ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/CyclicBarrier.java
Revision: 1.4
Committed: Mon Jun 23 02:26:16 2003 UTC (20 years, 11 months ago) by brian
Branch: MAIN
Changes since 1.3: +5 -4 lines
Log Message:
Partial javadoc pass

File Contents

# User Rev Content
1 dl 1.2 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain. Use, modify, and
4     * redistribute this code in any way without acknowledgement.
5     */
6    
7 tim 1.1 package java.util.concurrent;
8    
9     /**
10 dl 1.3 * A synchronization aid that allows a set threads to all wait for
11 brian 1.4 * each other to reach a common barrier point. CyclicBarriers are
12 dl 1.3 * useful in programs involving a fixed sized party of threads that
13 brian 1.4 * must occasionally wait for each other. The barrier is called
14 dl 1.3 * <em>cyclic</em> because it can be re-used after the waiting threads
15     * are released.
16 tim 1.1 *
17     * <p>A <tt>CyclicBarrier</tt> supports an optional {@link Runnable} command
18     * that is run once per barrier point, after the last thread in the party
19     * arrives, but before any threads are released.
20     * This <em>barrier action</em> is useful
21     * for updating shared-state before any of the parties continue.
22     *
23 brian 1.4 * <p><b>Sample usage:</b> Here is an example of
24 tim 1.1 * using a barrier in a parallel decomposition design:
25     * <pre>
26     * class Solver {
27     * final int N;
28     * final float[][] data;
29     * final CyclicBarrier barrier;
30     *
31     * class Worker implements Runnable {
32     * int myRow;
33     * Worker(int row) { myRow = row; }
34     * public void run() {
35     * while (!done()) {
36     * processRow(myRow);
37     *
38     * try {
39     * barrier.await();
40     * }
41     * catch (InterruptedException ex) { return; }
42     * catch (BrokenBarrierException ex) { return; }
43     * }
44     * }
45     * }
46     *
47     * public Solver(float[][] matrix) {
48     * data = matrix;
49     * N = matrix.length;
50     * barrier = new CyclicBarrier(N,
51     * new Runnable() {
52     * public void run() {
53     * mergeRows(...);
54     * }
55     * });
56     * for (int i = 0; i < N; ++i)
57     * new Thread(new Worker(i)).start();
58     *
59     * waitUntilDone();
60     * }
61     * }
62     * </pre>
63     * Here, each worker thread processes a row of the matrix then waits at the
64     * barrier until all rows have been processed. When all rows are processed
65     * the supplied {@link Runnable} barrier action is executed and merges the
66     * rows. If the merger
67     * determines that a solution has been found then <tt>done()</tt> will return
68     * <tt>true</tt> and each worker will terminate.
69     *
70     * <p>If the barrier action does not rely on the parties being suspended when
71     * it is executed, then any of the threads in the party could execute that
72     * action when it is released. To facilitate this, each invocation of
73     * {@link #await} returns the arrival index of that thread at the barrier.
74     * You can then choose which thread should execute the barrier action, for
75     * example:
76     * <pre> if (barrier.await() == 0) {
77     * // log the completion of this iteration
78     * }</pre>
79     *
80 dl 1.2 * <p>The <tt>CyclicBarrier</tt> uses an all-or-none breakage model
81     * for failed synchronization attempts: If a thread leaves a barrier
82     * point prematurely because of interruption or timeout, all others
83     * will also leave abnormally (via {@link BrokenBarrierException}),
84     * until the barrier is {@link #reset}. This is usually the simplest
85     * and best strategy for sharing knowledge about failures among
86     * cooperating threads in the most common usage contexts of barriers.
87 tim 1.1 *
88     * <h3>Implementation Considerations</h3>
89     * <p>This implementation has the property that interruptions among newly
90     * arriving threads can cause as-yet-unresumed threads from a previous
91     * barrier cycle to return out as broken. This transmits breakage as
92     * early as possible, but with the possible byproduct that only some
93     * threads returning out of a barrier will realize that it is newly
94     * broken. (Others will not realize this until a future cycle.)
95     *
96     *
97     *
98     * @since 1.5
99     * @spec JSR-166
100 brian 1.4 * @revised $Date: 2003/06/07 18:20:20 $
101 dl 1.3 * @editor $Author: dl $
102 brian 1.4 * @see CountDownLatch
103 tim 1.1 *
104     * @fixme Is the above property actually true in this implementation?
105     * @fixme Should we have a timeout version of await()?
106     */
107     public class CyclicBarrier {
108 dl 1.2 private final ReentrantLock lock = new ReentrantLock();
109     private final Condition trip = lock.newCondition();
110     private final int parties;
111     private Runnable barrierCommand;
112    
113     /**
114     * The generation number. Incremented mod Integer.MAX_VALUE every
115     * time barrier tripped. Starts at 1 to simplify handling of
116     * breakage indicator
117     */
118     private int generation = 1;
119    
120     /**
121     * Breakage indicator: last generation of breakage, propagated
122     * across barrier generations until reset.
