ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentSkipListMap.java
Revision: 1.83
Committed: Wed Jan 16 15:04:03 2013 UTC (11 years, 4 months ago) by dl
Branch: MAIN
Changes since 1.82: +664 -20 lines
Log Message:
lambda-lib support

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8 import java.util.*;
9 import java.util.stream.Stream;
10 import java.util.Spliterator;
11 import java.util.stream.Streams;
12 import java.util.function.Block;
13
14
15 /**
16 * A scalable concurrent {@link ConcurrentNavigableMap} implementation.
17 * The map is sorted according to the {@linkplain Comparable natural
18 * ordering} of its keys, or by a {@link Comparator} provided at map
19 * creation time, depending on which constructor is used.
20 *
21 * <p>This class implements a concurrent variant of <a
22 * href="http://en.wikipedia.org/wiki/Skip_list" target="_top">SkipLists</a>
23 * providing expected average <i>log(n)</i> time cost for the
24 * {@code containsKey}, {@code get}, {@code put} and
25 * {@code remove} operations and their variants. Insertion, removal,
26 * update, and access operations safely execute concurrently by
27 * multiple threads. Iterators are <i>weakly consistent</i>, returning
28 * elements reflecting the state of the map at some point at or since
29 * the creation of the iterator. They do <em>not</em> throw {@link
30 * ConcurrentModificationException}, and may proceed concurrently with
31 * other operations. Ascending key ordered views and their iterators
32 * are faster than descending ones.
33 *
34 * <p>All {@code Map.Entry} pairs returned by methods in this class
35 * and its views represent snapshots of mappings at the time they were
36 * produced. They do <em>not</em> support the {@code Entry.setValue}
37 * method. (Note however that it is possible to change mappings in the
38 * associated map using {@code put}, {@code putIfAbsent}, or
39 * {@code replace}, depending on exactly which effect you need.)
40 *
41 * <p>Beware that, unlike in most collections, the {@code size}
42 * method is <em>not</em> a constant-time operation. Because of the
43 * asynchronous nature of these maps, determining the current number
44 * of elements requires a traversal of the elements, and so may report
45 * inaccurate results if this collection is modified during traversal.
46 * Additionally, the bulk operations {@code putAll}, {@code equals},
47 * {@code toArray}, {@code containsValue}, and {@code clear} are
48 * <em>not</em> guaranteed to be performed atomically. For example, an
49 * iterator operating concurrently with a {@code putAll} operation
50 * might view only some of the added elements.
51 *
52 * <p>This class and its views and iterators implement all of the
53 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
54 * interfaces. Like most other concurrent collections, this class does
55 * <em>not</em> permit the use of {@code null} keys or values because some
56 * null return values cannot be reliably distinguished from the absence of
57 * elements.
58 *
59 * <p>A {@link Set} projection of a ConcurrentSkipListMap may be
60 * created (using {@link #newKeySet()}}), or viewed (using {@link
61 * #keySet(Object)} when only keys are of interest, and the mapped
62 * values are (perhaps transiently) not used or all take the same
63 * mapping value.
64 *
65 * <p>This class is a member of the
66 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
67 * Java Collections Framework</a>.
68 *
69 * @author Doug Lea
70 * @param <K> the type of keys maintained by this map
71 * @param <V> the type of mapped values
72 * @since 1.6
73 */
74 @SuppressWarnings("unchecked")
75 public class ConcurrentSkipListMap<K,V> extends AbstractMap<K,V>
76 implements ConcurrentNavigableMap<K,V>,
77 Cloneable,
78 java.io.Serializable {
79 /*
80 * This class implements a tree-like two-dimensionally linked skip
81 * list in which the index levels are represented in separate
82 * nodes from the base nodes holding data. There are two reasons
83 * for taking this approach instead of the usual array-based
84 * structure: 1) Array based implementations seem to encounter
85 * more complexity and overhead 2) We can use cheaper algorithms
86 * for the heavily-traversed index lists than can be used for the
87 * base lists. Here's a picture of some of the basics for a
88 * possible list with 2 levels of index:
89 *
90 * Head nodes Index nodes
91 * +-+ right +-+ +-+
92 * |2|---------------->| |--------------------->| |->null
93 * +-+ +-+ +-+
94 * | down | |
95 * v v v
96 * +-+ +-+ +-+ +-+ +-+ +-+
97 * |1|----------->| |->| |------>| |----------->| |------>| |->null
98 * +-+ +-+ +-+ +-+ +-+ +-+
99 * v | | | | |
100 * Nodes next v v v v v
101 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
102 * | |->|A|->|B|->|C|->|D|->|E|->|F|->|G|->|H|->|I|->|J|->|K|->null
103 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
104 *
105 * The base lists use a variant of the HM linked ordered set
106 * algorithm. See Tim Harris, "A pragmatic implementation of
107 * non-blocking linked lists"
108 * http://www.cl.cam.ac.uk/~tlh20/publications.html and Maged
109 * Michael "High Performance Dynamic Lock-Free Hash Tables and
110 * List-Based Sets"
111 * http://www.research.ibm.com/people/m/michael/pubs.htm. The
112 * basic idea in these lists is to mark the "next" pointers of
113 * deleted nodes when deleting to avoid conflicts with concurrent
114 * insertions, and when traversing to keep track of triples
115 * (predecessor, node, successor) in order to detect when and how
116 * to unlink these deleted nodes.
117 *
118 * Rather than using mark-bits to mark list deletions (which can
119 * be slow and space-intensive using AtomicMarkedReference), nodes
120 * use direct CAS'able next pointers. On deletion, instead of
121 * marking a pointer, they splice in another node that can be
122 * thought of as standing for a marked pointer (indicating this by
123 * using otherwise impossible field values). Using plain nodes
124 * acts roughly like "boxed" implementations of marked pointers,
125 * but uses new nodes only when nodes are deleted, not for every
126 * link. This requires less space and supports faster
127 * traversal. Even if marked references were better supported by
128 * JVMs, traversal using this technique might still be faster
129 * because any search need only read ahead one more node than
130 * otherwise required (to check for trailing marker) rather than
131 * unmasking mark bits or whatever on each read.
132 *
133 * This approach maintains the essential property needed in the HM
134 * algorithm of changing the next-pointer of a deleted node so
135 * that any other CAS of it will fail, but implements the idea by
136 * changing the pointer to point to a different node, not by
137 * marking it. While it would be possible to further squeeze
138 * space by defining marker nodes not to have key/value fields, it
139 * isn't worth the extra type-testing overhead. The deletion
140 * markers are rarely encountered during traversal and are
141 * normally quickly garbage collected. (Note that this technique
142 * would not work well in systems without garbage collection.)
143 *
144 * In addition to using deletion markers, the lists also use
145 * nullness of value fields to indicate deletion, in a style
146 * similar to typical lazy-deletion schemes. If a node's value is
147 * null, then it is considered logically deleted and ignored even
148 * though it is still reachable. This maintains proper control of
149 * concurrent replace vs delete operations -- an attempted replace
150 * must fail if a delete beat it by nulling field, and a delete
151 * must return the last non-null value held in the field. (Note:
152 * Null, rather than some special marker, is used for value fields
153 * here because it just so happens to mesh with the Map API
154 * requirement that method get returns null if there is no
155 * mapping, which allows nodes to remain concurrently readable
156 * even when deleted. Using any other marker value here would be
157 * messy at best.)
158 *
159 * Here's the sequence of events for a deletion of node n with
160 * predecessor b and successor f, initially:
161 *
162 * +------+ +------+ +------+
163 * ... | b |------>| n |----->| f | ...
164 * +------+ +------+ +------+
165 *
166 * 1. CAS n's value field from non-null to null.
167 * From this point on, no public operations encountering
168 * the node consider this mapping to exist. However, other
169 * ongoing insertions and deletions might still modify
170 * n's next pointer.
171 *
172 * 2. CAS n's next pointer to point to a new marker node.
173 * From this point on, no other nodes can be appended to n.
174 * which avoids deletion errors in CAS-based linked lists.
175 *
176 * +------+ +------+ +------+ +------+
177 * ... | b |------>| n |----->|marker|------>| f | ...
178 * +------+ +------+ +------+ +------+
179 *
180 * 3. CAS b's next pointer over both n and its marker.
181 * From this point on, no new traversals will encounter n,
182 * and it can eventually be GCed.
183 * +------+ +------+
184 * ... | b |----------------------------------->| f | ...
185 * +------+ +------+
186 *
187 * A failure at step 1 leads to simple retry due to a lost race
188 * with another operation. Steps 2-3 can fail because some other
189 * thread noticed during a traversal a node with null value and
190 * helped out by marking and/or unlinking. This helping-out
191 * ensures that no thread can become stuck waiting for progress of
192 * the deleting thread. The use of marker nodes slightly
193 * complicates helping-out code because traversals must track
194 * consistent reads of up to four nodes (b, n, marker, f), not
195 * just (b, n, f), although the next field of a marker is
196 * immutable, and once a next field is CAS'ed to point to a
197 * marker, it never again changes, so this requires less care.
198 *
199 * Skip lists add indexing to this scheme, so that the base-level
200 * traversals start close to the locations being found, inserted
201 * or deleted -- usually base level traversals only traverse a few
202 * nodes. This doesn't change the basic algorithm except for the
203 * need to make sure base traversals start at predecessors (here,
204 * b) that are not (structurally) deleted, otherwise retrying
205 * after processing the deletion.
206 *
207 * Index levels are maintained as lists with volatile next fields,
208 * using CAS to link and unlink. Races are allowed in index-list
209 * operations that can (rarely) fail to link in a new index node
210 * or delete one. (We can't do this of course for data nodes.)
211 * However, even when this happens, the index lists remain sorted,
212 * so correctly serve as indices. This can impact performance,
213 * but since skip lists are probabilistic anyway, the net result
214 * is that under contention, the effective "p" value may be lower
215 * than its nominal value. And race windows are kept small enough
216 * that in practice these failures are rare, even under a lot of
217 * contention.
218 *
219 * The fact that retries (for both base and index lists) are
220 * relatively cheap due to indexing allows some minor
221 * simplifications of retry logic. Traversal restarts are
222 * performed after most "helping-out" CASes. This isn't always
223 * strictly necessary, but the implicit backoffs tend to help
224 * reduce other downstream failed CAS's enough to outweigh restart
225 * cost. This worsens the worst case, but seems to improve even
226 * highly contended cases.
227 *
228 * Unlike most skip-list implementations, index insertion and
229 * deletion here require a separate traversal pass occuring after
230 * the base-level action, to add or remove index nodes. This adds
231 * to single-threaded overhead, but improves contended
232 * multithreaded performance by narrowing interference windows,
233 * and allows deletion to ensure that all index nodes will be made
234 * unreachable upon return from a public remove operation, thus
235 * avoiding unwanted garbage retention. This is more important
236 * here than in some other data structures because we cannot null
237 * out node fields referencing user keys since they might still be
238 * read by other ongoing traversals.
239 *
240 * Indexing uses skip list parameters that maintain good search
241 * performance while using sparser-than-usual indices: The
242 * hardwired parameters k=1, p=0.5 (see method randomLevel) mean
243 * that about one-quarter of the nodes have indices. Of those that
244 * do, half have one level, a quarter have two, and so on (see
245 * Pugh's Skip List Cookbook, sec 3.4). The expected total space
246 * requirement for a map is slightly less than for the current
247 * implementation of java.util.TreeMap.
248 *
249 * Changing the level of the index (i.e, the height of the
250 * tree-like structure) also uses CAS. The head index has initial
251 * level/height of one. Creation of an index with height greater
252 * than the current level adds a level to the head index by
253 * CAS'ing on a new top-most head. To maintain good performance
254 * after a lot of removals, deletion methods heuristically try to
255 * reduce the height if the topmost levels appear to be empty.
256 * This may encounter races in which it possible (but rare) to
257 * reduce and "lose" a level just as it is about to contain an
258 * index (that will then never be encountered). This does no
259 * structural harm, and in practice appears to be a better option
260 * than allowing unrestrained growth of levels.
261 *
262 * The code for all this is more verbose than you'd like. Most
263 * operations entail locating an element (or position to insert an
264 * element). The code to do this can't be nicely factored out
265 * because subsequent uses require a snapshot of predecessor
266 * and/or successor and/or value fields which can't be returned
267 * all at once, at least not without creating yet another object
268 * to hold them -- creating such little objects is an especially
269 * bad idea for basic internal search operations because it adds
270 * to GC overhead. (This is one of the few times I've wished Java
271 * had macros.) Instead, some traversal code is interleaved within
272 * insertion and removal operations. The control logic to handle
273 * all the retry conditions is sometimes twisty. Most search is
274 * broken into 2 parts. findPredecessor() searches index nodes
275 * only, returning a base-level predecessor of the key. findNode()
276 * finishes out the base-level search. Even with this factoring,
277 * there is a fair amount of near-duplication of code to handle
278 * variants.
279 *
280 * For explanation of algorithms sharing at least a couple of
281 * features with this one, see Mikhail Fomitchev's thesis
282 * (http://www.cs.yorku.ca/~mikhail/), Keir Fraser's thesis
283 * (http://www.cl.cam.ac.uk/users/kaf24/), and Hakan Sundell's
284 * thesis (http://www.cs.chalmers.se/~phs/).
285 *
286 * Given the use of tree-like index nodes, you might wonder why
287 * this doesn't use some kind of search tree instead, which would
288 * support somewhat faster search operations. The reason is that
289 * there are no known efficient lock-free insertion and deletion
290 * algorithms for search trees. The immutability of the "down"
291 * links of index nodes (as opposed to mutable "left" fields in
292 * true trees) makes this tractable using only CAS operations.
293 *
294 * Notation guide for local variables
295 * Node: b, n, f for predecessor, node, successor
296 * Index: q, r, d for index node, right, down.
297 * t for another index node
298 * Head: h
299 * Levels: j
300 * Keys: k, key
301 * Values: v, value
302 * Comparisons: c
303 */
304
305 private static final long serialVersionUID = -8627078645895051609L;
306
307 /**
308 * Generates the initial random seed for the cheaper per-instance
309 * random number generators used in randomLevel.
310 */
311 private static final Random seedGenerator = new Random();
312
313 /**
314 * Special value used to identify base-level header
315 */
316 private static final Object BASE_HEADER = new Object();
317
318 /**
319 * The topmost head index of the skiplist.
320 */
321 private transient volatile HeadIndex<K,V> head;
322
323 /**
324 * The comparator used to maintain order in this map, or null
325 * if using natural ordering.
326 * @serial
327 */
328 private final Comparator<? super K> comparator;
329
330 /** Lazily initialized key set */
331 private transient KeySetView<K,V> keySet;
332 /** Lazily initialized entry set */
333 private transient EntrySet<K,V> entrySet;
334 /** Lazily initialized values collection */
335 private transient Values<V> values;
336 /** Lazily initialized descending key set */
337 private transient ConcurrentNavigableMap<K,V> descendingMap;
338
339 /**
340 * Initializes or resets state. Needed by constructors, clone,
341 * clear, readObject. and ConcurrentSkipListSet.clone.
342 * (Note that comparator must be separately initialized.)
343 */
344 final void initialize() {
345 keySet = null;
346 entrySet = null;
347 values = null;
348 descendingMap = null;
349 head = new HeadIndex<K,V>(new Node<K,V>(null, BASE_HEADER, null),
350 null, null, 1);
351 }
352
353 /**
354 * compareAndSet head node
355 */
356 private boolean casHead(HeadIndex<K,V> cmp, HeadIndex<K,V> val) {
357 return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
358 }
359
360 /* ---------------- Nodes -------------- */
361
362 /**
363 * Nodes hold keys and values, and are singly linked in sorted
364 * order, possibly with some intervening marker nodes. The list is
365 * headed by a dummy node accessible as head.node. The value field
366 * is declared only as Object because it takes special non-V
367 * values for marker and header nodes.
368 */
369 static final class Node<K,V> {
370 final K key;
371 volatile Object value;
372 volatile Node<K,V> next;
373
374 /**
375 * Creates a new regular node.
