ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/CopyOnWriteArrayList.java
Revision: 1.10
Committed: Fri Aug 8 20:05:07 2003 UTC (20 years, 10 months ago) by tim
Branch: MAIN
Changes since 1.9: +3 -6 lines
Log Message:
Scrunched catch, finally, else clauses.

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group. Adapted and released under explicit permission
4 * from JDK1.2 ArrayList.java which carries the following copyright:
5 *
6 * Copyright 1997 by Sun Microsystems, Inc.,
7 * 901 San Antonio Road, Palo Alto, California, 94303, U.S.A.
8 * All rights reserved.
9 *
10 * This software is the confidential and proprietary information
11 * of Sun Microsystems, Inc. ("Confidential Information"). You
12 * shall not disclose such Confidential Information and shall use
13 * it only in accordance with the terms of the license agreement
14 * you entered into with Sun.
15 */
16
17 package java.util.concurrent;
18 import java.util.*;
19
20 /**
21 * A variant of {@link java.util.ArrayList} in which all mutative
22 * operations (add, set, and so on) are implemented by making a fresh
23 * copy of the underlying array. <p>
24 *
25 * This is ordinarily too costly, but it becomes attractive when
26 * traversal operations vastly outnumber mutations, and, especially
27 * when you cannot or don't want to synchronize traversals, yet need
28 * to preclude interference among concurrent threads. The iterator
29 * method uses a reference to the state of the array at the point that
30 * the iterator was created. This array never changes during the
31 * lifetime of the iterator, so interference is impossible and the
32 * iterator is guaranteed not to throw
33 * <tt>ConcurrentModificationException</tt>. The iterator will not
34 * reflect additions, removals, or changes to the List since the
35 * iterator was created. <p>
36 *
37 * Because of the copy-on-write policy, some one-by-one mutative
38 * operations in the java.util.Arrays and java.util.Collections
39 * classes are so time/space intensive as to never be worth calling.
40 * Also, due to their strict read-only nature, element-changing
41 * operations on iterators (remove, set, and add) are not
42 * supported. These are the only methods throwing
43 * UnsupportedOperationException. <p>
44 * @since 1.5
45 * @author Doug Lea
46 */
47 public class CopyOnWriteArrayList<E>
48 implements List<E>, RandomAccess, Cloneable, java.io.Serializable {
49
50 /**
51 * The held array. Directly accessed only within synchronized
52 * methods
53 */
54 private volatile transient E[] array_;
55
56 /**
57 * Accessor to the array intended to be called from
58 * within unsynchronized read-only methods
59 **/
60 private E[] array() { return array_; }
61
62 /**
63 * Constructs an empty list.
64 */
65 public CopyOnWriteArrayList() {
66 array_ = (E[]) new Object[0];
67 }
68
69 /**
70 * Constructs an list containing the elements of the specified
71 * Collection, in the order they are returned by the Collection's
72 * iterator.
73 * @param c the collection of initially held elements
74 */
75 public CopyOnWriteArrayList(Collection<E> c) {
76 array_ = (E[]) new Object[c.size()];
77 Iterator<E> i = c.iterator();
78 int size = 0;
79 while (i.hasNext())
80 array_[size++] = i.next();
81 }
82
83 /**
84 * Create a new CopyOnWriteArrayList holding a copy of given array.
85 *
86 * @param toCopyIn the array (a copy of this array is used as the
87 * internal array)
88 **/
89 public CopyOnWriteArrayList(E[] toCopyIn) {
90 copyIn(toCopyIn, 0, toCopyIn.length);
91 }
92
93 /**
94 * Replace the held array with a copy of the <code>n</code>
95 * elements of the provided array, starting at position <code>first</code>.
96 * To copy an entire array, call with arguments (array, 0, array.length).
97 * @param toCopyIn the array. A copy of the indicated elements of
98 * this array is used as the
99 * internal array.
100 * @param first The index of first position of the array to
101 * start copying from.
102 * @param n the number of elements to copy. This will be the new size of
103 * the list.
104 **/
105 private synchronized void copyIn(E[] toCopyIn, int first, int n) {
106 array_ = (E[]) new Object[n];
107 System.arraycopy(toCopyIn, first, array_, 0, n);
108 }
109
110 /**
111 * Returns the number of components in this list.
112 *
113 * @return the number of components in this list.
114 */
115 public int size() {
116 return array().length;
117 }
118
119 /**
120 * Tests if this list has no components.
121 *
122 * @return <code>true</code> if this list has no components;
123 * <code>false</code> otherwise.
124 */
125 public boolean isEmpty() {
126 return size() == 0;
127 }
128
129 /**
130 * Returns true if this list contains the specified element.
131 *
132 * @param elem element whose presence in this List is to be tested.
