ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentSkipListMap.java
Revision: 1.63
Committed: Sat Dec 4 17:44:20 2010 UTC (13 years, 6 months ago) by dl
Branch: MAIN
Changes since 1.62: +1 -57 lines
Log Message:
Remove broken bypass

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package java.util.concurrent;
8 import java.util.*;
9 import java.util.concurrent.atomic.*;
10
11 /**
12 * A scalable concurrent {@link ConcurrentNavigableMap} implementation.
13 * The map is sorted according to the {@linkplain Comparable natural
14 * ordering} of its keys, or by a {@link Comparator} provided at map
15 * creation time, depending on which constructor is used.
16 *
17 * <p>This class implements a concurrent variant of <a
18 * href="http://www.cs.umd.edu/~pugh/">SkipLists</a> providing
19 * expected average <i>log(n)</i> time cost for the
20 * <tt>containsKey</tt>, <tt>get</tt>, <tt>put</tt> and
21 * <tt>remove</tt> operations and their variants. Insertion, removal,
22 * update, and access operations safely execute concurrently by
23 * multiple threads. Iterators are <i>weakly consistent</i>, returning
24 * elements reflecting the state of the map at some point at or since
25 * the creation of the iterator. They do <em>not</em> throw {@link
26 * ConcurrentModificationException}, and may proceed concurrently with
27 * other operations. Ascending key ordered views and their iterators
28 * are faster than descending ones.
29 *
30 * <p>All <tt>Map.Entry</tt> pairs returned by methods in this class
31 * and its views represent snapshots of mappings at the time they were
32 * produced. They do <em>not</em> support the <tt>Entry.setValue</tt>
33 * method. (Note however that it is possible to change mappings in the
34 * associated map using <tt>put</tt>, <tt>putIfAbsent</tt>, or
35 * <tt>replace</tt>, depending on exactly which effect you need.)
36 *
37 * <p>Beware that, unlike in most collections, the <tt>size</tt>
38 * method is <em>not</em> a constant-time operation. Because of the
39 * asynchronous nature of these maps, determining the current number
40 * of elements requires a traversal of the elements. Additionally,
41 * the bulk operations <tt>putAll</tt>, <tt>equals</tt>, and
42 * <tt>clear</tt> are <em>not</em> guaranteed to be performed
43 * atomically. For example, an iterator operating concurrently with a
44 * <tt>putAll</tt> operation might view only some of the added
45 * elements.
46 *
47 * <p>This class and its views and iterators implement all of the
48 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
49 * interfaces. Like most other concurrent collections, this class does
50 * <em>not</em> permit the use of <tt>null</tt> keys or values because some
51 * null return values cannot be reliably distinguished from the absence of
52 * elements.
53 *
54 * <p>This class is a member of the
55 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
56 * Java Collections Framework</a>.
57 *
58 * @author Doug Lea
59 * @param <K> the type of keys maintained by this map
60 * @param <V> the type of mapped values
61 * @since 1.6
62 */
63 public class ConcurrentSkipListMap<K,V> extends AbstractMap<K,V>
64 implements ConcurrentNavigableMap<K,V>,
65 Cloneable,
66 java.io.Serializable {
67 /*
68 * This class implements a tree-like two-dimensionally linked skip
69 * list in which the index levels are represented in separate
70 * nodes from the base nodes holding data. There are two reasons
71 * for taking this approach instead of the usual array-based
72 * structure: 1) Array based implementations seem to encounter
73 * more complexity and overhead 2) We can use cheaper algorithms
74 * for the heavily-traversed index lists than can be used for the
75 * base lists. Here's a picture of some of the basics for a
76 * possible list with 2 levels of index:
77 *
78 * Head nodes Index nodes
79 * +-+ right +-+ +-+
80 * |2|---------------->| |--------------------->| |->null
81 * +-+ +-+ +-+
82 * | down | |
83 * v v v
84 * +-+ +-+ +-+ +-+ +-+ +-+
85 * |1|----------->| |->| |------>| |----------->| |------>| |->null
86 * +-+ +-+ +-+ +-+ +-+ +-+
87 * v | | | | |
88 * Nodes next v v v v v
89 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
90 * | |->|A|->|B|->|C|->|D|->|E|->|F|->|G|->|H|->|I|->|J|->|K|->null
91 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
92 *
93 * The base lists use a variant of the HM linked ordered set
94 * algorithm. See Tim Harris, "A pragmatic implementation of
95 * non-blocking linked lists"
96 * http://www.cl.cam.ac.uk/~tlh20/publications.html and Maged
97 * Michael "High Performance Dynamic Lock-Free Hash Tables and
98 * List-Based Sets"
99 * http://www.research.ibm.com/people/m/michael/pubs.htm. The
100 * basic idea in these lists is to mark the "next" pointers of
101 * deleted nodes when deleting to avoid conflicts with concurrent
102 * insertions, and when traversing to keep track of triples
103 * (predecessor, node, successor) in order to detect when and how
104 * to unlink these deleted nodes.
105 *
106 * Rather than using mark-bits to mark list deletions (which can
107 * be slow and space-intensive using AtomicMarkedReference), nodes
108 * use direct CAS'able next pointers. On deletion, instead of
109 * marking a pointer, they splice in another node that can be
110 * thought of as standing for a marked pointer (indicating this by
111 * using otherwise impossible field values). Using plain nodes
112 * acts roughly like "boxed" implementations of marked pointers,
113 * but uses new nodes only when nodes are deleted, not for every
114 * link. This requires less space and supports faster
115 * traversal. Even if marked references were better supported by
116 * JVMs, traversal using this technique might still be faster
117 * because any search need only read ahead one more node than
118 * otherwise required (to check for trailing marker) rather than
119 * unmasking mark bits or whatever on each read.
120 *
121 * This approach maintains the essential property needed in the HM
122 * algorithm of changing the next-pointer of a deleted node so
123 * that any other CAS of it will fail, but implements the idea by
124 * changing the pointer to point to a different node, not by
125 * marking it. While it would be possible to further squeeze
126 * space by defining marker nodes not to have key/value fields, it
127 * isn't worth the extra type-testing overhead. The deletion
128 * markers are rarely encountered during traversal and are
129 * normally quickly garbage collected. (Note that this technique
130 * would not work well in systems without garbage collection.)
131 *
132 * In addition to using deletion markers, the lists also use
133 * nullness of value fields to indicate deletion, in a style
134 * similar to typical lazy-deletion schemes. If a node's value is
135 * null, then it is considered logically deleted and ignored even
136 * though it is still reachable. This maintains proper control of
137 * concurrent replace vs delete operations -- an attempted replace
138 * must fail if a delete beat it by nulling field, and a delete
139 * must return the last non-null value held in the field. (Note:
140 * Null, rather than some special marker, is used for value fields
141 * here because it just so happens to mesh with the Map API
142 * requirement that method get returns null if there is no
143 * mapping, which allows nodes to remain concurrently readable
144 * even when deleted. Using any other marker value here would be
145 * messy at best.)
146 *
147 * Here's the sequence of events for a deletion of node n with
148 * predecessor b and successor f, initially:
149 *
150 * +------+ +------+ +------+
151 * ... | b |------>| n |----->| f | ...
152 * +------+ +------+ +------+
153 *
154 * 1. CAS n's value field from non-null to null.
155 * From this point on, no public operations encountering
156 * the node consider this mapping to exist. However, other
157 * ongoing insertions and deletions might still modify
158 * n's next pointer.
159 *
160 * 2. CAS n's next pointer to point to a new marker node.
161 * From this point on, no other nodes can be appended to n.
162 * which avoids deletion errors in CAS-based linked lists.
163 *
164 * +------+ +------+ +------+ +------+
165 * ... | b |------>| n |----->|marker|------>| f | ...
166 * +------+ +------+ +------+ +------+
167 *
168 * 3. CAS b's next pointer over both n and its marker.
169 * From this point on, no new traversals will encounter n,
170 * and it can eventually be GCed.
171 * +------+ +------+
172 * ... | b |----------------------------------->| f | ...
173 * +------+ +------+
174 *
175 * A failure at step 1 leads to simple retry due to a lost race
176 * with another operation. Steps 2-3 can fail because some other
177 * thread noticed during a traversal a node with null value and
178 * helped out by marking and/or unlinking. This helping-out
179 * ensures that no thread can become stuck waiting for progress of
180 * the deleting thread. The use of marker nodes slightly
181 * complicates helping-out code because traversals must track
182 * consistent reads of up to four nodes (b, n, marker, f), not
183 * just (b, n, f), although the next field of a marker is
184 * immutable, and once a next field is CAS'ed to point to a
185 * marker, it never again changes, so this requires less care.
186 *
187 * Skip lists add indexing to this scheme, so that the base-level
188 * traversals start close to the locations being found, inserted
189 * or deleted -- usually base level traversals only traverse a few
190 * nodes. This doesn't change the basic algorithm except for the
191 * need to make sure base traversals start at predecessors (here,
192 * b) that are not (structurally) deleted, otherwise retrying
193 * after processing the deletion.
194 *
195 * Index levels are maintained as lists with volatile next fields,
196 * using CAS to link and unlink. Races are allowed in index-list
197 * operations that can (rarely) fail to link in a new index node
198 * or delete one. (We can't do this of course for data nodes.)
199 * However, even when this happens, the index lists remain sorted,
200 * so correctly serve as indices. This can impact performance,
201 * but since skip lists are probabilistic anyway, the net result
202 * is that under contention, the effective "p" value may be lower
203 * than its nominal value. And race windows are kept small enough
204 * that in practice these failures are rare, even under a lot of
205 * contention.
206 *
207 * The fact that retries (for both base and index lists) are
208 * relatively cheap due to indexing allows some minor
209 * simplifications of retry logic. Traversal restarts are
210 * performed after most "helping-out" CASes. This isn't always
211 * strictly necessary, but the implicit backoffs tend to help
212 * reduce other downstream failed CAS's enough to outweigh restart
213 * cost. This worsens the worst case, but seems to improve even
214 * highly contended cases.
215 *
216 * Unlike most skip-list implementations, index insertion and
217 * deletion here require a separate traversal pass occuring after
218 * the base-level action, to add or remove index nodes. This adds
219 * to single-threaded overhead, but improves contended
220 * multithreaded performance by narrowing interference windows,
221 * and allows deletion to ensure that all index nodes will be made
222 * unreachable upon return from a public remove operation, thus
223 * avoiding unwanted garbage retention. This is more important
224 * here than in some other data structures because we cannot null
225 * out node fields referencing user keys since they might still be
226 * read by other ongoing traversals.
227 *
228 * Indexing uses skip list parameters that maintain good search
229 * performance while using sparser-than-usual indices: The
230 * hardwired parameters k=1, p=0.5 (see method randomLevel) mean
231 * that about one-quarter of the nodes have indices. Of those that
232 * do, half have one level, a quarter have two, and so on (see
233 * Pugh's Skip List Cookbook, sec 3.4). The expected total space
234 * requirement for a map is slightly less than for the current
235 * implementation of java.util.TreeMap.
236 *
237 * Changing the level of the index (i.e, the height of the
238 * tree-like structure) also uses CAS. The head index has initial
239 * level/height of one. Creation of an index with height greater
240 * than the current level adds a level to the head index by
241 * CAS'ing on a new top-most head. To maintain good performance
242 * after a lot of removals, deletion methods heuristically try to
243 * reduce the height if the topmost levels appear to be empty.
244 * This may encounter races in which it possible (but rare) to
245 * reduce and "lose" a level just as it is about to contain an
246 * index (that will then never be encountered). This does no
247 * structural harm, and in practice appears to be a better option
248 * than allowing unrestrained growth of levels.
249 *
250 * The code for all this is more verbose than you'd like. Most
251 * operations entail locating an element (or position to insert an
252 * element). The code to do this can't be nicely factored out
253 * because subsequent uses require a snapshot of predecessor
254 * and/or successor and/or value fields which can't be returned
255 * all at once, at least not without creating yet another object
256 * to hold them -- creating such little objects is an especially
257 * bad idea for basic internal search operations because it adds
258 * to GC overhead. (This is one of the few times I've wished Java
259 * had macros.) Instead, some traversal code is interleaved within
260 * insertion and removal operations. The control logic to handle
261 * all the retry conditions is sometimes twisty. Most search is
262 * broken into 2 parts. findPredecessor() searches index nodes
263 * only, returning a base-level predecessor of the key. findNode()
264 * finishes out the base-level search. Even with this factoring,
265 * there is a fair amount of near-duplication of code to handle
266 * variants.
267 *
268 * For explanation of algorithms sharing at least a couple of
269 * features with this one, see Mikhail Fomitchev's thesis
270 * (http://www.cs.yorku.ca/~mikhail/), Keir Fraser's thesis
271 * (http://www.cl.cam.ac.uk/users/kaf24/), and Hakan Sundell's
272 * thesis (http://www.cs.chalmers.se/~phs/).
