ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentSkipListMap.java
Revision: 1.72
Committed: Fri Jun 3 02:28:05 2011 UTC (13 years ago) by jsr166
Branch: MAIN
Changes since 1.71: +4 -4 lines
Log Message:
fix javac 7 [rawtypes] warnings

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8 import java.util.*;
9 import java.util.concurrent.atomic.*;
10
11 /**
12 * A scalable concurrent {@link ConcurrentNavigableMap} implementation.
13 * The map is sorted according to the {@linkplain Comparable natural
14 * ordering} of its keys, or by a {@link Comparator} provided at map
15 * creation time, depending on which constructor is used.
16 *
17 * <p>This class implements a concurrent variant of <a
18 * href="http://en.wikipedia.org/wiki/Skip_list" target="_top">SkipLists</a>
19 * providing expected average <i>log(n)</i> time cost for the
20 * <tt>containsKey</tt>, <tt>get</tt>, <tt>put</tt> and
21 * <tt>remove</tt> operations and their variants. Insertion, removal,
22 * update, and access operations safely execute concurrently by
23 * multiple threads. Iterators are <i>weakly consistent</i>, returning
24 * elements reflecting the state of the map at some point at or since
25 * the creation of the iterator. They do <em>not</em> throw {@link
26 * ConcurrentModificationException}, and may proceed concurrently with
27 * other operations. Ascending key ordered views and their iterators
28 * are faster than descending ones.
29 *
30 * <p>All <tt>Map.Entry</tt> pairs returned by methods in this class
31 * and its views represent snapshots of mappings at the time they were
32 * produced. They do <em>not</em> support the <tt>Entry.setValue</tt>
33 * method. (Note however that it is possible to change mappings in the
34 * associated map using <tt>put</tt>, <tt>putIfAbsent</tt>, or
35 * <tt>replace</tt>, depending on exactly which effect you need.)
36 *
37 * <p>Beware that, unlike in most collections, the <tt>size</tt>
38 * method is <em>not</em> a constant-time operation. Because of the
39 * asynchronous nature of these maps, determining the current number
40 * of elements requires a traversal of the elements, and so may report
41 * inaccurate results if this collection is modified during traversal.
42 * Additionally, the bulk operations <tt>putAll</tt>, <tt>equals</tt>,
43 * <tt>toArray</tt>, <tt>containsValue</tt>, and <tt>clear</tt> are
44 * <em>not</em> guaranteed to be performed atomically. For example, an
45 * iterator operating concurrently with a <tt>putAll</tt> operation
46 * might view only some of the added elements.
47 *
48 * <p>This class and its views and iterators implement all of the
49 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
50 * interfaces. Like most other concurrent collections, this class does
51 * <em>not</em> permit the use of <tt>null</tt> keys or values because some
52 * null return values cannot be reliably distinguished from the absence of
53 * elements.
54 *
55 * <p>This class is a member of the
56 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
57 * Java Collections Framework</a>.
58 *
59 * @author Doug Lea
60 * @param <K> the type of keys maintained by this map
61 * @param <V> the type of mapped values
62 * @since 1.6
63 */
64 public class ConcurrentSkipListMap<K,V> extends AbstractMap<K,V>
65 implements ConcurrentNavigableMap<K,V>,
66 Cloneable,
67 java.io.Serializable {
68 /*
69 * This class implements a tree-like two-dimensionally linked skip
70 * list in which the index levels are represented in separate
71 * nodes from the base nodes holding data. There are two reasons
72 * for taking this approach instead of the usual array-based
73 * structure: 1) Array based implementations seem to encounter
74 * more complexity and overhead 2) We can use cheaper algorithms
75 * for the heavily-traversed index lists than can be used for the
76 * base lists. Here's a picture of some of the basics for a
77 * possible list with 2 levels of index:
78 *
79 * Head nodes Index nodes
80 * +-+ right +-+ +-+
81 * |2|---------------->| |--------------------->| |->null
82 * +-+ +-+ +-+
83 * | down | |
84 * v v v
85 * +-+ +-+ +-+ +-+ +-+ +-+
86 * |1|----------->| |->| |------>| |----------->| |------>| |->null
87 * +-+ +-+ +-+ +-+ +-+ +-+
88 * v | | | | |
89 * Nodes next v v v v v
90 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
91 * | |->|A|->|B|->|C|->|D|->|E|->|F|->|G|->|H|->|I|->|J|->|K|->null
92 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
93 *
94 * The base lists use a variant of the HM linked ordered set
95 * algorithm. See Tim Harris, "A pragmatic implementation of
96 * non-blocking linked lists"
97 * http://www.cl.cam.ac.uk/~tlh20/publications.html and Maged
98 * Michael "High Performance Dynamic Lock-Free Hash Tables and
99 * List-Based Sets"
100 * http://www.research.ibm.com/people/m/michael/pubs.htm. The
101 * basic idea in these lists is to mark the "next" pointers of
102 * deleted nodes when deleting to avoid conflicts with concurrent
103 * insertions, and when traversing to keep track of triples
104 * (predecessor, node, successor) in order to detect when and how
105 * to unlink these deleted nodes.
106 *
107 * Rather than using mark-bits to mark list deletions (which can
108 * be slow and space-intensive using AtomicMarkedReference), nodes
109 * use direct CAS'able next pointers. On deletion, instead of
110 * marking a pointer, they splice in another node that can be
111 * thought of as standing for a marked pointer (indicating this by
112 * using otherwise impossible field values). Using plain nodes
113 * acts roughly like "boxed" implementations of marked pointers,
114 * but uses new nodes only when nodes are deleted, not for every
115 * link. This requires less space and supports faster
116 * traversal. Even if marked references were better supported by
117 * JVMs, traversal using this technique might still be faster
118 * because any search need only read ahead one more node than
119 * otherwise required (to check for trailing marker) rather than
120 * unmasking mark bits or whatever on each read.
121 *
122 * This approach maintains the essential property needed in the HM
123 * algorithm of changing the next-pointer of a deleted node so
124 * that any other CAS of it will fail, but implements the idea by
125 * changing the pointer to point to a different node, not by
126 * marking it. While it would be possible to further squeeze
127 * space by defining marker nodes not to have key/value fields, it
128 * isn't worth the extra type-testing overhead. The deletion
129 * markers are rarely encountered during traversal and are
130 * normally quickly garbage collected. (Note that this technique
131 * would not work well in systems without garbage collection.)
132 *
133 * In addition to using deletion markers, the lists also use
134 * nullness of value fields to indicate deletion, in a style
135 * similar to typical lazy-deletion schemes. If a node's value is
136 * null, then it is considered logically deleted and ignored even
137 * though it is still reachable. This maintains proper control of
138 * concurrent replace vs delete operations -- an attempted replace
139 * must fail if a delete beat it by nulling field, and a delete
140 * must return the last non-null value held in the field. (Note:
141 * Null, rather than some special marker, is used for value fields
142 * here because it just so happens to mesh with the Map API
143 * requirement that method get returns null if there is no
144 * mapping, which allows nodes to remain concurrently readable
145 * even when deleted. Using any other marker value here would be
146 * messy at best.)
147 *
148 * Here's the sequence of events for a deletion of node n with
149 * predecessor b and successor f, initially:
150 *
151 * +------+ +------+ +------+
152 * ... | b |------>| n |----->| f | ...
153 * +------+ +------+ +------+
154 *
155 * 1. CAS n's value field from non-null to null.
156 * From this point on, no public operations encountering
157 * the node consider this mapping to exist. However, other
158 * ongoing insertions and deletions might still modify
159 * n's next pointer.
160 *
161 * 2. CAS n's next pointer to point to a new marker node.
162 * From this point on, no other nodes can be appended to n.
163 * which avoids deletion errors in CAS-based linked lists.
164 *
165 * +------+ +------+ +------+ +------+
166 * ... | b |------>| n |----->|marker|------>| f | ...
167 * +------+ +------+ +------+ +------+
168 *
169 * 3. CAS b's next pointer over both n and its marker.
170 * From this point on, no new traversals will encounter n,
171 * and it can eventually be GCed.
172 * +------+ +------+
173 * ... | b |----------------------------------->| f | ...
174 * +------+ +------+
175 *
176 * A failure at step 1 leads to simple retry due to a lost race
177 * with another operation. Steps 2-3 can fail because some other
178 * thread noticed during a traversal a node with null value and
179 * helped out by marking and/or unlinking. This helping-out
180 * ensures that no thread can become stuck waiting for progress of
181 * the deleting thread. The use of marker nodes slightly
182 * complicates helping-out code because traversals must track
183 * consistent reads of up to four nodes (b, n, marker, f), not
184 * just (b, n, f), although the next field of a marker is
185 * immutable, and once a next field is CAS'ed to point to a
186 * marker, it never again changes, so this requires less care.
187 *
188 * Skip lists add indexing to this scheme, so that the base-level
189 * traversals start close to the locations being found, inserted
190 * or deleted -- usually base level traversals only traverse a few
191 * nodes. This doesn't change the basic algorithm except for the
192 * need to make sure base traversals start at predecessors (here,
193 * b) that are not (structurally) deleted, otherwise retrying
194 * after processing the deletion.
195 *
196 * Index levels are maintained as lists with volatile next fields,
197 * using CAS to link and unlink. Races are allowed in index-list
198 * operations that can (rarely) fail to link in a new index node
199 * or delete one. (We can't do this of course for data nodes.)
200 * However, even when this happens, the index lists remain sorted,
201 * so correctly serve as indices. This can impact performance,
202 * but since skip lists are probabilistic anyway, the net result
203 * is that under contention, the effective "p" value may be lower
204 * than its nominal value. And race windows are kept small enough
205 * that in practice these failures are rare, even under a lot of
206 * contention.
207 *
208 * The fact that retries (for both base and index lists) are
209 * relatively cheap due to indexing allows some minor
210 * simplifications of retry logic. Traversal restarts are
211 * performed after most "helping-out" CASes. This isn't always
212 * strictly necessary, but the implicit backoffs tend to help
213 * reduce other downstream failed CAS's enough to outweigh restart
214 * cost. This worsens the worst case, but seems to improve even
215 * highly contended cases.
216 *
217 * Unlike most skip-list implementations, index insertion and
218 * deletion here require a separate traversal pass occuring after
219 * the base-level action, to add or remove index nodes. This adds
220 * to single-threaded overhead, but improves contended
221 * multithreaded performance by narrowing interference windows,
222 * and allows deletion to ensure that all index nodes will be made
223 * unreachable upon return from a public remove operation, thus
224 * avoiding unwanted garbage retention. This is more important
225 * here than in some other data structures because we cannot null
226 * out node fields referencing user keys since they might still be
227 * read by other ongoing traversals.
228 *
229 * Indexing uses skip list parameters that maintain good search
230 * performance while using sparser-than-usual indices: The
231 * hardwired parameters k=1, p=0.5 (see method randomLevel) mean
232 * that about one-quarter of the nodes have indices. Of those that
233 * do, half have one level, a quarter have two, and so on (see
234 * Pugh's Skip List Cookbook, sec 3.4). The expected total space
235 * requirement for a map is slightly less than for the current
236 * implementation of java.util.TreeMap.
237 *
238 * Changing the level of the index (i.e, the height of the
239 * tree-like structure) also uses CAS. The head index has initial
240 * level/height of one. Creation of an index with height greater
241 * than the current level adds a level to the head index by
242 * CAS'ing on a new top-most head. To maintain good performance
243 * after a lot of removals, deletion methods heuristically try to
244 * reduce the height if the topmost levels appear to be empty.
245 * This may encounter races in which it possible (but rare) to
246 * reduce and "lose" a level just as it is about to contain an
247 * index (that will then never be encountered). This does no
248 * structural harm, and in practice appears to be a better option
249 * than allowing unrestrained growth of levels.
250 *
251 * The code for all this is more verbose than you'd like. Most
252 * operations entail locating an element (or position to insert an
253 * element). The code to do this can't be nicely factored out
254 * because subsequent uses require a snapshot of predecessor
255 * and/or successor and/or value fields which can't be returned
256 * all at once, at least not without creating yet another object
257 * to hold them -- creating such little objects is an especially
258 * bad idea for basic internal search operations because it adds
259 * to GC overhead. (This is one of the few times I've wished Java
260 * had macros.) Instead, some traversal code is interleaved within
261 * insertion and removal operations. The control logic to handle
262 * all the retry conditions is sometimes twisty. Most search is
263 * broken into 2 parts. findPredecessor() searches index nodes
264 * only, returning a base-level predecessor of the key. findNode()
265 * finishes out the base-level search. Even with this factoring,
266 * there is a fair amount of near-duplication of code to handle
267 * variants.
268 *
269 * For explanation of algorithms sharing at least a couple of
270 * features with this one, see Mikhail Fomitchev's thesis
271 * (http://www.cs.yorku.ca/~mikhail/), Keir Fraser's thesis
272 * (http://www.cl.cam.ac.uk/users/kaf24/), and Hakan Sundell's
273 * thesis (http://www.cs.chalmers.se/~phs/).