133 */
134 public boolean contains(Object elem) {
135 E[] elementData = array();
136 int len = elementData.length;
137 return indexOf(elem, elementData, len) >= 0;
138 }
139
140 /**
141 * Searches for the first occurence of the given argument, testing
142 * for equality using the <code>equals</code> method.
143 *
144 * @param elem an object.
145 * @return the index of the first occurrence of the argument in this
146 * list; returns <code>-1</code> if the object is not found.
147 * @see Object#equals(Object)
148 */
149 public int indexOf(Object elem) {
150 E[] elementData = array();
151 int len = elementData.length;
152 return indexOf(elem, elementData, len);
153 }
154
155
156 /**
157 * static version allows repeated call without needed
158 * to grab lock for array each time
159 **/
160 private static int indexOf(Object elem, Object[] elementData, int len) {
161 if (elem == null) {
162 for (int i = 0; i < len; i++)
163 if (elementData[i]==null)
164 return i;
165 } else {
166 for (int i = 0; i < len; i++)
167 if (elem.equals(elementData[i]))
168 return i;
169 }
170 return -1;
171 }
172
173 /**
174 * Searches for the first occurence of the given argument, beginning
175 * the search at <code>index</code>, and testing for equality using
176 * the <code>equals</code> method.
177 *
178 * @param elem an object.
179 * @param index the index to start searching from.
180 * @return the index of the first occurrence of the object argument in
181 * this List at position <code>index</code> or later in the
182 * List; returns <code>-1</code> if the object is not found.
183 * @see Object#equals(Object)
184 */
185 public int indexOf(E elem, int index) {
186 E[] elementData = array();
187 int elementCount = elementData.length;
188
189 if (elem == null) {
190 for (int i = index ; i < elementCount ; i++)
191 if (elementData[i]==null)
192 return i;
193 } else {
194 for (int i = index ; i < elementCount ; i++)
195 if (elem.equals(elementData[i]))
196 return i;
197 }
198 return -1;
199 }
200
201 /**
202 * Returns the index of the last occurrence of the specified object in
203 * this list.
204 *
205 * @param elem the desired component.
206 * @return the index of the last occurrence of the specified object in
207 * this list; returns -1 if the object is not found.
208 */
209 public int lastIndexOf(Object elem) {
210 E[] elementData = array();
211 int len = elementData.length;
212 return lastIndexOf(elem, elementData, len);
213 }
214
215 private static int lastIndexOf(Object elem, Object[] elementData, int len) {
216 if (elem == null) {
217 for (int i = len-1; i >= 0; i--)
218 if (elementData[i]==null)
219 return i;
220 } else {
221 for (int i = len-1; i >= 0; i--)
222 if (elem.equals(elementData[i]))
223 return i;
224 }
225 return -1;
226 }
227
228 /**
229 * Searches backwards for the specified object, starting from the
230 * specified index, and returns an index to it.
231 *
232 * @param elem the desired component.
233 * @param index the index to start searching from.
234 * @return the index of the last occurrence of the specified object in this
235 * List at position less than index in the List;
236 * -1 if the object is not found.
237 */
238 public int lastIndexOf(E elem, int index) {
239 // needed in order to compile on 1.2b3
240 E[] elementData = array();
241 if (elem == null) {
242 for (int i = index; i >= 0; i--)
243 if (elementData[i]==null)
244 return i;
245 } else {
246 for (int i = index; i >= 0; i--)
247 if (elem.equals(elementData[i]))
248 return i;
249 }
250 return -1;
251 }
252
253 /**
254 * Returns a shallow copy of this list. (The elements themselves
255 * are not copied.)
256 *
257 * @return a clone of this list.
258 */
259 public Object clone() {
260 try {
261 E[] elementData = array();
262 CopyOnWriteArrayList<E> v = (CopyOnWriteArrayList<E>)super.clone();
263 v.array_ = (E[]) new Object[elementData.length];
264 System.arraycopy(elementData, 0, v.array_, 0, elementData.length);
265 return v;
266 } catch (CloneNotSupportedException e) {
267 // this shouldn't happen, since we are Cloneable
268 throw new InternalError();
269 }
270 }
271
272 /**
273 * Returns an array containing all of the elements in this list
274 * in the correct order.
275 */
276 public Object[] toArray() {
277 Object[] elementData = array();
278 Object[] result = new Object[elementData.length];
279 System.arraycopy(elementData, 0, result, 0, elementData.length);
280 return result;
281 }
282
283 /**
284 * Returns an array containing all of the elements in this list in the
285 * correct order. The runtime type of the returned array is that of the
286 * specified array. If the list fits in the specified array, it is
287 * returned therein. Otherwise, a new array is allocated with the runtime
288 * type of the specified array and the size of this list.