273 *
274 * Given the use of tree-like index nodes, you might wonder why
275 * this doesn't use some kind of search tree instead, which would
276 * support somewhat faster search operations. The reason is that
277 * there are no known efficient lock-free insertion and deletion
278 * algorithms for search trees. The immutability of the "down"
279 * links of index nodes (as opposed to mutable "left" fields in
280 * true trees) makes this tractable using only CAS operations.
281 *
282 * Notation guide for local variables
283 * Node: b, n, f for predecessor, node, successor
284 * Index: q, r, d for index node, right, down.
285 * t for another index node
286 * Head: h
287 * Levels: j
288 * Keys: k, key
289 * Values: v, value
290 * Comparisons: c
291 */
292
293 private static final long serialVersionUID = -8627078645895051609L;
294
295 /**
296 * Generates the initial random seed for the cheaper per-instance
297 * random number generators used in randomLevel.
298 */
299 private static final Random seedGenerator = new Random();
300
301 /**
302 * Special value used to identify base-level header
303 */
304 private static final Object BASE_HEADER = new Object();
305
306 /**
307 * The topmost head index of the skiplist.
308 */
309 private transient volatile HeadIndex<K,V> head;
310
311 /**
312 * The comparator used to maintain order in this map, or null
313 * if using natural ordering.
314 * @serial
315 */
316 private final Comparator<? super K> comparator;
317
318 /**
319 * Seed for simple random number generator. Not volatile since it
320 * doesn't matter too much if different threads don't see updates.
321 */
322 private transient int randomSeed;
323
324 /** Lazily initialized key set */
325 private transient KeySet keySet;
326 /** Lazily initialized entry set */
327 private transient EntrySet entrySet;
328 /** Lazily initialized values collection */
329 private transient Values values;
330 /** Lazily initialized descending key set */
331 private transient ConcurrentNavigableMap<K,V> descendingMap;
332
333 /**
334 * Initializes or resets state. Needed by constructors, clone,
335 * clear, readObject. and ConcurrentSkipListSet.clone.
336 * (Note that comparator must be separately initialized.)
337 */
338 final void initialize() {
339 keySet = null;
340 entrySet = null;
341 values = null;
342 descendingMap = null;
343 randomSeed = seedGenerator.nextInt() | 0x0100; // ensure nonzero
344 head = new HeadIndex<K,V>(new Node<K,V>(null, BASE_HEADER, null),
345 null, null, 1);
346 }
347
348 /**
349 * compareAndSet head node
350 */
351 private boolean casHead(HeadIndex<K,V> cmp, HeadIndex<K,V> val) {
352 return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
353 }
354
355 /* ---------------- Nodes -------------- */
356
357 /**
358 * Nodes hold keys and values, and are singly linked in sorted
359 * order, possibly with some intervening marker nodes. The list is
360 * headed by a dummy node accessible as head.node. The value field
361 * is declared only as Object because it takes special non-V
362 * values for marker and header nodes.
363 */
364 static final class Node<K,V> {
365 final K key;
366 volatile Object value;
367 volatile Node<K,V> next;
368
369 /**
370 * Creates a new regular node.
371 */
372 Node(K key, Object value, Node<K,V> next) {
373 this.key = key;
374 this.value = value;
375 this.next = next;
376 }
377
378 /**
379 * Creates a new marker node. A marker is distinguished by
380 * having its value field point to itself. Marker nodes also
381 * have null keys, a fact that is exploited in a few places,
382 * but this doesn't distinguish markers from the base-level
383 * header node (head.node), which also has a null key.
384 */
385 Node(Node<K,V> next) {
386 this.key = null;
387 this.value = this;
388 this.next = next;
389 }
390
391 /**
392 * compareAndSet value field
393 */
394 boolean casValue(Object cmp, Object val) {
395 return UNSAFE.compareAndSwapObject(this, valueOffset, cmp, val);
396 }
397
398 /**
399 * compareAndSet next field
400 */
401 boolean casNext(Node<K,V> cmp, Node<K,V> val) {
402 return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
403 }
404
405 /**
406 * Returns true if this node is a marker. This method isn't
407 * actually called in any current code checking for markers
408 * because callers will have already read value field and need
409 * to use that read (not another done here) and so directly
410 * test if value points to node.
411 * @param n a possibly null reference to a node
412 * @return true if this node is a marker node
413 */
414 boolean isMarker() {
415 return value == this;
416 }
417
418 /**
419 * Returns true if this node is the header of base-level list.
420 * @return true if this node is header node
421 */
422 boolean isBaseHeader() {
423 return value == BASE_HEADER;
424 }
425
426 /**
427 * Tries to append a deletion marker to this node.
428 * @param f the assumed current successor of this node
429 * @return true if successful
430 */
431 boolean appendMarker(Node<K,V> f) {
432 return casNext(f, new Node<K,V>(f));
433 }
434
435 /**
436 * Helps out a deletion by appending marker or unlinking from
437 * predecessor. This is called during traversals when value
438 * field seen to be null.
439 * @param b predecessor
440 * @param f successor
441 */
442 void helpDelete(Node<K,V> b, Node<K,V> f) {
443 /*
444 * Rechecking links and then doing only one of the
445 * help-out stages per call tends to minimize CAS
446 * interference among helping threads.
447 */
448 if (f == next && this == b.next) {
449 if (f == null || f.value != f) // not already marked
450 appendMarker(f);
451 else
452 b.casNext(this, f.next);
453 }
454 }
455
456 /**
457 * Returns value if this node contains a valid key-value pair,
458 * else null.
459 * @return this node's value if it isn't a marker or header or
460 * is deleted, else null.
461 */
462 V getValidValue() {
463 Object v = value;
464 if (v == this || v == BASE_HEADER)
465 return null;
466 return (V)v;
467 }
468
469 /**
470 * Creates and returns a new SimpleImmutableEntry holding current
471 * mapping if this node holds a valid value, else null.
472 * @return new entry or null
473 */
474 AbstractMap.SimpleImmutableEntry<K,V> createSnapshot() {
475 V v = getValidValue();
476 if (v == null)
477 return null;
478 return new AbstractMap.SimpleImmutableEntry<K,V>(key, v);
479 }
480
481 // Unsafe mechanics
482 private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
483 private static final long valueOffset =
484 objectFieldOffset(UNSAFE, "value", Node.class);
485 private static final long nextOffset =
486 objectFieldOffset(UNSAFE, "next", Node.class);
487
488 }
489
490 /* ---------------- Indexing -------------- */
491
492 /**
493 * Index nodes represent the levels of the skip list. Note that
494 * even though both Nodes and Indexes have forward-pointing
495 * fields, they have different types and are handled in different
496 * ways, that can't nicely be captured by placing field in a
497 * shared abstract class.
498 */
499 static class Index<K,V> {
500 final Node<K,V> node;
501 final Index<K,V> down;
502 volatile Index<K,V> right;
503
504 /**
505 * Creates index node with given values.
506 */
507 Index(Node<K,V> node, Index<K,V> down, Index<K,V> right) {
508 this.node = node;
509 this.down = down;
510 this.right = right;
511 }
512
513 /**
514 * compareAndSet right field
515 */
516 final boolean casRight(Index<K,V> cmp, Index<K,V> val) {
517 return UNSAFE.compareAndSwapObject(this, rightOffset, cmp, val);
518 }
519
520 /**
521 * Returns true if the node this indexes has been deleted.
522 * @return true if indexed node is known to be deleted
523 */
524 final boolean indexesDeletedNode() {
525 return node.value == null;
526 }
527
528 /**
529 * Tries to CAS newSucc as successor. To minimize races with
530 * unlink that may lose this index node, if the node being
531 * indexed is known to be deleted, it doesn't try to link in.
532 * @param succ the expected current successor
533 * @param newSucc the new successor
534 * @return true if successful
535 */
536 final boolean link(Index<K,V> succ, Index<K,V> newSucc) {
537 Node<K,V> n = node;
538 newSucc.right = succ;
539 return n.value != null && casRight(succ, newSucc);
540 }
541
542 /**
543 * Tries to CAS right field to skip over apparent successor
544 * succ. Fails (forcing a retraversal by caller) if this node
545 * is known to be deleted.
546 * @param succ the expected current successor
547 * @return true if successful
548 */
549 final boolean unlink(Index<K,V> succ) {
550 return !indexesDeletedNode() && casRight(succ, succ.right);
551 }
552
553 // Unsafe mechanics
554 private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
555 private static final long rightOffset =
556 objectFieldOffset(UNSAFE, "right", Index.class);
557
558 }
559
560 /* ---------------- Head nodes -------------- */
561
562 /**
563 * Nodes heading each level keep track of their level.
564 */
565 static final class HeadIndex<K,V> extends Index<K,V> {
566 final int level;
567 HeadIndex(Node<K,V> node, Index<K,V> down, Index<K,V> right, int level) {
568 super(node, down, right);
569 this.level = level;
570 }
571 }
572
573 /* ---------------- Comparison utilities -------------- */
574
575 /**
576 * Represents a key with a comparator as a Comparable.
577 *
578 * Because most sorted collections seem to use natural ordering on
579 * Comparables (Strings, Integers, etc), most internal methods are
580 * geared to use them. This is generally faster than checking
581 * per-comparison whether to use comparator or comparable because
582 * it doesn't require a (Comparable) cast for each comparison.
583 * (Optimizers can only sometimes remove such redundant checks
584 * themselves.) When Comparators are used,
585 * ComparableUsingComparators are created so that they act in the
586 * same way as natural orderings. This penalizes use of
587 * Comparators vs Comparables, which seems like the right
588 * tradeoff.
589 */
590 static final class ComparableUsingComparator<K> implements Comparable<K> {
591 final K actualKey;
592 final Comparator<? super K> cmp;
593 ComparableUsingComparator(K key, Comparator<? super K> cmp) {
594 this.actualKey = key;
595 this.cmp = cmp;
596 }
597 public int compareTo(K k2) {
598 return cmp.compare(actualKey, k2);
599 }
600 }
601
602 /**
603 * If using comparator, return a ComparableUsingComparator, else
604 * cast key as Comparable, which may cause ClassCastException,
605 * which is propagated back to caller.
606 */
607 private Comparable<? super K> comparable(Object key)
608 throws ClassCastException {
609 if (key == null)
610 throw new NullPointerException();
611 if (comparator != null)
612 return new ComparableUsingComparator<K>((K)key, comparator);
613 else
614 return (Comparable<? super K>)key;
615 }
616
617 /**
618 * Compares using comparator or natural ordering. Used when the
619 * ComparableUsingComparator approach doesn't apply.
620 */
621 int compare(K k1, K k2) throws ClassCastException {
622 Comparator<? super K> cmp = comparator;
623 if (cmp != null)
624 return cmp.compare(k1, k2);
625 else
626 return ((Comparable<? super K>)k1).compareTo(k2);
627 }
628
629 /**
630 * Returns true if given key greater than or equal to least and
631 * strictly less than fence, bypassing either test if least or
632 * fence are null. Needed mainly in submap operations.
633 */
634 boolean inHalfOpenRange(K key, K least, K fence) {
635 if (key == null)
636 throw new NullPointerException();
637 return ((least == null || compare(key, least) >= 0) &&
638 (fence == null || compare(key, fence) < 0));
639 }
640
641 /**
642 * Returns true if given key greater than or equal to least and less
643 * or equal to fence. Needed mainly in submap operations.
644 */
645 boolean inOpenRange(K key, K least, K fence) {
646 if (key == null)
647 throw new NullPointerException();
648 return ((least == null || compare(key, least) >= 0) &&
649 (fence == null || compare(key, fence) <= 0));
650 }
651
652 /* ---------------- Traversal -------------- */
653
654 /**
655 * Returns a base-level node with key strictly less than given key,
656 * or the base-level header if there is no such node. Also
657 * unlinks indexes to deleted nodes found along the way. Callers
658 * rely on this side-effect of clearing indices to deleted nodes.
659 * @param key the key
660 * @return a predecessor of key
661 */
662 private Node<K,V> findPredecessor(Comparable<? super K> key) {
663 if (key == null)
664 throw new NullPointerException(); // don't postpone errors
665 for (;;) {
666 Index<K,V> q = head;
667 Index<K,V> r = q.right;
668 for (;;) {
669 if (r != null) {
670 Node<K,V> n = r.node;
671 K k = n.key;
672 if (n.value == null) {
673 if (!q.unlink(r))
674 break; // restart
675 r = q.right; // reread r
676 continue;
677 }
678 if (key.compareTo(k) > 0) {
679 q = r;
680 r = r.right;
681 continue;
682 }
683 }
684 Index<K,V> d = q.down;
685 if (d != null) {
686 q = d;
687 r = d.right;
688 } else
689 return q.node;
690 }
691 }
692 }
693
694 /**
695 * Returns node holding key or null if no such, clearing out any
696 * deleted nodes seen along the way. Repeatedly traverses at
697 * base-level looking for key starting at predecessor returned
698 * from findPredecessor, processing base-level deletions as
699 * encountered. Some callers rely on this side-effect of clearing
700 * deleted nodes.
