ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/CountedCompleter.java
Revision: 1.61
Committed: Tue Aug 30 18:09:45 2016 UTC (7 years, 9 months ago) by jsr166
Branch: MAIN
Changes since 1.60: +2 -4 lines
Log Message:
balance braces in code samples

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/publicdomain/zero/1.0/
5     */
6    
7     package java.util.concurrent;
8    
9 dl 1.55 import java.lang.invoke.MethodHandles;
10     import java.lang.invoke.VarHandle;
11    
12 dl 1.1 /**
13 dl 1.14 * A {@link ForkJoinTask} with a completion action performed when
14 jsr166 1.38 * triggered and there are no remaining pending actions.
15     * CountedCompleters are in general more robust in the
16 dl 1.15 * presence of subtask stalls and blockage than are other forms of
17     * ForkJoinTasks, but are less intuitive to program. Uses of
18     * CountedCompleter are similar to those of other completion based
19 dl 1.14 * components (such as {@link java.nio.channels.CompletionHandler})
20     * except that multiple <em>pending</em> completions may be necessary
21 jsr166 1.31 * to trigger the completion action {@link #onCompletion(CountedCompleter)},
22     * not just one.
23 jsr166 1.25 * Unless initialized otherwise, the {@linkplain #getPendingCount pending
24     * count} starts at zero, but may be (atomically) changed using
25     * methods {@link #setPendingCount}, {@link #addToPendingCount}, and
26     * {@link #compareAndSetPendingCount}. Upon invocation of {@link
27 dl 1.1 * #tryComplete}, if the pending action count is nonzero, it is
28     * decremented; otherwise, the completion action is performed, and if
29     * this completer itself has a completer, the process is continued
30 dl 1.2 * with its completer. As is the case with related synchronization
31 jsr166 1.5 * components such as {@link java.util.concurrent.Phaser Phaser} and
32     * {@link java.util.concurrent.Semaphore Semaphore}, these methods
33     * affect only internal counts; they do not establish any further
34     * internal bookkeeping. In particular, the identities of pending
35     * tasks are not maintained. As illustrated below, you can create
36 jsr166 1.6 * subclasses that do record some or all pending tasks or their
37 dl 1.15 * results when needed. As illustrated below, utility methods
38     * supporting customization of completion traversals are also
39     * provided. However, because CountedCompleters provide only basic
40 dl 1.14 * synchronization mechanisms, it may be useful to create further
41 dl 1.15 * abstract subclasses that maintain linkages, fields, and additional
42     * support methods appropriate for a set of related usages.
43 dl 1.1 *
44     * <p>A concrete CountedCompleter class must define method {@link
45 dl 1.14 * #compute}, that should in most cases (as illustrated below), invoke
46     * {@code tryComplete()} once before returning. The class may also
47 jsr166 1.31 * optionally override method {@link #onCompletion(CountedCompleter)}
48     * to perform an action upon normal completion, and method
49     * {@link #onExceptionalCompletion(Throwable, CountedCompleter)} to
50     * perform an action upon any exception.
51 dl 1.1 *
52 dl 1.4 * <p>CountedCompleters most often do not bear results, in which case
53     * they are normally declared as {@code CountedCompleter<Void>}, and
54     * will always return {@code null} as a result value. In other cases,
55     * you should override method {@link #getRawResult} to provide a
56 dl 1.14 * result from {@code join(), invoke()}, and related methods. In
57     * general, this method should return the value of a field (or a
58     * function of one or more fields) of the CountedCompleter object that
59     * holds the result upon completion. Method {@link #setRawResult} by
60     * default plays no role in CountedCompleters. It is possible, but
61 dl 1.15 * rarely applicable, to override this method to maintain other
62 dl 1.14 * objects or fields holding result data.
63 dl 1.4 *
64 dl 1.1 * <p>A CountedCompleter that does not itself have a completer (i.e.,
65     * one for which {@link #getCompleter} returns {@code null}) can be
66     * used as a regular ForkJoinTask with this added functionality.
