ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentSkipListMap.java
Revision: 1.33
Committed: Sun Jun 19 20:37:35 2005 UTC (18 years, 11 months ago) by dl
Branch: MAIN
Changes since 1.32: +8 -8 lines
Log Message:
Cheaper random level generator

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package java.util.concurrent;
8 import java.util.*;
9 import java.util.concurrent.atomic.*;
10
11 /**
12 * A scalable concurrent {@link ConcurrentNavigableMap} implementation.
13 * The map is sorted according to the {@linkplain Comparable natural
14 * ordering} of its keys, or by a {@link Comparator} provided at map
15 * creation time, depending on which constructor is used.
16 *
17 * <p>This class implements a concurrent variant of <a
18 * href="http://www.cs.umd.edu/~pugh/">SkipLists</a> providing
19 * expected average <i>log(n)</i> time cost for the
20 * <tt>containsKey</tt>, <tt>get</tt>, <tt>put</tt> and
21 * <tt>remove</tt> operations and their variants. Insertion, removal,
22 * update, and access operations safely execute concurrently by
23 * multiple threads. Iterators are <i>weakly consistent</i>, returning
24 * elements reflecting the state of the map at some point at or since
25 * the creation of the iterator. They do <em>not</em> throw {@link
26 * ConcurrentModificationException}, and may proceed concurrently with
27 * other operations. Ascending key ordered views and their iterators
28 * are faster than descending ones.
29 *
30 * <p>All <tt>Map.Entry</tt> pairs returned by methods in this class
31 * and its views represent snapshots of mappings at the time they were
32 * produced. They do <em>not</em> support the <tt>Entry.setValue</tt>
33 * method. (Note however that it is possible to change mappings in the
34 * associated map using <tt>put</tt>, <tt>putIfAbsent</tt>, or
35 * <tt>replace</tt>, depending on exactly which effect you need.)
36 *
37 * <p>Beware that, unlike in most collections, the <tt>size</tt>
38 * method is <em>not</em> a constant-time operation. Because of the
39 * asynchronous nature of these maps, determining the current number
40 * of elements requires a traversal of the elements. Additionally,
41 * the bulk operations <tt>putAll</tt>, <tt>equals</tt>, and
42 * <tt>clear</tt> are <em>not</em> guaranteed to be performed
43 * atomically. For example, an iterator operating concurrently with a
44 * <tt>putAll</tt> operation might view only some of the added
45 * elements.
46 *
47 * <p>This class and its views and iterators implement all of the
48 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
49 * interfaces. Like most other concurrent collections, this class does
50 * <em>not</em> permit the use of <tt>null</tt> keys or values because some
51 * null return values cannot be reliably distinguished from the absence of
52 * elements.
53 *
54 * <p>This class is a member of the
55 * <a href="{@docRoot}/../guide/collections/index.html">
56 * Java Collections Framework</a>.
57 *
58 * @author Doug Lea
59 * @param <K> the type of keys maintained by this map
60 * @param <V> the type of mapped values
61 * @since 1.6
62 */
63 public class ConcurrentSkipListMap<K,V> extends AbstractMap<K,V>
64 implements ConcurrentNavigableMap<K,V>,
65 Cloneable,
66 java.io.Serializable {
67 /*
68 * This class implements a tree-like two-dimensionally linked skip
69 * list in which the index levels are represented in separate
70 * nodes from the base nodes holding data. There are two reasons
71 * for taking this approach instead of the usual array-based
72 * structure: 1) Array based implementations seem to encounter
73 * more complexity and overhead 2) We can use cheaper algorithms
74 * for the heavily-traversed index lists than can be used for the
75 * base lists. Here's a picture of some of the basics for a
76 * possible list with 2 levels of index:
77 *
78 * Head nodes Index nodes
79 * +-+ right +-+ +-+
80 * |2|---------------->| |--------------------->| |->null
81 * +-+ +-+ +-+
82 * | down | |
83 * v v v
84 * +-+ +-+ +-+ +-+ +-+ +-+
85 * |1|----------->| |->| |------>| |----------->| |------>| |->null
86 * +-+ +-+ +-+ +-+ +-+ +-+
87 * v | | | | |
88 * Nodes next v v v v v
89 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
90 * | |->|A|->|B|->|C|->|D|->|E|->|F|->|G|->|H|->|I|->|J|->|K|->null
91 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
92 *
93 * The base lists use a variant of the HM linked ordered set
94 * algorithm. See Tim Harris, "A pragmatic implementation of
95 * non-blocking linked lists"
96 * http://www.cl.cam.ac.uk/~tlh20/publications.html and Maged
97 * Michael "High Performance Dynamic Lock-Free Hash Tables and
98 * List-Based Sets"
99 * http://www.research.ibm.com/people/m/michael/pubs.htm. The
100 * basic idea in these lists is to mark the "next" pointers of
101 * deleted nodes when deleting to avoid conflicts with concurrent
102 * insertions, and when traversing to keep track of triples
103 * (predecessor, node, successor) in order to detect when and how
104 * to unlink these deleted nodes.
105 *
106 * Rather than using mark-bits to mark list deletions (which can
107 * be slow and space-intensive using AtomicMarkedReference), nodes
108 * use direct CAS'able next pointers. On deletion, instead of
109 * marking a pointer, they splice in another node that can be
110 * thought of as standing for a marked pointer (indicating this by
111 * using otherwise impossible field values). Using plain nodes
112 * acts roughly like "boxed" implementations of marked pointers,
113 * but uses new nodes only when nodes are deleted, not for every
114 * link. This requires less space and supports faster
115 * traversal. Even if marked references were better supported by
116 * JVMs, traversal using this technique might still be faster
117 * because any search need only read ahead one more node than
118 * otherwise required (to check for trailing marker) rather than
119 * unmasking mark bits or whatever on each read.
120 *
121 * This approach maintains the essential property needed in the HM
122 * algorithm of changing the next-pointer of a deleted node so
123 * that any other CAS of it will fail, but implements the idea by
124 * changing the pointer to point to a different node, not by
125 * marking it. While it would be possible to further squeeze
126 * space by defining marker nodes not to have key/value fields, it
127 * isn't worth the extra type-testing overhead. The deletion
128 * markers are rarely encountered during traversal and are
129 * normally quickly garbage collected. (Note that this technique
130 * would not work well in systems without garbage collection.)
131 *
132 * In addition to using deletion markers, the lists also use
133 * nullness of value fields to indicate deletion, in a style
134 * similar to typical lazy-deletion schemes. If a node's value is
135 * null, then it is considered logically deleted and ignored even
136 * though it is still reachable. This maintains proper control of
137 * concurrent replace vs delete operations -- an attempted replace
138 * must fail if a delete beat it by nulling field, and a delete
139 * must return the last non-null value held in the field. (Note:
140 * Null, rather than some special marker, is used for value fields
141 * here because it just so happens to mesh with the Map API
142 * requirement that method get returns null if there is no
143 * mapping, which allows nodes to remain concurrently readable
144 * even when deleted. Using any other marker value here would be
145 * messy at best.)
146 *
147 * Here's the sequence of events for a deletion of node n with
148 * predecessor b and successor f, initially:
149 *
150 * +------+ +------+ +------+
151 * ... | b |------>| n |----->| f | ...
152 * +------+ +------+ +------+
153 *
154 * 1. CAS n's value field from non-null to null.
155 * From this point on, no public operations encountering
156 * the node consider this mapping to exist. However, other
157 * ongoing insertions and deletions might still modify
158 * n's next pointer.
159 *
160 * 2. CAS n's next pointer to point to a new marker node.
161 * From this point on, no other nodes can be appended to n.
162 * which avoids deletion errors in CAS-based linked lists.
163 *
164 * +------+ +------+ +------+ +------+
165 * ... | b |------>| n |----->|marker|------>| f | ...
166 * +------+ +------+ +------+ +------+
167 *
168 * 3. CAS b's next pointer over both n and its marker.
169 * From this point on, no new traversals will encounter n,
170 * and it can eventually be GCed.
171 * +------+ +------+
172 * ... | b |----------------------------------->| f | ...
173 * +------+ +------+
174 *
175 * A failure at step 1 leads to simple retry due to a lost race
176 * with another operation. Steps 2-3 can fail because some other
177 * thread noticed during a traversal a node with null value and
178 * helped out by marking and/or unlinking. This helping-out
179 * ensures that no thread can become stuck waiting for progress of
180 * the deleting thread. The use of marker nodes slightly
181 * complicates helping-out code because traversals must track
182 * consistent reads of up to four nodes (b, n, marker, f), not
183 * just (b, n, f), although the next field of a marker is
184 * immutable, and once a next field is CAS'ed to point to a
185 * marker, it never again changes, so this requires less care.
186 *
187 * Skip lists add indexing to this scheme, so that the base-level
188 * traversals start close to the locations being found, inserted
189 * or deleted -- usually base level traversals only traverse a few
190 * nodes. This doesn't change the basic algorithm except for the
191 * need to make sure base traversals start at predecessors (here,
192 * b) that are not (structurally) deleted, otherwise retrying
193 * after processing the deletion.
194 *
195 * Index levels are maintained as lists with volatile next fields,
196 * using CAS to link and unlink. Races are allowed in index-list
197 * operations that can (rarely) fail to link in a new index node
198 * or delete one. (We can't do this of course for data nodes.)
199 * However, even when this happens, the index lists remain sorted,
200 * so correctly serve as indices. This can impact performance,
201 * but since skip lists are probabilistic anyway, the net result
202 * is that under contention, the effective "p" value may be lower
203 * than its nominal value. And race windows are kept small enough
204 * that in practice these failures are rare, even under a lot of
205 * contention.
206 *
207 * The fact that retries (for both base and index lists) are
208 * relatively cheap due to indexing allows some minor
209 * simplifications of retry logic. Traversal restarts are
210 * performed after most "helping-out" CASes. This isn't always
211 * strictly necessary, but the implicit backoffs tend to help
212 * reduce other downstream failed CAS's enough to outweigh restart
213 * cost. This worsens the worst case, but seems to improve even
214 * highly contended cases.
215 *
216 * Unlike most skip-list implementations, index insertion and
217 * deletion here require a separate traversal pass occuring after
218 * the base-level action, to add or remove index nodes. This adds
219 * to single-threaded overhead, but improves contended
220 * multithreaded performance by narrowing interference windows,
221 * and allows deletion to ensure that all index nodes will be made
222 * unreachable upon return from a public remove operation, thus
223 * avoiding unwanted garbage retention. This is more important
224 * here than in some other data structures because we cannot null
225 * out node fields referencing user keys since they might still be
226 * read by other ongoing traversals.
227 *
228 * Indexing uses skip list parameters that maintain good search
229 * performance while using sparser-than-usual indices: The
230 * hardwired parameters k=1, p=0.5 (see method randomLevel) mean
231 * that about one-quarter of the nodes have indices. Of those that
232 * do, half have one level, a quarter have two, and so on (see
233 * Pugh's Skip List Cookbook, sec 3.4). The expected total space
234 * requirement for a map is slightly less than for the current
235 * implementation of java.util.TreeMap.
236 *
237 * Changing the level of the index (i.e, the height of the
238 * tree-like structure) also uses CAS. The head index has initial
239 * level/height of one. Creation of an index with height greater
240 * than the current level adds a level to the head index by
241 * CAS'ing on a new top-most head. To maintain good performance
242 * after a lot of removals, deletion methods heuristically try to
243 * reduce the height if the topmost levels appear to be empty.
244 * This may encounter races in which it possible (but rare) to
245 * reduce and "lose" a level just as it is about to contain an
246 * index (that will then never be encountered). This does no
247 * structural harm, and in practice appears to be a better option
248 * than allowing unrestrained growth of levels.
249 *
250 * The code for all this is more verbose than you'd like. Most
251 * operations entail locating an element (or position to insert an
252 * element). The code to do this can't be nicely factored out
253 * because subsequent uses require a snapshot of predecessor
254 * and/or successor and/or value fields which can't be returned
255 * all at once, at least not without creating yet another object
256 * to hold them -- creating such little objects is an especially
257 * bad idea for basic internal search operations because it adds
258 * to GC overhead. (This is one of the few times I've wished Java
259 * had macros.) Instead, some traversal code is interleaved within
260 * insertion and removal operations. The control logic to handle
261 * all the retry conditions is sometimes twisty. Most search is
262 * broken into 2 parts. findPredecessor() searches index nodes
263 * only, returning a base-level predecessor of the key. findNode()
264 * finishes out the base-level search. Even with this factoring,
265 * there is a fair amount of near-duplication of code to handle
266 * variants.
267 *
268 * For explanation of algorithms sharing at least a couple of
269 * features with this one, see Mikhail Fomitchev's thesis
270 * (http://www.cs.yorku.ca/~mikhail/), Keir Fraser's thesis
271 * (http://www.cl.cam.ac.uk/users/kaf24/), and Hakan Sundell's
272 * thesis (http://www.cs.chalmers.se/~phs/).
273 *
274 * Given the use of tree-like index nodes, you might wonder why
275 * this doesn't use some kind of search tree instead, which would
276 * support somewhat faster search operations. The reason is that
277 * there are no known efficient lock-free insertion and deletion
278 * algorithms for search trees. The immutability of the "down"
279 * links of index nodes (as opposed to mutable "left" fields in
280 * true trees) makes this tractable using only CAS operations.
281 *
282 * Notation guide for local variables
283 * Node: b, n, f for predecessor, node, successor
284 * Index: q, r, d for index node, right, down.
285 * t for another index node
286 * Head: h
287 * Levels: j
288 * Keys: k, key
289 * Values: v, value
290 * Comparisons: c
291 */
292
293 private static final long serialVersionUID = -8627078645895051609L;
294
295 /**
296 * Special value used to identify base-level header
297 */
298 private static final Object BASE_HEADER = new Object();
299
300 /**
301 * The topmost head index of the skiplist.
302 */
303 private transient volatile HeadIndex<K,V> head;
304
305 /**
306 * The comparator used to maintain order in this map, or null
307 * if using natural ordering.
308 * @serial
309 */
310 private final Comparator<? super K> comparator;
311
312 /**
313 * Seed for simple random number generator. Not volatile since it
314 * doesn't matter too much if different threads don't see updates.