701 *
702 * Restarts occur, at traversal step centered on node n, if:
703 *
704 * (1) After reading n's next field, n is no longer assumed
705 * predecessor b's current successor, which means that
706 * we don't have a consistent 3-node snapshot and so cannot
707 * unlink any subsequent deleted nodes encountered.
708 *
709 * (2) n's value field is null, indicating n is deleted, in
710 * which case we help out an ongoing structural deletion
711 * before retrying. Even though there are cases where such
712 * unlinking doesn't require restart, they aren't sorted out
713 * here because doing so would not usually outweigh cost of
714 * restarting.
715 *
716 * (3) n is a marker or n's predecessor's value field is null,
717 * indicating (among other possibilities) that
718 * findPredecessor returned a deleted node. We can't unlink
719 * the node because we don't know its predecessor, so rely
720 * on another call to findPredecessor to notice and return
721 * some earlier predecessor, which it will do. This check is
722 * only strictly needed at beginning of loop, (and the
723 * b.value check isn't strictly needed at all) but is done
724 * each iteration to help avoid contention with other
725 * threads by callers that will fail to be able to change
726 * links, and so will retry anyway.
727 *
728 * The traversal loops in doPut, doRemove, and findNear all
729 * include the same three kinds of checks. And specialized
730 * versions appear in findFirst, and findLast and their
731 * variants. They can't easily share code because each uses the
732 * reads of fields held in locals occurring in the orders they
733 * were performed.
734 *
735 * @param key the key
736 * @return node holding key, or null if no such
737 */
738 private Node<K,V> findNode(Comparable<? super K> key) {
739 for (;;) {
740 Node<K,V> b = findPredecessor(key);
741 Node<K,V> n = b.next;
742 for (;;) {
743 if (n == null)
744 return null;
745 Node<K,V> f = n.next;
746 if (n != b.next) // inconsistent read
747 break;
748 Object v = n.value;
749 if (v == null) { // n is deleted
750 n.helpDelete(b, f);
751 break;
752 }
753 if (v == n || b.value == null) // b is deleted
754 break;
755 int c = key.compareTo(n.key);
756 if (c == 0)
757 return n;
758 if (c < 0)
759 return null;
760 b = n;
761 n = f;
762 }
763 }
764 }
765
766 /**
767 * Get value for key using findNode
768 * @param okey the key
769 * @return the value, or null if absent
770 */
771 private V doGet(Object okey) {
772 Comparable<? super K> key = comparable(okey);
773 /*
774 * Loop needed here and elsewhere in case value field goes
775 * null just as it is about to be returned, in which case we
776 * lost a race with a deletion, so must retry.
777 */
778 for (;;) {
779 Node<K,V> n = findNode(key);
780 if (n == null)
781 return null;
782 Object v = n.value;
783 if (v != null)
784 return (V)v;
785 }
786 }
787
788 /* ---------------- Insertion -------------- */
789
790 /**
791 * Main insertion method. Adds element if not present, or
792 * replaces value if present and onlyIfAbsent is false.
793 * @param kkey the key
794 * @param value the value that must be associated with key
795 * @param onlyIfAbsent if should not insert if already present
796 * @return the old value, or null if newly inserted
797 */
798 private V doPut(K kkey, V value, boolean onlyIfAbsent) {
799 Comparable<? super K> key = comparable(kkey);
800 for (;;) {
801 Node<K,V> b = findPredecessor(key);
802 Node<K,V> n = b.next;
803 for (;;) {
804 if (n != null) {
805 Node<K,V> f = n.next;
806 if (n != b.next) // inconsistent read
807 break;
808 Object v = n.value;
809 if (v == null) { // n is deleted
810 n.helpDelete(b, f);
811 break;
812 }
813 if (v == n || b.value == null) // b is deleted
814 break;
815 int c = key.compareTo(n.key);
816 if (c > 0) {
817 b = n;
818 n = f;
819 continue;
820 }
821 if (c == 0) {
822 if (onlyIfAbsent || n.casValue(v, value))
823 return (V)v;
824 else
825 break; // restart if lost race to replace value
826 }
827 // else c < 0; fall through
828 }
829
830 Node<K,V> z = new Node<K,V>(kkey, value, n);
831 if (!b.casNext(n, z))
832 break; // restart if lost race to append to b
833 int level = randomLevel();
834 if (level > 0)
835 insertIndex(z, level);
836 return null;
837 }
838 }
839 }
840
841 /**
842 * Returns a random level for inserting a new node.
843 * Hardwired to k=1, p=0.5, max 31 (see above and
844 * Pugh's "Skip List Cookbook", sec 3.4).
845 *
846 * This uses the simplest of the generators described in George
847 * Marsaglia's "Xorshift RNGs" paper. This is not a high-quality
848 * generator but is acceptable here.
849 */
850 private int randomLevel() {
851 int x = randomSeed;
852 x ^= x << 13;
853 x ^= x >>> 17;
854 randomSeed = x ^= x << 5;
855 if ((x & 0x80000001) != 0) // test highest and lowest bits
856 return 0;
857 int level = 1;
858 while (((x >>>= 1) & 1) != 0) ++level;
859 return level;
860 }
861
862 /**
863 * Creates and adds index nodes for the given node.
864 * @param z the node
865 * @param level the level of the index
866 */
867 private void insertIndex(Node<K,V> z, int level) {
868 HeadIndex<K,V> h = head;
869 int max = h.level;
870
871 if (level <= max) {
872 Index<K,V> idx = null;
873 for (int i = 1; i <= level; ++i)
874 idx = new Index<K,V>(z, idx, null);
875 addIndex(idx, h, level);
876
877 } else { // Add a new level
878 /*
879 * To reduce interference by other threads checking for
880 * empty levels in tryReduceLevel, new levels are added
881 * with initialized right pointers. Which in turn requires
882 * keeping levels in an array to access them while
883 * creating new head index nodes from the opposite
884 * direction.
885 */
886 level = max + 1;
887 Index<K,V>[] idxs = (Index<K,V>[])new Index[level+1];
888 Index<K,V> idx = null;
889 for (int i = 1; i <= level; ++i)
890 idxs[i] = idx = new Index<K,V>(z, idx, null);
891
892 HeadIndex<K,V> oldh;
893 int k;
894 for (;;) {
895 oldh = head;
896 int oldLevel = oldh.level;
897 if (level <= oldLevel) { // lost race to add level
898 k = level;
899 break;
900 }
901 HeadIndex<K,V> newh = oldh;
902 Node<K,V> oldbase = oldh.node;
903 for (int j = oldLevel+1; j <= level; ++j)
904 newh = new HeadIndex<K,V>(oldbase, newh, idxs[j], j);
905 if (casHead(oldh, newh)) {
906 k = oldLevel;
907 break;
908 }
909 }
910 addIndex(idxs[k], oldh, k);
911 }
912 }
913
914 /**
915 * Adds given index nodes from given level down to 1.
916 * @param idx the topmost index node being inserted
917 * @param h the value of head to use to insert. This must be
918 * snapshotted by callers to provide correct insertion level
919 * @param indexLevel the level of the index
920 */
921 private void addIndex(Index<K,V> idx, HeadIndex<K,V> h, int indexLevel) {
922 // Track next level to insert in case of retries
923 int insertionLevel = indexLevel;
924 Comparable<? super K> key = comparable(idx.node.key);
925 if (key == null) throw new NullPointerException();
926
927 // Similar to findPredecessor, but adding index nodes along
928 // path to key.
929 for (;;) {
930 int j = h.level;
931 Index<K,V> q = h;
932 Index<K,V> r = q.right;
933 Index<K,V> t = idx;
934 for (;;) {
935 if (r != null) {
936 Node<K,V> n = r.node;
937 // compare before deletion check avoids needing recheck
938 int c = key.compareTo(n.key);
939 if (n.value == null) {
940 if (!q.unlink(r))
941 break;
942 r = q.right;
943 continue;
944 }
945 if (c > 0) {
946 q = r;
947 r = r.right;
948 continue;
949 }
950 }
951
952 if (j == insertionLevel) {
953 // Don't insert index if node already deleted
954 if (t.indexesDeletedNode()) {
955 findNode(key); // cleans up
956 return;
957 }
958 if (!q.link(r, t))
959 break; // restart
960 if (--insertionLevel == 0) {
961 // need final deletion check before return
962 if (t.indexesDeletedNode())
963 findNode(key);
964 return;
965 }
966 }
967
968 if (--j >= insertionLevel && j < indexLevel)
969 t = t.down;
970 q = q.down;
971 r = q.right;
972 }
973 }
974 }
975
976 /* ---------------- Deletion -------------- */
977
978 /**
979 * Main deletion method. Locates node, nulls value, appends a
980 * deletion marker, unlinks predecessor, removes associated index
981 * nodes, and possibly reduces head index level.
982 *
983 * Index nodes are cleared out simply by calling findPredecessor.
984 * which unlinks indexes to deleted nodes found along path to key,
985 * which will include the indexes to this node. This is done
986 * unconditionally. We can't check beforehand whether there are
987 * index nodes because it might be the case that some or all
988 * indexes hadn't been inserted yet for this node during initial
989 * search for it, and we'd like to ensure lack of garbage
990 * retention, so must call to be sure.
991 *
992 * @param okey the key
993 * @param value if non-null, the value that must be
994 * associated with key
995 * @return the node, or null if not found
996 */
997 final V doRemove(Object okey, Object value) {
998 Comparable<? super K> key = comparable(okey);
999 for (;;) {
1000 Node<K,V> b = findPredecessor(key);
1001 Node<K,V> n = b.next;
1002 for (;;) {
1003 if (n == null)
1004 return null;
1005 Node<K,V> f = n.next;
1006 if (n != b.next) // inconsistent read
1007 break;
1008 Object v = n.value;
1009 if (v == null) { // n is deleted
1010 n.helpDelete(b, f);
1011 break;
1012 }
1013 if (v == n || b.value == null) // b is deleted
1014 break;
1015 int c = key.compareTo(n.key);
1016 if (c < 0)
1017 return null;
1018 if (c > 0) {
1019 b = n;
1020 n = f;
1021 continue;
1022 }
1023 if (value != null && !value.equals(v))
1024 return null;
1025 if (!n.casValue(v, null))
1026 break;
1027 if (!n.appendMarker(f) || !b.casNext(n, f))
1028 findNode(key); // Retry via findNode
1029 else {
1030 findPredecessor(key); // Clean index
1031 if (head.right == null)
1032 tryReduceLevel();
1033 }
1034 return (V)v;
1035 }
1036 }
1037 }
1038
1039 /**
1040 * Possibly reduce head level if it has no nodes. This method can
1041 * (rarely) make mistakes, in which case levels can disappear even
1042 * though they are about to contain index nodes. This impacts
1043 * performance, not correctness. To minimize mistakes as well as
1044 * to reduce hysteresis, the level is reduced by one only if the
1045 * topmost three levels look empty. Also, if the removed level
1046 * looks non-empty after CAS, we try to change it back quick
1047 * before anyone notices our mistake! (This trick works pretty
1048 * well because this method will practically never make mistakes
1049 * unless current thread stalls immediately before first CAS, in
1050 * which case it is very unlikely to stall again immediately
1051 * afterwards, so will recover.)
1052 *
1053 * We put up with all this rather than just let levels grow
1054 * because otherwise, even a small map that has undergone a large
1055 * number of insertions and removals will have a lot of levels,
1056 * slowing down access more than would an occasional unwanted
1057 * reduction.
1058 */
1059 private void tryReduceLevel() {
1060 HeadIndex<K,V> h = head;
1061 HeadIndex<K,V> d;
1062 HeadIndex<K,V> e;
1063 if (h.level > 3 &&
1064 (d = (HeadIndex<K,V>)h.down) != null &&
1065 (e = (HeadIndex<K,V>)d.down) != null &&
1066 e.right == null &&
1067 d.right == null &&
1068 h.right == null &&
1069 casHead(h, d) && // try to set
1070 h.right != null) // recheck
1071 casHead(d, h); // try to backout
1072 }
1073
1074 /* ---------------- Finding and removing first element -------------- */
1075
1076 /**
1077 * Specialized variant of findNode to get first valid node.
1078 * @return first node or null if empty
1079 */
1080 Node<K,V> findFirst() {
1081 for (;;) {
1082 Node<K,V> b = head.node;
1083 Node<K,V> n = b.next;
1084 if (n == null)
1085 return null;
1086 if (n.value != null)
1087 return n;
1088 n.helpDelete(b, n.next);
1089 }
1090 }
1091
1092 /**
1093 * Removes first entry; returns its snapshot.
1094 * @return null if empty, else snapshot of first entry
1095 */
1096 Map.Entry<K,V> doRemoveFirstEntry() {
1097 for (;;) {
1098 Node<K,V> b = head.node;
1099 Node<K,V> n = b.next;
1100 if (n == null)
1101 return null;
1102 Node<K,V> f = n.next;
1103 if (n != b.next)
1104 continue;
1105 Object v = n.value;
1106 if (v == null) {
1107 n.helpDelete(b, f);
1108 continue;
1109 }
1110 if (!n.casValue(v, null))
1111 continue;
1112 if (!n.appendMarker(f) || !b.casNext(n, f))
1113 findFirst(); // retry
1114 clearIndexToFirst();
1115 return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, (V)v);
1116 }
1117 }
1118
1119 /**
1120 * Clears out index nodes associated with deleted first entry.
