ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/CopyOnWriteArrayList.java
Revision: 1.118
Committed: Tue Dec 2 05:48:28 2014 UTC (9 years, 6 months ago) by jsr166
Branch: MAIN
Changes since 1.117: +1 -1 lines
Log Message:
this collection => this XXX

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group. Adapted and released, under explicit permission,
4 * from JDK ArrayList.java which carries the following copyright:
5 *
6 * Copyright 1997 by Sun Microsystems, Inc.,
7 * 901 San Antonio Road, Palo Alto, California, 94303, U.S.A.
8 * All rights reserved.
9 *
10 * This software is the confidential and proprietary information
11 * of Sun Microsystems, Inc. ("Confidential Information"). You
12 * shall not disclose such Confidential Information and shall use
13 * it only in accordance with the terms of the license agreement
14 * you entered into with Sun.
15 */
16
17 package java.util.concurrent;
18 import java.util.AbstractList;
19 import java.util.Arrays;
20 import java.util.Collection;
21 import java.util.Collections;
22 import java.util.Comparator;
23 import java.util.ConcurrentModificationException;
24 import java.util.Iterator;
25 import java.util.List;
26 import java.util.ListIterator;
27 import java.util.NoSuchElementException;
28 import java.util.RandomAccess;
29 import java.util.Spliterator;
30 import java.util.Spliterators;
31 import java.util.concurrent.locks.ReentrantLock;
32 import java.util.function.Consumer;
33 import java.util.function.Predicate;
34 import java.util.function.UnaryOperator;
35
36 /**
37 * A thread-safe variant of {@link java.util.ArrayList} in which all mutative
38 * operations ({@code add}, {@code set}, and so on) are implemented by
39 * making a fresh copy of the underlying array.
40 *
41 * <p>This is ordinarily too costly, but may be <em>more</em> efficient
42 * than alternatives when traversal operations vastly outnumber
43 * mutations, and is useful when you cannot or don't want to
44 * synchronize traversals, yet need to preclude interference among
45 * concurrent threads. The "snapshot" style iterator method uses a
46 * reference to the state of the array at the point that the iterator
47 * was created. This array never changes during the lifetime of the
48 * iterator, so interference is impossible and the iterator is
49 * guaranteed not to throw {@code ConcurrentModificationException}.
50 * The iterator will not reflect additions, removals, or changes to
51 * the list since the iterator was created. Element-changing
52 * operations on iterators themselves ({@code remove}, {@code set}, and
53 * {@code add}) are not supported. These methods throw
54 * {@code UnsupportedOperationException}.
55 *
56 * <p>All elements are permitted, including {@code null}.
57 *
58 * <p>Memory consistency effects: As with other concurrent
59 * collections, actions in a thread prior to placing an object into a
60 * {@code CopyOnWriteArrayList}
61 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
62 * actions subsequent to the access or removal of that element from
63 * the {@code CopyOnWriteArrayList} in another thread.
64 *
65 * <p>This class is a member of the
66 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
67 * Java Collections Framework</a>.
68 *
69 * @since 1.5
70 * @author Doug Lea
71 * @param <E> the type of elements held in this list
72 */
73 public class CopyOnWriteArrayList<E>
74 implements List<E>, RandomAccess, Cloneable, java.io.Serializable {
75 private static final long serialVersionUID = 8673264195747942595L;
76
77 /** The lock protecting all mutators */
78 final transient ReentrantLock lock = new ReentrantLock();
79
80 /** The array, accessed only via getArray/setArray. */
81 private transient volatile Object[] array;
82
83 /**
84 * Gets the array. Non-private so as to also be accessible
85 * from CopyOnWriteArraySet class.
86 */
87 final Object[] getArray() {
88 return array;
89 }
90
91 /**
92 * Sets the array.
93 */
94 final void setArray(Object[] a) {
95 array = a;
96 }
97
98 /**
99 * Creates an empty list.
100 */
101 public CopyOnWriteArrayList() {
102 setArray(new Object[0]);
103 }
104
105 /**
106 * Creates a list containing the elements of the specified
107 * collection, in the order they are returned by the collection's
108 * iterator.
109 *
110 * @param c the collection of initially held elements
111 * @throws NullPointerException if the specified collection is null
112 */
113 public CopyOnWriteArrayList(Collection<? extends E> c) {
114 Object[] elements;
115 if (c.getClass() == CopyOnWriteArrayList.class)
116 elements = ((CopyOnWriteArrayList<?>)c).getArray();
117 else {
118 elements = c.toArray();
119 // c.toArray might (incorrectly) not return Object[] (see 6260652)
120 if (elements.getClass() != Object[].class)
121 elements = Arrays.copyOf(elements, elements.length, Object[].class);
122 }
123 setArray(elements);
124 }
125
126 /**
127 * Creates a list holding a copy of the given array.
128 *
129 * @param toCopyIn the array (a copy of this array is used as the
130 * internal array)
131 * @throws NullPointerException if the specified array is null
132 */
133 public CopyOnWriteArrayList(E[] toCopyIn) {
134 setArray(Arrays.copyOf(toCopyIn, toCopyIn.length, Object[].class));
135 }
136
137 /**
138 * Returns the number of elements in this list.
139 *
140 * @return the number of elements in this list
141 */
142 public int size() {
143 return getArray().length;
144 }
145
146 /**
147 * Returns {@code true} if this list contains no elements.
148 *
149 * @return {@code true} if this list contains no elements
150 */
151 public boolean isEmpty() {
152 return size() == 0;
153 }
154
155 /**
156 * Tests for equality, coping with nulls.
157 */
158 private static boolean eq(Object o1, Object o2) {
159 return (o1 == null) ? o2 == null : o1.equals(o2);
160 }
161
162 /**
163 * static version of indexOf, to allow repeated calls without
164 * needing to re-acquire array each time.
165 * @param o element to search for
166 * @param elements the array
167 * @param index first index to search
168 * @param fence one past last index to search
169 * @return index of element, or -1 if absent
170 */
171 private static int indexOf(Object o, Object[] elements,
172 int index, int fence) {
173 if (o == null) {
174 for (int i = index; i < fence; i++)
175 if (elements[i] == null)
176 return i;
177 } else {
178 for (int i = index; i < fence; i++)
179 if (o.equals(elements[i]))
180 return i;
181 }
182 return -1;
183 }
184
185 /**
186 * static version of lastIndexOf.
187 * @param o element to search for
188 * @param elements the array
189 * @param index first index to search
190 * @return index of element, or -1 if absent
191 */
192 private static int lastIndexOf(Object o, Object[] elements, int index) {
193 if (o == null) {
194 for (int i = index; i >= 0; i--)
195 if (elements[i] == null)
196 return i;
197 } else {
198 for (int i = index; i >= 0; i--)
199 if (o.equals(elements[i]))
200 return i;
201 }
202 return -1;
203 }
204
205 /**
206 * Returns {@code true} if this list contains the specified element.