274 *
275 * Given the use of tree-like index nodes, you might wonder why
276 * this doesn't use some kind of search tree instead, which would
277 * support somewhat faster search operations. The reason is that
278 * there are no known efficient lock-free insertion and deletion
279 * algorithms for search trees. The immutability of the "down"
280 * links of index nodes (as opposed to mutable "left" fields in
281 * true trees) makes this tractable using only CAS operations.
282 *
283 * Notation guide for local variables
284 * Node: b, n, f for predecessor, node, successor
285 * Index: q, r, d for index node, right, down.
286 * t for another index node
287 * Head: h
288 * Levels: j
289 * Keys: k, key
290 * Values: v, value
291 * Comparisons: c
292 */
293
294 private static final long serialVersionUID = -8627078645895051609L;
295
296 /**
297 * Generates the initial random seed for the cheaper per-instance
298 * random number generators used in randomLevel.
299 */
300 private static final Random seedGenerator = new Random();
301
302 /**
303 * Special value used to identify base-level header
304 */
305 private static final Object BASE_HEADER = new Object();
306
307 /**
308 * The topmost head index of the skiplist.
309 */
310 private transient volatile HeadIndex<K,V> head;
311
312 /**
313 * The comparator used to maintain order in this map, or null
314 * if using natural ordering.
315 * @serial
316 */
317 private final Comparator<? super K> comparator;
318
319 /**
320 * Seed for simple random number generator. Not volatile since it
321 * doesn't matter too much if different threads don't see updates.
322 */
323 private transient int randomSeed;
324
325 /** Lazily initialized key set */
326 private transient KeySet<K> keySet;
327 /** Lazily initialized entry set */
328 private transient EntrySet<K,V> entrySet;
329 /** Lazily initialized values collection */
330 private transient Values<V> values;
331 /** Lazily initialized descending key set */
332 private transient ConcurrentNavigableMap<K,V> descendingMap;
333
334 /**
335 * Initializes or resets state. Needed by constructors, clone,
336 * clear, readObject. and ConcurrentSkipListSet.clone.
337 * (Note that comparator must be separately initialized.)
338 */
339 final void initialize() {
340 keySet = null;
341 entrySet = null;
342 values = null;
343 descendingMap = null;
344 randomSeed = seedGenerator.nextInt() | 0x0100; // ensure nonzero
345 head = new HeadIndex<K,V>(new Node<K,V>(null, BASE_HEADER, null),
346 null, null, 1);
347 }
348
349 /**
350 * compareAndSet head node
351 */
352 private boolean casHead(HeadIndex<K,V> cmp, HeadIndex<K,V> val) {
353 return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
354 }
355
356 /* ---------------- Nodes -------------- */
357
358 /**
359 * Nodes hold keys and values, and are singly linked in sorted
360 * order, possibly with some intervening marker nodes. The list is
361 * headed by a dummy node accessible as head.node. The value field
362 * is declared only as Object because it takes special non-V
363 * values for marker and header nodes.
364 */
365 static final class Node<K,V> {
366 final K key;
367 volatile Object value;
368 volatile Node<K,V> next;
369
370 /**
371 * Creates a new regular node.
372 */
373 Node(K key, Object value, Node<K,V> next) {
374 this.key = key;
375 this.value = value;
376 this.next = next;
377 }
378
379 /**
380 * Creates a new marker node. A marker is distinguished by
381 * having its value field point to itself. Marker nodes also
382 * have null keys, a fact that is exploited in a few places,
383 * but this doesn't distinguish markers from the base-level
384 * header node (head.node), which also has a null key.
385 */
386 Node(Node<K,V> next) {
387 this.key = null;
388 this.value = this;
389 this.next = next;
390 }
391
392 /**
393 * compareAndSet value field
394 */
395 boolean casValue(Object cmp, Object val) {
396 return UNSAFE.compareAndSwapObject(this, valueOffset, cmp, val);
397 }
398
399 /**
400 * compareAndSet next field
401 */
402 boolean casNext(Node<K,V> cmp, Node<K,V> val) {
403 return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
404 }
405
406 /**
407 * Returns true if this node is a marker. This method isn't
408 * actually called in any current code checking for markers
409 * because callers will have already read value field and need
410 * to use that read (not another done here) and so directly
411 * test if value points to node.
412 * @param n a possibly null reference to a node
413 * @return true if this node is a marker node
414 */
415 boolean isMarker() {
416 return value == this;
417 }
418
419 /**
420 * Returns true if this node is the header of base-level list.
421 * @return true if this node is header node
422 */
423 boolean isBaseHeader() {
424 return value == BASE_HEADER;
425 }
426
427 /**
428 * Tries to append a deletion marker to this node.
429 * @param f the assumed current successor of this node
430 * @return true if successful
431 */
432 boolean appendMarker(Node<K,V> f) {
433 return casNext(f, new Node<K,V>(f));
434 }
435
436 /**
437 * Helps out a deletion by appending marker or unlinking from
438 * predecessor. This is called during traversals when value
439 * field seen to be null.
440 * @param b predecessor
441 * @param f successor
442 */
443 void helpDelete(Node<K,V> b, Node<K,V> f) {
444 /*
445 * Rechecking links and then doing only one of the
446 * help-out stages per call tends to minimize CAS
447 * interference among helping threads.
448 */
449 if (f == next && this == b.next) {
450 if (f == null || f.value != f) // not already marked
451 appendMarker(f);
452 else
453 b.casNext(this, f.next);
454 }
455 }
456
457 /**
458 * Returns value if this node contains a valid key-value pair,
459 * else null.
460 * @return this node's value if it isn't a marker or header or
461 * is deleted, else null.
462 */
463 V getValidValue() {
464 Object v = value;
465 if (v == this || v == BASE_HEADER)
466 return null;
467 return (V)v;
468 }
469
470 /**
471 * Creates and returns a new SimpleImmutableEntry holding current
472 * mapping if this node holds a valid value, else null.
473 * @return new entry or null
474 */
475 AbstractMap.SimpleImmutableEntry<K,V> createSnapshot() {
476 V v = getValidValue();
477 if (v == null)
478 return null;
479 return new AbstractMap.SimpleImmutableEntry<K,V>(key, v);
480 }
481
482 // UNSAFE mechanics
483
484 private static final sun.misc.Unsafe UNSAFE;
485 private static final long valueOffset;
486 private static final long nextOffset;
487
488 static {
489 try {
490 UNSAFE = sun.misc.Unsafe.getUnsafe();
491 Class<?> k = Node.class;
492 valueOffset = UNSAFE.objectFieldOffset
493 (k.getDeclaredField("value"));
494 nextOffset = UNSAFE.objectFieldOffset
495 (k.getDeclaredField("next"));
496 } catch (Exception e) {
497 throw new Error(e);
498 }
499 }
500 }
501
502 /* ---------------- Indexing -------------- */
503
504 /**
505 * Index nodes represent the levels of the skip list. Note that
506 * even though both Nodes and Indexes have forward-pointing
507 * fields, they have different types and are handled in different
508 * ways, that can't nicely be captured by placing field in a
509 * shared abstract class.
510 */
511 static class Index<K,V> {
512 final Node<K,V> node;
513 final Index<K,V> down;
514 volatile Index<K,V> right;
515
516 /**
517 * Creates index node with given values.
518 */
519 Index(Node<K,V> node, Index<K,V> down, Index<K,V> right) {
520 this.node = node;
521 this.down = down;
522 this.right = right;
523 }
524
525 /**
526 * compareAndSet right field
527 */
528 final boolean casRight(Index<K,V> cmp, Index<K,V> val) {
529 return UNSAFE.compareAndSwapObject(this, rightOffset, cmp, val);
530 }
531
532 /**
533 * Returns true if the node this indexes has been deleted.
534 * @return true if indexed node is known to be deleted
535 */
536 final boolean indexesDeletedNode() {
537 return node.value == null;
538 }
539
540 /**
541 * Tries to CAS newSucc as successor. To minimize races with
542 * unlink that may lose this index node, if the node being
543 * indexed is known to be deleted, it doesn't try to link in.
544 * @param succ the expected current successor
545 * @param newSucc the new successor
546 * @return true if successful
547 */
548 final boolean link(Index<K,V> succ, Index<K,V> newSucc) {
549 Node<K,V> n = node;
550 newSucc.right = succ;
551 return n.value != null && casRight(succ, newSucc);
552 }
553
554 /**
555 * Tries to CAS right field to skip over apparent successor
556 * succ. Fails (forcing a retraversal by caller) if this node
557 * is known to be deleted.
558 * @param succ the expected current successor
559 * @return true if successful
560 */
561 final boolean unlink(Index<K,V> succ) {
562 return !indexesDeletedNode() && casRight(succ, succ.right);
563 }
564
565 // Unsafe mechanics
566 private static final sun.misc.Unsafe UNSAFE;
567 private static final long rightOffset;
568 static {
569 try {
570 UNSAFE = sun.misc.Unsafe.getUnsafe();
571 Class<?> k = Index.class;
572 rightOffset = UNSAFE.objectFieldOffset
573 (k.getDeclaredField("right"));
574 } catch (Exception e) {
575 throw new Error(e);
576 }
577 }
578 }
579
580 /* ---------------- Head nodes -------------- */
581
582 /**
583 * Nodes heading each level keep track of their level.
584 */
585 static final class HeadIndex<K,V> extends Index<K,V> {
586 final int level;
587 HeadIndex(Node<K,V> node, Index<K,V> down, Index<K,V> right, int level) {
588 super(node, down, right);
589 this.level = level;
590 }
591 }
592
593 /* ---------------- Comparison utilities -------------- */
594
595 /**
596 * Represents a key with a comparator as a Comparable.
597 *
598 * Because most sorted collections seem to use natural ordering on
599 * Comparables (Strings, Integers, etc), most internal methods are
600 * geared to use them. This is generally faster than checking
601 * per-comparison whether to use comparator or comparable because
602 * it doesn't require a (Comparable) cast for each comparison.
603 * (Optimizers can only sometimes remove such redundant checks
604 * themselves.) When Comparators are used,
605 * ComparableUsingComparators are created so that they act in the
606 * same way as natural orderings. This penalizes use of
607 * Comparators vs Comparables, which seems like the right
608 * tradeoff.
609 */
610 static final class ComparableUsingComparator<K> implements Comparable<K> {
611 final K actualKey;
612 final Comparator<? super K> cmp;
613 ComparableUsingComparator(K key, Comparator<? super K> cmp) {
614 this.actualKey = key;
615 this.cmp = cmp;
616 }
617 public int compareTo(K k2) {
618 return cmp.compare(actualKey, k2);
619 }
620 }
621
622 /**
623 * If using comparator, return a ComparableUsingComparator, else
624 * cast key as Comparable, which may cause ClassCastException,
625 * which is propagated back to caller.
626 */
627 private Comparable<? super K> comparable(Object key)
628 throws ClassCastException {
629 if (key == null)
630 throw new NullPointerException();
631 if (comparator != null)
632 return new ComparableUsingComparator<K>((K)key, comparator);
633 else
634 return (Comparable<? super K>)key;
635 }
636
637 /**
638 * Compares using comparator or natural ordering. Used when the
639 * ComparableUsingComparator approach doesn't apply.
640 */
641 int compare(K k1, K k2) throws ClassCastException {
642 Comparator<? super K> cmp = comparator;
643 if (cmp != null)
644 return cmp.compare(k1, k2);
645 else
646 return ((Comparable<? super K>)k1).compareTo(k2);
647 }
648
649 /**
650 * Returns true if given key greater than or equal to least and
651 * strictly less than fence, bypassing either test if least or
652 * fence are null. Needed mainly in submap operations.
653 */
654 boolean inHalfOpenRange(K key, K least, K fence) {
655 if (key == null)
656 throw new NullPointerException();
657 return ((least == null || compare(key, least) >= 0) &&
658 (fence == null || compare(key, fence) < 0));
659 }
660
661 /**
662 * Returns true if given key greater than or equal to least and less
663 * or equal to fence. Needed mainly in submap operations.
664 */
665 boolean inOpenRange(K key, K least, K fence) {
666 if (key == null)
667 throw new NullPointerException();
668 return ((least == null || compare(key, least) >= 0) &&
669 (fence == null || compare(key, fence) <= 0));
670 }
671
672 /* ---------------- Traversal -------------- */
673
674 /**
675 * Returns a base-level node with key strictly less than given key,
676 * or the base-level header if there is no such node. Also
677 * unlinks indexes to deleted nodes found along the way. Callers
678 * rely on this side-effect of clearing indices to deleted nodes.
679 * @param key the key
680 * @return a predecessor of key
681 */
682 private Node<K,V> findPredecessor(Comparable<? super K> key) {
683 if (key == null)
684 throw new NullPointerException(); // don't postpone errors
685 for (;;) {
686 Index<K,V> q = head;
687 Index<K,V> r = q.right;
688 for (;;) {
689 if (r != null) {
690 Node<K,V> n = r.node;
691 K k = n.key;
692 if (n.value == null) {
693 if (!q.unlink(r))
694 break; // restart
695 r = q.right; // reread r
696 continue;
697 }
698 if (key.compareTo(k) > 0) {
699 q = r;
700 r = r.right;
701 continue;
702 }
703 }
704 Index<K,V> d = q.down;
705 if (d != null) {
706 q = d;
707 r = d.right;
708 } else
709 return q.node;
710 }
711 }
712 }
713
714 /**
715 * Returns node holding key or null if no such, clearing out any
716 * deleted nodes seen along the way. Repeatedly traverses at
717 * base-level looking for key starting at predecessor returned
718 * from findPredecessor, processing base-level deletions as
719 * encountered. Some callers rely on this side-effect of clearing
720 * deleted nodes.