1121 */
1122 private void clearIndexToFirst() {
1123 for (;;) {
1124 Index<K,V> q = head;
1125 for (;;) {
1126 Index<K,V> r = q.right;
1127 if (r != null && r.indexesDeletedNode() && !q.unlink(r))
1128 break;
1129 if ((q = q.down) == null) {
1130 if (head.right == null)
1131 tryReduceLevel();
1132 return;
1133 }
1134 }
1135 }
1136 }
1137
1138
1139 /* ---------------- Finding and removing last element -------------- */
1140
1141 /**
1142 * Specialized version of find to get last valid node.
1143 * @return last node or null if empty
1144 */
1145 Node<K,V> findLast() {
1146 /*
1147 * findPredecessor can't be used to traverse index level
1148 * because this doesn't use comparisons. So traversals of
1149 * both levels are folded together.
1150 */
1151 Index<K,V> q = head;
1152 for (;;) {
1153 Index<K,V> d, r;
1154 if ((r = q.right) != null) {
1155 if (r.indexesDeletedNode()) {
1156 q.unlink(r);
1157 q = head; // restart
1158 }
1159 else
1160 q = r;
1161 } else if ((d = q.down) != null) {
1162 q = d;
1163 } else {
1164 Node<K,V> b = q.node;
1165 Node<K,V> n = b.next;
1166 for (;;) {
1167 if (n == null)
1168 return b.isBaseHeader() ? null : b;
1169 Node<K,V> f = n.next; // inconsistent read
1170 if (n != b.next)
1171 break;
1172 Object v = n.value;
1173 if (v == null) { // n is deleted
1174 n.helpDelete(b, f);
1175 break;
1176 }
1177 if (v == n || b.value == null) // b is deleted
1178 break;
1179 b = n;
1180 n = f;
1181 }
1182 q = head; // restart
1183 }
1184 }
1185 }
1186
1187 /**
1188 * Specialized variant of findPredecessor to get predecessor of last
1189 * valid node. Needed when removing the last entry. It is possible
1190 * that all successors of returned node will have been deleted upon
1191 * return, in which case this method can be retried.
1192 * @return likely predecessor of last node
1193 */
1194 private Node<K,V> findPredecessorOfLast() {
1195 for (;;) {
1196 Index<K,V> q = head;
1197 for (;;) {
1198 Index<K,V> d, r;
1199 if ((r = q.right) != null) {
1200 if (r.indexesDeletedNode()) {
1201 q.unlink(r);
1202 break; // must restart
1203 }
1204 // proceed as far across as possible without overshooting
1205 if (r.node.next != null) {
1206 q = r;
1207 continue;
1208 }
1209 }
1210 if ((d = q.down) != null)
1211 q = d;
1212 else
1213 return q.node;
1214 }
1215 }
1216 }
1217
1218 /**
1219 * Removes last entry; returns its snapshot.
1220 * Specialized variant of doRemove.
1221 * @return null if empty, else snapshot of last entry
1222 */
1223 Map.Entry<K,V> doRemoveLastEntry() {
1224 for (;;) {
1225 Node<K,V> b = findPredecessorOfLast();
1226 Node<K,V> n = b.next;
1227 if (n == null) {
1228 if (b.isBaseHeader()) // empty
1229 return null;
1230 else
1231 continue; // all b's successors are deleted; retry
1232 }
1233 for (;;) {
1234 Node<K,V> f = n.next;
1235 if (n != b.next) // inconsistent read
1236 break;
1237 Object v = n.value;
1238 if (v == null) { // n is deleted
1239 n.helpDelete(b, f);
1240 break;
1241 }
1242 if (v == n || b.value == null) // b is deleted
1243 break;
1244 if (f != null) {
1245 b = n;
1246 n = f;
1247 continue;
1248 }
1249 if (!n.casValue(v, null))
1250 break;
1251 K key = n.key;
1252 Comparable<? super K> ck = comparable(key);
1253 if (!n.appendMarker(f) || !b.casNext(n, f))
1254 findNode(ck); // Retry via findNode
1255 else {
1256 findPredecessor(ck); // Clean index
1257 if (head.right == null)
1258 tryReduceLevel();
1259 }
1260 return new AbstractMap.SimpleImmutableEntry<K,V>(key, (V)v);
1261 }
1262 }
1263 }
1264
1265 /* ---------------- Relational operations -------------- */
1266
1267 // Control values OR'ed as arguments to findNear
1268
1269 private static final int EQ = 1;
1270 private static final int LT = 2;
1271 private static final int GT = 0; // Actually checked as !LT
1272
1273 /**
1274 * Utility for ceiling, floor, lower, higher methods.
1275 * @param kkey the key
1276 * @param rel the relation -- OR'ed combination of EQ, LT, GT
1277 * @return nearest node fitting relation, or null if no such
1278 */
1279 Node<K,V> findNear(K kkey, int rel) {
1280 Comparable<? super K> key = comparable(kkey);
1281 for (;;) {
1282 Node<K,V> b = findPredecessor(key);
1283 Node<K,V> n = b.next;
1284 for (;;) {
1285 if (n == null)
1286 return ((rel & LT) == 0 || b.isBaseHeader()) ? null : b;
1287 Node<K,V> f = n.next;
1288 if (n != b.next) // inconsistent read
1289 break;
1290 Object v = n.value;
1291 if (v == null) { // n is deleted
1292 n.helpDelete(b, f);
1293 break;
1294 }
1295 if (v == n || b.value == null) // b is deleted
1296 break;
1297 int c = key.compareTo(n.key);
1298 if ((c == 0 && (rel & EQ) != 0) ||
1299 (c < 0 && (rel & LT) == 0))
1300 return n;
1301 if ( c <= 0 && (rel & LT) != 0)
1302 return b.isBaseHeader() ? null : b;
1303 b = n;
1304 n = f;
1305 }
1306 }
1307 }
1308
1309 /**
1310 * Returns SimpleImmutableEntry for results of findNear.
1311 * @param key the key
1312 * @param rel the relation -- OR'ed combination of EQ, LT, GT
1313 * @return Entry fitting relation, or null if no such
1314 */
1315 AbstractMap.SimpleImmutableEntry<K,V> getNear(K key, int rel) {
1316 for (;;) {
1317 Node<K,V> n = findNear(key, rel);
1318 if (n == null)
1319 return null;
1320 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
1321 if (e != null)
1322 return e;
1323 }
1324 }
1325
1326
1327 /* ---------------- Constructors -------------- */
1328
1329 /**
1330 * Constructs a new, empty map, sorted according to the
1331 * {@linkplain Comparable natural ordering} of the keys.
1332 */
1333 public ConcurrentSkipListMap() {
1334 this.comparator = null;
1335 initialize();
1336 }
1337
1338 /**
1339 * Constructs a new, empty map, sorted according to the specified
1340 * comparator.
1341 *
1342 * @param comparator the comparator that will be used to order this map.
1343 * If <tt>null</tt>, the {@linkplain Comparable natural
1344 * ordering} of the keys will be used.
1345 */
1346 public ConcurrentSkipListMap(Comparator<? super K> comparator) {
1347 this.comparator = comparator;
1348 initialize();
1349 }
1350
1351 /**
1352 * Constructs a new map containing the same mappings as the given map,
1353 * sorted according to the {@linkplain Comparable natural ordering} of
1354 * the keys.
1355 *
1356 * @param m the map whose mappings are to be placed in this map
1357 * @throws ClassCastException if the keys in <tt>m</tt> are not
1358 * {@link Comparable}, or are not mutually comparable
1359 * @throws NullPointerException if the specified map or any of its keys
1360 * or values are null
1361 */
1362 public ConcurrentSkipListMap(Map<? extends K, ? extends V> m) {
1363 this.comparator = null;
1364 initialize();
1365 putAll(m);
1366 }
1367
1368 /**
1369 * Constructs a new map containing the same mappings and using the
1370 * same ordering as the specified sorted map.
1371 *
1372 * @param m the sorted map whose mappings are to be placed in this
1373 * map, and whose comparator is to be used to sort this map
1374 * @throws NullPointerException if the specified sorted map or any of
1375 * its keys or values are null
1376 */
1377 public ConcurrentSkipListMap(SortedMap<K, ? extends V> m) {
1378 this.comparator = m.comparator();
1379 initialize();
1380 buildFromSorted(m);
1381 }
1382
1383 /**
1384 * Returns a shallow copy of this <tt>ConcurrentSkipListMap</tt>
1385 * instance. (The keys and values themselves are not cloned.)
1386 *
1387 * @return a shallow copy of this map
1388 */
1389 public ConcurrentSkipListMap<K,V> clone() {
1390 ConcurrentSkipListMap<K,V> clone = null;
1391 try {
1392 clone = (ConcurrentSkipListMap<K,V>) super.clone();
1393 } catch (CloneNotSupportedException e) {
1394 throw new InternalError();
1395 }
1396
1397 clone.initialize();
1398 clone.buildFromSorted(this);
1399 return clone;
1400 }
1401
1402 /**
1403 * Streamlined bulk insertion to initialize from elements of
1404 * given sorted map. Call only from constructor or clone
1405 * method.
1406 */
1407 private void buildFromSorted(SortedMap<K, ? extends V> map) {
1408 if (map == null)
1409 throw new NullPointerException();
1410
1411 HeadIndex<K,V> h = head;
1412 Node<K,V> basepred = h.node;
1413
1414 // Track the current rightmost node at each level. Uses an
1415 // ArrayList to avoid committing to initial or maximum level.
1416 ArrayList<Index<K,V>> preds = new ArrayList<Index<K,V>>();
1417
1418 // initialize
1419 for (int i = 0; i <= h.level; ++i)
1420 preds.add(null);
1421 Index<K,V> q = h;
1422 for (int i = h.level; i > 0; --i) {
1423 preds.set(i, q);
1424 q = q.down;
1425 }
1426
1427 Iterator<? extends Map.Entry<? extends K, ? extends V>> it =
1428 map.entrySet().iterator();
1429 while (it.hasNext()) {
1430 Map.Entry<? extends K, ? extends V> e = it.next();
1431 int j = randomLevel();
1432 if (j > h.level) j = h.level + 1;
1433 K k = e.getKey();
1434 V v = e.getValue();
1435 if (k == null || v == null)
1436 throw new NullPointerException();
1437 Node<K,V> z = new Node<K,V>(k, v, null);
1438 basepred.next = z;
1439 basepred = z;
1440 if (j > 0) {
1441 Index<K,V> idx = null;
1442 for (int i = 1; i <= j; ++i) {
1443 idx = new Index<K,V>(z, idx, null);
1444 if (i > h.level)
1445 h = new HeadIndex<K,V>(h.node, h, idx, i);
1446
1447 if (i < preds.size()) {
1448 preds.get(i).right = idx;
1449 preds.set(i, idx);
1450 } else
1451 preds.add(idx);
1452 }
1453 }
1454 }
1455 head = h;
1456 }
1457
1458 /* ---------------- Serialization -------------- */
1459
1460 /**
1461 * Save the state of this map to a stream.
1462 *
1463 * @serialData The key (Object) and value (Object) for each
1464 * key-value mapping represented by the map, followed by
1465 * <tt>null</tt>. The key-value mappings are emitted in key-order
1466 * (as determined by the Comparator, or by the keys' natural
1467 * ordering if no Comparator).
1468 */
1469 private void writeObject(java.io.ObjectOutputStream s)
1470 throws java.io.IOException {
1471 // Write out the Comparator and any hidden stuff
1472 s.defaultWriteObject();
1473
1474 // Write out keys and values (alternating)
1475 for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1476 V v = n.getValidValue();
1477 if (v != null) {
1478 s.writeObject(n.key);
1479 s.writeObject(v);
1480 }
1481 }
1482 s.writeObject(null);
1483 }
1484
1485 /**
1486 * Reconstitute the map from a stream.
1487 */
1488 private void readObject(final java.io.ObjectInputStream s)
1489 throws java.io.IOException, ClassNotFoundException {
1490 // Read in the Comparator and any hidden stuff
1491 s.defaultReadObject();
1492 // Reset transients
1493 initialize();
1494
1495 /*
1496 * This is nearly identical to buildFromSorted, but is
1497 * distinct because readObject calls can't be nicely adapted
1498 * as the kind of iterator needed by buildFromSorted. (They
1499 * can be, but doing so requires type cheats and/or creation
1500 * of adaptor classes.) It is simpler to just adapt the code.