67     * However, any completer that in turn has another completer serves
68     * only as an internal helper for other computations, so its own task
69     * status (as reported in methods such as {@link ForkJoinTask#isDone})
70     * is arbitrary; this status changes only upon explicit invocations of
71 jsr166 1.31 * {@link #complete}, {@link ForkJoinTask#cancel},
72     * {@link ForkJoinTask#completeExceptionally(Throwable)} or upon
73     * exceptional completion of method {@code compute}. Upon any
74     * exceptional completion, the exception may be relayed to a task's
75     * completer (and its completer, and so on), if one exists and it has
76     * not otherwise already completed. Similarly, cancelling an internal
77     * CountedCompleter has only a local effect on that completer, so is
78     * not often useful.
79 dl 1.1 *
80     * <p><b>Sample Usages.</b>
81     *
82     * <p><b>Parallel recursive decomposition.</b> CountedCompleters may
83     * be arranged in trees similar to those often used with {@link
84     * RecursiveAction}s, although the constructions involved in setting
85 dl 1.4 * them up typically vary. Here, the completer of each task is its
86     * parent in the computation tree. Even though they entail a bit more
87 dl 1.1 * bookkeeping, CountedCompleters may be better choices when applying
88     * a possibly time-consuming operation (that cannot be further
89     * subdivided) to each element of an array or collection; especially
90     * when the operation takes a significantly different amount of time
91     * to complete for some elements than others, either because of
92 jsr166 1.27 * intrinsic variation (for example I/O) or auxiliary effects such as
93 dl 1.1 * garbage collection. Because CountedCompleters provide their own
94 jsr166 1.58 * continuations, other tasks need not block waiting to perform them.
95 dl 1.1 *
96 jsr166 1.58 * <p>For example, here is an initial version of a utility method that
97     * uses divide-by-two recursive decomposition to divide work into
98     * single pieces (leaf tasks). Even when work is split into individual
99     * calls, tree-based techniques are usually preferable to directly
100     * forking leaf tasks, because they reduce inter-thread communication
101     * and improve load balancing. In the recursive case, the second of
102     * each pair of subtasks to finish triggers completion of their parent
103 dl 1.1 * (because no result combination is performed, the default no-op
104 jsr166 1.38 * implementation of method {@code onCompletion} is not overridden).
105 jsr166 1.58 * The utility method sets up the root task and invokes it (here,
106     * implicitly using the {@link ForkJoinPool#commonPool()}). It is
107     * straightforward and reliable (but not optimal) to always set the
108     * pending count to the number of child tasks and call {@code
109     * tryComplete()} immediately before returning.
110 dl 1.1 *
111     * <pre> {@code
112 jsr166 1.58 * public static <E> void forEach(E[] array, Consumer<E> action) {
113     * class Task extends CountedCompleter<Void> {
114     * final int lo, hi;
115     * Task(Task parent, int lo, int hi) {
116     * super(parent); this.lo = lo; this.hi = hi;
117     * }
118 jsr166 1.59 *
119 jsr166 1.58 * public void compute() {
120     * if (hi - lo >= 2) {
121     * int mid = (lo + hi) >>> 1;
122     * // must set pending count before fork
123     * setPendingCount(2);
124     * new Task(this, mid, hi).fork(); // right child
125     * new Task(this, lo, mid).fork(); // left child
126     * }
127     * else if (hi > lo)
128     * action.accept(array[lo]);
129     * tryComplete();
130     * }
131 dl 1.15 * }
132 jsr166 1.58 * new Task(null, 0, array.length).invoke();
133 jsr166 1.21 * }}</pre>
134 dl 1.1 *
135     * This design can be improved by noticing that in the recursive case,
136     * the task has nothing to do after forking its right task, so can
137     * directly invoke its left task before returning. (This is an analog
138 jsr166 1.58 * of tail recursion removal.) Also, when the last action in a task
139     * is to fork or invoke a subtask (a "tail call"), the call to {@code
140     * tryComplete()} can be optimized away, at the cost of making the
141     * pending count look "off by one".
142 dl 1.1 *
143     * <pre> {@code
144 jsr166 1.58 * public void compute() {
145     * if (hi - lo >= 2) {
146     * int mid = (lo + hi) >>> 1;
147     * setPendingCount(1); // not off by one !
148     * new Task(this, mid, hi).fork(); // right child
149     * new Task(this, lo, mid).compute(); // direct invoke
150     * } else {
151     * if (hi > lo)
152     * action.accept(array[lo]);
153     * tryComplete();
154     * }
155 jsr166 1.61 * }}</pre>
156 dl 1.1 *
157 jsr166 1.52 * As a further optimization, notice that the left task need not even exist.
