ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/CyclicBarrier.java
Revision: 1.6
Committed: Tue Jul 8 00:46:33 2003 UTC (20 years, 11 months ago) by dl
Branch: MAIN
CVS Tags: JSR166_PRELIMINARY_TEST_RELEASE_2
Changes since 1.5: +3 -2 lines
Log Message:
Locks in subpackage; fairness params added

File Contents

# User Rev Content
1 dl 1.2 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain. Use, modify, and
4     * redistribute this code in any way without acknowledgement.
5     */
6    
7 tim 1.1 package java.util.concurrent;
8 dl 1.6 import java.util.concurrent.locks.*;
9 tim 1.1
10     /**
11 dl 1.3 * A synchronization aid that allows a set threads to all wait for
12 brian 1.4 * each other to reach a common barrier point. CyclicBarriers are
13 dl 1.3 * useful in programs involving a fixed sized party of threads that
14 brian 1.4 * must occasionally wait for each other. The barrier is called
15 dl 1.3 * <em>cyclic</em> because it can be re-used after the waiting threads
16     * are released.
17 tim 1.1 *
18     * <p>A <tt>CyclicBarrier</tt> supports an optional {@link Runnable} command
19     * that is run once per barrier point, after the last thread in the party
20     * arrives, but before any threads are released.
21     * This <em>barrier action</em> is useful
22     * for updating shared-state before any of the parties continue.
23     *
24 brian 1.4 * <p><b>Sample usage:</b> Here is an example of
25 tim 1.1 * using a barrier in a parallel decomposition design:
26     * <pre>
27     * class Solver {
28     * final int N;
29     * final float[][] data;
30     * final CyclicBarrier barrier;
31     *
32     * class Worker implements Runnable {
33     * int myRow;
34     * Worker(int row) { myRow = row; }
35     * public void run() {
36     * while (!done()) {
37     * processRow(myRow);
38     *
39     * try {
40     * barrier.await();
41     * }
42     * catch (InterruptedException ex) { return; }
43     * catch (BrokenBarrierException ex) { return; }
44     * }
45     * }
46     * }
47     *
48     * public Solver(float[][] matrix) {
49     * data = matrix;
50     * N = matrix.length;
51     * barrier = new CyclicBarrier(N,
52     * new Runnable() {
53     * public void run() {
54     * mergeRows(...);
55     * }
56     * });
57     * for (int i = 0; i < N; ++i)
58     * new Thread(new Worker(i)).start();
59     *
60     * waitUntilDone();
61     * }
62     * }
63     * </pre>
64     * Here, each worker thread processes a row of the matrix then waits at the
65     * barrier until all rows have been processed. When all rows are processed
66     * the supplied {@link Runnable} barrier action is executed and merges the
67     * rows. If the merger
68     * determines that a solution has been found then <tt>done()</tt> will return
69     * <tt>true</tt> and each worker will terminate.
70     *
71     * <p>If the barrier action does not rely on the parties being suspended when
72     * it is executed, then any of the threads in the party could execute that
73     * action when it is released. To facilitate this, each invocation of
74     * {@link #await} returns the arrival index of that thread at the barrier.
75     * You can then choose which thread should execute the barrier action, for
76     * example:
77     * <pre> if (barrier.await() == 0) {
78     * // log the completion of this iteration
79     * }</pre>
80     *
81 dl 1.2 * <p>The <tt>CyclicBarrier</tt> uses an all-or-none breakage model
82     * for failed synchronization attempts: If a thread leaves a barrier
83     * point prematurely because of interruption or timeout, all others
84     * will also leave abnormally (via {@link BrokenBarrierException}),
85     * until the barrier is {@link #reset}. This is usually the simplest
86     * and best strategy for sharing knowledge about failures among
87     * cooperating threads in the most common usage contexts of barriers.