1501 */
1502
1503 HeadIndex<K,V> h = head;
1504 Node<K,V> basepred = h.node;
1505 ArrayList<Index<K,V>> preds = new ArrayList<Index<K,V>>();
1506 for (int i = 0; i <= h.level; ++i)
1507 preds.add(null);
1508 Index<K,V> q = h;
1509 for (int i = h.level; i > 0; --i) {
1510 preds.set(i, q);
1511 q = q.down;
1512 }
1513
1514 for (;;) {
1515 Object k = s.readObject();
1516 if (k == null)
1517 break;
1518 Object v = s.readObject();
1519 if (v == null)
1520 throw new NullPointerException();
1521 K key = (K) k;
1522 V val = (V) v;
1523 int j = randomLevel();
1524 if (j > h.level) j = h.level + 1;
1525 Node<K,V> z = new Node<K,V>(key, val, null);
1526 basepred.next = z;
1527 basepred = z;
1528 if (j > 0) {
1529 Index<K,V> idx = null;
1530 for (int i = 1; i <= j; ++i) {
1531 idx = new Index<K,V>(z, idx, null);
1532 if (i > h.level)
1533 h = new HeadIndex<K,V>(h.node, h, idx, i);
1534
1535 if (i < preds.size()) {
1536 preds.get(i).right = idx;
1537 preds.set(i, idx);
1538 } else
1539 preds.add(idx);
1540 }
1541 }
1542 }
1543 head = h;
1544 }
1545
1546 /* ------ Map API methods ------ */
1547
1548 /**
1549 * Returns <tt>true</tt> if this map contains a mapping for the specified
1550 * key.
1551 *
1552 * @param key key whose presence in this map is to be tested
1553 * @return <tt>true</tt> if this map contains a mapping for the specified key
1554 * @throws ClassCastException if the specified key cannot be compared
1555 * with the keys currently in the map
1556 * @throws NullPointerException if the specified key is null
1557 */
1558 public boolean containsKey(Object key) {
1559 return doGet(key) != null;
1560 }
1561
1562 /**
1563 * Returns the value to which the specified key is mapped,
1564 * or {@code null} if this map contains no mapping for the key.
1565 *
1566 * <p>More formally, if this map contains a mapping from a key
1567 * {@code k} to a value {@code v} such that {@code key} compares
1568 * equal to {@code k} according to the map's ordering, then this
1569 * method returns {@code v}; otherwise it returns {@code null}.
1570 * (There can be at most one such mapping.)
1571 *
1572 * @throws ClassCastException if the specified key cannot be compared
1573 * with the keys currently in the map
1574 * @throws NullPointerException if the specified key is null
1575 */
1576 public V get(Object key) {
1577 return doGet(key);
1578 }
1579
1580 /**
1581 * Associates the specified value with the specified key in this map.
1582 * If the map previously contained a mapping for the key, the old
1583 * value is replaced.
1584 *
1585 * @param key key with which the specified value is to be associated
1586 * @param value value to be associated with the specified key
1587 * @return the previous value associated with the specified key, or
1588 * <tt>null</tt> if there was no mapping for the key
1589 * @throws ClassCastException if the specified key cannot be compared
1590 * with the keys currently in the map
1591 * @throws NullPointerException if the specified key or value is null
1592 */
1593 public V put(K key, V value) {
1594 if (value == null)
1595 throw new NullPointerException();
1596 return doPut(key, value, false);
1597 }
1598
1599 /**
1600 * Removes the mapping for the specified key from this map if present.
1601 *
1602 * @param key key for which mapping should be removed
1603 * @return the previous value associated with the specified key, or
1604 * <tt>null</tt> if there was no mapping for the key
1605 * @throws ClassCastException if the specified key cannot be compared
1606 * with the keys currently in the map
1607 * @throws NullPointerException if the specified key is null
1608 */
1609 public V remove(Object key) {
1610 return doRemove(key, null);
1611 }
1612
1613 /**
1614 * Returns <tt>true</tt> if this map maps one or more keys to the
1615 * specified value. This operation requires time linear in the
1616 * map size.
1617 *
1618 * @param value value whose presence in this map is to be tested
1619 * @return <tt>true</tt> if a mapping to <tt>value</tt> exists;
1620 * <tt>false</tt> otherwise
1621 * @throws NullPointerException if the specified value is null
1622 */
1623 public boolean containsValue(Object value) {
1624 if (value == null)
1625 throw new NullPointerException();
1626 for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1627 V v = n.getValidValue();
1628 if (v != null && value.equals(v))
1629 return true;
1630 }
1631 return false;
1632 }
1633
1634 /**
1635 * Returns the number of key-value mappings in this map. If this map
1636 * contains more than <tt>Integer.MAX_VALUE</tt> elements, it
1637 * returns <tt>Integer.MAX_VALUE</tt>.
1638 *
1639 * <p>Beware that, unlike in most collections, this method is
1640 * <em>NOT</em> a constant-time operation. Because of the
1641 * asynchronous nature of these maps, determining the current
1642 * number of elements requires traversing them all to count them.
1643 * Additionally, it is possible for the size to change during
1644 * execution of this method, in which case the returned result
1645 * will be inaccurate. Thus, this method is typically not very
1646 * useful in concurrent applications.
1647 *
1648 * @return the number of elements in this map
1649 */
1650 public int size() {
1651 long count = 0;
1652 for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1653 if (n.getValidValue() != null)
1654 ++count;
1655 }
1656 return (count >= Integer.MAX_VALUE) ? Integer.MAX_VALUE : (int) count;
1657 }
1658
1659 /**
1660 * Returns <tt>true</tt> if this map contains no key-value mappings.
1661 * @return <tt>true</tt> if this map contains no key-value mappings
1662 */
1663 public boolean isEmpty() {
1664 return findFirst() == null;
1665 }
1666
1667 /**
1668 * Removes all of the mappings from this map.
1669 */
1670 public void clear() {
1671 initialize();
1672 }
1673
1674 /* ---------------- View methods -------------- */
1675
1676 /*
1677 * Note: Lazy initialization works for views because view classes
1678 * are stateless/immutable so it doesn't matter wrt correctness if
1679 * more than one is created (which will only rarely happen). Even
1680 * so, the following idiom conservatively ensures that the method
1681 * returns the one it created if it does so, not one created by
1682 * another racing thread.
1683 */
1684
1685 /**
1686 * Returns a {@link NavigableSet} view of the keys contained in this map.
1687 * The set's iterator returns the keys in ascending order.
1688 * The set is backed by the map, so changes to the map are
1689 * reflected in the set, and vice-versa. The set supports element
1690 * removal, which removes the corresponding mapping from the map,
1691 * via the {@code Iterator.remove}, {@code Set.remove},
1692 * {@code removeAll}, {@code retainAll}, and {@code clear}
1693 * operations. It does not support the {@code add} or {@code addAll}
1694 * operations.
1695 *
1696 * <p>The view's {@code iterator} is a "weakly consistent" iterator
1697 * that will never throw {@link ConcurrentModificationException},
1698 * and guarantees to traverse elements as they existed upon
1699 * construction of the iterator, and may (but is not guaranteed to)
1700 * reflect any modifications subsequent to construction.
1701 *
1702 * <p>This method is equivalent to method {@code navigableKeySet}.
1703 *
1704 * @return a navigable set view of the keys in this map
1705 */
1706 public NavigableSet<K> keySet() {
1707 KeySet ks = keySet;
1708 return (ks != null) ? ks : (keySet = new KeySet(this));
1709 }
1710
1711 public NavigableSet<K> navigableKeySet() {
1712 KeySet ks = keySet;
1713 return (ks != null) ? ks : (keySet = new KeySet(this));
1714 }
1715
1716 /**
1717 * Returns a {@link Collection} view of the values contained in this map.
1718 * The collection's iterator returns the values in ascending order
1719 * of the corresponding keys.
1720 * The collection is backed by the map, so changes to the map are
1721 * reflected in the collection, and vice-versa. The collection
1722 * supports element removal, which removes the corresponding
1723 * mapping from the map, via the <tt>Iterator.remove</tt>,
1724 * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
1725 * <tt>retainAll</tt> and <tt>clear</tt> operations. It does not
1726 * support the <tt>add</tt> or <tt>addAll</tt> operations.
1727 *
1728 * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1729 * that will never throw {@link ConcurrentModificationException},
1730 * and guarantees to traverse elements as they existed upon
1731 * construction of the iterator, and may (but is not guaranteed to)
1732 * reflect any modifications subsequent to construction.
1733 */
1734 public Collection<V> values() {
1735 Values vs = values;
1736 return (vs != null) ? vs : (values = new Values(this));
1737 }
1738
1739 /**
1740 * Returns a {@link Set} view of the mappings contained in this map.
1741 * The set's iterator returns the entries in ascending key order.
1742 * The set is backed by the map, so changes to the map are
1743 * reflected in the set, and vice-versa. The set supports element
1744 * removal, which removes the corresponding mapping from the map,
1745 * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1746 * <tt>removeAll</tt>, <tt>retainAll</tt> and <tt>clear</tt>
1747 * operations. It does not support the <tt>add</tt> or
1748 * <tt>addAll</tt> operations.
1749 *
1750 * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1751 * that will never throw {@link ConcurrentModificationException},
1752 * and guarantees to traverse elements as they existed upon
1753 * construction of the iterator, and may (but is not guaranteed to)
1754 * reflect any modifications subsequent to construction.
1755 *
1756 * <p>The <tt>Map.Entry</tt> elements returned by
1757 * <tt>iterator.next()</tt> do <em>not</em> support the
1758 * <tt>setValue</tt> operation.
1759 *
1760 * @return a set view of the mappings contained in this map,
1761 * sorted in ascending key order
1762 */
1763 public Set<Map.Entry<K,V>> entrySet() {
1764 EntrySet es = entrySet;
1765 return (es != null) ? es : (entrySet = new EntrySet(this));
1766 }
1767
1768 public ConcurrentNavigableMap<K,V> descendingMap() {
1769 ConcurrentNavigableMap<K,V> dm = descendingMap;
1770 return (dm != null) ? dm : (descendingMap = new SubMap<K,V>
1771 (this, null, false, null, false, true));
1772 }
1773
1774 public NavigableSet<K> descendingKeySet() {
1775 return descendingMap().navigableKeySet();
1776 }
1777
1778 /* ---------------- AbstractMap Overrides -------------- */
1779
1780 /**
1781 * Compares the specified object with this map for equality.
1782 * Returns <tt>true</tt> if the given object is also a map and the
1783 * two maps represent the same mappings. More formally, two maps
1784 * <tt>m1</tt> and <tt>m2</tt> represent the same mappings if
1785 * <tt>m1.entrySet().equals(m2.entrySet())</tt>. This
1786 * operation may return misleading results if either map is
1787 * concurrently modified during execution of this method.
