ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentSkipListMap.java
Revision: 1.40
Committed: Fri Aug 5 19:23:00 2005 UTC (18 years, 10 months ago) by dl
Branch: MAIN
Changes since 1.39: +91 -78 lines
Log Message:
Minor performance improvements

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package java.util.concurrent;
8 import java.util.*;
9 import java.util.concurrent.atomic.*;
10
11 /**
12 * A scalable concurrent {@link ConcurrentNavigableMap} implementation.
13 * The map is sorted according to the {@linkplain Comparable natural
14 * ordering} of its keys, or by a {@link Comparator} provided at map
15 * creation time, depending on which constructor is used.
16 *
17 * <p>This class implements a concurrent variant of <a
18 * href="http://www.cs.umd.edu/~pugh/">SkipLists</a> providing
19 * expected average <i>log(n)</i> time cost for the
20 * <tt>containsKey</tt>, <tt>get</tt>, <tt>put</tt> and
21 * <tt>remove</tt> operations and their variants. Insertion, removal,
22 * update, and access operations safely execute concurrently by
23 * multiple threads. Iterators are <i>weakly consistent</i>, returning
24 * elements reflecting the state of the map at some point at or since
25 * the creation of the iterator. They do <em>not</em> throw {@link
26 * ConcurrentModificationException}, and may proceed concurrently with
27 * other operations. Ascending key ordered views and their iterators
28 * are faster than descending ones.
29 *
30 * <p>All <tt>Map.Entry</tt> pairs returned by methods in this class
31 * and its views represent snapshots of mappings at the time they were
32 * produced. They do <em>not</em> support the <tt>Entry.setValue</tt>
33 * method. (Note however that it is possible to change mappings in the
34 * associated map using <tt>put</tt>, <tt>putIfAbsent</tt>, or
35 * <tt>replace</tt>, depending on exactly which effect you need.)
36 *
37 * <p>Beware that, unlike in most collections, the <tt>size</tt>
38 * method is <em>not</em> a constant-time operation. Because of the
39 * asynchronous nature of these maps, determining the current number
40 * of elements requires a traversal of the elements. Additionally,
41 * the bulk operations <tt>putAll</tt>, <tt>equals</tt>, and
42 * <tt>clear</tt> are <em>not</em> guaranteed to be performed
43 * atomically. For example, an iterator operating concurrently with a
44 * <tt>putAll</tt> operation might view only some of the added
45 * elements.
46 *
47 * <p>This class and its views and iterators implement all of the
48 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
49 * interfaces. Like most other concurrent collections, this class does
50 * <em>not</em> permit the use of <tt>null</tt> keys or values because some
51 * null return values cannot be reliably distinguished from the absence of
52 * elements.
53 *
54 * <p>This class is a member of the
55 * <a href="{@docRoot}/../guide/collections/index.html">
56 * Java Collections Framework</a>.
57 *
58 * @author Doug Lea
59 * @param <K> the type of keys maintained by this map
60 * @param <V> the type of mapped values
61 * @since 1.6
62 */
63 public class ConcurrentSkipListMap<K,V> extends AbstractMap<K,V>
64 implements ConcurrentNavigableMap<K,V>,
65 Cloneable,
66 java.io.Serializable {
67 /*
68 * This class implements a tree-like two-dimensionally linked skip
69 * list in which the index levels are represented in separate
70 * nodes from the base nodes holding data. There are two reasons
71 * for taking this approach instead of the usual array-based
72 * structure: 1) Array based implementations seem to encounter
73 * more complexity and overhead 2) We can use cheaper algorithms
74 * for the heavily-traversed index lists than can be used for the
75 * base lists. Here's a picture of some of the basics for a
76 * possible list with 2 levels of index:
77 *
78 * Head nodes Index nodes
79 * +-+ right +-+ +-+
80 * |2|---------------->| |--------------------->| |->null
81 * +-+ +-+ +-+
82 * | down | |
83 * v v v
84 * +-+ +-+ +-+ +-+ +-+ +-+
85 * |1|----------->| |->| |------>| |----------->| |------>| |->null
86 * +-+ +-+ +-+ +-+ +-+ +-+
87 * v | | | | |
88 * Nodes next v v v v v
89 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
90 * | |->|A|->|B|->|C|->|D|->|E|->|F|->|G|->|H|->|I|->|J|->|K|->null
91 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
92 *
93 * The base lists use a variant of the HM linked ordered set
94 * algorithm. See Tim Harris, "A pragmatic implementation of
95 * non-blocking linked lists"
96 * http://www.cl.cam.ac.uk/~tlh20/publications.html and Maged
97 * Michael "High Performance Dynamic Lock-Free Hash Tables and
98 * List-Based Sets"
99 * http://www.research.ibm.com/people/m/michael/pubs.htm. The
100 * basic idea in these lists is to mark the "next" pointers of
101 * deleted nodes when deleting to avoid conflicts with concurrent
102 * insertions, and when traversing to keep track of triples
103 * (predecessor, node, successor) in order to detect when and how
104 * to unlink these deleted nodes.
105 *
106 * Rather than using mark-bits to mark list deletions (which can
107 * be slow and space-intensive using AtomicMarkedReference), nodes
108 * use direct CAS'able next pointers. On deletion, instead of
109 * marking a pointer, they splice in another node that can be
110 * thought of as standing for a marked pointer (indicating this by
111 * using otherwise impossible field values). Using plain nodes
112 * acts roughly like "boxed" implementations of marked pointers,
113 * but uses new nodes only when nodes are deleted, not for every
114 * link. This requires less space and supports faster
115 * traversal. Even if marked references were better supported by
116 * JVMs, traversal using this technique might still be faster
117 * because any search need only read ahead one more node than
118 * otherwise required (to check for trailing marker) rather than
119 * unmasking mark bits or whatever on each read.
120 *
121 * This approach maintains the essential property needed in the HM
122 * algorithm of changing the next-pointer of a deleted node so
123 * that any other CAS of it will fail, but implements the idea by
124 * changing the pointer to point to a different node, not by
125 * marking it. While it would be possible to further squeeze
126 * space by defining marker nodes not to have key/value fields, it
127 * isn't worth the extra type-testing overhead. The deletion
128 * markers are rarely encountered during traversal and are
129 * normally quickly garbage collected. (Note that this technique
130 * would not work well in systems without garbage collection.)
131 *
132 * In addition to using deletion markers, the lists also use
133 * nullness of value fields to indicate deletion, in a style
134 * similar to typical lazy-deletion schemes. If a node's value is
135 * null, then it is considered logically deleted and ignored even
136 * though it is still reachable. This maintains proper control of
137 * concurrent replace vs delete operations -- an attempted replace
138 * must fail if a delete beat it by nulling field, and a delete
139 * must return the last non-null value held in the field. (Note:
140 * Null, rather than some special marker, is used for value fields
141 * here because it just so happens to mesh with the Map API
142 * requirement that method get returns null if there is no
143 * mapping, which allows nodes to remain concurrently readable
144 * even when deleted. Using any other marker value here would be
145 * messy at best.)
146 *
147 * Here's the sequence of events for a deletion of node n with
148 * predecessor b and successor f, initially:
149 *
150 * +------+ +------+ +------+
151 * ... | b |------>| n |----->| f | ...
152 * +------+ +------+ +------+
153 *
154 * 1. CAS n's value field from non-null to null.
155 * From this point on, no public operations encountering
156 * the node consider this mapping to exist. However, other
157 * ongoing insertions and deletions might still modify
158 * n's next pointer.
159 *
160 * 2. CAS n's next pointer to point to a new marker node.
161 * From this point on, no other nodes can be appended to n.
162 * which avoids deletion errors in CAS-based linked lists.
163 *
164 * +------+ +------+ +------+ +------+
165 * ... | b |------>| n |----->|marker|------>| f | ...
166 * +------+ +------+ +------+ +------+
167 *
168 * 3. CAS b's next pointer over both n and its marker.
169 * From this point on, no new traversals will encounter n,
170 * and it can eventually be GCed.
171 * +------+ +------+
172 * ... | b |----------------------------------->| f | ...
173 * +------+ +------+
174 *
175 * A failure at step 1 leads to simple retry due to a lost race
176 * with another operation. Steps 2-3 can fail because some other
177 * thread noticed during a traversal a node with null value and
178 * helped out by marking and/or unlinking. This helping-out
179 * ensures that no thread can become stuck waiting for progress of
180 * the deleting thread. The use of marker nodes slightly
181 * complicates helping-out code because traversals must track
182 * consistent reads of up to four nodes (b, n, marker, f), not
183 * just (b, n, f), although the next field of a marker is
184 * immutable, and once a next field is CAS'ed to point to a
185 * marker, it never again changes, so this requires less care.
186 *
187 * Skip lists add indexing to this scheme, so that the base-level
188 * traversals start close to the locations being found, inserted
189 * or deleted -- usually base level traversals only traverse a few
190 * nodes. This doesn't change the basic algorithm except for the
191 * need to make sure base traversals start at predecessors (here,
192 * b) that are not (structurally) deleted, otherwise retrying
193 * after processing the deletion.
194 *
195 * Index levels are maintained as lists with volatile next fields,
196 * using CAS to link and unlink. Races are allowed in index-list
197 * operations that can (rarely) fail to link in a new index node
198 * or delete one. (We can't do this of course for data nodes.)
199 * However, even when this happens, the index lists remain sorted,
200 * so correctly serve as indices. This can impact performance,
201 * but since skip lists are probabilistic anyway, the net result
202 * is that under contention, the effective "p" value may be lower
203 * than its nominal value. And race windows are kept small enough
204 * that in practice these failures are rare, even under a lot of
205 * contention.
206 *
207 * The fact that retries (for both base and index lists) are
208 * relatively cheap due to indexing allows some minor
209 * simplifications of retry logic. Traversal restarts are
210 * performed after most "helping-out" CASes. This isn't always
211 * strictly necessary, but the implicit backoffs tend to help
212 * reduce other downstream failed CAS's enough to outweigh restart
213 * cost. This worsens the worst case, but seems to improve even
214 * highly contended cases.
215 *
216 * Unlike most skip-list implementations, index insertion and
217 * deletion here require a separate traversal pass occuring after
218 * the base-level action, to add or remove index nodes. This adds
219 * to single-threaded overhead, but improves contended
220 * multithreaded performance by narrowing interference windows,
221 * and allows deletion to ensure that all index nodes will be made
222 * unreachable upon return from a public remove operation, thus
223 * avoiding unwanted garbage retention. This is more important
224 * here than in some other data structures because we cannot null
225 * out node fields referencing user keys since they might still be
226 * read by other ongoing traversals.
227 *
228 * Indexing uses skip list parameters that maintain good search
229 * performance while using sparser-than-usual indices: The
230 * hardwired parameters k=1, p=0.5 (see method randomLevel) mean
231 * that about one-quarter of the nodes have indices. Of those that
232 * do, half have one level, a quarter have two, and so on (see
233 * Pugh's Skip List Cookbook, sec 3.4). The expected total space
234 * requirement for a map is slightly less than for the current
235 * implementation of java.util.TreeMap.
236 *
237 * Changing the level of the index (i.e, the height of the
238 * tree-like structure) also uses CAS. The head index has initial
239 * level/height of one. Creation of an index with height greater
240 * than the current level adds a level to the head index by
241 * CAS'ing on a new top-most head. To maintain good performance
242 * after a lot of removals, deletion methods heuristically try to
243 * reduce the height if the topmost levels appear to be empty.
244 * This may encounter races in which it possible (but rare) to
245 * reduce and "lose" a level just as it is about to contain an
246 * index (that will then never be encountered). This does no
247 * structural harm, and in practice appears to be a better option
248 * than allowing unrestrained growth of levels.
249 *
250 * The code for all this is more verbose than you'd like. Most
251 * operations entail locating an element (or position to insert an
252 * element). The code to do this can't be nicely factored out
253 * because subsequent uses require a snapshot of predecessor
254 * and/or successor and/or value fields which can't be returned
255 * all at once, at least not without creating yet another object
256 * to hold them -- creating such little objects is an especially
257 * bad idea for basic internal search operations because it adds
258 * to GC overhead. (This is one of the few times I've wished Java
259 * had macros.) Instead, some traversal code is interleaved within
260 * insertion and removal operations. The control logic to handle
261 * all the retry conditions is sometimes twisty. Most search is
262 * broken into 2 parts. findPredecessor() searches index nodes
263 * only, returning a base-level predecessor of the key. findNode()
264 * finishes out the base-level search. Even with this factoring,
265 * there is a fair amount of near-duplication of code to handle
266 * variants.
267 *
268 * For explanation of algorithms sharing at least a couple of
269 * features with this one, see Mikhail Fomitchev's thesis
270 * (http://www.cs.yorku.ca/~mikhail/), Keir Fraser's thesis
271 * (http://www.cl.cam.ac.uk/users/kaf24/), and Hakan Sundell's
272 * thesis (http://www.cs.chalmers.se/~phs/).
273 *
274 * Given the use of tree-like index nodes, you might wonder why
275 * this doesn't use some kind of search tree instead, which would
276 * support somewhat faster search operations. The reason is that
277 * there are no known efficient lock-free insertion and deletion
278 * algorithms for search trees. The immutability of the "down"
279 * links of index nodes (as opposed to mutable "left" fields in
280 * true trees) makes this tractable using only CAS operations.
281 *
282 * Notation guide for local variables
283 * Node: b, n, f for predecessor, node, successor
284 * Index: q, r, d for index node, right, down.
285 * t for another index node
286 * Head: h
287 * Levels: j
288 * Keys: k, key
289 * Values: v, value
290 * Comparisons: c
291 */
292
293 private static final long serialVersionUID = -8627078645895051609L;
294
295 /**
296 * Generates the initial random seed for the cheaper per-instance
297 * random number generators used in randomLevel.
298 */
299 private static final Random seedGenerator = new Random();
300
301 /**
302 * Special value used to identify base-level header
303 */
304 private static final Object BASE_HEADER = new Object();
305
306 /**
307 * The topmost head index of the skiplist.
308 */
309 private transient volatile HeadIndex<K,V> head;
310
311 /**
312 * The comparator used to maintain order in this map, or null
313 * if using natural ordering.
314 * @serial
315 */
316 private final Comparator<? super K> comparator;
317
318 /**
319 * Seed for simple random number generator. Not volatile since it
320 * doesn't matter too much if different threads don't see updates.