88 tim 1.1 *
89     * <h3>Implementation Considerations</h3>
90     * <p>This implementation has the property that interruptions among newly
91     * arriving threads can cause as-yet-unresumed threads from a previous
92     * barrier cycle to return out as broken. This transmits breakage as
93     * early as possible, but with the possible byproduct that only some
94     * threads returning out of a barrier will realize that it is newly
95     * broken. (Others will not realize this until a future cycle.)
96     *
97     *
98     *
99     * @since 1.5
100     * @spec JSR-166
101 dl 1.6 * @revised $Date: 2003/06/24 14:34:47 $
102     * @editor $Author: dl $
103 brian 1.4 * @see CountDownLatch
104 tim 1.1 *
105     * @fixme Is the above property actually true in this implementation?
106     * @fixme Should we have a timeout version of await()?
107 dl 1.5 * @author Doug Lea
108 tim 1.1 */
109     public class CyclicBarrier {
110 dl 1.5 /** The lock for guarding barrier entry */
111 dl 1.2 private final ReentrantLock lock = new ReentrantLock();
112 dl 1.5 /** Condition to wait on until tripped */
113 dl 1.2 private final Condition trip = lock.newCondition();
114 dl 1.5 /** The number of parties */
115 dl 1.2 private final int parties;
116 dl 1.5 /* The command to run when tripped */
117 dl 1.2 private Runnable barrierCommand;
118    
119     /**
120     * The generation number. Incremented mod Integer.MAX_VALUE every
121     * time barrier tripped. Starts at 1 to simplify handling of
122     * breakage indicator
123     */
124     private int generation = 1;
125    
126     /**
127     * Breakage indicator: last generation of breakage, propagated
128     * across barrier generations until reset.
129     */
130     private int broken = 0;
131    
132     /**
133     * Number of parties still waiting. Counts down from parties to 0
134     * on each cycle.
135     */
136     private int count;
137    
138     /**
139     * Update state on barrier trip.
140     */
141     private void nextGeneration() {
142     count = parties;
143     int g = generation;
144     // avoid generation == 0
145     if (++generation < 0) generation = 1;
146     // propagate breakage
147     if (broken == g) broken = generation;
148     }
149    
150 dl 1.5 /**
151     * Main barrier code, covering the various pilicies.
152     */
153 dl 1.2 private int dowait(boolean timed, long nanos) throws InterruptedException, BrokenBarrierException, TimeoutException {
154     lock.lock();
155     try {
156     int index = --count;
157     int g = generation;
158    
159     if (broken == g)
160     throw new BrokenBarrierException();
161    
162     if (Thread.interrupted()) {
163     broken = g;
164     trip.signalAll();
165     throw new InterruptedException();
166     }
167    
168     if (index == 0) { // tripped
169     nextGeneration();
170     trip.signalAll();
171     try {
172     if (barrierCommand != null)
173     barrierCommand.run();
174     return 0;
175     }
176     catch (RuntimeException ex) {
177     broken = generation; // next generation is broken
178     throw ex;
179     }
180     }
181    
182     while (generation == g) {
183     try {
184     if (!timed)
185     trip.await();
186     else if (nanos > 0)
187     nanos = trip.awaitNanos(nanos);
188     }
189     catch (InterruptedException ex) {
190     // Only claim that broken if interrupted before reset
191     if (generation == g) {
192     broken = g;
193     trip.signalAll();
194     throw ex;
195     }
196     else {
197     Thread.currentThread().interrupt(); // propagate
198     break;
199     }
200     }
201    
202     if (timed && nanos <= 0) {
203     broken = g;
204     trip.signalAll();
205     throw new TimeoutException();
206     }
207    
208     if (broken == generation)
209     throw new BrokenBarrierException();
210    
211     }
212     return index;
213    
214     }
215     finally {
216     lock.unlock();
217     }
218     }
219 tim 1.1
220     /**
221     * Create a new <tt>CyclicBarrier</tt> that will trip when the
222     * given number of parties (threads) are waiting upon it, and which
223     * will execute the given barrier action when the barrier is tripped.