1788 *
1789 * @param o object to be compared for equality with this map
1790 * @return <tt>true</tt> if the specified object is equal to this map
1791 */
1792 public boolean equals(Object o) {
1793 if (o == this)
1794 return true;
1795 if (!(o instanceof Map))
1796 return false;
1797 Map<?,?> m = (Map<?,?>) o;
1798 try {
1799 for (Map.Entry<K,V> e : this.entrySet())
1800 if (! e.getValue().equals(m.get(e.getKey())))
1801 return false;
1802 for (Map.Entry<?,?> e : m.entrySet()) {
1803 Object k = e.getKey();
1804 Object v = e.getValue();
1805 if (k == null || v == null || !v.equals(get(k)))
1806 return false;
1807 }
1808 return true;
1809 } catch (ClassCastException unused) {
1810 return false;
1811 } catch (NullPointerException unused) {
1812 return false;
1813 }
1814 }
1815
1816 /* ------ ConcurrentMap API methods ------ */
1817
1818 /**
1819 * {@inheritDoc}
1820 *
1821 * @return the previous value associated with the specified key,
1822 * or <tt>null</tt> if there was no mapping for the key
1823 * @throws ClassCastException if the specified key cannot be compared
1824 * with the keys currently in the map
1825 * @throws NullPointerException if the specified key or value is null
1826 */
1827 public V putIfAbsent(K key, V value) {
1828 if (value == null)
1829 throw new NullPointerException();
1830 return doPut(key, value, true);
1831 }
1832
1833 /**
1834 * {@inheritDoc}
1835 *
1836 * @throws ClassCastException if the specified key cannot be compared
1837 * with the keys currently in the map
1838 * @throws NullPointerException if the specified key is null
1839 */
1840 public boolean remove(Object key, Object value) {
1841 if (key == null)
1842 throw new NullPointerException();
1843 if (value == null)
1844 return false;
1845 return doRemove(key, value) != null;
1846 }
1847
1848 /**
1849 * {@inheritDoc}
1850 *
1851 * @throws ClassCastException if the specified key cannot be compared
1852 * with the keys currently in the map
1853 * @throws NullPointerException if any of the arguments are null
1854 */
1855 public boolean replace(K key, V oldValue, V newValue) {
1856 if (oldValue == null || newValue == null)
1857 throw new NullPointerException();
1858 Comparable<? super K> k = comparable(key);
1859 for (;;) {
1860 Node<K,V> n = findNode(k);
1861 if (n == null)
1862 return false;
1863 Object v = n.value;
1864 if (v != null) {
1865 if (!oldValue.equals(v))
1866 return false;
1867 if (n.casValue(v, newValue))
1868 return true;
1869 }
1870 }
1871 }
1872
1873 /**
1874 * {@inheritDoc}
1875 *
1876 * @return the previous value associated with the specified key,
1877 * or <tt>null</tt> if there was no mapping for the key
1878 * @throws ClassCastException if the specified key cannot be compared
1879 * with the keys currently in the map
1880 * @throws NullPointerException if the specified key or value is null
1881 */
1882 public V replace(K key, V value) {
1883 if (value == null)
1884 throw new NullPointerException();
1885 Comparable<? super K> k = comparable(key);
1886 for (;;) {
1887 Node<K,V> n = findNode(k);
1888 if (n == null)
1889 return null;
1890 Object v = n.value;
1891 if (v != null && n.casValue(v, value))
1892 return (V)v;
1893 }
1894 }
1895
1896 /* ------ SortedMap API methods ------ */
1897
1898 public Comparator<? super K> comparator() {
1899 return comparator;
1900 }
1901
1902 /**
1903 * @throws NoSuchElementException {@inheritDoc}
1904 */
1905 public K firstKey() {
1906 Node<K,V> n = findFirst();
1907 if (n == null)
1908 throw new NoSuchElementException();
1909 return n.key;
1910 }
1911
1912 /**
1913 * @throws NoSuchElementException {@inheritDoc}
1914 */
1915 public K lastKey() {
1916 Node<K,V> n = findLast();
1917 if (n == null)
1918 throw new NoSuchElementException();
1919 return n.key;
1920 }
1921
1922 /**
1923 * @throws ClassCastException {@inheritDoc}
1924 * @throws NullPointerException if {@code fromKey} or {@code toKey} is null
1925 * @throws IllegalArgumentException {@inheritDoc}
1926 */
1927 public ConcurrentNavigableMap<K,V> subMap(K fromKey,
1928 boolean fromInclusive,
1929 K toKey,
1930 boolean toInclusive) {
1931 if (fromKey == null || toKey == null)
1932 throw new NullPointerException();
1933 return new SubMap<K,V>
1934 (this, fromKey, fromInclusive, toKey, toInclusive, false);
1935 }
1936
1937 /**
1938 * @throws ClassCastException {@inheritDoc}
1939 * @throws NullPointerException if {@code toKey} is null
1940 * @throws IllegalArgumentException {@inheritDoc}
1941 */
1942 public ConcurrentNavigableMap<K,V> headMap(K toKey,
1943 boolean inclusive) {
1944 if (toKey == null)
1945 throw new NullPointerException();
1946 return new SubMap<K,V>
1947 (this, null, false, toKey, inclusive, false);
1948 }
1949
1950 /**
1951 * @throws ClassCastException {@inheritDoc}
1952 * @throws NullPointerException if {@code fromKey} is null
1953 * @throws IllegalArgumentException {@inheritDoc}
1954 */
1955 public ConcurrentNavigableMap<K,V> tailMap(K fromKey,
1956 boolean inclusive) {
1957 if (fromKey == null)
1958 throw new NullPointerException();
1959 return new SubMap<K,V>
1960 (this, fromKey, inclusive, null, false, false);
1961 }
1962
1963 /**
1964 * @throws ClassCastException {@inheritDoc}
1965 * @throws NullPointerException if {@code fromKey} or {@code toKey} is null
1966 * @throws IllegalArgumentException {@inheritDoc}
1967 */
1968 public ConcurrentNavigableMap<K,V> subMap(K fromKey, K toKey) {
1969 return subMap(fromKey, true, toKey, false);
1970 }
1971
1972 /**
1973 * @throws ClassCastException {@inheritDoc}
1974 * @throws NullPointerException if {@code toKey} is null
1975 * @throws IllegalArgumentException {@inheritDoc}
1976 */
1977 public ConcurrentNavigableMap<K,V> headMap(K toKey) {
1978 return headMap(toKey, false);
1979 }
1980
1981 /**
1982 * @throws ClassCastException {@inheritDoc}
1983 * @throws NullPointerException if {@code fromKey} is null
1984 * @throws IllegalArgumentException {@inheritDoc}
1985 */
1986 public ConcurrentNavigableMap<K,V> tailMap(K fromKey) {
1987 return tailMap(fromKey, true);
1988 }
1989
1990 /* ---------------- Relational operations -------------- */
1991
1992 /**
1993 * Returns a key-value mapping associated with the greatest key
1994 * strictly less than the given key, or <tt>null</tt> if there is
1995 * no such key. The returned entry does <em>not</em> support the
1996 * <tt>Entry.setValue</tt> method.
1997 *
1998 * @throws ClassCastException {@inheritDoc}
1999 * @throws NullPointerException if the specified key is null
2000 */
2001 public Map.Entry<K,V> lowerEntry(K key) {
2002 return getNear(key, LT);
2003 }
2004
2005 /**
2006 * @throws ClassCastException {@inheritDoc}
2007 * @throws NullPointerException if the specified key is null
2008 */
2009 public K lowerKey(K key) {
2010 Node<K,V> n = findNear(key, LT);
2011 return (n == null) ? null : n.key;
2012 }
2013
2014 /**
2015 * Returns a key-value mapping associated with the greatest key
2016 * less than or equal to the given key, or <tt>null</tt> if there
2017 * is no such key. The returned entry does <em>not</em> support
2018 * the <tt>Entry.setValue</tt> method.
2019 *
2020 * @param key the key
2021 * @throws ClassCastException {@inheritDoc}
2022 * @throws NullPointerException if the specified key is null
2023 */
2024 public Map.Entry<K,V> floorEntry(K key) {
2025 return getNear(key, LT|EQ);
2026 }
2027
2028 /**
2029 * @param key the key
2030 * @throws ClassCastException {@inheritDoc}
2031 * @throws NullPointerException if the specified key is null
2032 */
2033 public K floorKey(K key) {
2034 Node<K,V> n = findNear(key, LT|EQ);
2035 return (n == null) ? null : n.key;
2036 }
2037
2038 /**
2039 * Returns a key-value mapping associated with the least key
2040 * greater than or equal to the given key, or <tt>null</tt> if
2041 * there is no such entry. The returned entry does <em>not</em>
2042 * support the <tt>Entry.setValue</tt> method.
2043 *
2044 * @throws ClassCastException {@inheritDoc}
2045 * @throws NullPointerException if the specified key is null
2046 */
2047 public Map.Entry<K,V> ceilingEntry(K key) {
2048 return getNear(key, GT|EQ);
2049 }
2050
2051 /**
2052 * @throws ClassCastException {@inheritDoc}
2053 * @throws NullPointerException if the specified key is null
2054 */
2055 public K ceilingKey(K key) {
2056 Node<K,V> n = findNear(key, GT|EQ);
2057 return (n == null) ? null : n.key;
2058 }
2059
2060 /**
2061 * Returns a key-value mapping associated with the least key
2062 * strictly greater than the given key, or <tt>null</tt> if there
2063 * is no such key. The returned entry does <em>not</em> support
2064 * the <tt>Entry.setValue</tt> method.
2065 *
2066 * @param key the key
2067 * @throws ClassCastException {@inheritDoc}
2068 * @throws NullPointerException if the specified key is null
2069 */
2070 public Map.Entry<K,V> higherEntry(K key) {
2071 return getNear(key, GT);
2072 }
2073
2074 /**
2075 * @param key the key
2076 * @throws ClassCastException {@inheritDoc}
2077 * @throws NullPointerException if the specified key is null
2078 */
2079 public K higherKey(K key) {
2080 Node<K,V> n = findNear(key, GT);
2081 return (n == null) ? null : n.key;
2082 }
2083
2084 /**
2085 * Returns a key-value mapping associated with the least
2086 * key in this map, or <tt>null</tt> if the map is empty.
2087 * The returned entry does <em>not</em> support
2088 * the <tt>Entry.setValue</tt> method.
2089 */
2090 public Map.Entry<K,V> firstEntry() {
2091 for (;;) {
2092 Node<K,V> n = findFirst();
2093 if (n == null)
2094 return null;
2095 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
2096 if (e != null)
2097 return e;
2098 }
2099 }
2100
2101 /**
2102 * Returns a key-value mapping associated with the greatest
2103 * key in this map, or <tt>null</tt> if the map is empty.
2104 * The returned entry does <em>not</em> support
2105 * the <tt>Entry.setValue</tt> method.
2106 */
2107 public Map.Entry<K,V> lastEntry() {
2108 for (;;) {
2109 Node<K,V> n = findLast();
2110 if (n == null)
2111 return null;
2112 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
2113 if (e != null)
2114 return e;
2115 }
2116 }
2117
2118 /**
2119 * Removes and returns a key-value mapping associated with
2120 * the least key in this map, or <tt>null</tt> if the map is empty.
2121 * The returned entry does <em>not</em> support
2122 * the <tt>Entry.setValue</tt> method.
2123 */
2124 public Map.Entry<K,V> pollFirstEntry() {
2125 return doRemoveFirstEntry();
2126 }
2127
2128 /**
2129 * Removes and returns a key-value mapping associated with
2130 * the greatest key in this map, or <tt>null</tt> if the map is empty.
2131 * The returned entry does <em>not</em> support
2132 * the <tt>Entry.setValue</tt> method.
2133 */
2134 public Map.Entry<K,V> pollLastEntry() {
2135 return doRemoveLastEntry();
2136 }
2137
2138
2139 /* ---------------- Iterators -------------- */
2140
2141 /**
2142 * Base of iterator classes:
2143 */
2144 abstract class Iter<T> implements Iterator<T> {
2145 /** the last node returned by next() */
2146 Node<K,V> lastReturned;
2147 /** the next node to return from next(); */
2148 Node<K,V> next;
2149 /** Cache of next value field to maintain weak consistency */
2150 V nextValue;
2151
2152 /** Initializes ascending iterator for entire range. */
2153 Iter() {
2154 for (;;) {
2155 next = findFirst();
2156 if (next == null)
2157 break;
2158 Object x = next.value;
2159 if (x != null && x != next) {
2160 nextValue = (V) x;
2161 break;
2162 }
2163 }
2164 }
2165
2166 public final boolean hasNext() {
2167 return next != null;
2168 }
2169
2170 /** Advances next to higher entry. */
2171 final void advance() {
2172 if (next == null)
2173 throw new NoSuchElementException();
2174 lastReturned = next;
2175 for (;;) {
2176 next = next.next;
2177 if (next == null)
2178 break;
2179 Object x = next.value;
2180 if (x != null && x != next) {
2181 nextValue = (V) x;
2182 break;
2183 }
2184 }
2185 }
2186
2187 public void remove() {
2188 Node<K,V> l = lastReturned;
2189 if (l == null)
2190 throw new IllegalStateException();
2191 // It would not be worth all of the overhead to directly
2192 // unlink from here. Using remove is fast enough.
2193 ConcurrentSkipListMap.this.remove(l.key);
2194 lastReturned = null;
2195 }
2196
2197 }
2198
2199 final class ValueIterator extends Iter<V> {
2200 public V next() {
2201 V v = nextValue;
2202 advance();
2203 return v;
2204 }
2205 }
2206
2207 final class KeyIterator extends Iter<K> {
2208 public K next() {
2209 Node<K,V> n = next;
2210 advance();
2211 return n.key;
2212 }
2213 }
2214
2215 final class EntryIterator extends Iter<Map.Entry<K,V>> {
2216 public Map.Entry<K,V> next() {
2217 Node<K,V> n = next;
2218 V v = nextValue;
2219 advance();
2220 return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
2221 }
2222 }
2223
2224 // Factory methods for iterators needed by ConcurrentSkipListSet etc
2225
2226 Iterator<K> keyIterator() {
2227 return new KeyIterator();
2228 }
2229
2230 Iterator<V> valueIterator() {
2231 return new ValueIterator();
2232 }
2233
2234 Iterator<Map.Entry<K,V>> entryIterator() {
2235 return new EntryIterator();
2236 }
2237
2238 /* ---------------- View Classes -------------- */
2239
2240 /*
2241 * View classes are static, delegating to a ConcurrentNavigableMap
2242 * to allow use by SubMaps, which outweighs the ugliness of
2243 * needing type-tests for Iterator methods.
2244 */
2245
2246 static final <E> List<E> toList(Collection<E> c) {
2247 // Using size() here would be a pessimization.
