (Iterator<K> i = iterator(); i.hasNext(); )
3272 c.add(i.next());
3273 return c.toArray(a);
3274 }
3275 }
3276
3277 public Set<K> descendingKeySet() {
3278 Set<K> ks = descendingKeySetView;
3279 return (ks != null) ? ks : (descendingKeySetView = new DescendingKeySetView());
3280 }
3281
3282 class DescendingKeySetView extends KeySetView {
3283 public Iterator<K> iterator() {
3284 return m.descendingSubMapKeyIterator(least, fence);
3285 }
3286 }
3287
3288 public Collection<V> values() {
3289 Collection<V> vs = valuesView;
3290 return (vs != null) ? vs : (valuesView = new ValuesView());
3291 }
3292
3293 class ValuesView extends AbstractCollection<V> {
3294 public Iterator<V> iterator() {
3295 return m.subMapValueIterator(least, fence);
3296 }
3297 public int size() {
3298 return ConcurrentSkipListSubMap.this.size();
3299 }
3300 public boolean isEmpty() {
3301 return ConcurrentSkipListSubMap.this.isEmpty();
3302 }
3303 public boolean contains(Object v) {
3304 return ConcurrentSkipListSubMap.this.containsValue(v);
3305 }
3306 public Object[] toArray() {
3307 Collection<V> c = new ArrayList<V>();
3308 for (Iterator<V> i = iterator(); i.hasNext(); )
3309 c.add(i.next());
3310 return c.toArray();
3311 }
3312 public <T> T[] toArray(T[] a) {
3313 Collection<V> c = new ArrayList<V>();
3314 for (Iterator<V> i = iterator(); i.hasNext(); )
3315 c.add(i.next());
3316 return c.toArray(a);
3317 }
3318 }
3319
3320 public Set<Map.Entry<K,V>> entrySet() {
3321 Set<Map.Entry<K,V>> es = entrySetView;
3322 return (es != null) ? es : (entrySetView = new EntrySetView());
3323 }
3324
3325 class EntrySetView extends AbstractSet<Map.Entry<K,V>> {
3326 public Iterator<Map.Entry<K,V>> iterator() {
3327 return m.subMapEntryIterator(least, fence);
3328 }
3329 public int size() {
3330 return ConcurrentSkipListSubMap.this.size();
3331 }
3332 public boolean isEmpty() {
3333 return ConcurrentSkipListSubMap.this.isEmpty();
3334 }
3335 public boolean contains(Object o) {
3336 if (!(o instanceof Map.Entry))
3337 return false;
3338 Map.Entry<K,V> e = (Map.Entry<K,V>) o;
3339 K key = e.getKey();
3340 if (!inHalfOpenRange(key))
3341 return false;
3342 V v = m.get(key);
3343 return v != null && v.equals(e.getValue());
3344 }
3345 public boolean remove(Object o) {
3346 if (!(o instanceof Map.Entry))
3347 return false;
3348 Map.Entry<K,V> e = (Map.Entry<K,V>) o;
3349 K key = e.getKey();
3350 if (!inHalfOpenRange(key))
3351 return false;
3352 return m.remove(key, e.getValue());
3353 }
3354 public Object[] toArray() {
3355 Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>();
3356 for (Map.Entry<K,V> e : this)
3357 c.add(new AbstractMap.SimpleEntry<K,V>(e.getKey(),
3358 e.getValue()));
3359 return c.toArray();
3360 }
3361 public <T> T[] toArray(T[] a) {
3362 Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>();
3363 for (Map.Entry<K,V> e : this)
3364 c.add(new AbstractMap.SimpleEntry<K,V>(e.getKey(),
3365 e.getValue()));
3366 return c.toArray(a);
3367 }
3368 }
3369
3370 public Set<Map.Entry<K,V>> descendingEntrySet() {
3371 Set<Map.Entry<K,V>> es = descendingEntrySetView;
3372 return (es != null) ? es : (descendingEntrySetView = new DescendingEntrySetView());
3373 }
3374
3375 class DescendingEntrySetView extends EntrySetView {
3376 public Iterator<Map.Entry<K,V>> iterator() {
3377 return m.descendingSubMapEntryIterator(least, fence);
3378 }
3379 }
3380 }
3381 }