315 */
316 private transient int randomSeed;
317
318 /** Lazily initialized key set */
319 private transient KeySet keySet;
320 /** Lazily initialized entry set */
321 private transient EntrySet entrySet;
322 /** Lazily initialized values collection */
323 private transient Values values;
324 /** Lazily initialized descending key set */
325 private transient DescendingKeySet descendingKeySet;
326 /** Lazily initialized descending entry set */
327 private transient DescendingEntrySet descendingEntrySet;
328
329 /**
330 * Initializes or resets state. Needed by constructors, clone,
331 * clear, readObject. and ConcurrentSkipListSet.clone.
332 * (Note that comparator must be separately initialized.)
333 */
334 final void initialize() {
335 keySet = null;
336 entrySet = null;
337 values = null;
338 descendingEntrySet = null;
339 descendingKeySet = null;
340 randomSeed = ((int) System.nanoTime()) | 1; // ensure nonzero
341 head = new HeadIndex<K,V>(new Node<K,V>(null, BASE_HEADER, null),
342 null, null, 1);
343 }
344
345 /** Updater for casHead */
346 private static final
347 AtomicReferenceFieldUpdater<ConcurrentSkipListMap, HeadIndex>
348 headUpdater = AtomicReferenceFieldUpdater.newUpdater
349 (ConcurrentSkipListMap.class, HeadIndex.class, "head");
350
351 /**
352 * compareAndSet head node
353 */
354 private boolean casHead(HeadIndex<K,V> cmp, HeadIndex<K,V> val) {
355 return headUpdater.compareAndSet(this, cmp, val);
356 }
357
358 /* ---------------- Nodes -------------- */
359
360 /**
361 * Nodes hold keys and values, and are singly linked in sorted
362 * order, possibly with some intervening marker nodes. The list is
363 * headed by a dummy node accessible as head.node. The value field
364 * is declared only as Object because it takes special non-V
365 * values for marker and header nodes.
366 */
367 static final class Node<K,V> {
368 final K key;
369 volatile Object value;
370 volatile Node<K,V> next;
371
372 /**
373 * Creates a new regular node.
374 */
375 Node(K key, Object value, Node<K,V> next) {
376 this.key = key;
377 this.value = value;
378 this.next = next;
379 }
380
381 /**
382 * Creates a new marker node. A marker is distinguished by
383 * having its value field point to itself. Marker nodes also
384 * have null keys, a fact that is exploited in a few places,
385 * but this doesn't distinguish markers from the base-level
386 * header node (head.node), which also has a null key.
387 */
388 Node(Node<K,V> next) {
389 this.key = null;
390 this.value = this;
391 this.next = next;
392 }
393
394 /** Updater for casNext */
395 static final AtomicReferenceFieldUpdater<Node, Node>
396 nextUpdater = AtomicReferenceFieldUpdater.newUpdater
397 (Node.class, Node.class, "next");
398
399 /** Updater for casValue */
400 static final AtomicReferenceFieldUpdater<Node, Object>
401 valueUpdater = AtomicReferenceFieldUpdater.newUpdater
402 (Node.class, Object.class, "value");
403
404 /**
405 * compareAndSet value field
406 */
407 boolean casValue(Object cmp, Object val) {
408 return valueUpdater.compareAndSet(this, cmp, val);
409 }
410
411 /**
412 * compareAndSet next field
413 */
414 boolean casNext(Node<K,V> cmp, Node<K,V> val) {
415 return nextUpdater.compareAndSet(this, cmp, val);
416 }
417
418 /**
419 * Returns true if this node is a marker. This method isn't
420 * actually called in any current code checking for markers
421 * because callers will have already read value field and need
422 * to use that read (not another done here) and so directly
423 * test if value points to node.
424 * @param n a possibly null reference to a node
425 * @return true if this node is a marker node
426 */
427 boolean isMarker() {
428 return value == this;
429 }
430
431 /**
432 * Returns true if this node is the header of base-level list.
433 * @return true if this node is header node
434 */
435 boolean isBaseHeader() {
436 return value == BASE_HEADER;
437 }
438
439 /**
440 * Tries to append a deletion marker to this node.
441 * @param f the assumed current successor of this node
442 * @return true if successful
443 */
444 boolean appendMarker(Node<K,V> f) {
445 return casNext(f, new Node<K,V>(f));
446 }
447
448 /**
449 * Helps out a deletion by appending marker or unlinking from
450 * predecessor. This is called during traversals when value
451 * field seen to be null.
452 * @param b predecessor
453 * @param f successor
454 */
455 void helpDelete(Node<K,V> b, Node<K,V> f) {
456 /*
457 * Rechecking links and then doing only one of the
458 * help-out stages per call tends to minimize CAS
459 * interference among helping threads.
460 */
461 if (f == next && this == b.next) {
462 if (f == null || f.value != f) // not already marked
463 appendMarker(f);
464 else
465 b.casNext(this, f.next);
466 }
467 }
468
469 /**
470 * Returns value if this node contains a valid key-value pair,
471 * else null.
472 * @return this node's value if it isn't a marker or header or
473 * is deleted, else null.
474 */
475 V getValidValue() {
476 Object v = value;
477 if (v == this || v == BASE_HEADER)
478 return null;
479 return (V)v;
480 }
481
482 /**
483 * Creates and returns a new SimpleImmutableEntry holding current
484 * mapping if this node holds a valid value, else null.
485 * @return new entry or null
486 */
487 AbstractMap.SimpleImmutableEntry<K,V> createSnapshot() {
488 V v = getValidValue();
489 if (v == null)
490 return null;
491 return new AbstractMap.SimpleImmutableEntry<K,V>(key, v);
492 }
493 }
494
495 /* ---------------- Indexing -------------- */
496
497 /**
498 * Index nodes represent the levels of the skip list. To improve
499 * search performance, keys of the underlying nodes are cached.
500 * Note that even though both Nodes and Indexes have
501 * forward-pointing fields, they have different types and are
502 * handled in different ways, that can't nicely be captured by
503 * placing field in a shared abstract class.
504 */
505 static class Index<K,V> {
506 final K key;
507 final Node<K,V> node;
508 final Index<K,V> down;
509 volatile Index<K,V> right;
510
511 /**
512 * Creates index node with given values.
513 */
514 Index(Node<K,V> node, Index<K,V> down, Index<K,V> right) {
515 this.node = node;
516 this.key = node.key;
517 this.down = down;
518 this.right = right;
519 }
520
521 /** Updater for casRight */
522 static final AtomicReferenceFieldUpdater<Index, Index>
523 rightUpdater = AtomicReferenceFieldUpdater.newUpdater
524 (Index.class, Index.class, "right");
525
526 /**
527 * compareAndSet right field
528 */
529 final boolean casRight(Index<K,V> cmp, Index<K,V> val) {
530 return rightUpdater.compareAndSet(this, cmp, val);
531 }
532
533 /**
534 * Returns true if the node this indexes has been deleted.
535 * @return true if indexed node is known to be deleted
536 */
537 final boolean indexesDeletedNode() {
538 return node.value == null;
539 }
540
541 /**
542 * Tries to CAS newSucc as successor. To minimize races with
543 * unlink that may lose this index node, if the node being
544 * indexed is known to be deleted, it doesn't try to link in.
545 * @param succ the expected current successor
546 * @param newSucc the new successor
547 * @return true if successful
548 */
549 final boolean link(Index<K,V> succ, Index<K,V> newSucc) {
550 Node<K,V> n = node;
551 newSucc.right = succ;
552 return n.value != null && casRight(succ, newSucc);
553 }
554
555 /**
556 * Tries to CAS right field to skip over apparent successor
557 * succ. Fails (forcing a retraversal by caller) if this node
558 * is known to be deleted.
559 * @param succ the expected current successor
560 * @return true if successful
561 */
562 final boolean unlink(Index<K,V> succ) {
563 return !indexesDeletedNode() && casRight(succ, succ.right);
564 }
565 }
566
567 /* ---------------- Head nodes -------------- */
568
569 /**
570 * Nodes heading each level keep track of their level.
571 */
572 static final class HeadIndex<K,V> extends Index<K,V> {
573 final int level;
574 HeadIndex(Node<K,V> node, Index<K,V> down, Index<K,V> right, int level) {
575 super(node, down, right);
576 this.level = level;
577 }
578 }
579
580 /* ---------------- Comparison utilities -------------- */
581
582 /**
583 * Represents a key with a comparator as a Comparable.
584 *
585 * Because most sorted collections seem to use natural ordering on
586 * Comparables (Strings, Integers, etc), most internal methods are
587 * geared to use them. This is generally faster than checking
588 * per-comparison whether to use comparator or comparable because
589 * it doesn't require a (Comparable) cast for each comparison.
590 * (Optimizers can only sometimes remove such redundant checks
591 * themselves.) When Comparators are used,
592 * ComparableUsingComparators are created so that they act in the
593 * same way as natural orderings. This penalizes use of
594 * Comparators vs Comparables, which seems like the right
595 * tradeoff.
596 */
597 static final class ComparableUsingComparator<K> implements Comparable<K> {
598 final K actualKey;
599 final Comparator<? super K> cmp;
600 ComparableUsingComparator(K key, Comparator<? super K> cmp) {
601 this.actualKey = key;
602 this.cmp = cmp;
603 }
604 public int compareTo(K k2) {
605 return cmp.compare(actualKey, k2);
606 }
607 }
608
609 /**
610 * If using comparator, return a ComparableUsingComparator, else
611 * cast key as Comparator, which may cause ClassCastException,
612 * which is propagated back to caller.
613 */
614 private Comparable<? super K> comparable(Object key) throws ClassCastException {
615 if (key == null)
616 throw new NullPointerException();
617 if (comparator != null)
618 return new ComparableUsingComparator<K>((K)key, comparator);
619 else
620 return (Comparable<? super K>)key;
621 }
622
623 /**
624 * Compares using comparator or natural ordering. Used when the
625 * ComparableUsingComparator approach doesn't apply.
626 */
627 int compare(K k1, K k2) throws ClassCastException {
628 Comparator<? super K> cmp = comparator;
629 if (cmp != null)
630 return cmp.compare(k1, k2);
631 else
632 return ((Comparable<? super K>)k1).compareTo(k2);
633 }
634
635 /**
636 * Returns true if given key greater than or equal to least and
637 * strictly less than fence, bypassing either test if least or
638 * fence are null. Needed mainly in submap operations.
639 */
640 boolean inHalfOpenRange(K key, K least, K fence) {
641 if (key == null)
642 throw new NullPointerException();
643 return ((least == null || compare(key, least) >= 0) &&
644 (fence == null || compare(key, fence) < 0));
645 }
646
647 /**
648 * Returns true if given key greater than or equal to least and less
649 * or equal to fence. Needed mainly in submap operations.
650 */
651 boolean inOpenRange(K key, K least, K fence) {
652 if (key == null)
653 throw new NullPointerException();
654 return ((least == null || compare(key, least) >= 0) &&
655 (fence == null || compare(key, fence) <= 0));
656 }
657
658 /* ---------------- Traversal -------------- */
659
660 /**
661 * Returns a base-level node with key strictly less than given key,
662 * or the base-level header if there is no such node. Also
663 * unlinks indexes to deleted nodes found along the way. Callers
664 * rely on this side-effect of clearing indices to deleted nodes.
665 * @param key the key
666 * @return a predecessor of key
667 */
668 private Node<K,V> findPredecessor(Comparable<? super K> key) {
669 for (;;) {
670 Index<K,V> q = head;
671 for (;;) {
672 Index<K,V> d, r;
673 if ((r = q.right) != null) {
674 if (r.indexesDeletedNode()) {
675 if (q.unlink(r))
676 continue; // reread r
677 else
678 break; // restart
679 }
680 if (key.compareTo(r.key) > 0) {
681 q = r;
682 continue;
683 }
684 }
685 if ((d = q.down) != null)
686 q = d;
687 else
688 return q.node;
689 }
690 }
691 }
692
693 /**
694 * Returns node holding key or null if no such, clearing out any
695 * deleted nodes seen along the way. Repeatedly traverses at
696 * base-level looking for key starting at predecessor returned
697 * from findPredecessor, processing base-level deletions as
698 * encountered. Some callers rely on this side-effect of clearing
699 * deleted nodes.
700 *
701 * Restarts occur, at traversal step centered on node n, if:
702 *
703 * (1) After reading n's next field, n is no longer assumed
704 * predecessor b's current successor, which means that
705 * we don't have a consistent 3-node snapshot and so cannot
706 * unlink any subsequent deleted nodes encountered.
707 *
708 * (2) n's value field is null, indicating n is deleted, in
709 * which case we help out an ongoing structural deletion
710 * before retrying. Even though there are cases where such
711 * unlinking doesn't require restart, they aren't sorted out
712 * here because doing so would not usually outweigh cost of
713 * restarting.
714 *
715 * (3) n is a marker or n's predecessor's value field is null,
716 * indicating (among other possibilities) that
717 * findPredecessor returned a deleted node. We can't unlink
718 * the node because we don't know its predecessor, so rely
719 * on another call to findPredecessor to notice and return
720 * some earlier predecessor, which it will do. This check is
721 * only strictly needed at beginning of loop, (and the
722 * b.value check isn't strictly needed at all) but is done
723 * each iteration to help avoid contention with other
724 * threads by callers that will fail to be able to change
725 * links, and so will retry anyway.
726 *
727 * The traversal loops in doPut, doRemove, and findNear all
728 * include the same three kinds of checks. And specialized
729 * versions appear in findFirst, and findLast and their
730 * variants. They can't easily share code because each uses the
731 * reads of fields held in locals occurring in the orders they
732 * were performed.
733 *
734 * @param key the key
735 * @return node holding key, or null if no such
736 */
737 private Node<K,V> findNode(Comparable<? super K> key) {
738 for (;;) {
739 Node<K,V> b = findPredecessor(key);
740 Node<K,V> n = b.next;
741 for (;;) {
742 if (n == null)
743 return null;
744 Node<K,V> f = n.next;
745 if (n != b.next) // inconsistent read
746 break;
747 Object v = n.value;
748 if (v == null) { // n is deleted
749 n.helpDelete(b, f);
750 break;
751 }
752 if (v == n || b.value == null) // b is deleted
753 break;
754 int c = key.compareTo(n.key);
755 if (c < 0)
756 return null;
757 if (c == 0)
758 return n;
759 b = n;
760 n = f;
761 }
762 }
763 }
764
765 /**
766 * Specialized variant of findNode to perform Map.get. Does a weak
767 * traversal, not bothering to fix any deleted index nodes,
768 * returning early if it happens to see key in index, and passing
769 * over any deleted base nodes, falling back to getUsingFindNode
770 * only if it would otherwise return value from an ongoing
771 * deletion. Also uses "bound" to eliminate need for some
772 * comparisons (see Pugh Cookbook). Also folds uses of null checks
773 * and node-skipping because markers have null keys.