321 */
322 private transient int randomSeed;
323
324 /** Lazily initialized key set */
325 private transient KeySet keySet;
326 /** Lazily initialized entry set */
327 private transient EntrySet entrySet;
328 /** Lazily initialized values collection */
329 private transient Values values;
330 /** Lazily initialized descending key set */
331 private transient DescendingKeySet descendingKeySet;
332 /** Lazily initialized descending entry set */
333 private transient DescendingEntrySet descendingEntrySet;
334
335 /**
336 * Initializes or resets state. Needed by constructors, clone,
337 * clear, readObject. and ConcurrentSkipListSet.clone.
338 * (Note that comparator must be separately initialized.)
339 */
340 final void initialize() {
341 keySet = null;
342 entrySet = null;
343 values = null;
344 descendingEntrySet = null;
345 descendingKeySet = null;
346 randomSeed = seedGenerator.nextInt() | 0x0100; // ensure nonzero
347 head = new HeadIndex<K,V>(new Node<K,V>(null, BASE_HEADER, null),
348 null, null, 1);
349 }
350
351 /** Updater for casHead */
352 private static final
353 AtomicReferenceFieldUpdater<ConcurrentSkipListMap, HeadIndex>
354 headUpdater = AtomicReferenceFieldUpdater.newUpdater
355 (ConcurrentSkipListMap.class, HeadIndex.class, "head");
356
357 /**
358 * compareAndSet head node
359 */
360 private boolean casHead(HeadIndex<K,V> cmp, HeadIndex<K,V> val) {
361 return headUpdater.compareAndSet(this, cmp, val);
362 }
363
364 /* ---------------- Nodes -------------- */
365
366 /**
367 * Nodes hold keys and values, and are singly linked in sorted
368 * order, possibly with some intervening marker nodes. The list is
369 * headed by a dummy node accessible as head.node. The value field
370 * is declared only as Object because it takes special non-V
371 * values for marker and header nodes.
372 */
373 static final class Node<K,V> {
374 final K key;
375 volatile Object value;
376 volatile Node<K,V> next;
377
378 /**
379 * Creates a new regular node.
380 */
381 Node(K key, Object value, Node<K,V> next) {
382 this.key = key;
383 this.value = value;
384 this.next = next;
385 }
386
387 /**
388 * Creates a new marker node. A marker is distinguished by
389 * having its value field point to itself. Marker nodes also
390 * have null keys, a fact that is exploited in a few places,
391 * but this doesn't distinguish markers from the base-level
392 * header node (head.node), which also has a null key.
393 */
394 Node(Node<K,V> next) {
395 this.key = null;
396 this.value = this;
397 this.next = next;
398 }
399
400 /** Updater for casNext */
401 static final AtomicReferenceFieldUpdater<Node, Node>
402 nextUpdater = AtomicReferenceFieldUpdater.newUpdater
403 (Node.class, Node.class, "next");
404
405 /** Updater for casValue */
406 static final AtomicReferenceFieldUpdater<Node, Object>
407 valueUpdater = AtomicReferenceFieldUpdater.newUpdater
408 (Node.class, Object.class, "value");
409
410 /**
411 * compareAndSet value field
412 */
413 boolean casValue(Object cmp, Object val) {
414 return valueUpdater.compareAndSet(this, cmp, val);
415 }
416
417 /**
418 * compareAndSet next field
419 */
420 boolean casNext(Node<K,V> cmp, Node<K,V> val) {
421 return nextUpdater.compareAndSet(this, cmp, val);
422 }
423
424 /**
425 * Returns true if this node is a marker. This method isn't
426 * actually called in any current code checking for markers
427 * because callers will have already read value field and need
428 * to use that read (not another done here) and so directly
429 * test if value points to node.
430 * @param n a possibly null reference to a node
431 * @return true if this node is a marker node
432 */
433 boolean isMarker() {
434 return value == this;
435 }
436
437 /**
438 * Returns true if this node is the header of base-level list.
439 * @return true if this node is header node
440 */
441 boolean isBaseHeader() {
442 return value == BASE_HEADER;
443 }
444
445 /**
446 * Tries to append a deletion marker to this node.
447 * @param f the assumed current successor of this node
448 * @return true if successful
449 */
450 boolean appendMarker(Node<K,V> f) {
451 return casNext(f, new Node<K,V>(f));
452 }
453
454 /**
455 * Helps out a deletion by appending marker or unlinking from
456 * predecessor. This is called during traversals when value
457 * field seen to be null.
458 * @param b predecessor
459 * @param f successor
460 */
461 void helpDelete(Node<K,V> b, Node<K,V> f) {
462 /*
463 * Rechecking links and then doing only one of the
464 * help-out stages per call tends to minimize CAS
465 * interference among helping threads.
466 */
467 if (f == next && this == b.next) {
468 if (f == null || f.value != f) // not already marked
469 appendMarker(f);
470 else
471 b.casNext(this, f.next);
472 }
473 }
474
475 /**
476 * Returns value if this node contains a valid key-value pair,
477 * else null.
478 * @return this node's value if it isn't a marker or header or
479 * is deleted, else null.
480 */
481 V getValidValue() {
482 Object v = value;
483 if (v == this || v == BASE_HEADER)
484 return null;
485 return (V)v;
486 }
487
488 /**
489 * Creates and returns a new SimpleImmutableEntry holding current
490 * mapping if this node holds a valid value, else null.
491 * @return new entry or null
492 */
493 AbstractMap.SimpleImmutableEntry<K,V> createSnapshot() {
494 V v = getValidValue();
495 if (v == null)
496 return null;
497 return new AbstractMap.SimpleImmutableEntry<K,V>(key, v);
498 }
499 }
500
501 /* ---------------- Indexing -------------- */
502
503 /**
504 * Index nodes represent the levels of the skip list. Note that
505 * even though both Nodes and Indexes have forward-pointing
506 * fields, they have different types and are handled in different
507 * ways, that can't nicely be captured by placing field in a
508 * shared abstract class.
509 */
510 static class Index<K,V> {
511 final Node<K,V> node;
512 final Index<K,V> down;
513 volatile Index<K,V> right;
514
515 /**
516 * Creates index node with given values.
517 */
518 Index(Node<K,V> node, Index<K,V> down, Index<K,V> right) {
519 this.node = node;
520 this.down = down;
521 this.right = right;
522 }
523
524 /** Updater for casRight */
525 static final AtomicReferenceFieldUpdater<Index, Index>
526 rightUpdater = AtomicReferenceFieldUpdater.newUpdater
527 (Index.class, Index.class, "right");
528
529 /**
530 * compareAndSet right field
531 */
532 final boolean casRight(Index<K,V> cmp, Index<K,V> val) {
533 return rightUpdater.compareAndSet(this, cmp, val);
534 }
535
536 /**
537 * Returns true if the node this indexes has been deleted.
538 * @return true if indexed node is known to be deleted
539 */
540 final boolean indexesDeletedNode() {
541 return node.value == null;
542 }
543
544 /**
545 * Tries to CAS newSucc as successor. To minimize races with
546 * unlink that may lose this index node, if the node being
547 * indexed is known to be deleted, it doesn't try to link in.
548 * @param succ the expected current successor
549 * @param newSucc the new successor
550 * @return true if successful
551 */
552 final boolean link(Index<K,V> succ, Index<K,V> newSucc) {
553 Node<K,V> n = node;
554 newSucc.right = succ;
555 return n.value != null && casRight(succ, newSucc);
556 }
557
558 /**
559 * Tries to CAS right field to skip over apparent successor
560 * succ. Fails (forcing a retraversal by caller) if this node
561 * is known to be deleted.
562 * @param succ the expected current successor
563 * @return true if successful
564 */
565 final boolean unlink(Index<K,V> succ) {
566 return !indexesDeletedNode() && casRight(succ, succ.right);
567 }
568 }
569
570 /* ---------------- Head nodes -------------- */
571
572 /**
573 * Nodes heading each level keep track of their level.
574 */
575 static final class HeadIndex<K,V> extends Index<K,V> {
576 final int level;
577 HeadIndex(Node<K,V> node, Index<K,V> down, Index<K,V> right, int level) {
578 super(node, down, right);
579 this.level = level;
580 }
581 }
582
583 /* ---------------- Comparison utilities -------------- */
584
585 /**
586 * Represents a key with a comparator as a Comparable.
587 *
588 * Because most sorted collections seem to use natural ordering on
589 * Comparables (Strings, Integers, etc), most internal methods are
590 * geared to use them. This is generally faster than checking
591 * per-comparison whether to use comparator or comparable because
592 * it doesn't require a (Comparable) cast for each comparison.
593 * (Optimizers can only sometimes remove such redundant checks
594 * themselves.) When Comparators are used,
595 * ComparableUsingComparators are created so that they act in the
596 * same way as natural orderings. This penalizes use of
597 * Comparators vs Comparables, which seems like the right
598 * tradeoff.
599 */
600 static final class ComparableUsingComparator<K> implements Comparable<K> {
601 final K actualKey;
602 final Comparator<? super K> cmp;
603 ComparableUsingComparator(K key, Comparator<? super K> cmp) {
604 this.actualKey = key;
605 this.cmp = cmp;
606 }
607 public int compareTo(K k2) {
608 return cmp.compare(actualKey, k2);
609 }
610 }
611
612 /**
613 * If using comparator, return a ComparableUsingComparator, else
614 * cast key as Comparator, which may cause ClassCastException,
615 * which is propagated back to caller.
616 */
617 private Comparable<? super K> comparable(Object key) throws ClassCastException {
618 if (key == null)
619 throw new NullPointerException();
620 if (comparator != null)
621 return new ComparableUsingComparator<K>((K)key, comparator);
622 else
623 return (Comparable<? super K>)key;
624 }
625
626 /**
627 * Compares using comparator or natural ordering. Used when the
628 * ComparableUsingComparator approach doesn't apply.
629 */
630 int compare(K k1, K k2) throws ClassCastException {
631 Comparator<? super K> cmp = comparator;
632 if (cmp != null)
633 return cmp.compare(k1, k2);
634 else
635 return ((Comparable<? super K>)k1).compareTo(k2);
636 }
637
638 /**
639 * Returns true if given key greater than or equal to least and
640 * strictly less than fence, bypassing either test if least or
641 * fence are null. Needed mainly in submap operations.
642 */
643 boolean inHalfOpenRange(K key, K least, K fence) {
644 if (key == null)
645 throw new NullPointerException();
646 return ((least == null || compare(key, least) >= 0) &&
647 (fence == null || compare(key, fence) < 0));
648 }
649
650 /**
651 * Returns true if given key greater than or equal to least and less
652 * or equal to fence. Needed mainly in submap operations.
653 */
654 boolean inOpenRange(K key, K least, K fence) {
655 if (key == null)
656 throw new NullPointerException();
657 return ((least == null || compare(key, least) >= 0) &&
658 (fence == null || compare(key, fence) <= 0));
659 }
660
661 /* ---------------- Traversal -------------- */
662
663 /**
664 * Returns a base-level node with key strictly less than given key,
665 * or the base-level header if there is no such node. Also
666 * unlinks indexes to deleted nodes found along the way. Callers
667 * rely on this side-effect of clearing indices to deleted nodes.
668 * @param key the key
669 * @return a predecessor of key
670 */
671 private Node<K,V> findPredecessor(Comparable<? super K> key) {
672 if (key == null)
673 throw new NullPointerException(); // don't postpone errors
674 for (;;) {
675 Index<K,V> q = head;
676 Index<K,V> r = q.right;
677 for (;;) {
678 if (r != null) {
679 Node<K,V> n = r.node;
680 K k = n.key;
681 if (n.value == null) {
682 if (!q.unlink(r))
683 break; // restart
684 r = q.right; // reread r
685 continue;
686 }
687 if (key.compareTo(k) > 0) {
688 q = r;
689 r = r.right;
690 continue;
691 }
692 }
693 Index<K,V> d = q.down;
694 if (d != null) {
695 q = d;
696 r = d.right;
697 } else
698 return q.node;
699 }
700 }
701 }
702
703 /**
704 * Returns node holding key or null if no such, clearing out any
705 * deleted nodes seen along the way. Repeatedly traverses at
706 * base-level looking for key starting at predecessor returned
707 * from findPredecessor, processing base-level deletions as
708 * encountered. Some callers rely on this side-effect of clearing
709 * deleted nodes.
710 *
711 * Restarts occur, at traversal step centered on node n, if:
712 *
713 * (1) After reading n's next field, n is no longer assumed
714 * predecessor b's current successor, which means that
715 * we don't have a consistent 3-node snapshot and so cannot
716 * unlink any subsequent deleted nodes encountered.
717 *
718 * (2) n's value field is null, indicating n is deleted, in
719 * which case we help out an ongoing structural deletion
720 * before retrying. Even though there are cases where such
721 * unlinking doesn't require restart, they aren't sorted out
722 * here because doing so would not usually outweigh cost of
723 * restarting.
724 *
725 * (3) n is a marker or n's predecessor's value field is null,
726 * indicating (among other possibilities) that
727 * findPredecessor returned a deleted node. We can't unlink
728 * the node because we don't know its predecessor, so rely
729 * on another call to findPredecessor to notice and return
730 * some earlier predecessor, which it will do. This check is
731 * only strictly needed at beginning of loop, (and the
732 * b.value check isn't strictly needed at all) but is done
733 * each iteration to help avoid contention with other
734 * threads by callers that will fail to be able to change
735 * links, and so will retry anyway.
736 *
737 * The traversal loops in doPut, doRemove, and findNear all
738 * include the same three kinds of checks. And specialized
739 * versions appear in findFirst, and findLast and their
740 * variants. They can't easily share code because each uses the
741 * reads of fields held in locals occurring in the orders they
742 * were performed.
743 *
744 * @param key the key
745 * @return node holding key, or null if no such
746 */
747 private Node<K,V> findNode(Comparable<? super K> key) {
748 for (;;) {
749 Node<K,V> b = findPredecessor(key);
750 Node<K,V> n = b.next;
751 for (;;) {
752 if (n == null)
753 return null;
754 Node<K,V> f = n.next;
755 if (n != b.next) // inconsistent read
756 break;
757 Object v = n.value;
758 if (v == null) { // n is deleted
759 n.helpDelete(b, f);
760 break;
761 }
762 if (v == n || b.value == null) // b is deleted
763 break;
764 int c = key.compareTo(n.key);
765 if (c == 0)
766 return n;
767 if (c < 0)
768 return null;
769 b = n;
770 n = f;
771 }
772 }
773 }
774
775 /**
776 * Specialized variant of findNode to perform Map.get. Does a weak
777 * traversal, not bothering to fix any deleted index nodes,
778 * returning early if it happens to see key in index, and passing
779 * over any deleted base nodes, falling back to getUsingFindNode
780 * only if it would otherwise return value from an ongoing
781 * deletion. Also uses "bound" to eliminate need for some
782 * comparisons (see Pugh Cookbook). Also folds uses of null checks
783 * and node-skipping because markers have null keys.