376 */
377 Node(K key, Object value, Node<K,V> next) {
378 this.key = key;
379 this.value = value;
380 this.next = next;
381 }
382
383 /**
384 * Creates a new marker node. A marker is distinguished by
385 * having its value field point to itself. Marker nodes also
386 * have null keys, a fact that is exploited in a few places,
387 * but this doesn't distinguish markers from the base-level
388 * header node (head.node), which also has a null key.
389 */
390 Node(Node<K,V> next) {
391 this.key = null;
392 this.value = this;
393 this.next = next;
394 }
395
396 /**
397 * compareAndSet value field
398 */
399 boolean casValue(Object cmp, Object val) {
400 return UNSAFE.compareAndSwapObject(this, valueOffset, cmp, val);
401 }
402
403 /**
404 * compareAndSet next field
405 */
406 boolean casNext(Node<K,V> cmp, Node<K,V> val) {
407 return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
408 }
409
410 /**
411 * Returns true if this node is a marker. This method isn't
412 * actually called in any current code checking for markers
413 * because callers will have already read value field and need
414 * to use that read (not another done here) and so directly
415 * test if value points to node.
416 * @param n a possibly null reference to a node
417 * @return true if this node is a marker node
418 */
419 boolean isMarker() {
420 return value == this;
421 }
422
423 /**
424 * Returns true if this node is the header of base-level list.
425 * @return true if this node is header node
426 */
427 boolean isBaseHeader() {
428 return value == BASE_HEADER;
429 }
430
431 /**
432 * Tries to append a deletion marker to this node.
433 * @param f the assumed current successor of this node
434 * @return true if successful
435 */
436 boolean appendMarker(Node<K,V> f) {
437 return casNext(f, new Node<K,V>(f));
438 }
439
440 /**
441 * Helps out a deletion by appending marker or unlinking from
442 * predecessor. This is called during traversals when value
443 * field seen to be null.
444 * @param b predecessor
445 * @param f successor
446 */
447 void helpDelete(Node<K,V> b, Node<K,V> f) {
448 /*
449 * Rechecking links and then doing only one of the
450 * help-out stages per call tends to minimize CAS
451 * interference among helping threads.
452 */
453 if (f == next && this == b.next) {
454 if (f == null || f.value != f) // not already marked
455 appendMarker(f);
456 else
457 b.casNext(this, f.next);
458 }
459 }
460
461 /**
462 * Returns value if this node contains a valid key-value pair,
463 * else null.
464 * @return this node's value if it isn't a marker or header or
465 * is deleted, else null.
466 */
467 V getValidValue() {
468 Object v = value;
469 if (v == this || v == BASE_HEADER)
470 return null;
471 return (V)v;
472 }
473
474 /**
475 * Creates and returns a new SimpleImmutableEntry holding current
476 * mapping if this node holds a valid value, else null.
477 * @return new entry or null
478 */
479 AbstractMap.SimpleImmutableEntry<K,V> createSnapshot() {
480 V v = getValidValue();
481 if (v == null)
482 return null;
483 return new AbstractMap.SimpleImmutableEntry<K,V>(key, v);
484 }
485
486 // UNSAFE mechanics
487
488 private static final sun.misc.Unsafe UNSAFE;
489 private static final long valueOffset;
490 private static final long nextOffset;
491
492 static {
493 try {
494 UNSAFE = sun.misc.Unsafe.getUnsafe();
495 Class<?> k = Node.class;
496 valueOffset = UNSAFE.objectFieldOffset
497 (k.getDeclaredField("value"));
498 nextOffset = UNSAFE.objectFieldOffset
499 (k.getDeclaredField("next"));
500 } catch (Exception e) {
501 throw new Error(e);
502 }
503 }
504 }
505
506 /* ---------------- Indexing -------------- */
507
508 /**
509 * Index nodes represent the levels of the skip list. Note that
510 * even though both Nodes and Indexes have forward-pointing
511 * fields, they have different types and are handled in different
512 * ways, that can't nicely be captured by placing field in a
513 * shared abstract class.
514 */
515 static class Index<K,V> {
516 final Node<K,V> node;
517 final Index<K,V> down;
518 volatile Index<K,V> right;
519
520 /**
521 * Creates index node with given values.
522 */
523 Index(Node<K,V> node, Index<K,V> down, Index<K,V> right) {
524 this.node = node;
525 this.down = down;
526 this.right = right;
527 }
528
529 /**
530 * compareAndSet right field
531 */
532 final boolean casRight(Index<K,V> cmp, Index<K,V> val) {
533 return UNSAFE.compareAndSwapObject(this, rightOffset, cmp, val);
534 }
535
536 /**
537 * Returns true if the node this indexes has been deleted.
538 * @return true if indexed node is known to be deleted
539 */
540 final boolean indexesDeletedNode() {
541 return node.value == null;
542 }
543
544 /**
545 * Tries to CAS newSucc as successor. To minimize races with
546 * unlink that may lose this index node, if the node being
547 * indexed is known to be deleted, it doesn't try to link in.
548 * @param succ the expected current successor
549 * @param newSucc the new successor
550 * @return true if successful
551 */
552 final boolean link(Index<K,V> succ, Index<K,V> newSucc) {
553 Node<K,V> n = node;
554 newSucc.right = succ;
555 return n.value != null && casRight(succ, newSucc);
556 }
557
558 /**
559 * Tries to CAS right field to skip over apparent successor
560 * succ. Fails (forcing a retraversal by caller) if this node
561 * is known to be deleted.
562 * @param succ the expected current successor
563 * @return true if successful
564 */
565 final boolean unlink(Index<K,V> succ) {
566 return !indexesDeletedNode() && casRight(succ, succ.right);
567 }
568
569 // Unsafe mechanics
570 private static final sun.misc.Unsafe UNSAFE;
571 private static final long rightOffset;
572 static {
573 try {
574 UNSAFE = sun.misc.Unsafe.getUnsafe();
575 Class<?> k = Index.class;
576 rightOffset = UNSAFE.objectFieldOffset
577 (k.getDeclaredField("right"));
578 } catch (Exception e) {
579 throw new Error(e);
580 }
581 }
582 }
583
584 /* ---------------- Head nodes -------------- */
585
586 /**
587 * Nodes heading each level keep track of their level.
588 */
589 static final class HeadIndex<K,V> extends Index<K,V> {
590 final int level;
591 HeadIndex(Node<K,V> node, Index<K,V> down, Index<K,V> right, int level) {
592 super(node, down, right);
593 this.level = level;
594 }
595 }
596
597 /* ---------------- Comparison utilities -------------- */
598
599 /**
600 * Represents a key with a comparator as a Comparable.
601 *
602 * Because most sorted collections seem to use natural ordering on
603 * Comparables (Strings, Integers, etc), most internal methods are
604 * geared to use them. This is generally faster than checking
605 * per-comparison whether to use comparator or comparable because
606 * it doesn't require a (Comparable) cast for each comparison.
607 * (Optimizers can only sometimes remove such redundant checks
608 * themselves.) When Comparators are used,
609 * ComparableUsingComparators are created so that they act in the
610 * same way as natural orderings. This penalizes use of
611 * Comparators vs Comparables, which seems like the right
612 * tradeoff.
613 */
614 static final class ComparableUsingComparator<K> implements Comparable<K> {
615 final K actualKey;
616 final Comparator<? super K> cmp;
617 ComparableUsingComparator(K key, Comparator<? super K> cmp) {
618 this.actualKey = key;
619 this.cmp = cmp;
620 }
621 public int compareTo(K k2) {
622 return cmp.compare(actualKey, k2);
623 }
624 }
625
626 /**
627 * If using comparator, return a ComparableUsingComparator, else
628 * cast key as Comparable, which may cause ClassCastException,
629 * which is propagated back to caller.
630 */
631 private Comparable<? super K> comparable(Object key)
632 throws ClassCastException {
633 if (key == null)
634 throw new NullPointerException();
635 if (comparator != null)
636 return new ComparableUsingComparator<K>((K)key, comparator);
637 else
638 return (Comparable<? super K>)key;
639 }
640
641 /**
642 * Compares using comparator or natural ordering. Used when the
643 * ComparableUsingComparator approach doesn't apply.
644 */
645 int compare(K k1, K k2) throws ClassCastException {
646 Comparator<? super K> cmp = comparator;
647 if (cmp != null)
648 return cmp.compare(k1, k2);
649 else
650 return ((Comparable<? super K>)k1).compareTo(k2);
651 }
652
653 /**
654 * Returns true if given key greater than or equal to least and
655 * strictly less than fence, bypassing either test if least or
656 * fence are null. Needed mainly in submap operations.
657 */
658 boolean inHalfOpenRange(K key, K least, K fence) {
659 if (key == null)
660 throw new NullPointerException();
661 return ((least == null || compare(key, least) >= 0) &&
662 (fence == null || compare(key, fence) < 0));
663 }
664
665 /**
666 * Returns true if given key greater than or equal to least and less
667 * or equal to fence. Needed mainly in submap operations.
668 */
669 boolean inOpenRange(K key, K least, K fence) {
670 if (key == null)
671 throw new NullPointerException();
672 return ((least == null || compare(key, least) >= 0) &&
673 (fence == null || compare(key, fence) <= 0));
674 }
675
676 /* ---------------- Traversal -------------- */
677
678 /**
679 * Returns a base-level node with key strictly less than given key,
680 * or the base-level header if there is no such node. Also
681 * unlinks indexes to deleted nodes found along the way. Callers
682 * rely on this side-effect of clearing indices to deleted nodes.
683 * @param key the key
684 * @return a predecessor of key
685 */
686 private Node<K,V> findPredecessor(Comparable<? super K> key) {
687 if (key == null)
688 throw new NullPointerException(); // don't postpone errors
689 for (;;) {
690 Index<K,V> q = head;
691 Index<K,V> r = q.right;
692 for (;;) {
693 if (r != null) {
694 Node<K,V> n = r.node;
695 K k = n.key;
696 if (n.value == null) {
697 if (!q.unlink(r))
698 break; // restart
699 r = q.right; // reread r
700 continue;
701 }
702 if (key.compareTo(k) > 0) {
703 q = r;
704 r = r.right;
705 continue;
706 }
707 }
708 Index<K,V> d = q.down;
709 if (d != null) {
710 q = d;
711 r = d.right;
712 } else
713 return q.node;
714 }
715 }
716 }
717
718 /**
719 * Returns node holding key or null if no such, clearing out any
720 * deleted nodes seen along the way. Repeatedly traverses at
721 * base-level looking for key starting at predecessor returned
722 * from findPredecessor, processing base-level deletions as
723 * encountered. Some callers rely on this side-effect of clearing
724 * deleted nodes.
725 *
726 * Restarts occur, at traversal step centered on node n, if:
727 *
728 * (1) After reading n's next field, n is no longer assumed
729 * predecessor b's current successor, which means that
730 * we don't have a consistent 3-node snapshot and so cannot
731 * unlink any subsequent deleted nodes encountered.
732 *
733 * (2) n's value field is null, indicating n is deleted, in
734 * which case we help out an ongoing structural deletion
735 * before retrying. Even though there are cases where such
736 * unlinking doesn't require restart, they aren't sorted out
737 * here because doing so would not usually outweigh cost of
738 * restarting.
739 *
740 * (3) n is a marker or n's predecessor's value field is null,
741 * indicating (among other possibilities) that
742 * findPredecessor returned a deleted node. We can't unlink
743 * the node because we don't know its predecessor, so rely
744 * on another call to findPredecessor to notice and return
745 * some earlier predecessor, which it will do. This check is
746 * only strictly needed at beginning of loop, (and the
747 * b.value check isn't strictly needed at all) but is done
748 * each iteration to help avoid contention with other
749 * threads by callers that will fail to be able to change
750 * links, and so will retry anyway.
751 *
752 * The traversal loops in doPut, doRemove, and findNear all
753 * include the same three kinds of checks. And specialized
754 * versions appear in findFirst, and findLast and their
755 * variants. They can't easily share code because each uses the
756 * reads of fields held in locals occurring in the orders they
757 * were performed.
758 *
759 * @param key the key
760 * @return node holding key, or null if no such
761 */
762 private Node<K,V> findNode(Comparable<? super K> key) {
763 for (;;) {
764 Node<K,V> b = findPredecessor(key);
765 Node<K,V> n = b.next;
766 for (;;) {
767 if (n == null)
768 return null;
769 Node<K,V> f = n.next;
770 if (n != b.next) // inconsistent read
771 break;
772 Object v = n.value;
773 if (v == null) { // n is deleted
774 n.helpDelete(b, f);
775 break;
776 }
777 if (v == n || b.value == null) // b is deleted
778 break;
779 int c = key.compareTo(n.key);
780 if (c == 0)
781 return n;
782 if (c < 0)
783 return null;
784 b = n;
785 n = f;
786 }
787 }
788 }
789
790 /**
791 * Gets value for key using findNode.
792 * @param okey the key
793 * @return the value, or null if absent
794 */
795 private V doGet(Object okey) {
796 Comparable<? super K> key = comparable(okey);
797 /*
798 * Loop needed here and elsewhere in case value field goes
799 * null just as it is about to be returned, in which case we
800 * lost a race with a deletion, so must retry.
801 */
802 for (;;) {
803 Node<K,V> n = findNode(key);
804 if (n == null)
805 return null;
806 Object v = n.value;
807 if (v != null)
808 return (V)v;
809 }
810 }
811
812 /* ---------------- Insertion -------------- */
813
814 /**
815 * Main insertion method. Adds element if not present, or
816 * replaces value if present and onlyIfAbsent is false.
817 * @param kkey the key
818 * @param value the value that must be associated with key
819 * @param onlyIfAbsent if should not insert if already present
820 * @return the old value, or null if newly inserted
821 */
822 private V doPut(K kkey, V value, boolean onlyIfAbsent) {
823 Comparable<? super K> key = comparable(kkey);
824 for (;;) {
825 Node<K,V> b = findPredecessor(key);
826 Node<K,V> n = b.next;
827 for (;;) {
828 if (n != null) {
829 Node<K,V> f = n.next;
830 if (n != b.next) // inconsistent read
831 break;
832 Object v = n.value;
833 if (v == null) { // n is deleted
834 n.helpDelete(b, f);
835 break;
836 }
837 if (v == n || b.value == null) // b is deleted
838 break;
839 int c = key.compareTo(n.key);
840 if (c > 0) {
841 b = n;
842 n = f;
843 continue;
844 }
845 if (c == 0) {
846 if (onlyIfAbsent || n.casValue(v, value))
847 return (V)v;
848 else
849 break; // restart if lost race to replace value
850 }
851 // else c < 0; fall through
852 }
853
854 Node<K,V> z = new Node<K,V>(kkey, value, n);
855 if (!b.casNext(n, z))
856 break; // restart if lost race to append to b
857 int level = randomLevel();
858 if (level > 0)
859 insertIndex(z, level);
860 return null;
861 }
862 }
863 }
864
865 /**
866 * Returns a random level for inserting a new node.
867 * Hardwired to k=1, p=0.5, max 31 (see above and
868 * Pugh's "Skip List Cookbook", sec 3.4).
869 */
870 private int randomLevel() {
871 int x = ThreadLocalRandom.nextSecondarySeed();
872 if ((x & 0x80000001) != 0) // test highest and lowest bits
873 return 0;
874 int level = 1;
875 while (((x >>>= 1) & 1) != 0) ++level;
876 return level;
877 }
878
879 /**
880 * Creates and adds index nodes for the given node.
881 * @param z the node
882 * @param level the level of the index
883 */
884 private void insertIndex(Node<K,V> z, int level) {
885 HeadIndex<K,V> h = head;
886 int max = h.level;
887
888 if (level <= max) {
889 Index<K,V> idx = null;
890 for (int i = 1; i <= level; ++i)
891 idx = new Index<K,V>(z, idx, null);
892 addIndex(idx, h, level);
893
894 } else { // Add a new level
895 /*
896 * To reduce interference by other threads checking for
897 * empty levels in tryReduceLevel, new levels are added
898 * with initialized right pointers. Which in turn requires
899 * keeping levels in an array to access them while
900 * creating new head index nodes from the opposite
901 * direction.