158 jsr166 1.60 * Instead of creating a new one, we can continue using the original task,
159 jsr166 1.31 * and add a pending count for each fork. Additionally, because no task
160     * in this tree implements an {@link #onCompletion(CountedCompleter)} method,
161 jsr166 1.58 * {@code tryComplete} can be replaced with {@link #propagateCompletion}.
162 dl 1.1 *
163     * <pre> {@code
164 jsr166 1.58 * public void compute() {
165     * int n = hi - lo;
166     * for (; n >= 2; n /= 2) {
167     * addToPendingCount(1);
168     * new Task(this, lo + n/2, lo + n).fork();
169     * }
170     * if (n > 0)
171     * action.accept(array[lo]);
172     * propagateCompletion();
173 jsr166 1.61 * }}</pre>
174 jsr166 1.58 *
175     * When pending counts can be precomputed, they can be established in
176     * the constructor:
177     *
178     * <pre> {@code
179     * public static <E> void forEach(E[] array, Consumer<E> action) {
180     * class Task extends CountedCompleter<Void> {
181     * final int lo, hi;
182     * Task(Task parent, int lo, int hi) {
183     * super(parent, 31 - Integer.numberOfLeadingZeros(hi - lo));
184     * this.lo = lo; this.hi = hi;
185     * }
186 jsr166 1.59 *
187 jsr166 1.58 * public void compute() {
188     * for (int n = hi - lo; n >= 2; n /= 2)
189     * new Task(this, lo + n/2, lo + n).fork();
190     * action.accept(array[lo]);
191     * propagateCompletion();
192 dl 1.15 * }
193     * }
194 jsr166 1.58 * if (array.length > 0)
195     * new Task(null, 0, array.length).invoke();
196 jsr166 1.46 * }}</pre>
197 dl 1.1 *
198 jsr166 1.58 * Additional optimizations of such classes might entail specializing
199     * classes for leaf steps, subdividing by say, four, instead of two
200     * per iteration, and using an adaptive threshold instead of always
201     * subdividing down to single elements.
202 dl 1.1 *
203 dl 1.15 * <p><b>Searching.</b> A tree of CountedCompleters can search for a
204     * value or property in different parts of a data structure, and
205 jsr166 1.26 * report a result in an {@link
206     * java.util.concurrent.atomic.AtomicReference AtomicReference} as
207     * soon as one is found. The others can poll the result to avoid
208     * unnecessary work. (You could additionally {@linkplain #cancel
209     * cancel} other tasks, but it is usually simpler and more efficient
210     * to just let them notice that the result is set and if so skip
211     * further processing.) Illustrating again with an array using full
212 dl 1.15 * partitioning (again, in practice, leaf tasks will almost always
213     * process more than one element):
214     *
215     * <pre> {@code
216     * class Searcher<E> extends CountedCompleter<E> {
217     * final E[] array; final AtomicReference<E> result; final int lo, hi;
218     * Searcher(CountedCompleter<?> p, E[] array, AtomicReference<E> result, int lo, int hi) {
219     * super(p);
220     * this.array = array; this.result = result; this.lo = lo; this.hi = hi;
221     * }
222     * public E getRawResult() { return result.get(); }
223     * public void compute() { // similar to ForEach version 3
224 jsr166 1.47 * int l = lo, h = hi;
225 dl 1.15 * while (result.get() == null && h >= l) {
226     * if (h - l >= 2) {
227     * int mid = (l + h) >>> 1;
228     * addToPendingCount(1);
229     * new Searcher(this, array, result, mid, h).fork();
230     * h = mid;
231     * }
232     * else {
233     * E x = array[l];
234     * if (matches(x) && result.compareAndSet(null, x))
235     * quietlyCompleteRoot(); // root task is now joinable
236     * break;
237     * }
238     * }
239     * tryComplete(); // normally complete whether or not found
240     * }
241     * boolean matches(E e) { ... } // return true if found
242     *
243     * public static <E> E search(E[] array) {
244     * return new Searcher<E>(null, array, new AtomicReference<E>(), 0, array.length).invoke();
245     * }
246 jsr166 1.28 * }}</pre>
247 dl 1.15 *
248     * In this example, as well as others in which tasks have no other
249 jsr166 1.51 * effects except to {@code compareAndSet} a common result, the
250     * trailing unconditional invocation of {@code tryComplete} could be
251     * made conditional ({@code if (result.get() == null) tryComplete();})
252 dl 1.15 * because no further bookkeeping is required to manage completions
253     * once the root task completes.