784 * @param okey the key
785 * @return the value, or null if absent
786 */
787 private V doGet(Object okey) {
788 Comparable<? super K> key = comparable(okey);
789 Node<K,V> bound = null;
790 Index<K,V> q = head;
791 Index<K,V> r = q.right;
792 Node<K,V> n;
793 K k;
794 int c;
795 for (;;) {
796 Index<K,V> d;
797 // Traverse rights
798 if (r != null && (n = r.node) != bound && (k = n.key) != null) {
799 if ((c = key.compareTo(k)) > 0) {
800 q = r;
801 r = r.right;
802 continue;
803 } else if (c == 0) {
804 Object v = n.value;
805 return (v != null)? (V)v : getUsingFindNode(key);
806 } else
807 bound = n;
808 }
809
810 // Traverse down
811 if ((d = q.down) != null) {
812 q = d;
813 r = d.right;
814 } else
815 break;
816 }
817
818 // Traverse nexts
819 for (n = q.node.next; n != null; n = n.next) {
820 if ((k = n.key) != null) {
821 if ((c = key.compareTo(k)) == 0) {
822 Object v = n.value;
823 return (v != null)? (V)v : getUsingFindNode(key);
824 } else if (c < 0)
825 break;
826 }
827 }
828 return null;
829 }
830
831 /**
832 * Performs map.get via findNode. Used as a backup if doGet
833 * encounters an in-progress deletion.
834 * @param key the key
835 * @return the value, or null if absent
836 */
837 private V getUsingFindNode(Comparable<? super K> key) {
838 /*
839 * Loop needed here and elsewhere in case value field goes
840 * null just as it is about to be returned, in which case we
841 * lost a race with a deletion, so must retry.
842 */
843 for (;;) {
844 Node<K,V> n = findNode(key);
845 if (n == null)
846 return null;
847 Object v = n.value;
848 if (v != null)
849 return (V)v;
850 }
851 }
852
853 /* ---------------- Insertion -------------- */
854
855 /**
856 * Main insertion method. Adds element if not present, or
857 * replaces value if present and onlyIfAbsent is false.
858 * @param kkey the key
859 * @param value the value that must be associated with key
860 * @param onlyIfAbsent if should not insert if already present
861 * @return the old value, or null if newly inserted
862 */
863 private V doPut(K kkey, V value, boolean onlyIfAbsent) {
864 Comparable<? super K> key = comparable(kkey);
865 for (;;) {
866 Node<K,V> b = findPredecessor(key);
867 Node<K,V> n = b.next;
868 for (;;) {
869 if (n != null) {
870 Node<K,V> f = n.next;
871 if (n != b.next) // inconsistent read
872 break;;
873 Object v = n.value;
874 if (v == null) { // n is deleted
875 n.helpDelete(b, f);
876 break;
877 }
878 if (v == n || b.value == null) // b is deleted
879 break;
880 int c = key.compareTo(n.key);
881 if (c > 0) {
882 b = n;
883 n = f;
884 continue;
885 }
886 if (c == 0) {
887 if (onlyIfAbsent || n.casValue(v, value))
888 return (V)v;
889 else
890 break; // restart if lost race to replace value
891 }
892 // else c < 0; fall through
893 }
894
895 Node<K,V> z = new Node<K,V>(kkey, value, n);
896 if (!b.casNext(n, z))
897 break; // restart if lost race to append to b
898 int level = randomLevel();
899 if (level > 0)
900 insertIndex(z, level);
901 return null;
902 }
903 }
904 }
905
906 /**
907 * Returns a random level for inserting a new node.
908 * Hardwired to k=1, p=0.5, max 31 (see above and
909 * Pugh's "Skip List Cookbook", sec 3.4).
910 *
911 * This uses the simplest of the generators described in George
912 * Marsaglia's "Xorshift RNGs" paper. This is not a high-quality
913 * generator but is acceptable here.
914 */
915 private int randomLevel() {
916 int x = randomSeed;
917 x ^= x << 13;
918 x ^= x >>> 17;
919 randomSeed = x ^= x << 5;
920 if ((x & 0x8001) != 0) // test highest and lowest bits
921 return 0;
922 int level = 1;
923 while (((x >>>= 1) & 1) != 0) ++level;
924 return level;
925 }
926
927 /**
928 * Creates and adds index nodes for the given node.
929 * @param z the node
930 * @param level the level of the index
931 */
932 private void insertIndex(Node<K,V> z, int level) {
933 HeadIndex<K,V> h = head;
934 int max = h.level;
935
936 if (level <= max) {
937 Index<K,V> idx = null;
938 for (int i = 1; i <= level; ++i)
939 idx = new Index<K,V>(z, idx, null);
940 addIndex(idx, h, level);
941
942 } else { // Add a new level
943 /*
944 * To reduce interference by other threads checking for
945 * empty levels in tryReduceLevel, new levels are added
946 * with initialized right pointers. Which in turn requires
947 * keeping levels in an array to access them while
948 * creating new head index nodes from the opposite
949 * direction.
950 */
951 level = max + 1;
952 Index<K,V>[] idxs = (Index<K,V>[])new Index[level+1];
953 Index<K,V> idx = null;
954 for (int i = 1; i <= level; ++i)
955 idxs[i] = idx = new Index<K,V>(z, idx, null);
956
957 HeadIndex<K,V> oldh;
958 int k;
959 for (;;) {
960 oldh = head;
961 int oldLevel = oldh.level;
962 if (level <= oldLevel) { // lost race to add level
963 k = level;
964 break;
965 }
966 HeadIndex<K,V> newh = oldh;
967 Node<K,V> oldbase = oldh.node;
968 for (int j = oldLevel+1; j <= level; ++j)
969 newh = new HeadIndex<K,V>(oldbase, newh, idxs[j], j);
970 if (casHead(oldh, newh)) {
971 k = oldLevel;
972 break;
973 }
974 }
975 addIndex(idxs[k], oldh, k);
976 }
977 }
978
979 /**
980 * Adds given index nodes from given level down to 1.
981 * @param idx the topmost index node being inserted
982 * @param h the value of head to use to insert. This must be
983 * snapshotted by callers to provide correct insertion level
984 * @param indexLevel the level of the index
985 */
986 private void addIndex(Index<K,V> idx, HeadIndex<K,V> h, int indexLevel) {
987 // Track next level to insert in case of retries
988 int insertionLevel = indexLevel;
989 Comparable<? super K> key = comparable(idx.node.key);
990 if (key == null) throw new NullPointerException();
991
992 // Similar to findPredecessor, but adding index nodes along
993 // path to key.
994 for (;;) {
995 int j = h.level;
996 Index<K,V> q = h;
997 Index<K,V> r = q.right;
998 Index<K,V> t = idx;
999 for (;;) {
1000 if (r != null) {
1001 Node<K,V> n = r.node;
1002 // compare before deletion check avoids needing recheck
1003 int c = key.compareTo(n.key);
1004 if (n.value == null) {
1005 if (!q.unlink(r))
1006 break;
1007 r = q.right;
1008 continue;
1009 }
1010 if (c > 0) {
1011 q = r;
1012 r = r.right;
1013 continue;
1014 }
1015 }
1016
1017 if (j == insertionLevel) {
1018 // Don't insert index if node already deleted
1019 if (t.indexesDeletedNode()) {
1020 findNode(key); // cleans up
1021 return;
1022 }
1023 if (!q.link(r, t))
1024 break; // restart
1025 if (--insertionLevel == 0) {
1026 // need final deletion check before return
1027 if (t.indexesDeletedNode())
1028 findNode(key);
1029 return;
1030 }
1031 }
1032
1033 if (--j >= insertionLevel && j < indexLevel)
1034 t = t.down;
1035 q = q.down;
1036 r = q.right;
1037 }
1038 }
1039 }
1040
1041 /* ---------------- Deletion -------------- */
1042
1043 /**
1044 * Main deletion method. Locates node, nulls value, appends a
1045 * deletion marker, unlinks predecessor, removes associated index
1046 * nodes, and possibly reduces head index level.
1047 *
1048 * Index nodes are cleared out simply by calling findPredecessor.
1049 * which unlinks indexes to deleted nodes found along path to key,
1050 * which will include the indexes to this node. This is done
1051 * unconditionally. We can't check beforehand whether there are
1052 * index nodes because it might be the case that some or all
1053 * indexes hadn't been inserted yet for this node during initial
1054 * search for it, and we'd like to ensure lack of garbage
1055 * retention, so must call to be sure.
1056 *
1057 * @param okey the key
1058 * @param value if non-null, the value that must be
1059 * associated with key
1060 * @return the node, or null if not found
1061 */
1062 private V doRemove(Object okey, Object value) {
1063 Comparable<? super K> key = comparable(okey);
1064 for (;;) {
1065 Node<K,V> b = findPredecessor(key);
1066 Node<K,V> n = b.next;
1067 for (;;) {
1068 if (n == null)
1069 return null;
1070 Node<K,V> f = n.next;
1071 if (n != b.next) // inconsistent read
1072 break;
1073 Object v = n.value;
1074 if (v == null) { // n is deleted
1075 n.helpDelete(b, f);
1076 break;
1077 }
1078 if (v == n || b.value == null) // b is deleted
1079 break;
1080 int c = key.compareTo(n.key);
1081 if (c < 0)
1082 return null;
1083 if (c > 0) {
1084 b = n;
1085 n = f;
1086 continue;
1087 }
1088 if (value != null && !value.equals(v))
1089 return null;
1090 if (!n.casValue(v, null))
1091 break;
1092 if (!n.appendMarker(f) || !b.casNext(n, f))
1093 findNode(key); // Retry via findNode
1094 else {
1095 findPredecessor(key); // Clean index
1096 if (head.right == null)
1097 tryReduceLevel();
1098 }
1099 return (V)v;
1100 }
1101 }
1102 }
1103
1104 /**
1105 * Possibly reduce head level if it has no nodes. This method can
1106 * (rarely) make mistakes, in which case levels can disappear even
1107 * though they are about to contain index nodes. This impacts
1108 * performance, not correctness. To minimize mistakes as well as
1109 * to reduce hysteresis, the level is reduced by one only if the
1110 * topmost three levels look empty. Also, if the removed level
1111 * looks non-empty after CAS, we try to change it back quick
1112 * before anyone notices our mistake! (This trick works pretty
1113 * well because this method will practically never make mistakes
1114 * unless current thread stalls immediately before first CAS, in
1115 * which case it is very unlikely to stall again immediately
1116 * afterwards, so will recover.)
1117 *
1118 * We put up with all this rather than just let levels grow
1119 * because otherwise, even a small map that has undergone a large
1120 * number of insertions and removals will have a lot of levels,
1121 * slowing down access more than would an occasional unwanted
1122 * reduction.
1123 */
1124 private void tryReduceLevel() {
1125 HeadIndex<K,V> h = head;
1126 HeadIndex<K,V> d;
1127 HeadIndex<K,V> e;
1128 if (h.level > 3 &&
1129 (d = (HeadIndex<K,V>)h.down) != null &&
1130 (e = (HeadIndex<K,V>)d.down) != null &&
1131 e.right == null &&
1132 d.right == null &&
1133 h.right == null &&
1134 casHead(h, d) && // try to set
1135 h.right != null) // recheck
1136 casHead(d, h); // try to backout
1137 }
1138
1139 /**
1140 * Version of remove with boolean return. Needed by view classes
1141 */
1142 boolean removep(Object key) {
1143 return doRemove(key, null) != null;
1144 }
1145
1146 /* ---------------- Finding and removing first element -------------- */
1147
1148 /**
1149 * Specialized variant of findNode to get first valid node.
1150 * @return first node or null if empty
1151 */
1152 Node<K,V> findFirst() {
1153 for (;;) {
1154 Node<K,V> b = head.node;
1155 Node<K,V> n = b.next;
1156 if (n == null)
1157 return null;
1158 if (n.value != null)
1159 return n;
1160 n.helpDelete(b, n.next);
1161 }
1162 }
1163
1164 /**
1165 * Removes first entry; returns its key. Note: The
1166 * mostly-redundant methods for removing first and last keys vs
1167 * entries exist to avoid needless creation of Entry nodes when
1168 * only the key is needed. The minor reduction in overhead is
1169 * worth the minor code duplication.
1170 * @return null if empty, else key of first entry
1171 */
1172 K pollFirstKey() {
1173 for (;;) {
1174 Node<K,V> b = head.node;
1175 Node<K,V> n = b.next;
1176 if (n == null)
1177 return null;
1178 Node<K,V> f = n.next;
1179 if (n != b.next)
1180 continue;
1181 Object v = n.value;
1182 if (v == null) {
1183 n.helpDelete(b, f);
1184 continue;
1185 }
1186 if (!n.casValue(v, null))
1187 continue;
1188 if (!n.appendMarker(f) || !b.casNext(n, f))
1189 findFirst(); // retry
1190 clearIndexToFirst();
1191 return n.key;
1192 }
1193 }
1194
1195 /**
1196 * Removes first entry; returns its snapshot.
1197 * @return null if empty, else snapshot of first entry
1198 */
1199 Map.Entry<K,V> doRemoveFirstEntry() {
1200 for (;;) {
1201 Node<K,V> b = head.node;
1202 Node<K,V> n = b.next;
1203 if (n == null)
1204 return null;
1205 Node<K,V> f = n.next;
1206 if (n != b.next)
1207 continue;
1208 Object v = n.value;
1209 if (v == null) {
1210 n.helpDelete(b, f);
1211 continue;
1212 }
1213 if (!n.casValue(v, null))
1214 continue;
1215 if (!n.appendMarker(f) || !b.casNext(n, f))
1216 findFirst(); // retry
1217 clearIndexToFirst();
1218 return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, (V)v);
1219 }
1220 }
1221
1222 /**
1223 * Clears out index nodes associated with deleted first entry.