207 * More formally, returns {@code true} if and only if this list contains
208 * at least one element {@code e} such that {@code Objects.equals(o, e)}.
209 *
210 * @param o element whose presence in this list is to be tested
211 * @return {@code true} if this list contains the specified element
212 */
213 public boolean contains(Object o) {
214 Object[] elements = getArray();
215 return indexOf(o, elements, 0, elements.length) >= 0;
216 }
217
218 /**
219 * {@inheritDoc}
220 */
221 public int indexOf(Object o) {
222 Object[] elements = getArray();
223 return indexOf(o, elements, 0, elements.length);
224 }
225
226 /**
227 * Returns the index of the first occurrence of the specified element in
228 * this list, searching forwards from {@code index}, or returns -1 if
229 * the element is not found.
230 * More formally, returns the lowest index {@code i} such that
231 * <tt>(i&nbsp;&gt;=&nbsp;index&nbsp;&amp;&amp;&nbsp;(e==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;e.equals(get(i))))</tt>,
232 * or -1 if there is no such index.
233 *
234 * @param e element to search for
235 * @param index index to start searching from
236 * @return the index of the first occurrence of the element in
237 * this list at position {@code index} or later in the list;
238 * {@code -1} if the element is not found.
239 * @throws IndexOutOfBoundsException if the specified index is negative
240 */
241 public int indexOf(E e, int index) {
242 Object[] elements = getArray();
243 return indexOf(e, elements, index, elements.length);
244 }
245
246 /**
247 * {@inheritDoc}
248 */
249 public int lastIndexOf(Object o) {
250 Object[] elements = getArray();
251 return lastIndexOf(o, elements, elements.length - 1);
252 }
253
254 /**
255 * Returns the index of the last occurrence of the specified element in
256 * this list, searching backwards from {@code index}, or returns -1 if
257 * the element is not found.
258 * More formally, returns the highest index {@code i} such that
259 * <tt>(i&nbsp;&lt;=&nbsp;index&nbsp;&amp;&amp;&nbsp;(e==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;e.equals(get(i))))</tt>,
260 * or -1 if there is no such index.
261 *
262 * @param e element to search for
263 * @param index index to start searching backwards from
264 * @return the index of the last occurrence of the element at position
265 * less than or equal to {@code index} in this list;
266 * -1 if the element is not found.
267 * @throws IndexOutOfBoundsException if the specified index is greater
268 * than or equal to the current size of this list
269 */
270 public int lastIndexOf(E e, int index) {
271 Object[] elements = getArray();
272 return lastIndexOf(e, elements, index);
273 }
274
275 /**
276 * Returns a shallow copy of this list. (The elements themselves
277 * are not copied.)
278 *
279 * @return a clone of this list
280 */
281 public Object clone() {
282 try {
283 @SuppressWarnings("unchecked")
284 CopyOnWriteArrayList<E> clone =
285 (CopyOnWriteArrayList<E>) super.clone();
286 clone.resetLock();
287 return clone;
288 } catch (CloneNotSupportedException e) {
289 // this shouldn't happen, since we are Cloneable
290 throw new InternalError();
291 }
292 }
293
294 /**
295 * Returns an array containing all of the elements in this list
296 * in proper sequence (from first to last element).
297 *
298 * <p>The returned array will be "safe" in that no references to it are
299 * maintained by this list. (In other words, this method must allocate
300 * a new array). The caller is thus free to modify the returned array.
301 *
302 * <p>This method acts as bridge between array-based and collection-based
303 * APIs.
304 *
305 * @return an array containing all the elements in this list
306 */
307 public Object[] toArray() {
308 Object[] elements = getArray();
309 return Arrays.copyOf(elements, elements.length);
310 }
311
312 /**
313 * Returns an array containing all of the elements in this list in
314 * proper sequence (from first to last element); the runtime type of
315 * the returned array is that of the specified array. If the list fits
316 * in the specified array, it is returned therein. Otherwise, a new
317 * array is allocated with the runtime type of the specified array and
318 * the size of this list.
319 *
320 * <p>If this list fits in the specified array with room to spare
321 * (i.e., the array has more elements than this list), the element in
322 * the array immediately following the end of the list is set to
323 * {@code null}. (This is useful in determining the length of this
324 * list <i>only</i> if the caller knows that this list does not contain
325 * any null elements.)
326 *
327 * <p>Like the {@link #toArray()} method, this method acts as bridge between
328 * array-based and collection-based APIs. Further, this method allows
329 * precise control over the runtime type of the output array, and may,
330 * under certain circumstances, be used to save allocation costs.
331 *
332 * <p>Suppose {@code x} is a list known to contain only strings.
333 * The following code can be used to dump the list into a newly
334 * allocated array of {@code String}:
335 *
336 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
337 *
338 * Note that {@code toArray(new Object[0])} is identical in function to
339 * {@code toArray()}.
340 *
341 * @param a the array into which the elements of the list are to
342 * be stored, if it is big enough; otherwise, a new array of the
343 * same runtime type is allocated for this purpose.
344 * @return an array containing all the elements in this list
345 * @throws ArrayStoreException if the runtime type of the specified array
346 * is not a supertype of the runtime type of every element in
347 * this list
348 * @throws NullPointerException if the specified array is null
349 */
350 @SuppressWarnings("unchecked")
351 public <T> T[] toArray(T[] a) {
352 Object[] elements = getArray();
353 int len = elements.length;
354 if (a.length < len)
355 return (T[]) Arrays.copyOf(elements, len, a.getClass());
356 else {
357 System.arraycopy(elements, 0, a, 0, len);
358 if (a.length > len)
359 a[len] = null;
360 return a;
361 }
362 }
363
364 // Positional Access Operations
365
366 @SuppressWarnings("unchecked")
367 private E get(Object[] a, int index) {
368 return (E) a[index];
369 }
370
371 /**
372 * {@inheritDoc}
373 *
374 * @throws IndexOutOfBoundsException {@inheritDoc}
375 */
376 public E get(int index) {
377 return get(getArray(), index);
378 }
379
380 /**
381 * Replaces the element at the specified position in this list with the
382 * specified element.
383 *
384 * @throws IndexOutOfBoundsException {@inheritDoc}
385 */
386 public E set(int index, E element) {
387 final ReentrantLock lock = this.lock;
388 lock.lock();
389 try {
390 Object[] elements = getArray();
391 E oldValue = get(elements, index);
392
393 if (oldValue != element) {
394 int len = elements.length;
395 Object[] newElements = Arrays.copyOf(elements, len);
396 newElements[index] = element;
397 setArray(newElements);
398 } else {
399 // Not quite a no-op; ensures volatile write semantics
400 setArray(elements);
401 }
402 return oldValue;
403 } finally {
404 lock.unlock();
405 }
406 }
407
408 /**
409 * Appends the specified element to the end of this list.