254     *
255 dl 1.1 * <p><b>Recording subtasks.</b> CountedCompleter tasks that combine
256     * results of multiple subtasks usually need to access these results
257 jsr166 1.31 * in method {@link #onCompletion(CountedCompleter)}. As illustrated in the following
258 dl 1.1 * class (that performs a simplified form of map-reduce where mappings
259     * and reductions are all of type {@code E}), one way to do this in
260     * divide and conquer designs is to have each subtask record its
261     * sibling, so that it can be accessed in method {@code onCompletion}.
262 dl 1.4 * This technique applies to reductions in which the order of
263     * combining left and right results does not matter; ordered
264     * reductions require explicit left/right designations. Variants of
265     * other streamlinings seen in the above examples may also apply.
266 dl 1.1 *
267     * <pre> {@code
268     * class MyMapper<E> { E apply(E v) { ... } }
269     * class MyReducer<E> { E apply(E x, E y) { ... } }
270 dl 1.4 * class MapReducer<E> extends CountedCompleter<E> {
271 dl 1.15 * final E[] array; final MyMapper<E> mapper;
272     * final MyReducer<E> reducer; final int lo, hi;
273     * MapReducer<E> sibling;
274     * E result;
275     * MapReducer(CountedCompleter<?> p, E[] array, MyMapper<E> mapper,
276     * MyReducer<E> reducer, int lo, int hi) {
277     * super(p);
278     * this.array = array; this.mapper = mapper;
279     * this.reducer = reducer; this.lo = lo; this.hi = hi;
280     * }
281     * public void compute() {
282     * if (hi - lo >= 2) {
283     * int mid = (lo + hi) >>> 1;
284     * MapReducer<E> left = new MapReducer(this, array, mapper, reducer, lo, mid);
285     * MapReducer<E> right = new MapReducer(this, array, mapper, reducer, mid, hi);
286     * left.sibling = right;
287     * right.sibling = left;
288     * setPendingCount(1); // only right is pending
289     * right.fork();
290     * left.compute(); // directly execute left
291     * }
292     * else {
293     * if (hi > lo)
294     * result = mapper.apply(array[lo]);
295     * tryComplete();
296     * }
297     * }
298     * public void onCompletion(CountedCompleter<?> caller) {
299     * if (caller != this) {
300 jsr166 1.23 * MapReducer<E> child = (MapReducer<E>)caller;
301     * MapReducer<E> sib = child.sibling;
302     * if (sib == null || sib.result == null)
303     * result = child.result;
304     * else
305     * result = reducer.apply(child.result, sib.result);
306 dl 1.15 * }
307     * }
308     * public E getRawResult() { return result; }
309     *
310     * public static <E> E mapReduce(E[] array, MyMapper<E> mapper, MyReducer<E> reducer) {
311     * return new MapReducer<E>(null, array, mapper, reducer,
312     * 0, array.length).invoke();
313     * }
314 jsr166 1.21 * }}</pre>
315 dl 1.1 *
316 dl 1.14 * Here, method {@code onCompletion} takes a form common to many
317     * completion designs that combine results. This callback-style method
318     * is triggered once per task, in either of the two different contexts
319     * in which the pending count is, or becomes, zero: (1) by a task
320     * itself, if its pending count is zero upon invocation of {@code
321     * tryComplete}, or (2) by any of its subtasks when they complete and
322     * decrement the pending count to zero. The {@code caller} argument
323     * distinguishes cases. Most often, when the caller is {@code this},
324     * no action is necessary. Otherwise the caller argument can be used
325     * (usually via a cast) to supply a value (and/or links to other
326 jsr166 1.19 * values) to be combined. Assuming proper use of pending counts, the
327 dl 1.14 * actions inside {@code onCompletion} occur (once) upon completion of
328     * a task and its subtasks. No additional synchronization is required
329     * within this method to ensure thread safety of accesses to fields of
330     * this task or other completed tasks.