774 * @param okey the key
775 * @return the value, or null if absent
776 */
777 private V doGet(Object okey) {
778 Comparable<? super K> key = comparable(okey);
779 K bound = null;
780 Index<K,V> q = head;
781 for (;;) {
782 K rk;
783 Index<K,V> d, r;
784 if ((r = q.right) != null &&
785 (rk = r.key) != null && rk != bound) {
786 int c = key.compareTo(rk);
787 if (c > 0) {
788 q = r;
789 continue;
790 }
791 if (c == 0) {
792 Object v = r.node.value;
793 return (v != null)? (V)v : getUsingFindNode(key);
794 }
795 bound = rk;
796 }
797 if ((d = q.down) != null)
798 q = d;
799 else {
800 for (Node<K,V> n = q.node.next; n != null; n = n.next) {
801 K nk = n.key;
802 if (nk != null) {
803 int c = key.compareTo(nk);
804 if (c == 0) {
805 Object v = n.value;
806 return (v != null)? (V)v : getUsingFindNode(key);
807 }
808 if (c < 0)
809 return null;
810 }
811 }
812 return null;
813 }
814 }
815 }
816
817 /**
818 * Performs map.get via findNode. Used as a backup if doGet
819 * encounters an in-progress deletion.
820 * @param key the key
821 * @return the value, or null if absent
822 */
823 private V getUsingFindNode(Comparable<? super K> key) {
824 /*
825 * Loop needed here and elsewhere in case value field goes
826 * null just as it is about to be returned, in which case we
827 * lost a race with a deletion, so must retry.
828 */
829 for (;;) {
830 Node<K,V> n = findNode(key);
831 if (n == null)
832 return null;
833 Object v = n.value;
834 if (v != null)
835 return (V)v;
836 }
837 }
838
839 /* ---------------- Insertion -------------- */
840
841 /**
842 * Main insertion method. Adds element if not present, or
843 * replaces value if present and onlyIfAbsent is false.
844 * @param kkey the key
845 * @param value the value that must be associated with key
846 * @param onlyIfAbsent if should not insert if already present
847 * @return the old value, or null if newly inserted
848 */
849 private V doPut(K kkey, V value, boolean onlyIfAbsent) {
850 Comparable<? super K> key = comparable(kkey);
851 for (;;) {
852 Node<K,V> b = findPredecessor(key);
853 Node<K,V> n = b.next;
854 for (;;) {
855 if (n != null) {
856 Node<K,V> f = n.next;
857 if (n != b.next) // inconsistent read
858 break;;
859 Object v = n.value;
860 if (v == null) { // n is deleted
861 n.helpDelete(b, f);
862 break;
863 }
864 if (v == n || b.value == null) // b is deleted
865 break;
866 int c = key.compareTo(n.key);
867 if (c > 0) {
868 b = n;
869 n = f;
870 continue;
871 }
872 if (c == 0) {
873 if (onlyIfAbsent || n.casValue(v, value))
874 return (V)v;
875 else
876 break; // restart if lost race to replace value
877 }
878 // else c < 0; fall through
879 }
880
881 Node<K,V> z = new Node<K,V>(kkey, value, n);
882 if (!b.casNext(n, z))
883 break; // restart if lost race to append to b
884 int level = randomLevel();
885 if (level > 0)
886 insertIndex(z, level);
887 return null;
888 }
889 }
890 }
891
892 /**
893 * Returns a random level for inserting a new node.
894 * Hardwired to k=1, p=0.5, max 31.
895 *
896 * This uses the simplest of the generators described in George
897 * Marsaglia's "Xorshift RNGs" paper. This is not a high-quality
898 * generator but is acceptable here. Note that bits are checked
899 * by testing sign, which is a little faster than testing low bit.
900 */
901 private int randomLevel() {
902 int level = 0;
903 int r = randomSeed;
904 int x = r ^ (r << 13);
905 x ^= x >>> 17;
906 randomSeed = x ^ (x << 5);
907 if (r < 0) {
908 while ((r <<= 1) > 0)
909 ++level;
910 }
911 return level;
912 }
913
914 /**
915 * Creates and adds index nodes for the given node.
916 * @param z the node
917 * @param level the level of the index
918 */
919 private void insertIndex(Node<K,V> z, int level) {
920 HeadIndex<K,V> h = head;
921 int max = h.level;
922
923 if (level <= max) {
924 Index<K,V> idx = null;
925 for (int i = 1; i <= level; ++i)
926 idx = new Index<K,V>(z, idx, null);
927 addIndex(idx, h, level);
928
929 } else { // Add a new level
930 /*
931 * To reduce interference by other threads checking for
932 * empty levels in tryReduceLevel, new levels are added
933 * with initialized right pointers. Which in turn requires
934 * keeping levels in an array to access them while
935 * creating new head index nodes from the opposite
936 * direction.
937 */
938 level = max + 1;
939 Index<K,V>[] idxs = (Index<K,V>[])new Index[level+1];
940 Index<K,V> idx = null;
941 for (int i = 1; i <= level; ++i)
942 idxs[i] = idx = new Index<K,V>(z, idx, null);
943
944 HeadIndex<K,V> oldh;
945 int k;
946 for (;;) {
947 oldh = head;
948 int oldLevel = oldh.level;
949 if (level <= oldLevel) { // lost race to add level
950 k = level;
951 break;
952 }
953 HeadIndex<K,V> newh = oldh;
954 Node<K,V> oldbase = oldh.node;
955 for (int j = oldLevel+1; j <= level; ++j)
956 newh = new HeadIndex<K,V>(oldbase, newh, idxs[j], j);
957 if (casHead(oldh, newh)) {
958 k = oldLevel;
959 break;
960 }
961 }
962 addIndex(idxs[k], oldh, k);
963 }
964 }
965
966 /**
967 * Adds given index nodes from given level down to 1.
968 * @param idx the topmost index node being inserted
969 * @param h the value of head to use to insert. This must be
970 * snapshotted by callers to provide correct insertion level
971 * @param indexLevel the level of the index
972 */
973 private void addIndex(Index<K,V> idx, HeadIndex<K,V> h, int indexLevel) {
974 // Track next level to insert in case of retries
975 int insertionLevel = indexLevel;
976 Comparable<? super K> key = comparable(idx.key);
977
978 // Similar to findPredecessor, but adding index nodes along
979 // path to key.
980 for (;;) {
981 Index<K,V> q = h;
982 Index<K,V> t = idx;
983 int j = h.level;
984 for (;;) {
985 Index<K,V> r = q.right;
986 if (r != null) {
987 // compare before deletion check avoids needing recheck
988 int c = key.compareTo(r.key);
989 if (r.indexesDeletedNode()) {
990 if (q.unlink(r))
991 continue;
992 else
993 break;
994 }
995 if (c > 0) {
996 q = r;
997 continue;
998 }
999 }
1000
1001 if (j == insertionLevel) {
1002 // Don't insert index if node already deleted
1003 if (t.indexesDeletedNode()) {
1004 findNode(key); // cleans up
1005 return;
1006 }
1007 if (!q.link(r, t))
1008 break; // restart
1009 if (--insertionLevel == 0) {
1010 // need final deletion check before return
1011 if (t.indexesDeletedNode())
1012 findNode(key);
1013 return;
1014 }
1015 }
1016
1017 if (j > insertionLevel && j <= indexLevel)
1018 t = t.down;
1019 q = q.down;
1020 --j;
1021 }
1022 }
1023 }
1024
1025 /* ---------------- Deletion -------------- */
1026
1027 /**
1028 * Main deletion method. Locates node, nulls value, appends a
1029 * deletion marker, unlinks predecessor, removes associated index
1030 * nodes, and possibly reduces head index level.
1031 *
1032 * Index nodes are cleared out simply by calling findPredecessor.
1033 * which unlinks indexes to deleted nodes found along path to key,
1034 * which will include the indexes to this node. This is done
1035 * unconditionally. We can't check beforehand whether there are
1036 * index nodes because it might be the case that some or all
1037 * indexes hadn't been inserted yet for this node during initial
1038 * search for it, and we'd like to ensure lack of garbage
1039 * retention, so must call to be sure.
1040 *
1041 * @param okey the key
1042 * @param value if non-null, the value that must be
1043 * associated with key
1044 * @return the node, or null if not found
1045 */
1046 private V doRemove(Object okey, Object value) {
1047 Comparable<? super K> key = comparable(okey);
1048 for (;;) {
1049 Node<K,V> b = findPredecessor(key);
1050 Node<K,V> n = b.next;
1051 for (;;) {
1052 if (n == null)
1053 return null;
1054 Node<K,V> f = n.next;
1055 if (n != b.next) // inconsistent read
1056 break;
1057 Object v = n.value;
1058 if (v == null) { // n is deleted
1059 n.helpDelete(b, f);
1060 break;
1061 }
1062 if (v == n || b.value == null) // b is deleted
1063 break;
1064 int c = key.compareTo(n.key);
1065 if (c < 0)
1066 return null;
1067 if (c > 0) {
1068 b = n;
1069 n = f;
1070 continue;
1071 }
1072 if (value != null && !value.equals(v))
1073 return null;
1074 if (!n.casValue(v, null))
1075 break;
1076 if (!n.appendMarker(f) || !b.casNext(n, f))
1077 findNode(key); // Retry via findNode
1078 else {
1079 findPredecessor(key); // Clean index
1080 if (head.right == null)
1081 tryReduceLevel();
1082 }
1083 return (V)v;
1084 }
1085 }
1086 }
1087
1088 /**
1089 * Possibly reduce head level if it has no nodes. This method can
1090 * (rarely) make mistakes, in which case levels can disappear even
1091 * though they are about to contain index nodes. This impacts
1092 * performance, not correctness. To minimize mistakes as well as
1093 * to reduce hysteresis, the level is reduced by one only if the
1094 * topmost three levels look empty. Also, if the removed level
1095 * looks non-empty after CAS, we try to change it back quick
1096 * before anyone notices our mistake! (This trick works pretty
1097 * well because this method will practically never make mistakes
1098 * unless current thread stalls immediately before first CAS, in
1099 * which case it is very unlikely to stall again immediately
1100 * afterwards, so will recover.)
1101 *
1102 * We put up with all this rather than just let levels grow
1103 * because otherwise, even a small map that has undergone a large
1104 * number of insertions and removals will have a lot of levels,
1105 * slowing down access more than would an occasional unwanted
1106 * reduction.
1107 */
1108 private void tryReduceLevel() {
1109 HeadIndex<K,V> h = head;
1110 HeadIndex<K,V> d;
1111 HeadIndex<K,V> e;
1112 if (h.level > 3 &&
1113 (d = (HeadIndex<K,V>)h.down) != null &&
1114 (e = (HeadIndex<K,V>)d.down) != null &&
1115 e.right == null &&
1116 d.right == null &&
1117 h.right == null &&
1118 casHead(h, d) && // try to set
1119 h.right != null) // recheck
1120 casHead(d, h); // try to backout
1121 }
1122
1123 /**
1124 * Version of remove with boolean return. Needed by view classes
1125 */
1126 boolean removep(Object key) {
1127 return doRemove(key, null) != null;
1128 }
1129
1130 /* ---------------- Finding and removing first element -------------- */
1131
1132 /**
1133 * Specialized variant of findNode to get first valid node.
1134 * @return first node or null if empty
1135 */
1136 Node<K,V> findFirst() {
1137 for (;;) {
1138 Node<K,V> b = head.node;
1139 Node<K,V> n = b.next;
1140 if (n == null)
1141 return null;
1142 if (n.value != null)
1143 return n;
1144 n.helpDelete(b, n.next);
1145 }
1146 }
1147
1148 /**
1149 * Removes first entry; returns its key. Note: The
1150 * mostly-redundant methods for removing first and last keys vs
1151 * entries exist to avoid needless creation of Entry nodes when
1152 * only the key is needed. The minor reduction in overhead is
1153 * worth the minor code duplication.
1154 * @return null if empty, else key of first entry
1155 */
1156 K pollFirstKey() {
1157 for (;;) {
1158 Node<K,V> b = head.node;
1159 Node<K,V> n = b.next;
1160 if (n == null)
1161 return null;
1162 Node<K,V> f = n.next;
1163 if (n != b.next)
1164 continue;
1165 Object v = n.value;
1166 if (v == null) {
1167 n.helpDelete(b, f);
1168 continue;
1169 }
1170 if (!n.casValue(v, null))
1171 continue;
1172 if (!n.appendMarker(f) || !b.casNext(n, f))
1173 findFirst(); // retry
1174 clearIndexToFirst();
1175 return n.key;
1176 }
1177 }
1178
1179 /**
1180 * Removes first entry; returns its snapshot.
1181 * @return null if empty, else snapshot of first entry
1182 */
1183 Map.Entry<K,V> doRemoveFirstEntry() {
1184 for (;;) {
1185 Node<K,V> b = head.node;
1186 Node<K,V> n = b.next;
1187 if (n == null)
1188 return null;
1189 Node<K,V> f = n.next;
1190 if (n != b.next)
1191 continue;
1192 Object v = n.value;
1193 if (v == null) {
1194 n.helpDelete(b, f);
1195 continue;
1196 }
1197 if (!n.casValue(v, null))
1198 continue;
1199 if (!n.appendMarker(f) || !b.casNext(n, f))
1200 findFirst(); // retry
1201 clearIndexToFirst();
1202 return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, (V)v);
1203 }
1204 }
1205
1206 /**
1207 * Clears out index nodes associated with deleted first entry.
1208 */
1209 private void clearIndexToFirst() {
1210 for (;;) {
1211 Index<K,V> q = head;
1212 for (;;) {
1213 Index<K,V> r = q.right;
1214 if (r != null && r.indexesDeletedNode() && !q.unlink(r))
1215 break;
1216 if ((q = q.down) == null) {
1217 if (head.right == null)
1218 tryReduceLevel();
1219 return;
1220 }
1221 }
1222 }
1223 }
1224
1225
1226 /* ---------------- Finding and removing last element -------------- */
1227
1228 /**
1229 * Specialized version of find to get last valid node.
1230 * @return last node or null if empty
1231 */
1232 Node<K,V> findLast() {
1233 /*
1234 * findPredecessor can't be used to traverse index level
1235 * because this doesn't use comparisons. So traversals of
1236 * both levels are folded together.