1224 */
1225 private void clearIndexToFirst() {
1226 for (;;) {
1227 Index<K,V> q = head;
1228 for (;;) {
1229 Index<K,V> r = q.right;
1230 if (r != null && r.indexesDeletedNode() && !q.unlink(r))
1231 break;
1232 if ((q = q.down) == null) {
1233 if (head.right == null)
1234 tryReduceLevel();
1235 return;
1236 }
1237 }
1238 }
1239 }
1240
1241
1242 /* ---------------- Finding and removing last element -------------- */
1243
1244 /**
1245 * Specialized version of find to get last valid node.
1246 * @return last node or null if empty
1247 */
1248 Node<K,V> findLast() {
1249 /*
1250 * findPredecessor can't be used to traverse index level
1251 * because this doesn't use comparisons. So traversals of
1252 * both levels are folded together.
1253 */
1254 Index<K,V> q = head;
1255 for (;;) {
1256 Index<K,V> d, r;
1257 if ((r = q.right) != null) {
1258 if (r.indexesDeletedNode()) {
1259 q.unlink(r);
1260 q = head; // restart
1261 }
1262 else
1263 q = r;
1264 } else if ((d = q.down) != null) {
1265 q = d;
1266 } else {
1267 Node<K,V> b = q.node;
1268 Node<K,V> n = b.next;
1269 for (;;) {
1270 if (n == null)
1271 return (b.isBaseHeader())? null : b;
1272 Node<K,V> f = n.next; // inconsistent read
1273 if (n != b.next)
1274 break;
1275 Object v = n.value;
1276 if (v == null) { // n is deleted
1277 n.helpDelete(b, f);
1278 break;
1279 }
1280 if (v == n || b.value == null) // b is deleted
1281 break;
1282 b = n;
1283 n = f;
1284 }
1285 q = head; // restart
1286 }
1287 }
1288 }
1289
1290 /**
1291 * Specialized variant of findPredecessor to get predecessor of last
1292 * valid node. Needed when removing the last entry. It is possible
1293 * that all successors of returned node will have been deleted upon
1294 * return, in which case this method can be retried.
1295 * @return likely predecessor of last node
1296 */
1297 private Node<K,V> findPredecessorOfLast() {
1298 for (;;) {
1299 Index<K,V> q = head;
1300 for (;;) {
1301 Index<K,V> d, r;
1302 if ((r = q.right) != null) {
1303 if (r.indexesDeletedNode()) {
1304 q.unlink(r);
1305 break; // must restart
1306 }
1307 // proceed as far across as possible without overshooting
1308 if (r.node.next != null) {
1309 q = r;
1310 continue;
1311 }
1312 }
1313 if ((d = q.down) != null)
1314 q = d;
1315 else
1316 return q.node;
1317 }
1318 }
1319 }
1320
1321 /**
1322 * Removes last entry; returns key or null if empty.
1323 * @return null if empty, else key of last entry
1324 */
1325 K pollLastKey() {
1326 for (;;) {
1327 Node<K,V> b = findPredecessorOfLast();
1328 Node<K,V> n = b.next;
1329 if (n == null) {
1330 if (b.isBaseHeader()) // empty
1331 return null;
1332 else
1333 continue; // all b's successors are deleted; retry
1334 }
1335 for (;;) {
1336 Node<K,V> f = n.next;
1337 if (n != b.next) // inconsistent read
1338 break;
1339 Object v = n.value;
1340 if (v == null) { // n is deleted
1341 n.helpDelete(b, f);
1342 break;
1343 }
1344 if (v == n || b.value == null) // b is deleted
1345 break;
1346 if (f != null) {
1347 b = n;
1348 n = f;
1349 continue;
1350 }
1351 if (!n.casValue(v, null))
1352 break;
1353 K key = n.key;
1354 Comparable<? super K> ck = comparable(key);
1355 if (!n.appendMarker(f) || !b.casNext(n, f))
1356 findNode(ck); // Retry via findNode
1357 else {
1358 findPredecessor(ck); // Clean index
1359 if (head.right == null)
1360 tryReduceLevel();
1361 }
1362 return key;
1363 }
1364 }
1365 }
1366
1367 /**
1368 * Removes last entry; returns its snapshot.
1369 * Specialized variant of doRemove.
1370 * @return null if empty, else snapshot of last entry
1371 */
1372 Map.Entry<K,V> doRemoveLastEntry() {
1373 for (;;) {
1374 Node<K,V> b = findPredecessorOfLast();
1375 Node<K,V> n = b.next;
1376 if (n == null) {
1377 if (b.isBaseHeader()) // empty
1378 return null;
1379 else
1380 continue; // all b's successors are deleted; retry
1381 }
1382 for (;;) {
1383 Node<K,V> f = n.next;
1384 if (n != b.next) // inconsistent read
1385 break;
1386 Object v = n.value;
1387 if (v == null) { // n is deleted
1388 n.helpDelete(b, f);
1389 break;
1390 }
1391 if (v == n || b.value == null) // b is deleted
1392 break;
1393 if (f != null) {
1394 b = n;
1395 n = f;
1396 continue;
1397 }
1398 if (!n.casValue(v, null))
1399 break;
1400 K key = n.key;
1401 Comparable<? super K> ck = comparable(key);
1402 if (!n.appendMarker(f) || !b.casNext(n, f))
1403 findNode(ck); // Retry via findNode
1404 else {
1405 findPredecessor(ck); // Clean index
1406 if (head.right == null)
1407 tryReduceLevel();
1408 }
1409 return new AbstractMap.SimpleImmutableEntry<K,V>(key, (V)v);
1410 }
1411 }
1412 }
1413
1414 /* ---------------- Relational operations -------------- */
1415
1416 // Control values OR'ed as arguments to findNear
1417
1418 private static final int EQ = 1;
1419 private static final int LT = 2;
1420 private static final int GT = 0; // Actually checked as !LT
1421
1422 /**
1423 * Utility for ceiling, floor, lower, higher methods.
1424 * @param kkey the key
1425 * @param rel the relation -- OR'ed combination of EQ, LT, GT
1426 * @return nearest node fitting relation, or null if no such
1427 */
1428 Node<K,V> findNear(K kkey, int rel) {
1429 Comparable<? super K> key = comparable(kkey);
1430 for (;;) {
1431 Node<K,V> b = findPredecessor(key);
1432 Node<K,V> n = b.next;
1433 for (;;) {
1434 if (n == null)
1435 return ((rel & LT) == 0 || b.isBaseHeader())? null : b;
1436 Node<K,V> f = n.next;
1437 if (n != b.next) // inconsistent read
1438 break;
1439 Object v = n.value;
1440 if (v == null) { // n is deleted
1441 n.helpDelete(b, f);
1442 break;
1443 }
1444 if (v == n || b.value == null) // b is deleted
1445 break;
1446 int c = key.compareTo(n.key);
1447 if ((c == 0 && (rel & EQ) != 0) ||
1448 (c < 0 && (rel & LT) == 0))
1449 return n;
1450 if ( c <= 0 && (rel & LT) != 0)
1451 return (b.isBaseHeader())? null : b;
1452 b = n;
1453 n = f;
1454 }
1455 }
1456 }
1457
1458 /**
1459 * Returns SimpleImmutableEntry for results of findNear.
1460 * @param key the key
1461 * @param rel the relation -- OR'ed combination of EQ, LT, GT
1462 * @return Entry fitting relation, or null if no such
1463 */
1464 AbstractMap.SimpleImmutableEntry<K,V> getNear(K key, int rel) {
1465 for (;;) {
1466 Node<K,V> n = findNear(key, rel);
1467 if (n == null)
1468 return null;
1469 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
1470 if (e != null)
1471 return e;
1472 }
1473 }
1474
1475 /**
1476 * Returns ceiling, or first node if key is <tt>null</tt>.
1477 */
1478 Node<K,V> findCeiling(K key) {
1479 return (key == null)? findFirst() : findNear(key, GT|EQ);
1480 }
1481
1482 /**
1483 * Returns lower node, or last node if key is <tt>null</tt>.
1484 */
1485 Node<K,V> findLower(K key) {
1486 return (key == null)? findLast() : findNear(key, LT);
1487 }
1488
1489 /**
1490 * Returns key for results of findNear after screening to ensure
1491 * result is in given range. Needed by submaps.
1492 * @param key the key
1493 * @param rel the relation -- OR'ed combination of EQ, LT, GT
1494 * @param least minimum allowed key value
1495 * @param fence key greater than maximum allowed key value
1496 * @return Key fitting relation, or <tt>null</tt> if no such
1497 */
1498 K getNearKey(K key, int rel, K least, K fence) {
1499 // Don't return keys less than least
1500 if ((rel & LT) == 0) {
1501 if (compare(key, least) < 0) {
1502 key = least;
1503 rel = rel | EQ;
1504 }
1505 }
1506
1507 for (;;) {
1508 Node<K,V> n = findNear(key, rel);
1509 if (n == null || !inHalfOpenRange(n.key, least, fence))
1510 return null;
1511 K k = n.key;
1512 V v = n.getValidValue();
1513 if (v != null)
1514 return k;
1515 }
1516 }
1517
1518
1519 /**
1520 * Returns SimpleImmutableEntry for results of findNear after
1521 * screening to ensure result is in given range. Needed by
1522 * submaps.
1523 * @param key the key
1524 * @param rel the relation -- OR'ed combination of EQ, LT, GT
1525 * @param least minimum allowed key value
1526 * @param fence key greater than maximum allowed key value
1527 * @return Entry fitting relation, or <tt>null</tt> if no such
1528 */
1529 Map.Entry<K,V> getNearEntry(K key, int rel, K least, K fence) {
1530 // Don't return keys less than least
1531 if ((rel & LT) == 0) {
1532 if (compare(key, least) < 0) {
1533 key = least;
1534 rel = rel | EQ;
1535 }
1536 }
1537
1538 for (;;) {
1539 Node<K,V> n = findNear(key, rel);
1540 if (n == null || !inHalfOpenRange(n.key, least, fence))
1541 return null;
1542 K k = n.key;
1543 V v = n.getValidValue();
1544 if (v != null)
1545 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
1546 }
1547 }
1548
1549 /**
1550 * Finds and removes least element of subrange.
1551 * @param least minimum allowed key value
1552 * @param fence key greater than maximum allowed key value
1553 * @return least Entry, or <tt>null</tt> if no such
1554 */
1555 Map.Entry<K,V> removeFirstEntryOfSubrange(K least, K fence) {
1556 for (;;) {
1557 Node<K,V> n = findCeiling(least);
1558 if (n == null)
1559 return null;
1560 K k = n.key;
1561 if (fence != null && compare(k, fence) >= 0)
1562 return null;
1563 V v = doRemove(k, null);
1564 if (v != null)
1565 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
1566 }
1567 }
1568
1569 /**
1570 * Finds and removes greatest element of subrange.
1571 * @param least minimum allowed key value
1572 * @param fence key greater than maximum allowed key value
1573 * @return least Entry, or <tt>null</tt> if no such
1574 */
1575 Map.Entry<K,V> removeLastEntryOfSubrange(K least, K fence) {
1576 for (;;) {
1577 Node<K,V> n = findLower(fence);
1578 if (n == null)
1579 return null;
1580 K k = n.key;
1581 if (least != null && compare(k, least) < 0)
1582 return null;
1583 V v = doRemove(k, null);
1584 if (v != null)
1585 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
1586 }
1587 }
1588
1589
1590
1591 /* ---------------- Constructors -------------- */
1592
1593 /**
1594 * Constructs a new, empty map, sorted according to the
1595 * {@linkplain Comparable natural ordering} of the keys.
1596 */
1597 public ConcurrentSkipListMap() {
1598 this.comparator = null;
1599 initialize();
1600 }
1601
1602 /**
1603 * Constructs a new, empty map, sorted according to the specified
1604 * comparator.
1605 *
1606 * @param comparator the comparator that will be used to order this map.
1607 * If <tt>null</tt>, the {@linkplain Comparable natural
1608 * ordering} of the keys will be used.
1609 */
1610 public ConcurrentSkipListMap(Comparator<? super K> comparator) {
1611 this.comparator = comparator;
1612 initialize();
1613 }
1614
1615 /**
1616 * Constructs a new map containing the same mappings as the given map,
1617 * sorted according to the {@linkplain Comparable natural ordering} of
1618 * the keys.
1619 *
1620 * @param m the map whose mappings are to be placed in this map
1621 * @throws ClassCastException if the keys in <tt>m</tt> are not
1622 * {@link Comparable}, or are not mutually comparable
1623 * @throws NullPointerException if the specified map or any of its keys
1624 * or values are null
1625 */
1626 public ConcurrentSkipListMap(Map<? extends K, ? extends V> m) {
1627 this.comparator = null;
1628 initialize();
1629 putAll(m);
1630 }
1631
1632 /**
1633 * Constructs a new map containing the same mappings and using the
1634 * same ordering as the specified sorted map.
1635 *
1636 * @param m the sorted map whose mappings are to be placed in this
1637 * map, and whose comparator is to be used to sort this map
1638 * @throws NullPointerException if the specified sorted map or any of
1639 * its keys or values are null
1640 */
1641 public ConcurrentSkipListMap(SortedMap<K, ? extends V> m) {
1642 this.comparator = m.comparator();
1643 initialize();
1644 buildFromSorted(m);
1645 }
1646
1647 /**
1648 * Returns a shallow copy of this <tt>ConcurrentSkipListMap</tt>
1649 * instance. (The keys and values themselves are not cloned.)
1650 *
1651 * @return a shallow copy of this map
1652 */
1653 public ConcurrentSkipListMap<K,V> clone() {
1654 ConcurrentSkipListMap<K,V> clone = null;
1655 try {
1656 clone = (ConcurrentSkipListMap<K,V>) super.clone();
1657 } catch (CloneNotSupportedException e) {
1658 throw new InternalError();
1659 }
1660
1661 clone.initialize();
1662 clone.buildFromSorted(this);
1663 return clone;
1664 }
1665
1666 /**
1667 * Streamlined bulk insertion to initialize from elements of
1668 * given sorted map. Call only from constructor or clone
1669 * method.
1670 */
1671 private void buildFromSorted(SortedMap<K, ? extends V> map) {
1672 if (map == null)
1673 throw new NullPointerException();
1674
1675 HeadIndex<K,V> h = head;
1676 Node<K,V> basepred = h.node;
1677
1678 // Track the current rightmost node at each level. Uses an
1679 // ArrayList to avoid committing to initial or maximum level.