289 * <p>
290 * If the list fits in the specified array with room to spare
291 * (i.e., the array has more elements than the list),
292 * the element in the array immediately following the end of the
293 * collection is set to null. This is useful in determining the length
294 * of the list <em>only</em> if the caller knows that the list
295 * does not contain any null elements.
296 *
297 * @param a the array into which the elements of the list are to
298 * be stored, if it is big enough; otherwise, a new array of the
299 * same runtime type is allocated for this purpose.
300 * @return an array containing the elements of the list.
301 * @throws ArrayStoreException the runtime type of a is not a supertype
302 * of the runtime type of every element in this list.
303 */
304 public <T> T[] toArray(T a[]) {
305 E[] elementData = array();
306
307 if (a.length < elementData.length)
308 a = (T[])
309 java.lang.reflect.Array.newInstance(a.getClass().getComponentType(),
310 elementData.length);
311
312 System.arraycopy(elementData, 0, a, 0, elementData.length);
313
314 if (a.length > elementData.length)
315 a[elementData.length] = null;
316
317 return a;
318 }
319
320 // Positional Access Operations
321
322 /**
323 * Returns the element at the specified position in this list.
324 *
325 * @param index index of element to return.
326 * @return the element
327 * @throws IndexOutOfBoundsException index is out of range (index
328 * &lt; 0 || index &gt;= size()).
329 */
330 public E get(int index) {
331 E[] elementData = array();
332 rangeCheck(index, elementData.length);
333 return elementData[index];
334 }
335
336 /**
337 * Replaces the element at the specified position in this list with
338 * the specified element.
339 *
340 * @param index index of element to replace.
341 * @param element element to be stored at the specified position.
342 * @return the element previously at the specified position.
343 * @throws IndexOutOfBoundsException index out of range
344 * (index &lt; 0 || index &gt;= size()).
345 */
346 public synchronized E set(int index, E element) {
347 int len = array_.length;
348 rangeCheck(index, len);
349 E oldValue = array_[index];
350
351 boolean same = (oldValue == element ||
352 (element != null && element.equals(oldValue)));
353 if (!same) {
354 E[] newArray = (E[]) new Object[len];
355 System.arraycopy(array_, 0, newArray, 0, len);
356 newArray[index] = element;
357 array_ = newArray;
358 }
359 return oldValue;
360 }
361
362 /**
363 * Appends the specified element to the end of this list.
364 *
365 * @param element element to be appended to this list.
366 * @return true (as per the general contract of Collection.add).
367 */
368 public synchronized boolean add(E element) {
369 int len = array_.length;
370 E[] newArray = (E[]) new Object[len+1];
371 System.arraycopy(array_, 0, newArray, 0, len);
372 newArray[len] = element;
373 array_ = newArray;
374 return true;
375 }
376
377 /**
378 * Inserts the specified element at the specified position in this
379 * list. Shifts the element currently at that position (if any) and
380 * any subsequent elements to the right (adds one to their indices).
381 *
382 * @param index index at which the specified element is to be inserted.
383 * @param element element to be inserted.
384 * @throws IndexOutOfBoundsException index is out of range
385 * (index &lt; 0 || index &gt; size()).
386 */
387 public synchronized void add(int index, E element) {
388 int len = array_.length;
389 if (index > len || index < 0)
390 throw new IndexOutOfBoundsException("Index: "+index+", Size: "+len);
391
392 E[] newArray = (E[]) new Object[len+1];
393 System.arraycopy(array_, 0, newArray, 0, index);
394 newArray[index] = element;
395 System.arraycopy(array_, index, newArray, index+1, len - index);
396 array_ = newArray;
397 }
398
399 /**
400 * Removes the element at the specified position in this list.
401 * Shifts any subsequent elements to the left (subtracts one from their
402 * indices). Returns the element that was removed from the list.
403 *
404 * @throws IndexOutOfBoundsException index out of range (index
405 * &lt; 0 || index &gt;= size()).
406 * @param index the index of the element to removed.
407 */
408 public synchronized E remove(int index) {
409 int len = array_.length;
410 rangeCheck(index, len);
411 E oldValue = array_[index];
412 E[] newArray = (E[]) new Object[len-1];
413 System.arraycopy(array_, 0, newArray, 0, index);
414 int numMoved = len - index - 1;
415 if (numMoved > 0)
416 System.arraycopy(array_, index+1, newArray, index, numMoved);
417 array_ = newArray;
418 return oldValue;
419 }
420
421 /**
422 * Removes a single instance of the specified element from this Collection,
423 * if it is present (optional operation). More formally, removes an
424 * element <code>e</code> such that <code>(o==null ? e==null :
425 * o.equals(e))</code>, if the Collection contains one or more such
426 * elements. Returns true if the Collection contained the specified
427 * element (or equivalently, if the Collection changed as a result of the
428 * call).