331     *
332 dl 1.15 * <p><b>Completion Traversals</b>. If using {@code onCompletion} to
333     * process completions is inapplicable or inconvenient, you can use
334     * methods {@link #firstComplete} and {@link #nextComplete} to create
335     * custom traversals. For example, to define a MapReducer that only
336     * splits out right-hand tasks in the form of the third ForEach
337     * example, the completions must cooperatively reduce along
338     * unexhausted subtask links, which can be done as follows:
339 dl 1.14 *
340     * <pre> {@code
341 dl 1.15 * class MapReducer<E> extends CountedCompleter<E> { // version 2
342     * final E[] array; final MyMapper<E> mapper;
343     * final MyReducer<E> reducer; final int lo, hi;
344     * MapReducer<E> forks, next; // record subtask forks in list
345     * E result;
346     * MapReducer(CountedCompleter<?> p, E[] array, MyMapper<E> mapper,
347     * MyReducer<E> reducer, int lo, int hi, MapReducer<E> next) {
348     * super(p);
349     * this.array = array; this.mapper = mapper;
350     * this.reducer = reducer; this.lo = lo; this.hi = hi;
351     * this.next = next;
352     * }
353     * public void compute() {
354 jsr166 1.47 * int l = lo, h = hi;
355 dl 1.15 * while (h - l >= 2) {
356     * int mid = (l + h) >>> 1;
357     * addToPendingCount(1);
358 dl 1.29 * (forks = new MapReducer(this, array, mapper, reducer, mid, h, forks)).fork();
359 dl 1.15 * h = mid;
360     * }
361     * if (h > l)
362     * result = mapper.apply(array[l]);
363     * // process completions by reducing along and advancing subtask links
364     * for (CountedCompleter<?> c = firstComplete(); c != null; c = c.nextComplete()) {
365 jsr166 1.47 * for (MapReducer t = (MapReducer)c, s = t.forks; s != null; s = t.forks = s.next)
366 dl 1.15 * t.result = reducer.apply(t.result, s.result);
367     * }
368     * }
369     * public E getRawResult() { return result; }
370     *
371     * public static <E> E mapReduce(E[] array, MyMapper<E> mapper, MyReducer<E> reducer) {
372     * return new MapReducer<E>(null, array, mapper, reducer,
373     * 0, array.length, null).invoke();
374     * }
375     * }}</pre>
376 dl 1.14 *
377 dl 1.1 * <p><b>Triggers.</b> Some CountedCompleters are themselves never
378     * forked, but instead serve as bits of plumbing in other designs;
379 jsr166 1.37 * including those in which the completion of one or more async tasks
380 dl 1.1 * triggers another async task. For example:
381     *
382     * <pre> {@code
383 dl 1.4 * class HeaderBuilder extends CountedCompleter<...> { ... }
384     * class BodyBuilder extends CountedCompleter<...> { ... }
385     * class PacketSender extends CountedCompleter<...> {
386 dl 1.15 * PacketSender(...) { super(null, 1); ... } // trigger on second completion
387     * public void compute() { } // never called
388     * public void onCompletion(CountedCompleter<?> caller) { sendPacket(); }
389 dl 1.1 * }
390     * // sample use:
391     * PacketSender p = new PacketSender();
392     * new HeaderBuilder(p, ...).fork();
393 jsr166 1.46 * new BodyBuilder(p, ...).fork();}</pre>
394 dl 1.1 *
395     * @since 1.8
396     * @author Doug Lea
397     */
398 dl 1.4 public abstract class CountedCompleter<T> extends ForkJoinTask<T> {
399 dl 1.2 private static final long serialVersionUID = 5232453752276485070L;
400    
401 dl 1.1 /** This task's completer, or null if none */
402 dl 1.4 final CountedCompleter<?> completer;
403 dl 1.1 /** The number of pending tasks until completion */
404     volatile int pending;
405    
406     /**
407     * Creates a new CountedCompleter with the given completer
408     * and initial pending count.
409     *
410 jsr166 1.24 * @param completer this task's completer, or {@code null} if none
411 dl 1.1 * @param initialPendingCount the initial pending count
412     */
413 dl 1.4 protected CountedCompleter(CountedCompleter<?> completer,
414 dl 1.1 int initialPendingCount) {
415     this.completer = completer;
416     this.pending = initialPendingCount;
417     }
418    
419     /**
420     * Creates a new CountedCompleter with the given completer
421     * and an initial pending count of zero.