902 */
903 level = max + 1;
904 Index<K,V>[] idxs = (Index<K,V>[])new Index<?,?>[level+1];
905 Index<K,V> idx = null;
906 for (int i = 1; i <= level; ++i)
907 idxs[i] = idx = new Index<K,V>(z, idx, null);
908
909 HeadIndex<K,V> oldh;
910 int k;
911 for (;;) {
912 oldh = head;
913 int oldLevel = oldh.level;
914 if (level <= oldLevel) { // lost race to add level
915 k = level;
916 break;
917 }
918 HeadIndex<K,V> newh = oldh;
919 Node<K,V> oldbase = oldh.node;
920 for (int j = oldLevel+1; j <= level; ++j)
921 newh = new HeadIndex<K,V>(oldbase, newh, idxs[j], j);
922 if (casHead(oldh, newh)) {
923 k = oldLevel;
924 break;
925 }
926 }
927 addIndex(idxs[k], oldh, k);
928 }
929 }
930
931 /**
932 * Adds given index nodes from given level down to 1.
933 * @param idx the topmost index node being inserted
934 * @param h the value of head to use to insert. This must be
935 * snapshotted by callers to provide correct insertion level
936 * @param indexLevel the level of the index
937 */
938 private void addIndex(Index<K,V> idx, HeadIndex<K,V> h, int indexLevel) {
939 // Track next level to insert in case of retries
940 int insertionLevel = indexLevel;
941 Comparable<? super K> key = comparable(idx.node.key);
942 if (key == null) throw new NullPointerException();
943
944 // Similar to findPredecessor, but adding index nodes along
945 // path to key.
946 for (;;) {
947 int j = h.level;
948 Index<K,V> q = h;
949 Index<K,V> r = q.right;
950 Index<K,V> t = idx;
951 for (;;) {
952 if (r != null) {
953 Node<K,V> n = r.node;
954 // compare before deletion check avoids needing recheck
955 int c = key.compareTo(n.key);
956 if (n.value == null) {
957 if (!q.unlink(r))
958 break;
959 r = q.right;
960 continue;
961 }
962 if (c > 0) {
963 q = r;
964 r = r.right;
965 continue;
966 }
967 }
968
969 if (j == insertionLevel) {
970 // Don't insert index if node already deleted
971 if (t.indexesDeletedNode()) {
972 findNode(key); // cleans up
973 return;
974 }
975 if (!q.link(r, t))
976 break; // restart
977 if (--insertionLevel == 0) {
978 // need final deletion check before return
979 if (t.indexesDeletedNode())
980 findNode(key);
981 return;
982 }
983 }
984
985 if (--j >= insertionLevel && j < indexLevel)
986 t = t.down;
987 q = q.down;
988 r = q.right;
989 }
990 }
991 }
992
993 /* ---------------- Deletion -------------- */
994
995 /**
996 * Main deletion method. Locates node, nulls value, appends a
997 * deletion marker, unlinks predecessor, removes associated index
998 * nodes, and possibly reduces head index level.
999 *
1000 * Index nodes are cleared out simply by calling findPredecessor.
1001 * which unlinks indexes to deleted nodes found along path to key,
1002 * which will include the indexes to this node. This is done
1003 * unconditionally. We can't check beforehand whether there are
1004 * index nodes because it might be the case that some or all
1005 * indexes hadn't been inserted yet for this node during initial
1006 * search for it, and we'd like to ensure lack of garbage
1007 * retention, so must call to be sure.
1008 *
1009 * @param okey the key
1010 * @param value if non-null, the value that must be
1011 * associated with key
1012 * @return the node, or null if not found
1013 */
1014 final V doRemove(Object okey, Object value) {
1015 Comparable<? super K> key = comparable(okey);
1016 for (;;) {
1017 Node<K,V> b = findPredecessor(key);
1018 Node<K,V> n = b.next;
1019 for (;;) {
1020 if (n == null)
1021 return null;
1022 Node<K,V> f = n.next;
1023 if (n != b.next) // inconsistent read
1024 break;
1025 Object v = n.value;
1026 if (v == null) { // n is deleted
1027 n.helpDelete(b, f);
1028 break;
1029 }
1030 if (v == n || b.value == null) // b is deleted
1031 break;
1032 int c = key.compareTo(n.key);
1033 if (c < 0)
1034 return null;
1035 if (c > 0) {
1036 b = n;
1037 n = f;
1038 continue;
1039 }
1040 if (value != null && !value.equals(v))
1041 return null;
1042 if (!n.casValue(v, null))
1043 break;
1044 if (!n.appendMarker(f) || !b.casNext(n, f))
1045 findNode(key); // Retry via findNode
1046 else {
1047 findPredecessor(key); // Clean index
1048 if (head.right == null)
1049 tryReduceLevel();
1050 }
1051 return (V)v;
1052 }
1053 }
1054 }
1055
1056 /**
1057 * Possibly reduce head level if it has no nodes. This method can
1058 * (rarely) make mistakes, in which case levels can disappear even
1059 * though they are about to contain index nodes. This impacts
1060 * performance, not correctness. To minimize mistakes as well as
1061 * to reduce hysteresis, the level is reduced by one only if the
1062 * topmost three levels look empty. Also, if the removed level
1063 * looks non-empty after CAS, we try to change it back quick
1064 * before anyone notices our mistake! (This trick works pretty
1065 * well because this method will practically never make mistakes
1066 * unless current thread stalls immediately before first CAS, in
1067 * which case it is very unlikely to stall again immediately
1068 * afterwards, so will recover.)
1069 *
1070 * We put up with all this rather than just let levels grow
1071 * because otherwise, even a small map that has undergone a large
1072 * number of insertions and removals will have a lot of levels,
1073 * slowing down access more than would an occasional unwanted
1074 * reduction.
1075 */
1076 private void tryReduceLevel() {
1077 HeadIndex<K,V> h = head;
1078 HeadIndex<K,V> d;
1079 HeadIndex<K,V> e;
1080 if (h.level > 3 &&
1081 (d = (HeadIndex<K,V>)h.down) != null &&
1082 (e = (HeadIndex<K,V>)d.down) != null &&
1083 e.right == null &&
1084 d.right == null &&
1085 h.right == null &&
1086 casHead(h, d) && // try to set
1087 h.right != null) // recheck
1088 casHead(d, h); // try to backout
1089 }
1090
1091 /* ---------------- Finding and removing first element -------------- */
1092
1093 /**
1094 * Specialized variant of findNode to get first valid node.
1095 * @return first node or null if empty
1096 */
1097 Node<K,V> findFirst() {
1098 for (;;) {
1099 Node<K,V> b = head.node;
1100 Node<K,V> n = b.next;
1101 if (n == null)
1102 return null;
1103 if (n.value != null)
1104 return n;
1105 n.helpDelete(b, n.next);
1106 }
1107 }
1108
1109 /**
1110 * Removes first entry; returns its snapshot.
1111 * @return null if empty, else snapshot of first entry
1112 */
1113 Map.Entry<K,V> doRemoveFirstEntry() {
1114 for (;;) {
1115 Node<K,V> b = head.node;
1116 Node<K,V> n = b.next;
1117 if (n == null)
1118 return null;
1119 Node<K,V> f = n.next;
1120 if (n != b.next)
1121 continue;
1122 Object v = n.value;
1123 if (v == null) {
1124 n.helpDelete(b, f);
1125 continue;
1126 }
1127 if (!n.casValue(v, null))
1128 continue;
1129 if (!n.appendMarker(f) || !b.casNext(n, f))
1130 findFirst(); // retry
1131 clearIndexToFirst();
1132 return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, (V)v);
1133 }
1134 }
1135
1136 /**
1137 * Clears out index nodes associated with deleted first entry.
1138 */
1139 private void clearIndexToFirst() {
1140 for (;;) {
1141 Index<K,V> q = head;
1142 for (;;) {
1143 Index<K,V> r = q.right;
1144 if (r != null && r.indexesDeletedNode() && !q.unlink(r))
1145 break;
1146 if ((q = q.down) == null) {
1147 if (head.right == null)
1148 tryReduceLevel();
1149 return;
1150 }
1151 }
1152 }
1153 }
1154
1155
1156 /* ---------------- Finding and removing last element -------------- */
1157
1158 /**
1159 * Specialized version of find to get last valid node.
1160 * @return last node or null if empty
1161 */
1162 Node<K,V> findLast() {
1163 /*
1164 * findPredecessor can't be used to traverse index level
1165 * because this doesn't use comparisons. So traversals of
1166 * both levels are folded together.
1167 */
1168 Index<K,V> q = head;
1169 for (;;) {
1170 Index<K,V> d, r;
1171 if ((r = q.right) != null) {
1172 if (r.indexesDeletedNode()) {
1173 q.unlink(r);
1174 q = head; // restart
1175 }
1176 else
1177 q = r;
1178 } else if ((d = q.down) != null) {
1179 q = d;
1180 } else {
1181 Node<K,V> b = q.node;
1182 Node<K,V> n = b.next;
1183 for (;;) {
1184 if (n == null)
1185 return b.isBaseHeader() ? null : b;
1186 Node<K,V> f = n.next; // inconsistent read
1187 if (n != b.next)
1188 break;
1189 Object v = n.value;
1190 if (v == null) { // n is deleted
1191 n.helpDelete(b, f);
1192 break;
1193 }
1194 if (v == n || b.value == null) // b is deleted
1195 break;
1196 b = n;
1197 n = f;
1198 }
1199 q = head; // restart
1200 }
1201 }
1202 }
1203
1204 /**
1205 * Specialized variant of findPredecessor to get predecessor of last
1206 * valid node. Needed when removing the last entry. It is possible
1207 * that all successors of returned node will have been deleted upon
1208 * return, in which case this method can be retried.
1209 * @return likely predecessor of last node
1210 */
1211 private Node<K,V> findPredecessorOfLast() {
1212 for (;;) {
1213 Index<K,V> q = head;
1214 for (;;) {
1215 Index<K,V> d, r;
1216 if ((r = q.right) != null) {
1217 if (r.indexesDeletedNode()) {
1218 q.unlink(r);
1219 break; // must restart
1220 }
1221 // proceed as far across as possible without overshooting
1222 if (r.node.next != null) {
1223 q = r;
1224 continue;
1225 }
1226 }
1227 if ((d = q.down) != null)
1228 q = d;
1229 else
1230 return q.node;
1231 }
1232 }
1233 }
1234
1235 /**
1236 * Removes last entry; returns its snapshot.
1237 * Specialized variant of doRemove.
1238 * @return null if empty, else snapshot of last entry
1239 */
1240 Map.Entry<K,V> doRemoveLastEntry() {
1241 for (;;) {
1242 Node<K,V> b = findPredecessorOfLast();
1243 Node<K,V> n = b.next;
1244 if (n == null) {
1245 if (b.isBaseHeader()) // empty
1246 return null;
1247 else
1248 continue; // all b's successors are deleted; retry
1249 }
1250 for (;;) {
1251 Node<K,V> f = n.next;
1252 if (n != b.next) // inconsistent read
1253 break;
1254 Object v = n.value;
1255 if (v == null) { // n is deleted
1256 n.helpDelete(b, f);
1257 break;
1258 }
1259 if (v == n || b.value == null) // b is deleted
1260 break;
1261 if (f != null) {
1262 b = n;
1263 n = f;
1264 continue;
1265 }
1266 if (!n.casValue(v, null))
1267 break;
1268 K key = n.key;
1269 Comparable<? super K> ck = comparable(key);
1270 if (!n.appendMarker(f) || !b.casNext(n, f))
1271 findNode(ck); // Retry via findNode
1272 else {
1273 findPredecessor(ck); // Clean index
1274 if (head.right == null)
1275 tryReduceLevel();
1276 }
1277 return new AbstractMap.SimpleImmutableEntry<K,V>(key, (V)v);
1278 }
1279 }
1280 }
1281
1282 /* ---------------- Relational operations -------------- */
1283
1284 // Control values OR'ed as arguments to findNear
1285
1286 private static final int EQ = 1;
1287 private static final int LT = 2;
1288 private static final int GT = 0; // Actually checked as !LT
1289
1290 /**
1291 * Utility for ceiling, floor, lower, higher methods.
1292 * @param kkey the key
1293 * @param rel the relation -- OR'ed combination of EQ, LT, GT
1294 * @return nearest node fitting relation, or null if no such
1295 */
1296 Node<K,V> findNear(K kkey, int rel) {
1297 Comparable<? super K> key = comparable(kkey);
1298 for (;;) {
1299 Node<K,V> b = findPredecessor(key);
1300 Node<K,V> n = b.next;
1301 for (;;) {
1302 if (n == null)
1303 return ((rel & LT) == 0 || b.isBaseHeader()) ? null : b;
1304 Node<K,V> f = n.next;
1305 if (n != b.next) // inconsistent read
1306 break;
1307 Object v = n.value;
1308 if (v == null) { // n is deleted
1309 n.helpDelete(b, f);
1310 break;
1311 }
1312 if (v == n || b.value == null) // b is deleted
1313 break;
1314 int c = key.compareTo(n.key);
1315 if ((c == 0 && (rel & EQ) != 0) ||
1316 (c < 0 && (rel & LT) == 0))
1317 return n;
1318 if ( c <= 0 && (rel & LT) != 0)
1319 return b.isBaseHeader() ? null : b;
1320 b = n;
1321 n = f;
1322 }
1323 }
1324 }
1325
1326 /**
1327 * Returns SimpleImmutableEntry for results of findNear.
1328 * @param key the key
1329 * @param rel the relation -- OR'ed combination of EQ, LT, GT
1330 * @return Entry fitting relation, or null if no such
1331 */
1332 AbstractMap.SimpleImmutableEntry<K,V> getNear(K key, int rel) {
1333 for (;;) {
1334 Node<K,V> n = findNear(key, rel);
1335 if (n == null)
1336 return null;
1337 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
1338 if (e != null)
1339 return e;
1340 }
1341 }
1342
1343
1344 /* ---------------- Constructors -------------- */
1345
1346 /**
1347 * Constructs a new, empty map, sorted according to the
1348 * {@linkplain Comparable natural ordering} of the keys.
1349 */
1350 public ConcurrentSkipListMap() {
1351 this.comparator = null;
1352 initialize();
1353 }
1354
1355 /**
1356 * Constructs a new, empty map, sorted according to the specified
1357 * comparator.
1358 *
1359 * @param comparator the comparator that will be used to order this map.
1360 * If {@code null}, the {@linkplain Comparable natural
1361 * ordering} of the keys will be used.
1362 */
1363 public ConcurrentSkipListMap(Comparator<? super K> comparator) {
1364 this.comparator = comparator;
1365 initialize();
1366 }
1367
1368 /**
1369 * Constructs a new map containing the same mappings as the given map,
1370 * sorted according to the {@linkplain Comparable natural ordering} of
1371 * the keys.
1372 *
1373 * @param m the map whose mappings are to be placed in this map
1374 * @throws ClassCastException if the keys in {@code m} are not
1375 * {@link Comparable}, or are not mutually comparable
1376 * @throws NullPointerException if the specified map or any of its keys
1377 * or values are null
1378 */
1379 public ConcurrentSkipListMap(Map<? extends K, ? extends V> m) {
1380 this.comparator = null;
1381 initialize();
1382 putAll(m);
1383 }
1384
1385 /**
1386 * Constructs a new map containing the same mappings and using the
1387 * same ordering as the specified sorted map.
1388 *
1389 * @param m the sorted map whose mappings are to be placed in this
1390 * map, and whose comparator is to be used to sort this map
1391 * @throws NullPointerException if the specified sorted map or any of
1392 * its keys or values are null
1393 */
1394 public ConcurrentSkipListMap(SortedMap<K, ? extends V> m) {
1395 this.comparator = m.comparator();
1396 initialize();
1397 buildFromSorted(m);
1398 }
1399
1400 /**
1401 <<<<<<< ConcurrentSkipListMap.java
1402 * Creates a new {@link Set} backed by a ConcurrentSkipListMap
1403 * from the given type to {@code Boolean.TRUE}.