429 *
430 * @param element element to be removed from this Collection, if present.
431 * @return true if the Collection changed as a result of the call.
432 */
433 public synchronized boolean remove(Object element) {
434 int len = array_.length;
435 if (len == 0) return false;
436
437 // Copy while searching for element to remove
438 // This wins in the normal case of element being present
439
440 int newlen = len-1;
441 E[] newArray = (E[]) new Object[newlen];
442
443 for (int i = 0; i < newlen; ++i) {
444 if (element == array_[i] ||
445 (element != null && element.equals(array_[i]))) {
446 // found one; copy remaining and exit
447 for (int k = i + 1; k < len; ++k) newArray[k-1] = array_[k];
448 array_ = newArray;
449 return true;
450 } else
451 newArray[i] = array_[i];
452 }
453 // special handling for last cell
454
455 if (element == array_[newlen] ||
456 (element != null && element.equals(array_[newlen]))) {
457 array_ = newArray;
458 return true;
459 } else
460 return false; // throw away copy
461
462 }
463
464
465 /**
466 * Removes from this List all of the elements whose index is between
467 * fromIndex, inclusive and toIndex, exclusive. Shifts any succeeding
468 * elements to the left (reduces their index).
469 * This call shortens the List by (toIndex - fromIndex) elements. (If
470 * toIndex==fromIndex, this operation has no effect.)
471 *
472 * @param fromIndex index of first element to be removed.
473 * @param toIndex index after last element to be removed.
474 * @throws IndexOutOfBoundsException fromIndex or toIndex out of
475 * range (fromIndex &lt; 0 || fromIndex &gt;= size() || toIndex
476 * &gt; size() || toIndex &lt; fromIndex).
477 */
478 private synchronized void removeRange(int fromIndex, int toIndex) {
479 int len = array_.length;
480
481 if (fromIndex < 0 || fromIndex >= len ||
482 toIndex > len || toIndex < fromIndex)
483 throw new IndexOutOfBoundsException();
484
485 int numMoved = len - toIndex;
486 int newlen = len - (toIndex-fromIndex);
487 E[] newArray = (E[]) new Object[newlen];
488 System.arraycopy(array_, 0, newArray, 0, fromIndex);
489 System.arraycopy(array_, toIndex, newArray, fromIndex, numMoved);
490 array_ = newArray;
491 }
492
493
494 /**
495 * Append the element if not present.
496 * This operation can be used to obtain Set semantics
497 * for lists.
498 * @param element element to be added to this Collection, if absent.
499 * @return true if added
500 **/
501 public synchronized boolean addIfAbsent(E element) {
502 // Copy while checking if already present.
503 // This wins in the most common case where it is not present
504 int len = array_.length;
505 E[] newArray = (E[]) new Object[len + 1];
506 for (int i = 0; i < len; ++i) {
507 if (element == array_[i] ||
508 (element != null && element.equals(array_[i])))
509 return false; // exit, throwing away copy
510 else
511 newArray[i] = array_[i];
512 }
513 newArray[len] = element;
514 array_ = newArray;
515 return true;
516 }
517
518 /**
519 * Returns true if this Collection contains all of the elements in the
520 * specified Collection.
521 * <p>
522 * This implementation iterates over the specified Collection, checking
523 * each element returned by the Iterator in turn to see if it's
524 * contained in this Collection. If all elements are so contained
525 * true is returned, otherwise false.
526 * @param c the collection
527 * @return true if all elements are contained
528 */
529 public boolean containsAll(Collection<?> c) {
530 E[] elementData = array();
531 int len = elementData.length;
532 Iterator e = c.iterator();
533 while (e.hasNext())
534 if (indexOf((E) e.next(), elementData, len) < 0)
535 return false;
536
537 return true;
538 }
539
540
541 /**
542 * Removes from this Collection all of its elements that are contained in
543 * the specified Collection. This is a particularly expensive operation
544 * in this class because of the need for an internal temporary array.
545 * <p>
546 *
547 * @param c the collection
548 * @return true if this Collection changed as a result of the call.
549 */
550 public synchronized boolean removeAll(Collection<?> c) {
551 E[] elementData = array_;
552 int len = elementData.length;
553 if (len == 0) return false;
554
555 // temp array holds those elements we know we want to keep
556 E[] temp = (E[]) new Object[len];
557 int newlen = 0;
558 for (int i = 0; i < len; ++i) {
559 E element = elementData[i];
560 if (!c.contains(element)) {
561 temp[newlen++] = element;
562 }
563 }
564
565 if (newlen == len) return false;
566
567 // copy temp as new array
568 E[] newArray = (E[]) new Object[newlen];
569 System.arraycopy(temp, 0, newArray, 0, newlen);
570 array_ = newArray;
571 return true;
572 }
573
574 /**
575 * Retains only the elements in this Collection that are contained in the
576 * specified Collection (optional operation). In other words, removes from
577 * this Collection all of its elements that are not contained in the
578 * specified Collection.