1680 ArrayList<Index<K,V>> preds = new ArrayList<Index<K,V>>();
1681
1682 // initialize
1683 for (int i = 0; i <= h.level; ++i)
1684 preds.add(null);
1685 Index<K,V> q = h;
1686 for (int i = h.level; i > 0; --i) {
1687 preds.set(i, q);
1688 q = q.down;
1689 }
1690
1691 Iterator<? extends Map.Entry<? extends K, ? extends V>> it =
1692 map.entrySet().iterator();
1693 while (it.hasNext()) {
1694 Map.Entry<? extends K, ? extends V> e = it.next();
1695 int j = randomLevel();
1696 if (j > h.level) j = h.level + 1;
1697 K k = e.getKey();
1698 V v = e.getValue();
1699 if (k == null || v == null)
1700 throw new NullPointerException();
1701 Node<K,V> z = new Node<K,V>(k, v, null);
1702 basepred.next = z;
1703 basepred = z;
1704 if (j > 0) {
1705 Index<K,V> idx = null;
1706 for (int i = 1; i <= j; ++i) {
1707 idx = new Index<K,V>(z, idx, null);
1708 if (i > h.level)
1709 h = new HeadIndex<K,V>(h.node, h, idx, i);
1710
1711 if (i < preds.size()) {
1712 preds.get(i).right = idx;
1713 preds.set(i, idx);
1714 } else
1715 preds.add(idx);
1716 }
1717 }
1718 }
1719 head = h;
1720 }
1721
1722 /* ---------------- Serialization -------------- */
1723
1724 /**
1725 * Save the state of this map to a stream.
1726 *
1727 * @serialData The key (Object) and value (Object) for each
1728 * key-value mapping represented by the map, followed by
1729 * <tt>null</tt>. The key-value mappings are emitted in key-order
1730 * (as determined by the Comparator, or by the keys' natural
1731 * ordering if no Comparator).
1732 */
1733 private void writeObject(java.io.ObjectOutputStream s)
1734 throws java.io.IOException {
1735 // Write out the Comparator and any hidden stuff
1736 s.defaultWriteObject();
1737
1738 // Write out keys and values (alternating)
1739 for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1740 V v = n.getValidValue();
1741 if (v != null) {
1742 s.writeObject(n.key);
1743 s.writeObject(v);
1744 }
1745 }
1746 s.writeObject(null);
1747 }
1748
1749 /**
1750 * Reconstitute the map from a stream.
1751 */
1752 private void readObject(final java.io.ObjectInputStream s)
1753 throws java.io.IOException, ClassNotFoundException {
1754 // Read in the Comparator and any hidden stuff
1755 s.defaultReadObject();
1756 // Reset transients
1757 initialize();
1758
1759 /*
1760 * This is nearly identical to buildFromSorted, but is
1761 * distinct because readObject calls can't be nicely adapted
1762 * as the kind of iterator needed by buildFromSorted. (They
1763 * can be, but doing so requires type cheats and/or creation
1764 * of adaptor classes.) It is simpler to just adapt the code.
1765 */
1766
1767 HeadIndex<K,V> h = head;
1768 Node<K,V> basepred = h.node;
1769 ArrayList<Index<K,V>> preds = new ArrayList<Index<K,V>>();
1770 for (int i = 0; i <= h.level; ++i)
1771 preds.add(null);
1772 Index<K,V> q = h;
1773 for (int i = h.level; i > 0; --i) {
1774 preds.set(i, q);
1775 q = q.down;
1776 }
1777
1778 for (;;) {
1779 Object k = s.readObject();
1780 if (k == null)
1781 break;
1782 Object v = s.readObject();
1783 if (v == null)
1784 throw new NullPointerException();
1785 K key = (K) k;
1786 V val = (V) v;
1787 int j = randomLevel();
1788 if (j > h.level) j = h.level + 1;
1789 Node<K,V> z = new Node<K,V>(key, val, null);
1790 basepred.next = z;
1791 basepred = z;
1792 if (j > 0) {
1793 Index<K,V> idx = null;
1794 for (int i = 1; i <= j; ++i) {
1795 idx = new Index<K,V>(z, idx, null);
1796 if (i > h.level)
1797 h = new HeadIndex<K,V>(h.node, h, idx, i);
1798
1799 if (i < preds.size()) {
1800 preds.get(i).right = idx;
1801 preds.set(i, idx);
1802 } else
1803 preds.add(idx);
1804 }
1805 }
1806 }
1807 head = h;
1808 }
1809
1810 /* ------ Map API methods ------ */
1811
1812 /**
1813 * Returns <tt>true</tt> if this map contains a mapping for the specified
1814 * key.
1815 *
1816 * @param key key whose presence in this map is to be tested
1817 * @return <tt>true</tt> if this map contains a mapping for the specified key
1818 * @throws ClassCastException if the specified key cannot be compared
1819 * with the keys currently in the map
1820 * @throws NullPointerException if the specified key is null
1821 */
1822 public boolean containsKey(Object key) {
1823 return doGet(key) != null;
1824 }
1825
1826 /**
1827 * Returns the value to which this map maps the specified key, or
1828 * <tt>null</tt> if the map contains no mapping for the key.
1829 *
1830 * @param key key whose associated value is to be returned
1831 * @return the value to which this map maps the specified key, or
1832 * <tt>null</tt> if the map contains no mapping for the key
1833 * @throws ClassCastException if the specified key cannot be compared
1834 * with the keys currently in the map
1835 * @throws NullPointerException if the specified key is null
1836 */
1837 public V get(Object key) {
1838 return doGet(key);
1839 }
1840
1841 /**
1842 * Associates the specified value with the specified key in this map.
1843 * If the map previously contained a mapping for the key, the old
1844 * value is replaced.
1845 *
1846 * @param key key with which the specified value is to be associated
1847 * @param value value to be associated with the specified key
1848 * @return the previous value associated with the specified key, or
1849 * <tt>null</tt> if there was no mapping for the key
1850 * @throws ClassCastException if the specified key cannot be compared
1851 * with the keys currently in the map
1852 * @throws NullPointerException if the specified key or value is null
1853 */
1854 public V put(K key, V value) {
1855 if (value == null)
1856 throw new NullPointerException();
1857 return doPut(key, value, false);
1858 }
1859
1860 /**
1861 * Removes the mapping for the specified key from this map if present.
1862 *
1863 * @param key key for which mapping should be removed
1864 * @return the previous value associated with the specified key, or
1865 * <tt>null</tt> if there was no mapping for the key
1866 * @throws ClassCastException if the specified key cannot be compared
1867 * with the keys currently in the map
1868 * @throws NullPointerException if the specified key is null
1869 */
1870 public V remove(Object key) {
1871 return doRemove(key, null);
1872 }
1873
1874 /**
1875 * Returns <tt>true</tt> if this map maps one or more keys to the
1876 * specified value. This operation requires time linear in the
1877 * map size.
1878 *
1879 * @param value value whose presence in this map is to be tested
1880 * @return <tt>true</tt> if a mapping to <tt>value</tt> exists;
1881 * <tt>false</tt> otherwise
1882 * @throws NullPointerException if the specified value is null
1883 */
1884 public boolean containsValue(Object value) {
1885 if (value == null)
1886 throw new NullPointerException();
1887 for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1888 V v = n.getValidValue();
1889 if (v != null && value.equals(v))
1890 return true;
1891 }
1892 return false;
1893 }
1894
1895 /**
1896 * Returns the number of key-value mappings in this map. If this map
1897 * contains more than <tt>Integer.MAX_VALUE</tt> elements, it
1898 * returns <tt>Integer.MAX_VALUE</tt>.
1899 *
1900 * <p>Beware that, unlike in most collections, this method is
1901 * <em>NOT</em> a constant-time operation. Because of the
1902 * asynchronous nature of these maps, determining the current
1903 * number of elements requires traversing them all to count them.
1904 * Additionally, it is possible for the size to change during
1905 * execution of this method, in which case the returned result
1906 * will be inaccurate. Thus, this method is typically not very
1907 * useful in concurrent applications.
1908 *
1909 * @return the number of elements in this map
1910 */
1911 public int size() {
1912 long count = 0;
1913 for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1914 if (n.getValidValue() != null)
1915 ++count;
1916 }
1917 return (count >= Integer.MAX_VALUE)? Integer.MAX_VALUE : (int)count;
1918 }
1919
1920 /**
1921 * Returns <tt>true</tt> if this map contains no key-value mappings.
1922 * @return <tt>true</tt> if this map contains no key-value mappings
1923 */
1924 public boolean isEmpty() {
1925 return findFirst() == null;
1926 }
1927
1928 /**
1929 * Removes all of the mappings from this map.
1930 */
1931 public void clear() {
1932 initialize();
1933 }
1934
1935 /**
1936 * Returns a {@link Set} view of the keys contained in this map.
1937 * The set's iterator returns the keys in ascending order.
1938 * The set is backed by the map, so changes to the map are
1939 * reflected in the set, and vice-versa. The set supports element
1940 * removal, which removes the corresponding mapping from the map,
1941 * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1942 * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
1943 * operations. It does not support the <tt>add</tt> or <tt>addAll</tt>
1944 * operations.
1945 *
1946 * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1947 * that will never throw {@link ConcurrentModificationException},
1948 * and guarantees to traverse elements as they existed upon
1949 * construction of the iterator, and may (but is not guaranteed to)
1950 * reflect any modifications subsequent to construction.
1951 *
1952 * @return a set view of the keys contained in this map, sorted in
1953 * ascending order
1954 */
1955 public Set<K> keySet() {
1956 /*
1957 * Note: Lazy initialization works here and for other views
1958 * because view classes are stateless/immutable so it doesn't
1959 * matter wrt correctness if more than one is created (which
1960 * will only rarely happen). Even so, the following idiom
1961 * conservatively ensures that the method returns the one it
1962 * created if it does so, not one created by another racing
1963 * thread.
1964 */
1965 KeySet ks = keySet;
1966 return (ks != null) ? ks : (keySet = new KeySet());
1967 }
1968
1969 /**
1970 * Returns a {@link Set} view of the keys contained in this map.
1971 * The set's iterator returns the keys in descending order.
1972 * The set is backed by the map, so changes to the map are
1973 * reflected in the set, and vice-versa. The set supports element
1974 * removal, which removes the corresponding mapping from the map,
1975 * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1976 * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
1977 * operations. It does not support the <tt>add</tt> or <tt>addAll</tt>
1978 * operations.
1979 *
1980 * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1981 * that will never throw {@link ConcurrentModificationException},
1982 * and guarantees to traverse elements as they existed upon
1983 * construction of the iterator, and may (but is not guaranteed to)
1984 * reflect any modifications subsequent to construction.
1985 */
1986 public Set<K> descendingKeySet() {
1987 /*
1988 * Note: Lazy initialization works here and for other views
1989 * because view classes are stateless/immutable so it doesn't
1990 * matter wrt correctness if more than one is created (which
1991 * will only rarely happen). Even so, the following idiom
1992 * conservatively ensures that the method returns the one it
1993 * created if it does so, not one created by another racing
1994 * thread.
1995 */
1996 DescendingKeySet ks = descendingKeySet;
1997 return (ks != null) ? ks : (descendingKeySet = new DescendingKeySet());
1998 }
1999
2000 /**
2001 * Returns a {@link Collection} view of the values contained in this map.
2002 * The collection's iterator returns the values in ascending order
2003 * of the corresponding keys.
2004 * The collection is backed by the map, so changes to the map are
2005 * reflected in the collection, and vice-versa. The collection
2006 * supports element removal, which removes the corresponding
2007 * mapping from the map, via the <tt>Iterator.remove</tt>,
2008 * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
2009 * <tt>retainAll</tt> and <tt>clear</tt> operations. It does not
2010 * support the <tt>add</tt> or <tt>addAll</tt> operations.
2011 *
2012 * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
2013 * that will never throw {@link ConcurrentModificationException},
2014 * and guarantees to traverse elements as they existed upon
2015 * construction of the iterator, and may (but is not guaranteed to)
2016 * reflect any modifications subsequent to construction.
2017 */
2018 public Collection<V> values() {
2019 Values vs = values;
2020 return (vs != null) ? vs : (values = new Values());
2021 }
2022
2023 /**
2024 * Returns a {@link Set} view of the mappings contained in this map.
2025 * The set's iterator returns the entries in ascending key order.
2026 * The set is backed by the map, so changes to the map are
2027 * reflected in the set, and vice-versa. The set supports element
2028 * removal, which removes the corresponding mapping from the map,
2029 * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
2030 * <tt>removeAll</tt>, <tt>retainAll</tt> and <tt>clear</tt>
2031 * operations. It does not support the <tt>add</tt> or
2032 * <tt>addAll</tt> operations.
2033 *
2034 * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
2035 * that will never throw {@link ConcurrentModificationException},
2036 * and guarantees to traverse elements as they existed upon
2037 * construction of the iterator, and may (but is not guaranteed to)
2038 * reflect any modifications subsequent to construction.
2039 *
2040 * <p>The <tt>Map.Entry</tt> elements returned by
2041 * <tt>iterator.next()</tt> do <em>not</em> support the
2042 * <tt>setValue</tt> operation.
2043 *
2044 * @return a set view of the mappings contained in this map,
2045 * sorted in ascending key order
2046 */
2047 public Set<Map.Entry<K,V>> entrySet() {
2048 EntrySet es = entrySet;
2049 return (es != null) ? es : (entrySet = new EntrySet());
2050 }
2051
2052 /**
2053 * Returns a {@link Set} view of the mappings contained in this map.
2054 * The set's iterator returns the entries in descending key order.
2055 * The set is backed by the map, so changes to the map are
2056 * reflected in the set, and vice-versa. The set supports element
2057 * removal, which removes the corresponding mapping from the map,
2058 * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
2059 * <tt>removeAll</tt>, <tt>retainAll</tt> and <tt>clear</tt>
2060 * operations. It does not support the <tt>add</tt> or
2061 * <tt>addAll</tt> operations.
2062 *
2063 * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
2064 * that will never throw {@link ConcurrentModificationException},
2065 * and guarantees to traverse elements as they existed upon
2066 * construction of the iterator, and may (but is not guaranteed to)
2067 * reflect any modifications subsequent to construction.
2068 *
2069 * <p>The <tt>Map.Entry</tt> elements returned by
2070 * <tt>iterator.next()</tt> do <em>not</em> support the
2071 * <tt>setValue</tt> operation.
