ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/Exchanger.java
Revision: 1.22
Committed: Fri Sep 2 01:03:08 2005 UTC (18 years, 9 months ago) by brian
Branch: MAIN
Changes since 1.21: +5 -0 lines
Log Message:
Happens-before markup

File Contents

# User Rev Content
1 dl 1.2 /*
2 dl 1.16 * Written by Doug Lea, Bill Scherer, and Michael Scott with
3     * assistance from members of JCP JSR-166 Expert Group and released to
4     * the public domain, as explained at
5 dl 1.14 * http://creativecommons.org/licenses/publicdomain
6 dl 1.2 */
7    
8 tim 1.1 package java.util.concurrent;
9 jsr166 1.21 import java.util.concurrent.*; // for javadoc (till 6280605 is fixed)
10 dl 1.4 import java.util.concurrent.locks.*;
11 dl 1.16 import java.util.concurrent.atomic.*;
12     import java.util.Random;
13 tim 1.1
14     /**
15 dl 1.12 * A synchronization point at which two threads can exchange objects.
16     * Each thread presents some object on entry to the {@link #exchange
17     * exchange} method, and receives the object presented by the other
18     * thread on return.
19 tim 1.1 *
20     * <p><b>Sample Usage:</b>
21     * Here are the highlights of a class that uses an <tt>Exchanger</tt> to
22     * swap buffers between threads so that the thread filling the
23     * buffer gets a freshly
24     * emptied one when it needs it, handing off the filled one to
25     * the thread emptying the buffer.
26     * <pre>
27     * class FillAndEmpty {
28 dl 1.9 * Exchanger&lt;DataBuffer&gt; exchanger = new Exchanger();
29     * DataBuffer initialEmptyBuffer = ... a made-up type
30     * DataBuffer initialFullBuffer = ...
31 tim 1.1 *
32     * class FillingLoop implements Runnable {
33     * public void run() {
34 dl 1.9 * DataBuffer currentBuffer = initialEmptyBuffer;
35 tim 1.1 * try {
36     * while (currentBuffer != null) {
37     * addToBuffer(currentBuffer);
38     * if (currentBuffer.full())
39     * currentBuffer = exchanger.exchange(currentBuffer);
40     * }
41 tim 1.7 * } catch (InterruptedException ex) { ... handle ... }
42 tim 1.1 * }
43     * }
44     *
45     * class EmptyingLoop implements Runnable {
46     * public void run() {
47 dl 1.9 * DataBuffer currentBuffer = initialFullBuffer;
48 tim 1.1 * try {
49     * while (currentBuffer != null) {
50     * takeFromBuffer(currentBuffer);
51     * if (currentBuffer.empty())
52     * currentBuffer = exchanger.exchange(currentBuffer);
53     * }
54 tim 1.7 * } catch (InterruptedException ex) { ... handle ...}
55 tim 1.1 * }
56     * }
57     *
58     * void start() {
59     * new Thread(new FillingLoop()).start();
60     * new Thread(new EmptyingLoop()).start();
61     * }
62     * }
63     * </pre>
64     *
65 brian 1.22 * <p> Memory visibility effects: Actions in a thread prior to calling
66     * <tt>exchange()</tt> <a
67     * href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
68     * those subsequent to the matching <tt>exchange()</tt> in another thread.
69     *
70 tim 1.1 * @since 1.5
71 dl 1.16 * @author Doug Lea and Bill Scherer and Michael Scott
72 dl 1.11 * @param <V> The type of objects that may be exchanged
73 tim 1.1 */
74     public class Exchanger<V> {
75 dl 1.16 /*
76     * The underlying idea is to use a stack to hold nodes containing
77     * pairs of items to be exchanged. Except that:
78     *
79     * * Only one element of the pair is known on creation by a
80     * first-arriving thread; the other is a "hole" waiting to be
81     * filled in. This is a degenerate form of the dual stacks
82     * described in "Nonblocking Concurrent Objects with Condition
83     * Synchronization", by W. N. Scherer III and M. L. Scott.