422     *
423 jsr166 1.24 * @param completer this task's completer, or {@code null} if none
424 dl 1.1 */
425 dl 1.4 protected CountedCompleter(CountedCompleter<?> completer) {
426 dl 1.1 this.completer = completer;
427     }
428    
429     /**
430     * Creates a new CountedCompleter with no completer
431     * and an initial pending count of zero.
432     */
433     protected CountedCompleter() {
434     this.completer = null;
435     }
436    
437     /**
438     * The main computation performed by this task.
439     */
440     public abstract void compute();
441    
442     /**
443 dl 1.2 * Performs an action when method {@link #tryComplete} is invoked
444 jsr166 1.24 * and the pending count is zero, or when the unconditional
445 dl 1.2 * method {@link #complete} is invoked. By default, this method
446 dl 1.14 * does nothing. You can distinguish cases by checking the
447     * identity of the given caller argument. If not equal to {@code
448     * this}, then it is typically a subtask that may contain results
449     * (and/or links to other results) to combine.
450 dl 1.1 *
451     * @param caller the task invoking this method (which may
452 jsr166 1.30 * be this task itself)
453 dl 1.1 */
454 dl 1.4 public void onCompletion(CountedCompleter<?> caller) {
455 dl 1.1 }
456    
457     /**
458 dl 1.36 * Performs an action when method {@link
459     * #completeExceptionally(Throwable)} is invoked or method {@link
460 jsr166 1.39 * #compute} throws an exception, and this task has not already
461     * otherwise completed normally. On entry to this method, this task
462 dl 1.36 * {@link ForkJoinTask#isCompletedAbnormally}. The return value
463     * of this method controls further propagation: If {@code true}
464     * and this task has a completer that has not completed, then that
465     * completer is also completed exceptionally, with the same
466     * exception as this completer. The default implementation of
467     * this method does nothing except return {@code true}.
468 dl 1.2 *
469     * @param ex the exception
470     * @param caller the task invoking this method (which may
471 jsr166 1.30 * be this task itself)
472 jsr166 1.33 * @return {@code true} if this exception should be propagated to this
473 jsr166 1.30 * task's completer, if one exists
474 dl 1.2 */
475 dl 1.4 public boolean onExceptionalCompletion(Throwable ex, CountedCompleter<?> caller) {
476 dl 1.2 return true;
477     }
478    
479     /**
480 dl 1.1 * Returns the completer established in this task's constructor,
481     * or {@code null} if none.
482     *
483     * @return the completer
484     */
485 dl 1.4 public final CountedCompleter<?> getCompleter() {
486 dl 1.1 return completer;
487     }
488    
489     /**
490     * Returns the current pending count.
491     *
492     * @return the current pending count
493     */
494     public final int getPendingCount() {
495     return pending;
496     }
497    
498     /**
499     * Sets the pending count to the given value.
500     *
501     * @param count the count
502     */
503     public final void setPendingCount(int count) {
504     pending = count;
505     }
506    
507     /**
508     * Adds (atomically) the given value to the pending count.
509     *
510     * @param delta the value to add
511     */
512     public final void addToPendingCount(int delta) {
513 dl 1.55 PENDING.getAndAdd(this, delta);
514 dl 1.1 }
515    
516     /**
517     * Sets (atomically) the pending count to the given count only if
518     * it currently holds the given expected value.
519     *
520     * @param expected the expected value
521     * @param count the new value
522 jsr166 1.33 * @return {@code true} if successful
523 dl 1.1 */
524     public final boolean compareAndSetPendingCount(int expected, int count) {
525 dl 1.55 return PENDING.compareAndSet(this, expected, count);
526 dl 1.1 }
527    
528     /**
529 dl 1.15 * If the pending count is nonzero, (atomically) decrements it.
530     *
531 jsr166 1.16 * @return the initial (undecremented) pending count holding on entry
532 dl 1.15 * to this method
533     */
534     public final int decrementPendingCountUnlessZero() {
535     int c;
536     do {} while ((c = pending) != 0 &&
537 dl 1.57 !PENDING.weakCompareAndSetVolatile(this, c, c - 1));
538 dl 1.15 return c;
539     }
540    
541     /**
542 dl 1.7 * Returns the root of the current computation; i.e., this
543     * task if it has no completer, else its completer's root.