1237 */
1238 Index<K,V> q = head;
1239 for (;;) {
1240 Index<K,V> d, r;
1241 if ((r = q.right) != null) {
1242 if (r.indexesDeletedNode()) {
1243 q.unlink(r);
1244 q = head; // restart
1245 }
1246 else
1247 q = r;
1248 } else if ((d = q.down) != null) {
1249 q = d;
1250 } else {
1251 Node<K,V> b = q.node;
1252 Node<K,V> n = b.next;
1253 for (;;) {
1254 if (n == null)
1255 return (b.isBaseHeader())? null : b;
1256 Node<K,V> f = n.next; // inconsistent read
1257 if (n != b.next)
1258 break;
1259 Object v = n.value;
1260 if (v == null) { // n is deleted
1261 n.helpDelete(b, f);
1262 break;
1263 }
1264 if (v == n || b.value == null) // b is deleted
1265 break;
1266 b = n;
1267 n = f;
1268 }
1269 q = head; // restart
1270 }
1271 }
1272 }
1273
1274 /**
1275 * Specialized variant of findPredecessor to get predecessor of last
1276 * valid node. Needed when removing the last entry. It is possible
1277 * that all successors of returned node will have been deleted upon
1278 * return, in which case this method can be retried.
1279 * @return likely predecessor of last node
1280 */
1281 private Node<K,V> findPredecessorOfLast() {
1282 for (;;) {
1283 Index<K,V> q = head;
1284 for (;;) {
1285 Index<K,V> d, r;
1286 if ((r = q.right) != null) {
1287 if (r.indexesDeletedNode()) {
1288 q.unlink(r);
1289 break; // must restart
1290 }
1291 // proceed as far across as possible without overshooting
1292 if (r.node.next != null) {
1293 q = r;
1294 continue;
1295 }
1296 }
1297 if ((d = q.down) != null)
1298 q = d;
1299 else
1300 return q.node;
1301 }
1302 }
1303 }
1304
1305 /**
1306 * Removes last entry; returns key or null if empty.
1307 * @return null if empty, else key of last entry
1308 */
1309 K pollLastKey() {
1310 for (;;) {
1311 Node<K,V> b = findPredecessorOfLast();
1312 Node<K,V> n = b.next;
1313 if (n == null) {
1314 if (b.isBaseHeader()) // empty
1315 return null;
1316 else
1317 continue; // all b's successors are deleted; retry
1318 }
1319 for (;;) {
1320 Node<K,V> f = n.next;
1321 if (n != b.next) // inconsistent read
1322 break;
1323 Object v = n.value;
1324 if (v == null) { // n is deleted
1325 n.helpDelete(b, f);
1326 break;
1327 }
1328 if (v == n || b.value == null) // b is deleted
1329 break;
1330 if (f != null) {
1331 b = n;
1332 n = f;
1333 continue;
1334 }
1335 if (!n.casValue(v, null))
1336 break;
1337 K key = n.key;
1338 Comparable<? super K> ck = comparable(key);
1339 if (!n.appendMarker(f) || !b.casNext(n, f))
1340 findNode(ck); // Retry via findNode
1341 else {
1342 findPredecessor(ck); // Clean index
1343 if (head.right == null)
1344 tryReduceLevel();
1345 }
1346 return key;
1347 }
1348 }
1349 }
1350
1351 /**
1352 * Removes last entry; returns its snapshot.
1353 * Specialized variant of doRemove.
1354 * @return null if empty, else snapshot of last entry
1355 */
1356 Map.Entry<K,V> doRemoveLastEntry() {
1357 for (;;) {
1358 Node<K,V> b = findPredecessorOfLast();
1359 Node<K,V> n = b.next;
1360 if (n == null) {
1361 if (b.isBaseHeader()) // empty
1362 return null;
1363 else
1364 continue; // all b's successors are deleted; retry
1365 }
1366 for (;;) {
1367 Node<K,V> f = n.next;
1368 if (n != b.next) // inconsistent read
1369 break;
1370 Object v = n.value;
1371 if (v == null) { // n is deleted
1372 n.helpDelete(b, f);
1373 break;
1374 }
1375 if (v == n || b.value == null) // b is deleted
1376 break;
1377 if (f != null) {
1378 b = n;
1379 n = f;
1380 continue;
1381 }
1382 if (!n.casValue(v, null))
1383 break;
1384 K key = n.key;
1385 Comparable<? super K> ck = comparable(key);
1386 if (!n.appendMarker(f) || !b.casNext(n, f))
1387 findNode(ck); // Retry via findNode
1388 else {
1389 findPredecessor(ck); // Clean index
1390 if (head.right == null)
1391 tryReduceLevel();
1392 }
1393 return new AbstractMap.SimpleImmutableEntry<K,V>(key, (V)v);
1394 }
1395 }
1396 }
1397
1398 /* ---------------- Relational operations -------------- */
1399
1400 // Control values OR'ed as arguments to findNear
1401
1402 private static final int EQ = 1;
1403 private static final int LT = 2;
1404 private static final int GT = 0; // Actually checked as !LT
1405
1406 /**
1407 * Utility for ceiling, floor, lower, higher methods.
1408 * @param kkey the key
1409 * @param rel the relation -- OR'ed combination of EQ, LT, GT
1410 * @return nearest node fitting relation, or null if no such
1411 */
1412 Node<K,V> findNear(K kkey, int rel) {
1413 Comparable<? super K> key = comparable(kkey);
1414 for (;;) {
1415 Node<K,V> b = findPredecessor(key);
1416 Node<K,V> n = b.next;
1417 for (;;) {
1418 if (n == null)
1419 return ((rel & LT) == 0 || b.isBaseHeader())? null : b;
1420 Node<K,V> f = n.next;
1421 if (n != b.next) // inconsistent read
1422 break;
1423 Object v = n.value;
1424 if (v == null) { // n is deleted
1425 n.helpDelete(b, f);
1426 break;
1427 }
1428 if (v == n || b.value == null) // b is deleted
1429 break;
1430 int c = key.compareTo(n.key);
1431 if ((c == 0 && (rel & EQ) != 0) ||
1432 (c < 0 && (rel & LT) == 0))
1433 return n;
1434 if ( c <= 0 && (rel & LT) != 0)
1435 return (b.isBaseHeader())? null : b;
1436 b = n;
1437 n = f;
1438 }
1439 }
1440 }
1441
1442 /**
1443 * Returns SimpleImmutableEntry for results of findNear.
1444 * @param kkey the key
1445 * @param rel the relation -- OR'ed combination of EQ, LT, GT
1446 * @return Entry fitting relation, or null if no such
1447 */
1448 AbstractMap.SimpleImmutableEntry<K,V> getNear(K kkey, int rel) {
1449 for (;;) {
1450 Node<K,V> n = findNear(kkey, rel);
1451 if (n == null)
1452 return null;
1453 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
1454 if (e != null)
1455 return e;
1456 }
1457 }
1458
1459 /**
1460 * Returns ceiling, or first node if key is <tt>null</tt>.
1461 */
1462 Node<K,V> findCeiling(K key) {
1463 return (key == null)? findFirst() : findNear(key, GT|EQ);
1464 }
1465
1466 /**
1467 * Returns lower node, or last node if key is <tt>null</tt>.
1468 */
1469 Node<K,V> findLower(K key) {
1470 return (key == null)? findLast() : findNear(key, LT);
1471 }
1472
1473 /**
1474 * Returns key for results of findNear after screening to ensure
1475 * result is in given range. Needed by submaps.
1476 * @param kkey the key
1477 * @param rel the relation -- OR'ed combination of EQ, LT, GT
1478 * @param least minimum allowed key value
1479 * @param fence key greater than maximum allowed key value
1480 * @return Key fitting relation, or <tt>null</tt> if no such
1481 */
1482 K getNearKey(K kkey, int rel, K least, K fence) {
1483 K key = kkey;
1484 // Don't return keys less than least
1485 if ((rel & LT) == 0) {
1486 if (compare(key, least) < 0) {
1487 key = least;
1488 rel = rel | EQ;
1489 }
1490 }
1491
1492 for (;;) {
1493 Node<K,V> n = findNear(key, rel);
1494 if (n == null || !inHalfOpenRange(n.key, least, fence))
1495 return null;
1496 K k = n.key;
1497 V v = n.getValidValue();
1498 if (v != null)
1499 return k;
1500 }
1501 }
1502
1503
1504 /**
1505 * Returns SimpleImmutableEntry for results of findNear after
1506 * screening to ensure result is in given range. Needed by
1507 * submaps.
1508 * @param kkey the key
1509 * @param rel the relation -- OR'ed combination of EQ, LT, GT
1510 * @param least minimum allowed key value
1511 * @param fence key greater than maximum allowed key value
1512 * @return Entry fitting relation, or <tt>null</tt> if no such
1513 */
1514 Map.Entry<K,V> getNearEntry(K kkey, int rel, K least, K fence) {
1515 K key = kkey;
1516 // Don't return keys less than least
1517 if ((rel & LT) == 0) {
1518 if (compare(key, least) < 0) {
1519 key = least;
1520 rel = rel | EQ;
1521 }
1522 }
1523
1524 for (;;) {
1525 Node<K,V> n = findNear(key, rel);
1526 if (n == null || !inHalfOpenRange(n.key, least, fence))
1527 return null;
1528 K k = n.key;
1529 V v = n.getValidValue();
1530 if (v != null)
1531 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
1532 }
1533 }
1534
1535 /**
1536 * Finds and removes least element of subrange.
1537 * @param least minimum allowed key value
1538 * @param fence key greater than maximum allowed key value
1539 * @return least Entry, or <tt>null</tt> if no such
1540 */
1541 Map.Entry<K,V> removeFirstEntryOfSubrange(K least, K fence) {
1542 for (;;) {
1543 Node<K,V> n = findCeiling(least);
1544 if (n == null)
1545 return null;
1546 K k = n.key;
1547 if (fence != null && compare(k, fence) >= 0)
1548 return null;
1549 V v = doRemove(k, null);
1550 if (v != null)
1551 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
1552 }
1553 }
1554
1555 /**
1556 * Finds and removes greatest element of subrange.
1557 * @param least minimum allowed key value
1558 * @param fence key greater than maximum allowed key value
1559 * @return least Entry, or <tt>null</tt> if no such
1560 */
1561 Map.Entry<K,V> removeLastEntryOfSubrange(K least, K fence) {
1562 for (;;) {
1563 Node<K,V> n = findLower(fence);
1564 if (n == null)
1565 return null;
1566 K k = n.key;
1567 if (least != null && compare(k, least) < 0)
1568 return null;
1569 V v = doRemove(k, null);
1570 if (v != null)
1571 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
1572 }
1573 }
1574
1575
1576
1577 /* ---------------- Constructors -------------- */
1578
1579 /**
1580 * Constructs a new, empty map, sorted according to the
1581 * {@linkplain Comparable natural ordering} of the keys.
1582 */
1583 public ConcurrentSkipListMap() {
1584 this.comparator = null;
1585 initialize();
1586 }
1587
1588 /**
1589 * Constructs a new, empty map, sorted according to the specified
1590 * comparator.
1591 *
1592 * @param comparator the comparator that will be used to order this map.
1593 * If <tt>null</tt>, the {@linkplain Comparable natural
1594 * ordering} of the keys will be used.
1595 */
1596 public ConcurrentSkipListMap(Comparator<? super K> comparator) {
1597 this.comparator = comparator;
1598 initialize();
1599 }
1600
1601 /**
1602 * Constructs a new map containing the same mappings as the given map,
1603 * sorted according to the {@linkplain Comparable natural ordering} of
1604 * the keys.
1605 *
1606 * @param m the map whose mappings are to be placed in this map
1607 * @throws ClassCastException if the keys in <tt>m</tt> are not
1608 * {@link Comparable}, or are not mutually comparable
1609 * @throws NullPointerException if the specified map or any of its keys
1610 * or values are null
1611 */
1612 public ConcurrentSkipListMap(Map<? extends K, ? extends V> m) {
1613 this.comparator = null;
1614 initialize();
1615 putAll(m);
1616 }
1617
1618 /**
1619 * Constructs a new map containing the same mappings and using the
1620 * same ordering as the specified sorted map.
1621 *
1622 * @param m the sorted map whose mappings are to be placed in this
1623 * map, and whose comparator is to be used to sort this map
1624 * @throws NullPointerException if the specified sorted map or any of
1625 * its keys or values are null
1626 */
1627 public ConcurrentSkipListMap(SortedMap<K, ? extends V> m) {
1628 this.comparator = m.comparator();
1629 initialize();
1630 buildFromSorted(m);
1631 }
1632
1633 /**
1634 * Returns a shallow copy of this <tt>ConcurrentSkipListMap</tt>
1635 * instance. (The keys and values themselves are not cloned.)
1636 *
1637 * @return a shallow copy of this map
1638 */
1639 public ConcurrentSkipListMap<K,V> clone() {
1640 ConcurrentSkipListMap<K,V> clone = null;
1641 try {
1642 clone = (ConcurrentSkipListMap<K,V>) super.clone();
1643 } catch (CloneNotSupportedException e) {
1644 throw new InternalError();
1645 }
1646
1647 clone.initialize();
1648 clone.buildFromSorted(this);
1649 return clone;
1650 }
1651
1652 /**
1653 * Streamlined bulk insertion to initialize from elements of
1654 * given sorted map. Call only from constructor or clone
1655 * method.
1656 */
1657 private void buildFromSorted(SortedMap<K, ? extends V> map) {
1658 if (map == null)
1659 throw new NullPointerException();
1660
1661 HeadIndex<K,V> h = head;
1662 Node<K,V> basepred = h.node;
1663
1664 // Track the current rightmost node at each level. Uses an
1665 // ArrayList to avoid committing to initial or maximum level.
