ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/CountDownLatch.java
Revision: 1.14
Committed: Tue Dec 23 19:38:09 2003 UTC (20 years, 5 months ago) by dl
Branch: MAIN
Changes since 1.13: +4 -0 lines
Log Message:
cache finals across volatiles; avoid readResolve; doc improvments; timed invokeAll interleaves

File Contents

# User Rev Content
1 dl 1.2 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain. Use, modify, and
4     * redistribute this code in any way without acknowledgement.
5     */
6    
7 tim 1.1 package java.util.concurrent;
8 dl 1.6 import java.util.concurrent.locks.*;
9 tim 1.1
10     /**
11 brian 1.4 * A synchronization aid that allows one or more threads to wait until
12     * a set of operations being performed in other threads completes.
13 dl 1.3 *
14     * <p>A <tt>CountDownLatch</tt> is initialized with a given
15 dholmes 1.9 * <em>count</em>. The {@link #await await} methods block until the current
16 dl 1.3 * {@link #getCount count} reaches zero due to invocations of the
17     * {@link #countDown} method, after which all waiting threads are
18 dholmes 1.9 * released and any subsequent invocations of {@link #await await} return
19 dl 1.3 * immediately. This is a one-shot phenomenon -- the count cannot be
20     * reset. If you need a version that resets the count, consider using
21     * a {@link CyclicBarrier}.
22 tim 1.1 *
23     * <p>A <tt>CountDownLatch</tt> is a versatile synchronization tool
24 dl 1.5 * and can be used for a number of purposes. A
25     * <tt>CountDownLatch</tt> initialized with a count of one serves as a
26 dholmes 1.9 * simple on/off latch, or gate: all threads invoking {@link #await await}
27 dl 1.5 * wait at the gate until it is opened by a thread invoking {@link
28     * #countDown}. A <tt>CountDownLatch</tt> initialized to <em>N</em>
29     * can be used to make one thread wait until <em>N</em> threads have
30     * completed some action, or some action has been completed N times.
31     * <p>A useful property of a <tt>CountDownLatch</tt> is that it
32     * doesn't require that threads calling <tt>countDown</tt> wait for
33     * the count to reach zero before proceeding, it simply prevents any
34 dholmes 1.9 * thread from proceeding past an {@link #await await} until all
35 dl 1.5 * threads could pass.
36 tim 1.1 *
37     * <p><b>Sample usage:</b> Here is a pair of classes in which a group
38     * of worker threads use two countdown latches:
39     * <ul>
40 dholmes 1.9 * <li>The first is a start signal that prevents any worker from proceeding
41 tim 1.1 * until the driver is ready for them to proceed;
42 dholmes 1.9 * <li>The second is a completion signal that allows the driver to wait
43 tim 1.1 * until all workers have completed.
44     * </ul>
45     *
46     * <pre>
47     * class Driver { // ...
48     * void main() throws InterruptedException {
49     * CountDownLatch startSignal = new CountDownLatch(1);
50     * CountDownLatch doneSignal = new CountDownLatch(N);
51     *
52     * for (int i = 0; i < N; ++i) // create and start threads
53     * new Thread(new Worker(startSignal, doneSignal)).start();
54     *
55     * doSomethingElse(); // don't let run yet
56     * startSignal.countDown(); // let all threads proceed
57     * doSomethingElse();
58     * doneSignal.await(); // wait for all to finish
59     * }
60     * }
61     *
62     * class Worker implements Runnable {
63     * private final CountDownLatch startSignal;
64     * private final CountDownLatch doneSignal;
65     * Worker(CountDownLatch startSignal, CountDownLatch doneSignal) {
66     * this.startSignal = startSignal;
67     * this.doneSignal = doneSignal;
68     * }
69     * public void run() {
70     * try {
71     * startSignal.await();
72     * doWork();
73     * doneSignal.countDown();
74 tim 1.7 * } catch (InterruptedException ex) {} // return;
75 tim 1.1 * }
76     *
77     * void doWork() { ... }
78     * }
79     *
80     * </pre>
81     *
82 dl 1.5 * <p>Another typical usage would be to divide a problem into N parts,
83     * describe each part with a Runnable that executes that portion and
84     * counts down on the latch, and queue all the Runnables to an
85     * Executor. When all sub-parts are complete, the coordinating thread
86 dl 1.13 * will be able to pass through await. (When threads must repeatedly
87     * count down in this way, instead use a {@link CyclicBarrier}.)
88 brian 1.4 *
89     * <pre>
90     * class Driver2 { // ...
91     * void main() throws InterruptedException {
92     * CountDownLatch doneSignal = new CountDownLatch(N);
93     * Executor e = ...
94     *
95     * for (int i = 0; i < N; ++i) // create and start threads
96     * e.execute(new WorkerRunnable(doneSignal, i));
97     *
98     * doneSignal.await(); // wait for all to finish
99     * }
100     * }
101     *
102     * class WorkerRunnable implements Runnable {
103     * private final CountDownLatch doneSignal;
104     * private final int i;
105 dl 1.13 * WorkerRunnable(CountDownLatch doneSignal, int i) {
106 brian 1.4 * this.doneSignal = doneSignal;
107     * this.i = i;
108     * }
109     * public void run() {
110     * try {
111     * doWork(i);
112     * doneSignal.countDown();
113 tim 1.7 * } catch (InterruptedException ex) {} // return;
114 brian 1.4 * }
115     *
116     * void doWork() { ... }
117     * }
118     *
119     * </pre>
120     *
121 tim 1.1 * @since 1.5
122 dl 1.5 * @author Doug Lea
123 tim 1.1 */
124     public class CountDownLatch {
125 dl 1.2 private final ReentrantLock lock = new ReentrantLock();
126 dl 1.12 private final ReentrantLock.ConditionObject zero = lock.newCondition();
127 dl 1.2 private int count;
128 tim 1.1
129     /**
130     * Constructs a <tt>CountDownLatch</tt> initialized with the given
131     * count.