2248 List<E> list = new ArrayList<E>();
2249 for (E e : c)
2250 list.add(e);
2251 return list;
2252 }
2253
2254 static final class KeySet<E>
2255 extends AbstractSet<E> implements NavigableSet<E> {
2256 private final ConcurrentNavigableMap<E,Object> m;
2257 KeySet(ConcurrentNavigableMap<E,Object> map) { m = map; }
2258 public int size() { return m.size(); }
2259 public boolean isEmpty() { return m.isEmpty(); }
2260 public boolean contains(Object o) { return m.containsKey(o); }
2261 public boolean remove(Object o) { return m.remove(o) != null; }
2262 public void clear() { m.clear(); }
2263 public E lower(E e) { return m.lowerKey(e); }
2264 public E floor(E e) { return m.floorKey(e); }
2265 public E ceiling(E e) { return m.ceilingKey(e); }
2266 public E higher(E e) { return m.higherKey(e); }
2267 public Comparator<? super E> comparator() { return m.comparator(); }
2268 public E first() { return m.firstKey(); }
2269 public E last() { return m.lastKey(); }
2270 public E pollFirst() {
2271 Map.Entry<E,Object> e = m.pollFirstEntry();
2272 return (e == null) ? null : e.getKey();
2273 }
2274 public E pollLast() {
2275 Map.Entry<E,Object> e = m.pollLastEntry();
2276 return (e == null) ? null : e.getKey();
2277 }
2278 public Iterator<E> iterator() {
2279 if (m instanceof ConcurrentSkipListMap)
2280 return ((ConcurrentSkipListMap<E,Object>)m).keyIterator();
2281 else
2282 return ((ConcurrentSkipListMap.SubMap<E,Object>)m).keyIterator();
2283 }
2284 public boolean equals(Object o) {
2285 if (o == this)
2286 return true;
2287 if (!(o instanceof Set))
2288 return false;
2289 Collection<?> c = (Collection<?>) o;
2290 try {
2291 return containsAll(c) && c.containsAll(this);
2292 } catch (ClassCastException unused) {
2293 return false;
2294 } catch (NullPointerException unused) {
2295 return false;
2296 }
2297 }
2298 public Object[] toArray() { return toList(this).toArray(); }
2299 public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2300 public Iterator<E> descendingIterator() {
2301 return descendingSet().iterator();
2302 }
2303 public NavigableSet<E> subSet(E fromElement,
2304 boolean fromInclusive,
2305 E toElement,
2306 boolean toInclusive) {
2307 return new KeySet<E>(m.subMap(fromElement, fromInclusive,
2308 toElement, toInclusive));
2309 }
2310 public NavigableSet<E> headSet(E toElement, boolean inclusive) {
2311 return new KeySet<E>(m.headMap(toElement, inclusive));
2312 }
2313 public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
2314 return new KeySet<E>(m.tailMap(fromElement, inclusive));
2315 }
2316 public NavigableSet<E> subSet(E fromElement, E toElement) {
2317 return subSet(fromElement, true, toElement, false);
2318 }
2319 public NavigableSet<E> headSet(E toElement) {
2320 return headSet(toElement, false);
2321 }
2322 public NavigableSet<E> tailSet(E fromElement) {
2323 return tailSet(fromElement, true);
2324 }
2325 public NavigableSet<E> descendingSet() {
2326 return new KeySet(m.descendingMap());
2327 }
2328 }
2329
2330 static final class Values<E> extends AbstractCollection<E> {
2331 private final ConcurrentNavigableMap<Object, E> m;
2332 Values(ConcurrentNavigableMap<Object, E> map) {
2333 m = map;
2334 }
2335 public Iterator<E> iterator() {
2336 if (m instanceof ConcurrentSkipListMap)
2337 return ((ConcurrentSkipListMap<Object,E>)m).valueIterator();
2338 else
2339 return ((SubMap<Object,E>)m).valueIterator();
2340 }
2341 public boolean isEmpty() {
2342 return m.isEmpty();
2343 }
2344 public int size() {
2345 return m.size();
2346 }
2347 public boolean contains(Object o) {
2348 return m.containsValue(o);
2349 }
2350 public void clear() {
2351 m.clear();
2352 }
2353 public Object[] toArray() { return toList(this).toArray(); }
2354 public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2355 }
2356
2357 static final class EntrySet<K1,V1> extends AbstractSet<Map.Entry<K1,V1>> {
2358 private final ConcurrentNavigableMap<K1, V1> m;
2359 EntrySet(ConcurrentNavigableMap<K1, V1> map) {
2360 m = map;
2361 }
2362
2363 public Iterator<Map.Entry<K1,V1>> iterator() {
2364 if (m instanceof ConcurrentSkipListMap)
2365 return ((ConcurrentSkipListMap<K1,V1>)m).entryIterator();
2366 else
2367 return ((SubMap<K1,V1>)m).entryIterator();
2368 }
2369
2370 public boolean contains(Object o) {
2371 if (!(o instanceof Map.Entry))
2372 return false;
2373 Map.Entry<K1,V1> e = (Map.Entry<K1,V1>)o;
2374 V1 v = m.get(e.getKey());
2375 return v != null && v.equals(e.getValue());
2376 }
2377 public boolean remove(Object o) {
2378 if (!(o instanceof Map.Entry))
2379 return false;
2380 Map.Entry<K1,V1> e = (Map.Entry<K1,V1>)o;
2381 return m.remove(e.getKey(),
2382 e.getValue());
2383 }
2384 public boolean isEmpty() {
2385 return m.isEmpty();
2386 }
2387 public int size() {
2388 return m.size();
2389 }
2390 public void clear() {
2391 m.clear();
2392 }
2393 public boolean equals(Object o) {
2394 if (o == this)
2395 return true;
2396 if (!(o instanceof Set))
2397 return false;
2398 Collection<?> c = (Collection<?>) o;
2399 try {
2400 return containsAll(c) && c.containsAll(this);
2401 } catch (ClassCastException unused) {
2402 return false;
2403 } catch (NullPointerException unused) {
2404 return false;
2405 }
2406 }
2407 public Object[] toArray() { return toList(this).toArray(); }
2408 public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2409 }
2410
2411 /**
2412 * Submaps returned by {@link ConcurrentSkipListMap} submap operations
2413 * represent a subrange of mappings of their underlying
2414 * maps. Instances of this class support all methods of their
2415 * underlying maps, differing in that mappings outside their range are
2416 * ignored, and attempts to add mappings outside their ranges result
2417 * in {@link IllegalArgumentException}. Instances of this class are
2418 * constructed only using the <tt>subMap</tt>, <tt>headMap</tt>, and
2419 * <tt>tailMap</tt> methods of their underlying maps.
2420 *
2421 * @serial include
2422 */
2423 static final class SubMap<K,V> extends AbstractMap<K,V>
2424 implements ConcurrentNavigableMap<K,V>, Cloneable,
2425 java.io.Serializable {
2426 private static final long serialVersionUID = -7647078645895051609L;
2427
2428 /** Underlying map */
2429 private final ConcurrentSkipListMap<K,V> m;
2430 /** lower bound key, or null if from start */
2431 private final K lo;
2432 /** upper bound key, or null if to end */
2433 private final K hi;
2434 /** inclusion flag for lo */
2435 private final boolean loInclusive;
2436 /** inclusion flag for hi */
2437 private final boolean hiInclusive;
2438 /** direction */
2439 private final boolean isDescending;
2440
2441 // Lazily initialized view holders
2442 private transient KeySet<K> keySetView;
2443 private transient Set<Map.Entry<K,V>> entrySetView;
2444 private transient Collection<V> valuesView;
2445
2446 /**
2447 * Creates a new submap, initializing all fields
2448 */
2449 SubMap(ConcurrentSkipListMap<K,V> map,
2450 K fromKey, boolean fromInclusive,
2451 K toKey, boolean toInclusive,
2452 boolean isDescending) {
2453 if (fromKey != null && toKey != null &&
2454 map.compare(fromKey, toKey) > 0)
2455 throw new IllegalArgumentException("inconsistent range");
2456 this.m = map;
2457 this.lo = fromKey;
2458 this.hi = toKey;
2459 this.loInclusive = fromInclusive;
2460 this.hiInclusive = toInclusive;
2461 this.isDescending = isDescending;
2462 }
2463
2464 /* ---------------- Utilities -------------- */
2465
2466 private boolean tooLow(K key) {
2467 if (lo != null) {
2468 int c = m.compare(key, lo);
2469 if (c < 0 || (c == 0 && !loInclusive))
2470 return true;
2471 }
2472 return false;
2473 }
2474
2475 private boolean tooHigh(K key) {
2476 if (hi != null) {
2477 int c = m.compare(key, hi);
2478 if (c > 0 || (c == 0 && !hiInclusive))
2479 return true;
2480 }
2481 return false;
2482 }
2483
2484 private boolean inBounds(K key) {
2485 return !tooLow(key) && !tooHigh(key);
2486 }
2487
2488 private void checkKeyBounds(K key) throws IllegalArgumentException {
2489 if (key == null)
2490 throw new NullPointerException();
2491 if (!inBounds(key))
2492 throw new IllegalArgumentException("key out of range");
2493 }
2494
2495 /**
2496 * Returns true if node key is less than upper bound of range
2497 */
2498 private boolean isBeforeEnd(ConcurrentSkipListMap.Node<K,V> n) {
2499 if (n == null)
2500 return false;
2501 if (hi == null)
2502 return true;
2503 K k = n.key;
2504 if (k == null) // pass by markers and headers
2505 return true;
2506 int c = m.compare(k, hi);
2507 if (c > 0 || (c == 0 && !hiInclusive))
2508 return false;
2509 return true;
2510 }
2511
2512 /**
2513 * Returns lowest node. This node might not be in range, so
2514 * most usages need to check bounds
2515 */
2516 private ConcurrentSkipListMap.Node<K,V> loNode() {
2517 if (lo == null)
2518 return m.findFirst();
2519 else if (loInclusive)
2520 return m.findNear(lo, m.GT|m.EQ);
2521 else
2522 return m.findNear(lo, m.GT);
2523 }
2524
2525 /**
2526 * Returns highest node. This node might not be in range, so
2527 * most usages need to check bounds
2528 */
2529 private ConcurrentSkipListMap.Node<K,V> hiNode() {
2530 if (hi == null)
2531 return m.findLast();
2532 else if (hiInclusive)
2533 return m.findNear(hi, m.LT|m.EQ);
2534 else
2535 return m.findNear(hi, m.LT);
2536 }
2537
2538 /**
2539 * Returns lowest absolute key (ignoring directonality)
2540 */
2541 private K lowestKey() {
2542 ConcurrentSkipListMap.Node<K,V> n = loNode();
2543 if (isBeforeEnd(n))
2544 return n.key;
2545 else
2546 throw new NoSuchElementException();
2547 }
2548
2549 /**
2550 * Returns highest absolute key (ignoring directonality)
2551 */
2552 private K highestKey() {
2553 ConcurrentSkipListMap.Node<K,V> n = hiNode();
2554 if (n != null) {
2555 K last = n.key;
2556 if (inBounds(last))
2557 return last;
2558 }
2559 throw new NoSuchElementException();
2560 }
2561
2562 private Map.Entry<K,V> lowestEntry() {
2563 for (;;) {
2564 ConcurrentSkipListMap.Node<K,V> n = loNode();
2565 if (!isBeforeEnd(n))
2566 return null;
2567 Map.Entry<K,V> e = n.createSnapshot();
2568 if (e != null)
2569 return e;
2570 }
2571 }
2572
2573 private Map.Entry<K,V> highestEntry() {
2574 for (;;) {
2575 ConcurrentSkipListMap.Node<K,V> n = hiNode();
2576 if (n == null || !inBounds(n.key))
2577 return null;
2578 Map.Entry<K,V> e = n.createSnapshot();
2579 if (e != null)
2580 return e;
2581 }
2582 }
2583
2584 private Map.Entry<K,V> removeLowest() {
2585 for (;;) {
2586 Node<K,V> n = loNode();
2587 if (n == null)
2588 return null;
2589 K k = n.key;
2590 if (!inBounds(k))
2591 return null;
2592 V v = m.doRemove(k, null);
2593 if (v != null)
2594 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2595 }
2596 }
2597
2598 private Map.Entry<K,V> removeHighest() {
2599 for (;;) {
2600 Node<K,V> n = hiNode();
2601 if (n == null)
2602 return null;
2603 K k = n.key;
2604 if (!inBounds(k))
2605 return null;
2606 V v = m.doRemove(k, null);
2607 if (v != null)
2608 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2609 }
2610 }
2611
2612 /**
2613 * Submap version of ConcurrentSkipListMap.getNearEntry
2614 */
2615 private Map.Entry<K,V> getNearEntry(K key, int rel) {
2616 if (isDescending) { // adjust relation for direction
2617 if ((rel & m.LT) == 0)
2618 rel |= m.LT;
2619 else
2620 rel &= ~m.LT;
2621 }
2622 if (tooLow(key))
2623 return ((rel & m.LT) != 0) ? null : lowestEntry();