579 * @param c the collection
580 * @return true if this Collection changed as a result of the call.
581 */
582 public synchronized boolean retainAll(Collection<?> c) {
583 E[] elementData = array_;
584 int len = elementData.length;
585 if (len == 0) return false;
586
587 E[] temp = (E[]) new Object[len];
588 int newlen = 0;
589 for (int i = 0; i < len; ++i) {
590 E element = elementData[i];
591 if (c.contains(element)) {
592 temp[newlen++] = element;
593 }
594 }
595
596 if (newlen == len) return false;
597
598 E[] newArray = (E[]) new Object[newlen];
599 System.arraycopy(temp, 0, newArray, 0, newlen);
600 array_ = newArray;
601 return true;
602 }
603
604 /**
605 * Appends all of the elements in the specified Collection that
606 * are not already contained in this list, to the end of
607 * this list, in the order that they are returned by the
608 * specified Collection's Iterator.
609 *
610 * @param c elements to be added into this list.
611 * @return the number of elements added
612 */
613 public synchronized int addAllAbsent(Collection<? extends E> c) {
614 int numNew = c.size();
615 if (numNew == 0) return 0;
616
617 E[] elementData = array_;
618 int len = elementData.length;
619
620 E[] temp = (E[]) new Object[numNew];
621 int added = 0;
622 Iterator e = c.iterator();
623 while (e.hasNext()) {
624 E element = (E) e.next();
625 if (indexOf(element, elementData, len) < 0) {
626 if (indexOf(element, temp, added) < 0) {
627 temp[added++] = element;
628 }
629 }
630 }
631
632 if (added == 0) return 0;
633
634 E[] newArray = (E[]) new Object[len+added];
635 System.arraycopy(elementData, 0, newArray, 0, len);
636 System.arraycopy(temp, 0, newArray, len, added);
637 array_ = newArray;
638 return added;
639 }
640
641 /**
642 * Removes all of the elements from this list.
643 *
644 */
645 public synchronized void clear() {
646 array_ = (E[]) new Object[0];
647 }
648
649 /**
650 * Appends all of the elements in the specified Collection to the end of
651 * this list, in the order that they are returned by the
652 * specified Collection's Iterator.
653 *
654 * @param c elements to be inserted into this list.
655 * @return true if any elements are added
656 */
657 public synchronized boolean addAll(Collection<? extends E> c) {
658 int numNew = c.size();
659 if (numNew == 0) return false;
660
661 int len = array_.length;
662 E[] newArray = (E[]) new Object[len+numNew];
663 System.arraycopy(array_, 0, newArray, 0, len);
664 Iterator e = c.iterator();
665 for (int i=0; i<numNew; i++)
666 newArray[len++] = (E) e.next();
667 array_ = newArray;
668
669 return true;
670 }
671
672 /**
673 * Inserts all of the elements in the specified Collection into this
674 * list, starting at the specified position. Shifts the element
675 * currently at that position (if any) and any subsequent elements to
676 * the right (increases their indices). The new elements will appear
677 * in the list in the order that they are returned by the
678 * specified Collection's iterator.
679 *
680 * @param index index at which to insert first element
681 * from the specified collection.
682 * @param c elements to be inserted into this list.
683 * @throws IndexOutOfBoundsException index out of range (index
684 * &lt; 0 || index &gt; size()).
685 * @return true if any elements are added
686 */
687 public synchronized boolean addAll(int index, Collection<? extends E> c) {
688 int len = array_.length;
689 if (index > len || index < 0)
690 throw new IndexOutOfBoundsException("Index: "+index+", Size: "+len);
691
692 int numNew = c.size();
693 if (numNew == 0) return false;
694
695 E[] newArray = (E[]) new Object[len+numNew];
696 System.arraycopy(array_, 0, newArray, 0, len);
697 int numMoved = len - index;
698 if (numMoved > 0)
699 System.arraycopy(array_, index, newArray, index + numNew, numMoved);
700 Iterator e = c.iterator();
701 for (int i=0; i<numNew; i++)
702 newArray[index++] = (E) e.next();
703 array_ = newArray;
704
705 return true;
706 }
707
708 /**
709 * Check if the given index is in range. If not, throw an appropriate
710 * runtime exception.