410 *
411 * @param e element to be appended to this list
412 * @return {@code true} (as specified by {@link Collection#add})
413 */
414 public boolean add(E e) {
415 final ReentrantLock lock = this.lock;
416 lock.lock();
417 try {
418 Object[] elements = getArray();
419 int len = elements.length;
420 Object[] newElements = Arrays.copyOf(elements, len + 1);
421 newElements[len] = e;
422 setArray(newElements);
423 return true;
424 } finally {
425 lock.unlock();
426 }
427 }
428
429 /**
430 * Inserts the specified element at the specified position in this
431 * list. Shifts the element currently at that position (if any) and
432 * any subsequent elements to the right (adds one to their indices).
433 *
434 * @throws IndexOutOfBoundsException {@inheritDoc}
435 */
436 public void add(int index, E element) {
437 final ReentrantLock lock = this.lock;
438 lock.lock();
439 try {
440 Object[] elements = getArray();
441 int len = elements.length;
442 if (index > len || index < 0)
443 throw new IndexOutOfBoundsException("Index: "+index+
444 ", Size: "+len);
445 Object[] newElements;
446 int numMoved = len - index;
447 if (numMoved == 0)
448 newElements = Arrays.copyOf(elements, len + 1);
449 else {
450 newElements = new Object[len + 1];
451 System.arraycopy(elements, 0, newElements, 0, index);
452 System.arraycopy(elements, index, newElements, index + 1,
453 numMoved);
454 }
455 newElements[index] = element;
456 setArray(newElements);
457 } finally {
458 lock.unlock();
459 }
460 }
461
462 /**
463 * Removes the element at the specified position in this list.
464 * Shifts any subsequent elements to the left (subtracts one from their
465 * indices). Returns the element that was removed from the list.
466 *
467 * @throws IndexOutOfBoundsException {@inheritDoc}
468 */
469 public E remove(int index) {
470 final ReentrantLock lock = this.lock;
471 lock.lock();
472 try {
473 Object[] elements = getArray();
474 int len = elements.length;
475 E oldValue = get(elements, index);
476 int numMoved = len - index - 1;
477 if (numMoved == 0)
478 setArray(Arrays.copyOf(elements, len - 1));
479 else {
480 Object[] newElements = new Object[len - 1];
481 System.arraycopy(elements, 0, newElements, 0, index);
482 System.arraycopy(elements, index + 1, newElements, index,
483 numMoved);
484 setArray(newElements);
485 }
486 return oldValue;
487 } finally {
488 lock.unlock();
489 }
490 }
491
492 /**
493 * Removes the first occurrence of the specified element from this list,
494 * if it is present. If this list does not contain the element, it is
495 * unchanged. More formally, removes the element with the lowest index
496 * {@code i} such that {@code Objects.equals(o, get(i))}
497 * (if such an element exists). Returns {@code true} if this list
498 * contained the specified element (or equivalently, if this list
499 * changed as a result of the call).
500 *
501 * @param o element to be removed from this list, if present
502 * @return {@code true} if this list contained the specified element
503 */
504 public boolean remove(Object o) {
505 Object[] snapshot = getArray();
506 int index = indexOf(o, snapshot, 0, snapshot.length);
507 return (index < 0) ? false : remove(o, snapshot, index);
508 }
509
510 /**
511 * A version of remove(Object) using the strong hint that given
512 * recent snapshot contains o at the given index.
513 */
514 private boolean remove(Object o, Object[] snapshot, int index) {
515 final ReentrantLock lock = this.lock;
516 lock.lock();
517 try {
518 Object[] current = getArray();
519 int len = current.length;
520 if (snapshot != current) findIndex: {
521 int prefix = Math.min(index, len);
522 for (int i = 0; i < prefix; i++) {
523 if (current[i] != snapshot[i] && eq(o, current[i])) {
524 index = i;
525 break findIndex;
526 }
527 }
528 if (index >= len)
529 return false;
530 if (current[index] == o)
531 break findIndex;
532 index = indexOf(o, current, index, len);
533 if (index < 0)
534 return false;
535 }
536 Object[] newElements = new Object[len - 1];
537 System.arraycopy(current, 0, newElements, 0, index);
538 System.arraycopy(current, index + 1,
539 newElements, index,
540 len - index - 1);
541 setArray(newElements);
542 return true;
543 } finally {
544 lock.unlock();
545 }
546 }
547
548 /**
549 * Removes from this list all of the elements whose index is between
550 * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
551 * Shifts any succeeding elements to the left (reduces their index).
552 * This call shortens the list by {@code (toIndex - fromIndex)} elements.
553 * (If {@code toIndex==fromIndex}, this operation has no effect.)
554 *
555 * @param fromIndex index of first element to be removed
556 * @param toIndex index after last element to be removed
557 * @throws IndexOutOfBoundsException if fromIndex or toIndex out of range
558 * ({@code fromIndex < 0 || toIndex > size() || toIndex < fromIndex})
559 */
560 void removeRange(int fromIndex, int toIndex) {
561 final ReentrantLock lock = this.lock;
562 lock.lock();
563 try {
564 Object[] elements = getArray();
565 int len = elements.length;
566
567 if (fromIndex < 0 || toIndex > len || toIndex < fromIndex)
568 throw new IndexOutOfBoundsException();
569 int newlen = len - (toIndex - fromIndex);
570 int numMoved = len - toIndex;
571 if (numMoved == 0)
572 setArray(Arrays.copyOf(elements, newlen));
573 else {
574 Object[] newElements = new Object[newlen];
575 System.arraycopy(elements, 0, newElements, 0, fromIndex);
576 System.arraycopy(elements, toIndex, newElements,
577 fromIndex, numMoved);
578 setArray(newElements);
579 }
580 } finally {
581 lock.unlock();
582 }
583 }
584
585 /**
586 * Appends the element, if not present.
587 *
588 * @param e element to be added to this list, if absent
589 * @return {@code true} if the element was added
590 */
591 public boolean addIfAbsent(E e) {
592 Object[] snapshot = getArray();
593 return indexOf(e, snapshot, 0, snapshot.length) >= 0 ? false :
594 addIfAbsent(e, snapshot);
595 }
596
597 /**
598 * A version of addIfAbsent using the strong hint that given
599 * recent snapshot does not contain e.