721 *
722 * Restarts occur, at traversal step centered on node n, if:
723 *
724 * (1) After reading n's next field, n is no longer assumed
725 * predecessor b's current successor, which means that
726 * we don't have a consistent 3-node snapshot and so cannot
727 * unlink any subsequent deleted nodes encountered.
728 *
729 * (2) n's value field is null, indicating n is deleted, in
730 * which case we help out an ongoing structural deletion
731 * before retrying. Even though there are cases where such
732 * unlinking doesn't require restart, they aren't sorted out
733 * here because doing so would not usually outweigh cost of
734 * restarting.
735 *
736 * (3) n is a marker or n's predecessor's value field is null,
737 * indicating (among other possibilities) that
738 * findPredecessor returned a deleted node. We can't unlink
739 * the node because we don't know its predecessor, so rely
740 * on another call to findPredecessor to notice and return
741 * some earlier predecessor, which it will do. This check is
742 * only strictly needed at beginning of loop, (and the
743 * b.value check isn't strictly needed at all) but is done
744 * each iteration to help avoid contention with other
745 * threads by callers that will fail to be able to change
746 * links, and so will retry anyway.
747 *
748 * The traversal loops in doPut, doRemove, and findNear all
749 * include the same three kinds of checks. And specialized
750 * versions appear in findFirst, and findLast and their
751 * variants. They can't easily share code because each uses the
752 * reads of fields held in locals occurring in the orders they
753 * were performed.
754 *
755 * @param key the key
756 * @return node holding key, or null if no such
757 */
758 private Node<K,V> findNode(Comparable<? super K> key) {
759 for (;;) {
760 Node<K,V> b = findPredecessor(key);
761 Node<K,V> n = b.next;
762 for (;;) {
763 if (n == null)
764 return null;
765 Node<K,V> f = n.next;
766 if (n != b.next) // inconsistent read
767 break;
768 Object v = n.value;
769 if (v == null) { // n is deleted
770 n.helpDelete(b, f);
771 break;
772 }
773 if (v == n || b.value == null) // b is deleted
774 break;
775 int c = key.compareTo(n.key);
776 if (c == 0)
777 return n;
778 if (c < 0)
779 return null;
780 b = n;
781 n = f;
782 }
783 }
784 }
785
786 /**
787 * Gets value for key using findNode.
788 * @param okey the key
789 * @return the value, or null if absent
790 */
791 private V doGet(Object okey) {
792 Comparable<? super K> key = comparable(okey);
793 /*
794 * Loop needed here and elsewhere in case value field goes
795 * null just as it is about to be returned, in which case we
796 * lost a race with a deletion, so must retry.
797 */
798 for (;;) {
799 Node<K,V> n = findNode(key);
800 if (n == null)
801 return null;
802 Object v = n.value;
803 if (v != null)
804 return (V)v;
805 }
806 }
807
808 /* ---------------- Insertion -------------- */
809
810 /**
811 * Main insertion method. Adds element if not present, or
812 * replaces value if present and onlyIfAbsent is false.
813 * @param kkey the key
814 * @param value the value that must be associated with key
815 * @param onlyIfAbsent if should not insert if already present
816 * @return the old value, or null if newly inserted
817 */
818 private V doPut(K kkey, V value, boolean onlyIfAbsent) {
819 Comparable<? super K> key = comparable(kkey);
820 for (;;) {
821 Node<K,V> b = findPredecessor(key);
822 Node<K,V> n = b.next;
823 for (;;) {
824 if (n != null) {
825 Node<K,V> f = n.next;
826 if (n != b.next) // inconsistent read
827 break;
828 Object v = n.value;
829 if (v == null) { // n is deleted
830 n.helpDelete(b, f);
831 break;
832 }
833 if (v == n || b.value == null) // b is deleted
834 break;
835 int c = key.compareTo(n.key);
836 if (c > 0) {
837 b = n;
838 n = f;
839 continue;
840 }
841 if (c == 0) {
842 if (onlyIfAbsent || n.casValue(v, value))
843 return (V)v;
844 else
845 break; // restart if lost race to replace value
846 }
847 // else c < 0; fall through
848 }
849
850 Node<K,V> z = new Node<K,V>(kkey, value, n);
851 if (!b.casNext(n, z))
852 break; // restart if lost race to append to b
853 int level = randomLevel();
854 if (level > 0)
855 insertIndex(z, level);
856 return null;
857 }
858 }
859 }
860
861 /**
862 * Returns a random level for inserting a new node.
863 * Hardwired to k=1, p=0.5, max 31 (see above and
864 * Pugh's "Skip List Cookbook", sec 3.4).
865 *
866 * This uses the simplest of the generators described in George
867 * Marsaglia's "Xorshift RNGs" paper. This is not a high-quality
868 * generator but is acceptable here.
869 */
870 private int randomLevel() {
871 int x = randomSeed;
872 x ^= x << 13;
873 x ^= x >>> 17;
874 randomSeed = x ^= x << 5;
875 if ((x & 0x80000001) != 0) // test highest and lowest bits
876 return 0;
877 int level = 1;
878 while (((x >>>= 1) & 1) != 0) ++level;
879 return level;
880 }
881
882 /**
883 * Creates and adds index nodes for the given node.
884 * @param z the node
885 * @param level the level of the index
886 */
887 private void insertIndex(Node<K,V> z, int level) {
888 HeadIndex<K,V> h = head;
889 int max = h.level;
890
891 if (level <= max) {
892 Index<K,V> idx = null;
893 for (int i = 1; i <= level; ++i)
894 idx = new Index<K,V>(z, idx, null);
895 addIndex(idx, h, level);
896
897 } else { // Add a new level
898 /*
899 * To reduce interference by other threads checking for
900 * empty levels in tryReduceLevel, new levels are added
901 * with initialized right pointers. Which in turn requires
902 * keeping levels in an array to access them while
903 * creating new head index nodes from the opposite
904 * direction.
905 */
906 level = max + 1;
907 Index<K,V>[] idxs = (Index<K,V>[])new Index<?,?>[level+1];
908 Index<K,V> idx = null;
909 for (int i = 1; i <= level; ++i)
910 idxs[i] = idx = new Index<K,V>(z, idx, null);
911
912 HeadIndex<K,V> oldh;
913 int k;
914 for (;;) {
915 oldh = head;
916 int oldLevel = oldh.level;
917 if (level <= oldLevel) { // lost race to add level
918 k = level;
919 break;
920 }
921 HeadIndex<K,V> newh = oldh;
922 Node<K,V> oldbase = oldh.node;
923 for (int j = oldLevel+1; j <= level; ++j)
924 newh = new HeadIndex<K,V>(oldbase, newh, idxs[j], j);
925 if (casHead(oldh, newh)) {
926 k = oldLevel;
927 break;
928 }
929 }
930 addIndex(idxs[k], oldh, k);
931 }
932 }
933
934 /**
935 * Adds given index nodes from given level down to 1.
936 * @param idx the topmost index node being inserted
937 * @param h the value of head to use to insert. This must be
938 * snapshotted by callers to provide correct insertion level
939 * @param indexLevel the level of the index
940 */
941 private void addIndex(Index<K,V> idx, HeadIndex<K,V> h, int indexLevel) {
942 // Track next level to insert in case of retries
943 int insertionLevel = indexLevel;
944 Comparable<? super K> key = comparable(idx.node.key);
945 if (key == null) throw new NullPointerException();
946
947 // Similar to findPredecessor, but adding index nodes along
948 // path to key.
949 for (;;) {
950 int j = h.level;
951 Index<K,V> q = h;
952 Index<K,V> r = q.right;
953 Index<K,V> t = idx;
954 for (;;) {
955 if (r != null) {
956 Node<K,V> n = r.node;
957 // compare before deletion check avoids needing recheck
958 int c = key.compareTo(n.key);
959 if (n.value == null) {
960 if (!q.unlink(r))
961 break;
962 r = q.right;
963 continue;
964 }
965 if (c > 0) {
966 q = r;
967 r = r.right;
968 continue;
969 }
970 }
971
972 if (j == insertionLevel) {
973 // Don't insert index if node already deleted
974 if (t.indexesDeletedNode()) {
975 findNode(key); // cleans up
976 return;
977 }
978 if (!q.link(r, t))
979 break; // restart
980 if (--insertionLevel == 0) {
981 // need final deletion check before return
982 if (t.indexesDeletedNode())
983 findNode(key);
984 return;
985 }
986 }
987
988 if (--j >= insertionLevel && j < indexLevel)
989 t = t.down;
990 q = q.down;
991 r = q.right;
992 }
993 }
994 }
995
996 /* ---------------- Deletion -------------- */
997
998 /**
999 * Main deletion method. Locates node, nulls value, appends a
1000 * deletion marker, unlinks predecessor, removes associated index
1001 * nodes, and possibly reduces head index level.
1002 *
1003 * Index nodes are cleared out simply by calling findPredecessor.
1004 * which unlinks indexes to deleted nodes found along path to key,
1005 * which will include the indexes to this node. This is done
1006 * unconditionally. We can't check beforehand whether there are
1007 * index nodes because it might be the case that some or all
1008 * indexes hadn't been inserted yet for this node during initial
1009 * search for it, and we'd like to ensure lack of garbage
1010 * retention, so must call to be sure.
1011 *
1012 * @param okey the key
1013 * @param value if non-null, the value that must be
1014 * associated with key
1015 * @return the node, or null if not found
1016 */
1017 final V doRemove(Object okey, Object value) {
1018 Comparable<? super K> key = comparable(okey);
1019 for (;;) {
1020 Node<K,V> b = findPredecessor(key);
1021 Node<K,V> n = b.next;
1022 for (;;) {
1023 if (n == null)
1024 return null;
1025 Node<K,V> f = n.next;
1026 if (n != b.next) // inconsistent read
1027 break;
1028 Object v = n.value;
1029 if (v == null) { // n is deleted
1030 n.helpDelete(b, f);
1031 break;
1032 }
1033 if (v == n || b.value == null) // b is deleted
1034 break;
1035 int c = key.compareTo(n.key);
1036 if (c < 0)
1037 return null;
1038 if (c > 0) {
1039 b = n;
1040 n = f;
1041 continue;
1042 }
1043 if (value != null && !value.equals(v))
1044 return null;
1045 if (!n.casValue(v, null))
1046 break;
1047 if (!n.appendMarker(f) || !b.casNext(n, f))
1048 findNode(key); // Retry via findNode
1049 else {
1050 findPredecessor(key); // Clean index
1051 if (head.right == null)
1052 tryReduceLevel();
1053 }
1054 return (V)v;
1055 }
1056 }
1057 }
1058
1059 /**
1060 * Possibly reduce head level if it has no nodes. This method can
1061 * (rarely) make mistakes, in which case levels can disappear even
1062 * though they are about to contain index nodes. This impacts
1063 * performance, not correctness. To minimize mistakes as well as
1064 * to reduce hysteresis, the level is reduced by one only if the
1065 * topmost three levels look empty. Also, if the removed level
1066 * looks non-empty after CAS, we try to change it back quick
1067 * before anyone notices our mistake! (This trick works pretty
1068 * well because this method will practically never make mistakes
1069 * unless current thread stalls immediately before first CAS, in
1070 * which case it is very unlikely to stall again immediately
1071 * afterwards, so will recover.)
1072 *
1073 * We put up with all this rather than just let levels grow
1074 * because otherwise, even a small map that has undergone a large
1075 * number of insertions and removals will have a lot of levels,
1076 * slowing down access more than would an occasional unwanted
1077 * reduction.
1078 */
1079 private void tryReduceLevel() {
1080 HeadIndex<K,V> h = head;
1081 HeadIndex<K,V> d;
1082 HeadIndex<K,V> e;
1083 if (h.level > 3 &&
1084 (d = (HeadIndex<K,V>)h.down) != null &&
1085 (e = (HeadIndex<K,V>)d.down) != null &&
1086 e.right == null &&
1087 d.right == null &&
1088 h.right == null &&
1089 casHead(h, d) && // try to set
1090 h.right != null) // recheck
1091 casHead(d, h); // try to backout
1092 }
1093
1094 /* ---------------- Finding and removing first element -------------- */
1095
1096 /**
1097 * Specialized variant of findNode to get first valid node.
1098 * @return first node or null if empty
1099 */
1100 Node<K,V> findFirst() {
1101 for (;;) {
1102 Node<K,V> b = head.node;
1103 Node<K,V> n = b.next;
1104 if (n == null)
1105 return null;
1106 if (n.value != null)
1107 return n;
1108 n.helpDelete(b, n.next);
1109 }
1110 }
1111
1112 /**
1113 * Removes first entry; returns its snapshot.