224     *
225     * @param parties the number of threads that must invoke {@link #await}
226     * before the barrier is tripped.
227     * @param barrierAction the command to execute when the barrier is
228     * tripped.
229     *
230     * @throws IllegalArgumentException if <tt>parties</tt> is less than 1.
231     */
232     public CyclicBarrier(int parties, Runnable barrierAction) {
233 dl 1.2 if (parties <= 0) throw new IllegalArgumentException();
234     this.parties = parties;
235     this.count = parties;
236     this.barrierCommand = barrierAction;
237 tim 1.1 }
238    
239     /**
240     * Create a new <tt>CyclicBarrier</tt> that will trip when the
241     * given number of parties (threads) are waiting upon it.
242     *
243     * <p>This is equivalent to <tt>CyclicBarrier(parties, null)</tt>.
244     *
245     * @param parties the number of threads that must invoke {@link #await}
246     * before the barrier is tripped.
247     *
248     * @throws IllegalArgumentException if <tt>parties</tt> is less than 1.
249     */
250     public CyclicBarrier(int parties) {
251 dl 1.2 this(parties, null);
252 tim 1.1 }
253    
254     /**
255     * Return the number of parties required to trip this barrier.
256     * @return the number of parties required to trip this barrier.
257     **/
258     public int getParties() {
259 dl 1.2 return parties;
260 tim 1.1 }
261    
262     /**
263     * Wait until all {@link #getParties parties} have invoked <tt>await</tt>
264     * on this barrier.
265     *
266     * <p>If the current thread is not the last to arrive then it is
267     * disabled for thread scheduling purposes and lies dormant until
268 dl 1.2 * one of following things happens:
269 tim 1.1 * <ul>
270     * <li>The last thread arrives; or
271     * <li>Some other thread {@link Thread#interrupt interrupts} the current
272     * thread; or
273     * <li>Some other thread {@link Thread#interrupt interrupts} one of the
274     * other waiting threads; or
275 dl 1.2 * <li>Some other thread times out while waiting for barrier; or
276 tim 1.1 * <li>Some other thread invokes {@link #reset} on this barrier.
277     * </ul>
278     * <p>If the current thread:
279     * <ul>
280     * <li>has its interrupted status set on entry to this method; or
281     * <li>is {@link Thread#interrupt interrupted} while waiting
282     * </ul>
283     * then {@link InterruptedException} is thrown and the current thread's
284     * interrupted status is cleared.
285     *
286     * <p>If the barrier is {@link #reset} while any thread is waiting, or if
287     * the barrier {@link #isBroken is broken} when <tt>await</tt> is invoked
288     * then {@link BrokenBarrierException} is thrown.
289     *
290     * <p>If any thread is {@link Thread#interrupt interrupted} while waiting,
291     * then all other waiting threads will throw
292     * {@link BrokenBarrierException} and the barrier is placed in the broken
293     * state.
294     *
295     * <p>If the current thread is the last thread to arrive, and a
296     * non-null barrier action was supplied in the constructor, then the
297     * current thread runs the action before allowing the other threads to
298     * continue.
299     * If an exception occurs during the barrier action then that exception
300     * will be propagated in the current thread.
301     *
302     * @return the arrival index of the current thread, where index
303     * <tt>{@link #getParties()} - 1</tt> indicates the first to arrive and
304     * zero indicates the last to arrive.
305     *
306     * @throws InterruptedException if the current thread was interrupted
307     * while waiting
308     * @throws BrokenBarrierException if <em>another</em> thread was
309     * interrupted while the current thread was waiting, or the barrier was
310     * reset, or the barrier was broken when <tt>await</tt> was called.
311     */
312     public int await() throws InterruptedException, BrokenBarrierException {
313 dl 1.2 try {
314     return dowait(false, 0);
315     }
316     catch (TimeoutException toe) {
317     throw new Error(toe); // cannot happen;
318     }
319     }
320    
321     /**
322     * Wait until all {@link #getParties parties} have invoked <tt>await</tt>
323     * on this barrier.