1404 *
1405 * @return the new set
1406 */
1407 public static <K> KeySetView<K,Boolean> newKeySet() {
1408 return new KeySetView<K,Boolean>(new ConcurrentSkipListMap<K,Boolean>(),
1409 Boolean.TRUE);
1410 }
1411
1412 /**
1413 * Creates a new {@link Set} backed by a ConcurrentSkipListMap
1414 * from the given type to {@code Boolean.TRUE}, using the
1415 * given comparator
1416 *
1417 * @param comparator the comparator that will be used to order this map.
1418 * If <tt>null</tt>, the {@linkplain Comparable natural
1419 * ordering} of the keys will be used.
1420 *
1421 * @return the new set
1422 */
1423 public static <K> KeySetView<K,Boolean> newKeySet(Comparator<? super K> comparator) {
1424 return new KeySetView<K,Boolean>
1425 (new ConcurrentSkipListMap<K,Boolean>(comparator), Boolean.TRUE);
1426 }
1427
1428 /**
1429 * Returns a shallow copy of this {@code ConcurrentSkipListMap}
1430 * instance. (The keys and values themselves are not cloned.)
1431 *
1432 * @return a shallow copy of this map
1433 */
1434 public ConcurrentSkipListMap<K,V> clone() {
1435 try {
1436 @SuppressWarnings("unchecked")
1437 ConcurrentSkipListMap<K,V> clone =
1438 (ConcurrentSkipListMap<K,V>) super.clone();
1439 clone.initialize();
1440 clone.buildFromSorted(this);
1441 return clone;
1442 } catch (CloneNotSupportedException e) {
1443 throw new InternalError();
1444 }
1445 }
1446
1447 /**
1448 * Streamlined bulk insertion to initialize from elements of
1449 * given sorted map. Call only from constructor or clone
1450 * method.
1451 */
1452 private void buildFromSorted(SortedMap<K, ? extends V> map) {
1453 if (map == null)
1454 throw new NullPointerException();
1455
1456 HeadIndex<K,V> h = head;
1457 Node<K,V> basepred = h.node;
1458
1459 // Track the current rightmost node at each level. Uses an
1460 // ArrayList to avoid committing to initial or maximum level.
1461 ArrayList<Index<K,V>> preds = new ArrayList<Index<K,V>>();
1462
1463 // initialize
1464 for (int i = 0; i <= h.level; ++i)
1465 preds.add(null);
1466 Index<K,V> q = h;
1467 for (int i = h.level; i > 0; --i) {
1468 preds.set(i, q);
1469 q = q.down;
1470 }
1471
1472 Iterator<? extends Map.Entry<? extends K, ? extends V>> it =
1473 map.entrySet().iterator();
1474 while (it.hasNext()) {
1475 Map.Entry<? extends K, ? extends V> e = it.next();
1476 int j = randomLevel();
1477 if (j > h.level) j = h.level + 1;
1478 K k = e.getKey();
1479 V v = e.getValue();
1480 if (k == null || v == null)
1481 throw new NullPointerException();
1482 Node<K,V> z = new Node<K,V>(k, v, null);
1483 basepred.next = z;
1484 basepred = z;
1485 if (j > 0) {
1486 Index<K,V> idx = null;
1487 for (int i = 1; i <= j; ++i) {
1488 idx = new Index<K,V>(z, idx, null);
1489 if (i > h.level)
1490 h = new HeadIndex<K,V>(h.node, h, idx, i);
1491
1492 if (i < preds.size()) {
1493 preds.get(i).right = idx;
1494 preds.set(i, idx);
1495 } else
1496 preds.add(idx);
1497 }
1498 }
1499 }
1500 head = h;
1501 }
1502
1503 /* ---------------- Serialization -------------- */
1504
1505 /**
1506 * Saves this map to a stream (that is, serializes it).
1507 *
1508 * @serialData The key (Object) and value (Object) for each
1509 * key-value mapping represented by the map, followed by
1510 * {@code null}. The key-value mappings are emitted in key-order
1511 * (as determined by the Comparator, or by the keys' natural
1512 * ordering if no Comparator).
1513 */
1514 private void writeObject(java.io.ObjectOutputStream s)
1515 throws java.io.IOException {
1516 // Write out the Comparator and any hidden stuff
1517 s.defaultWriteObject();
1518
1519 // Write out keys and values (alternating)
1520 for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1521 V v = n.getValidValue();
1522 if (v != null) {
1523 s.writeObject(n.key);
1524 s.writeObject(v);
1525 }
1526 }
1527 s.writeObject(null);
1528 }
1529
1530 /**
1531 * Reconstitutes this map from a stream (that is, deserializes it).
1532 */
1533 private void readObject(final java.io.ObjectInputStream s)
1534 throws java.io.IOException, ClassNotFoundException {
1535 // Read in the Comparator and any hidden stuff
1536 s.defaultReadObject();
1537 // Reset transients
1538 initialize();
1539
1540 /*
1541 * This is nearly identical to buildFromSorted, but is
1542 * distinct because readObject calls can't be nicely adapted
1543 * as the kind of iterator needed by buildFromSorted. (They
1544 * can be, but doing so requires type cheats and/or creation
1545 * of adaptor classes.) It is simpler to just adapt the code.
1546 */
1547
1548 HeadIndex<K,V> h = head;
1549 Node<K,V> basepred = h.node;
1550 ArrayList<Index<K,V>> preds = new ArrayList<Index<K,V>>();
1551 for (int i = 0; i <= h.level; ++i)
1552 preds.add(null);
1553 Index<K,V> q = h;
1554 for (int i = h.level; i > 0; --i) {
1555 preds.set(i, q);
1556 q = q.down;
1557 }
1558
1559 for (;;) {
1560 Object k = s.readObject();
1561 if (k == null)
1562 break;
1563 Object v = s.readObject();
1564 if (v == null)
1565 throw new NullPointerException();
1566 K key = (K) k;
1567 V val = (V) v;
1568 int j = randomLevel();
1569 if (j > h.level) j = h.level + 1;
1570 Node<K,V> z = new Node<K,V>(key, val, null);
1571 basepred.next = z;
1572 basepred = z;
1573 if (j > 0) {
1574 Index<K,V> idx = null;
1575 for (int i = 1; i <= j; ++i) {
1576 idx = new Index<K,V>(z, idx, null);
1577 if (i > h.level)
1578 h = new HeadIndex<K,V>(h.node, h, idx, i);
1579
1580 if (i < preds.size()) {
1581 preds.get(i).right = idx;
1582 preds.set(i, idx);
1583 } else
1584 preds.add(idx);
1585 }
1586 }
1587 }
1588 head = h;
1589 }
1590
1591 /* ------ Map API methods ------ */
1592
1593 /**
1594 * Returns {@code true} if this map contains a mapping for the specified
1595 * key.
1596 *
1597 * @param key key whose presence in this map is to be tested
1598 * @return {@code true} if this map contains a mapping for the specified key
1599 * @throws ClassCastException if the specified key cannot be compared
1600 * with the keys currently in the map
1601 * @throws NullPointerException if the specified key is null
1602 */
1603 public boolean containsKey(Object key) {
1604 return doGet(key) != null;
1605 }
1606
1607 /**
1608 * Returns the value to which the specified key is mapped,
1609 * or {@code null} if this map contains no mapping for the key.
1610 *
1611 * <p>More formally, if this map contains a mapping from a key
1612 * {@code k} to a value {@code v} such that {@code key} compares
1613 * equal to {@code k} according to the map's ordering, then this
1614 * method returns {@code v}; otherwise it returns {@code null}.
1615 * (There can be at most one such mapping.)
1616 *
1617 * @throws ClassCastException if the specified key cannot be compared
1618 * with the keys currently in the map
1619 * @throws NullPointerException if the specified key is null
1620 */
1621 public V get(Object key) {
1622 return doGet(key);
1623 }
1624
1625 /**
1626 * Associates the specified value with the specified key in this map.
1627 * If the map previously contained a mapping for the key, the old
1628 * value is replaced.
1629 *
1630 * @param key key with which the specified value is to be associated
1631 * @param value value to be associated with the specified key
1632 * @return the previous value associated with the specified key, or
1633 * {@code null} if there was no mapping for the key
1634 * @throws ClassCastException if the specified key cannot be compared
1635 * with the keys currently in the map
1636 * @throws NullPointerException if the specified key or value is null
1637 */
1638 public V put(K key, V value) {
1639 if (value == null)
1640 throw new NullPointerException();
1641 return doPut(key, value, false);
1642 }
1643
1644 /**
1645 * Removes the mapping for the specified key from this map if present.
1646 *
1647 * @param key key for which mapping should be removed
1648 * @return the previous value associated with the specified key, or
1649 * {@code null} if there was no mapping for the key
1650 * @throws ClassCastException if the specified key cannot be compared
1651 * with the keys currently in the map
1652 * @throws NullPointerException if the specified key is null
1653 */
1654 public V remove(Object key) {
1655 return doRemove(key, null);
1656 }
1657
1658 /**
1659 * Returns {@code true} if this map maps one or more keys to the
1660 * specified value. This operation requires time linear in the
1661 * map size. Additionally, it is possible for the map to change
1662 * during execution of this method, in which case the returned
1663 * result may be inaccurate.
1664 *
1665 * @param value value whose presence in this map is to be tested
1666 * @return {@code true} if a mapping to {@code value} exists;
1667 * {@code false} otherwise
1668 * @throws NullPointerException if the specified value is null
1669 */
1670 public boolean containsValue(Object value) {
1671 if (value == null)
1672 throw new NullPointerException();
1673 for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1674 V v = n.getValidValue();
1675 if (v != null && value.equals(v))
1676 return true;
1677 }
1678 return false;
1679 }
1680
1681 /**
1682 * Returns the number of key-value mappings in this map. If this map
1683 * contains more than {@code Integer.MAX_VALUE} elements, it
1684 * returns {@code Integer.MAX_VALUE}.
1685 *
1686 * <p>Beware that, unlike in most collections, this method is
1687 * <em>NOT</em> a constant-time operation. Because of the
1688 * asynchronous nature of these maps, determining the current
1689 * number of elements requires traversing them all to count them.
1690 * Additionally, it is possible for the size to change during
1691 * execution of this method, in which case the returned result
1692 * will be inaccurate. Thus, this method is typically not very
1693 * useful in concurrent applications.
1694 *
1695 * @return the number of elements in this map
1696 */
1697 public int size() {
1698 long count = 0;
1699 for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1700 if (n.getValidValue() != null)
1701 ++count;
1702 }
1703 return (count >= Integer.MAX_VALUE) ? Integer.MAX_VALUE : (int) count;
1704 }
1705
1706 /**
1707 * Returns {@code true} if this map contains no key-value mappings.
1708 * @return {@code true} if this map contains no key-value mappings
1709 */
1710 public boolean isEmpty() {
1711 return findFirst() == null;
1712 }
1713
1714 /**
1715 * Removes all of the mappings from this map.
1716 */
1717 public void clear() {
1718 initialize();
1719 }
1720
1721 /* ---------------- View methods -------------- */
1722
1723 /*
1724 * Note: Lazy initialization works for views because view classes
1725 * are stateless/immutable so it doesn't matter wrt correctness if
1726 * more than one is created (which will only rarely happen). Even
1727 * so, the following idiom conservatively ensures that the method
1728 * returns the one it created if it does so, not one created by
1729 * another racing thread.
1730 */
1731
1732 /**
1733 * Returns a {@link NavigableSet} view of the keys contained in this map.
1734 * The set's iterator returns the keys in ascending order.
1735 * The set is backed by the map, so changes to the map are
1736 * reflected in the set, and vice-versa. The set supports element
1737 * removal, which removes the corresponding mapping from the map,
1738 * via the {@code Iterator.remove}, {@code Set.remove},
1739 * {@code removeAll}, {@code retainAll}, and {@code clear}
1740 * operations. It does not support the {@code add} or {@code addAll}
1741 * operations.
1742 *
1743 * <p>The view's {@code iterator} is a "weakly consistent" iterator
1744 * that will never throw {@link ConcurrentModificationException},
1745 * and guarantees to traverse elements as they existed upon
1746 * construction of the iterator, and may (but is not guaranteed to)
1747 * reflect any modifications subsequent to construction.
1748 *
1749 * <p>This method is equivalent to method {@code navigableKeySet}.
1750 *
1751 * @return a navigable set view of the keys in this map
1752 */
1753 public NavigableSet<K> keySet() {
1754 KeySetView<K,V> ks = keySet;
1755 return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
1756 }
1757
1758 public NavigableSet<K> navigableKeySet() {
1759 KeySetView<K,V> ks = keySet;
1760 return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
1761 }
1762
1763 /**
1764 * Returns a {@link Set} view of the keys in this map, using the
1765 * given common mapped value for any additions (i.e., {@link
1766 * Collection#add} and {@link Collection#addAll}). This is of
1767 * course only appropriate if it is acceptable to use the same
1768 * value for all additions from this view.
1769 *
1770 * @param mappedValue the mapped value to use for any
1771 * additions.
1772 * @return the set view
1773 * @throws NullPointerException if the mappedValue is null
1774 */
1775 public KeySetView<K,V> keySet(V mappedValue) {
1776 if (mappedValue == null)
1777 throw new NullPointerException();
1778 return new KeySetView<K,V>(this, mappedValue);
1779 }
1780
1781 /**
1782 * Returns a {@link Collection} view of the values contained in this map.
1783 * The collection's iterator returns the values in ascending order
1784 * of the corresponding keys.
1785 * The collection is backed by the map, so changes to the map are
1786 * reflected in the collection, and vice-versa. The collection
1787 * supports element removal, which removes the corresponding
1788 * mapping from the map, via the {@code Iterator.remove},
1789 * {@code Collection.remove}, {@code removeAll},
1790 * {@code retainAll} and {@code clear} operations. It does not
1791 * support the {@code add} or {@code addAll} operations.
1792 *
1793 * <p>The view's {@code iterator} is a "weakly consistent" iterator
1794 * that will never throw {@link ConcurrentModificationException},
1795 * and guarantees to traverse elements as they existed upon
1796 * construction of the iterator, and may (but is not guaranteed to)
1797 * reflect any modifications subsequent to construction.
1798 */
1799 public Collection<V> values() {
1800 Values<V> vs = values;
1801 return (vs != null) ? vs : (values = new Values<V>(this));
1802 }
1803
1804 /**
1805 * Returns a {@link Set} view of the mappings contained in this map.
1806 * The set's iterator returns the entries in ascending key order.
1807 * The set is backed by the map, so changes to the map are
1808 * reflected in the set, and vice-versa. The set supports element
1809 * removal, which removes the corresponding mapping from the map,
1810 * via the {@code Iterator.remove}, {@code Set.remove},
1811 * {@code removeAll}, {@code retainAll} and {@code clear}
1812 * operations. It does not support the {@code add} or
1813 * {@code addAll} operations.
1814 *
1815 * <p>The view's {@code iterator} is a "weakly consistent" iterator
1816 * that will never throw {@link ConcurrentModificationException},
1817 * and guarantees to traverse elements as they existed upon
1818 * construction of the iterator, and may (but is not guaranteed to)
1819 * reflect any modifications subsequent to construction.
1820 *
1821 * <p>The {@code Map.Entry} elements returned by
1822 * {@code iterator.next()} do <em>not</em> support the
1823 * {@code setValue} operation.