711 */
712 private void rangeCheck(int index, int length) {
713 if (index >= length || index < 0)
714 throw new IndexOutOfBoundsException("Index: "+index+", Size: "+ length);
715 }
716
717 /**
718 * Save the state of the list to a stream (i.e., serialize it).
719 *
720 * @serialData The length of the array backing the list is emitted
721 * (int), followed by all of its elements (each an Object)
722 * in the proper order.
723 * @param s the stream
724 */
725 private void writeObject(java.io.ObjectOutputStream s)
726 throws java.io.IOException{
727
728 // Write out element count, and any hidden stuff
729 s.defaultWriteObject();
730
731 E[] elementData = array();
732 // Write out array length
733 s.writeInt(elementData.length);
734
735 // Write out all elements in the proper order.
736 for (int i=0; i<elementData.length; i++)
737 s.writeObject(elementData[i]);
738 }
739
740 /**
741 * Reconstitute the list from a stream (i.e., deserialize it).
742 * @param s the stream
743 */
744 private synchronized void readObject(java.io.ObjectInputStream s)
745 throws java.io.IOException, ClassNotFoundException {
746
747 // Read in size, and any hidden stuff
748 s.defaultReadObject();
749
750 // Read in array length and allocate array
751 int arrayLength = s.readInt();
752 E[] elementData = (E[]) new Object[arrayLength];
753
754 // Read in all elements in the proper order.
755 for (int i=0; i<elementData.length; i++)
756 elementData[i] = (E) s.readObject();
757 array_ = elementData;
758 }
759
760 /**
761 * Returns a string representation of this Collection, containing
762 * the String representation of each element.
763 */
764 public String toString() {
765 StringBuffer buf = new StringBuffer();
766 Iterator e = iterator();
767 buf.append("[");
768 int maxIndex = size() - 1;
769 for (int i = 0; i <= maxIndex; i++) {
770 buf.append(String.valueOf(e.next()));
771 if (i < maxIndex)
772 buf.append(", ");
773 }
774 buf.append("]");
775 return buf.toString();
776 }
777
778
779 /**
780 * Compares the specified Object with this List for equality. Returns true
781 * if and only if the specified Object is also a List, both Lists have the
782 * same size, and all corresponding pairs of elements in the two Lists are
783 * <em>equal</em>. (Two elements <code>e1</code> and <code>e2</code> are
784 * <em>equal</em> if <code>(e1==null ? e2==null : e1.equals(e2))</code>.)
785 * In other words, two Lists are defined to be equal if they contain the
786 * same elements in the same order.
787 * <p>
788 * This implementation first checks if the specified object is this
789 * List. If so, it returns true; if not, it checks if the specified
790 * object is a List. If not, it returns false; if so, it iterates over
791 * both lists, comparing corresponding pairs of elements. If any
792 * comparison returns false, this method returns false. If either
793 * Iterator runs out of elements before before the other it returns false
794 * (as the Lists are of unequal length); otherwise it returns true when
795 * the iterations complete.
796 *
797 * @param o the Object to be compared for equality with this List.
798 * @return true if the specified Object is equal to this List.
799 */
800 public boolean equals(Object o) {
801 if (o == this)
802 return true;
803 if (!(o instanceof List))
804 return false;
805
806 List<E> l2 = (List<E>)(o);
807 if (size() != l2.size())
808 return false;
809
810 ListIterator<E> e1 = listIterator();
811 ListIterator<E> e2 = l2.listIterator();
812 while(e1.hasNext()) {
813 E o1 = e1.next();
814 E o2 = e2.next();
815 if (!(o1==null ? o2==null : o1.equals(o2)))
816 return false;
817 }
818 return true;
819 }
820
821 /**
822 * Returns the hash code value for this List.
823 * <p>
824 * This implementation uses exactly the code that is used to define
825 * the List hash function in the documentation for List.hashCode.
826 */
827 public int hashCode() {
828 int hashCode = 1;
829 Iterator<E> i = iterator();
830 while (i.hasNext()) {
831 E obj = i.next();
832 hashCode = 31*hashCode + (obj==null ? 0 : obj.hashCode());
833 }
834 return hashCode;
835 }
836
837 /**
838 * Returns an Iterator over the elements contained in this collection.
839 * The iterator provides a snapshot of the state of the list
840 * when the iterator was constructed. No synchronization is
841 * needed while traversing the iterator. The iterator does
842 * <em>NOT</em> support the <code>remove</code> method.
843 */
844 public Iterator<E> iterator() {
845 return new COWIterator<E>(array(), 0);
846 }
847
848 /**
849 * Returns an Iterator of the elements in this List (in proper sequence).