1114 * @return null if empty, else snapshot of first entry
1115 */
1116 Map.Entry<K,V> doRemoveFirstEntry() {
1117 for (;;) {
1118 Node<K,V> b = head.node;
1119 Node<K,V> n = b.next;
1120 if (n == null)
1121 return null;
1122 Node<K,V> f = n.next;
1123 if (n != b.next)
1124 continue;
1125 Object v = n.value;
1126 if (v == null) {
1127 n.helpDelete(b, f);
1128 continue;
1129 }
1130 if (!n.casValue(v, null))
1131 continue;
1132 if (!n.appendMarker(f) || !b.casNext(n, f))
1133 findFirst(); // retry
1134 clearIndexToFirst();
1135 return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, (V)v);
1136 }
1137 }
1138
1139 /**
1140 * Clears out index nodes associated with deleted first entry.
1141 */
1142 private void clearIndexToFirst() {
1143 for (;;) {
1144 Index<K,V> q = head;
1145 for (;;) {
1146 Index<K,V> r = q.right;
1147 if (r != null && r.indexesDeletedNode() && !q.unlink(r))
1148 break;
1149 if ((q = q.down) == null) {
1150 if (head.right == null)
1151 tryReduceLevel();
1152 return;
1153 }
1154 }
1155 }
1156 }
1157
1158
1159 /* ---------------- Finding and removing last element -------------- */
1160
1161 /**
1162 * Specialized version of find to get last valid node.
1163 * @return last node or null if empty
1164 */
1165 Node<K,V> findLast() {
1166 /*
1167 * findPredecessor can't be used to traverse index level
1168 * because this doesn't use comparisons. So traversals of
1169 * both levels are folded together.
1170 */
1171 Index<K,V> q = head;
1172 for (;;) {
1173 Index<K,V> d, r;
1174 if ((r = q.right) != null) {
1175 if (r.indexesDeletedNode()) {
1176 q.unlink(r);
1177 q = head; // restart
1178 }
1179 else
1180 q = r;
1181 } else if ((d = q.down) != null) {
1182 q = d;
1183 } else {
1184 Node<K,V> b = q.node;
1185 Node<K,V> n = b.next;
1186 for (;;) {
1187 if (n == null)
1188 return b.isBaseHeader() ? null : b;
1189 Node<K,V> f = n.next; // inconsistent read
1190 if (n != b.next)
1191 break;
1192 Object v = n.value;
1193 if (v == null) { // n is deleted
1194 n.helpDelete(b, f);
1195 break;
1196 }
1197 if (v == n || b.value == null) // b is deleted
1198 break;
1199 b = n;
1200 n = f;
1201 }
1202 q = head; // restart
1203 }
1204 }
1205 }
1206
1207 /**
1208 * Specialized variant of findPredecessor to get predecessor of last
1209 * valid node. Needed when removing the last entry. It is possible
1210 * that all successors of returned node will have been deleted upon
1211 * return, in which case this method can be retried.
1212 * @return likely predecessor of last node
1213 */
1214 private Node<K,V> findPredecessorOfLast() {
1215 for (;;) {
1216 Index<K,V> q = head;
1217 for (;;) {
1218 Index<K,V> d, r;
1219 if ((r = q.right) != null) {
1220 if (r.indexesDeletedNode()) {
1221 q.unlink(r);
1222 break; // must restart
1223 }
1224 // proceed as far across as possible without overshooting
1225 if (r.node.next != null) {
1226 q = r;
1227 continue;
1228 }
1229 }
1230 if ((d = q.down) != null)
1231 q = d;
1232 else
1233 return q.node;
1234 }
1235 }
1236 }
1237
1238 /**
1239 * Removes last entry; returns its snapshot.
1240 * Specialized variant of doRemove.
1241 * @return null if empty, else snapshot of last entry
1242 */
1243 Map.Entry<K,V> doRemoveLastEntry() {
1244 for (;;) {
1245 Node<K,V> b = findPredecessorOfLast();
1246 Node<K,V> n = b.next;
1247 if (n == null) {
1248 if (b.isBaseHeader()) // empty
1249 return null;
1250 else
1251 continue; // all b's successors are deleted; retry
1252 }
1253 for (;;) {
1254 Node<K,V> f = n.next;
1255 if (n != b.next) // inconsistent read
1256 break;
1257 Object v = n.value;
1258 if (v == null) { // n is deleted
1259 n.helpDelete(b, f);
1260 break;
1261 }
1262 if (v == n || b.value == null) // b is deleted
1263 break;
1264 if (f != null) {
1265 b = n;
1266 n = f;
1267 continue;
1268 }
1269 if (!n.casValue(v, null))
1270 break;
1271 K key = n.key;
1272 Comparable<? super K> ck = comparable(key);
1273 if (!n.appendMarker(f) || !b.casNext(n, f))
1274 findNode(ck); // Retry via findNode
1275 else {
1276 findPredecessor(ck); // Clean index
1277 if (head.right == null)
1278 tryReduceLevel();
1279 }
1280 return new AbstractMap.SimpleImmutableEntry<K,V>(key, (V)v);
1281 }
1282 }
1283 }
1284
1285 /* ---------------- Relational operations -------------- */
1286
1287 // Control values OR'ed as arguments to findNear
1288
1289 private static final int EQ = 1;
1290 private static final int LT = 2;
1291 private static final int GT = 0; // Actually checked as !LT
1292
1293 /**
1294 * Utility for ceiling, floor, lower, higher methods.
1295 * @param kkey the key
1296 * @param rel the relation -- OR'ed combination of EQ, LT, GT
1297 * @return nearest node fitting relation, or null if no such
1298 */
1299 Node<K,V> findNear(K kkey, int rel) {
1300 Comparable<? super K> key = comparable(kkey);
1301 for (;;) {
1302 Node<K,V> b = findPredecessor(key);
1303 Node<K,V> n = b.next;
1304 for (;;) {
1305 if (n == null)
1306 return ((rel & LT) == 0 || b.isBaseHeader()) ? null : b;
1307 Node<K,V> f = n.next;
1308 if (n != b.next) // inconsistent read
1309 break;
1310 Object v = n.value;
1311 if (v == null) { // n is deleted
1312 n.helpDelete(b, f);
1313 break;
1314 }
1315 if (v == n || b.value == null) // b is deleted
1316 break;
1317 int c = key.compareTo(n.key);
1318 if ((c == 0 && (rel & EQ) != 0) ||
1319 (c < 0 && (rel & LT) == 0))
1320 return n;
1321 if ( c <= 0 && (rel & LT) != 0)
1322 return b.isBaseHeader() ? null : b;
1323 b = n;
1324 n = f;
1325 }
1326 }
1327 }
1328
1329 /**
1330 * Returns SimpleImmutableEntry for results of findNear.
1331 * @param key the key
1332 * @param rel the relation -- OR'ed combination of EQ, LT, GT
1333 * @return Entry fitting relation, or null if no such
1334 */
1335 AbstractMap.SimpleImmutableEntry<K,V> getNear(K key, int rel) {
1336 for (;;) {
1337 Node<K,V> n = findNear(key, rel);
1338 if (n == null)
1339 return null;
1340 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
1341 if (e != null)
1342 return e;
1343 }
1344 }
1345
1346
1347 /* ---------------- Constructors -------------- */
1348
1349 /**
1350 * Constructs a new, empty map, sorted according to the
1351 * {@linkplain Comparable natural ordering} of the keys.
1352 */
1353 public ConcurrentSkipListMap() {
1354 this.comparator = null;
1355 initialize();
1356 }
1357
1358 /**
1359 * Constructs a new, empty map, sorted according to the specified
1360 * comparator.
1361 *
1362 * @param comparator the comparator that will be used to order this map.
1363 * If <tt>null</tt>, the {@linkplain Comparable natural
1364 * ordering} of the keys will be used.
1365 */
1366 public ConcurrentSkipListMap(Comparator<? super K> comparator) {
1367 this.comparator = comparator;
1368 initialize();
1369 }
1370
1371 /**
1372 * Constructs a new map containing the same mappings as the given map,
1373 * sorted according to the {@linkplain Comparable natural ordering} of
1374 * the keys.
1375 *
1376 * @param m the map whose mappings are to be placed in this map
1377 * @throws ClassCastException if the keys in <tt>m</tt> are not
1378 * {@link Comparable}, or are not mutually comparable
1379 * @throws NullPointerException if the specified map or any of its keys
1380 * or values are null
1381 */
1382 public ConcurrentSkipListMap(Map<? extends K, ? extends V> m) {
1383 this.comparator = null;
1384 initialize();
1385 putAll(m);
1386 }
1387
1388 /**
1389 * Constructs a new map containing the same mappings and using the
1390 * same ordering as the specified sorted map.
1391 *
1392 * @param m the sorted map whose mappings are to be placed in this
1393 * map, and whose comparator is to be used to sort this map
1394 * @throws NullPointerException if the specified sorted map or any of
1395 * its keys or values are null
1396 */
1397 public ConcurrentSkipListMap(SortedMap<K, ? extends V> m) {
1398 this.comparator = m.comparator();
1399 initialize();
1400 buildFromSorted(m);
1401 }
1402
1403 /**
1404 * Returns a shallow copy of this <tt>ConcurrentSkipListMap</tt>
1405 * instance. (The keys and values themselves are not cloned.)
1406 *
1407 * @return a shallow copy of this map
1408 */
1409 public ConcurrentSkipListMap<K,V> clone() {
1410 ConcurrentSkipListMap<K,V> clone = null;
1411 try {
1412 clone = (ConcurrentSkipListMap<K,V>) super.clone();
1413 } catch (CloneNotSupportedException e) {
1414 throw new InternalError();
1415 }
1416
1417 clone.initialize();
1418 clone.buildFromSorted(this);
1419 return clone;
1420 }
1421
1422 /**
1423 * Streamlined bulk insertion to initialize from elements of
1424 * given sorted map. Call only from constructor or clone
1425 * method.
1426 */
1427 private void buildFromSorted(SortedMap<K, ? extends V> map) {
1428 if (map == null)
1429 throw new NullPointerException();
1430
1431 HeadIndex<K,V> h = head;
1432 Node<K,V> basepred = h.node;
1433
1434 // Track the current rightmost node at each level. Uses an
1435 // ArrayList to avoid committing to initial or maximum level.
1436 ArrayList<Index<K,V>> preds = new ArrayList<Index<K,V>>();
1437
1438 // initialize
1439 for (int i = 0; i <= h.level; ++i)
1440 preds.add(null);
1441 Index<K,V> q = h;
1442 for (int i = h.level; i > 0; --i) {
1443 preds.set(i, q);
1444 q = q.down;
1445 }
1446
1447 Iterator<? extends Map.Entry<? extends K, ? extends V>> it =
1448 map.entrySet().iterator();
1449 while (it.hasNext()) {
1450 Map.Entry<? extends K, ? extends V> e = it.next();
1451 int j = randomLevel();
1452 if (j > h.level) j = h.level + 1;
1453 K k = e.getKey();
1454 V v = e.getValue();
1455 if (k == null || v == null)
1456 throw new NullPointerException();
1457 Node<K,V> z = new Node<K,V>(k, v, null);
1458 basepred.next = z;
1459 basepred = z;
1460 if (j > 0) {
1461 Index<K,V> idx = null;
1462 for (int i = 1; i <= j; ++i) {
1463 idx = new Index<K,V>(z, idx, null);
1464 if (i > h.level)
1465 h = new HeadIndex<K,V>(h.node, h, idx, i);
1466
1467 if (i < preds.size()) {
1468 preds.get(i).right = idx;
1469 preds.set(i, idx);
1470 } else
1471 preds.add(idx);
1472 }
1473 }
1474 }
1475 head = h;
1476 }
1477
1478 /* ---------------- Serialization -------------- */
1479
1480 /**
1481 * Save the state of this map to a stream.
1482 *
1483 * @serialData The key (Object) and value (Object) for each
1484 * key-value mapping represented by the map, followed by
1485 * <tt>null</tt>. The key-value mappings are emitted in key-order
1486 * (as determined by the Comparator, or by the keys' natural
1487 * ordering if no Comparator).
1488 */
1489 private void writeObject(java.io.ObjectOutputStream s)
1490 throws java.io.IOException {
1491 // Write out the Comparator and any hidden stuff
1492 s.defaultWriteObject();
1493
1494 // Write out keys and values (alternating)
1495 for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1496 V v = n.getValidValue();
1497 if (v != null) {
1498 s.writeObject(n.key);
1499 s.writeObject(v);
1500 }
1501 }
1502 s.writeObject(null);
1503 }
1504
1505 /**
1506 * Reconstitute the map from a stream.
1507 */
1508 private void readObject(final java.io.ObjectInputStream s)
1509 throws java.io.IOException, ClassNotFoundException {
1510 // Read in the Comparator and any hidden stuff
1511 s.defaultReadObject();
1512 // Reset transients
1513 initialize();
1514
1515 /*
1516 * This is nearly identical to buildFromSorted, but is
1517 * distinct because readObject calls can't be nicely adapted
1518 * as the kind of iterator needed by buildFromSorted. (They
1519 * can be, but doing so requires type cheats and/or creation
1520 * of adaptor classes.) It is simpler to just adapt the code.