132     *
133     * @param count the number of times {@link #countDown} must be invoked
134     * before threads can pass through {@link #await}.
135     *
136 dl 1.2 * @throws IllegalArgumentException if <tt>count</tt> is less than zero.
137 tim 1.1 */
138 dl 1.2 public CountDownLatch(int count) {
139     if (count < 0) throw new IllegalArgumentException("count < 0");
140     this.count = count;
141     }
142 tim 1.1
143     /**
144     * Causes the current thread to wait until the latch has counted down to
145     * zero, unless the thread is {@link Thread#interrupt interrupted}.
146     *
147     * <p>If the current {@link #getCount count} is zero then this method
148     * returns immediately.
149     * <p>If the current {@link #getCount count} is greater than zero then
150     * the current thread becomes disabled for thread scheduling
151     * purposes and lies dormant until one of two things happen:
152     * <ul>
153 dholmes 1.9 * <li>The count reaches zero due to invocations of the
154 tim 1.1 * {@link #countDown} method; or
155 dholmes 1.9 * <li>Some other thread {@link Thread#interrupt interrupts} the current
156 tim 1.1 * thread.
157     * </ul>
158     * <p>If the current thread:
159     * <ul>
160     * <li>has its interrupted status set on entry to this method; or
161     * <li>is {@link Thread#interrupt interrupted} while waiting,
162     * </ul>
163     * then {@link InterruptedException} is thrown and the current thread's
164     * interrupted status is cleared.
165     *
166     * @throws InterruptedException if the current thread is interrupted
167     * while waiting.
168     */
169 dl 1.2 public void await() throws InterruptedException {
170 dl 1.14 final ReentrantLock lock = this.lock;
171 dl 1.2 lock.lock();
172     try {
173     while (count != 0)
174     zero.await();
175 tim 1.7 } finally {
176 dl 1.2 lock.unlock();
177     }
178     }
179    
180 tim 1.1
181     /**
182     * Causes the current thread to wait until the latch has counted down to
183     * zero, unless the thread is {@link Thread#interrupt interrupted},
184     * or the specified waiting time elapses.
185     *
186     * <p>If the current {@link #getCount count} is zero then this method
187     * returns immediately with the value <tt>true</tt>.
188     *
189     * <p>If the current {@link #getCount count} is greater than zero then
190     * the current thread becomes disabled for thread scheduling
191     * purposes and lies dormant until one of three things happen:
192     * <ul>
193     * <li>The count reaches zero due to invocations of the
194     * {@link #countDown} method; or
195     * <li>Some other thread {@link Thread#interrupt interrupts} the current
196     * thread; or
197     * <li>The specified waiting time elapses.
198     * </ul>
199     * <p>If the count reaches zero then the method returns with the
200     * value <tt>true</tt>.
201     * <p>If the current thread:
202     * <ul>
203     * <li>has its interrupted status set on entry to this method; or
204     * <li>is {@link Thread#interrupt interrupted} while waiting,
205     * </ul>
206     * then {@link InterruptedException} is thrown and the current thread's
207     * interrupted status is cleared.
208     *
209     * <p>If the specified waiting time elapses then the value <tt>false</tt>
210     * is returned.
211 dholmes 1.10 * If the time is
212 tim 1.1 * less than or equal to zero, the method will not wait at all.
213     *
214     * @param timeout the maximum time to wait
215 dl 1.2 * @param unit the time unit of the <tt>timeout</tt> argument.
216 tim 1.1 * @return <tt>true</tt> if the count reached zero and <tt>false</tt>
217     * if the waiting time elapsed before the count reached zero.
218     *
219     * @throws InterruptedException if the current thread is interrupted
220     * while waiting.
221     */
222 dl 1.2 public boolean await(long timeout, TimeUnit unit)
223 tim 1.1 throws InterruptedException {
224 dl 1.2 long nanos = unit.toNanos(timeout);
225 dl 1.14 final ReentrantLock lock = this.lock;
226 dl 1.2 lock.lock();
227     try {
228     for (;;) {
229     if (count == 0)
230     return true;
231     nanos = zero.awaitNanos(nanos);
232     if (nanos <= 0)
233     return false;
234     }
235 tim 1.7 } finally {
236 dl 1.2 lock.unlock();
237     }
238 tim 1.1 }
239    
240    
241 dl 1.2
242 tim 1.1 /**
243     * Decrements the count of the latch, releasing all waiting threads if
244     * the count reaches zero.
245     * <p>If the current {@link #getCount count} is greater than zero then
246     * it is decremented. If the new count is zero then all waiting threads
247     * are re-enabled for thread scheduling purposes.
248     * <p>If the current {@link #getCount count} equals zero then nothing
249     * happens.
250     */
251 dl 1.2 public void countDown() {
252 dl 1.14 final ReentrantLock lock = this.lock;
253 dl 1.2 lock.lock();
254     try {
255     if (count > 0 && --count == 0)
256     zero.signalAll();
257 tim 1.7 } finally {
258 dl 1.2 lock.unlock();
259     }
260     }
261 tim 1.1
262     /**
263     * Returns the current count.
264     * <p>This method is typically used for debugging and testing purposes.
265     * @return the current count.
266     */
267     public long getCount() {
268 dl 1.14 final ReentrantLock lock = this.lock;
269 dl 1.2 lock.lock();
270     try {
271     return count;
272 tim 1.7 } finally {
273 dl 1.2 lock.unlock();
274     }
275 tim 1.1 }
276     }