123     */
124     private int broken = 0;
125    
126     /**
127     * Number of parties still waiting. Counts down from parties to 0
128     * on each cycle.
129     */
130     private int count;
131    
132     /**
133     * Update state on barrier trip.
134     */
135     private void nextGeneration() {
136     count = parties;
137     int g = generation;
138     // avoid generation == 0
139     if (++generation < 0) generation = 1;
140     // propagate breakage
141     if (broken == g) broken = generation;
142     }
143    
144     private int dowait(boolean timed, long nanos) throws InterruptedException, BrokenBarrierException, TimeoutException {
145     lock.lock();
146     try {
147     int index = --count;
148     int g = generation;
149    
150     if (broken == g)
151     throw new BrokenBarrierException();
152    
153     if (Thread.interrupted()) {
154     broken = g;
155     trip.signalAll();
156     throw new InterruptedException();
157     }
158    
159     if (index == 0) { // tripped
160     nextGeneration();
161     trip.signalAll();
162     try {
163     if (barrierCommand != null)
164     barrierCommand.run();
165     return 0;
166     }
167     catch (RuntimeException ex) {
168     broken = generation; // next generation is broken
169     throw ex;
170     }
171     }
172    
173     while (generation == g) {
174     try {
175     if (!timed)
176     trip.await();
177     else if (nanos > 0)
178     nanos = trip.awaitNanos(nanos);
179     }
180     catch (InterruptedException ex) {
181     // Only claim that broken if interrupted before reset
182     if (generation == g) {
183     broken = g;
184     trip.signalAll();
185     throw ex;
186     }
187     else {
188     Thread.currentThread().interrupt(); // propagate
189     break;
190     }
191     }
192    
193     if (timed && nanos <= 0) {
194     broken = g;
195     trip.signalAll();
196     throw new TimeoutException();
197     }
198    
199     if (broken == generation)
200     throw new BrokenBarrierException();
201    
202     }
203     return index;
204    
205     }
206     finally {
207     lock.unlock();
208     }
209     }
210 tim 1.1
211     /**
212     * Create a new <tt>CyclicBarrier</tt> that will trip when the
213     * given number of parties (threads) are waiting upon it, and which
214     * will execute the given barrier action when the barrier is tripped.
215     *
216     * @param parties the number of threads that must invoke {@link #await}
217     * before the barrier is tripped.
218     * @param barrierAction the command to execute when the barrier is
219     * tripped.
220     *
221     * @throws IllegalArgumentException if <tt>parties</tt> is less than 1.
222     */
223     public CyclicBarrier(int parties, Runnable barrierAction) {
224 dl 1.2 if (parties <= 0) throw new IllegalArgumentException();
225     this.parties = parties;
226     this.count = parties;
227     this.barrierCommand = barrierAction;
228 tim 1.1 }
229    
230     /**
231     * Create a new <tt>CyclicBarrier</tt> that will trip when the
232     * given number of parties (threads) are waiting upon it.
233     *
234     * <p>This is equivalent to <tt>CyclicBarrier(parties, null)</tt>.
235     *
236     * @param parties the number of threads that must invoke {@link #await}
237     * before the barrier is tripped.
238     *
239     * @throws IllegalArgumentException if <tt>parties</tt> is less than 1.
240     */
241     public CyclicBarrier(int parties) {
242 dl 1.2 this(parties, null);
243 tim 1.1 }
244    
245     /**
246     * Return the number of parties required to trip this barrier.
247     * @return the number of parties required to trip this barrier.
248     **/
249     public int getParties() {
250 dl 1.2 return parties;
251 tim 1.1 }
252    
253     /**
254     * Wait until all {@link #getParties parties} have invoked <tt>await</tt>
255     * on this barrier.
256     *
257     * <p>If the current thread is not the last to arrive then it is
258     * disabled for thread scheduling purposes and lies dormant until
259 dl 1.2 * one of following things happens:
260 tim 1.1 * <ul>
261     * <li>The last thread arrives; or
262     * <li>Some other thread {@link Thread#interrupt interrupts} the current
263     * thread; or
264     * <li>Some other thread {@link Thread#interrupt interrupts} one of the
265     * other waiting threads; or
266 dl 1.2 * <li>Some other thread times out while waiting for barrier; or
267 tim 1.1 * <li>Some other thread invokes {@link #reset} on this barrier.
268     * </ul>
269     * <p>If the current thread:
270     * <ul>
271     * <li>has its interrupted status set on entry to this method; or
272     * <li>is {@link Thread#interrupt interrupted} while waiting
273     * </ul>
274     * then {@link InterruptedException} is thrown and the current thread's
275     * interrupted status is cleared.
276     *
277     * <p>If the barrier is {@link #reset} while any thread is waiting, or if
278     * the barrier {@link #isBroken is broken} when <tt>await</tt> is invoked
279     * then {@link BrokenBarrierException} is thrown.
280     *
281     * <p>If any thread is {@link Thread#interrupt interrupted} while waiting,
282     * then all other waiting threads will throw
283     * {@link BrokenBarrierException} and the barrier is placed in the broken
284     * state.