1824 *
1825 * @return a set view of the mappings contained in this map,
1826 * sorted in ascending key order
1827 */
1828 public Set<Map.Entry<K,V>> entrySet() {
1829 EntrySet<K,V> es = entrySet;
1830 return (es != null) ? es : (entrySet = new EntrySet<K,V>(this));
1831 }
1832
1833 public ConcurrentNavigableMap<K,V> descendingMap() {
1834 ConcurrentNavigableMap<K,V> dm = descendingMap;
1835 return (dm != null) ? dm : (descendingMap = new SubMap<K,V>
1836 (this, null, false, null, false, true));
1837 }
1838
1839 public NavigableSet<K> descendingKeySet() {
1840 return descendingMap().navigableKeySet();
1841 }
1842
1843 /* ---------------- AbstractMap Overrides -------------- */
1844
1845 /**
1846 * Compares the specified object with this map for equality.
1847 * Returns {@code true} if the given object is also a map and the
1848 * two maps represent the same mappings. More formally, two maps
1849 * {@code m1} and {@code m2} represent the same mappings if
1850 * {@code m1.entrySet().equals(m2.entrySet())}. This
1851 * operation may return misleading results if either map is
1852 * concurrently modified during execution of this method.
1853 *
1854 * @param o object to be compared for equality with this map
1855 * @return {@code true} if the specified object is equal to this map
1856 */
1857 public boolean equals(Object o) {
1858 if (o == this)
1859 return true;
1860 if (!(o instanceof Map))
1861 return false;
1862 Map<?,?> m = (Map<?,?>) o;
1863 try {
1864 for (Map.Entry<K,V> e : this.entrySet())
1865 if (! e.getValue().equals(m.get(e.getKey())))
1866 return false;
1867 for (Map.Entry<?,?> e : m.entrySet()) {
1868 Object k = e.getKey();
1869 Object v = e.getValue();
1870 if (k == null || v == null || !v.equals(get(k)))
1871 return false;
1872 }
1873 return true;
1874 } catch (ClassCastException unused) {
1875 return false;
1876 } catch (NullPointerException unused) {
1877 return false;
1878 }
1879 }
1880
1881 /* ------ ConcurrentMap API methods ------ */
1882
1883 /**
1884 * {@inheritDoc}
1885 *
1886 * @return the previous value associated with the specified key,
1887 * or {@code null} if there was no mapping for the key
1888 * @throws ClassCastException if the specified key cannot be compared
1889 * with the keys currently in the map
1890 * @throws NullPointerException if the specified key or value is null
1891 */
1892 public V putIfAbsent(K key, V value) {
1893 if (value == null)
1894 throw new NullPointerException();
1895 return doPut(key, value, true);
1896 }
1897
1898 /**
1899 * {@inheritDoc}
1900 *
1901 * @throws ClassCastException if the specified key cannot be compared
1902 * with the keys currently in the map
1903 * @throws NullPointerException if the specified key is null
1904 */
1905 public boolean remove(Object key, Object value) {
1906 if (key == null)
1907 throw new NullPointerException();
1908 if (value == null)
1909 return false;
1910 return doRemove(key, value) != null;
1911 }
1912
1913 /**
1914 * {@inheritDoc}
1915 *
1916 * @throws ClassCastException if the specified key cannot be compared
1917 * with the keys currently in the map
1918 * @throws NullPointerException if any of the arguments are null
1919 */
1920 public boolean replace(K key, V oldValue, V newValue) {
1921 if (oldValue == null || newValue == null)
1922 throw new NullPointerException();
1923 Comparable<? super K> k = comparable(key);
1924 for (;;) {
1925 Node<K,V> n = findNode(k);
1926 if (n == null)
1927 return false;
1928 Object v = n.value;
1929 if (v != null) {
1930 if (!oldValue.equals(v))
1931 return false;
1932 if (n.casValue(v, newValue))
1933 return true;
1934 }
1935 }
1936 }
1937
1938 /**
1939 * {@inheritDoc}
1940 *
1941 * @return the previous value associated with the specified key,
1942 * or {@code null} if there was no mapping for the key
1943 * @throws ClassCastException if the specified key cannot be compared
1944 * with the keys currently in the map
1945 * @throws NullPointerException if the specified key or value is null
1946 */
1947 public V replace(K key, V value) {
1948 if (value == null)
1949 throw new NullPointerException();
1950 Comparable<? super K> k = comparable(key);
1951 for (;;) {
1952 Node<K,V> n = findNode(k);
1953 if (n == null)
1954 return null;
1955 Object v = n.value;
1956 if (v != null && n.casValue(v, value))
1957 return (V)v;
1958 }
1959 }
1960
1961 /* ------ SortedMap API methods ------ */
1962
1963 public Comparator<? super K> comparator() {
1964 return comparator;
1965 }
1966
1967 /**
1968 * @throws NoSuchElementException {@inheritDoc}
1969 */
1970 public K firstKey() {
1971 Node<K,V> n = findFirst();
1972 if (n == null)
1973 throw new NoSuchElementException();
1974 return n.key;
1975 }
1976
1977 /**
1978 * @throws NoSuchElementException {@inheritDoc}
1979 */
1980 public K lastKey() {
1981 Node<K,V> n = findLast();
1982 if (n == null)
1983 throw new NoSuchElementException();
1984 return n.key;
1985 }
1986
1987 /**
1988 * @throws ClassCastException {@inheritDoc}
1989 * @throws NullPointerException if {@code fromKey} or {@code toKey} is null
1990 * @throws IllegalArgumentException {@inheritDoc}
1991 */
1992 public ConcurrentNavigableMap<K,V> subMap(K fromKey,
1993 boolean fromInclusive,
1994 K toKey,
1995 boolean toInclusive) {
1996 if (fromKey == null || toKey == null)
1997 throw new NullPointerException();
1998 return new SubMap<K,V>
1999 (this, fromKey, fromInclusive, toKey, toInclusive, false);
2000 }
2001
2002 /**
2003 * @throws ClassCastException {@inheritDoc}
2004 * @throws NullPointerException if {@code toKey} is null
2005 * @throws IllegalArgumentException {@inheritDoc}
2006 */
2007 public ConcurrentNavigableMap<K,V> headMap(K toKey,
2008 boolean inclusive) {
2009 if (toKey == null)
2010 throw new NullPointerException();
2011 return new SubMap<K,V>
2012 (this, null, false, toKey, inclusive, false);
2013 }
2014
2015 /**
2016 * @throws ClassCastException {@inheritDoc}
2017 * @throws NullPointerException if {@code fromKey} is null
2018 * @throws IllegalArgumentException {@inheritDoc}
2019 */
2020 public ConcurrentNavigableMap<K,V> tailMap(K fromKey,
2021 boolean inclusive) {
2022 if (fromKey == null)
2023 throw new NullPointerException();
2024 return new SubMap<K,V>
2025 (this, fromKey, inclusive, null, false, false);
2026 }
2027
2028 /**
2029 * @throws ClassCastException {@inheritDoc}
2030 * @throws NullPointerException if {@code fromKey} or {@code toKey} is null
2031 * @throws IllegalArgumentException {@inheritDoc}
2032 */
2033 public ConcurrentNavigableMap<K,V> subMap(K fromKey, K toKey) {
2034 return subMap(fromKey, true, toKey, false);
2035 }
2036
2037 /**
2038 * @throws ClassCastException {@inheritDoc}
2039 * @throws NullPointerException if {@code toKey} is null
2040 * @throws IllegalArgumentException {@inheritDoc}
2041 */
2042 public ConcurrentNavigableMap<K,V> headMap(K toKey) {
2043 return headMap(toKey, false);
2044 }
2045
2046 /**
2047 * @throws ClassCastException {@inheritDoc}
2048 * @throws NullPointerException if {@code fromKey} is null
2049 * @throws IllegalArgumentException {@inheritDoc}
2050 */
2051 public ConcurrentNavigableMap<K,V> tailMap(K fromKey) {
2052 return tailMap(fromKey, true);
2053 }
2054
2055 /* ---------------- Relational operations -------------- */
2056
2057 /**
2058 * Returns a key-value mapping associated with the greatest key
2059 * strictly less than the given key, or {@code null} if there is
2060 * no such key. The returned entry does <em>not</em> support the
2061 * {@code Entry.setValue} method.
2062 *
2063 * @throws ClassCastException {@inheritDoc}
2064 * @throws NullPointerException if the specified key is null
2065 */
2066 public Map.Entry<K,V> lowerEntry(K key) {
2067 return getNear(key, LT);
2068 }
2069
2070 /**
2071 * @throws ClassCastException {@inheritDoc}
2072 * @throws NullPointerException if the specified key is null
2073 */
2074 public K lowerKey(K key) {
2075 Node<K,V> n = findNear(key, LT);
2076 return (n == null) ? null : n.key;
2077 }
2078
2079 /**
2080 * Returns a key-value mapping associated with the greatest key
2081 * less than or equal to the given key, or {@code null} if there
2082 * is no such key. The returned entry does <em>not</em> support
2083 * the {@code Entry.setValue} method.
2084 *
2085 * @param key the key
2086 * @throws ClassCastException {@inheritDoc}
2087 * @throws NullPointerException if the specified key is null
2088 */
2089 public Map.Entry<K,V> floorEntry(K key) {
2090 return getNear(key, LT|EQ);
2091 }
2092
2093 /**
2094 * @param key the key
2095 * @throws ClassCastException {@inheritDoc}
2096 * @throws NullPointerException if the specified key is null
2097 */
2098 public K floorKey(K key) {
2099 Node<K,V> n = findNear(key, LT|EQ);
2100 return (n == null) ? null : n.key;
2101 }
2102
2103 /**
2104 * Returns a key-value mapping associated with the least key
2105 * greater than or equal to the given key, or {@code null} if
2106 * there is no such entry. The returned entry does <em>not</em>
2107 * support the {@code Entry.setValue} method.
2108 *
2109 * @throws ClassCastException {@inheritDoc}
2110 * @throws NullPointerException if the specified key is null
2111 */
2112 public Map.Entry<K,V> ceilingEntry(K key) {
2113 return getNear(key, GT|EQ);
2114 }
2115
2116 /**
2117 * @throws ClassCastException {@inheritDoc}
2118 * @throws NullPointerException if the specified key is null
2119 */
2120 public K ceilingKey(K key) {
2121 Node<K,V> n = findNear(key, GT|EQ);
2122 return (n == null) ? null : n.key;
2123 }
2124
2125 /**
2126 * Returns a key-value mapping associated with the least key
2127 * strictly greater than the given key, or {@code null} if there
2128 * is no such key. The returned entry does <em>not</em> support
2129 * the {@code Entry.setValue} method.
2130 *
2131 * @param key the key
2132 * @throws ClassCastException {@inheritDoc}
2133 * @throws NullPointerException if the specified key is null
2134 */
2135 public Map.Entry<K,V> higherEntry(K key) {
2136 return getNear(key, GT);
2137 }
2138
2139 /**
2140 * @param key the key
2141 * @throws ClassCastException {@inheritDoc}
2142 * @throws NullPointerException if the specified key is null
2143 */
2144 public K higherKey(K key) {
2145 Node<K,V> n = findNear(key, GT);
2146 return (n == null) ? null : n.key;
2147 }
2148
2149 /**
2150 * Returns a key-value mapping associated with the least
2151 * key in this map, or {@code null} if the map is empty.
2152 * The returned entry does <em>not</em> support
2153 * the {@code Entry.setValue} method.
2154 */
2155 public Map.Entry<K,V> firstEntry() {
2156 for (;;) {
2157 Node<K,V> n = findFirst();
2158 if (n == null)
2159 return null;
2160 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
2161 if (e != null)
2162 return e;
2163 }
2164 }
2165
2166 /**
2167 * Returns a key-value mapping associated with the greatest
2168 * key in this map, or {@code null} if the map is empty.
2169 * The returned entry does <em>not</em> support
2170 * the {@code Entry.setValue} method.
2171 */
2172 public Map.Entry<K,V> lastEntry() {
2173 for (;;) {
2174 Node<K,V> n = findLast();
2175 if (n == null)
2176 return null;
2177 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
2178 if (e != null)
2179 return e;
2180 }
2181 }
2182
2183 /**
2184 * Removes and returns a key-value mapping associated with
2185 * the least key in this map, or {@code null} if the map is empty.
2186 * The returned entry does <em>not</em> support
2187 * the {@code Entry.setValue} method.
2188 */
2189 public Map.Entry<K,V> pollFirstEntry() {
2190 return doRemoveFirstEntry();
2191 }
2192
2193 /**
2194 * Removes and returns a key-value mapping associated with
2195 * the greatest key in this map, or {@code null} if the map is empty.
2196 * The returned entry does <em>not</em> support
2197 * the {@code Entry.setValue} method.
2198 */
2199 public Map.Entry<K,V> pollLastEntry() {
2200 return doRemoveLastEntry();
2201 }
2202
2203
2204 /* ---------------- Iterators -------------- */
2205
2206 /**
2207 * Base of iterator classes:
2208 */
2209 abstract class Iter<T> implements Iterator<T> {
2210 /** the last node returned by next() */
2211 Node<K,V> lastReturned;
2212 /** the next node to return from next(); */
2213 Node<K,V> next;
2214 /** Cache of next value field to maintain weak consistency */
2215 V nextValue;
2216
2217 /** Initializes ascending iterator for entire range. */
2218 Iter() {
2219 for (;;) {
2220 next = findFirst();
2221 if (next == null)
2222 break;
2223 Object x = next.value;
2224 if (x != null && x != next) {
2225 nextValue = (V) x;
2226 break;
2227 }
2228 }
2229 }
2230
2231 public final boolean hasNext() {
2232 return next != null;
2233 }
2234
2235 /** Advances next to higher entry. */
2236 final void advance() {
2237 if (next == null)
2238 throw new NoSuchElementException();
2239 lastReturned = next;
2240 for (;;) {
2241 next = next.next;
2242 if (next == null)
2243 break;
2244 Object x = next.value;
2245 if (x != null && x != next) {
2246 nextValue = (V) x;
2247 break;
2248 }
2249 }
2250 }
2251
2252 public void remove() {
2253 Node<K,V> l = lastReturned;
2254 if (l == null)
2255 throw new IllegalStateException();
2256 // It would not be worth all of the overhead to directly
2257 // unlink from here. Using remove is fast enough.
2258 ConcurrentSkipListMap.this.remove(l.key);
2259 lastReturned = null;
2260 }
2261
2262 }
2263
2264 final class ValueIterator extends Iter<V> {
2265 public V next() {
2266 V v = nextValue;
2267 advance();
2268 return v;
2269 }
2270 }
2271
2272 final class KeyIterator extends Iter<K> {
2273 public K next() {
2274 Node<K,V> n = next;
2275 advance();
2276 return n.key;
2277 }
2278 }
2279
2280 final class EntryIterator extends Iter<Map.Entry<K,V>> {
2281 public Map.Entry<K,V> next() {
2282 Node<K,V> n = next;
2283 V v = nextValue;
2284 advance();
2285 return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
2286 }
2287 }
2288
2289 // Factory methods for iterators needed by ConcurrentSkipListSet etc
2290
2291 Iterator<K> keyIterator() {
2292 return new KeyIterator();
2293 }
2294
2295 Iterator<V> valueIterator() {
2296 return new ValueIterator();
2297 }
2298
2299 Iterator<Map.Entry<K,V>> entryIterator() {
2300 return new EntryIterator();
2301 }
2302
2303 /* ---------------- View Classes -------------- */
2304
2305 /*
2306 * View classes are static, delegating to a ConcurrentNavigableMap
2307 * to allow use by SubMaps, which outweighs the ugliness of
2308 * needing type-tests for Iterator methods.
2309 */
2310
2311 static final <E> List<E> toList(Collection<E> c) {
2312 // Using size() here would be a pessimization.