1666 ArrayList<Index<K,V>> preds = new ArrayList<Index<K,V>>();
1667
1668 // initialize
1669 for (int i = 0; i <= h.level; ++i)
1670 preds.add(null);
1671 Index<K,V> q = h;
1672 for (int i = h.level; i > 0; --i) {
1673 preds.set(i, q);
1674 q = q.down;
1675 }
1676
1677 Iterator<? extends Map.Entry<? extends K, ? extends V>> it =
1678 map.entrySet().iterator();
1679 while (it.hasNext()) {
1680 Map.Entry<? extends K, ? extends V> e = it.next();
1681 int j = randomLevel();
1682 if (j > h.level) j = h.level + 1;
1683 K k = e.getKey();
1684 V v = e.getValue();
1685 if (k == null || v == null)
1686 throw new NullPointerException();
1687 Node<K,V> z = new Node<K,V>(k, v, null);
1688 basepred.next = z;
1689 basepred = z;
1690 if (j > 0) {
1691 Index<K,V> idx = null;
1692 for (int i = 1; i <= j; ++i) {
1693 idx = new Index<K,V>(z, idx, null);
1694 if (i > h.level)
1695 h = new HeadIndex<K,V>(h.node, h, idx, i);
1696
1697 if (i < preds.size()) {
1698 preds.get(i).right = idx;
1699 preds.set(i, idx);
1700 } else
1701 preds.add(idx);
1702 }
1703 }
1704 }
1705 head = h;
1706 }
1707
1708 /* ---------------- Serialization -------------- */
1709
1710 /**
1711 * Save the state of this map to a stream.
1712 *
1713 * @serialData The key (Object) and value (Object) for each
1714 * key-value mapping represented by the map, followed by
1715 * <tt>null</tt>. The key-value mappings are emitted in key-order
1716 * (as determined by the Comparator, or by the keys' natural
1717 * ordering if no Comparator).
1718 */
1719 private void writeObject(java.io.ObjectOutputStream s)
1720 throws java.io.IOException {
1721 // Write out the Comparator and any hidden stuff
1722 s.defaultWriteObject();
1723
1724 // Write out keys and values (alternating)
1725 for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1726 V v = n.getValidValue();
1727 if (v != null) {
1728 s.writeObject(n.key);
1729 s.writeObject(v);
1730 }
1731 }
1732 s.writeObject(null);
1733 }
1734
1735 /**
1736 * Reconstitute the map from a stream.
1737 */
1738 private void readObject(final java.io.ObjectInputStream s)
1739 throws java.io.IOException, ClassNotFoundException {
1740 // Read in the Comparator and any hidden stuff
1741 s.defaultReadObject();
1742 // Reset transients
1743 initialize();
1744
1745 /*
1746 * This is nearly identical to buildFromSorted, but is
1747 * distinct because readObject calls can't be nicely adapted
1748 * as the kind of iterator needed by buildFromSorted. (They
1749 * can be, but doing so requires type cheats and/or creation
1750 * of adaptor classes.) It is simpler to just adapt the code.
1751 */
1752
1753 HeadIndex<K,V> h = head;
1754 Node<K,V> basepred = h.node;
1755 ArrayList<Index<K,V>> preds = new ArrayList<Index<K,V>>();
1756 for (int i = 0; i <= h.level; ++i)
1757 preds.add(null);
1758 Index<K,V> q = h;
1759 for (int i = h.level; i > 0; --i) {
1760 preds.set(i, q);
1761 q = q.down;
1762 }
1763
1764 for (;;) {
1765 Object k = s.readObject();
1766 if (k == null)
1767 break;
1768 Object v = s.readObject();
1769 if (v == null)
1770 throw new NullPointerException();
1771 K key = (K) k;
1772 V val = (V) v;
1773 int j = randomLevel();
1774 if (j > h.level) j = h.level + 1;
1775 Node<K,V> z = new Node<K,V>(key, val, null);
1776 basepred.next = z;
1777 basepred = z;
1778 if (j > 0) {
1779 Index<K,V> idx = null;
1780 for (int i = 1; i <= j; ++i) {
1781 idx = new Index<K,V>(z, idx, null);
1782 if (i > h.level)
1783 h = new HeadIndex<K,V>(h.node, h, idx, i);
1784
1785 if (i < preds.size()) {
1786 preds.get(i).right = idx;
1787 preds.set(i, idx);
1788 } else
1789 preds.add(idx);
1790 }
1791 }
1792 }
1793 head = h;
1794 }
1795
1796 /* ------ Map API methods ------ */
1797
1798 /**
1799 * Returns <tt>true</tt> if this map contains a mapping for the specified
1800 * key.
1801 *
1802 * @param key key whose presence in this map is to be tested
1803 * @return <tt>true</tt> if this map contains a mapping for the specified key
1804 * @throws ClassCastException if the specified key cannot be compared
1805 * with the keys currently in the map
1806 * @throws NullPointerException if the specified key is null
1807 */
1808 public boolean containsKey(Object key) {
1809 return doGet(key) != null;
1810 }
1811
1812 /**
1813 * Returns the value to which this map maps the specified key, or
1814 * <tt>null</tt> if the map contains no mapping for the key.
1815 *
1816 * @param key key whose associated value is to be returned
1817 * @return the value to which this map maps the specified key, or
1818 * <tt>null</tt> if the map contains no mapping for the key
1819 * @throws ClassCastException if the specified key cannot be compared
1820 * with the keys currently in the map
1821 * @throws NullPointerException if the specified key is null
1822 */
1823 public V get(Object key) {
1824 return doGet(key);
1825 }
1826
1827 /**
1828 * Associates the specified value with the specified key in this map.
1829 * If the map previously contained a mapping for the key, the old
1830 * value is replaced.
1831 *
1832 * @param key key with which the specified value is to be associated
1833 * @param value value to be associated with the specified key
1834 * @return the previous value associated with the specified key, or
1835 * <tt>null</tt> if there was no mapping for the key
1836 * @throws ClassCastException if the specified key cannot be compared
1837 * with the keys currently in the map
1838 * @throws NullPointerException if the specified key or value is null
1839 */
1840 public V put(K key, V value) {
1841 if (value == null)
1842 throw new NullPointerException();
1843 return doPut(key, value, false);
1844 }
1845
1846 /**
1847 * Removes the mapping for this key from this map if present.
1848 *
1849 * @param key key for which mapping should be removed
1850 * @return the previous value associated with the specified key, or
1851 * <tt>null</tt> if there was no mapping for the key
1852 * @throws ClassCastException if the specified key cannot be compared
1853 * with the keys currently in the map
1854 * @throws NullPointerException if the specified key is null
1855 */
1856 public V remove(Object key) {
1857 return doRemove(key, null);
1858 }
1859
1860 /**
1861 * Returns <tt>true</tt> if this map maps one or more keys to the
1862 * specified value. This operation requires time linear in the
1863 * map size.
1864 *
1865 * @param value value whose presence in this map is to be tested
1866 * @return <tt>true</tt> if a mapping to <tt>value</tt> exists;
1867 * <tt>false</tt> otherwise
1868 * @throws NullPointerException if the specified value is null
1869 */
1870 public boolean containsValue(Object value) {
1871 if (value == null)
1872 throw new NullPointerException();
1873 for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1874 V v = n.getValidValue();
1875 if (v != null && value.equals(v))
1876 return true;
1877 }
1878 return false;
1879 }
1880
1881 /**
1882 * Returns the number of key-value mappings in this map. If this map
1883 * contains more than <tt>Integer.MAX_VALUE</tt> elements, it
1884 * returns <tt>Integer.MAX_VALUE</tt>.
1885 *
1886 * <p>Beware that, unlike in most collections, this method is
1887 * <em>NOT</em> a constant-time operation. Because of the
1888 * asynchronous nature of these maps, determining the current
1889 * number of elements requires traversing them all to count them.
1890 * Additionally, it is possible for the size to change during
1891 * execution of this method, in which case the returned result
1892 * will be inaccurate. Thus, this method is typically not very
1893 * useful in concurrent applications.
1894 *
1895 * @return the number of elements in this map
1896 */
1897 public int size() {
1898 long count = 0;
1899 for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1900 if (n.getValidValue() != null)
1901 ++count;
1902 }
1903 return (count >= Integer.MAX_VALUE)? Integer.MAX_VALUE : (int)count;
1904 }
1905
1906 /**
1907 * Returns <tt>true</tt> if this map contains no key-value mappings.
1908 * @return <tt>true</tt> if this map contains no key-value mappings
1909 */
1910 public boolean isEmpty() {
1911 return findFirst() == null;
1912 }
1913
1914 /**
1915 * Removes all of the mappings from this map.
1916 */
1917 public void clear() {
1918 initialize();
1919 }
1920
1921 /**
1922 * Returns a {@link Set} view of the keys contained in this map.
1923 * The set's iterator returns the keys in ascending order.
1924 * The set is backed by the map, so changes to the map are
1925 * reflected in the set, and vice-versa. The set supports element
1926 * removal, which removes the corresponding mapping from the map,
1927 * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1928 * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
1929 * operations. It does not support the <tt>add</tt> or <tt>addAll</tt>
1930 * operations.
1931 *
1932 * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1933 * that will never throw {@link ConcurrentModificationException},
1934 * and guarantees to traverse elements as they existed upon
1935 * construction of the iterator, and may (but is not guaranteed to)
1936 * reflect any modifications subsequent to construction.
1937 *
1938 * @return a set view of the keys contained in this map, sorted in
1939 * ascending order
1940 */
1941 public Set<K> keySet() {
1942 /*
1943 * Note: Lazy initialization works here and for other views
1944 * because view classes are stateless/immutable so it doesn't
1945 * matter wrt correctness if more than one is created (which
1946 * will only rarely happen). Even so, the following idiom
1947 * conservatively ensures that the method returns the one it
1948 * created if it does so, not one created by another racing
1949 * thread.
1950 */
1951 KeySet ks = keySet;
1952 return (ks != null) ? ks : (keySet = new KeySet());
1953 }
1954
1955 /**
1956 * Returns a {@link Set} view of the keys contained in this map.
1957 * The set's iterator returns the keys in descending order.
1958 * The set is backed by the map, so changes to the map are
1959 * reflected in the set, and vice-versa. The set supports element
1960 * removal, which removes the corresponding mapping from the map,
1961 * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1962 * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
1963 * operations. It does not support the <tt>add</tt> or <tt>addAll</tt>
1964 * operations.
1965 *
1966 * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1967 * that will never throw {@link ConcurrentModificationException},
1968 * and guarantees to traverse elements as they existed upon
1969 * construction of the iterator, and may (but is not guaranteed to)
1970 * reflect any modifications subsequent to construction.
1971 */
1972 public Set<K> descendingKeySet() {
1973 /*
1974 * Note: Lazy initialization works here and for other views
1975 * because view classes are stateless/immutable so it doesn't
1976 * matter wrt correctness if more than one is created (which
1977 * will only rarely happen). Even so, the following idiom
1978 * conservatively ensures that the method returns the one it
1979 * created if it does so, not one created by another racing
1980 * thread.
1981 */
1982 DescendingKeySet ks = descendingKeySet;
1983 return (ks != null) ? ks : (descendingKeySet = new DescendingKeySet());
1984 }
1985
1986 /**
1987 * Returns a {@link Collection} view of the values contained in this map.
1988 * The collection's iterator returns the values in ascending order
1989 * of the corresponding keys.
1990 * The collection is backed by the map, so changes to the map are
1991 * reflected in the collection, and vice-versa. The collection
1992 * supports element removal, which removes the corresponding
1993 * mapping from the map, via the <tt>Iterator.remove</tt>,
1994 * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
1995 * <tt>retainAll</tt> and <tt>clear</tt> operations. It does not
1996 * support the <tt>add</tt> or <tt>addAll</tt> operations.
1997 *
1998 * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1999 * that will never throw {@link ConcurrentModificationException},
2000 * and guarantees to traverse elements as they existed upon
2001 * construction of the iterator, and may (but is not guaranteed to)
2002 * reflect any modifications subsequent to construction.
2003 */
2004 public Collection<V> values() {
2005 Values vs = values;
2006 return (vs != null) ? vs : (values = new Values());
2007 }
2008
2009 /**
2010 * Returns a {@link Set} view of the mappings contained in this map.
2011 * The set's iterator returns the entries in ascending key order.
2012 * The set is backed by the map, so changes to the map are
2013 * reflected in the set, and vice-versa. The set supports element
2014 * removal, which removes the corresponding mapping from the map,
2015 * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
2016 * <tt>removeAll</tt>, <tt>retainAll</tt> and <tt>clear</tt>
2017 * operations. It does not support the <tt>add</tt> or
2018 * <tt>addAll</tt> operations.
2019 *
2020 * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
2021 * that will never throw {@link ConcurrentModificationException},
2022 * and guarantees to traverse elements as they existed upon
2023 * construction of the iterator, and may (but is not guaranteed to)
2024 * reflect any modifications subsequent to construction.
2025 *
2026 * <p>The <tt>Map.Entry</tt> elements returned by
2027 * <tt>iterator.next()</tt> do <em>not</em> support the
2028 * <tt>setValue</tt> operation.
2029 *
2030 * @return a set view of the mappings contained in this map,
2031 * sorted in ascending key order
2032 */
2033 public Set<Map.Entry<K,V>> entrySet() {
2034 EntrySet es = entrySet;
2035 return (es != null) ? es : (entrySet = new EntrySet());
2036 }
2037
2038 /**
2039 * Returns a {@link Set} view of the mappings contained in this map.
2040 * The set's iterator returns the entries in descending key order.
2041 * The set is backed by the map, so changes to the map are
2042 * reflected in the set, and vice-versa. The set supports element
2043 * removal, which removes the corresponding mapping from the map,
2044 * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
2045 * <tt>removeAll</tt>, <tt>retainAll</tt> and <tt>clear</tt>
2046 * operations. It does not support the <tt>add</tt> or
2047 * <tt>addAll</tt> operations.
2048 *
2049 * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
2050 * that will never throw {@link ConcurrentModificationException},
2051 * and guarantees to traverse elements as they existed upon
2052 * construction of the iterator, and may (but is not guaranteed to)
2053 * reflect any modifications subsequent to construction.
2054 *
2055 * <p>The <tt>Map.Entry</tt> elements returned by
2056 * <tt>iterator.next()</tt> do <em>not</em> support the
2057 * <tt>setValue</tt> operation.
2058 */
2059 public Set<Map.Entry<K,V>> descendingEntrySet() {
2060 DescendingEntrySet es = descendingEntrySet;
2061 return (es != null) ? es : (descendingEntrySet = new DescendingEntrySet());
2062 }
2063
2064 /* ---------------- AbstractMap Overrides -------------- */
2065
2066 /**
2067 * Compares the specified object with this map for equality.
2068 * Returns <tt>true</tt> if the given object is also a map and the
2069 * two maps represent the same mappings. More formally, two maps
2070 * <tt>m1</tt> and <tt>m2</tt> represent the same mappings if
2071 * <tt>m1.keySet().equals(m2.keySet())</tt> and for every key
2072 * <tt>k</tt> in <tt>m1.keySet()</tt>, <tt> (m1.get(k)==null ?