850 * The iterator provides a snapshot of the state of the list
851 * when the iterator was constructed. No synchronization is
852 * needed while traversing the iterator. The iterator does
853 * <em>NOT</em> support the <code>remove</code>, <code>set</code>,
854 * or <code>add</code> methods.
855 *
856 */
857 public ListIterator<E> listIterator() {
858 return new COWIterator<E>(array(), 0);
859 }
860
861 /**
862 * Returns a ListIterator of the elements in this List (in proper
863 * sequence), starting at the specified position in the List. The
864 * specified index indicates the first element that would be returned by
865 * an initial call to nextElement. An initial call to previousElement
866 * would return the element with the specified index minus one.
867 * The ListIterator returned by this implementation will throw
868 * an UnsupportedOperationException in its remove, set and
869 * add methods.
870 *
871 * @param index index of first element to be returned from the
872 * ListIterator (by a call to getNext).
873 * @throws IndexOutOfBoundsException index is out of range
874 * (index &lt; 0 || index &gt; size()).
875 */
876 public ListIterator<E> listIterator(final int index) {
877 E[] elementData = array();
878 int len = elementData.length;
879 if (index<0 || index>len)
880 throw new IndexOutOfBoundsException("Index: "+index);
881
882 return new COWIterator<E>(array(), index);
883 }
884
885 private static class COWIterator<E> implements ListIterator<E> {
886
887 /** Snapshot of the array **/
888 private final E[] array;
889
890 /**
891 * Index of element to be returned by subsequent call to next.
892 */
893 private int cursor;
894
895 private COWIterator(E[] elementArray, int initialCursor) {
896 array = elementArray;
897 cursor = initialCursor;
898 }
899
900 public boolean hasNext() {
901 return cursor < array.length;
902 }
903
904 public boolean hasPrevious() {
905 return cursor > 0;
906 }
907
908 public E next() {
909 try {
910 return array[cursor++];
911 } catch (IndexOutOfBoundsException ex) {
912 throw new NoSuchElementException();
913 }
914 }
915
916 public E previous() {
917 try {
918 return array[--cursor];
919 } catch(IndexOutOfBoundsException e) {
920 throw new NoSuchElementException();
921 }
922 }
923
924 public int nextIndex() {
925 return cursor;
926 }
927
928 public int previousIndex() {
929 return cursor-1;
930 }
931
932 /**
933 * Not supported. Always throws UnsupportedOperationException.
934 * @throws UnsupportedOperationException remove is not supported
935 * by this Iterator.
936 */
937
938 public void remove() {
939 throw new UnsupportedOperationException();
940 }
941
942 /**
943 * Not supported. Always throws UnsupportedOperationException.
944 * @throws UnsupportedOperationException set is not supported
945 * by this Iterator.
946 */
947 public void set(E o) {
948 throw new UnsupportedOperationException();
949 }
950
951 /**
952 * Not supported. Always throws UnsupportedOperationException.
953 * @throws UnsupportedOperationException add is not supported
954 * by this Iterator.
955 */
956 public void add(E o) {
957 throw new UnsupportedOperationException();
958 }
959 }
960
961
962 /**
963 * Returns a view of the portion of this List between fromIndex,
964 * inclusive, and toIndex, exclusive. The returned List is backed by this
965 * List, so changes in the returned List are reflected in this List, and
966 * vice-versa. While mutative operations are supported, they are
967 * probably not very useful for CopyOnWriteArrays.
968 * <p>
969 * The semantics of the List returned by this method become undefined if
970 * the backing list (i.e., this List) is <i>structurally modified</i> in
971 * any way other than via the returned List. (Structural modifications are
972 * those that change the size of the List, or otherwise perturb it in such
973 * a fashion that iterations in progress may yield incorrect results.)
974 *
975 * @param fromIndex low endpoint (inclusive) of the subList.
976 * @param toIndex high endpoint (exclusive) of the subList.
977 * @return a view of the specified range within this List.
978 * @throws IndexOutOfBoundsException Illegal endpoint index value
979 * (fromIndex &lt; 0 || toIndex &gt; size || fromIndex &gt; toIndex).
980 */
981 public synchronized List<E> subList(int fromIndex, int toIndex) {
982 // synchronized since sublist ctor depends on it.
983 int len = array_.length;
984 if (fromIndex<0 || toIndex>len || fromIndex>toIndex)
985 throw new IndexOutOfBoundsException();
986 return new COWSubList<E>(this, fromIndex, toIndex);
987 }
988
989 private static class COWSubList<E> extends AbstractList<E> {
990
991 /*
992 This class extends AbstractList merely for convenience, to
993 avoid having to define addAll, etc. This doesn't hurt, but
994 is wasteful. This class does not need or use modCount
995 mechanics in AbstractList, but does need to check for
996 concurrent modification using similar mechanics. On each
997 operation, the array that we expect the backing list to use
998 is checked and updated. Since we do this for all of the
999 base operations invoked by those defined in AbstractList,
1000 all is well. While inefficient, this is not worth
1001 improving. The kinds of list operations inherited from
1002 AbstractList are are already so slow on COW sublists that
1003 adding a bit more space/time doesn't seem even noticeable.