2313 List<E> list = new ArrayList<E>();
2314 for (E e : c)
2315 list.add(e);
2316 return list;
2317 }
2318
2319 static final class KeySet<E>
2320 extends AbstractSet<E> implements NavigableSet<E> {
2321 private final ConcurrentNavigableMap<E,?> m;
2322 KeySet(ConcurrentNavigableMap<E,?> map) { m = map; }
2323 public int size() { return m.size(); }
2324 public boolean isEmpty() { return m.isEmpty(); }
2325 public boolean contains(Object o) { return m.containsKey(o); }
2326 public boolean remove(Object o) { return m.remove(o) != null; }
2327 public void clear() { m.clear(); }
2328 public E lower(E e) { return m.lowerKey(e); }
2329 public E floor(E e) { return m.floorKey(e); }
2330 public E ceiling(E e) { return m.ceilingKey(e); }
2331 public E higher(E e) { return m.higherKey(e); }
2332 public Comparator<? super E> comparator() { return m.comparator(); }
2333 public E first() { return m.firstKey(); }
2334 public E last() { return m.lastKey(); }
2335 public E pollFirst() {
2336 Map.Entry<E,?> e = m.pollFirstEntry();
2337 return (e == null) ? null : e.getKey();
2338 }
2339 public E pollLast() {
2340 Map.Entry<E,?> e = m.pollLastEntry();
2341 return (e == null) ? null : e.getKey();
2342 }
2343 public Iterator<E> iterator() {
2344 if (m instanceof ConcurrentSkipListMap)
2345 return ((ConcurrentSkipListMap<E,Object>)m).keyIterator();
2346 else
2347 return ((ConcurrentSkipListMap.SubMap<E,Object>)m).keyIterator();
2348 }
2349 public boolean equals(Object o) {
2350 if (o == this)
2351 return true;
2352 if (!(o instanceof Set))
2353 return false;
2354 Collection<?> c = (Collection<?>) o;
2355 try {
2356 return containsAll(c) && c.containsAll(this);
2357 } catch (ClassCastException unused) {
2358 return false;
2359 } catch (NullPointerException unused) {
2360 return false;
2361 }
2362 }
2363 public Object[] toArray() { return toList(this).toArray(); }
2364 public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2365 public Iterator<E> descendingIterator() {
2366 return descendingSet().iterator();
2367 }
2368 public NavigableSet<E> subSet(E fromElement,
2369 boolean fromInclusive,
2370 E toElement,
2371 boolean toInclusive) {
2372 return new KeySet<E>(m.subMap(fromElement, fromInclusive,
2373 toElement, toInclusive));
2374 }
2375 public NavigableSet<E> headSet(E toElement, boolean inclusive) {
2376 return new KeySet<E>(m.headMap(toElement, inclusive));
2377 }
2378 public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
2379 return new KeySet<E>(m.tailMap(fromElement, inclusive));
2380 }
2381 public NavigableSet<E> subSet(E fromElement, E toElement) {
2382 return subSet(fromElement, true, toElement, false);
2383 }
2384 public NavigableSet<E> headSet(E toElement) {
2385 return headSet(toElement, false);
2386 }
2387 public NavigableSet<E> tailSet(E fromElement) {
2388 return tailSet(fromElement, true);
2389 }
2390 public NavigableSet<E> descendingSet() {
2391 return new KeySet<E>(m.descendingMap());
2392 }
2393
2394 public Stream<E> stream() {
2395 int flags = Streams.STREAM_IS_DISTINCT |
2396 Streams.STREAM_IS_SORTED | Streams.STREAM_IS_ORDERED;
2397 if (m instanceof ConcurrentSkipListMap)
2398 return Streams.stream
2399 (() -> ((ConcurrentSkipListMap<E,?>)m).keySpliterator(),
2400 flags);
2401 else
2402 return Streams.stream
2403 (Streams.spliteratorUnknownSize(iterator()), flags);
2404 }
2405
2406 public Stream<E> parallelStream() {
2407 int flags = Streams.STREAM_IS_DISTINCT |
2408 Streams.STREAM_IS_SORTED | Streams.STREAM_IS_ORDERED;
2409 if (m instanceof ConcurrentSkipListMap)
2410 return Streams.parallelStream
2411 (() -> ((ConcurrentSkipListMap<E,?>)m).keySpliterator(),
2412 flags);
2413 else
2414 return Streams.parallelStream
2415 (Streams.spliteratorUnknownSize(iterator()), flags);
2416 }
2417 }
2418
2419 static final class Values<E> extends AbstractCollection<E> {
2420 private final ConcurrentNavigableMap<?, E> m;
2421 Values(ConcurrentNavigableMap<?, E> map) {
2422 m = map;
2423 }
2424 public Iterator<E> iterator() {
2425 if (m instanceof ConcurrentSkipListMap)
2426 return ((ConcurrentSkipListMap<?,E>)m).valueIterator();
2427 else
2428 return ((SubMap<?,E>)m).valueIterator();
2429 }
2430 public boolean isEmpty() {
2431 return m.isEmpty();
2432 }
2433 public int size() {
2434 return m.size();
2435 }
2436 public boolean contains(Object o) {
2437 return m.containsValue(o);
2438 }
2439 public void clear() {
2440 m.clear();
2441 }
2442 public Object[] toArray() { return toList(this).toArray(); }
2443 public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2444
2445 public Stream<E> stream() {
2446 int flags = Streams.STREAM_IS_ORDERED;
2447 if (m instanceof ConcurrentSkipListMap)
2448 return Streams.stream
2449 (() -> ((ConcurrentSkipListMap<?,E>)m).valueSpliterator(),
2450 flags);
2451 else
2452 return Streams.stream
2453 (Streams.spliteratorUnknownSize(iterator()), flags);
2454 }
2455
2456 public Stream<E> parallelStream() {
2457 int flags = Streams.STREAM_IS_ORDERED;
2458 if (m instanceof ConcurrentSkipListMap)
2459 return Streams.parallelStream
2460 (() -> ((ConcurrentSkipListMap<?,E>)m).valueSpliterator(),
2461 flags);
2462 else
2463 return Streams.parallelStream
2464 (Streams.spliteratorUnknownSize(iterator()), flags);
2465 }
2466 }
2467
2468 static final class EntrySet<K1,V1> extends AbstractSet<Map.Entry<K1,V1>> {
2469 private final ConcurrentNavigableMap<K1, V1> m;
2470 EntrySet(ConcurrentNavigableMap<K1, V1> map) {
2471 m = map;
2472 }
2473
2474 public Iterator<Map.Entry<K1,V1>> iterator() {
2475 if (m instanceof ConcurrentSkipListMap)
2476 return ((ConcurrentSkipListMap<K1,V1>)m).entryIterator();
2477 else
2478 return ((SubMap<K1,V1>)m).entryIterator();
2479 }
2480
2481 public boolean contains(Object o) {
2482 if (!(o instanceof Map.Entry))
2483 return false;
2484 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
2485 V1 v = m.get(e.getKey());
2486 return v != null && v.equals(e.getValue());
2487 }
2488 public boolean remove(Object o) {
2489 if (!(o instanceof Map.Entry))
2490 return false;
2491 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
2492 return m.remove(e.getKey(),
2493 e.getValue());
2494 }
2495 public boolean isEmpty() {
2496 return m.isEmpty();
2497 }
2498 public int size() {
2499 return m.size();
2500 }
2501 public void clear() {
2502 m.clear();
2503 }
2504 public boolean equals(Object o) {
2505 if (o == this)
2506 return true;
2507 if (!(o instanceof Set))
2508 return false;
2509 Collection<?> c = (Collection<?>) o;
2510 try {
2511 return containsAll(c) && c.containsAll(this);
2512 } catch (ClassCastException unused) {
2513 return false;
2514 } catch (NullPointerException unused) {
2515 return false;
2516 }
2517 }
2518 public Object[] toArray() { return toList(this).toArray(); }
2519 public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2520
2521 @Override public Stream<Map.Entry<K1,V1>> stream() {
2522 int flags = Streams.STREAM_IS_ORDERED | Streams.STREAM_IS_DISTINCT;
2523 if (m instanceof ConcurrentSkipListMap)
2524 return Streams.stream
2525 (() -> ((ConcurrentSkipListMap<K1,V1>)m).entrySpliterator(),
2526 flags);
2527 else
2528 return Streams.stream
2529 (Streams.spliteratorUnknownSize(iterator()), flags);
2530 }
2531
2532 public Stream<Map.Entry<K1,V1>> parallelStream() {
2533 int flags = Streams.STREAM_IS_ORDERED | Streams.STREAM_IS_DISTINCT;
2534 if (m instanceof ConcurrentSkipListMap)
2535 return Streams.parallelStream
2536 (() -> ((ConcurrentSkipListMap<K1,V1>)m).entrySpliterator(),
2537 flags);
2538 else
2539 return Streams.parallelStream
2540 (Streams.spliteratorUnknownSize(iterator()), flags);
2541 }
2542
2543 }
2544
2545 /**
2546 * Submaps returned by {@link ConcurrentSkipListMap} submap operations
2547 * represent a subrange of mappings of their underlying
2548 * maps. Instances of this class support all methods of their
2549 * underlying maps, differing in that mappings outside their range are
2550 * ignored, and attempts to add mappings outside their ranges result
2551 * in {@link IllegalArgumentException}. Instances of this class are
2552 * constructed only using the {@code subMap}, {@code headMap}, and
2553 * {@code tailMap} methods of their underlying maps.
2554 *
2555 * @serial include
2556 */
2557 static final class SubMap<K,V> extends AbstractMap<K,V>
2558 implements ConcurrentNavigableMap<K,V>, Cloneable,
2559 java.io.Serializable {
2560 private static final long serialVersionUID = -7647078645895051609L;
2561
2562 /** Underlying map */
2563 private final ConcurrentSkipListMap<K,V> m;
2564 /** lower bound key, or null if from start */
2565 private final K lo;
2566 /** upper bound key, or null if to end */
2567 private final K hi;
2568 /** inclusion flag for lo */
2569 private final boolean loInclusive;
2570 /** inclusion flag for hi */
2571 private final boolean hiInclusive;
2572 /** direction */
2573 private final boolean isDescending;
2574
2575 // Lazily initialized view holders
2576 private transient KeySet<K> keySetView;
2577 private transient Set<Map.Entry<K,V>> entrySetView;
2578 private transient Collection<V> valuesView;
2579
2580 /**
2581 * Creates a new submap, initializing all fields
2582 */
2583 SubMap(ConcurrentSkipListMap<K,V> map,
2584 K fromKey, boolean fromInclusive,
2585 K toKey, boolean toInclusive,
2586 boolean isDescending) {
2587 if (fromKey != null && toKey != null &&
2588 map.compare(fromKey, toKey) > 0)
2589 throw new IllegalArgumentException("inconsistent range");
2590 this.m = map;
2591 this.lo = fromKey;
2592 this.hi = toKey;
2593 this.loInclusive = fromInclusive;
2594 this.hiInclusive = toInclusive;
2595 this.isDescending = isDescending;
2596 }
2597
2598 /* ---------------- Utilities -------------- */
2599
2600 private boolean tooLow(K key) {
2601 if (lo != null) {
2602 int c = m.compare(key, lo);
2603 if (c < 0 || (c == 0 && !loInclusive))
2604 return true;
2605 }
2606 return false;
2607 }
2608
2609 private boolean tooHigh(K key) {
2610 if (hi != null) {
2611 int c = m.compare(key, hi);
2612 if (c > 0 || (c == 0 && !hiInclusive))
2613 return true;
2614 }
2615 return false;
2616 }
2617
2618 private boolean inBounds(K key) {
2619 return !tooLow(key) && !tooHigh(key);
2620 }
2621
2622 private void checkKeyBounds(K key) throws IllegalArgumentException {
2623 if (key == null)
2624 throw new NullPointerException();
2625 if (!inBounds(key))
2626 throw new IllegalArgumentException("key out of range");
2627 }
2628
2629 /**
2630 * Returns true if node key is less than upper bound of range
2631 */
2632 private boolean isBeforeEnd(ConcurrentSkipListMap.Node<K,V> n) {
2633 if (n == null)
2634 return false;
2635 if (hi == null)
2636 return true;
2637 K k = n.key;
2638 if (k == null) // pass by markers and headers
2639 return true;
2640 int c = m.compare(k, hi);
2641 if (c > 0 || (c == 0 && !hiInclusive))
2642 return false;
2643 return true;
2644 }
2645
2646 /**
2647 * Returns lowest node. This node might not be in range, so
2648 * most usages need to check bounds
2649 */
2650 private ConcurrentSkipListMap.Node<K,V> loNode() {
2651 if (lo == null)
2652 return m.findFirst();
2653 else if (loInclusive)
2654 return m.findNear(lo, GT|EQ);
2655 else
2656 return m.findNear(lo, GT);
2657 }
2658
2659 /**
2660 * Returns highest node. This node might not be in range, so
2661 * most usages need to check bounds
2662 */
2663 private ConcurrentSkipListMap.Node<K,V> hiNode() {
2664 if (hi == null)
2665 return m.findLast();
2666 else if (hiInclusive)
2667 return m.findNear(hi, LT|EQ);
2668 else
2669 return m.findNear(hi, LT);
2670 }
2671
2672 /**
2673 * Returns lowest absolute key (ignoring directonality)
2674 */
2675 private K lowestKey() {
2676 ConcurrentSkipListMap.Node<K,V> n = loNode();
2677 if (isBeforeEnd(n))
2678 return n.key;
2679 else
2680 throw new NoSuchElementException();
2681 }
2682
2683 /**
2684 * Returns highest absolute key (ignoring directonality)
2685 */
2686 private K highestKey() {
2687 ConcurrentSkipListMap.Node<K,V> n = hiNode();
2688 if (n != null) {
2689 K last = n.key;
2690 if (inBounds(last))
2691 return last;
2692 }
2693 throw new NoSuchElementException();
2694 }
2695
2696 private Map.Entry<K,V> lowestEntry() {
2697 for (;;) {
2698 ConcurrentSkipListMap.Node<K,V> n = loNode();
2699 if (!isBeforeEnd(n))
2700 return null;
2701 Map.Entry<K,V> e = n.createSnapshot();
2702 if (e != null)
2703 return e;
2704 }
2705 }
2706
2707 private Map.Entry<K,V> highestEntry() {
2708 for (;;) {
2709 ConcurrentSkipListMap.Node<K,V> n = hiNode();
2710 if (n == null || !inBounds(n.key))
2711 return null;
2712 Map.Entry<K,V> e = n.createSnapshot();
2713 if (e != null)
2714 return e;
2715 }
2716 }
2717
2718 private Map.Entry<K,V> removeLowest() {
2719 for (;;) {
2720 Node<K,V> n = loNode();
2721 if (n == null)
2722 return null;
2723 K k = n.key;
2724 if (!inBounds(k))
2725 return null;
2726 V v = m.doRemove(k, null);
2727 if (v != null)
2728 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2729 }
2730 }
2731
2732 private Map.Entry<K,V> removeHighest() {
2733 for (;;) {
2734 Node<K,V> n = hiNode();
2735 if (n == null)
2736 return null;
2737 K k = n.key;
2738 if (!inBounds(k))
2739 return null;
2740 V v = m.doRemove(k, null);
2741 if (v != null)
2742 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2743 }
2744 }
2745
2746 /**
2747 * Submap version of ConcurrentSkipListMap.getNearEntry
2748 */
2749 private Map.Entry<K,V> getNearEntry(K key, int rel) {
2750 if (isDescending) { // adjust relation for direction
2751 if ((rel & LT) == 0)
2752 rel |= LT;
2753 else
2754 rel &= ~LT;
2755 }
2756 if (tooLow(key))
2757 return ((rel & LT) != 0) ? null : lowestEntry();
2758 if (tooHigh(key))
2759 return ((rel & LT) != 0) ? highestEntry() : null;
2760 for (;;) {
2761 Node<K,V> n = m.findNear(key, rel);
2762 if (n == null || !inBounds(n.key))
2763 return null;
2764 K k = n.key;
2765 V v = n.getValidValue();
2766 if (v != null)
2767 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2768 }
2769 }
2770
2771 // Almost the same as getNearEntry, except for keys
2772 private K getNearKey(K key, int rel) {
2773 if (isDescending) { // adjust relation for direction
2774 if ((rel & LT) == 0)
2775 rel |= LT;
2776 else
2777 rel &= ~LT;
2778 }
2779 if (tooLow(key)) {
2780 if ((rel & LT) == 0) {
2781 ConcurrentSkipListMap.Node<K,V> n = loNode();
2782 if (isBeforeEnd(n))
2783 return n.key;
2784 }
2785 return null;
2786 }
2787 if (tooHigh(key)) {
2788 if ((rel & LT) != 0) {
2789 ConcurrentSkipListMap.Node<K,V> n = hiNode();
2790 if (n != null) {
2791 K last = n.key;
2792 if (inBounds(last))
2793 return last;
2794 }
2795 }
2796 return null;
2797 }
2798 for (;;) {
2799 Node<K,V> n = m.findNear(key, rel);
2800 if (n == null || !inBounds(n.key))
2801 return null;
2802 K k = n.key;
2803 V v = n.getValidValue();
2804 if (v != null)
2805 return k;
2806 }
2807 }
2808
2809 /* ---------------- Map API methods -------------- */
2810
2811 public boolean containsKey(Object key) {
2812 if (key == null) throw new NullPointerException();
2813 K k = (K)key;
2814 return inBounds(k) && m.containsKey(k);
2815 }
2816
2817 public V get(Object key) {
2818 if (key == null) throw new NullPointerException();
2819 K k = (K)key;
2820 return (!inBounds(k)) ? null : m.get(k);
2821 }
2822
2823 public V put(K key, V value) {
2824 checkKeyBounds(key);
2825 return m.put(key, value);
2826 }
2827
2828 public V remove(Object key) {
2829 K k = (K)key;
2830 return (!inBounds(k)) ? null : m.remove(k);
2831 }
2832
2833 public int size() {
2834 long count = 0;
2835 for (ConcurrentSkipListMap.Node<K,V> n = loNode();
2836 isBeforeEnd(n);
2837 n = n.next) {
2838 if (n.getValidValue() != null)
2839 ++count;
2840 }
2841 return count >= Integer.MAX_VALUE ? Integer.MAX_VALUE : (int)count;
2842 }
2843
2844 public boolean isEmpty() {
2845 return !isBeforeEnd(loNode());
2846 }
2847
2848 public boolean containsValue(Object value) {
2849 if (value == null)
2850 throw new NullPointerException();
2851 for (ConcurrentSkipListMap.Node<K,V> n = loNode();
2852 isBeforeEnd(n);
2853 n = n.next) {
2854 V v = n.getValidValue();
2855 if (v != null && value.equals(v))
2856 return true;
2857 }
2858 return false;
2859 }
2860
2861 public void clear() {
2862 for (ConcurrentSkipListMap.Node<K,V> n = loNode();
2863 isBeforeEnd(n);
2864 n = n.next) {
2865 if (n.getValidValue() != null)
2866 m.remove(n.key);
2867 }
2868 }
2869
2870 /* ---------------- ConcurrentMap API methods -------------- */
2871
2872 public V putIfAbsent(K key, V value) {
2873 checkKeyBounds(key);
2874 return m.putIfAbsent(key, value);
2875 }
2876
2877 public boolean remove(Object key, Object value) {
2878 K k = (K)key;
2879 return inBounds(k) && m.remove(k, value);
2880 }
2881
2882 public boolean replace(K key, V oldValue, V newValue) {
2883 checkKeyBounds(key);
2884 return m.replace(key, oldValue, newValue);
2885 }
2886
2887 public V replace(K key, V value) {
2888 checkKeyBounds(key);
2889 return m.replace(key, value);
2890 }
2891
2892 /* ---------------- SortedMap API methods -------------- */
2893
2894 public Comparator<? super K> comparator() {
2895 Comparator<? super K> cmp = m.comparator();
2896 if (isDescending)
2897 return Collections.reverseOrder(cmp);
2898 else
2899 return cmp;
2900 }
2901
2902 /**
2903 * Utility to create submaps, where given bounds override
2904 * unbounded(null) ones and/or are checked against bounded ones.