2073 * m2.get(k)==null : m1.get(k).equals(m2.get(k))) </tt>. This
2074 * operation may return misleading results if either map is
2075 * concurrently modified during execution of this method.
2076 *
2077 * @param o object to be compared for equality with this map
2078 * @return <tt>true</tt> if the specified object is equal to this map
2079 */
2080 public boolean equals(Object o) {
2081 if (o == this)
2082 return true;
2083 if (!(o instanceof Map))
2084 return false;
2085 Map<?,?> m = (Map<?,?>) o;
2086 try {
2087 for (Map.Entry<K,V> e : this.entrySet())
2088 if (! e.getValue().equals(m.get(e.getKey())))
2089 return false;
2090 for (Map.Entry<?,?> e : m.entrySet()) {
2091 Object k = e.getKey();
2092 Object v = e.getValue();
2093 if (k == null || v == null || !v.equals(get(k)))
2094 return false;
2095 }
2096 return true;
2097 } catch (ClassCastException unused) {
2098 return false;
2099 } catch (NullPointerException unused) {
2100 return false;
2101 }
2102 }
2103
2104 /* ------ ConcurrentMap API methods ------ */
2105
2106 /**
2107 * {@inheritDoc}
2108 *
2109 * @return the previous value associated with the specified key,
2110 * or <tt>null</tt> if there was no mapping for the key
2111 * @throws ClassCastException if the specified key cannot be compared
2112 * with the keys currently in the map
2113 * @throws NullPointerException if the specified key or value is null
2114 */
2115 public V putIfAbsent(K key, V value) {
2116 if (value == null)
2117 throw new NullPointerException();
2118 return doPut(key, value, true);
2119 }
2120
2121 /**
2122 * {@inheritDoc}
2123 *
2124 * @throws ClassCastException if the specified key cannot be compared
2125 * with the keys currently in the map
2126 * @throws NullPointerException if the specified key is null
2127 */
2128 public boolean remove(Object key, Object value) {
2129 if (value == null)
2130 return false;
2131 return doRemove(key, value) != null;
2132 }
2133
2134 /**
2135 * {@inheritDoc}
2136 *
2137 * @throws ClassCastException if the specified key cannot be compared
2138 * with the keys currently in the map
2139 * @throws NullPointerException if any of the arguments are null
2140 */
2141 public boolean replace(K key, V oldValue, V newValue) {
2142 if (oldValue == null || newValue == null)
2143 throw new NullPointerException();
2144 Comparable<? super K> k = comparable(key);
2145 for (;;) {
2146 Node<K,V> n = findNode(k);
2147 if (n == null)
2148 return false;
2149 Object v = n.value;
2150 if (v != null) {
2151 if (!oldValue.equals(v))
2152 return false;
2153 if (n.casValue(v, newValue))
2154 return true;
2155 }
2156 }
2157 }
2158
2159 /**
2160 * {@inheritDoc}
2161 *
2162 * @return the previous value associated with the specified key,
2163 * or <tt>null</tt> if there was no mapping for the key
2164 * @throws ClassCastException if the specified key cannot be compared
2165 * with the keys currently in the map
2166 * @throws NullPointerException if the specified key or value is null
2167 */
2168 public V replace(K key, V value) {
2169 if (value == null)
2170 throw new NullPointerException();
2171 Comparable<? super K> k = comparable(key);
2172 for (;;) {
2173 Node<K,V> n = findNode(k);
2174 if (n == null)
2175 return null;
2176 Object v = n.value;
2177 if (v != null && n.casValue(v, value))
2178 return (V)v;
2179 }
2180 }
2181
2182 /* ------ SortedMap API methods ------ */
2183
2184 public Comparator<? super K> comparator() {
2185 return comparator;
2186 }
2187
2188 /**
2189 * @throws NoSuchElementException {@inheritDoc}
2190 */
2191 public K firstKey() {
2192 Node<K,V> n = findFirst();
2193 if (n == null)
2194 throw new NoSuchElementException();
2195 return n.key;
2196 }
2197
2198 /**
2199 * @throws NoSuchElementException {@inheritDoc}
2200 */
2201 public K lastKey() {
2202 Node<K,V> n = findLast();
2203 if (n == null)
2204 throw new NoSuchElementException();
2205 return n.key;
2206 }
2207
2208 /**
2209 * @throws ClassCastException {@inheritDoc}
2210 * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is null
2211 * @throws IllegalArgumentException {@inheritDoc}
2212 */
2213 public ConcurrentNavigableMap<K,V> navigableSubMap(K fromKey, K toKey) {
2214 if (fromKey == null || toKey == null)
2215 throw new NullPointerException();
2216 return new ConcurrentSkipListSubMap<K,V>(this, fromKey, toKey);
2217 }
2218
2219 /**
2220 * @throws ClassCastException {@inheritDoc}
2221 * @throws NullPointerException if <tt>toKey</tt> is null
2222 * @throws IllegalArgumentException {@inheritDoc}
2223 */
2224 public ConcurrentNavigableMap<K,V> navigableHeadMap(K toKey) {
2225 if (toKey == null)
2226 throw new NullPointerException();
2227 return new ConcurrentSkipListSubMap<K,V>(this, null, toKey);
2228 }
2229
2230 /**
2231 * @throws ClassCastException {@inheritDoc}
2232 * @throws NullPointerException if <tt>fromKey</tt> is null
2233 * @throws IllegalArgumentException {@inheritDoc}
2234 */
2235 public ConcurrentNavigableMap<K,V> navigableTailMap(K fromKey) {
2236 if (fromKey == null)
2237 throw new NullPointerException();
2238 return new ConcurrentSkipListSubMap<K,V>(this, fromKey, null);
2239 }
2240
2241 /**
2242 * Equivalent to {@link #navigableSubMap} but with a return type
2243 * conforming to the <tt>SortedMap</tt> interface.
2244 *
2245 * <p>{@inheritDoc}
2246 *
2247 * @throws ClassCastException {@inheritDoc}
2248 * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is null
2249 * @throws IllegalArgumentException {@inheritDoc}
2250 */
2251 public SortedMap<K,V> subMap(K fromKey, K toKey) {
2252 return navigableSubMap(fromKey, toKey);
2253 }
2254
2255 /**
2256 * Equivalent to {@link #navigableHeadMap} but with a return type
2257 * conforming to the <tt>SortedMap</tt> interface.
2258 *
2259 * <p>{@inheritDoc}
2260 *
2261 * @throws ClassCastException {@inheritDoc}
2262 * @throws NullPointerException if <tt>toKey</tt> is null
2263 * @throws IllegalArgumentException {@inheritDoc}
2264 */
2265 public SortedMap<K,V> headMap(K toKey) {
2266 return navigableHeadMap(toKey);
2267 }
2268
2269 /**
2270 * Equivalent to {@link #navigableTailMap} but with a return type
2271 * conforming to the <tt>SortedMap</tt> interface.
2272 *
2273 * <p>{@inheritDoc}
2274 *
2275 * @throws ClassCastException {@inheritDoc}
2276 * @throws NullPointerException if <tt>fromKey</tt> is null
2277 * @throws IllegalArgumentException {@inheritDoc}
2278 */
2279 public SortedMap<K,V> tailMap(K fromKey) {
2280 return navigableTailMap(fromKey);
2281 }
2282
2283 /* ---------------- Relational operations -------------- */
2284
2285 /**
2286 * Returns a key-value mapping associated with the greatest key
2287 * strictly less than the given key, or <tt>null</tt> if there is
2288 * no such key. The returned entry does <em>not</em> support the
2289 * <tt>Entry.setValue</tt> method.
2290 *
2291 * @throws ClassCastException {@inheritDoc}
2292 * @throws NullPointerException if the specified key is null
2293 */
2294 public Map.Entry<K,V> lowerEntry(K key) {
2295 return getNear(key, LT);
2296 }
2297
2298 /**
2299 * @throws ClassCastException {@inheritDoc}
2300 * @throws NullPointerException if the specified key is null
2301 */
2302 public K lowerKey(K key) {
2303 Node<K,V> n = findNear(key, LT);
2304 return (n == null)? null : n.key;
2305 }
2306
2307 /**
2308 * Returns a key-value mapping associated with the greatest key
2309 * less than or equal to the given key, or <tt>null</tt> if there
2310 * is no such key. The returned entry does <em>not</em> support
2311 * the <tt>Entry.setValue</tt> method.
2312 *
2313 * @param key the key
2314 * @throws ClassCastException {@inheritDoc}
2315 * @throws NullPointerException if the specified key is null
2316 */
2317 public Map.Entry<K,V> floorEntry(K key) {
2318 return getNear(key, LT|EQ);
2319 }
2320
2321 /**
2322 * @param key the key
2323 * @throws ClassCastException {@inheritDoc}
2324 * @throws NullPointerException if the specified key is null
2325 */
2326 public K floorKey(K key) {
2327 Node<K,V> n = findNear(key, LT|EQ);
2328 return (n == null)? null : n.key;
2329 }
2330
2331 /**
2332 * Returns a key-value mapping associated with the least key
2333 * greater than or equal to the given key, or <tt>null</tt> if
2334 * there is no such entry. The returned entry does <em>not</em>
2335 * support the <tt>Entry.setValue</tt> method.
2336 *
2337 * @throws ClassCastException {@inheritDoc}
2338 * @throws NullPointerException if the specified key is null
2339 */
2340 public Map.Entry<K,V> ceilingEntry(K key) {
2341 return getNear(key, GT|EQ);
2342 }
2343
2344 /**
2345 * @throws ClassCastException {@inheritDoc}
2346 * @throws NullPointerException if the specified key is null
2347 */
2348 public K ceilingKey(K key) {
2349 Node<K,V> n = findNear(key, GT|EQ);
2350 return (n == null)? null : n.key;
2351 }
2352
2353 /**
2354 * Returns a key-value mapping associated with the least key
2355 * strictly greater than the given key, or <tt>null</tt> if there
2356 * is no such key. The returned entry does <em>not</em> support
2357 * the <tt>Entry.setValue</tt> method.
2358 *
2359 * @param key the key
2360 * @throws ClassCastException {@inheritDoc}
2361 * @throws NullPointerException if the specified key is null
2362 */
2363 public Map.Entry<K,V> higherEntry(K key) {
2364 return getNear(key, GT);
2365 }
2366
2367 /**
2368 * @param key the key
2369 * @throws ClassCastException {@inheritDoc}
2370 * @throws NullPointerException if the specified key is null
2371 */
2372 public K higherKey(K key) {
2373 Node<K,V> n = findNear(key, GT);
2374 return (n == null)? null : n.key;
2375 }
2376
2377 /**
2378 * Returns a key-value mapping associated with the least
2379 * key in this map, or <tt>null</tt> if the map is empty.
2380 * The returned entry does <em>not</em> support
2381 * the <tt>Entry.setValue</tt> method.
2382 */
2383 public Map.Entry<K,V> firstEntry() {
2384 for (;;) {
2385 Node<K,V> n = findFirst();
2386 if (n == null)
2387 return null;
2388 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
2389 if (e != null)
2390 return e;
2391 }
2392 }
2393
2394 /**
2395 * Returns a key-value mapping associated with the greatest
2396 * key in this map, or <tt>null</tt> if the map is empty.
2397 * The returned entry does <em>not</em> support
2398 * the <tt>Entry.setValue</tt> method.
2399 */
2400 public Map.Entry<K,V> lastEntry() {
2401 for (;;) {
2402 Node<K,V> n = findLast();
2403 if (n == null)
2404 return null;
2405 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
2406 if (e != null)
2407 return e;
2408 }
2409 }
2410
2411 /**
2412 * Removes and returns a key-value mapping associated with
2413 * the least key in this map, or <tt>null</tt> if the map is empty.
2414 * The returned entry does <em>not</em> support
2415 * the <tt>Entry.setValue</tt> method.
2416 */
2417 public Map.Entry<K,V> pollFirstEntry() {
2418 return doRemoveFirstEntry();
2419 }
2420
2421 /**
2422 * Removes and returns a key-value mapping associated with
2423 * the greatest key in this map, or <tt>null</tt> if the map is empty.
2424 * The returned entry does <em>not</em> support
2425 * the <tt>Entry.setValue</tt> method.
2426 */
2427 public Map.Entry<K,V> pollLastEntry() {
2428 return doRemoveLastEntry();
2429 }
2430
2431
2432 /* ---------------- Iterators -------------- */
2433
2434 /**
2435 * Base of ten kinds of iterator classes:
2436 * ascending: {map, submap} X {key, value, entry}
2437 * descending: {map, submap} X {key, entry}
2438 */
2439 abstract class Iter {
2440 /** the last node returned by next() */
2441 Node<K,V> last;
2442 /** the next node to return from next(); */
2443 Node<K,V> next;
2444 /** Cache of next value field to maintain weak consistency */
2445 Object nextValue;
2446
2447 Iter() {}
2448
2449 public final boolean hasNext() {
2450 return next != null;
2451 }
2452
2453 /** Initializes ascending iterator for entire range. */
2454 final void initAscending() {
2455 for (;;) {
2456 next = findFirst();
2457 if (next == null)
2458 break;
2459 nextValue = next.value;
2460 if (nextValue != null && nextValue != next)
2461 break;
2462 }
2463 }
2464
2465 /**
2466 * Initializes ascending iterator starting at given least key,
2467 * or first node if least is <tt>null</tt>, but not greater or
2468 * equal to fence, or end if fence is <tt>null</tt>.