1521 */
1522
1523 HeadIndex<K,V> h = head;
1524 Node<K,V> basepred = h.node;
1525 ArrayList<Index<K,V>> preds = new ArrayList<Index<K,V>>();
1526 for (int i = 0; i <= h.level; ++i)
1527 preds.add(null);
1528 Index<K,V> q = h;
1529 for (int i = h.level; i > 0; --i) {
1530 preds.set(i, q);
1531 q = q.down;
1532 }
1533
1534 for (;;) {
1535 Object k = s.readObject();
1536 if (k == null)
1537 break;
1538 Object v = s.readObject();
1539 if (v == null)
1540 throw new NullPointerException();
1541 K key = (K) k;
1542 V val = (V) v;
1543 int j = randomLevel();
1544 if (j > h.level) j = h.level + 1;
1545 Node<K,V> z = new Node<K,V>(key, val, null);
1546 basepred.next = z;
1547 basepred = z;
1548 if (j > 0) {
1549 Index<K,V> idx = null;
1550 for (int i = 1; i <= j; ++i) {
1551 idx = new Index<K,V>(z, idx, null);
1552 if (i > h.level)
1553 h = new HeadIndex<K,V>(h.node, h, idx, i);
1554
1555 if (i < preds.size()) {
1556 preds.get(i).right = idx;
1557 preds.set(i, idx);
1558 } else
1559 preds.add(idx);
1560 }
1561 }
1562 }
1563 head = h;
1564 }
1565
1566 /* ------ Map API methods ------ */
1567
1568 /**
1569 * Returns <tt>true</tt> if this map contains a mapping for the specified
1570 * key.
1571 *
1572 * @param key key whose presence in this map is to be tested
1573 * @return <tt>true</tt> if this map contains a mapping for the specified key
1574 * @throws ClassCastException if the specified key cannot be compared
1575 * with the keys currently in the map
1576 * @throws NullPointerException if the specified key is null
1577 */
1578 public boolean containsKey(Object key) {
1579 return doGet(key) != null;
1580 }
1581
1582 /**
1583 * Returns the value to which the specified key is mapped,
1584 * or {@code null} if this map contains no mapping for the key.
1585 *
1586 * <p>More formally, if this map contains a mapping from a key
1587 * {@code k} to a value {@code v} such that {@code key} compares
1588 * equal to {@code k} according to the map's ordering, then this
1589 * method returns {@code v}; otherwise it returns {@code null}.
1590 * (There can be at most one such mapping.)
1591 *
1592 * @throws ClassCastException if the specified key cannot be compared
1593 * with the keys currently in the map
1594 * @throws NullPointerException if the specified key is null
1595 */
1596 public V get(Object key) {
1597 return doGet(key);
1598 }
1599
1600 /**
1601 * Associates the specified value with the specified key in this map.
1602 * If the map previously contained a mapping for the key, the old
1603 * value is replaced.
1604 *
1605 * @param key key with which the specified value is to be associated
1606 * @param value value to be associated with the specified key
1607 * @return the previous value associated with the specified key, or
1608 * <tt>null</tt> if there was no mapping for the key
1609 * @throws ClassCastException if the specified key cannot be compared
1610 * with the keys currently in the map
1611 * @throws NullPointerException if the specified key or value is null
1612 */
1613 public V put(K key, V value) {
1614 if (value == null)
1615 throw new NullPointerException();
1616 return doPut(key, value, false);
1617 }
1618
1619 /**
1620 * Removes the mapping for the specified key from this map if present.
1621 *
1622 * @param key key for which mapping should be removed
1623 * @return the previous value associated with the specified key, or
1624 * <tt>null</tt> if there was no mapping for the key
1625 * @throws ClassCastException if the specified key cannot be compared
1626 * with the keys currently in the map
1627 * @throws NullPointerException if the specified key is null
1628 */
1629 public V remove(Object key) {
1630 return doRemove(key, null);
1631 }
1632
1633 /**
1634 * Returns <tt>true</tt> if this map maps one or more keys to the
1635 * specified value. This operation requires time linear in the
1636 * map size. Additionally, it is possible for the map to change
1637 * during execution of this method, in which case the returned
1638 * result may be inaccurate.
1639 *
1640 * @param value value whose presence in this map is to be tested
1641 * @return <tt>true</tt> if a mapping to <tt>value</tt> exists;
1642 * <tt>false</tt> otherwise
1643 * @throws NullPointerException if the specified value is null
1644 */
1645 public boolean containsValue(Object value) {
1646 if (value == null)
1647 throw new NullPointerException();
1648 for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1649 V v = n.getValidValue();
1650 if (v != null && value.equals(v))
1651 return true;
1652 }
1653 return false;
1654 }
1655
1656 /**
1657 * Returns the number of key-value mappings in this map. If this map
1658 * contains more than <tt>Integer.MAX_VALUE</tt> elements, it
1659 * returns <tt>Integer.MAX_VALUE</tt>.
1660 *
1661 * <p>Beware that, unlike in most collections, this method is
1662 * <em>NOT</em> a constant-time operation. Because of the
1663 * asynchronous nature of these maps, determining the current
1664 * number of elements requires traversing them all to count them.
1665 * Additionally, it is possible for the size to change during
1666 * execution of this method, in which case the returned result
1667 * will be inaccurate. Thus, this method is typically not very
1668 * useful in concurrent applications.
1669 *
1670 * @return the number of elements in this map
1671 */
1672 public int size() {
1673 long count = 0;
1674 for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1675 if (n.getValidValue() != null)
1676 ++count;
1677 }
1678 return (count >= Integer.MAX_VALUE) ? Integer.MAX_VALUE : (int) count;
1679 }
1680
1681 /**
1682 * Returns <tt>true</tt> if this map contains no key-value mappings.
1683 * @return <tt>true</tt> if this map contains no key-value mappings
1684 */
1685 public boolean isEmpty() {
1686 return findFirst() == null;
1687 }
1688
1689 /**
1690 * Removes all of the mappings from this map.
1691 */
1692 public void clear() {
1693 initialize();
1694 }
1695
1696 /* ---------------- View methods -------------- */
1697
1698 /*
1699 * Note: Lazy initialization works for views because view classes
1700 * are stateless/immutable so it doesn't matter wrt correctness if
1701 * more than one is created (which will only rarely happen). Even
1702 * so, the following idiom conservatively ensures that the method
1703 * returns the one it created if it does so, not one created by
1704 * another racing thread.
1705 */
1706
1707 /**
1708 * Returns a {@link NavigableSet} view of the keys contained in this map.
1709 * The set's iterator returns the keys in ascending order.
1710 * The set is backed by the map, so changes to the map are
1711 * reflected in the set, and vice-versa. The set supports element
1712 * removal, which removes the corresponding mapping from the map,
1713 * via the {@code Iterator.remove}, {@code Set.remove},
1714 * {@code removeAll}, {@code retainAll}, and {@code clear}
1715 * operations. It does not support the {@code add} or {@code addAll}
1716 * operations.
1717 *
1718 * <p>The view's {@code iterator} is a "weakly consistent" iterator
1719 * that will never throw {@link ConcurrentModificationException},
1720 * and guarantees to traverse elements as they existed upon
1721 * construction of the iterator, and may (but is not guaranteed to)
1722 * reflect any modifications subsequent to construction.
1723 *
1724 * <p>This method is equivalent to method {@code navigableKeySet}.
1725 *
1726 * @return a navigable set view of the keys in this map
1727 */
1728 public NavigableSet<K> keySet() {
1729 KeySet<K> ks = keySet;
1730 return (ks != null) ? ks : (keySet = new KeySet<K>(this));
1731 }
1732
1733 public NavigableSet<K> navigableKeySet() {
1734 KeySet<K> ks = keySet;
1735 return (ks != null) ? ks : (keySet = new KeySet<K>(this));
1736 }
1737
1738 /**
1739 * Returns a {@link Collection} view of the values contained in this map.
1740 * The collection's iterator returns the values in ascending order
1741 * of the corresponding keys.
1742 * The collection is backed by the map, so changes to the map are
1743 * reflected in the collection, and vice-versa. The collection
1744 * supports element removal, which removes the corresponding
1745 * mapping from the map, via the <tt>Iterator.remove</tt>,
1746 * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
1747 * <tt>retainAll</tt> and <tt>clear</tt> operations. It does not
1748 * support the <tt>add</tt> or <tt>addAll</tt> operations.
1749 *
1750 * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1751 * that will never throw {@link ConcurrentModificationException},
1752 * and guarantees to traverse elements as they existed upon
1753 * construction of the iterator, and may (but is not guaranteed to)
1754 * reflect any modifications subsequent to construction.
1755 */
1756 public Collection<V> values() {
1757 Values<V> vs = values;
1758 return (vs != null) ? vs : (values = new Values<V>(this));
1759 }
1760
1761 /**
1762 * Returns a {@link Set} view of the mappings contained in this map.
1763 * The set's iterator returns the entries in ascending key order.
1764 * The set is backed by the map, so changes to the map are
1765 * reflected in the set, and vice-versa. The set supports element
1766 * removal, which removes the corresponding mapping from the map,
1767 * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1768 * <tt>removeAll</tt>, <tt>retainAll</tt> and <tt>clear</tt>
1769 * operations. It does not support the <tt>add</tt> or
1770 * <tt>addAll</tt> operations.
1771 *
1772 * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1773 * that will never throw {@link ConcurrentModificationException},
1774 * and guarantees to traverse elements as they existed upon
1775 * construction of the iterator, and may (but is not guaranteed to)
1776 * reflect any modifications subsequent to construction.
1777 *
1778 * <p>The <tt>Map.Entry</tt> elements returned by
1779 * <tt>iterator.next()</tt> do <em>not</em> support the
1780 * <tt>setValue</tt> operation.
1781 *
1782 * @return a set view of the mappings contained in this map,
1783 * sorted in ascending key order
1784 */
1785 public Set<Map.Entry<K,V>> entrySet() {
1786 EntrySet<K,V> es = entrySet;
1787 return (es != null) ? es : (entrySet = new EntrySet<K,V>(this));
1788 }
1789
1790 public ConcurrentNavigableMap<K,V> descendingMap() {
1791 ConcurrentNavigableMap<K,V> dm = descendingMap;
1792 return (dm != null) ? dm : (descendingMap = new SubMap<K,V>
1793 (this, null, false, null, false, true));
1794 }
1795
1796 public NavigableSet<K> descendingKeySet() {
1797 return descendingMap().navigableKeySet();
1798 }
1799
1800 /* ---------------- AbstractMap Overrides -------------- */
1801
1802 /**
1803 * Compares the specified object with this map for equality.
1804 * Returns <tt>true</tt> if the given object is also a map and the
1805 * two maps represent the same mappings. More formally, two maps
1806 * <tt>m1</tt> and <tt>m2</tt> represent the same mappings if
1807 * <tt>m1.entrySet().equals(m2.entrySet())</tt>. This
1808 * operation may return misleading results if either map is
1809 * concurrently modified during execution of this method.