2072 */
2073 public Set<Map.Entry<K,V>> descendingEntrySet() {
2074 DescendingEntrySet es = descendingEntrySet;
2075 return (es != null) ? es : (descendingEntrySet = new DescendingEntrySet());
2076 }
2077
2078 /* ---------------- AbstractMap Overrides -------------- */
2079
2080 /**
2081 * Compares the specified object with this map for equality.
2082 * Returns <tt>true</tt> if the given object is also a map and the
2083 * two maps represent the same mappings. More formally, two maps
2084 * <tt>m1</tt> and <tt>m2</tt> represent the same mappings if
2085 * <tt>m1.entrySet().equals(m2.entrySet())</tt>. This
2086 * operation may return misleading results if either map is
2087 * concurrently modified during execution of this method.
2088 *
2089 * @param o object to be compared for equality with this map
2090 * @return <tt>true</tt> if the specified object is equal to this map
2091 */
2092 public boolean equals(Object o) {
2093 if (o == this)
2094 return true;
2095 if (!(o instanceof Map))
2096 return false;
2097 Map<?,?> m = (Map<?,?>) o;
2098 try {
2099 for (Map.Entry<K,V> e : this.entrySet())
2100 if (! e.getValue().equals(m.get(e.getKey())))
2101 return false;
2102 for (Map.Entry<?,?> e : m.entrySet()) {
2103 Object k = e.getKey();
2104 Object v = e.getValue();
2105 if (k == null || v == null || !v.equals(get(k)))
2106 return false;
2107 }
2108 return true;
2109 } catch (ClassCastException unused) {
2110 return false;
2111 } catch (NullPointerException unused) {
2112 return false;
2113 }
2114 }
2115
2116 /* ------ ConcurrentMap API methods ------ */
2117
2118 /**
2119 * {@inheritDoc}
2120 *
2121 * @return the previous value associated with the specified key,
2122 * or <tt>null</tt> if there was no mapping for the key
2123 * @throws ClassCastException if the specified key cannot be compared
2124 * with the keys currently in the map
2125 * @throws NullPointerException if the specified key or value is null
2126 */
2127 public V putIfAbsent(K key, V value) {
2128 if (value == null)
2129 throw new NullPointerException();
2130 return doPut(key, value, true);
2131 }
2132
2133 /**
2134 * {@inheritDoc}
2135 *
2136 * @throws ClassCastException if the specified key cannot be compared
2137 * with the keys currently in the map
2138 * @throws NullPointerException if the specified key is null
2139 */
2140 public boolean remove(Object key, Object value) {
2141 if (value == null)
2142 return false;
2143 return doRemove(key, value) != null;
2144 }
2145
2146 /**
2147 * {@inheritDoc}
2148 *
2149 * @throws ClassCastException if the specified key cannot be compared
2150 * with the keys currently in the map
2151 * @throws NullPointerException if any of the arguments are null
2152 */
2153 public boolean replace(K key, V oldValue, V newValue) {
2154 if (oldValue == null || newValue == null)
2155 throw new NullPointerException();
2156 Comparable<? super K> k = comparable(key);
2157 for (;;) {
2158 Node<K,V> n = findNode(k);
2159 if (n == null)
2160 return false;
2161 Object v = n.value;
2162 if (v != null) {
2163 if (!oldValue.equals(v))
2164 return false;
2165 if (n.casValue(v, newValue))
2166 return true;
2167 }
2168 }
2169 }
2170
2171 /**
2172 * {@inheritDoc}
2173 *
2174 * @return the previous value associated with the specified key,
2175 * or <tt>null</tt> if there was no mapping for the key
2176 * @throws ClassCastException if the specified key cannot be compared
2177 * with the keys currently in the map
2178 * @throws NullPointerException if the specified key or value is null
2179 */
2180 public V replace(K key, V value) {
2181 if (value == null)
2182 throw new NullPointerException();
2183 Comparable<? super K> k = comparable(key);
2184 for (;;) {
2185 Node<K,V> n = findNode(k);
2186 if (n == null)
2187 return null;
2188 Object v = n.value;
2189 if (v != null && n.casValue(v, value))
2190 return (V)v;
2191 }
2192 }
2193
2194 /* ------ SortedMap API methods ------ */
2195
2196 public Comparator<? super K> comparator() {
2197 return comparator;
2198 }
2199
2200 /**
2201 * @throws NoSuchElementException {@inheritDoc}
2202 */
2203 public K firstKey() {
2204 Node<K,V> n = findFirst();
2205 if (n == null)
2206 throw new NoSuchElementException();
2207 return n.key;
2208 }
2209
2210 /**
2211 * @throws NoSuchElementException {@inheritDoc}
2212 */
2213 public K lastKey() {
2214 Node<K,V> n = findLast();
2215 if (n == null)
2216 throw new NoSuchElementException();
2217 return n.key;
2218 }
2219
2220 /**
2221 * @throws ClassCastException {@inheritDoc}
2222 * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is null
2223 * @throws IllegalArgumentException {@inheritDoc}
2224 */
2225 public ConcurrentNavigableMap<K,V> navigableSubMap(K fromKey, K toKey) {
2226 if (fromKey == null || toKey == null)
2227 throw new NullPointerException();
2228 return new ConcurrentSkipListSubMap<K,V>(this, fromKey, toKey);
2229 }
2230
2231 /**
2232 * @throws ClassCastException {@inheritDoc}
2233 * @throws NullPointerException if <tt>toKey</tt> is null
2234 * @throws IllegalArgumentException {@inheritDoc}
2235 */
2236 public ConcurrentNavigableMap<K,V> navigableHeadMap(K toKey) {
2237 if (toKey == null)
2238 throw new NullPointerException();
2239 return new ConcurrentSkipListSubMap<K,V>(this, null, toKey);
2240 }
2241
2242 /**
2243 * @throws ClassCastException {@inheritDoc}
2244 * @throws NullPointerException if <tt>fromKey</tt> is null
2245 * @throws IllegalArgumentException {@inheritDoc}
2246 */
2247 public ConcurrentNavigableMap<K,V> navigableTailMap(K fromKey) {
2248 if (fromKey == null)
2249 throw new NullPointerException();
2250 return new ConcurrentSkipListSubMap<K,V>(this, fromKey, null);
2251 }
2252
2253 /**
2254 * @throws ClassCastException {@inheritDoc}
2255 * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is null
2256 * @throws IllegalArgumentException {@inheritDoc}
2257 */
2258 public ConcurrentNavigableMap<K,V> subMap(K fromKey, K toKey) {
2259 return navigableSubMap(fromKey, toKey);
2260 }
2261
2262 /**
2263 * @throws ClassCastException {@inheritDoc}
2264 * @throws NullPointerException if <tt>toKey</tt> is null
2265 * @throws IllegalArgumentException {@inheritDoc}
2266 */
2267 public ConcurrentNavigableMap<K,V> headMap(K toKey) {
2268 return navigableHeadMap(toKey);
2269 }
2270
2271 /**
2272 * @throws ClassCastException {@inheritDoc}
2273 * @throws NullPointerException if <tt>fromKey</tt> is null
2274 * @throws IllegalArgumentException {@inheritDoc}
2275 */
2276 public ConcurrentNavigableMap<K,V> tailMap(K fromKey) {
2277 return navigableTailMap(fromKey);
2278 }
2279
2280 /* ---------------- Relational operations -------------- */
2281
2282 /**
2283 * Returns a key-value mapping associated with the greatest key
2284 * strictly less than the given key, or <tt>null</tt> if there is
2285 * no such key. The returned entry does <em>not</em> support the
2286 * <tt>Entry.setValue</tt> method.
2287 *
2288 * @throws ClassCastException {@inheritDoc}
2289 * @throws NullPointerException if the specified key is null
2290 */
2291 public Map.Entry<K,V> lowerEntry(K key) {
2292 return getNear(key, LT);
2293 }
2294
2295 /**
2296 * @throws ClassCastException {@inheritDoc}
2297 * @throws NullPointerException if the specified key is null
2298 */
2299 public K lowerKey(K key) {
2300 Node<K,V> n = findNear(key, LT);
2301 return (n == null)? null : n.key;
2302 }
2303
2304 /**
2305 * Returns a key-value mapping associated with the greatest key
2306 * less than or equal to the given key, or <tt>null</tt> if there
2307 * is no such key. The returned entry does <em>not</em> support
2308 * the <tt>Entry.setValue</tt> method.
2309 *
2310 * @param key the key
2311 * @throws ClassCastException {@inheritDoc}
2312 * @throws NullPointerException if the specified key is null
2313 */
2314 public Map.Entry<K,V> floorEntry(K key) {
2315 return getNear(key, LT|EQ);
2316 }
2317
2318 /**
2319 * @param key the key
2320 * @throws ClassCastException {@inheritDoc}
2321 * @throws NullPointerException if the specified key is null
2322 */
2323 public K floorKey(K key) {
2324 Node<K,V> n = findNear(key, LT|EQ);
2325 return (n == null)? null : n.key;
2326 }
2327
2328 /**
2329 * Returns a key-value mapping associated with the least key
2330 * greater than or equal to the given key, or <tt>null</tt> if
2331 * there is no such entry. The returned entry does <em>not</em>
2332 * support the <tt>Entry.setValue</tt> method.
2333 *
2334 * @throws ClassCastException {@inheritDoc}
2335 * @throws NullPointerException if the specified key is null
2336 */
2337 public Map.Entry<K,V> ceilingEntry(K key) {
2338 return getNear(key, GT|EQ);
2339 }
2340
2341 /**
2342 * @throws ClassCastException {@inheritDoc}
2343 * @throws NullPointerException if the specified key is null
2344 */
2345 public K ceilingKey(K key) {
2346 Node<K,V> n = findNear(key, GT|EQ);
2347 return (n == null)? null : n.key;
2348 }
2349
2350 /**
2351 * Returns a key-value mapping associated with the least key
2352 * strictly greater than the given key, or <tt>null</tt> if there
2353 * is no such key. The returned entry does <em>not</em> support
2354 * the <tt>Entry.setValue</tt> method.
2355 *
2356 * @param key the key
2357 * @throws ClassCastException {@inheritDoc}
2358 * @throws NullPointerException if the specified key is null
2359 */
2360 public Map.Entry<K,V> higherEntry(K key) {
2361 return getNear(key, GT);
2362 }
2363
2364 /**
2365 * @param key the key
2366 * @throws ClassCastException {@inheritDoc}
2367 * @throws NullPointerException if the specified key is null
2368 */
2369 public K higherKey(K key) {
2370 Node<K,V> n = findNear(key, GT);
2371 return (n == null)? null : n.key;
2372 }
2373
2374 /**
2375 * Returns a key-value mapping associated with the least
2376 * key in this map, or <tt>null</tt> if the map is empty.
2377 * The returned entry does <em>not</em> support
2378 * the <tt>Entry.setValue</tt> method.
2379 */
2380 public Map.Entry<K,V> firstEntry() {
2381 for (;;) {
2382 Node<K,V> n = findFirst();
2383 if (n == null)
2384 return null;
2385 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
2386 if (e != null)
2387 return e;
2388 }
2389 }
2390
2391 /**
2392 * Returns a key-value mapping associated with the greatest
2393 * key in this map, or <tt>null</tt> if the map is empty.
2394 * The returned entry does <em>not</em> support
2395 * the <tt>Entry.setValue</tt> method.
2396 */
2397 public Map.Entry<K,V> lastEntry() {
2398 for (;;) {
2399 Node<K,V> n = findLast();
2400 if (n == null)
2401 return null;
2402 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
2403 if (e != null)
2404 return e;
2405 }
2406 }
2407
2408 /**
2409 * Removes and returns a key-value mapping associated with
2410 * the least key in this map, or <tt>null</tt> if the map is empty.
2411 * The returned entry does <em>not</em> support
2412 * the <tt>Entry.setValue</tt> method.
2413 */
2414 public Map.Entry<K,V> pollFirstEntry() {
2415 return doRemoveFirstEntry();
2416 }
2417
2418 /**
2419 * Removes and returns a key-value mapping associated with
2420 * the greatest key in this map, or <tt>null</tt> if the map is empty.
2421 * The returned entry does <em>not</em> support
2422 * the <tt>Entry.setValue</tt> method.
2423 */
2424 public Map.Entry<K,V> pollLastEntry() {
2425 return doRemoveLastEntry();
2426 }
2427
2428
2429 /* ---------------- Iterators -------------- */
2430
2431 /**
2432 * Base of ten kinds of iterator classes:
2433 * ascending: {map, submap} X {key, value, entry}
2434 * descending: {map, submap} X {key, entry}
2435 */
2436 abstract class Iter {
2437 /** the last node returned by next() */
2438 Node<K,V> last;
2439 /** the next node to return from next(); */
2440 Node<K,V> next;
2441 /** Cache of next value field to maintain weak consistency */
2442 Object nextValue;
2443
2444 Iter() {}
2445
2446 public final boolean hasNext() {
2447 return next != null;
2448 }
2449
2450 /** Initializes ascending iterator for entire range. */
2451 final void initAscending() {
2452 for (;;) {
2453 next = findFirst();
2454 if (next == null)
2455 break;
2456 nextValue = next.value;
2457 if (nextValue != null && nextValue != next)
2458 break;
2459 }
2460 }
2461
2462 /**
2463 * Initializes ascending iterator starting at given least key,
2464 * or first node if least is <tt>null</tt>, but not greater or
2465 * equal to fence, or end if fence is <tt>null</tt>.
2466 */
2467 final void initAscending(K least, K fence) {
2468 for (;;) {
2469 next = findCeiling(least);
2470 if (next == null)
2471 break;
2472 nextValue = next.value;
2473 if (nextValue != null && nextValue != next) {
2474 if (fence != null && compare(fence, next.key) <= 0) {
2475 next = null;
2476 nextValue = null;
2477 }
2478 break;
2479 }
2480 }
2481 }
2482 /** Advances next to higher entry. */
2483 final void ascend() {
2484 if ((last = next) == null)
2485 throw new NoSuchElementException();
2486 for (;;) {
2487 next = next.next;
2488 if (next == null)
2489 break;
2490 nextValue = next.value;
2491 if (nextValue != null && nextValue != next)
2492 break;
2493 }
2494 }
2495
2496 /**
2497 * Version of ascend for submaps to stop at fence
2498 */
2499 final void ascend(K fence) {
2500 if ((last = next) == null)
2501 throw new NoSuchElementException();
2502 for (;;) {
2503 next = next.next;
2504 if (next == null)
2505 break;
2506 nextValue = next.value;
2507 if (nextValue != null && nextValue != next) {
2508 if (fence != null && compare(fence, next.key) <= 0) {
2509 next = null;
2510 nextValue = null;
2511 }
2512 break;
2513 }
2514 }
2515 }
2516
2517 /** Initializes descending iterator for entire range. */
2518 final void initDescending() {
2519 for (;;) {
2520 next = findLast();
2521 if (next == null)
2522 break;
2523 nextValue = next.value;
2524 if (nextValue != null && nextValue != next)
2525 break;
2526 }
2527 }
2528
2529 /**
2530 * Initializes descending iterator starting at key less
2531 * than or equal to given fence key, or
2532 * last node if fence is <tt>null</tt>, but not less than
2533 * least, or beginning if least is <tt>null</tt>.