84     * 18th Annual Conf. on Distributed Computing, Oct. 2004.
85     * It is "degenerate" in that both the items and the holes
86     * are shared in the same nodes.
87     *
88     * * There isn't really a stack here! There can't be -- if two
89     * nodes were both in the stack, they should cancel themselves
90     * out by combining. So that's what we do. The 0th element of
91     * the "arena" array serves only as the top of stack. The
92     * remainder of the array is a form of the elimination backoff
93     * collision array described in "A Scalable Lock-free Stack
94     * Algorithm", by D. Hendler, N. Shavit, and L. Yerushalmi.
95     * 16th ACM Symposium on Parallelism in Algorithms and
96     * Architectures, June 2004. Here, threads spin (using short
97     * timed waits with exponential backoff) looking for each
98     * other. If they fail to find others waiting, they try the
99     * top spot again. As shown in that paper, this always
100     * converges.
101     *
102     * The backoff elimination mechanics never come into play in
103     * common usages where only two threads ever meet to exchange
104     * items, but they prevent contention bottlenecks when an
105     * exchanger is used by a large number of threads.
106     */
107 dl 1.2
108 jsr166 1.17 /**
109 dl 1.16 * Size of collision space. Using a size of half the number of
110     * CPUs provides enough space for threads to find each other but
111     * not so much that it would always require one or more to time
112     * out to become unstuck. Note that the arena array holds SIZE+1
113     * elements, to include the top-of-stack slot.
114     */
115 jsr166 1.17 private static final int SIZE =
116 dl 1.16 (Runtime.getRuntime().availableProcessors() + 1) / 2;
117 jsr166 1.15
118 dl 1.2 /**
119 dl 1.16 * Base unit in nanoseconds for backoffs. Must be a power of two.
120     * Should be small because backoffs exponentially increase from
121     * base.
122 dl 1.2 */
123 dl 1.16 private static final long BACKOFF_BASE = 128L;
124 dl 1.2
125 jsr166 1.17 /**
126 dl 1.16 * Sentinel item representing cancellation. This value is placed
127     * in holes on cancellation, and used as a return value from Node
128     * methods to indicate failure to set or get hole.
129 jsr166 1.17 */
130 dl 1.16 static final Object FAIL = new Object();
131    
132 jsr166 1.17 /**
133 dl 1.16 * The collision arena. arena[0] is used as the top of the stack.
134     * The remainder is used as the collision elimination space.
135 jsr166 1.17 * Each slot holds an AtomicReference<Node>, but this cannot be
136 dl 1.16 * expressed for arrays, so elements are casted on each use.
137 dl 1.3 */
138 dl 1.16 private final AtomicReference[] arena;
139 dl 1.5
140 dl 1.16 /** Generator for random backoffs and delays. */
141     private final Random random = new Random();
142 dl 1.5
143 dl 1.16 /**
144     * Creates a new Exchanger.
145     */
146     public Exchanger() {
147     arena = new AtomicReference[SIZE + 1];
148     for (int i = 0; i < arena.length; ++i)
149     arena[i] = new AtomicReference();
150     }
151 dl 1.2
152 dl 1.16 /**
153     * Main exchange function, handling the different policy variants.
154     * Uses Object, not "V" as argument and return value to simplify
155     * handling of internal sentinel values. Callers from public
156     * methods cast accordingly.
157     * @param item the item to exchange.
158     * @param timed true if the wait is timed.
159     * @param nanos if timed, the maximum wait time.
160     * @return the other thread's item.
161     */
162     private Object doExchange(Object item, boolean timed, long nanos)
163     throws InterruptedException, TimeoutException {
164     Node me = new Node(item);
165     long lastTime = (timed)? System.nanoTime() : 0;
166     int idx = 0; // start out at slot representing top
167     int backoff = 0; // increases on failure to occupy a slot
168    
169     for (;;) {
170     AtomicReference<Node> slot = (AtomicReference<Node>)arena[idx];
171    
172     // If this slot is already occupied, there is a waiting item...