1810 *
1811 * @param o object to be compared for equality with this map
1812 * @return <tt>true</tt> if the specified object is equal to this map
1813 */
1814 public boolean equals(Object o) {
1815 if (o == this)
1816 return true;
1817 if (!(o instanceof Map))
1818 return false;
1819 Map<?,?> m = (Map<?,?>) o;
1820 try {
1821 for (Map.Entry<K,V> e : this.entrySet())
1822 if (! e.getValue().equals(m.get(e.getKey())))
1823 return false;
1824 for (Map.Entry<?,?> e : m.entrySet()) {
1825 Object k = e.getKey();
1826 Object v = e.getValue();
1827 if (k == null || v == null || !v.equals(get(k)))
1828 return false;
1829 }
1830 return true;
1831 } catch (ClassCastException unused) {
1832 return false;
1833 } catch (NullPointerException unused) {
1834 return false;
1835 }
1836 }
1837
1838 /* ------ ConcurrentMap API methods ------ */
1839
1840 /**
1841 * {@inheritDoc}
1842 *
1843 * @return the previous value associated with the specified key,
1844 * or <tt>null</tt> if there was no mapping for the key
1845 * @throws ClassCastException if the specified key cannot be compared
1846 * with the keys currently in the map
1847 * @throws NullPointerException if the specified key or value is null
1848 */
1849 public V putIfAbsent(K key, V value) {
1850 if (value == null)
1851 throw new NullPointerException();
1852 return doPut(key, value, true);
1853 }
1854
1855 /**
1856 * {@inheritDoc}
1857 *
1858 * @throws ClassCastException if the specified key cannot be compared
1859 * with the keys currently in the map
1860 * @throws NullPointerException if the specified key is null
1861 */
1862 public boolean remove(Object key, Object value) {
1863 if (key == null)
1864 throw new NullPointerException();
1865 if (value == null)
1866 return false;
1867 return doRemove(key, value) != null;
1868 }
1869
1870 /**
1871 * {@inheritDoc}
1872 *
1873 * @throws ClassCastException if the specified key cannot be compared
1874 * with the keys currently in the map
1875 * @throws NullPointerException if any of the arguments are null
1876 */
1877 public boolean replace(K key, V oldValue, V newValue) {
1878 if (oldValue == null || newValue == null)
1879 throw new NullPointerException();
1880 Comparable<? super K> k = comparable(key);
1881 for (;;) {
1882 Node<K,V> n = findNode(k);
1883 if (n == null)
1884 return false;
1885 Object v = n.value;
1886 if (v != null) {
1887 if (!oldValue.equals(v))
1888 return false;
1889 if (n.casValue(v, newValue))
1890 return true;
1891 }
1892 }
1893 }
1894
1895 /**
1896 * {@inheritDoc}
1897 *
1898 * @return the previous value associated with the specified key,
1899 * or <tt>null</tt> if there was no mapping for the key
1900 * @throws ClassCastException if the specified key cannot be compared
1901 * with the keys currently in the map
1902 * @throws NullPointerException if the specified key or value is null
1903 */
1904 public V replace(K key, V value) {
1905 if (value == null)
1906 throw new NullPointerException();
1907 Comparable<? super K> k = comparable(key);
1908 for (;;) {
1909 Node<K,V> n = findNode(k);
1910 if (n == null)
1911 return null;
1912 Object v = n.value;
1913 if (v != null && n.casValue(v, value))
1914 return (V)v;
1915 }
1916 }
1917
1918 /* ------ SortedMap API methods ------ */
1919
1920 public Comparator<? super K> comparator() {
1921 return comparator;
1922 }
1923
1924 /**
1925 * @throws NoSuchElementException {@inheritDoc}
1926 */
1927 public K firstKey() {
1928 Node<K,V> n = findFirst();
1929 if (n == null)
1930 throw new NoSuchElementException();
1931 return n.key;
1932 }
1933
1934 /**
1935 * @throws NoSuchElementException {@inheritDoc}
1936 */
1937 public K lastKey() {
1938 Node<K,V> n = findLast();
1939 if (n == null)
1940 throw new NoSuchElementException();
1941 return n.key;
1942 }
1943
1944 /**
1945 * @throws ClassCastException {@inheritDoc}
1946 * @throws NullPointerException if {@code fromKey} or {@code toKey} is null
1947 * @throws IllegalArgumentException {@inheritDoc}
1948 */
1949 public ConcurrentNavigableMap<K,V> subMap(K fromKey,
1950 boolean fromInclusive,
1951 K toKey,
1952 boolean toInclusive) {
1953 if (fromKey == null || toKey == null)
1954 throw new NullPointerException();
1955 return new SubMap<K,V>
1956 (this, fromKey, fromInclusive, toKey, toInclusive, false);
1957 }
1958
1959 /**
1960 * @throws ClassCastException {@inheritDoc}
1961 * @throws NullPointerException if {@code toKey} is null
1962 * @throws IllegalArgumentException {@inheritDoc}
1963 */
1964 public ConcurrentNavigableMap<K,V> headMap(K toKey,
1965 boolean inclusive) {
1966 if (toKey == null)
1967 throw new NullPointerException();
1968 return new SubMap<K,V>
1969 (this, null, false, toKey, inclusive, false);
1970 }
1971
1972 /**
1973 * @throws ClassCastException {@inheritDoc}
1974 * @throws NullPointerException if {@code fromKey} is null
1975 * @throws IllegalArgumentException {@inheritDoc}
1976 */
1977 public ConcurrentNavigableMap<K,V> tailMap(K fromKey,
1978 boolean inclusive) {
1979 if (fromKey == null)
1980 throw new NullPointerException();
1981 return new SubMap<K,V>
1982 (this, fromKey, inclusive, null, false, false);
1983 }
1984
1985 /**
1986 * @throws ClassCastException {@inheritDoc}
1987 * @throws NullPointerException if {@code fromKey} or {@code toKey} is null
1988 * @throws IllegalArgumentException {@inheritDoc}
1989 */
1990 public ConcurrentNavigableMap<K,V> subMap(K fromKey, K toKey) {
1991 return subMap(fromKey, true, toKey, false);
1992 }
1993
1994 /**
1995 * @throws ClassCastException {@inheritDoc}
1996 * @throws NullPointerException if {@code toKey} is null
1997 * @throws IllegalArgumentException {@inheritDoc}
1998 */
1999 public ConcurrentNavigableMap<K,V> headMap(K toKey) {
2000 return headMap(toKey, false);
2001 }
2002
2003 /**
2004 * @throws ClassCastException {@inheritDoc}
2005 * @throws NullPointerException if {@code fromKey} is null
2006 * @throws IllegalArgumentException {@inheritDoc}
2007 */
2008 public ConcurrentNavigableMap<K,V> tailMap(K fromKey) {
2009 return tailMap(fromKey, true);
2010 }
2011
2012 /* ---------------- Relational operations -------------- */
2013
2014 /**
2015 * Returns a key-value mapping associated with the greatest key
2016 * strictly less than the given key, or <tt>null</tt> if there is
2017 * no such key. The returned entry does <em>not</em> support the
2018 * <tt>Entry.setValue</tt> method.
2019 *
2020 * @throws ClassCastException {@inheritDoc}
2021 * @throws NullPointerException if the specified key is null
2022 */
2023 public Map.Entry<K,V> lowerEntry(K key) {
2024 return getNear(key, LT);
2025 }
2026
2027 /**
2028 * @throws ClassCastException {@inheritDoc}
2029 * @throws NullPointerException if the specified key is null
2030 */
2031 public K lowerKey(K key) {
2032 Node<K,V> n = findNear(key, LT);
2033 return (n == null) ? null : n.key;
2034 }
2035
2036 /**
2037 * Returns a key-value mapping associated with the greatest key
2038 * less than or equal to the given key, or <tt>null</tt> if there
2039 * is no such key. The returned entry does <em>not</em> support
2040 * the <tt>Entry.setValue</tt> method.
2041 *
2042 * @param key the key
2043 * @throws ClassCastException {@inheritDoc}
2044 * @throws NullPointerException if the specified key is null
2045 */
2046 public Map.Entry<K,V> floorEntry(K key) {
2047 return getNear(key, LT|EQ);
2048 }
2049
2050 /**
2051 * @param key the key
2052 * @throws ClassCastException {@inheritDoc}
2053 * @throws NullPointerException if the specified key is null
2054 */
2055 public K floorKey(K key) {
2056 Node<K,V> n = findNear(key, LT|EQ);
2057 return (n == null) ? null : n.key;
2058 }
2059
2060 /**
2061 * Returns a key-value mapping associated with the least key
2062 * greater than or equal to the given key, or <tt>null</tt> if
2063 * there is no such entry. The returned entry does <em>not</em>
2064 * support the <tt>Entry.setValue</tt> method.
2065 *
2066 * @throws ClassCastException {@inheritDoc}
2067 * @throws NullPointerException if the specified key is null
2068 */
2069 public Map.Entry<K,V> ceilingEntry(K key) {
2070 return getNear(key, GT|EQ);
2071 }
2072
2073 /**
2074 * @throws ClassCastException {@inheritDoc}
2075 * @throws NullPointerException if the specified key is null
2076 */
2077 public K ceilingKey(K key) {
2078 Node<K,V> n = findNear(key, GT|EQ);
2079 return (n == null) ? null : n.key;
2080 }
2081
2082 /**
2083 * Returns a key-value mapping associated with the least key
2084 * strictly greater than the given key, or <tt>null</tt> if there
2085 * is no such key. The returned entry does <em>not</em> support
2086 * the <tt>Entry.setValue</tt> method.
2087 *
2088 * @param key the key
2089 * @throws ClassCastException {@inheritDoc}
2090 * @throws NullPointerException if the specified key is null
2091 */
2092 public Map.Entry<K,V> higherEntry(K key) {
2093 return getNear(key, GT);
2094 }
2095
2096 /**
2097 * @param key the key
2098 * @throws ClassCastException {@inheritDoc}
2099 * @throws NullPointerException if the specified key is null
2100 */
2101 public K higherKey(K key) {
2102 Node<K,V> n = findNear(key, GT);
2103 return (n == null) ? null : n.key;
2104 }
2105
2106 /**
2107 * Returns a key-value mapping associated with the least
2108 * key in this map, or <tt>null</tt> if the map is empty.
2109 * The returned entry does <em>not</em> support
2110 * the <tt>Entry.setValue</tt> method.
2111 */
2112 public Map.Entry<K,V> firstEntry() {
2113 for (;;) {
2114 Node<K,V> n = findFirst();
2115 if (n == null)
2116 return null;
2117 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
2118 if (e != null)
2119 return e;
2120 }
2121 }
2122
2123 /**
2124 * Returns a key-value mapping associated with the greatest
2125 * key in this map, or <tt>null</tt> if the map is empty.
2126 * The returned entry does <em>not</em> support
2127 * the <tt>Entry.setValue</tt> method.
2128 */
2129 public Map.Entry<K,V> lastEntry() {
2130 for (;;) {
2131 Node<K,V> n = findLast();
2132 if (n == null)
2133 return null;
2134 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
2135 if (e != null)
2136 return e;
2137 }
2138 }
2139
2140 /**
2141 * Removes and returns a key-value mapping associated with
2142 * the least key in this map, or <tt>null</tt> if the map is empty.
2143 * The returned entry does <em>not</em> support
2144 * the <tt>Entry.setValue</tt> method.
2145 */
2146 public Map.Entry<K,V> pollFirstEntry() {
2147 return doRemoveFirstEntry();
2148 }
2149
2150 /**
2151 * Removes and returns a key-value mapping associated with
2152 * the greatest key in this map, or <tt>null</tt> if the map is empty.
2153 * The returned entry does <em>not</em> support
2154 * the <tt>Entry.setValue</tt> method.
2155 */
2156 public Map.Entry<K,V> pollLastEntry() {
2157 return doRemoveLastEntry();
2158 }
2159
2160
2161 /* ---------------- Iterators -------------- */
2162
2163 /**
2164 * Base of iterator classes:
2165 */
2166 abstract class Iter<T> implements Iterator<T> {
2167 /** the last node returned by next() */
2168 Node<K,V> lastReturned;
2169 /** the next node to return from next(); */
2170 Node<K,V> next;
2171 /** Cache of next value field to maintain weak consistency */
2172 V nextValue;
2173
2174 /** Initializes ascending iterator for entire range. */
2175 Iter() {
2176 for (;;) {
2177 next = findFirst();
2178 if (next == null)
2179 break;
2180 Object x = next.value;
2181 if (x != null && x != next) {
2182 nextValue = (V) x;
2183 break;
2184 }
2185 }
2186 }
2187
2188 public final boolean hasNext() {
2189 return next != null;
2190 }
2191
2192 /** Advances next to higher entry. */
2193 final void advance() {
2194 if (next == null)
2195 throw new NoSuchElementException();
2196 lastReturned = next;
2197 for (;;) {
2198 next = next.next;
2199 if (next == null)
2200 break;
2201 Object x = next.value;
2202 if (x != null && x != next) {
2203 nextValue = (V) x;
2204 break;
2205 }
2206 }
2207 }
2208
2209 public void remove() {
2210 Node<K,V> l = lastReturned;
2211 if (l == null)
2212 throw new IllegalStateException();
2213 // It would not be worth all of the overhead to directly
2214 // unlink from here. Using remove is fast enough.
2215 ConcurrentSkipListMap.this.remove(l.key);
2216 lastReturned = null;
2217 }
2218
2219 }
2220
2221 final class ValueIterator extends Iter<V> {
2222 public V next() {
2223 V v = nextValue;
2224 advance();
2225 return v;
2226 }
2227 }
2228
2229 final class KeyIterator extends Iter<K> {
2230 public K next() {
2231 Node<K,V> n = next;
2232 advance();
2233 return n.key;
2234 }
2235 }
2236
2237 final class EntryIterator extends Iter<Map.Entry<K,V>> {
2238 public Map.Entry<K,V> next() {
2239 Node<K,V> n = next;
2240 V v = nextValue;
2241 advance();
2242 return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
2243 }
2244 }
2245
2246 // Factory methods for iterators needed by ConcurrentSkipListSet etc
2247
2248 Iterator<K> keyIterator() {
2249 return new KeyIterator();
2250 }
2251
2252 Iterator<V> valueIterator() {
2253 return new ValueIterator();
2254 }
2255
2256 Iterator<Map.Entry<K,V>> entryIterator() {
2257 return new EntryIterator();
2258 }
2259
2260 /* ---------------- View Classes -------------- */
2261
2262 /*
2263 * View classes are static, delegating to a ConcurrentNavigableMap
2264 * to allow use by SubMaps, which outweighs the ugliness of
2265 * needing type-tests for Iterator methods.
2266 */
2267
2268 static final <E> List<E> toList(Collection<E> c) {
2269 // Using size() here would be a pessimization.