2469 */
2470 final void initAscending(K least, K fence) {
2471 for (;;) {
2472 next = findCeiling(least);
2473 if (next == null)
2474 break;
2475 nextValue = next.value;
2476 if (nextValue != null && nextValue != next) {
2477 if (fence != null && compare(fence, next.key) <= 0) {
2478 next = null;
2479 nextValue = null;
2480 }
2481 break;
2482 }
2483 }
2484 }
2485 /** Advances next to higher entry. */
2486 final void ascend() {
2487 if ((last = next) == null)
2488 throw new NoSuchElementException();
2489 for (;;) {
2490 next = next.next;
2491 if (next == null)
2492 break;
2493 nextValue = next.value;
2494 if (nextValue != null && nextValue != next)
2495 break;
2496 }
2497 }
2498
2499 /**
2500 * Version of ascend for submaps to stop at fence
2501 */
2502 final void ascend(K fence) {
2503 if ((last = next) == null)
2504 throw new NoSuchElementException();
2505 for (;;) {
2506 next = next.next;
2507 if (next == null)
2508 break;
2509 nextValue = next.value;
2510 if (nextValue != null && nextValue != next) {
2511 if (fence != null && compare(fence, next.key) <= 0) {
2512 next = null;
2513 nextValue = null;
2514 }
2515 break;
2516 }
2517 }
2518 }
2519
2520 /** Initializes descending iterator for entire range. */
2521 final void initDescending() {
2522 for (;;) {
2523 next = findLast();
2524 if (next == null)
2525 break;
2526 nextValue = next.value;
2527 if (nextValue != null && nextValue != next)
2528 break;
2529 }
2530 }
2531
2532 /**
2533 * Initializes descending iterator starting at key less
2534 * than or equal to given fence key, or
2535 * last node if fence is <tt>null</tt>, but not less than
2536 * least, or beginning if least is <tt>null</tt>.
2537 */
2538 final void initDescending(K least, K fence) {
2539 for (;;) {
2540 next = findLower(fence);
2541 if (next == null)
2542 break;
2543 nextValue = next.value;
2544 if (nextValue != null && nextValue != next) {
2545 if (least != null && compare(least, next.key) > 0) {
2546 next = null;
2547 nextValue = null;
2548 }
2549 break;
2550 }
2551 }
2552 }
2553
2554 /** Advances next to lower entry. */
2555 final void descend() {
2556 if ((last = next) == null)
2557 throw new NoSuchElementException();
2558 K k = last.key;
2559 for (;;) {
2560 next = findNear(k, LT);
2561 if (next == null)
2562 break;
2563 nextValue = next.value;
2564 if (nextValue != null && nextValue != next)
2565 break;
2566 }
2567 }
2568
2569 /**
2570 * Version of descend for submaps to stop at least
2571 */
2572 final void descend(K least) {
2573 if ((last = next) == null)
2574 throw new NoSuchElementException();
2575 K k = last.key;
2576 for (;;) {
2577 next = findNear(k, LT);
2578 if (next == null)
2579 break;
2580 nextValue = next.value;
2581 if (nextValue != null && nextValue != next) {
2582 if (least != null && compare(least, next.key) > 0) {
2583 next = null;
2584 nextValue = null;
2585 }
2586 break;
2587 }
2588 }
2589 }
2590
2591 public void remove() {
2592 Node<K,V> l = last;
2593 if (l == null)
2594 throw new IllegalStateException();
2595 // It would not be worth all of the overhead to directly
2596 // unlink from here. Using remove is fast enough.
2597 ConcurrentSkipListMap.this.remove(l.key);
2598 }
2599
2600 }
2601
2602 final class ValueIterator extends Iter implements Iterator<V> {
2603 ValueIterator() {
2604 initAscending();
2605 }
2606 public V next() {
2607 Object v = nextValue;
2608 ascend();
2609 return (V)v;
2610 }
2611 }
2612
2613 final class KeyIterator extends Iter implements Iterator<K> {
2614 KeyIterator() {
2615 initAscending();
2616 }
2617 public K next() {
2618 Node<K,V> n = next;
2619 ascend();
2620 return n.key;
2621 }
2622 }
2623
2624 class SubMapValueIterator extends Iter implements Iterator<V> {
2625 final K fence;
2626 SubMapValueIterator(K least, K fence) {
2627 initAscending(least, fence);
2628 this.fence = fence;
2629 }
2630
2631 public V next() {
2632 Object v = nextValue;
2633 ascend(fence);
2634 return (V)v;
2635 }
2636 }
2637
2638 final class SubMapKeyIterator extends Iter implements Iterator<K> {
2639 final K fence;
2640 SubMapKeyIterator(K least, K fence) {
2641 initAscending(least, fence);
2642 this.fence = fence;
2643 }
2644
2645 public K next() {
2646 Node<K,V> n = next;
2647 ascend(fence);
2648 return n.key;
2649 }
2650 }
2651
2652 final class DescendingKeyIterator extends Iter implements Iterator<K> {
2653 DescendingKeyIterator() {
2654 initDescending();
2655 }
2656 public K next() {
2657 Node<K,V> n = next;
2658 descend();
2659 return n.key;
2660 }
2661 }
2662
2663 final class DescendingSubMapKeyIterator extends Iter implements Iterator<K> {
2664 final K least;
2665 DescendingSubMapKeyIterator(K least, K fence) {
2666 initDescending(least, fence);
2667 this.least = least;
2668 }
2669
2670 public K next() {
2671 Node<K,V> n = next;
2672 descend(least);
2673 return n.key;
2674 }
2675 }
2676
2677 /**
2678 * Entry iterators use the same trick as in ConcurrentHashMap and
2679 * elsewhere of using the iterator itself to represent entries,
2680 * thus avoiding having to create entry objects in next().
2681 */
2682 abstract class EntryIter extends Iter implements Map.Entry<K,V> {
2683 /** Cache of last value returned */
2684 Object lastValue;
2685
2686 EntryIter() {
2687 }
2688
2689 public K getKey() {
2690 Node<K,V> l = last;
2691 if (l == null)
2692 throw new IllegalStateException();
2693 return l.key;
2694 }
2695
2696 public V getValue() {
2697 Object v = lastValue;
2698 if (last == null || v == null)
2699 throw new IllegalStateException();
2700 return (V)v;
2701 }
2702
2703 public V setValue(V value) {
2704 throw new UnsupportedOperationException();
2705 }
2706
2707 public boolean equals(Object o) {
2708 // If not acting as entry, just use default.
2709 if (last == null)
2710 return super.equals(o);
2711 if (!(o instanceof Map.Entry))
2712 return false;
2713 Map.Entry e = (Map.Entry)o;
2714 return (getKey().equals(e.getKey()) &&
2715 getValue().equals(e.getValue()));
2716 }
2717
2718 public int hashCode() {
2719 // If not acting as entry, just use default.
2720 if (last == null)
2721 return super.hashCode();
2722 return getKey().hashCode() ^ getValue().hashCode();
2723 }
2724
2725 public String toString() {
2726 // If not acting as entry, just use default.
2727 if (last == null)
2728 return super.toString();
2729 return getKey() + "=" + getValue();
2730 }
2731 }
2732
2733 final class EntryIterator extends EntryIter
2734 implements Iterator<Map.Entry<K,V>> {
2735 EntryIterator() {
2736 initAscending();
2737 }
2738 public Map.Entry<K,V> next() {
2739 lastValue = nextValue;
2740 ascend();
2741 return this;
2742 }
2743 }
2744
2745 final class SubMapEntryIterator extends EntryIter
2746 implements Iterator<Map.Entry<K,V>> {
2747 final K fence;
2748 SubMapEntryIterator(K least, K fence) {
2749 initAscending(least, fence);
2750 this.fence = fence;
2751 }
2752
2753 public Map.Entry<K,V> next() {
2754 lastValue = nextValue;
2755 ascend(fence);
2756 return this;
2757 }
2758 }
2759
2760 final class DescendingEntryIterator extends EntryIter
2761 implements Iterator<Map.Entry<K,V>> {
2762 DescendingEntryIterator() {
2763 initDescending();
2764 }
2765 public Map.Entry<K,V> next() {
2766 lastValue = nextValue;
2767 descend();
2768 return this;
2769 }
2770 }
2771
2772 final class DescendingSubMapEntryIterator extends EntryIter
2773 implements Iterator<Map.Entry<K,V>> {
2774 final K least;
2775 DescendingSubMapEntryIterator(K least, K fence) {
2776 initDescending(least, fence);
2777 this.least = least;
2778 }
2779
2780 public Map.Entry<K,V> next() {
2781 lastValue = nextValue;
2782 descend(least);
2783 return this;
2784 }
2785 }
2786
2787 // Factory methods for iterators needed by submaps and/or
2788 // ConcurrentSkipListSet
2789
2790 Iterator<K> keyIterator() {
2791 return new KeyIterator();
2792 }
2793
2794 Iterator<K> descendingKeyIterator() {
2795 return new DescendingKeyIterator();
2796 }
2797
2798 SubMapEntryIterator subMapEntryIterator(K least, K fence) {
2799 return new SubMapEntryIterator(least, fence);
2800 }
2801
2802 DescendingSubMapEntryIterator descendingSubMapEntryIterator(K least, K fence) {
2803 return new DescendingSubMapEntryIterator(least, fence);
2804 }
2805
2806 SubMapKeyIterator subMapKeyIterator(K least, K fence) {
2807 return new SubMapKeyIterator(least, fence);
2808 }
2809
2810 DescendingSubMapKeyIterator descendingSubMapKeyIterator(K least, K fence) {
2811 return new DescendingSubMapKeyIterator(least, fence);
2812 }
2813
2814 SubMapValueIterator subMapValueIterator(K least, K fence) {
2815 return new SubMapValueIterator(least, fence);
2816 }
2817
2818 /* ---------------- Views -------------- */
2819
2820 class KeySet extends AbstractSet<K> {
2821 public Iterator<K> iterator() {
2822 return new KeyIterator();
2823 }
2824 public boolean isEmpty() {
2825 return ConcurrentSkipListMap.this.isEmpty();
2826 }
2827 public int size() {
2828 return ConcurrentSkipListMap.this.size();
2829 }
2830 public boolean contains(Object o) {
2831 return ConcurrentSkipListMap.this.containsKey(o);
2832 }
2833 public boolean remove(Object o) {
2834 return ConcurrentSkipListMap.this.removep(o);
2835 }
2836 public void clear() {
2837 ConcurrentSkipListMap.this.clear();
2838 }
2839 public Object[] toArray() {
2840 Collection<K> c = new ArrayList<K>();
2841 for (Iterator<K> i = iterator(); i.hasNext(); )
2842 c.add(i.next());
2843 return c.toArray();
2844 }
2845 public <T> T[] toArray(T[] a) {
2846 Collection<K> c = new ArrayList<K>();
2847 for (Iterator<K> i = iterator(); i.hasNext(); )
2848 c.add(i.next());
2849 return c.toArray(a);
2850 }
2851 }
2852
2853 class DescendingKeySet extends KeySet {
2854 public Iterator<K> iterator() {
2855 return new DescendingKeyIterator();
2856 }
2857 }
2858
2859 final class Values extends AbstractCollection<V> {
2860 public Iterator<V> iterator() {
2861 return new ValueIterator();
2862 }
2863 public boolean isEmpty() {
2864 return ConcurrentSkipListMap.this.isEmpty();
2865 }
2866 public int size() {
2867 return ConcurrentSkipListMap.this.size();
2868 }
2869 public boolean contains(Object o) {
2870 return ConcurrentSkipListMap.this.containsValue(o);
2871 }
2872 public void clear() {
2873 ConcurrentSkipListMap.this.clear();
2874 }
2875 public Object[] toArray() {
2876 Collection<V> c = new ArrayList<V>();
2877 for (Iterator<V> i = iterator(); i.hasNext(); )
2878 c.add(i.next());
2879 return c.toArray();
2880 }
2881 public <T> T[] toArray(T[] a) {
2882 Collection<V> c = new ArrayList<V>();
2883 for (Iterator<V> i = iterator(); i.hasNext(); )
2884 c.add(i.next());
2885 return c.toArray(a);
2886 }
2887 }
2888
2889 class EntrySet extends AbstractSet<Map.Entry<K,V>> {
2890 public Iterator<Map.Entry<K,V>> iterator() {
2891 return new EntryIterator();
2892 }
2893 public boolean contains(Object o) {
2894 if (!(o instanceof Map.Entry))
2895 return false;
2896 Map.Entry<K,V> e = (Map.Entry<K,V>)o;
2897 V v = ConcurrentSkipListMap.this.get(e.getKey());
2898 return v != null && v.equals(e.getValue());
2899 }
2900 public boolean remove(Object o) {
2901 if (!(o instanceof Map.Entry))
2902 return false;
2903 Map.Entry<K,V> e = (Map.Entry<K,V>)o;
2904 return ConcurrentSkipListMap.this.remove(e.getKey(),
2905 e.getValue());
2906 }
2907 public boolean isEmpty() {
2908 return ConcurrentSkipListMap.this.isEmpty();
2909 }
2910 public int size() {
2911 return ConcurrentSkipListMap.this.size();
2912 }
2913 public void clear() {
2914 ConcurrentSkipListMap.this.clear();
2915 }
2916 public Object[] toArray() {
2917 Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>();
2918 for (Map.Entry<K,V> e : this)
2919 c.add(new AbstractMap.SimpleEntry<K,V>(e.getKey(),
2920 e.getValue()));
2921 return c.toArray();
2922 }
2923 public <T> T[] toArray(T[] a) {
2924 Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>();
2925 for (Map.Entry<K,V> e : this)
2926 c.add(new AbstractMap.SimpleEntry<K,V>(e.getKey(),
2927 e.getValue()));
2928 return c.toArray(a);
2929 }
2930 }
2931
2932 class DescendingEntrySet extends EntrySet {
2933 public Iterator<Map.Entry<K,V>> iterator() {
2934 return new DescendingEntryIterator();
2935 }
2936 }
2937
2938 /**
2939 * Submaps returned by {@link ConcurrentSkipListMap} submap operations
2940 * represent a subrange of mappings of their underlying
2941 * maps. Instances of this class support all methods of their
2942 * underlying maps, differing in that mappings outside their range are
2943 * ignored, and attempts to add mappings outside their ranges result
2944 * in {@link IllegalArgumentException}. Instances of this class are
2945 * constructed only using the <tt>subMap</tt>, <tt>headMap</tt>, and
2946 * <tt>tailMap</tt> methods of their underlying maps.
2947 */
2948 static class ConcurrentSkipListSubMap<K,V> extends AbstractMap<K,V>
2949 implements ConcurrentNavigableMap<K,V>, java.io.Serializable {
2950
2951 private static final long serialVersionUID = -7647078645895051609L;
2952
2953 /** Underlying map */
2954 private final ConcurrentSkipListMap<K,V> m;
2955 /** lower bound key, or null if from start */
2956 private final K least;
2957 /** upper fence key, or null if to end */
2958 private final K fence;
2959 // Lazily initialized view holders
2960 private transient Set<K> keySetView;
2961 private transient Set<Map.Entry<K,V>> entrySetView;
2962 private transient Collection<V> valuesView;
2963 private transient Set<K> descendingKeySetView;
2964 private transient Set<Map.Entry<K,V>> descendingEntrySetView;
2965
2966 /**
2967 * Creates a new submap.