173     Node you = slot.get();
174     if (you != null) {
175     Object v = you.fillHole(item);
176     slot.compareAndSet(you, null);
177     if (v != FAIL) // ... unless it was cancelled
178     return v;
179 dl 1.2 }
180    
181 dl 1.16 // Try to occupy this slot
182     if (slot.compareAndSet(null, me)) {
183     // If this is top slot, use regular wait, else backoff-wait
184     Object v = ((idx == 0)?
185     me.waitForHole(timed, nanos) :
186     me.waitForHole(true, randomDelay(backoff)));
187     slot.compareAndSet(me, null);
188     if (v != FAIL)
189     return v;
190     if (Thread.interrupted())
191     throw new InterruptedException();
192     if (timed) {
193     long now = System.nanoTime();
194     nanos -= now - lastTime;
195     lastTime = now;
196     if (nanos <= 0)
197     throw new TimeoutException();
198     }
199 dl 1.2
200 dl 1.16 me = new Node(item); // Throw away nodes on failure
201     if (backoff < SIZE - 1) // Increase or stay saturated
202     ++backoff;
203     idx = 0; // Restart at top
204 dl 1.2 }
205    
206 dl 1.16 else // Retry with a random non-top slot <= backoff
207     idx = 1 + random.nextInt(backoff + 1);
208 dl 1.2
209     }
210     }
211 tim 1.1
212     /**
213 dl 1.16 * Returns a random delay less than (base times (2 raised to backoff))
214     */
215     private long randomDelay(int backoff) {
216     return ((BACKOFF_BASE << backoff) - 1) & random.nextInt();
217     }
218    
219     /**
220     * Nodes hold partially exchanged data. This class
221     * opportunistically subclasses AtomicReference to represent the
222     * hole. So get() returns hole, and compareAndSet CAS'es value
223     * into hole. Note that this class cannot be parameterized as V
224     * because the sentinel value FAIL is only of type Object.
225 jsr166 1.15 */
226 dl 1.16 static final class Node extends AtomicReference<Object> {
227 dl 1.20 private static final long serialVersionUID = -3221313401284163686L;
228 jsr166 1.21
229 dl 1.16 /** The element offered by the Thread creating this node. */
230     final Object item;
231     /** The Thread creating this node. */
232     final Thread waiter;
233    
234     /**
235     * Creates node with given item and empty hole.
236     * @param item the item.
237     */
238     Node(Object item) {
239     this.item = item;
240     waiter = Thread.currentThread();
241     }
242    
243     /**
244     * Tries to fill in hole. On success, wakes up the waiter.
245     * @param val the value to place in hole.
246     * @return on success, the item; on failure, FAIL.
247     */
248     Object fillHole(Object val) {
249     if (compareAndSet(null, val)) {
250     LockSupport.unpark(waiter);
251     return item;
252     }
253     return FAIL;
254     }
255    
256     /**
257 jsr166 1.17 * Waits for and gets the hole filled in by another thread.
258     * Fails if timed out or interrupted before hole filled.
259 dl 1.16 * @param timed true if the wait is timed.
260     * @param nanos if timed, the maximum wait time.
261     * @return on success, the hole; on failure, FAIL.
262     */
263     Object waitForHole(boolean timed, long nanos) {
264     long lastTime = (timed)? System.nanoTime() : 0;
265 dl 1.18 Object h;
266     while ((h = get()) == null) {
267     // If interrupted or timed out, try to cancel by
268     // CASing FAIL as hole value.
269     if (Thread.currentThread().isInterrupted() ||
270 jsr166 1.19 (timed && nanos <= 0))
271 dl 1.18 compareAndSet(null, FAIL);
272     else if (!timed)
273 dl 1.16 LockSupport.park();
274     else {
275     LockSupport.parkNanos(nanos);
276     long now = System.nanoTime();
277     nanos -= now - lastTime;
278     lastTime = now;
279     }
280     }
281     return h;
282     }
283 tim 1.1 }
284    
285     /**
286     * Waits for another thread to arrive at this exchange point (unless
287     * it is {@link Thread#interrupt interrupted}),
288     * and then transfers the given object to it, receiving its object
289     * in return.