2270 List<E> list = new ArrayList<E>();
2271 for (E e : c)
2272 list.add(e);
2273 return list;
2274 }
2275
2276 static final class KeySet<E>
2277 extends AbstractSet<E> implements NavigableSet<E> {
2278 private final ConcurrentNavigableMap<E,?> m;
2279 KeySet(ConcurrentNavigableMap<E,?> map) { m = map; }
2280 public int size() { return m.size(); }
2281 public boolean isEmpty() { return m.isEmpty(); }
2282 public boolean contains(Object o) { return m.containsKey(o); }
2283 public boolean remove(Object o) { return m.remove(o) != null; }
2284 public void clear() { m.clear(); }
2285 public E lower(E e) { return m.lowerKey(e); }
2286 public E floor(E e) { return m.floorKey(e); }
2287 public E ceiling(E e) { return m.ceilingKey(e); }
2288 public E higher(E e) { return m.higherKey(e); }
2289 public Comparator<? super E> comparator() { return m.comparator(); }
2290 public E first() { return m.firstKey(); }
2291 public E last() { return m.lastKey(); }
2292 public E pollFirst() {
2293 Map.Entry<E,?> e = m.pollFirstEntry();
2294 return (e == null) ? null : e.getKey();
2295 }
2296 public E pollLast() {
2297 Map.Entry<E,?> e = m.pollLastEntry();
2298 return (e == null) ? null : e.getKey();
2299 }
2300 public Iterator<E> iterator() {
2301 if (m instanceof ConcurrentSkipListMap)
2302 return ((ConcurrentSkipListMap<E,Object>)m).keyIterator();
2303 else
2304 return ((ConcurrentSkipListMap.SubMap<E,Object>)m).keyIterator();
2305 }
2306 public boolean equals(Object o) {
2307 if (o == this)
2308 return true;
2309 if (!(o instanceof Set))
2310 return false;
2311 Collection<?> c = (Collection<?>) o;
2312 try {
2313 return containsAll(c) && c.containsAll(this);
2314 } catch (ClassCastException unused) {
2315 return false;
2316 } catch (NullPointerException unused) {
2317 return false;
2318 }
2319 }
2320 public Object[] toArray() { return toList(this).toArray(); }
2321 public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2322 public Iterator<E> descendingIterator() {
2323 return descendingSet().iterator();
2324 }
2325 public NavigableSet<E> subSet(E fromElement,
2326 boolean fromInclusive,
2327 E toElement,
2328 boolean toInclusive) {
2329 return new KeySet<E>(m.subMap(fromElement, fromInclusive,
2330 toElement, toInclusive));
2331 }
2332 public NavigableSet<E> headSet(E toElement, boolean inclusive) {
2333 return new KeySet<E>(m.headMap(toElement, inclusive));
2334 }
2335 public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
2336 return new KeySet<E>(m.tailMap(fromElement, inclusive));
2337 }
2338 public NavigableSet<E> subSet(E fromElement, E toElement) {
2339 return subSet(fromElement, true, toElement, false);
2340 }
2341 public NavigableSet<E> headSet(E toElement) {
2342 return headSet(toElement, false);
2343 }
2344 public NavigableSet<E> tailSet(E fromElement) {
2345 return tailSet(fromElement, true);
2346 }
2347 public NavigableSet<E> descendingSet() {
2348 return new KeySet<E>(m.descendingMap());
2349 }
2350 }
2351
2352 static final class Values<E> extends AbstractCollection<E> {
2353 private final ConcurrentNavigableMap<?, E> m;
2354 Values(ConcurrentNavigableMap<?, E> map) {
2355 m = map;
2356 }
2357 public Iterator<E> iterator() {
2358 if (m instanceof ConcurrentSkipListMap)
2359 return ((ConcurrentSkipListMap<?,E>)m).valueIterator();
2360 else
2361 return ((SubMap<?,E>)m).valueIterator();
2362 }
2363 public boolean isEmpty() {
2364 return m.isEmpty();
2365 }
2366 public int size() {
2367 return m.size();
2368 }
2369 public boolean contains(Object o) {
2370 return m.containsValue(o);
2371 }
2372 public void clear() {
2373 m.clear();
2374 }
2375 public Object[] toArray() { return toList(this).toArray(); }
2376 public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2377 }
2378
2379 static final class EntrySet<K1,V1> extends AbstractSet<Map.Entry<K1,V1>> {
2380 private final ConcurrentNavigableMap<K1, V1> m;
2381 EntrySet(ConcurrentNavigableMap<K1, V1> map) {
2382 m = map;
2383 }
2384
2385 public Iterator<Map.Entry<K1,V1>> iterator() {
2386 if (m instanceof ConcurrentSkipListMap)
2387 return ((ConcurrentSkipListMap<K1,V1>)m).entryIterator();
2388 else
2389 return ((SubMap<K1,V1>)m).entryIterator();
2390 }
2391
2392 public boolean contains(Object o) {
2393 if (!(o instanceof Map.Entry))
2394 return false;
2395 Map.Entry<K1,V1> e = (Map.Entry<K1,V1>)o;
2396 V1 v = m.get(e.getKey());
2397 return v != null && v.equals(e.getValue());
2398 }
2399 public boolean remove(Object o) {
2400 if (!(o instanceof Map.Entry))
2401 return false;
2402 Map.Entry<K1,V1> e = (Map.Entry<K1,V1>)o;
2403 return m.remove(e.getKey(),
2404 e.getValue());
2405 }
2406 public boolean isEmpty() {
2407 return m.isEmpty();
2408 }
2409 public int size() {
2410 return m.size();
2411 }
2412 public void clear() {
2413 m.clear();
2414 }
2415 public boolean equals(Object o) {
2416 if (o == this)
2417 return true;
2418 if (!(o instanceof Set))
2419 return false;
2420 Collection<?> c = (Collection<?>) o;
2421 try {
2422 return containsAll(c) && c.containsAll(this);
2423 } catch (ClassCastException unused) {
2424 return false;
2425 } catch (NullPointerException unused) {
2426 return false;
2427 }
2428 }
2429 public Object[] toArray() { return toList(this).toArray(); }
2430 public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2431 }
2432
2433 /**
2434 * Submaps returned by {@link ConcurrentSkipListMap} submap operations
2435 * represent a subrange of mappings of their underlying
2436 * maps. Instances of this class support all methods of their
2437 * underlying maps, differing in that mappings outside their range are
2438 * ignored, and attempts to add mappings outside their ranges result
2439 * in {@link IllegalArgumentException}. Instances of this class are
2440 * constructed only using the <tt>subMap</tt>, <tt>headMap</tt>, and
2441 * <tt>tailMap</tt> methods of their underlying maps.
2442 *
2443 * @serial include
2444 */
2445 static final class SubMap<K,V> extends AbstractMap<K,V>
2446 implements ConcurrentNavigableMap<K,V>, Cloneable,
2447 java.io.Serializable {
2448 private static final long serialVersionUID = -7647078645895051609L;
2449
2450 /** Underlying map */
2451 private final ConcurrentSkipListMap<K,V> m;
2452 /** lower bound key, or null if from start */
2453 private final K lo;
2454 /** upper bound key, or null if to end */
2455 private final K hi;
2456 /** inclusion flag for lo */
2457 private final boolean loInclusive;
2458 /** inclusion flag for hi */
2459 private final boolean hiInclusive;
2460 /** direction */
2461 private final boolean isDescending;
2462
2463 // Lazily initialized view holders
2464 private transient KeySet<K> keySetView;
2465 private transient Set<Map.Entry<K,V>> entrySetView;
2466 private transient Collection<V> valuesView;
2467
2468 /**
2469 * Creates a new submap, initializing all fields
2470 */
2471 SubMap(ConcurrentSkipListMap<K,V> map,
2472 K fromKey, boolean fromInclusive,
2473 K toKey, boolean toInclusive,
2474 boolean isDescending) {
2475 if (fromKey != null && toKey != null &&
2476 map.compare(fromKey, toKey) > 0)
2477 throw new IllegalArgumentException("inconsistent range");
2478 this.m = map;
2479 this.lo = fromKey;
2480 this.hi = toKey;
2481 this.loInclusive = fromInclusive;
2482 this.hiInclusive = toInclusive;
2483 this.isDescending = isDescending;
2484 }
2485
2486 /* ---------------- Utilities -------------- */
2487
2488 private boolean tooLow(K key) {
2489 if (lo != null) {
2490 int c = m.compare(key, lo);
2491 if (c < 0 || (c == 0 && !loInclusive))
2492 return true;
2493 }
2494 return false;
2495 }
2496
2497 private boolean tooHigh(K key) {
2498 if (hi != null) {
2499 int c = m.compare(key, hi);
2500 if (c > 0 || (c == 0 && !hiInclusive))
2501 return true;
2502 }
2503 return false;
2504 }
2505
2506 private boolean inBounds(K key) {
2507 return !tooLow(key) && !tooHigh(key);
2508 }
2509
2510 private void checkKeyBounds(K key) throws IllegalArgumentException {
2511 if (key == null)
2512 throw new NullPointerException();
2513 if (!inBounds(key))
2514 throw new IllegalArgumentException("key out of range");
2515 }
2516
2517 /**
2518 * Returns true if node key is less than upper bound of range
2519 */
2520 private boolean isBeforeEnd(ConcurrentSkipListMap.Node<K,V> n) {
2521 if (n == null)
2522 return false;
2523 if (hi == null)
2524 return true;
2525 K k = n.key;
2526 if (k == null) // pass by markers and headers
2527 return true;
2528 int c = m.compare(k, hi);
2529 if (c > 0 || (c == 0 && !hiInclusive))
2530 return false;
2531 return true;
2532 }
2533
2534 /**
2535 * Returns lowest node. This node might not be in range, so
2536 * most usages need to check bounds
2537 */
2538 private ConcurrentSkipListMap.Node<K,V> loNode() {
2539 if (lo == null)
2540 return m.findFirst();
2541 else if (loInclusive)
2542 return m.findNear(lo, GT|EQ);
2543 else
2544 return m.findNear(lo, GT);
2545 }
2546
2547 /**
2548 * Returns highest node. This node might not be in range, so
2549 * most usages need to check bounds
2550 */
2551 private ConcurrentSkipListMap.Node<K,V> hiNode() {
2552 if (hi == null)
2553 return m.findLast();
2554 else if (hiInclusive)
2555 return m.findNear(hi, LT|EQ);
2556 else
2557 return m.findNear(hi, LT);
2558 }
2559
2560 /**
2561 * Returns lowest absolute key (ignoring directonality)
2562 */
2563 private K lowestKey() {
2564 ConcurrentSkipListMap.Node<K,V> n = loNode();
2565 if (isBeforeEnd(n))
2566 return n.key;
2567 else
2568 throw new NoSuchElementException();
2569 }
2570
2571 /**
2572 * Returns highest absolute key (ignoring directonality)
2573 */
2574 private K highestKey() {
2575 ConcurrentSkipListMap.Node<K,V> n = hiNode();
2576 if (n != null) {
2577 K last = n.key;
2578 if (inBounds(last))
2579 return last;
2580 }
2581 throw new NoSuchElementException();
2582 }
2583
2584 private Map.Entry<K,V> lowestEntry() {
2585 for (;;) {
2586 ConcurrentSkipListMap.Node<K,V> n = loNode();
2587 if (!isBeforeEnd(n))
2588 return null;
2589 Map.Entry<K,V> e = n.createSnapshot();
2590 if (e != null)
2591 return e;
2592 }
2593 }
2594
2595 private Map.Entry<K,V> highestEntry() {
2596 for (;;) {
2597 ConcurrentSkipListMap.Node<K,V> n = hiNode();
2598 if (n == null || !inBounds(n.key))
2599 return null;
2600 Map.Entry<K,V> e = n.createSnapshot();
2601 if (e != null)
2602 return e;
2603 }
2604 }
2605
2606 private Map.Entry<K,V> removeLowest() {
2607 for (;;) {
2608 Node<K,V> n = loNode();
2609 if (n == null)
2610 return null;
2611 K k = n.key;
2612 if (!inBounds(k))
2613 return null;
2614 V v = m.doRemove(k, null);
2615 if (v != null)
2616 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2617 }
2618 }
2619
2620 private Map.Entry<K,V> removeHighest() {
2621 for (;;) {
2622 Node<K,V> n = hiNode();
2623 if (n == null)
2624 return null;
2625 K k = n.key;
2626 if (!inBounds(k))
2627 return null;
2628 V v = m.doRemove(k, null);
2629 if (v != null)
2630 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2631 }
2632 }
2633
2634 /**
2635 * Submap version of ConcurrentSkipListMap.getNearEntry
2636 */
2637 private Map.Entry<K,V> getNearEntry(K key, int rel) {
2638 if (isDescending) { // adjust relation for direction
2639 if ((rel & LT) == 0)