2534 */
2535 final void initDescending(K least, K fence) {
2536 for (;;) {
2537 next = findLower(fence);
2538 if (next == null)
2539 break;
2540 nextValue = next.value;
2541 if (nextValue != null && nextValue != next) {
2542 if (least != null && compare(least, next.key) > 0) {
2543 next = null;
2544 nextValue = null;
2545 }
2546 break;
2547 }
2548 }
2549 }
2550
2551 /** Advances next to lower entry. */
2552 final void descend() {
2553 if ((last = next) == null)
2554 throw new NoSuchElementException();
2555 K k = last.key;
2556 for (;;) {
2557 next = findNear(k, LT);
2558 if (next == null)
2559 break;
2560 nextValue = next.value;
2561 if (nextValue != null && nextValue != next)
2562 break;
2563 }
2564 }
2565
2566 /**
2567 * Version of descend for submaps to stop at least
2568 */
2569 final void descend(K least) {
2570 if ((last = next) == null)
2571 throw new NoSuchElementException();
2572 K k = last.key;
2573 for (;;) {
2574 next = findNear(k, LT);
2575 if (next == null)
2576 break;
2577 nextValue = next.value;
2578 if (nextValue != null && nextValue != next) {
2579 if (least != null && compare(least, next.key) > 0) {
2580 next = null;
2581 nextValue = null;
2582 }
2583 break;
2584 }
2585 }
2586 }
2587
2588 public void remove() {
2589 Node<K,V> l = last;
2590 if (l == null)
2591 throw new IllegalStateException();
2592 // It would not be worth all of the overhead to directly
2593 // unlink from here. Using remove is fast enough.
2594 ConcurrentSkipListMap.this.remove(l.key);
2595 }
2596
2597 }
2598
2599 final class ValueIterator extends Iter implements Iterator<V> {
2600 ValueIterator() {
2601 initAscending();
2602 }
2603 public V next() {
2604 Object v = nextValue;
2605 ascend();
2606 return (V)v;
2607 }
2608 }
2609
2610 final class KeyIterator extends Iter implements Iterator<K> {
2611 KeyIterator() {
2612 initAscending();
2613 }
2614 public K next() {
2615 Node<K,V> n = next;
2616 ascend();
2617 return n.key;
2618 }
2619 }
2620
2621 class SubMapValueIterator extends Iter implements Iterator<V> {
2622 final K fence;
2623 SubMapValueIterator(K least, K fence) {
2624 initAscending(least, fence);
2625 this.fence = fence;
2626 }
2627
2628 public V next() {
2629 Object v = nextValue;
2630 ascend(fence);
2631 return (V)v;
2632 }
2633 }
2634
2635 final class SubMapKeyIterator extends Iter implements Iterator<K> {
2636 final K fence;
2637 SubMapKeyIterator(K least, K fence) {
2638 initAscending(least, fence);
2639 this.fence = fence;
2640 }
2641
2642 public K next() {
2643 Node<K,V> n = next;
2644 ascend(fence);
2645 return n.key;
2646 }
2647 }
2648
2649 final class DescendingKeyIterator extends Iter implements Iterator<K> {
2650 DescendingKeyIterator() {
2651 initDescending();
2652 }
2653 public K next() {
2654 Node<K,V> n = next;
2655 descend();
2656 return n.key;
2657 }
2658 }
2659
2660 final class DescendingSubMapKeyIterator extends Iter implements Iterator<K> {
2661 final K least;
2662 DescendingSubMapKeyIterator(K least, K fence) {
2663 initDescending(least, fence);
2664 this.least = least;
2665 }
2666
2667 public K next() {
2668 Node<K,V> n = next;
2669 descend(least);
2670 return n.key;
2671 }
2672 }
2673
2674 /**
2675 * Entry iterators use the same trick as in ConcurrentHashMap and
2676 * elsewhere of using the iterator itself to represent entries,
2677 * thus avoiding having to create entry objects in next().
2678 */
2679 abstract class EntryIter extends Iter implements Map.Entry<K,V> {
2680 /** Cache of last value returned */
2681 Object lastValue;
2682
2683 EntryIter() {
2684 }
2685
2686 public K getKey() {
2687 Node<K,V> l = last;
2688 if (l == null)
2689 throw new IllegalStateException();
2690 return l.key;
2691 }
2692
2693 public V getValue() {
2694 Object v = lastValue;
2695 if (last == null || v == null)
2696 throw new IllegalStateException();
2697 return (V)v;
2698 }
2699
2700 public V setValue(V value) {
2701 throw new UnsupportedOperationException();
2702 }
2703
2704 public boolean equals(Object o) {
2705 // If not acting as entry, just use default.
2706 if (last == null)
2707 return super.equals(o);
2708 if (!(o instanceof Map.Entry))
2709 return false;
2710 Map.Entry e = (Map.Entry)o;
2711 return (getKey().equals(e.getKey()) &&
2712 getValue().equals(e.getValue()));
2713 }
2714
2715 public int hashCode() {
2716 // If not acting as entry, just use default.
2717 if (last == null)
2718 return super.hashCode();
2719 return getKey().hashCode() ^ getValue().hashCode();
2720 }
2721
2722 public String toString() {
2723 // If not acting as entry, just use default.
2724 if (last == null)
2725 return super.toString();
2726 return getKey() + "=" + getValue();
2727 }
2728 }
2729
2730 final class EntryIterator extends EntryIter
2731 implements Iterator<Map.Entry<K,V>> {
2732 EntryIterator() {
2733 initAscending();
2734 }
2735 public Map.Entry<K,V> next() {
2736 lastValue = nextValue;
2737 ascend();
2738 return this;
2739 }
2740 }
2741
2742 final class SubMapEntryIterator extends EntryIter
2743 implements Iterator<Map.Entry<K,V>> {
2744 final K fence;
2745 SubMapEntryIterator(K least, K fence) {
2746 initAscending(least, fence);
2747 this.fence = fence;
2748 }
2749
2750 public Map.Entry<K,V> next() {
2751 lastValue = nextValue;
2752 ascend(fence);
2753 return this;
2754 }
2755 }
2756
2757 final class DescendingEntryIterator extends EntryIter
2758 implements Iterator<Map.Entry<K,V>> {
2759 DescendingEntryIterator() {
2760 initDescending();
2761 }
2762 public Map.Entry<K,V> next() {
2763 lastValue = nextValue;
2764 descend();
2765 return this;
2766 }
2767 }
2768
2769 final class DescendingSubMapEntryIterator extends EntryIter
2770 implements Iterator<Map.Entry<K,V>> {
2771 final K least;
2772 DescendingSubMapEntryIterator(K least, K fence) {
2773 initDescending(least, fence);
2774 this.least = least;
2775 }
2776
2777 public Map.Entry<K,V> next() {
2778 lastValue = nextValue;
2779 descend(least);
2780 return this;
2781 }
2782 }
2783
2784 // Factory methods for iterators needed by submaps and/or
2785 // ConcurrentSkipListSet
2786
2787 Iterator<K> keyIterator() {
2788 return new KeyIterator();
2789 }
2790
2791 Iterator<K> descendingKeyIterator() {
2792 return new DescendingKeyIterator();
2793 }
2794
2795 SubMapEntryIterator subMapEntryIterator(K least, K fence) {
2796 return new SubMapEntryIterator(least, fence);
2797 }
2798
2799 DescendingSubMapEntryIterator descendingSubMapEntryIterator(K least, K fence) {
2800 return new DescendingSubMapEntryIterator(least, fence);
2801 }
2802
2803 SubMapKeyIterator subMapKeyIterator(K least, K fence) {
2804 return new SubMapKeyIterator(least, fence);
2805 }
2806
2807 DescendingSubMapKeyIterator descendingSubMapKeyIterator(K least, K fence) {
2808 return new DescendingSubMapKeyIterator(least, fence);
2809 }
2810
2811 SubMapValueIterator subMapValueIterator(K least, K fence) {
2812 return new SubMapValueIterator(least, fence);
2813 }
2814
2815 /* ---------------- Views -------------- */
2816
2817 class KeySet extends AbstractSet<K> {
2818 public Iterator<K> iterator() {
2819 return new KeyIterator();
2820 }
2821 public boolean isEmpty() {
2822 return ConcurrentSkipListMap.this.isEmpty();
2823 }
2824 public int size() {
2825 return ConcurrentSkipListMap.this.size();
2826 }
2827 public boolean contains(Object o) {
2828 return ConcurrentSkipListMap.this.containsKey(o);
2829 }
2830 public boolean remove(Object o) {
2831 return ConcurrentSkipListMap.this.removep(o);
2832 }
2833 public void clear() {
2834 ConcurrentSkipListMap.this.clear();
2835 }
2836 public Object[] toArray() {
2837 Collection<K> c = new ArrayList<K>();
2838 for (Iterator<K> i = iterator(); i.hasNext(); )
2839 c.add(i.next());
2840 return c.toArray();
2841 }
2842 public <T> T[] toArray(T[] a) {
2843 Collection<K> c = new ArrayList<K>();
2844 for (Iterator<K> i = iterator(); i.hasNext(); )
2845 c.add(i.next());
2846 return c.toArray(a);
2847 }
2848 }
2849
2850 class DescendingKeySet extends KeySet {
2851 public Iterator<K> iterator() {
2852 return new DescendingKeyIterator();
2853 }
2854 }
2855
2856 final class Values extends AbstractCollection<V> {
2857 public Iterator<V> iterator() {
2858 return new ValueIterator();
2859 }
2860 public boolean isEmpty() {
2861 return ConcurrentSkipListMap.this.isEmpty();
2862 }
2863 public int size() {
2864 return ConcurrentSkipListMap.this.size();
2865 }
2866 public boolean contains(Object o) {
2867 return ConcurrentSkipListMap.this.containsValue(o);
2868 }
2869 public void clear() {
2870 ConcurrentSkipListMap.this.clear();
2871 }
2872 public Object[] toArray() {
2873 Collection<V> c = new ArrayList<V>();
2874 for (Iterator<V> i = iterator(); i.hasNext(); )
2875 c.add(i.next());
2876 return c.toArray();
2877 }
2878 public <T> T[] toArray(T[] a) {
2879 Collection<V> c = new ArrayList<V>();
2880 for (Iterator<V> i = iterator(); i.hasNext(); )
2881 c.add(i.next());
2882 return c.toArray(a);
2883 }
2884 }
2885
2886 class EntrySet extends AbstractSet<Map.Entry<K,V>> {
2887 public Iterator<Map.Entry<K,V>> iterator() {
2888 return new EntryIterator();
2889 }
2890 public boolean contains(Object o) {
2891 if (!(o instanceof Map.Entry))
2892 return false;
2893 Map.Entry<K,V> e = (Map.Entry<K,V>)o;
2894 V v = ConcurrentSkipListMap.this.get(e.getKey());
2895 return v != null && v.equals(e.getValue());
2896 }
2897 public boolean remove(Object o) {
2898 if (!(o instanceof Map.Entry))
2899 return false;
2900 Map.Entry<K,V> e = (Map.Entry<K,V>)o;
2901 return ConcurrentSkipListMap.this.remove(e.getKey(),
2902 e.getValue());
2903 }
2904 public boolean isEmpty() {
2905 return ConcurrentSkipListMap.this.isEmpty();
2906 }
2907 public int size() {
2908 return ConcurrentSkipListMap.this.size();
2909 }
2910 public void clear() {
2911 ConcurrentSkipListMap.this.clear();
2912 }
2913 public Object[] toArray() {
2914 Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>();
2915 for (Map.Entry<K,V> e : this)
2916 c.add(new AbstractMap.SimpleEntry<K,V>(e.getKey(),
2917 e.getValue()));
2918 return c.toArray();
2919 }
2920 public <T> T[] toArray(T[] a) {
2921 Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>();
2922 for (Map.Entry<K,V> e : this)
2923 c.add(new AbstractMap.SimpleEntry<K,V>(e.getKey(),
2924 e.getValue()));
2925 return c.toArray(a);
2926 }
2927 }
2928
2929 class DescendingEntrySet extends EntrySet {
2930 public Iterator<Map.Entry<K,V>> iterator() {
2931 return new DescendingEntryIterator();
2932 }
2933 }
2934
2935 /**
2936 * Submaps returned by {@link ConcurrentSkipListMap} submap operations
2937 * represent a subrange of mappings of their underlying
2938 * maps. Instances of this class support all methods of their
2939 * underlying maps, differing in that mappings outside their range are
2940 * ignored, and attempts to add mappings outside their ranges result
2941 * in {@link IllegalArgumentException}. Instances of this class are
2942 * constructed only using the <tt>subMap</tt>, <tt>headMap</tt>, and
2943 * <tt>tailMap</tt> methods of their underlying maps.
2944 */
2945 static class ConcurrentSkipListSubMap<K,V> extends AbstractMap<K,V>
2946 implements ConcurrentNavigableMap<K,V>, java.io.Serializable {
2947
2948 private static final long serialVersionUID = -7647078645895051609L;
2949
2950 /** Underlying map */
2951 private final ConcurrentSkipListMap<K,V> m;
2952 /** lower bound key, or null if from start */
2953 private final K least;
2954 /** upper fence key, or null if to end */
2955 private final K fence;
2956 // Lazily initialized view holders
2957 private transient Set<K> keySetView;
2958 private transient Set<Map.Entry<K,V>> entrySetView;
2959 private transient Collection<V> valuesView;
2960 private transient Set<K> descendingKeySetView;
2961 private transient Set<Map.Entry<K,V>> descendingEntrySetView;
2962
2963 /**
2964 * Creates a new submap.