2968 * @param least inclusive least value, or <tt>null</tt> if from start
2969 * @param fence exclusive upper bound or <tt>null</tt> if to end
2970 * @throws IllegalArgumentException if least and fence nonnull
2971 * and least greater than fence
2972 */
2973 ConcurrentSkipListSubMap(ConcurrentSkipListMap<K,V> map,
2974 K least, K fence) {
2975 if (least != null &&
2976 fence != null &&
2977 map.compare(least, fence) > 0)
2978 throw new IllegalArgumentException("inconsistent range");
2979 this.m = map;
2980 this.least = least;
2981 this.fence = fence;
2982 }
2983
2984 /* ---------------- Utilities -------------- */
2985
2986 boolean inHalfOpenRange(K key) {
2987 return m.inHalfOpenRange(key, least, fence);
2988 }
2989
2990 boolean inOpenRange(K key) {
2991 return m.inOpenRange(key, least, fence);
2992 }
2993
2994 ConcurrentSkipListMap.Node<K,V> firstNode() {
2995 return m.findCeiling(least);
2996 }
2997
2998 ConcurrentSkipListMap.Node<K,V> lastNode() {
2999 return m.findLower(fence);
3000 }
3001
3002 boolean isBeforeEnd(ConcurrentSkipListMap.Node<K,V> n) {
3003 return (n != null &&
3004 (fence == null ||
3005 n.key == null || // pass by markers and headers
3006 m.compare(fence, n.key) > 0));
3007 }
3008
3009 void checkKey(K key) throws IllegalArgumentException {
3010 if (!inHalfOpenRange(key))
3011 throw new IllegalArgumentException("key out of range");
3012 }
3013
3014 /**
3015 * Returns underlying map. Needed by ConcurrentSkipListSet
3016 * @return the backing map
3017 */
3018 ConcurrentSkipListMap<K,V> getMap() {
3019 return m;
3020 }
3021
3022 /**
3023 * Returns least key. Needed by ConcurrentSkipListSet
3024 * @return least key or <tt>null</tt> if from start
3025 */
3026 K getLeast() {
3027 return least;
3028 }
3029
3030 /**
3031 * Returns fence key. Needed by ConcurrentSkipListSet
3032 * @return fence key or <tt>null</tt> if to end
3033 */
3034 K getFence() {
3035 return fence;
3036 }
3037
3038
3039 /* ---------------- Map API methods -------------- */
3040
3041 public boolean containsKey(Object key) {
3042 K k = (K)key;
3043 return inHalfOpenRange(k) && m.containsKey(k);
3044 }
3045
3046 public V get(Object key) {
3047 K k = (K)key;
3048 return ((!inHalfOpenRange(k)) ? null : m.get(k));
3049 }
3050
3051 public V put(K key, V value) {
3052 checkKey(key);
3053 return m.put(key, value);
3054 }
3055
3056 public V remove(Object key) {
3057 K k = (K)key;
3058 return (!inHalfOpenRange(k))? null : m.remove(k);
3059 }
3060
3061 public int size() {
3062 long count = 0;
3063 for (ConcurrentSkipListMap.Node<K,V> n = firstNode();
3064 isBeforeEnd(n);
3065 n = n.next) {
3066 if (n.getValidValue() != null)
3067 ++count;
3068 }
3069 return count >= Integer.MAX_VALUE? Integer.MAX_VALUE : (int)count;
3070 }
3071
3072 public boolean isEmpty() {
3073 return !isBeforeEnd(firstNode());
3074 }
3075
3076 public boolean containsValue(Object value) {
3077 if (value == null)
3078 throw new NullPointerException();
3079 for (ConcurrentSkipListMap.Node<K,V> n = firstNode();
3080 isBeforeEnd(n);
3081 n = n.next) {
3082 V v = n.getValidValue();
3083 if (v != null && value.equals(v))
3084 return true;
3085 }
3086 return false;
3087 }
3088
3089 public void clear() {
3090 for (ConcurrentSkipListMap.Node<K,V> n = firstNode();
3091 isBeforeEnd(n);
3092 n = n.next) {
3093 if (n.getValidValue() != null)
3094 m.remove(n.key);
3095 }
3096 }
3097
3098 /* ---------------- ConcurrentMap API methods -------------- */
3099
3100 public V putIfAbsent(K key, V value) {
3101 checkKey(key);
3102 return m.putIfAbsent(key, value);
3103 }
3104
3105 public boolean remove(Object key, Object value) {
3106 K k = (K)key;
3107 return inHalfOpenRange(k) && m.remove(k, value);
3108 }
3109
3110 public boolean replace(K key, V oldValue, V newValue) {
3111 checkKey(key);
3112 return m.replace(key, oldValue, newValue);
3113 }
3114
3115 public V replace(K key, V value) {
3116 checkKey(key);
3117 return m.replace(key, value);
3118 }
3119
3120 /* ---------------- SortedMap API methods -------------- */
3121
3122 public Comparator<? super K> comparator() {
3123 return m.comparator();
3124 }
3125
3126 public K firstKey() {
3127 ConcurrentSkipListMap.Node<K,V> n = firstNode();
3128 if (isBeforeEnd(n))
3129 return n.key;
3130 else
3131 throw new NoSuchElementException();
3132 }
3133
3134 public K lastKey() {
3135 ConcurrentSkipListMap.Node<K,V> n = lastNode();
3136 if (n != null) {
3137 K last = n.key;
3138 if (inHalfOpenRange(last))
3139 return last;
3140 }
3141 throw new NoSuchElementException();
3142 }
3143
3144 public ConcurrentNavigableMap<K,V> navigableSubMap(K fromKey, K toKey) {
3145 if (fromKey == null || toKey == null)
3146 throw new NullPointerException();
3147 if (!inOpenRange(fromKey) || !inOpenRange(toKey))
3148 throw new IllegalArgumentException("key out of range");
3149 return new ConcurrentSkipListSubMap<K,V>(m, fromKey, toKey);
3150 }
3151
3152 public ConcurrentNavigableMap<K,V> navigableHeadMap(K toKey) {
3153 if (toKey == null)
3154 throw new NullPointerException();
3155 if (!inOpenRange(toKey))
3156 throw new IllegalArgumentException("key out of range");
3157 return new ConcurrentSkipListSubMap<K,V>(m, least, toKey);
3158 }
3159
3160 public ConcurrentNavigableMap<K,V> navigableTailMap(K fromKey) {
3161 if (fromKey == null)
3162 throw new NullPointerException();
3163 if (!inOpenRange(fromKey))
3164 throw new IllegalArgumentException("key out of range");
3165 return new ConcurrentSkipListSubMap<K,V>(m, fromKey, fence);
3166 }
3167
3168 public SortedMap<K,V> subMap(K fromKey, K toKey) {
3169 return navigableSubMap(fromKey, toKey);
3170 }
3171
3172 public SortedMap<K,V> headMap(K toKey) {
3173 return navigableHeadMap(toKey);
3174 }
3175
3176 public SortedMap<K,V> tailMap(K fromKey) {
3177 return navigableTailMap(fromKey);
3178 }
3179
3180 /* ---------------- Relational methods -------------- */
3181
3182 public Map.Entry<K,V> ceilingEntry(K key) {
3183 return m.getNearEntry(key, m.GT|m.EQ, least, fence);
3184 }
3185
3186 public K ceilingKey(K key) {
3187 return m.getNearKey(key, m.GT|m.EQ, least, fence);
3188 }
3189
3190 public Map.Entry<K,V> lowerEntry(K key) {
3191 return m.getNearEntry(key, m.LT, least, fence);
3192 }
3193
3194 public K lowerKey(K key) {
3195 return m.getNearKey(key, m.LT, least, fence);
3196 }
3197
3198 public Map.Entry<K,V> floorEntry(K key) {
3199 return m.getNearEntry(key, m.LT|m.EQ, least, fence);
3200 }
3201
3202 public K floorKey(K key) {
3203 return m.getNearKey(key, m.LT|m.EQ, least, fence);
3204 }
3205
3206 public Map.Entry<K,V> higherEntry(K key) {
3207 return m.getNearEntry(key, m.GT, least, fence);
3208 }
3209
3210 public K higherKey(K key) {
3211 return m.getNearKey(key, m.GT, least, fence);
3212 }
3213
3214 public Map.Entry<K,V> firstEntry() {
3215 for (;;) {
3216 ConcurrentSkipListMap.Node<K,V> n = firstNode();
3217 if (!isBeforeEnd(n))
3218 return null;
3219 Map.Entry<K,V> e = n.createSnapshot();
3220 if (e != null)
3221 return e;
3222 }
3223 }
3224
3225 public Map.Entry<K,V> lastEntry() {
3226 for (;;) {
3227 ConcurrentSkipListMap.Node<K,V> n = lastNode();
3228 if (n == null || !inHalfOpenRange(n.key))
3229 return null;
3230 Map.Entry<K,V> e = n.createSnapshot();
3231 if (e != null)
3232 return e;
3233 }
3234 }
3235
3236 public Map.Entry<K,V> pollFirstEntry() {
3237 return m.removeFirstEntryOfSubrange(least, fence);
3238 }
3239
3240 public Map.Entry<K,V> pollLastEntry() {
3241 return m.removeLastEntryOfSubrange(least, fence);
3242 }
3243
3244 /* ---------------- Submap Views -------------- */
3245
3246 public Set<K> keySet() {
3247 Set<K> ks = keySetView;
3248 return (ks != null) ? ks : (keySetView = new KeySetView());
3249 }
3250
3251 class KeySetView extends AbstractSet<K> {
3252 public Iterator<K> iterator() {
3253 return m.subMapKeyIterator(least, fence);
3254 }
3255 public int size() {
3256 return ConcurrentSkipListSubMap.this.size();
3257 }
3258 public boolean isEmpty() {
3259 return ConcurrentSkipListSubMap.this.isEmpty();
3260 }
3261 public boolean contains(Object k) {
3262 return ConcurrentSkipListSubMap.this.containsKey(k);
3263 }
3264 public Object[] toArray() {
3265 Collection<K> c = new ArrayList<K>();
3266 for (Iterator<K> i = iterator(); i.hasNext(); )
3267 c.add(i.next());
3268 return c.toArray();
3269 }
3270 public <T> T[] toArray(T[] a) {
3271 Collection<K> c = new ArrayList<K>();
3272 for (Iterator<K> i = iterator(); i.hasNext(); )
3273 c.add(i.next());
3274 return c.toArray(a);
3275 }
3276 }
3277
3278 public Set<K> descendingKeySet() {
3279 Set<K> ks = descendingKeySetView;
3280 return (ks != null) ? ks : (descendingKeySetView = new DescendingKeySetView());
3281 }
3282
3283 class DescendingKeySetView extends KeySetView {
3284 public Iterator<K> iterator() {
3285 return m.descendingSubMapKeyIterator(least, fence);
3286 }
3287 }
3288
3289 public Collection<V> values() {
3290 Collection<V> vs = valuesView;
3291 return (vs != null) ? vs : (valuesView = new ValuesView());
3292 }
3293
3294 class ValuesView extends AbstractCollection<V> {
3295 public Iterator<V> iterator() {
3296 return m.subMapValueIterator(least, fence);
3297 }
3298 public int size() {
3299 return ConcurrentSkipListSubMap.this.size();
3300 }
3301 public boolean isEmpty() {
3302 return ConcurrentSkipListSubMap.this.isEmpty();
3303 }
3304 public boolean contains(Object v) {
3305 return ConcurrentSkipListSubMap.this.containsValue(v);
3306 }
3307 public Object[] toArray() {
3308 Collection<V> c = new ArrayList<V>();
3309 for (Iterator<V> i = iterator(); i.hasNext(); )
3310 c.add(i.next());
3311 return c.toArray();
3312 }
3313 public <T> T[] toArray(T[] a) {
3314 Collection<V> c = new ArrayList<V>();
3315 for (Iterator<V> i = iterator(); i.hasNext(); )
3316 c.add(i.next());
3317 return c.toArray(a);
3318 }
3319 }
3320
3321 public Set<Map.Entry<K,V>> entrySet() {
3322 Set<Map.Entry<K,V>> es = entrySetView;
3323 return (es != null) ? es : (entrySetView = new EntrySetView());
3324 }
3325
3326 class EntrySetView extends AbstractSet<Map.Entry<K,V>> {
3327 public Iterator<Map.Entry<K,V>> iterator() {
3328 return m.subMapEntryIterator(least, fence);
3329 }
3330 public int size() {
3331 return ConcurrentSkipListSubMap.this.size();
3332 }
3333 public boolean isEmpty() {
3334 return ConcurrentSkipListSubMap.this.isEmpty();
3335 }
3336 public boolean contains(Object o) {
3337 if (!(o instanceof Map.Entry))
3338 return false;
3339 Map.Entry<K,V> e = (Map.Entry<K,V>) o;
3340 K key = e.getKey();
3341 if (!inHalfOpenRange(key))
3342 return false;
3343 V v = m.get(key);
3344 return v != null && v.equals(e.getValue());
3345 }
3346 public boolean remove(Object o) {
3347 if (!(o instanceof Map.Entry))
3348 return false;
3349 Map.Entry<K,V> e = (Map.Entry<K,V>) o;
3350 K key = e.getKey();
3351 if (!inHalfOpenRange(key))
3352 return false;
3353 return m.remove(key, e.getValue());
3354 }
3355 public Object[] toArray() {
3356 Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>();
3357 for (Map.Entry<K,V> e : this)
3358 c.add(new AbstractMap.SimpleEntry<K,V>(e.getKey(),
3359 e.getValue()));
3360 return c.toArray();
3361 }
3362 public <T> T[] toArray(T[] a) {
3363 Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>();
3364 for (Map.Entry<K,V> e : this)
3365 c.add(new AbstractMap.SimpleEntry<K,V>(e.getKey(),
3366 e.getValue()));
3367 return c.toArray(a);
3368 }
3369 }
3370
3371 public Set<Map.Entry<K,V>> descendingEntrySet() {
3372 Set<Map.Entry<K,V>> es = descendingEntrySetView;
3373 return (es != null) ? es : (descendingEntrySetView = new DescendingEntrySetView());
3374 }
3375
3376 class DescendingEntrySetView extends EntrySetView {
3377 public Iterator<Map.Entry<K,V>> iterator() {
3378 return m.descendingSubMapEntryIterator(least, fence);
3379 }
3380 }
3381 }
3382 }