600 */
601 private boolean addIfAbsent(E e, Object[] snapshot) {
602 final ReentrantLock lock = this.lock;
603 lock.lock();
604 try {
605 Object[] current = getArray();
606 int len = current.length;
607 if (snapshot != current) {
608 // Optimize for lost race to another addXXX operation
609 int common = Math.min(snapshot.length, len);
610 for (int i = 0; i < common; i++)
611 if (current[i] != snapshot[i] && eq(e, current[i]))
612 return false;
613 if (indexOf(e, current, common, len) >= 0)
614 return false;
615 }
616 Object[] newElements = Arrays.copyOf(current, len + 1);
617 newElements[len] = e;
618 setArray(newElements);
619 return true;
620 } finally {
621 lock.unlock();
622 }
623 }
624
625 /**
626 * Returns {@code true} if this list contains all of the elements of the
627 * specified collection.
628 *
629 * @param c collection to be checked for containment in this list
630 * @return {@code true} if this list contains all of the elements of the
631 * specified collection
632 * @throws NullPointerException if the specified collection is null
633 * @see #contains(Object)
634 */
635 public boolean containsAll(Collection<?> c) {
636 Object[] elements = getArray();
637 int len = elements.length;
638 for (Object e : c) {
639 if (indexOf(e, elements, 0, len) < 0)
640 return false;
641 }
642 return true;
643 }
644
645 /**
646 * Removes from this list all of its elements that are contained in
647 * the specified collection. This is a particularly expensive operation
648 * in this class because of the need for an internal temporary array.
649 *
650 * @param c collection containing elements to be removed from this list
651 * @return {@code true} if this list changed as a result of the call
652 * @throws ClassCastException if the class of an element of this list
653 * is incompatible with the specified collection
654 * (<a href="../Collection.html#optional-restrictions">optional</a>)
655 * @throws NullPointerException if this list contains a null element and the
656 * specified collection does not permit null elements
657 * (<a href="../Collection.html#optional-restrictions">optional</a>),
658 * or if the specified collection is null
659 * @see #remove(Object)
660 */
661 public boolean removeAll(Collection<?> c) {
662 if (c == null) throw new NullPointerException();
663 final ReentrantLock lock = this.lock;
664 lock.lock();
665 try {
666 Object[] elements = getArray();
667 int len = elements.length;
668 if (len != 0) {
669 // temp array holds those elements we know we want to keep
670 int newlen = 0;
671 Object[] temp = new Object[len];
672 for (int i = 0; i < len; ++i) {
673 Object element = elements[i];
674 if (!c.contains(element))
675 temp[newlen++] = element;
676 }
677 if (newlen != len) {
678 setArray(Arrays.copyOf(temp, newlen));
679 return true;
680 }
681 }
682 return false;
683 } finally {
684 lock.unlock();
685 }
686 }
687
688 /**
689 * Retains only the elements in this list that are contained in the
690 * specified collection. In other words, removes from this list all of
691 * its elements that are not contained in the specified collection.
692 *
693 * @param c collection containing elements to be retained in this list
694 * @return {@code true} if this list changed as a result of the call
695 * @throws ClassCastException if the class of an element of this list
696 * is incompatible with the specified collection
697 * (<a href="../Collection.html#optional-restrictions">optional</a>)
698 * @throws NullPointerException if this list contains a null element and the
699 * specified collection does not permit null elements
700 * (<a href="../Collection.html#optional-restrictions">optional</a>),
701 * or if the specified collection is null
702 * @see #remove(Object)
703 */
704 public boolean retainAll(Collection<?> c) {
705 if (c == null) throw new NullPointerException();
706 final ReentrantLock lock = this.lock;
707 lock.lock();
708 try {
709 Object[] elements = getArray();
710 int len = elements.length;
711 if (len != 0) {
712 // temp array holds those elements we know we want to keep
713 int newlen = 0;
714 Object[] temp = new Object[len];
715 for (int i = 0; i < len; ++i) {
716 Object element = elements[i];
717 if (c.contains(element))
718 temp[newlen++] = element;
719 }
720 if (newlen != len) {
721 setArray(Arrays.copyOf(temp, newlen));
722 return true;
723 }
724 }
725 return false;
726 } finally {
727 lock.unlock();
728 }
729 }
730
731 /**
732 * Appends all of the elements in the specified collection that
733 * are not already contained in this list, to the end of
734 * this list, in the order that they are returned by the
735 * specified collection's iterator.
736 *
737 * @param c collection containing elements to be added to this list
738 * @return the number of elements added
739 * @throws NullPointerException if the specified collection is null
740 * @see #addIfAbsent(Object)
741 */
742 public int addAllAbsent(Collection<? extends E> c) {
743 Object[] cs = c.toArray();
744 if (cs.length == 0)
745 return 0;
746 final ReentrantLock lock = this.lock;
747 lock.lock();
748 try {
749 Object[] elements = getArray();
750 int len = elements.length;
751 int added = 0;
752 // uniquify and compact elements in cs
753 for (int i = 0; i < cs.length; ++i) {
754 Object e = cs[i];
755 if (indexOf(e, elements, 0, len) < 0 &&
756 indexOf(e, cs, 0, added) < 0)
757 cs[added++] = e;
758 }
759 if (added > 0) {
760 Object[] newElements = Arrays.copyOf(elements, len + added);
761 System.arraycopy(cs, 0, newElements, len, added);
762 setArray(newElements);
763 }
764 return added;
765 } finally {
766 lock.unlock();
767 }
768 }
769
770 /**
771 * Removes all of the elements from this list.
772 * The list will be empty after this call returns.
773 */
774 public void clear() {
775 final ReentrantLock lock = this.lock;
776 lock.lock();
777 try {
778 setArray(new Object[0]);
779 } finally {
780 lock.unlock();
781 }
782 }
783
784 /**
785 * Appends all of the elements in the specified collection to the end
786 * of this list, in the order that they are returned by the specified
787 * collection's iterator.
788 *
789 * @param c collection containing elements to be added to this list
790 * @return {@code true} if this list changed as a result of the call
791 * @throws NullPointerException if the specified collection is null
792 * @see #add(Object)
793 */
794 public boolean addAll(Collection<? extends E> c) {
795 Object[] cs = (c.getClass() == CopyOnWriteArrayList.class) ?
796 ((CopyOnWriteArrayList<?>)c).getArray() : c.toArray();
797 if (cs.length == 0)
798 return false;
799 final ReentrantLock lock = this.lock;
800 lock.lock();
801 try {
802 Object[] elements = getArray();
803 int len = elements.length;
804 if (len == 0 && cs.getClass() == Object[].class)
805 setArray(cs);
806 else {
807 Object[] newElements = Arrays.copyOf(elements, len + cs.length);
808 System.arraycopy(cs, 0, newElements, len, cs.length);
809 setArray(newElements);
810 }
811 return true;
812 } finally {
813 lock.unlock();
814 }
815 }
816
817 /**
818 * Inserts all of the elements in the specified collection into this
819 * list, starting at the specified position. Shifts the element
820 * currently at that position (if any) and any subsequent elements to
821 * the right (increases their indices). The new elements will appear
822 * in this list in the order that they are returned by the
823 * specified collection's iterator.