2624 if (tooHigh(key))
2625 return ((rel & m.LT) != 0) ? highestEntry() : null;
2626 for (;;) {
2627 Node<K,V> n = m.findNear(key, rel);
2628 if (n == null || !inBounds(n.key))
2629 return null;
2630 K k = n.key;
2631 V v = n.getValidValue();
2632 if (v != null)
2633 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2634 }
2635 }
2636
2637 // Almost the same as getNearEntry, except for keys
2638 private K getNearKey(K key, int rel) {
2639 if (isDescending) { // adjust relation for direction
2640 if ((rel & m.LT) == 0)
2641 rel |= m.LT;
2642 else
2643 rel &= ~m.LT;
2644 }
2645 if (tooLow(key)) {
2646 if ((rel & m.LT) == 0) {
2647 ConcurrentSkipListMap.Node<K,V> n = loNode();
2648 if (isBeforeEnd(n))
2649 return n.key;
2650 }
2651 return null;
2652 }
2653 if (tooHigh(key)) {
2654 if ((rel & m.LT) != 0) {
2655 ConcurrentSkipListMap.Node<K,V> n = hiNode();
2656 if (n != null) {
2657 K last = n.key;
2658 if (inBounds(last))
2659 return last;
2660 }
2661 }
2662 return null;
2663 }
2664 for (;;) {
2665 Node<K,V> n = m.findNear(key, rel);
2666 if (n == null || !inBounds(n.key))
2667 return null;
2668 K k = n.key;
2669 V v = n.getValidValue();
2670 if (v != null)
2671 return k;
2672 }
2673 }
2674
2675 /* ---------------- Map API methods -------------- */
2676
2677 public boolean containsKey(Object key) {
2678 if (key == null) throw new NullPointerException();
2679 K k = (K)key;
2680 return inBounds(k) && m.containsKey(k);
2681 }
2682
2683 public V get(Object key) {
2684 if (key == null) throw new NullPointerException();
2685 K k = (K)key;
2686 return ((!inBounds(k)) ? null : m.get(k));
2687 }
2688
2689 public V put(K key, V value) {
2690 checkKeyBounds(key);
2691 return m.put(key, value);
2692 }
2693
2694 public V remove(Object key) {
2695 K k = (K)key;
2696 return (!inBounds(k)) ? null : m.remove(k);
2697 }
2698
2699 public int size() {
2700 long count = 0;
2701 for (ConcurrentSkipListMap.Node<K,V> n = loNode();
2702 isBeforeEnd(n);
2703 n = n.next) {
2704 if (n.getValidValue() != null)
2705 ++count;
2706 }
2707 return count >= Integer.MAX_VALUE ? Integer.MAX_VALUE : (int)count;
2708 }
2709
2710 public boolean isEmpty() {
2711 return !isBeforeEnd(loNode());
2712 }
2713
2714 public boolean containsValue(Object value) {
2715 if (value == null)
2716 throw new NullPointerException();
2717 for (ConcurrentSkipListMap.Node<K,V> n = loNode();
2718 isBeforeEnd(n);
2719 n = n.next) {
2720 V v = n.getValidValue();
2721 if (v != null && value.equals(v))
2722 return true;
2723 }
2724 return false;
2725 }
2726
2727 public void clear() {
2728 for (ConcurrentSkipListMap.Node<K,V> n = loNode();
2729 isBeforeEnd(n);
2730 n = n.next) {
2731 if (n.getValidValue() != null)
2732 m.remove(n.key);
2733 }
2734 }
2735
2736 /* ---------------- ConcurrentMap API methods -------------- */
2737
2738 public V putIfAbsent(K key, V value) {
2739 checkKeyBounds(key);
2740 return m.putIfAbsent(key, value);
2741 }
2742
2743 public boolean remove(Object key, Object value) {
2744 K k = (K)key;
2745 return inBounds(k) && m.remove(k, value);
2746 }
2747
2748 public boolean replace(K key, V oldValue, V newValue) {
2749 checkKeyBounds(key);
2750 return m.replace(key, oldValue, newValue);
2751 }
2752
2753 public V replace(K key, V value) {
2754 checkKeyBounds(key);
2755 return m.replace(key, value);
2756 }
2757
2758 /* ---------------- SortedMap API methods -------------- */
2759
2760 public Comparator<? super K> comparator() {
2761 Comparator<? super K> cmp = m.comparator();
2762 if (isDescending)
2763 return Collections.reverseOrder(cmp);
2764 else
2765 return cmp;
2766 }
2767
2768 /**
2769 * Utility to create submaps, where given bounds override
2770 * unbounded(null) ones and/or are checked against bounded ones.
2771 */
2772 private SubMap<K,V> newSubMap(K fromKey,
2773 boolean fromInclusive,
2774 K toKey,
2775 boolean toInclusive) {
2776 if (isDescending) { // flip senses
2777 K tk = fromKey;
2778 fromKey = toKey;
2779 toKey = tk;
2780 boolean ti = fromInclusive;
2781 fromInclusive = toInclusive;
2782 toInclusive = ti;
2783 }
2784 if (lo != null) {
2785 if (fromKey == null) {
2786 fromKey = lo;
2787 fromInclusive = loInclusive;
2788 }
2789 else {
2790 int c = m.compare(fromKey, lo);
2791 if (c < 0 || (c == 0 && !loInclusive && fromInclusive))
2792 throw new IllegalArgumentException("key out of range");
2793 }
2794 }
2795 if (hi != null) {
2796 if (toKey == null) {
2797 toKey = hi;
2798 toInclusive = hiInclusive;
2799 }
2800 else {
2801 int c = m.compare(toKey, hi);
2802 if (c > 0 || (c == 0 && !hiInclusive && toInclusive))
2803 throw new IllegalArgumentException("key out of range");
2804 }
2805 }
2806 return new SubMap<K,V>(m, fromKey, fromInclusive,
2807 toKey, toInclusive, isDescending);
2808 }
2809
2810 public SubMap<K,V> subMap(K fromKey,
2811 boolean fromInclusive,
2812 K toKey,
2813 boolean toInclusive) {
2814 if (fromKey == null || toKey == null)
2815 throw new NullPointerException();
2816 return newSubMap(fromKey, fromInclusive, toKey, toInclusive);
2817 }
2818
2819 public SubMap<K,V> headMap(K toKey,
2820 boolean inclusive) {
2821 if (toKey == null)
2822 throw new NullPointerException();
2823 return newSubMap(null, false, toKey, inclusive);
2824 }
2825
2826 public SubMap<K,V> tailMap(K fromKey,
2827 boolean inclusive) {
2828 if (fromKey == null)
2829 throw new NullPointerException();
2830 return newSubMap(fromKey, inclusive, null, false);
2831 }
2832
2833 public SubMap<K,V> subMap(K fromKey, K toKey) {
2834 return subMap(fromKey, true, toKey, false);
2835 }
2836
2837 public SubMap<K,V> headMap(K toKey) {
2838 return headMap(toKey, false);
2839 }
2840
2841 public SubMap<K,V> tailMap(K fromKey) {
2842 return tailMap(fromKey, true);
2843 }
2844
2845 public SubMap<K,V> descendingMap() {
2846 return new SubMap<K,V>(m, lo, loInclusive,
2847 hi, hiInclusive, !isDescending);
2848 }
2849
2850 /* ---------------- Relational methods -------------- */
2851
2852 public Map.Entry<K,V> ceilingEntry(K key) {
2853 return getNearEntry(key, (m.GT|m.EQ));
2854 }
2855
2856 public K ceilingKey(K key) {
2857 return getNearKey(key, (m.GT|m.EQ));
2858 }
2859
2860 public Map.Entry<K,V> lowerEntry(K key) {
2861 return getNearEntry(key, (m.LT));
2862 }
2863
2864 public K lowerKey(K key) {
2865 return getNearKey(key, (m.LT));
2866 }
2867
2868 public Map.Entry<K,V> floorEntry(K key) {
2869 return getNearEntry(key, (m.LT|m.EQ));
2870 }
2871
2872 public K floorKey(K key) {
2873 return getNearKey(key, (m.LT|m.EQ));
2874 }
2875
2876 public Map.Entry<K,V> higherEntry(K key) {
2877 return getNearEntry(key, (m.GT));
2878 }
2879
2880 public K higherKey(K key) {
2881 return getNearKey(key, (m.GT));
2882 }
2883
2884 public K firstKey() {
2885 return isDescending ? highestKey() : lowestKey();
2886 }
2887
2888 public K lastKey() {
2889 return isDescending ? lowestKey() : highestKey();
2890 }
2891
2892 public Map.Entry<K,V> firstEntry() {
2893 return isDescending ? highestEntry() : lowestEntry();
2894 }
2895
2896 public Map.Entry<K,V> lastEntry() {
2897 return isDescending ? lowestEntry() : highestEntry();
2898 }
2899
2900 public Map.Entry<K,V> pollFirstEntry() {
2901 return isDescending ? removeHighest() : removeLowest();
2902 }
2903
2904 public Map.Entry<K,V> pollLastEntry() {
2905 return isDescending ? removeLowest() : removeHighest();
2906 }
2907
2908 /* ---------------- Submap Views -------------- */
2909
2910 public NavigableSet<K> keySet() {
2911 KeySet<K> ks = keySetView;
2912 return (ks != null) ? ks : (keySetView = new KeySet(this));
2913 }
2914
2915 public NavigableSet<K> navigableKeySet() {
2916 KeySet<K> ks = keySetView;
2917 return (ks != null) ? ks : (keySetView = new KeySet(this));
2918 }
2919
2920 public Collection<V> values() {
2921 Collection<V> vs = valuesView;
2922 return (vs != null) ? vs : (valuesView = new Values(this));
2923 }
2924
2925 public Set<Map.Entry<K,V>> entrySet() {
2926 Set<Map.Entry<K,V>> es = entrySetView;
2927 return (es != null) ? es : (entrySetView = new EntrySet(this));
2928 }
2929
2930 public NavigableSet<K> descendingKeySet() {
2931 return descendingMap().navigableKeySet();
2932 }
2933
2934 Iterator<K> keyIterator() {
2935 return new SubMapKeyIterator();
2936 }
2937
2938 Iterator<V> valueIterator() {
2939 return new SubMapValueIterator();
2940 }
2941
2942 Iterator<Map.Entry<K,V>> entryIterator() {
2943 return new SubMapEntryIterator();
2944 }
2945
2946 /**
2947 * Variant of main Iter class to traverse through submaps.
2948 */
2949 abstract class SubMapIter<T> implements Iterator<T> {
2950 /** the last node returned by next() */
2951 Node<K,V> lastReturned;
2952 /** the next node to return from next(); */
2953 Node<K,V> next;
2954 /** Cache of next value field to maintain weak consistency */
2955 V nextValue;
2956
2957 SubMapIter() {
2958 for (;;) {
2959 next = isDescending ? hiNode() : loNode();
2960 if (next == null)
2961 break;
2962 Object x = next.value;
2963 if (x != null && x != next) {
2964 if (! inBounds(next.key))
2965 next = null;
2966 else
2967 nextValue = (V) x;
2968 break;
2969 }
2970 }
2971 }
2972
2973 public final boolean hasNext() {
2974 return next != null;
2975 }
2976
2977 final void advance() {
2978 if (next == null)
2979 throw new NoSuchElementException();
2980 lastReturned = next;
2981 if (isDescending)
2982 descend();
2983 else
2984 ascend();
2985 }
2986
2987 private void ascend() {
2988 for (;;) {
2989 next = next.next;
2990 if (next == null)
2991 break;
2992 Object x = next.value;
2993 if (x != null && x != next) {
2994 if (tooHigh(next.key))
2995 next = null;
2996 else
2997 nextValue = (V) x;
2998 break;
2999 }
3000 }
3001 }
3002
3003 private void descend() {
3004 for (;;) {
3005 next = m.findNear(lastReturned.key, LT);
3006 if (next == null)
3007 break;
3008 Object x = next.value;
3009 if (x != null && x != next) {
3010 if (tooLow(next.key))
3011 next = null;
3012 else
3013 nextValue = (V) x;
3014 break;
3015 }
3016 }
3017 }
3018
3019 public void remove() {
3020 Node<K,V> l = lastReturned;
3021 if (l == null)
3022 throw new IllegalStateException();
3023 m.remove(l.key);
3024 lastReturned = null;
3025 }
3026
3027 }
3028
3029 final class SubMapValueIterator extends SubMapIter<V> {
3030 public V next() {
3031 V v = nextValue;
3032 advance();
3033 return v;
3034 }
3035 }
3036
3037 final class SubMapKeyIterator extends SubMapIter<K> {
3038 public K next() {
3039 Node<K,V> n = next;
3040 advance();
3041 return n.key;
3042 }
3043 }
3044
3045 final class SubMapEntryIterator extends SubMapIter<Map.Entry<K,V>> {
3046 public Map.Entry<K,V> next() {
3047 Node<K,V> n = next;
3048 V v = nextValue;
3049 advance();
3050 return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
3051 }
3052 }
3053 }
3054
3055 // Unsafe mechanics
3056 private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
3057 private static final long headOffset =
3058 objectFieldOffset(UNSAFE, "head", ConcurrentSkipListMap.class);
3059
3060 static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
3061 String field, Class<?> klazz) {
3062 try {
3063 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
3064 } catch (NoSuchFieldException e) {
3065 // Convert Exception to corresponding Error
3066 NoSuchFieldError error = new NoSuchFieldError(field);
3067 error.initCause(e);
3068 throw error;
3069 }
3070 }
3071
3072 }