544     *
545     * @return the root of the current computation
546     */
547     public final CountedCompleter<?> getRoot() {
548     CountedCompleter<?> a = this, p;
549     while ((p = a.completer) != null)
550     a = p;
551     return a;
552     }
553    
554     /**
555 dl 1.1 * If the pending count is nonzero, decrements the count;
556 jsr166 1.31 * otherwise invokes {@link #onCompletion(CountedCompleter)}
557     * and then similarly tries to complete this task's completer,
558     * if one exists, else marks this task as complete.
559 dl 1.1 */
560     public final void tryComplete() {
561 dl 1.4 CountedCompleter<?> a = this, s = a;
562 dl 1.2 for (int c;;) {
563 dl 1.1 if ((c = a.pending) == 0) {
564     a.onCompletion(s);
565     if ((a = (s = a).completer) == null) {
566     s.quietlyComplete();
567     return;
568     }
569     }
570 dl 1.57 else if (PENDING.weakCompareAndSetVolatile(a, c, c - 1))
571 dl 1.1 return;
572     }
573     }
574    
575     /**
576 dl 1.15 * Equivalent to {@link #tryComplete} but does not invoke {@link
577 jsr166 1.31 * #onCompletion(CountedCompleter)} along the completion path:
578     * If the pending count is nonzero, decrements the count;
579     * otherwise, similarly tries to complete this task's completer, if
580     * one exists, else marks this task as complete. This method may be
581     * useful in cases where {@code onCompletion} should not, or need
582     * not, be invoked for each completer in a computation.
583 dl 1.15 */
584     public final void propagateCompletion() {
585 jsr166 1.54 CountedCompleter<?> a = this, s;
586 dl 1.15 for (int c;;) {
587     if ((c = a.pending) == 0) {
588     if ((a = (s = a).completer) == null) {
589     s.quietlyComplete();
590     return;
591     }
592     }
593 dl 1.57 else if (PENDING.weakCompareAndSetVolatile(a, c, c - 1))
594 dl 1.15 return;
595     }
596     }
597    
598     /**
599 jsr166 1.31 * Regardless of pending count, invokes
600     * {@link #onCompletion(CountedCompleter)}, marks this task as
601     * complete and further triggers {@link #tryComplete} on this
602     * task's completer, if one exists. The given rawResult is
603     * used as an argument to {@link #setRawResult} before invoking
604     * {@link #onCompletion(CountedCompleter)} or marking this task
605     * as complete; its value is meaningful only for classes
606 jsr166 1.40 * overriding {@code setRawResult}. This method does not modify
607     * the pending count.
608 dl 1.14 *
609     * <p>This method may be useful when forcing completion as soon as
610     * any one (versus all) of several subtask results are obtained.
611     * However, in the common (and recommended) case in which {@code
612     * setRawResult} is not overridden, this effect can be obtained
613 jsr166 1.50 * more simply using {@link #quietlyCompleteRoot()}.
614 dl 1.1 *
615 dl 1.4 * @param rawResult the raw result
616 dl 1.1 */
617 dl 1.4 public void complete(T rawResult) {
618     CountedCompleter<?> p;
619 dl 1.14 setRawResult(rawResult);
620 dl 1.1 onCompletion(this);
621     quietlyComplete();
622     if ((p = completer) != null)
623     p.tryComplete();
624     }
625    
626 dl 1.15 /**
627     * If this task's pending count is zero, returns this task;
628 jsr166 1.51 * otherwise decrements its pending count and returns {@code null}.
629     * This method is designed to be used with {@link #nextComplete} in
630     * completion traversal loops.