824 *
825 * @param index index at which to insert the first element
826 * from the specified collection
827 * @param c collection containing elements to be added to this list
828 * @return {@code true} if this list changed as a result of the call
829 * @throws IndexOutOfBoundsException {@inheritDoc}
830 * @throws NullPointerException if the specified collection is null
831 * @see #add(int,Object)
832 */
833 public boolean addAll(int index, Collection<? extends E> c) {
834 Object[] cs = c.toArray();
835 final ReentrantLock lock = this.lock;
836 lock.lock();
837 try {
838 Object[] elements = getArray();
839 int len = elements.length;
840 if (index > len || index < 0)
841 throw new IndexOutOfBoundsException("Index: "+index+
842 ", Size: "+len);
843 if (cs.length == 0)
844 return false;
845 int numMoved = len - index;
846 Object[] newElements;
847 if (numMoved == 0)
848 newElements = Arrays.copyOf(elements, len + cs.length);
849 else {
850 newElements = new Object[len + cs.length];
851 System.arraycopy(elements, 0, newElements, 0, index);
852 System.arraycopy(elements, index,
853 newElements, index + cs.length,
854 numMoved);
855 }
856 System.arraycopy(cs, 0, newElements, index, cs.length);
857 setArray(newElements);
858 return true;
859 } finally {
860 lock.unlock();
861 }
862 }
863
864 public void forEach(Consumer<? super E> action) {
865 if (action == null) throw new NullPointerException();
866 Object[] elements = getArray();
867 int len = elements.length;
868 for (int i = 0; i < len; ++i) {
869 @SuppressWarnings("unchecked") E e = (E) elements[i];
870 action.accept(e);
871 }
872 }
873
874 public boolean removeIf(Predicate<? super E> filter) {
875 if (filter == null) throw new NullPointerException();
876 final ReentrantLock lock = this.lock;
877 lock.lock();
878 try {
879 Object[] elements = getArray();
880 int len = elements.length;
881 if (len != 0) {
882 int newlen = 0;
883 Object[] temp = new Object[len];
884 for (int i = 0; i < len; ++i) {
885 @SuppressWarnings("unchecked") E e = (E) elements[i];
886 if (!filter.test(e))
887 temp[newlen++] = e;
888 }
889 if (newlen != len) {
890 setArray(Arrays.copyOf(temp, newlen));
891 return true;
892 }
893 }
894 return false;
895 } finally {
896 lock.unlock();
897 }
898 }
899
900 public void replaceAll(UnaryOperator<E> operator) {
901 if (operator == null) throw new NullPointerException();
902 final ReentrantLock lock = this.lock;
903 lock.lock();
904 try {
905 Object[] elements = getArray();
906 int len = elements.length;
907 Object[] newElements = Arrays.copyOf(elements, len);
908 for (int i = 0; i < len; ++i) {
909 @SuppressWarnings("unchecked") E e = (E) elements[i];
910 newElements[i] = operator.apply(e);
911 }
912 setArray(newElements);
913 } finally {
914 lock.unlock();
915 }
916 }
917
918 public void sort(Comparator<? super E> c) {
919 final ReentrantLock lock = this.lock;
920 lock.lock();
921 try {
922 Object[] elements = getArray();
923 Object[] newElements = Arrays.copyOf(elements, elements.length);
924 @SuppressWarnings("unchecked") E[] es = (E[])newElements;
925 Arrays.sort(es, c);
926 setArray(newElements);
927 } finally {
928 lock.unlock();
929 }
930 }
931
932 /**
933 * Saves this list to a stream (that is, serializes it).
934 *
935 * @param s the stream
936 * @throws java.io.IOException if an I/O error occurs
937 * @serialData The length of the array backing the list is emitted
938 * (int), followed by all of its elements (each an Object)
939 * in the proper order.
940 */
941 private void writeObject(java.io.ObjectOutputStream s)
942 throws java.io.IOException {
943
944 s.defaultWriteObject();
945
946 Object[] elements = getArray();
947 // Write out array length
948 s.writeInt(elements.length);
949
950 // Write out all elements in the proper order.
951 for (Object element : elements)
952 s.writeObject(element);
953 }
954
955 /**
956 * Reconstitutes this list from a stream (that is, deserializes it).
957 * @param s the stream
958 * @throws ClassNotFoundException if the class of a serialized object
959 * could not be found
960 * @throws java.io.IOException if an I/O error occurs
961 */
962 private void readObject(java.io.ObjectInputStream s)
963 throws java.io.IOException, ClassNotFoundException {
964
965 s.defaultReadObject();
966
967 // bind to new lock
968 resetLock();
969
970 // Read in array length and allocate array
971 int len = s.readInt();
972 Object[] elements = new Object[len];
973
974 // Read in all elements in the proper order.
975 for (int i = 0; i < len; i++)
976 elements[i] = s.readObject();
977 setArray(elements);
978 }
979
980 /**
981 * Returns a string representation of this list. The string
982 * representation consists of the string representations of the list's
983 * elements in the order they are returned by its iterator, enclosed in
984 * square brackets ({@code "[]"}). Adjacent elements are separated by
985 * the characters {@code ", "} (comma and space). Elements are
986 * converted to strings as by {@link String#valueOf(Object)}.
987 *
988 * @return a string representation of this list
989 */
990 public String toString() {
991 return Arrays.toString(getArray());
992 }
993
994 /**
995 * Compares the specified object with this list for equality.
996 * Returns {@code true} if the specified object is the same object
997 * as this object, or if it is also a {@link List} and the sequence
998 * of elements returned by an {@linkplain List#iterator() iterator}
999 * over the specified list is the same as the sequence returned by
1000 * an iterator over this list. The two sequences are considered to
1001 * be the same if they have the same length and corresponding
1002 * elements at the same position in the sequence are <em>equal</em>.
1003 * Two elements {@code e1} and {@code e2} are considered
1004 * <em>equal</em> if {@code Objects.equals(e1, e2)}.
1005 *
1006 * @param o the object to be compared for equality with this list
1007 * @return {@code true} if the specified object is equal to this list
1008 */
1009 public boolean equals(Object o) {
1010 if (o == this)
1011 return true;
1012 if (!(o instanceof List))
1013 return false;
1014
1015 List<?> list = (List<?>)(o);
1016 Iterator<?> it = list.iterator();
1017 Object[] elements = getArray();
1018 int len = elements.length;
1019 for (int i = 0; i < len; ++i)
1020 if (!it.hasNext() || !eq(elements[i], it.next()))
1021 return false;
1022 if (it.hasNext())
1023 return false;
1024 return true;
1025 }
1026
1027 /**
1028 * Returns the hash code value for this list.
1029 *
1030 * <p>This implementation uses the definition in {@link List#hashCode}.