324     *
325     * <p>If the current thread is not the last to arrive then it is
326     * disabled for thread scheduling purposes and lies dormant until
327     * one of the following things happens:
328     * <ul>
329     * <li>The last thread arrives; or
330     * <li>The speceified timeout elapses; or
331     * <li>Some other thread {@link Thread#interrupt interrupts} the current
332     * thread; or
333     * <li>Some other thread {@link Thread#interrupt interrupts} one of the
334     * other waiting threads; or
335     * <li>Some other thread times out while waiting for barrier; or
336     * <li>Some other thread invokes {@link #reset} on this barrier.
337     * </ul>
338     * <p>If the current thread:
339     * <ul>
340     * <li>has its interrupted status set on entry to this method; or
341     * <li>is {@link Thread#interrupt interrupted} while waiting
342     * </ul>
343     * then {@link InterruptedException} is thrown and the current thread's
344     * interrupted status is cleared.
345     *
346     * <p>If the barrier is {@link #reset} while any thread is waiting, or if
347     * the barrier {@link #isBroken is broken} when <tt>await</tt> is invoked
348     * then {@link BrokenBarrierException} is thrown.
349     *
350     * <p>If any thread is {@link Thread#interrupt interrupted} while waiting,
351     * then all other waiting threads will throw
352     * {@link BrokenBarrierException} and the barrier is placed in the broken
353     * state.
354     *
355     * <p>If the current thread is the last thread to arrive, and a
356     * non-null barrier action was supplied in the constructor, then the
357     * current thread runs the action before allowing the other threads to
358     * continue.
359     * If an exception occurs during the barrier action then that exception
360     * will be propagated in the current thread.
361     *
362 dl 1.5 * @param timeout the time to wait for the barrier
363     * @param unit the time unit of the timeout parameter
364 dl 1.2 * @return the arrival index of the current thread, where index
365     * <tt>{@link #getParties()} - 1</tt> indicates the first to arrive and
366     * zero indicates the last to arrive.
367     *
368     * @throws InterruptedException if the current thread was interrupted
369     * while waiting
370     * @throws TimeoutException if the specified timeout elapses.
371     * @throws BrokenBarrierException if <em>another</em> thread was
372     * interrupted while the current thread was waiting, or the barrier was
373     * reset, or the barrier was broken when <tt>await</tt> was called.
374     */
375     public int await(long timeout, TimeUnit unit) throws InterruptedException, BrokenBarrierException, TimeoutException {
376     return dowait(true, unit.toNanos(timeout));
377 tim 1.1 }
378    
379     /**
380     * Query if this barrier is in a broken state.
381     * @return <tt>true</tt> if one or more parties broke out of this
382 dl 1.2 * barrier due to interruption or timeout since construction or
383     * the last reset; and <tt>false</tt> otherwise.
384 tim 1.1 */
385     public boolean isBroken() {
386 dl 1.2 lock.lock();
387     try {
388     return broken >= generation;
389     }
390     finally {
391     lock.unlock();
392     }
393 tim 1.1 }
394    
395     /**
396     * Reset the barrier to its initial state. If any parties are
397     * currently waiting at the barrier, they will return with a
398     * {@link BrokenBarrierException}.
399     */
400     public void reset() {
401 dl 1.2 lock.lock();
402     try {
403     int g = generation;
404     nextGeneration();
405     broken = g; // cause brokenness setting to stop at previous gen.
406     trip.signalAll();
407     }
408     finally {
409     lock.unlock();
410     }
411 tim 1.1 }
412    
413     /**
414     * Return the number of parties currently waiting at the barrier.
415     * This method is primarily useful for debugging and assertions.
416     *
417     * @return the number of parties currently blocked in {@link #await}
418     **/
419     public int getNumberWaiting() {
420 dl 1.2 lock.lock();
421     try {
422     return parties - count;
423     }
424     finally {
425     lock.unlock();
426     }
427 tim 1.1 }
428    
429     }
430    
431