290 jsr166 1.17 *
291 tim 1.1 * <p>If another thread is already waiting at the exchange point then
292     * it is resumed for thread scheduling purposes and receives the object
293     * passed in by the current thread. The current thread returns immediately,
294     * receiving the object passed to the exchange by that other thread.
295 jsr166 1.17 *
296 jsr166 1.15 * <p>If no other thread is already waiting at the exchange then the
297 tim 1.1 * current thread is disabled for thread scheduling purposes and lies
298     * dormant until one of two things happens:
299     * <ul>
300     * <li>Some other thread enters the exchange; or
301     * <li>Some other thread {@link Thread#interrupt interrupts} the current
302     * thread.
303     * </ul>
304     * <p>If the current thread:
305     * <ul>
306 jsr166 1.15 * <li>has its interrupted status set on entry to this method; or
307 tim 1.1 * <li>is {@link Thread#interrupt interrupted} while waiting
308 jsr166 1.15 * for the exchange,
309 tim 1.1 * </ul>
310 jsr166 1.15 * then {@link InterruptedException} is thrown and the current thread's
311     * interrupted status is cleared.
312 tim 1.1 *
313     * @param x the object to exchange
314     * @return the object provided by the other thread.
315 jsr166 1.15 * @throws InterruptedException if current thread was interrupted
316 dl 1.3 * while waiting
317 jsr166 1.15 */
318 tim 1.1 public V exchange(V x) throws InterruptedException {
319 dl 1.2 try {
320 dl 1.16 return (V)doExchange(x, false, 0);
321 jsr166 1.15 } catch (TimeoutException cannotHappen) {
322 dl 1.2 throw new Error(cannotHappen);
323     }
324 tim 1.1 }
325    
326     /**
327     * Waits for another thread to arrive at this exchange point (unless
328     * it is {@link Thread#interrupt interrupted}, or the specified waiting
329     * time elapses),
330     * and then transfers the given object to it, receiving its object
331     * in return.
332     *
333     * <p>If another thread is already waiting at the exchange point then
334     * it is resumed for thread scheduling purposes and receives the object
335     * passed in by the current thread. The current thread returns immediately,
336     * receiving the object passed to the exchange by that other thread.
337     *
338 jsr166 1.15 * <p>If no other thread is already waiting at the exchange then the
339 tim 1.1 * current thread is disabled for thread scheduling purposes and lies
340     * dormant until one of three things happens:
341     * <ul>
342     * <li>Some other thread enters the exchange; or
343     * <li>Some other thread {@link Thread#interrupt interrupts} the current
344     * thread; or
345     * <li>The specified waiting time elapses.
346     * </ul>
347     * <p>If the current thread:
348     * <ul>
349 jsr166 1.15 * <li>has its interrupted status set on entry to this method; or
350 tim 1.1 * <li>is {@link Thread#interrupt interrupted} while waiting
351 jsr166 1.15 * for the exchange,
352 tim 1.1 * </ul>
353 jsr166 1.15 * then {@link InterruptedException} is thrown and the current thread's
354     * interrupted status is cleared.
355 tim 1.1 *
356     * <p>If the specified waiting time elapses then {@link TimeoutException}
357     * is thrown.
358 jsr166 1.15 * If the time is
359 tim 1.1 * less than or equal to zero, the method will not wait at all.
360     *
361     * @param x the object to exchange
362     * @param timeout the maximum time to wait
363 dl 1.2 * @param unit the time unit of the <tt>timeout</tt> argument.
364 tim 1.1 * @return the object provided by the other thread.
365 dl 1.3 * @throws InterruptedException if current thread was interrupted
366     * while waiting
367 tim 1.1 * @throws TimeoutException if the specified waiting time elapses before
368     * another thread enters the exchange.
369 jsr166 1.15 */
370     public V exchange(V x, long timeout, TimeUnit unit)
371 tim 1.1 throws InterruptedException, TimeoutException {
372 dl 1.16 return (V)doExchange(x, true, unit.toNanos(timeout));
373 tim 1.1 }
374     }