1004 */
1005
1006 private final CopyOnWriteArrayList<E> l;
1007 private final int offset;
1008 private int size;
1009 private E[] expectedArray;
1010
1011 private COWSubList(CopyOnWriteArrayList<E> list,
1012 int fromIndex, int toIndex) {
1013 l = list;
1014 expectedArray = l.array();
1015 offset = fromIndex;
1016 size = toIndex - fromIndex;
1017 }
1018
1019 // only call this holding l's lock
1020 private void checkForComodification() {
1021 if (l.array_ != expectedArray)
1022 throw new ConcurrentModificationException();
1023 }
1024
1025 // only call this holding l's lock
1026 private void rangeCheck(int index) {
1027 if (index<0 || index>=size)
1028 throw new IndexOutOfBoundsException("Index: "+index+ ",Size: "+size);
1029 }
1030
1031
1032 public E set(int index, E element) {
1033 synchronized(l) {
1034 rangeCheck(index);
1035 checkForComodification();
1036 E x = l.set(index+offset, element);
1037 expectedArray = l.array_;
1038 return x;
1039 }
1040 }
1041
1042 public E get(int index) {
1043 synchronized(l) {
1044 rangeCheck(index);
1045 checkForComodification();
1046 return l.get(index+offset);
1047 }
1048 }
1049
1050 public int size() {
1051 synchronized(l) {
1052 checkForComodification();
1053 return size;
1054 }
1055 }
1056
1057 public void add(int index, E element) {
1058 synchronized(l) {
1059 checkForComodification();
1060 if (index<0 || index>size)
1061 throw new IndexOutOfBoundsException();
1062 l.add(index+offset, element);
1063 expectedArray = l.array_;
1064 size++;
1065 }
1066 }
1067
1068 public E remove(int index) {
1069 synchronized(l) {
1070 rangeCheck(index);
1071 checkForComodification();
1072 E result = l.remove(index+offset);
1073 expectedArray = l.array_;
1074 size--;
1075 return result;
1076 }
1077 }
1078
1079 public Iterator<E> iterator() {
1080 synchronized(l) {
1081 checkForComodification();
1082 return new COWSubListIterator<E>(l, 0, offset, size);
1083 }
1084 }
1085
1086 public ListIterator<E> listIterator(final int index) {
1087 synchronized(l) {
1088 checkForComodification();
1089 if (index<0 || index>size)
1090 throw new IndexOutOfBoundsException("Index: "+index+", Size: "+size);
1091 return new COWSubListIterator<E>(l, index, offset, size);
1092 }
1093 }
1094
1095 public List<E> subList(int fromIndex, int toIndex) {
1096 synchronized(l) {
1097 checkForComodification();
1098 if (fromIndex<0 || toIndex>size)
1099 throw new IndexOutOfBoundsException();
1100 return new COWSubList<E>(l, fromIndex+offset, toIndex+offset);
1101 }
1102 }
1103
1104 }
1105
1106
1107 private static class COWSubListIterator<E> implements ListIterator<E> {
1108 private final ListIterator<E> i;
1109 private final int index;
1110 private final int offset;
1111 private final int size;
1112 private COWSubListIterator(List<E> l, int index, int offset, int size) {
1113 this.index = index;
1114 this.offset = offset;
1115 this.size = size;
1116 i = l.listIterator(index+offset);
1117 }
1118
1119 public boolean hasNext() {
1120 return nextIndex() < size;
1121 }
1122
1123 public E next() {
1124 if (hasNext())
1125 return i.next();
1126 else
1127 throw new NoSuchElementException();
1128 }
1129
1130 public boolean hasPrevious() {
1131 return previousIndex() >= 0;
1132 }
1133
1134 public E previous() {
1135 if (hasPrevious())
1136 return i.previous();
1137 else
1138 throw new NoSuchElementException();
1139 }
1140
1141 public int nextIndex() {
1142 return i.nextIndex() - offset;
1143 }
1144
1145 public int previousIndex() {
1146 return i.previousIndex() - offset;
1147 }
1148
1149 public void remove() {
1150 throw new UnsupportedOperationException();
1151 }
1152
1153 public void set(E o) {
1154 throw new UnsupportedOperationException();
1155 }
1156
1157 public void add(E o) {
1158 throw new UnsupportedOperationException();
1159 }
1160 }
1161
1162 }