631 dl 1.15 *
632     * @return this task, if pending count was zero, else {@code null}
633     */
634     public final CountedCompleter<?> firstComplete() {
635     for (int c;;) {
636     if ((c = pending) == 0)
637     return this;
638 dl 1.57 else if (PENDING.weakCompareAndSetVolatile(this, c, c - 1))
639 dl 1.15 return null;
640     }
641     }
642    
643     /**
644     * If this task does not have a completer, invokes {@link
645     * ForkJoinTask#quietlyComplete} and returns {@code null}. Or, if
646 dl 1.29 * the completer's pending count is non-zero, decrements that
647     * pending count and returns {@code null}. Otherwise, returns the
648 dl 1.15 * completer. This method can be used as part of a completion
649 jsr166 1.18 * traversal loop for homogeneous task hierarchies:
650 dl 1.15 *
651     * <pre> {@code
652 jsr166 1.17 * for (CountedCompleter<?> c = firstComplete();
653     * c != null;
654     * c = c.nextComplete()) {
655 dl 1.15 * // ... process c ...
656     * }}</pre>
657     *
658     * @return the completer, or {@code null} if none
659     */
660     public final CountedCompleter<?> nextComplete() {
661     CountedCompleter<?> p;
662     if ((p = completer) != null)
663     return p.firstComplete();
664     else {
665     quietlyComplete();
666     return null;
667     }
668     }
669    
670     /**
671     * Equivalent to {@code getRoot().quietlyComplete()}.
672     */
673     public final void quietlyCompleteRoot() {
674     for (CountedCompleter<?> a = this, p;;) {
675     if ((p = a.completer) == null) {
676     a.quietlyComplete();
677     return;
678     }
679     a = p;
680     }
681     }
682    
683 dl 1.1 /**
684 dl 1.42 * If this task has not completed, attempts to process at most the
685     * given number of other unprocessed tasks for which this task is
686 dl 1.43 * on the completion path, if any are known to exist.
687 dl 1.42 *
688 dl 1.44 * @param maxTasks the maximum number of tasks to process. If
689     * less than or equal to zero, then no tasks are
690     * processed.
691 dl 1.42 */
692     public final void helpComplete(int maxTasks) {
693     Thread t; ForkJoinWorkerThread wt;
694     if (maxTasks > 0 && status >= 0) {
695     if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)
696     (wt = (ForkJoinWorkerThread)t).pool.
697     helpComplete(wt.workQueue, this, maxTasks);
698     else
699     ForkJoinPool.common.externalHelpComplete(this, maxTasks);
700     }
701     }
702    
703     /**
704 jsr166 1.22 * Supports ForkJoinTask exception propagation.
705 dl 1.2 */
706     void internalPropagateException(Throwable ex) {
707 dl 1.4 CountedCompleter<?> a = this, s = a;
708 dl 1.2 while (a.onExceptionalCompletion(ex, s) &&
709 dl 1.36 (a = (s = a).completer) != null && a.status >= 0 &&
710     a.recordExceptionalCompletion(ex) == EXCEPTIONAL)
711     ;
712 dl 1.2 }
713    
714     /**
715 jsr166 1.22 * Implements execution conventions for CountedCompleters.
716 dl 1.1 */
717     protected final boolean exec() {
718     compute();
719     return false;
720     }
721    
722     /**
723 jsr166 1.45 * Returns the result of the computation. By default,
724 dl 1.4 * returns {@code null}, which is appropriate for {@code Void}
725 dl 1.15 * actions, but in other cases should be overridden, almost
726     * always to return a field or function of a field that
727     * holds the result upon completion.
728 dl 1.1 *
729 dl 1.4 * @return the result of the computation
730 dl 1.1 */
731 dl 1.4 public T getRawResult() { return null; }
732 dl 1.1
733     /**
734 dl 1.4 * A method that result-bearing CountedCompleters may optionally
735     * use to help maintain result data. By default, does nothing.
736 dl 1.15 * Overrides are not recommended. However, if this method is
737     * overridden to update existing objects or fields, then it must
738     * in general be defined to be thread-safe.
739 dl 1.1 */
740 dl 1.4 protected void setRawResult(T t) { }
741 dl 1.1
742 dl 1.55 // VarHandle mechanics
743     private static final VarHandle PENDING;
744 dl 1.1 static {
745     try {
746 dl 1.55 MethodHandles.Lookup l = MethodHandles.lookup();
747     PENDING = l.findVarHandle(CountedCompleter.class, "pending", int.class);
748 jsr166 1.56
749 jsr166 1.48 } catch (ReflectiveOperationException e) {
750 dl 1.1 throw new Error(e);
751     }
752     }
753     }