1031 *
1032 * @return the hash code value for this list
1033 */
1034 public int hashCode() {
1035 int hashCode = 1;
1036 Object[] elements = getArray();
1037 int len = elements.length;
1038 for (int i = 0; i < len; ++i) {
1039 Object obj = elements[i];
1040 hashCode = 31*hashCode + (obj==null ? 0 : obj.hashCode());
1041 }
1042 return hashCode;
1043 }
1044
1045 /**
1046 * Returns an iterator over the elements in this list in proper sequence.
1047 *
1048 * <p>The returned iterator provides a snapshot of the state of the list
1049 * when the iterator was constructed. No synchronization is needed while
1050 * traversing the iterator. The iterator does <em>NOT</em> support the
1051 * {@code remove} method.
1052 *
1053 * @return an iterator over the elements in this list in proper sequence
1054 */
1055 public Iterator<E> iterator() {
1056 return new COWIterator<E>(getArray(), 0);
1057 }
1058
1059 /**
1060 * {@inheritDoc}
1061 *
1062 * <p>The returned iterator provides a snapshot of the state of the list
1063 * when the iterator was constructed. No synchronization is needed while
1064 * traversing the iterator. The iterator does <em>NOT</em> support the
1065 * {@code remove}, {@code set} or {@code add} methods.
1066 */
1067 public ListIterator<E> listIterator() {
1068 return new COWIterator<E>(getArray(), 0);
1069 }
1070
1071 /**
1072 * {@inheritDoc}
1073 *
1074 * <p>The returned iterator provides a snapshot of the state of the list
1075 * when the iterator was constructed. No synchronization is needed while
1076 * traversing the iterator. The iterator does <em>NOT</em> support the
1077 * {@code remove}, {@code set} or {@code add} methods.
1078 *
1079 * @throws IndexOutOfBoundsException {@inheritDoc}
1080 */
1081 public ListIterator<E> listIterator(int index) {
1082 Object[] elements = getArray();
1083 int len = elements.length;
1084 if (index < 0 || index > len)
1085 throw new IndexOutOfBoundsException("Index: "+index);
1086
1087 return new COWIterator<E>(elements, index);
1088 }
1089
1090 /**
1091 * Returns a {@link Spliterator} over the elements in this list.
1092 *
1093 * <p>The {@code Spliterator} reports {@link Spliterator#IMMUTABLE},
1094 * {@link Spliterator#ORDERED}, {@link Spliterator#SIZED}, and
1095 * {@link Spliterator#SUBSIZED}.
1096 *
1097 * <p>The spliterator provides a snapshot of the state of the list
1098 * when the spliterator was constructed. No synchronization is needed while
1099 * operating on the spliterator. The spliterator does <em>NOT</em> support
1100 * the {@code remove}, {@code set} or {@code add} methods.
1101 *
1102 * @return a {@code Spliterator} over the elements in this list
1103 * @since 1.8
1104 */
1105 public Spliterator<E> spliterator() {
1106 return Spliterators.spliterator
1107 (getArray(), Spliterator.IMMUTABLE | Spliterator.ORDERED);
1108 }
1109
1110 static final class COWIterator<E> implements ListIterator<E> {
1111 /** Snapshot of the array */
1112 private final Object[] snapshot;
1113 /** Index of element to be returned by subsequent call to next. */
1114 private int cursor;
1115
1116 private COWIterator(Object[] elements, int initialCursor) {
1117 cursor = initialCursor;
1118 snapshot = elements;
1119 }
1120
1121 public boolean hasNext() {
1122 return cursor < snapshot.length;
1123 }
1124
1125 public boolean hasPrevious() {
1126 return cursor > 0;
1127 }
1128
1129 @SuppressWarnings("unchecked")
1130 public E next() {
1131 if (! hasNext())
1132 throw new NoSuchElementException();
1133 return (E) snapshot[cursor++];
1134 }
1135
1136 @SuppressWarnings("unchecked")
1137 public E previous() {
1138 if (! hasPrevious())
1139 throw new NoSuchElementException();
1140 return (E) snapshot[--cursor];
1141 }
1142
1143 public int nextIndex() {
1144 return cursor;
1145 }
1146
1147 public int previousIndex() {
1148 return cursor-1;
1149 }
1150
1151 /**
1152 * Not supported. Always throws UnsupportedOperationException.
1153 * @throws UnsupportedOperationException always; {@code remove}
1154 * is not supported by this iterator.
1155 */
1156 public void remove() {
1157 throw new UnsupportedOperationException();
1158 }
1159
1160 /**
1161 * Not supported. Always throws UnsupportedOperationException.
1162 * @throws UnsupportedOperationException always; {@code set}
1163 * is not supported by this iterator.
1164 */
1165 public void set(E e) {
1166 throw new UnsupportedOperationException();
1167 }
1168
1169 /**
1170 * Not supported. Always throws UnsupportedOperationException.
1171 * @throws UnsupportedOperationException always; {@code add}
1172 * is not supported by this iterator.
1173 */
1174 public void add(E e) {
1175 throw new UnsupportedOperationException();
1176 }
1177 }
1178
1179 /**
1180 * Returns a view of the portion of this list between
1181 * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
1182 * The returned list is backed by this list, so changes in the
1183 * returned list are reflected in this list.
1184 *
1185 * <p>The semantics of the list returned by this method become
1186 * undefined if the backing list (i.e., this list) is modified in
1187 * any way other than via the returned list.
1188 *
1189 * @param fromIndex low endpoint (inclusive) of the subList
1190 * @param toIndex high endpoint (exclusive) of the subList
1191 * @return a view of the specified range within this list
1192 * @throws IndexOutOfBoundsException {@inheritDoc}
1193 */
1194 public List<E> subList(int fromIndex, int toIndex) {
1195 final ReentrantLock lock = this.lock;
1196 lock.lock();
1197 try {
1198 Object[] elements = getArray();
1199 int len = elements.length;
1200 if (fromIndex < 0 || toIndex > len || fromIndex > toIndex)
1201 throw new IndexOutOfBoundsException();
1202 return new COWSubList<E>(this, fromIndex, toIndex);
1203 } finally {
1204 lock.unlock();
1205 }
1206 }
1207
1208 /**
1209 * Sublist for CopyOnWriteArrayList.
1210 * This class extends AbstractList merely for convenience, to
1211 * avoid having to define addAll, etc. This doesn't hurt, but
1212 * is wasteful. This class does not need or use modCount
1213 * mechanics in AbstractList, but does need to check for
1214 * concurrent modification using similar mechanics. On each
1215 * operation, the array that we expect the backing list to use
1216 * is checked and updated. Since we do this for all of the
1217 * base operations invoked by those defined in AbstractList,
1218 * all is well. While inefficient, this is not worth
1219 * improving. The kinds of list operations inherited from
1220 * AbstractList are already so slow on COW sublists that
1221 * adding a bit more space/time doesn't seem even noticeable.