2965 * @param least inclusive least value, or <tt>null</tt> if from start
2966 * @param fence exclusive upper bound or <tt>null</tt> if to end
2967 * @throws IllegalArgumentException if least and fence nonnull
2968 * and least greater than fence
2969 */
2970 ConcurrentSkipListSubMap(ConcurrentSkipListMap<K,V> map,
2971 K least, K fence) {
2972 if (least != null &&
2973 fence != null &&
2974 map.compare(least, fence) > 0)
2975 throw new IllegalArgumentException("inconsistent range");
2976 this.m = map;
2977 this.least = least;
2978 this.fence = fence;
2979 }
2980
2981 /* ---------------- Utilities -------------- */
2982
2983 boolean inHalfOpenRange(K key) {
2984 return m.inHalfOpenRange(key, least, fence);
2985 }
2986
2987 boolean inOpenRange(K key) {
2988 return m.inOpenRange(key, least, fence);
2989 }
2990
2991 ConcurrentSkipListMap.Node<K,V> firstNode() {
2992 return m.findCeiling(least);
2993 }
2994
2995 ConcurrentSkipListMap.Node<K,V> lastNode() {
2996 return m.findLower(fence);
2997 }
2998
2999 boolean isBeforeEnd(ConcurrentSkipListMap.Node<K,V> n) {
3000 return (n != null &&
3001 (fence == null ||
3002 n.key == null || // pass by markers and headers
3003 m.compare(fence, n.key) > 0));
3004 }
3005
3006 void checkKey(K key) throws IllegalArgumentException {
3007 if (!inHalfOpenRange(key))
3008 throw new IllegalArgumentException("key out of range");
3009 }
3010
3011 /**
3012 * Returns underlying map. Needed by ConcurrentSkipListSet
3013 * @return the backing map
3014 */
3015 ConcurrentSkipListMap<K,V> getMap() {
3016 return m;
3017 }
3018
3019 /**
3020 * Returns least key. Needed by ConcurrentSkipListSet
3021 * @return least key or <tt>null</tt> if from start
3022 */
3023 K getLeast() {
3024 return least;
3025 }
3026
3027 /**
3028 * Returns fence key. Needed by ConcurrentSkipListSet
3029 * @return fence key or <tt>null</tt> if to end
3030 */
3031 K getFence() {
3032 return fence;
3033 }
3034
3035
3036 /* ---------------- Map API methods -------------- */
3037
3038 public boolean containsKey(Object key) {
3039 K k = (K)key;
3040 return inHalfOpenRange(k) && m.containsKey(k);
3041 }
3042
3043 public V get(Object key) {
3044 K k = (K)key;
3045 return ((!inHalfOpenRange(k)) ? null : m.get(k));
3046 }
3047
3048 public V put(K key, V value) {
3049 checkKey(key);
3050 return m.put(key, value);
3051 }
3052
3053 public V remove(Object key) {
3054 K k = (K)key;
3055 return (!inHalfOpenRange(k))? null : m.remove(k);
3056 }
3057
3058 public int size() {
3059 long count = 0;
3060 for (ConcurrentSkipListMap.Node<K,V> n = firstNode();
3061 isBeforeEnd(n);
3062 n = n.next) {
3063 if (n.getValidValue() != null)
3064 ++count;
3065 }
3066 return count >= Integer.MAX_VALUE? Integer.MAX_VALUE : (int)count;
3067 }
3068
3069 public boolean isEmpty() {
3070 return !isBeforeEnd(firstNode());
3071 }
3072
3073 public boolean containsValue(Object value) {
3074 if (value == null)
3075 throw new NullPointerException();
3076 for (ConcurrentSkipListMap.Node<K,V> n = firstNode();
3077 isBeforeEnd(n);
3078 n = n.next) {
3079 V v = n.getValidValue();
3080 if (v != null && value.equals(v))
3081 return true;
3082 }
3083 return false;
3084 }
3085
3086 public void clear() {
3087 for (ConcurrentSkipListMap.Node<K,V> n = firstNode();
3088 isBeforeEnd(n);
3089 n = n.next) {
3090 if (n.getValidValue() != null)
3091 m.remove(n.key);
3092 }
3093 }
3094
3095 /* ---------------- ConcurrentMap API methods -------------- */
3096
3097 public V putIfAbsent(K key, V value) {
3098 checkKey(key);
3099 return m.putIfAbsent(key, value);
3100 }
3101
3102 public boolean remove(Object key, Object value) {
3103 K k = (K)key;
3104 return inHalfOpenRange(k) && m.remove(k, value);
3105 }
3106
3107 public boolean replace(K key, V oldValue, V newValue) {
3108 checkKey(key);
3109 return m.replace(key, oldValue, newValue);
3110 }
3111
3112 public V replace(K key, V value) {
3113 checkKey(key);
3114 return m.replace(key, value);
3115 }
3116
3117 /* ---------------- SortedMap API methods -------------- */
3118
3119 public Comparator<? super K> comparator() {
3120 return m.comparator();
3121 }
3122
3123 public K firstKey() {
3124 ConcurrentSkipListMap.Node<K,V> n = firstNode();
3125 if (isBeforeEnd(n))
3126 return n.key;
3127 else
3128 throw new NoSuchElementException();
3129 }
3130
3131 public K lastKey() {
3132 ConcurrentSkipListMap.Node<K,V> n = lastNode();
3133 if (n != null) {
3134 K last = n.key;
3135 if (inHalfOpenRange(last))
3136 return last;
3137 }
3138 throw new NoSuchElementException();
3139 }
3140
3141 public ConcurrentNavigableMap<K,V> navigableSubMap(K fromKey, K toKey) {
3142 if (fromKey == null || toKey == null)
3143 throw new NullPointerException();
3144 if (!inOpenRange(fromKey) || !inOpenRange(toKey))
3145 throw new IllegalArgumentException("key out of range");
3146 return new ConcurrentSkipListSubMap<K,V>(m, fromKey, toKey);
3147 }
3148
3149 public ConcurrentNavigableMap<K,V> navigableHeadMap(K toKey) {
3150 if (toKey == null)
3151 throw new NullPointerException();
3152 if (!inOpenRange(toKey))
3153 throw new IllegalArgumentException("key out of range");
3154 return new ConcurrentSkipListSubMap<K,V>(m, least, toKey);
3155 }
3156
3157 public ConcurrentNavigableMap<K,V> navigableTailMap(K fromKey) {
3158 if (fromKey == null)
3159 throw new NullPointerException();
3160 if (!inOpenRange(fromKey))
3161 throw new IllegalArgumentException("key out of range");
3162 return new ConcurrentSkipListSubMap<K,V>(m, fromKey, fence);
3163 }
3164
3165 public ConcurrentNavigableMap<K,V> subMap(K fromKey, K toKey) {
3166 return navigableSubMap(fromKey, toKey);
3167 }
3168
3169 public ConcurrentNavigableMap<K,V> headMap(K toKey) {
3170 return navigableHeadMap(toKey);
3171 }
3172
3173 public ConcurrentNavigableMap<K,V> tailMap(K fromKey) {
3174 return navigableTailMap(fromKey);
3175 }
3176
3177 /* ---------------- Relational methods -------------- */
3178
3179 public Map.Entry<K,V> ceilingEntry(K key) {
3180 return m.getNearEntry(key, m.GT|m.EQ, least, fence);
3181 }
3182
3183 public K ceilingKey(K key) {
3184 return m.getNearKey(key, m.GT|m.EQ, least, fence);
3185 }
3186
3187 public Map.Entry<K,V> lowerEntry(K key) {
3188 return m.getNearEntry(key, m.LT, least, fence);
3189 }
3190
3191 public K lowerKey(K key) {
3192 return m.getNearKey(key, m.LT, least, fence);
3193 }
3194
3195 public Map.Entry<K,V> floorEntry(K key) {
3196 return m.getNearEntry(key, m.LT|m.EQ, least, fence);
3197 }
3198
3199 public K floorKey(K key) {
3200 return m.getNearKey(key, m.LT|m.EQ, least, fence);
3201 }
3202
3203 public Map.Entry<K,V> higherEntry(K key) {
3204 return m.getNearEntry(key, m.GT, least, fence);
3205 }
3206
3207 public K higherKey(K key) {
3208 return m.getNearKey(key, m.GT, least, fence);
3209 }
3210
3211 public Map.Entry<K,V> firstEntry() {
3212 for (;;) {
3213 ConcurrentSkipListMap.Node<K,V> n = firstNode();
3214 if (!isBeforeEnd(n))
3215 return null;
3216 Map.Entry<K,V> e = n.createSnapshot();
3217 if (e != null)
3218 return e;
3219 }
3220 }
3221
3222 public Map.Entry<K,V> lastEntry() {
3223 for (;;) {
3224 ConcurrentSkipListMap.Node<K,V> n = lastNode();
3225 if (n == null || !inHalfOpenRange(n.key))
3226 return null;
3227 Map.Entry<K,V> e = n.createSnapshot();
3228 if (e != null)
3229 return e;
3230 }
3231 }
3232
3233 public Map.Entry<K,V> pollFirstEntry() {
3234 return m.removeFirstEntryOfSubrange(least, fence);
3235 }
3236
3237 public Map.Entry<K,V> pollLastEntry() {
3238 return m.removeLastEntryOfSubrange(least, fence);
3239 }
3240
3241 /* ---------------- Submap Views -------------- */
3242
3243 public Set<K> keySet() {
3244 Set<K> ks = keySetView;
3245 return (ks != null) ? ks : (keySetView = new KeySetView());
3246 }
3247
3248 class KeySetView extends AbstractSet<K> {
3249 public Iterator<K> iterator() {
3250 return m.subMapKeyIterator(least, fence);
3251 }
3252 public int size() {
3253 return ConcurrentSkipListSubMap.this.size();
3254 }
3255 public boolean isEmpty() {
3256 return ConcurrentSkipListSubMap.this.isEmpty();
3257 }
3258 public boolean contains(Object k) {
3259 return ConcurrentSkipListSubMap.this.containsKey(k);
3260 }
3261 public Object[] toArray() {
3262 Collection<K> c = new ArrayList<K>();
3263 for (Iterator<K> i = iterator(); i.hasNext(); )
3264 c.add(i.next());
3265 return c.toArray();
3266 }
3267 public <T> T[] toArray(T[] a) {
3268 Collection<K> c = new ArrayList<K>();
3269 for (Iterator<K> i = iterator(); i.hasNext(); )
3270 c.add(i.next());
3271 return c.toArray(a);
3272 }
3273 }
3274
3275 public Set<K> descendingKeySet() {
3276 Set<K> ks = descendingKeySetView;
3277 return (ks != null) ? ks : (descendingKeySetView = new DescendingKeySetView());
3278 }
3279
3280 class DescendingKeySetView extends KeySetView {
3281 public Iterator<K> iterator() {
3282 return m.descendingSubMapKeyIterator(least, fence);
3283 }
3284 }
3285
3286 public Collection<V> values() {
3287 Collection<V> vs = valuesView;
3288 return (vs != null) ? vs : (valuesView = new ValuesView());
3289 }
3290
3291 class ValuesView extends AbstractCollection<V> {
3292 public Iterator<V> iterator() {
3293 return m.subMapValueIterator(least, fence);
3294 }
3295 public int size() {
3296 return ConcurrentSkipListSubMap.this.size();
3297 }
3298 public boolean isEmpty() {
3299 return ConcurrentSkipListSubMap.this.isEmpty();
3300 }
3301 public boolean contains(Object v) {
3302 return ConcurrentSkipListSubMap.this.containsValue(v);
3303 }
3304 public Object[] toArray() {
3305 Collection<V> c = new ArrayList<V>();
3306 for (Iterator<V> i = iterator(); i.hasNext(); )
3307 c.add(i.next());
3308 return c.toArray();
3309 }
3310 public <T> T[] toArray(T[] a) {
3311 Collection<V> c = new ArrayList<V>();
3312 for (Iterator<V> i = iterator(); i.hasNext(); )
3313 c.add(i.next());
3314 return c.toArray(a);
3315 }
3316 }
3317
3318 public Set<Map.Entry<K,V>> entrySet() {
3319 Set<Map.Entry<K,V>> es = entrySetView;
3320 return (es != null) ? es : (entrySetView = new EntrySetView());
3321 }
3322
3323 class EntrySetView extends AbstractSet<Map.Entry<K,V>> {
3324 public Iterator<Map.Entry<K,V>> iterator() {
3325 return m.subMapEntryIterator(least, fence);
3326 }
3327 public int size() {
3328 return ConcurrentSkipListSubMap.this.size();
3329 }
3330 public boolean isEmpty() {
3331 return ConcurrentSkipListSubMap.this.isEmpty();
3332 }
3333 public boolean contains(Object o) {
3334 if (!(o instanceof Map.Entry))
3335 return false;
3336 Map.Entry<K,V> e = (Map.Entry<K,V>) o;
3337 K key = e.getKey();
3338 if (!inHalfOpenRange(key))
3339 return false;
3340 V v = m.get(key);
3341 return v != null && v.equals(e.getValue());
3342 }
3343 public boolean remove(Object o) {
3344 if (!(o instanceof Map.Entry))
3345 return false;
3346 Map.Entry<K,V> e = (Map.Entry<K,V>) o;
3347 K key = e.getKey();
3348 if (!inHalfOpenRange(key))
3349 return false;
3350 return m.remove(key, e.getValue());
3351 }
3352 public Object[] toArray() {
3353 Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>();
3354 for (Map.Entry<K,V> e : this)
3355 c.add(new AbstractMap.SimpleEntry<K,V>(e.getKey(),
3356 e.getValue()));
3357 return c.toArray();
3358 }
3359 public <T> T[] toArray(T[] a) {
3360 Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>();
3361 for (Map.Entry<K,V> e : this)
3362 c.add(new AbstractMap.SimpleEntry<K,V>(e.getKey(),
3363 e.getValue()));
3364 return c.toArray(a);
3365 }
3366 }
3367
3368 public Set<Map.Entry<K,V>> descendingEntrySet() {
3369 Set<Map.Entry<K,V>> es = descendingEntrySetView;
3370 return (es != null) ? es : (descendingEntrySetView = new DescendingEntrySetView());
3371 }
3372
3373 class DescendingEntrySetView extends EntrySetView {
3374 public Iterator<Map.Entry<K,V>> iterator() {
3375 return m.descendingSubMapEntryIterator(least, fence);
3376 }
3377 }
3378 }
3379 }