285     *
286     * <p>If the current thread is the last thread to arrive, and a
287     * non-null barrier action was supplied in the constructor, then the
288     * current thread runs the action before allowing the other threads to
289     * continue.
290     * If an exception occurs during the barrier action then that exception
291     * will be propagated in the current thread.
292     *
293     * @return the arrival index of the current thread, where index
294     * <tt>{@link #getParties()} - 1</tt> indicates the first to arrive and
295     * zero indicates the last to arrive.
296     *
297     * @throws InterruptedException if the current thread was interrupted
298     * while waiting
299     * @throws BrokenBarrierException if <em>another</em> thread was
300     * interrupted while the current thread was waiting, or the barrier was
301     * reset, or the barrier was broken when <tt>await</tt> was called.
302     */
303     public int await() throws InterruptedException, BrokenBarrierException {
304 dl 1.2 try {
305     return dowait(false, 0);
306     }
307     catch (TimeoutException toe) {
308     throw new Error(toe); // cannot happen;
309     }
310     }
311    
312     /**
313     * Wait until all {@link #getParties parties} have invoked <tt>await</tt>
314     * on this barrier.
315     *
316     * <p>If the current thread is not the last to arrive then it is
317     * disabled for thread scheduling purposes and lies dormant until
318     * one of the following things happens:
319     * <ul>
320     * <li>The last thread arrives; or
321     * <li>The speceified timeout elapses; or
322     * <li>Some other thread {@link Thread#interrupt interrupts} the current
323     * thread; or
324     * <li>Some other thread {@link Thread#interrupt interrupts} one of the
325     * other waiting threads; or
326     * <li>Some other thread times out while waiting for barrier; or
327     * <li>Some other thread invokes {@link #reset} on this barrier.
328     * </ul>
329     * <p>If the current thread:
330     * <ul>
331     * <li>has its interrupted status set on entry to this method; or
332     * <li>is {@link Thread#interrupt interrupted} while waiting
333     * </ul>
334     * then {@link InterruptedException} is thrown and the current thread's
335     * interrupted status is cleared.
336     *
337     * <p>If the barrier is {@link #reset} while any thread is waiting, or if
338     * the barrier {@link #isBroken is broken} when <tt>await</tt> is invoked
339     * then {@link BrokenBarrierException} is thrown.
340     *
341     * <p>If any thread is {@link Thread#interrupt interrupted} while waiting,
342     * then all other waiting threads will throw
343     * {@link BrokenBarrierException} and the barrier is placed in the broken
344     * state.
345     *
346     * <p>If the current thread is the last thread to arrive, and a
347     * non-null barrier action was supplied in the constructor, then the
348     * current thread runs the action before allowing the other threads to
349     * continue.
350     * If an exception occurs during the barrier action then that exception
351     * will be propagated in the current thread.
352     *
353     * @return the arrival index of the current thread, where index
354     * <tt>{@link #getParties()} - 1</tt> indicates the first to arrive and
355     * zero indicates the last to arrive.
356     *
357     * @throws InterruptedException if the current thread was interrupted
358     * while waiting
359     * @throws TimeoutException if the specified timeout elapses.
360     * @throws BrokenBarrierException if <em>another</em> thread was
361     * interrupted while the current thread was waiting, or the barrier was
362     * reset, or the barrier was broken when <tt>await</tt> was called.
363     */
364     public int await(long timeout, TimeUnit unit) throws InterruptedException, BrokenBarrierException, TimeoutException {
365     return dowait(true, unit.toNanos(timeout));
366 tim 1.1 }
367    
368     /**
369     * Query if this barrier is in a broken state.
370     * @return <tt>true</tt> if one or more parties broke out of this
371 dl 1.2 * barrier due to interruption or timeout since construction or
372     * the last reset; and <tt>false</tt> otherwise.
373 tim 1.1 */
374     public boolean isBroken() {
375 dl 1.2 lock.lock();
376     try {
377     return broken >= generation;
378     }
379     finally {
380     lock.unlock();
381     }
382 tim 1.1 }
383    
384     /**
385     * Reset the barrier to its initial state. If any parties are
386     * currently waiting at the barrier, they will return with a
387     * {@link BrokenBarrierException}.
388     */
389     public void reset() {
390 dl 1.2 lock.lock();
391     try {
392     int g = generation;
393     nextGeneration();
394     broken = g; // cause brokenness setting to stop at previous gen.
395     trip.signalAll();
396     }
397     finally {
398     lock.unlock();
399     }
400 tim 1.1 }
401    
402     /**
403     * Return the number of parties currently waiting at the barrier.
404     * This method is primarily useful for debugging and assertions.
405     *
406     * @return the number of parties currently blocked in {@link #await}
407     **/
408     public int getNumberWaiting() {
409 dl 1.2 lock.lock();
410     try {
411     return parties - count;
412     }
413     finally {
414     lock.unlock();
415     }
416 tim 1.1 }
417    
418     }
419    
420