1222 */
1223 private static class COWSubList<E>
1224 extends AbstractList<E>
1225 implements RandomAccess
1226 {
1227 private final CopyOnWriteArrayList<E> l;
1228 private final int offset;
1229 private int size;
1230 private Object[] expectedArray;
1231
1232 // only call this holding l's lock
1233 COWSubList(CopyOnWriteArrayList<E> list,
1234 int fromIndex, int toIndex) {
1235 l = list;
1236 expectedArray = l.getArray();
1237 offset = fromIndex;
1238 size = toIndex - fromIndex;
1239 }
1240
1241 // only call this holding l's lock
1242 private void checkForComodification() {
1243 if (l.getArray() != expectedArray)
1244 throw new ConcurrentModificationException();
1245 }
1246
1247 // only call this holding l's lock
1248 private void rangeCheck(int index) {
1249 if (index < 0 || index >= size)
1250 throw new IndexOutOfBoundsException("Index: "+index+
1251 ",Size: "+size);
1252 }
1253
1254 public E set(int index, E element) {
1255 final ReentrantLock lock = l.lock;
1256 lock.lock();
1257 try {
1258 rangeCheck(index);
1259 checkForComodification();
1260 E x = l.set(index+offset, element);
1261 expectedArray = l.getArray();
1262 return x;
1263 } finally {
1264 lock.unlock();
1265 }
1266 }
1267
1268 public E get(int index) {
1269 final ReentrantLock lock = l.lock;
1270 lock.lock();
1271 try {
1272 rangeCheck(index);
1273 checkForComodification();
1274 return l.get(index+offset);
1275 } finally {
1276 lock.unlock();
1277 }
1278 }
1279
1280 public int size() {
1281 final ReentrantLock lock = l.lock;
1282 lock.lock();
1283 try {
1284 checkForComodification();
1285 return size;
1286 } finally {
1287 lock.unlock();
1288 }
1289 }
1290
1291 public void add(int index, E element) {
1292 final ReentrantLock lock = l.lock;
1293 lock.lock();
1294 try {
1295 checkForComodification();
1296 if (index < 0 || index > size)
1297 throw new IndexOutOfBoundsException();
1298 l.add(index+offset, element);
1299 expectedArray = l.getArray();
1300 size++;
1301 } finally {
1302 lock.unlock();
1303 }
1304 }
1305
1306 public void clear() {
1307 final ReentrantLock lock = l.lock;
1308 lock.lock();
1309 try {
1310 checkForComodification();
1311 l.removeRange(offset, offset+size);
1312 expectedArray = l.getArray();
1313 size = 0;
1314 } finally {
1315 lock.unlock();
1316 }
1317 }
1318
1319 public E remove(int index) {
1320 final ReentrantLock lock = l.lock;
1321 lock.lock();
1322 try {
1323 rangeCheck(index);
1324 checkForComodification();
1325 E result = l.remove(index+offset);
1326 expectedArray = l.getArray();
1327 size--;
1328 return result;
1329 } finally {
1330 lock.unlock();
1331 }
1332 }
1333
1334 public boolean remove(Object o) {
1335 int index = indexOf(o);
1336 if (index == -1)
1337 return false;
1338 remove(index);
1339 return true;
1340 }
1341
1342 public Iterator<E> iterator() {
1343 final ReentrantLock lock = l.lock;
1344 lock.lock();
1345 try {
1346 checkForComodification();
1347 return new COWSubListIterator<E>(l, 0, offset, size);
1348 } finally {
1349 lock.unlock();
1350 }
1351 }
1352
1353 public ListIterator<E> listIterator(int index) {
1354 final ReentrantLock lock = l.lock;
1355 lock.lock();
1356 try {
1357 checkForComodification();
1358 if (index < 0 || index > size)
1359 throw new IndexOutOfBoundsException("Index: "+index+
1360 ", Size: "+size);
1361 return new COWSubListIterator<E>(l, index, offset, size);
1362 } finally {
1363 lock.unlock();
1364 }
1365 }
1366
1367 public List<E> subList(int fromIndex, int toIndex) {
1368 final ReentrantLock lock = l.lock;
1369 lock.lock();
1370 try {
1371 checkForComodification();
1372 if (fromIndex < 0 || toIndex > size || fromIndex > toIndex)
1373 throw new IndexOutOfBoundsException();
1374 return new COWSubList<E>(l, fromIndex + offset,
1375 toIndex + offset);
1376 } finally {
1377 lock.unlock();
1378 }
1379 }
1380
1381 public void forEach(Consumer<? super E> action) {
1382 if (action == null) throw new NullPointerException();
1383 int lo = offset;
1384 int hi = offset + size;
1385 Object[] a = expectedArray;
1386 if (l.getArray() != a)
1387 throw new ConcurrentModificationException();
1388 if (lo < 0 || hi > a.length)
1389 throw new IndexOutOfBoundsException();
1390 for (int i = lo; i < hi; ++i) {
1391 @SuppressWarnings("unchecked") E e = (E) a[i];
1392 action.accept(e);
1393 }
1394 }
1395
1396 public void replaceAll(UnaryOperator<E> operator) {
1397 if (operator == null) throw new NullPointerException();
1398 final ReentrantLock lock = l.lock;
1399 lock.lock();
1400 try {
1401 int lo = offset;
1402 int hi = offset + size;
1403 Object[] elements = expectedArray;
1404 if (l.getArray() != elements)
1405 throw new ConcurrentModificationException();
1406 int len = elements.length;
1407 if (lo < 0 || hi > len)
1408 throw new IndexOutOfBoundsException();
1409 Object[] newElements = Arrays.copyOf(elements, len);
1410 for (int i = lo; i < hi; ++i) {
1411 @SuppressWarnings("unchecked") E e = (E) elements[i];
1412 newElements[i] = operator.apply(e);
1413 }
1414 l.setArray(expectedArray = newElements);
1415 } finally {
1416 lock.unlock();
1417 }
1418 }
1419
1420 public void sort(Comparator<? super E> c) {
1421 final ReentrantLock lock = l.lock;
1422 lock.lock();
1423 try {
1424 int lo = offset;
1425 int hi = offset + size;
1426 Object[] elements = expectedArray;
1427 if (l.getArray() != elements)
1428 throw new ConcurrentModificationException();
1429 int len = elements.length;
1430 if (lo < 0 || hi > len)
1431 throw new IndexOutOfBoundsException();
1432 Object[] newElements = Arrays.copyOf(elements, len);
1433 @SuppressWarnings("unchecked") E[] es = (E[])newElements;
1434 Arrays.sort(es, lo, hi, c);
1435 l.setArray(expectedArray = newElements);
1436 } finally {
1437 lock.unlock();
1438 }