2905 */
2906 private SubMap<K,V> newSubMap(K fromKey,
2907 boolean fromInclusive,
2908 K toKey,
2909 boolean toInclusive) {
2910 if (isDescending) { // flip senses
2911 K tk = fromKey;
2912 fromKey = toKey;
2913 toKey = tk;
2914 boolean ti = fromInclusive;
2915 fromInclusive = toInclusive;
2916 toInclusive = ti;
2917 }
2918 if (lo != null) {
2919 if (fromKey == null) {
2920 fromKey = lo;
2921 fromInclusive = loInclusive;
2922 }
2923 else {
2924 int c = m.compare(fromKey, lo);
2925 if (c < 0 || (c == 0 && !loInclusive && fromInclusive))
2926 throw new IllegalArgumentException("key out of range");
2927 }
2928 }
2929 if (hi != null) {
2930 if (toKey == null) {
2931 toKey = hi;
2932 toInclusive = hiInclusive;
2933 }
2934 else {
2935 int c = m.compare(toKey, hi);
2936 if (c > 0 || (c == 0 && !hiInclusive && toInclusive))
2937 throw new IllegalArgumentException("key out of range");
2938 }
2939 }
2940 return new SubMap<K,V>(m, fromKey, fromInclusive,
2941 toKey, toInclusive, isDescending);
2942 }
2943
2944 public SubMap<K,V> subMap(K fromKey,
2945 boolean fromInclusive,
2946 K toKey,
2947 boolean toInclusive) {
2948 if (fromKey == null || toKey == null)
2949 throw new NullPointerException();
2950 return newSubMap(fromKey, fromInclusive, toKey, toInclusive);
2951 }
2952
2953 public SubMap<K,V> headMap(K toKey,
2954 boolean inclusive) {
2955 if (toKey == null)
2956 throw new NullPointerException();
2957 return newSubMap(null, false, toKey, inclusive);
2958 }
2959
2960 public SubMap<K,V> tailMap(K fromKey,
2961 boolean inclusive) {
2962 if (fromKey == null)
2963 throw new NullPointerException();
2964 return newSubMap(fromKey, inclusive, null, false);
2965 }
2966
2967 public SubMap<K,V> subMap(K fromKey, K toKey) {
2968 return subMap(fromKey, true, toKey, false);
2969 }
2970
2971 public SubMap<K,V> headMap(K toKey) {
2972 return headMap(toKey, false);
2973 }
2974
2975 public SubMap<K,V> tailMap(K fromKey) {
2976 return tailMap(fromKey, true);
2977 }
2978
2979 public SubMap<K,V> descendingMap() {
2980 return new SubMap<K,V>(m, lo, loInclusive,
2981 hi, hiInclusive, !isDescending);
2982 }
2983
2984 /* ---------------- Relational methods -------------- */
2985
2986 public Map.Entry<K,V> ceilingEntry(K key) {
2987 return getNearEntry(key, GT|EQ);
2988 }
2989
2990 public K ceilingKey(K key) {
2991 return getNearKey(key, GT|EQ);
2992 }
2993
2994 public Map.Entry<K,V> lowerEntry(K key) {
2995 return getNearEntry(key, LT);
2996 }
2997
2998 public K lowerKey(K key) {
2999 return getNearKey(key, LT);
3000 }
3001
3002 public Map.Entry<K,V> floorEntry(K key) {
3003 return getNearEntry(key, LT|EQ);
3004 }
3005
3006 public K floorKey(K key) {
3007 return getNearKey(key, LT|EQ);
3008 }
3009
3010 public Map.Entry<K,V> higherEntry(K key) {
3011 return getNearEntry(key, GT);
3012 }
3013
3014 public K higherKey(K key) {
3015 return getNearKey(key, GT);
3016 }
3017
3018 public K firstKey() {
3019 return isDescending ? highestKey() : lowestKey();
3020 }
3021
3022 public K lastKey() {
3023 return isDescending ? lowestKey() : highestKey();
3024 }
3025
3026 public Map.Entry<K,V> firstEntry() {
3027 return isDescending ? highestEntry() : lowestEntry();
3028 }
3029
3030 public Map.Entry<K,V> lastEntry() {
3031 return isDescending ? lowestEntry() : highestEntry();
3032 }
3033
3034 public Map.Entry<K,V> pollFirstEntry() {
3035 return isDescending ? removeHighest() : removeLowest();
3036 }
3037
3038 public Map.Entry<K,V> pollLastEntry() {
3039 return isDescending ? removeLowest() : removeHighest();
3040 }
3041
3042 /* ---------------- Submap Views -------------- */
3043
3044 public NavigableSet<K> keySet() {
3045 KeySet<K> ks = keySetView;
3046 return (ks != null) ? ks : (keySetView = new KeySet<K>(this));
3047 }
3048
3049 public NavigableSet<K> navigableKeySet() {
3050 KeySet<K> ks = keySetView;
3051 return (ks != null) ? ks : (keySetView = new KeySet<K>(this));
3052 }
3053
3054 public Collection<V> values() {
3055 Collection<V> vs = valuesView;
3056 return (vs != null) ? vs : (valuesView = new Values<V>(this));
3057 }
3058
3059 public Set<Map.Entry<K,V>> entrySet() {
3060 Set<Map.Entry<K,V>> es = entrySetView;
3061 return (es != null) ? es : (entrySetView = new EntrySet<K,V>(this));
3062 }
3063
3064 public NavigableSet<K> descendingKeySet() {
3065 return descendingMap().navigableKeySet();
3066 }
3067
3068 Iterator<K> keyIterator() {
3069 return new SubMapKeyIterator();
3070 }
3071
3072 Iterator<V> valueIterator() {
3073 return new SubMapValueIterator();
3074 }
3075
3076 Iterator<Map.Entry<K,V>> entryIterator() {
3077 return new SubMapEntryIterator();
3078 }
3079
3080 /**
3081 * Variant of main Iter class to traverse through submaps.
3082 */
3083 abstract class SubMapIter<T> implements Iterator<T> {
3084 /** the last node returned by next() */
3085 Node<K,V> lastReturned;
3086 /** the next node to return from next(); */
3087 Node<K,V> next;
3088 /** Cache of next value field to maintain weak consistency */
3089 V nextValue;
3090
3091 SubMapIter() {
3092 for (;;) {
3093 next = isDescending ? hiNode() : loNode();
3094 if (next == null)
3095 break;
3096 Object x = next.value;
3097 if (x != null && x != next) {
3098 if (! inBounds(next.key))
3099 next = null;
3100 else
3101 nextValue = (V) x;
3102 break;
3103 }
3104 }
3105 }
3106
3107 public final boolean hasNext() {
3108 return next != null;
3109 }
3110
3111 final void advance() {
3112 if (next == null)
3113 throw new NoSuchElementException();
3114 lastReturned = next;
3115 if (isDescending)
3116 descend();
3117 else
3118 ascend();
3119 }
3120
3121 private void ascend() {
3122 for (;;) {
3123 next = next.next;
3124 if (next == null)
3125 break;
3126 Object x = next.value;
3127 if (x != null && x != next) {
3128 if (tooHigh(next.key))
3129 next = null;
3130 else
3131 nextValue = (V) x;
3132 break;
3133 }
3134 }
3135 }
3136
3137 private void descend() {
3138 for (;;) {
3139 next = m.findNear(lastReturned.key, LT);
3140 if (next == null)
3141 break;
3142 Object x = next.value;
3143 if (x != null && x != next) {
3144 if (tooLow(next.key))
3145 next = null;
3146 else
3147 nextValue = (V) x;
3148 break;
3149 }
3150 }
3151 }
3152
3153 public void remove() {
3154 Node<K,V> l = lastReturned;
3155 if (l == null)
3156 throw new IllegalStateException();
3157 m.remove(l.key);
3158 lastReturned = null;
3159 }
3160
3161 }
3162
3163 final class SubMapValueIterator extends SubMapIter<V> {
3164 public V next() {
3165 V v = nextValue;
3166 advance();
3167 return v;
3168 }
3169 }
3170
3171 final class SubMapKeyIterator extends SubMapIter<K> {
3172 public K next() {
3173 Node<K,V> n = next;
3174 advance();
3175 return n.key;
3176 }
3177 }
3178
3179 final class SubMapEntryIterator extends SubMapIter<Map.Entry<K,V>> {
3180 public Map.Entry<K,V> next() {
3181 Node<K,V> n = next;
3182 V v = nextValue;
3183 advance();
3184 return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
3185 }
3186 }
3187 }
3188
3189 /**
3190 * A view of a ConcurrentSkipListMap as a {@link Set} of keys, in
3191 * which additions may optionally be enabled by mapping to a
3192 * common value. This class cannot be directly instantiated. See
3193 * {@link #keySet}, {@link #keySet(Object)}, {@link #newKeySet()},
3194 * {@link #newKeySet(Comparator)}.
3195 */
3196 public static class KeySetView<K,V> extends AbstractSet<K>
3197 implements NavigableSet<K>, java.io.Serializable {
3198
3199 /*
3200 * This class overlaps in functionality with the
3201 * relative-scoped KeySet class, but must be distinct and
3202 * unrelated. So we repeat most of the boring delegation code.
3203 */
3204
3205 private static final long serialVersionUID = 7249069246763182397L;
3206 private final ConcurrentSkipListMap<K, V> m;
3207 private final V value;
3208
3209 KeySetView(ConcurrentSkipListMap<K, V> map, V value) { // non-public
3210 this.m = map;
3211 this.value = value;
3212 }
3213
3214 /**
3215 * Returns the map backing this view.
3216 *
3217 * @return the map backing this view
3218 */
3219 public ConcurrentSkipListMap<K,V> getMap() { return m; }
3220
3221 /**
3222 * Returns the default mapped value for additions,
3223 * or {@code null} if additions are not supported.
3224 *
3225 * @return the default mapped value for additions, or {@code null}
3226 * if not supported.
3227 */
3228 public V getMappedValue() { return value; }
3229
3230 public boolean add(K e) {
3231 V v;
3232 if ((v = value) == null)
3233 throw new UnsupportedOperationException();
3234 if (e == null)
3235 throw new NullPointerException();
3236 return m.put(e, v) == null;
3237 }
3238
3239 public boolean addAll(Collection<? extends K> c) {
3240 boolean added = false;
3241 V v;
3242 if ((v = value) == null)
3243 throw new UnsupportedOperationException();
3244 for (K e : c) {
3245 if (e == null)
3246 throw new NullPointerException();
3247 if (m.put(e, v) == null)
3248 added = true;
3249 }
3250 return added;
3251 }
3252
3253 public int size() { return m.size(); }
3254 public boolean isEmpty() { return m.isEmpty(); }
3255 public boolean contains(Object o) { return m.containsKey(o); }
3256 public boolean remove(Object o) { return m.remove(o) != null; }
3257 public void clear() { m.clear(); }
3258 public K lower(K e) { return m.lowerKey(e); }
3259 public K floor(K e) { return m.floorKey(e); }
3260 public K ceiling(K e) { return m.ceilingKey(e); }
3261 public K higher(K e) { return m.higherKey(e); }
3262 public Comparator<? super K> comparator() { return m.comparator(); }
3263 public K first() { return m.firstKey(); }
3264 public K last() { return m.lastKey(); }
3265 public Iterator<K> iterator() { return m.keyIterator(); }
3266 public K pollFirst() {
3267 Map.Entry<K,?> e = m.pollFirstEntry();
3268 return (e == null) ? null : e.getKey();
3269 }
3270 public K pollLast() {
3271 Map.Entry<K,?> e = m.pollLastEntry();
3272 return (e == null) ? null : e.getKey();
3273 }
3274 public boolean equals(Object o) {
3275 if (o == this)
3276 return true;
3277 if (!(o instanceof Set))
3278 return false;
3279 Collection<?> c = (Collection<?>) o;
3280 try {
3281 return containsAll(c) && c.containsAll(this);
3282 } catch (ClassCastException unused) {
3283 return false;
3284 } catch (NullPointerException unused) {
3285 return false;
3286 }
3287 }
3288 public Object[] toArray() { return toList(this).toArray(); }
3289 public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
3290 public Iterator<K> descendingIterator() {
3291 return descendingSet().iterator();
3292 }
3293 public NavigableSet<K> subSet(K fromElement,
3294 boolean fromInclusive,
3295 K toElement,
3296 boolean toInclusive) {
3297 return new KeySet<K>(m.subMap(fromElement, fromInclusive,
3298 toElement, toInclusive));
3299 }
3300 public NavigableSet<K> headSet(K toElement, boolean inclusive) {
3301 return new KeySet<K>(m.headMap(toElement, inclusive));
3302 }
3303 public NavigableSet<K> tailSet(K fromElement, boolean inclusive) {
3304 return new KeySet<K>(m.tailMap(fromElement, inclusive));
3305 }
3306 public NavigableSet<K> subSet(K fromElement, K toElement) {
3307 return subSet(fromElement, true, toElement, false);
3308 }
3309 public NavigableSet<K> headSet(K toElement) {
3310 return headSet(toElement, false);
3311 }
3312 public NavigableSet<K> tailSet(K fromElement) {
3313 return tailSet(fromElement, true);
3314 }
3315 public NavigableSet<K> descendingSet() {
3316 return new KeySet<K>(m.descendingMap());
3317 }
3318
3319 public Stream<K> stream() {
3320 int flags = Streams.STREAM_IS_DISTINCT |
3321 Streams.STREAM_IS_SORTED | Streams.STREAM_IS_ORDERED;
3322 return Streams.stream(() -> m.keySpliterator(), flags);
3323 }
3324
3325 public Stream<K> parallelStream() {
3326 int flags = Streams.STREAM_IS_DISTINCT |
3327 Streams.STREAM_IS_SORTED | Streams.STREAM_IS_ORDERED;
3328 return Streams.parallelStream(() -> m.keySpliterator(), flags);
3329 }
3330
3331 }
3332
3333 /**
3334 * Base class providing common structure for Spliterators.