2640 rel |= LT;
2641 else
2642 rel &= ~LT;
2643 }
2644 if (tooLow(key))
2645 return ((rel & LT) != 0) ? null : lowestEntry();
2646 if (tooHigh(key))
2647 return ((rel & LT) != 0) ? highestEntry() : null;
2648 for (;;) {
2649 Node<K,V> n = m.findNear(key, rel);
2650 if (n == null || !inBounds(n.key))
2651 return null;
2652 K k = n.key;
2653 V v = n.getValidValue();
2654 if (v != null)
2655 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2656 }
2657 }
2658
2659 // Almost the same as getNearEntry, except for keys
2660 private K getNearKey(K key, int rel) {
2661 if (isDescending) { // adjust relation for direction
2662 if ((rel & LT) == 0)
2663 rel |= LT;
2664 else
2665 rel &= ~LT;
2666 }
2667 if (tooLow(key)) {
2668 if ((rel & LT) == 0) {
2669 ConcurrentSkipListMap.Node<K,V> n = loNode();
2670 if (isBeforeEnd(n))
2671 return n.key;
2672 }
2673 return null;
2674 }
2675 if (tooHigh(key)) {
2676 if ((rel & LT) != 0) {
2677 ConcurrentSkipListMap.Node<K,V> n = hiNode();
2678 if (n != null) {
2679 K last = n.key;
2680 if (inBounds(last))
2681 return last;
2682 }
2683 }
2684 return null;
2685 }
2686 for (;;) {
2687 Node<K,V> n = m.findNear(key, rel);
2688 if (n == null || !inBounds(n.key))
2689 return null;
2690 K k = n.key;
2691 V v = n.getValidValue();
2692 if (v != null)
2693 return k;
2694 }
2695 }
2696
2697 /* ---------------- Map API methods -------------- */
2698
2699 public boolean containsKey(Object key) {
2700 if (key == null) throw new NullPointerException();
2701 K k = (K)key;
2702 return inBounds(k) && m.containsKey(k);
2703 }
2704
2705 public V get(Object key) {
2706 if (key == null) throw new NullPointerException();
2707 K k = (K)key;
2708 return ((!inBounds(k)) ? null : m.get(k));
2709 }
2710
2711 public V put(K key, V value) {
2712 checkKeyBounds(key);
2713 return m.put(key, value);
2714 }
2715
2716 public V remove(Object key) {
2717 K k = (K)key;
2718 return (!inBounds(k)) ? null : m.remove(k);
2719 }
2720
2721 public int size() {
2722 long count = 0;
2723 for (ConcurrentSkipListMap.Node<K,V> n = loNode();
2724 isBeforeEnd(n);
2725 n = n.next) {
2726 if (n.getValidValue() != null)
2727 ++count;
2728 }
2729 return count >= Integer.MAX_VALUE ? Integer.MAX_VALUE : (int)count;
2730 }
2731
2732 public boolean isEmpty() {
2733 return !isBeforeEnd(loNode());
2734 }
2735
2736 public boolean containsValue(Object value) {
2737 if (value == null)
2738 throw new NullPointerException();
2739 for (ConcurrentSkipListMap.Node<K,V> n = loNode();
2740 isBeforeEnd(n);
2741 n = n.next) {
2742 V v = n.getValidValue();
2743 if (v != null && value.equals(v))
2744 return true;
2745 }
2746 return false;
2747 }
2748
2749 public void clear() {
2750 for (ConcurrentSkipListMap.Node<K,V> n = loNode();
2751 isBeforeEnd(n);
2752 n = n.next) {
2753 if (n.getValidValue() != null)
2754 m.remove(n.key);
2755 }
2756 }
2757
2758 /* ---------------- ConcurrentMap API methods -------------- */
2759
2760 public V putIfAbsent(K key, V value) {
2761 checkKeyBounds(key);
2762 return m.putIfAbsent(key, value);
2763 }
2764
2765 public boolean remove(Object key, Object value) {
2766 K k = (K)key;
2767 return inBounds(k) && m.remove(k, value);
2768 }
2769
2770 public boolean replace(K key, V oldValue, V newValue) {
2771 checkKeyBounds(key);
2772 return m.replace(key, oldValue, newValue);
2773 }
2774
2775 public V replace(K key, V value) {
2776 checkKeyBounds(key);
2777 return m.replace(key, value);
2778 }
2779
2780 /* ---------------- SortedMap API methods -------------- */
2781
2782 public Comparator<? super K> comparator() {
2783 Comparator<? super K> cmp = m.comparator();
2784 if (isDescending)
2785 return Collections.reverseOrder(cmp);
2786 else
2787 return cmp;
2788 }
2789
2790 /**
2791 * Utility to create submaps, where given bounds override
2792 * unbounded(null) ones and/or are checked against bounded ones.
2793 */
2794 private SubMap<K,V> newSubMap(K fromKey,
2795 boolean fromInclusive,
2796 K toKey,
2797 boolean toInclusive) {
2798 if (isDescending) { // flip senses
2799 K tk = fromKey;
2800 fromKey = toKey;
2801 toKey = tk;
2802 boolean ti = fromInclusive;
2803 fromInclusive = toInclusive;
2804 toInclusive = ti;
2805 }
2806 if (lo != null) {
2807 if (fromKey == null) {
2808 fromKey = lo;
2809 fromInclusive = loInclusive;
2810 }
2811 else {
2812 int c = m.compare(fromKey, lo);
2813 if (c < 0 || (c == 0 && !loInclusive && fromInclusive))
2814 throw new IllegalArgumentException("key out of range");
2815 }
2816 }
2817 if (hi != null) {
2818 if (toKey == null) {
2819 toKey = hi;
2820 toInclusive = hiInclusive;
2821 }
2822 else {
2823 int c = m.compare(toKey, hi);
2824 if (c > 0 || (c == 0 && !hiInclusive && toInclusive))
2825 throw new IllegalArgumentException("key out of range");
2826 }
2827 }
2828 return new SubMap<K,V>(m, fromKey, fromInclusive,
2829 toKey, toInclusive, isDescending);
2830 }
2831
2832 public SubMap<K,V> subMap(K fromKey,
2833 boolean fromInclusive,
2834 K toKey,
2835 boolean toInclusive) {
2836 if (fromKey == null || toKey == null)
2837 throw new NullPointerException();
2838 return newSubMap(fromKey, fromInclusive, toKey, toInclusive);
2839 }
2840
2841 public SubMap<K,V> headMap(K toKey,
2842 boolean inclusive) {
2843 if (toKey == null)
2844 throw new NullPointerException();
2845 return newSubMap(null, false, toKey, inclusive);
2846 }
2847
2848 public SubMap<K,V> tailMap(K fromKey,
2849 boolean inclusive) {
2850 if (fromKey == null)
2851 throw new NullPointerException();
2852 return newSubMap(fromKey, inclusive, null, false);
2853 }
2854
2855 public SubMap<K,V> subMap(K fromKey, K toKey) {
2856 return subMap(fromKey, true, toKey, false);
2857 }
2858
2859 public SubMap<K,V> headMap(K toKey) {
2860 return headMap(toKey, false);
2861 }
2862
2863 public SubMap<K,V> tailMap(K fromKey) {
2864 return tailMap(fromKey, true);
2865 }
2866
2867 public SubMap<K,V> descendingMap() {
2868 return new SubMap<K,V>(m, lo, loInclusive,
2869 hi, hiInclusive, !isDescending);
2870 }
2871
2872 /* ---------------- Relational methods -------------- */
2873
2874 public Map.Entry<K,V> ceilingEntry(K key) {
2875 return getNearEntry(key, GT|EQ);
2876 }
2877
2878 public K ceilingKey(K key) {
2879 return getNearKey(key, GT|EQ);
2880 }
2881
2882 public Map.Entry<K,V> lowerEntry(K key) {
2883 return getNearEntry(key, LT);
2884 }
2885
2886 public K lowerKey(K key) {
2887 return getNearKey(key, LT);
2888 }
2889
2890 public Map.Entry<K,V> floorEntry(K key) {
2891 return getNearEntry(key, LT|EQ);
2892 }
2893
2894 public K floorKey(K key) {
2895 return getNearKey(key, LT|EQ);
2896 }
2897
2898 public Map.Entry<K,V> higherEntry(K key) {
2899 return getNearEntry(key, GT);
2900 }
2901
2902 public K higherKey(K key) {
2903 return getNearKey(key, GT);
2904 }
2905
2906 public K firstKey() {
2907 return isDescending ? highestKey() : lowestKey();
2908 }
2909
2910 public K lastKey() {
2911 return isDescending ? lowestKey() : highestKey();
2912 }
2913
2914 public Map.Entry<K,V> firstEntry() {
2915 return isDescending ? highestEntry() : lowestEntry();
2916 }
2917
2918 public Map.Entry<K,V> lastEntry() {
2919 return isDescending ? lowestEntry() : highestEntry();
2920 }
2921
2922 public Map.Entry<K,V> pollFirstEntry() {
2923 return isDescending ? removeHighest() : removeLowest();
2924 }
2925
2926 public Map.Entry<K,V> pollLastEntry() {
2927 return isDescending ? removeLowest() : removeHighest();
2928 }
2929
2930 /* ---------------- Submap Views -------------- */
2931
2932 public NavigableSet<K> keySet() {
2933 KeySet<K> ks = keySetView;
2934 return (ks != null) ? ks : (keySetView = new KeySet<K>(this));
2935 }
2936
2937 public NavigableSet<K> navigableKeySet() {
2938 KeySet<K> ks = keySetView;
2939 return (ks != null) ? ks : (keySetView = new KeySet<K>(this));
2940 }
2941
2942 public Collection<V> values() {
2943 Collection<V> vs = valuesView;
2944 return (vs != null) ? vs : (valuesView = new Values<V>(this));
2945 }
2946
2947 public Set<Map.Entry<K,V>> entrySet() {
2948 Set<Map.Entry<K,V>> es = entrySetView;
2949 return (es != null) ? es : (entrySetView = new EntrySet<K,V>(this));
2950 }
2951
2952 public NavigableSet<K> descendingKeySet() {
2953 return descendingMap().navigableKeySet();
2954 }
2955
2956 Iterator<K> keyIterator() {
2957 return new SubMapKeyIterator();
2958 }
2959
2960 Iterator<V> valueIterator() {
2961 return new SubMapValueIterator();
2962 }
2963
2964 Iterator<Map.Entry<K,V>> entryIterator() {
2965 return new SubMapEntryIterator();
2966 }
2967
2968 /**
2969 * Variant of main Iter class to traverse through submaps.
2970 */
2971 abstract class SubMapIter<T> implements Iterator<T> {
2972 /** the last node returned by next() */
2973 Node<K,V> lastReturned;
2974 /** the next node to return from next(); */
2975 Node<K,V> next;
2976 /** Cache of next value field to maintain weak consistency */
2977 V nextValue;
2978
2979 SubMapIter() {
2980 for (;;) {
2981 next = isDescending ? hiNode() : loNode();
2982 if (next == null)
2983 break;
2984 Object x = next.value;
2985 if (x != null && x != next) {
2986 if (! inBounds(next.key))
2987 next = null;
2988 else
2989 nextValue = (V) x;
2990 break;
2991 }
2992 }
2993 }
2994
2995 public final boolean hasNext() {
2996 return next != null;
2997 }
2998
2999 final void advance() {
3000 if (next == null)
3001 throw new NoSuchElementException();
3002 lastReturned = next;
3003 if (isDescending)
3004 descend();
3005 else
3006 ascend();
3007 }
3008
3009 private void ascend() {
3010 for (;;) {
3011 next = next.next;
3012 if (next == null)
3013 break;
3014 Object x = next.value;
3015 if (x != null && x != next) {
3016 if (tooHigh(next.key))
3017 next = null;
3018 else
3019 nextValue = (V) x;
3020 break;
3021 }
3022 }
3023 }
3024
3025 private void descend() {
3026 for (;;) {
3027 next = m.findNear(lastReturned.key, LT);
3028 if (next == null)
3029 break;
3030 Object x = next.value;
3031 if (x != null && x != next) {
3032 if (tooLow(next.key))
3033 next = null;
3034 else
3035 nextValue = (V) x;
3036 break;
3037 }
3038 }
3039 }
3040
3041 public void remove() {
3042 Node<K,V> l = lastReturned;
3043 if (l == null)
3044 throw new IllegalStateException();
3045 m.remove(l.key);
3046 lastReturned = null;
3047 }
3048
3049 }
3050
3051 final class SubMapValueIterator extends SubMapIter<V> {
3052 public V next() {
3053 V v = nextValue;
3054 advance();
3055 return v;
3056 }
3057 }
3058
3059 final class SubMapKeyIterator extends SubMapIter<K> {
3060 public K next() {
3061 Node<K,V> n = next;
3062 advance();
3063 return n.key;
3064 }
3065 }
3066
3067 final class SubMapEntryIterator extends SubMapIter<Map.Entry<K,V>> {
3068 public Map.Entry<K,V> next() {
3069 Node<K,V> n = next;
3070 V v = nextValue;
3071 advance();
3072 return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
3073 }
3074 }
3075 }
3076
3077 // Unsafe mechanics
3078 private static final sun.misc.Unsafe UNSAFE;
3079 private static final long headOffset;
3080 static {
3081 try {
3082 UNSAFE = sun.misc.Unsafe.getUnsafe();
3083 Class<?> k = ConcurrentSkipListMap.class;
3084 headOffset = UNSAFE.objectFieldOffset
3085 (k.getDeclaredField("head"));
3086 } catch (Exception e) {
3087 throw new Error(e);
3088 }
3089 }
3090 }