1439 }
1440
1441 public boolean removeAll(Collection<?> c) {
1442 if (c == null) throw new NullPointerException();
1443 boolean removed = false;
1444 final ReentrantLock lock = l.lock;
1445 lock.lock();
1446 try {
1447 int n = size;
1448 if (n > 0) {
1449 int lo = offset;
1450 int hi = offset + n;
1451 Object[] elements = expectedArray;
1452 if (l.getArray() != elements)
1453 throw new ConcurrentModificationException();
1454 int len = elements.length;
1455 if (lo < 0 || hi > len)
1456 throw new IndexOutOfBoundsException();
1457 int newSize = 0;
1458 Object[] temp = new Object[n];
1459 for (int i = lo; i < hi; ++i) {
1460 Object element = elements[i];
1461 if (!c.contains(element))
1462 temp[newSize++] = element;
1463 }
1464 if (newSize != n) {
1465 Object[] newElements = new Object[len - n + newSize];
1466 System.arraycopy(elements, 0, newElements, 0, lo);
1467 System.arraycopy(temp, 0, newElements, lo, newSize);
1468 System.arraycopy(elements, hi, newElements,
1469 lo + newSize, len - hi);
1470 size = newSize;
1471 removed = true;
1472 l.setArray(expectedArray = newElements);
1473 }
1474 }
1475 } finally {
1476 lock.unlock();
1477 }
1478 return removed;
1479 }
1480
1481 public boolean retainAll(Collection<?> c) {
1482 if (c == null) throw new NullPointerException();
1483 boolean removed = false;
1484 final ReentrantLock lock = l.lock;
1485 lock.lock();
1486 try {
1487 int n = size;
1488 if (n > 0) {
1489 int lo = offset;
1490 int hi = offset + n;
1491 Object[] elements = expectedArray;
1492 if (l.getArray() != elements)
1493 throw new ConcurrentModificationException();
1494 int len = elements.length;
1495 if (lo < 0 || hi > len)
1496 throw new IndexOutOfBoundsException();
1497 int newSize = 0;
1498 Object[] temp = new Object[n];
1499 for (int i = lo; i < hi; ++i) {
1500 Object element = elements[i];
1501 if (c.contains(element))
1502 temp[newSize++] = element;
1503 }
1504 if (newSize != n) {
1505 Object[] newElements = new Object[len - n + newSize];
1506 System.arraycopy(elements, 0, newElements, 0, lo);
1507 System.arraycopy(temp, 0, newElements, lo, newSize);
1508 System.arraycopy(elements, hi, newElements,
1509 lo + newSize, len - hi);
1510 size = newSize;
1511 removed = true;
1512 l.setArray(expectedArray = newElements);
1513 }
1514 }
1515 } finally {
1516 lock.unlock();
1517 }
1518 return removed;
1519 }
1520
1521 public boolean removeIf(Predicate<? super E> filter) {
1522 if (filter == null) throw new NullPointerException();
1523 boolean removed = false;
1524 final ReentrantLock lock = l.lock;
1525 lock.lock();
1526 try {
1527 int n = size;
1528 if (n > 0) {
1529 int lo = offset;
1530 int hi = offset + n;
1531 Object[] elements = expectedArray;
1532 if (l.getArray() != elements)
1533 throw new ConcurrentModificationException();
1534 int len = elements.length;
1535 if (lo < 0 || hi > len)
1536 throw new IndexOutOfBoundsException();
1537 int newSize = 0;
1538 Object[] temp = new Object[n];
1539 for (int i = lo; i < hi; ++i) {
1540 @SuppressWarnings("unchecked") E e = (E) elements[i];
1541 if (!filter.test(e))
1542 temp[newSize++] = e;
1543 }
1544 if (newSize != n) {
1545 Object[] newElements = new Object[len - n + newSize];
1546 System.arraycopy(elements, 0, newElements, 0, lo);
1547 System.arraycopy(temp, 0, newElements, lo, newSize);
1548 System.arraycopy(elements, hi, newElements,
1549 lo + newSize, len - hi);
1550 size = newSize;
1551 removed = true;
1552 l.setArray(expectedArray = newElements);
1553 }
1554 }
1555 } finally {
1556 lock.unlock();
1557 }
1558 return removed;
1559 }
1560
1561 public Spliterator<E> spliterator() {
1562 int lo = offset;
1563 int hi = offset + size;
1564 Object[] a = expectedArray;
1565 if (l.getArray() != a)
1566 throw new ConcurrentModificationException();
1567 if (lo < 0 || hi > a.length)
1568 throw new IndexOutOfBoundsException();
1569 return Spliterators.spliterator
1570 (a, lo, hi, Spliterator.IMMUTABLE | Spliterator.ORDERED);
1571 }
1572
1573 }
1574
1575 private static class COWSubListIterator<E> implements ListIterator<E> {
1576 private final ListIterator<E> it;
1577 private final int offset;
1578 private final int size;
1579
1580 COWSubListIterator(List<E> l, int index, int offset, int size) {
1581 this.offset = offset;
1582 this.size = size;
1583 it = l.listIterator(index+offset);
1584 }
1585
1586 public boolean hasNext() {
1587 return nextIndex() < size;
1588 }
1589
1590 public E next() {
1591 if (hasNext())
1592 return it.next();
1593 else
1594 throw new NoSuchElementException();
1595 }
1596
1597 public boolean hasPrevious() {
1598 return previousIndex() >= 0;
1599 }
1600
1601 public E previous() {
1602 if (hasPrevious())
1603 return it.previous();
1604 else
1605 throw new NoSuchElementException();
1606 }
1607
1608 public int nextIndex() {
1609 return it.nextIndex() - offset;
1610 }
1611
1612 public int previousIndex() {
1613 return it.previousIndex() - offset;
1614 }
1615
1616 public void remove() {
1617 throw new UnsupportedOperationException();
1618 }
1619
1620 public void set(E e) {
1621 throw new UnsupportedOperationException();
1622 }
1623
1624 public void add(E e) {
1625 throw new UnsupportedOperationException();
1626 }
1627 }
1628
1629 // Support for resetting lock while deserializing
1630 private void resetLock() {
1631 UNSAFE.putObjectVolatile(this, lockOffset, new ReentrantLock());
1632 }
1633 private static final sun.misc.Unsafe UNSAFE;
1634 private static final long lockOffset;
1635 static {
1636 try {
1637 UNSAFE = sun.misc.Unsafe.getUnsafe();
1638 Class<?> k = CopyOnWriteArrayList.class;
1639 lockOffset = UNSAFE.objectFieldOffset
1640 (k.getDeclaredField("lock"));
1641 } catch (Exception e) {
1642 throw new Error(e);
1643 }
1644 }
1645 }