3335 * (Although not all that much common functionality; as usual for
3336 * view classes, details annoyingly vary in key, value, and entry
3337 * subclasses in ways that are not worth abstracting out for
3338 * internal classes.)
3339 *
3340 * The basic split strategy is to recursively descend from top
3341 * level, row by row, descending to next row when either split
3342 * off, or the end of row is encountered. Control of the number of
3343 * splits relies on some statistical estimation: The expected
3344 * remaining number of elements of a skip list when advancing
3345 * either across or down decreases by about 25%. To make this
3346 * observation useful, we need to know initial size, which we
3347 * don't. But we use (1 << 2*levels) as a rough overestimate that
3348 * minimizes risk of prematurely zeroing out while splitting.
3349 */
3350 static class CSLMSpliterator<K,V> {
3351 final Comparator<? super K> comparator;
3352 final K fence; // exclusive upper bound for keys, or null if to end
3353 Index<K,V> row; // the level to split out
3354 Node<K,V> current; // current traversal node; initialize at origin
3355 V nextValue; // cached value field of next
3356 int est; // pseudo-size estimate
3357
3358 CSLMSpliterator(Comparator<? super K> comparator, Index<K,V> row,
3359 Node<K,V> origin, K fence, int est) {
3360 this.comparator = comparator; this.row = row;
3361 this.current = origin; this.fence = fence; this.est = est;
3362 }
3363
3364 /** Return >= 0 if key is too large (out of bounds) */
3365 final int compareBounds(K k) {
3366 Comparator<? super K> cmp; K f;
3367 if (k == null || (f = fence) == null)
3368 return -1;
3369 else if ((cmp = comparator) != null)
3370 return cmp.compare(k, f);
3371 else
3372 return ((Comparable<? super K>)k).compareTo(f);
3373 }
3374
3375 public final long estimateSize() { return (long)est; }
3376 public final boolean hasExactSize() { return est == 0; }
3377 public final boolean hasExactSplits() { return false; }
3378
3379 // iterator support
3380 public final boolean hasNext() {
3381 return current != null && compareBounds(current.key) < 0;
3382 }
3383
3384 final void ascend(Node<K,V> e) {
3385 if (e != null) {
3386 while ((e = e.next) != null) {
3387 Object x = e.value;
3388 if (x != null && x != e) {
3389 if (compareBounds(e.key) >= 0)
3390 e = null;
3391 else
3392 nextValue = (V) x;
3393 break;
3394 }
3395 }
3396 current = e;
3397 }
3398 }
3399
3400 public final void remove() { throw new UnsupportedOperationException(); }
3401 }
3402
3403 // factory methods
3404 final KeySpliterator<K,V> keySpliterator() {
3405 HeadIndex<K,V> h; Node<K,V> p; int d, n;
3406 for (;;) { // ensure h and n correspond to origin p
3407 Node<K,V> b = (h = head).node;
3408 if ((p = b.next) == null) {
3409 n = 0;
3410 break;
3411 }
3412 if (p.value != null) {
3413 n = (d = h.level << 1) >= 31 ? Integer.MAX_VALUE : 1 << d;
3414 break;
3415 }
3416 p.helpDelete(b, p.next);
3417 }
3418 return new KeySpliterator<K,V>(comparator, h, p, null, n);
3419 }
3420
3421 final ValueSpliterator<K,V> valueSpliterator() {
3422 HeadIndex<K,V> h; Node<K,V> p; int d, n;
3423 for (;;) { // same as key version
3424 Node<K,V> b = (h = head).node;
3425 if ((p = b.next) == null) {
3426 n = 0;
3427 break;
3428 }
3429 if (p.value != null) {
3430 n = (d = h.level << 1) >= 31 ? Integer.MAX_VALUE : 1 << d;
3431 break;
3432 }
3433 p.helpDelete(b, p.next);
3434 }
3435 return new ValueSpliterator<K,V>(comparator, h, p, null, n);
3436 }
3437
3438 final EntrySpliterator<K,V> entrySpliterator() {
3439 HeadIndex<K,V> h; Node<K,V> p; int d, n;
3440 for (;;) { // same as key version
3441 Node<K,V> b = (h = head).node;
3442 if ((p = b.next) == null) {
3443 n = 0;
3444 break;
3445 }
3446 if (p.value != null) {
3447 n = (d = h.level << 1) >= 31 ? Integer.MAX_VALUE : 1 << d;
3448 break;
3449 }
3450 p.helpDelete(b, p.next);
3451 }
3452 return new EntrySpliterator<K,V>(comparator, head, p, null, n);
3453 }
3454
3455 static final class KeySpliterator<K,V> extends CSLMSpliterator<K,V>
3456 implements Spliterator<K>, Iterator<K> {
3457 KeySpliterator(Comparator<? super K> comparator, Index<K,V> row,
3458 Node<K,V> origin, K fence, int est) {
3459 super(comparator, row, origin, fence, est);
3460 }
3461
3462 public KeySpliterator<K,V> trySplit() {
3463 Node<K,V> e;
3464 Comparator<? super K> cmp = comparator;
3465 K f = fence;
3466 if ((e = current) != null) {
3467 for (Index<K,V> q = row; q != null; q = row = q.down) {
3468 Index<K,V> s; Node<K,V> n; K sk;
3469 est -= est >>> 2;
3470 if ((s = q.right) != null) {
3471 for (;;) {
3472 Node<K,V> b = s.node;
3473 if ((n = b.next) == null || n.value != null)
3474 break;
3475 n.helpDelete(b, n.next);
3476 }
3477 if (n != null && (sk = n.key) != null &&
3478 (f == null ||
3479 (cmp != null ? (cmp.compare(f, sk) > 0) :
3480 (((Comparable<? super K>)f).compareTo(sk) > 0)))) {
3481 current = n;
3482 Index<K,V> r = q.down;
3483 row = (s.right != null) ? s : s.down;
3484 return new KeySpliterator<K,V>(cmp, r, e, sk, est);
3485 }
3486 }
3487 }
3488 }
3489 return null;
3490 }
3491
3492 public void forEach(Block<? super K> block) {
3493 if (block == null) throw new NullPointerException();
3494 K f = fence;
3495 Comparator<? super K> cmp = comparator;
3496 Comparable<? super K> cf = (f != null && cmp == null) ?
3497 (Comparable<? super K>)f : null;
3498 Node<K,V> e = current;
3499 current = null;
3500 for(; e != null; e = e.next) {
3501 K k; Object v;
3502 if ((k = e.key) != null &&
3503 (cf != null ? (cf.compareTo(k) <= 0) :
3504 (f != null && cmp.compare(f, k) <= 0)))
3505 break;
3506 if ((v = e.value) != null && v != e)
3507 block.accept(k);
3508 }
3509 }
3510
3511 public boolean tryAdvance(Block<? super K> block) {
3512 if (block == null) throw new NullPointerException();
3513 Node<K,V> e;
3514 for (e = current; e != null; e = e.next) {
3515 K k; Object v;
3516 if (compareBounds(k = e.key) >= 0) {
3517 e = null;
3518 break;
3519 }
3520 if ((v = e.value) != null && v != e) {
3521 current = e.next;
3522 block.accept(k);
3523 return true;
3524 }
3525 }
3526 current = e;
3527 return false;
3528 }
3529
3530 public Iterator<K> iterator() { return this; }
3531
3532 public K next() {
3533 Node<K,V> e = current;
3534 if (e == null)
3535 throw new NoSuchElementException();
3536 ascend(e);
3537 return e.key;
3538 }
3539 }
3540
3541 static final class ValueSpliterator<K,V> extends CSLMSpliterator<K,V>
3542 implements Spliterator<V>, Iterator<V> {
3543 ValueSpliterator(Comparator<? super K> comparator, Index<K,V> row,
3544 Node<K,V> origin, K fence, int est) {
3545 super(comparator, row, origin, fence, est);
3546 }
3547
3548 public ValueSpliterator<K,V> trySplit() {
3549 Node<K,V> e;
3550 Comparator<? super K> cmp = comparator;
3551 K f = fence;
3552 if ((e = current) != null) {
3553 for (Index<K,V> q = row; q != null; q = row = q.down) {
3554 Index<K,V> s; Node<K,V> n; K sk;
3555 est -= est >>> 2;
3556 if ((s = q.right) != null) {
3557 for (;;) {
3558 Node<K,V> b = s.node;
3559 if ((n = b.next) == null || n.value != null)
3560 break;
3561 n.helpDelete(b, n.next);
3562 }
3563 if (n != null && (sk = n.key) != null &&
3564 (f == null ||
3565 (cmp != null ? (cmp.compare(f, sk) > 0) :
3566 (((Comparable<? super K>)f).compareTo(sk) > 0)))) {
3567 current = n;
3568 Index<K,V> r = q.down;
3569 row = (s.right != null) ? s : s.down;
3570 return new ValueSpliterator<K,V>(cmp, r, e, sk, est);
3571 }
3572 }
3573 }
3574 }
3575 return null;
3576 }
3577
3578 public void forEach(Block<? super V> block) {
3579 if (block == null) throw new NullPointerException();
3580 K f = fence;
3581 Comparator<? super K> cmp = comparator;
3582 Comparable<? super K> cf = (f != null && cmp == null) ?
3583 (Comparable<? super K>)f : null;
3584 Node<K,V> e = current;
3585 current = null;
3586 for(; e != null; e = e.next) {
3587 K k; Object v;
3588 if ((k = e.key) != null &&
3589 (cf != null ? (cf.compareTo(k) <= 0) :
3590 (f != null && cmp.compare(f, k) <= 0)))
3591 break;
3592 if ((v = e.value) != null && v != e)
3593 block.accept((V)v);
3594 }
3595 }
3596
3597 public boolean tryAdvance(Block<? super V> block) {
3598 if (block == null) throw new NullPointerException();
3599 boolean advanced = false;
3600 Node<K,V> e;
3601 for (e = current; e != null; e = e.next) {
3602 K k; Object v;
3603 if (compareBounds(k = e.key) >= 0) {
3604 e = null;
3605 break;
3606 }
3607 if ((v = e.value) != null && v != e) {
3608 current = e.next;
3609 block.accept((V)v);
3610 return true;
3611 }
3612 }
3613 current = e;
3614 return false;
3615 }
3616
3617 public Iterator<V> iterator() { return this; }
3618
3619 public V next() {
3620 V v = nextValue;
3621 Node<K,V> e = current;
3622 if (e == null)
3623 throw new NoSuchElementException();
3624 ascend(e);
3625 return v;
3626 }
3627 }
3628
3629 static final class EntrySpliterator<K,V> extends CSLMSpliterator<K,V>
3630 implements Spliterator<Map.Entry<K,V>>, Iterator<Map.Entry<K,V>> {
3631 EntrySpliterator(Comparator<? super K> comparator, Index<K,V> row,
3632 Node<K,V> origin, K fence, int est) {
3633 super(comparator, row, origin, fence, est);
3634 }
3635
3636 public EntrySpliterator<K,V> trySplit() {
3637 Node<K,V> e;
3638 Comparator<? super K> cmp = comparator;
3639 K f = fence;
3640 if ((e = current) != null) {
3641 for (Index<K,V> q = row; q != null; q = row = q.down) {
3642 Index<K,V> s; Node<K,V> n; K sk;
3643 est -= est >>> 2;
3644 if ((s = q.right) != null) {
3645 for (;;) {
3646 Node<K,V> b = s.node;
3647 if ((n = b.next) == null || n.value != null)
3648 break;
3649 n.helpDelete(b, n.next);
3650 }
3651 if (n != null && (sk = n.key) != null &&
3652 (f == null ||
3653 (cmp != null?
3654 (cmp.compare(f, sk) > 0) :
3655 (((Comparable<? super K>)f).compareTo(sk) > 0)))) {
3656 current = n;
3657 Index<K,V> r = q.down;
3658 row = (s.right != null) ? s : s.down;
3659 return new EntrySpliterator<K,V>(cmp, r, e, sk, est);
3660 }
3661 }
3662 }
3663 }
3664 return null;
3665 }
3666
3667 public void forEach(Block<? super Map.Entry<K,V>> block) {
3668 if (block == null) throw new NullPointerException();
3669 K f = fence;
3670 Comparator<? super K> cmp = comparator;
3671 Comparable<? super K> cf = (f != null && cmp == null) ?
3672 (Comparable<? super K>)f : null;
3673 Node<K,V> e = current;
3674 current = null;
3675 for(; e != null; e = e.next) {
3676 K k; Object v;
3677 if ((k = e.key) != null &&
3678 (cf != null ?
3679 (cf.compareTo(k) <= 0) :
3680 (f != null && cmp.compare(f, k) <= 0)))
3681 break;
3682 if ((v = e.value) != null && v != e)
3683 block.accept
3684 (new AbstractMap.SimpleImmutableEntry<K,V>(k, (V)v));
3685 }
3686 }
3687
3688 public boolean tryAdvance(Block<? super Map.Entry<K,V>> block) {
3689 if (block == null) throw new NullPointerException();
3690 Node<K,V> e;
3691 for (e = current; e != null; e = e.next) {
3692 K k; Object v;
3693 if (compareBounds(k = e.key) >= 0) {
3694 e = null;
3695 break;
3696 }
3697 if ((v = e.value) != null && v != e) {
3698 current = e.next;
3699 block.accept
3700 (new AbstractMap.SimpleImmutableEntry<K,V>(k, (V)v));
3701 return true;
3702 }
3703 }
3704 current = e;
3705 return false;
3706 }
3707
3708 public Iterator<Map.Entry<K,V>> iterator() { return this; }
3709
3710 public Map.Entry<K,V> next() {
3711 Node<K,V> e = current;
3712 if (e == null)
3713 throw new NoSuchElementException();
3714 K k = e.key;
3715 V v = nextValue;
3716 ascend(e);
3717 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
3718 }
3719 }
3720
3721 // Unsafe mechanics
3722 private static final sun.misc.Unsafe UNSAFE;
3723 private static final long headOffset;
3724 static {
3725 try {
3726 UNSAFE = sun.misc.Unsafe.getUnsafe();
3727 Class<?> k = ConcurrentSkipListMap.class;
3728 headOffset = UNSAFE.objectFieldOffset
3729 (k.getDeclaredField("head"));
3730 } catch (Exception e) {
3731 throw new Error(e);
3732 }
3733 }
3734 }