ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/Exchanger.java
Revision: 1.29
Committed: Fri Sep 16 03:59:07 2005 UTC (18 years, 8 months ago) by jsr166
Branch: MAIN
Changes since 1.28: +7 -8 lines
Log Message:
doc fixes

File Contents

# User Rev Content
1 dl 1.2 /*
2 dl 1.16 * Written by Doug Lea, Bill Scherer, and Michael Scott with
3     * assistance from members of JCP JSR-166 Expert Group and released to
4     * the public domain, as explained at
5 dl 1.14 * http://creativecommons.org/licenses/publicdomain
6 dl 1.2 */
7    
8 tim 1.1 package java.util.concurrent;
9 jsr166 1.21 import java.util.concurrent.*; // for javadoc (till 6280605 is fixed)
10 dl 1.4 import java.util.concurrent.locks.*;
11 dl 1.16 import java.util.concurrent.atomic.*;
12     import java.util.Random;
13 tim 1.1
14     /**
15 dl 1.28 * A synchronization point at which threads can pair and swap elements
16     * within pairs. Each thread presents some object on entry to the
17     * {@link #exchange exchange} method, matches with a partner thread,
18     * and receives its partner's object on return.
19 tim 1.1 *
20     * <p><b>Sample Usage:</b>
21 jsr166 1.29 * Here are the highlights of a class that uses an {@code Exchanger}
22     * to swap buffers between threads so that the thread filling the
23     * buffer gets a freshly emptied one when it needs it, handing off the
24     * filled one to the thread emptying the buffer.
25     * <pre>{@code
26 tim 1.1 * class FillAndEmpty {
27 jsr166 1.29 * Exchanger<DataBuffer> exchanger = new Exchanger<DataBuffer>();
28 dl 1.9 * DataBuffer initialEmptyBuffer = ... a made-up type
29     * DataBuffer initialFullBuffer = ...
30 tim 1.1 *
31     * class FillingLoop implements Runnable {
32     * public void run() {
33 dl 1.9 * DataBuffer currentBuffer = initialEmptyBuffer;
34 tim 1.1 * try {
35     * while (currentBuffer != null) {
36     * addToBuffer(currentBuffer);
37     * if (currentBuffer.full())
38     * currentBuffer = exchanger.exchange(currentBuffer);
39     * }
40 tim 1.7 * } catch (InterruptedException ex) { ... handle ... }
41 tim 1.1 * }
42     * }
43     *
44     * class EmptyingLoop implements Runnable {
45     * public void run() {
46 dl 1.9 * DataBuffer currentBuffer = initialFullBuffer;
47 tim 1.1 * try {
48     * while (currentBuffer != null) {
49     * takeFromBuffer(currentBuffer);
50     * if (currentBuffer.empty())
51     * currentBuffer = exchanger.exchange(currentBuffer);
52     * }
53 tim 1.7 * } catch (InterruptedException ex) { ... handle ...}
54 tim 1.1 * }
55     * }
56     *
57     * void start() {
58     * new Thread(new FillingLoop()).start();
59     * new Thread(new EmptyingLoop()).start();
60     * }
61     * }
62 jsr166 1.29 * }</pre>
63 tim 1.1 *
64 jsr166 1.27 * <p>Memory consistency effects: For each pair of threads that
65     * successfully exchange objects via an {@code Exchanger}, actions
66     * prior to the {@code exchange()} in each thread
67     * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
68     * those subsequent to a return from the corresponding {@code exchange()}
69     * in the other thread.
70 brian 1.22 *
71 tim 1.1 * @since 1.5
72 dl 1.16 * @author Doug Lea and Bill Scherer and Michael Scott
73 dl 1.11 * @param <V> The type of objects that may be exchanged
74 tim 1.1 */
75     public class Exchanger<V> {
76 dl 1.16 /*
77     * The underlying idea is to use a stack to hold nodes containing
78     * pairs of items to be exchanged. Except that:
79     *
80     * * Only one element of the pair is known on creation by a
81     * first-arriving thread; the other is a "hole" waiting to be
82     * filled in. This is a degenerate form of the dual stacks
83     * described in "Nonblocking Concurrent Objects with Condition
84     * Synchronization", by W. N. Scherer III and M. L. Scott.
85     * 18th Annual Conf. on Distributed Computing, Oct. 2004.
86     * It is "degenerate" in that both the items and the holes
87     * are shared in the same nodes.
88     *
89     * * There isn't really a stack here! There can't be -- if two
90     * nodes were both in the stack, they should cancel themselves
91     * out by combining. So that's what we do. The 0th element of
92     * the "arena" array serves only as the top of stack. The
93     * remainder of the array is a form of the elimination backoff
94     * collision array described in "A Scalable Lock-free Stack
95     * Algorithm", by D. Hendler, N. Shavit, and L. Yerushalmi.
96     * 16th ACM Symposium on Parallelism in Algorithms and
97     * Architectures, June 2004. Here, threads spin (using short
98     * timed waits with exponential backoff) looking for each
99     * other. If they fail to find others waiting, they try the
100     * top spot again. As shown in that paper, this always
101     * converges.
102     *
103     * The backoff elimination mechanics never come into play in
104     * common usages where only two threads ever meet to exchange
105     * items, but they prevent contention bottlenecks when an
106     * exchanger is used by a large number of threads.
107     */
108 dl 1.2
109 jsr166 1.17 /**
110 dl 1.16 * Size of collision space. Using a size of half the number of
111     * CPUs provides enough space for threads to find each other but
112     * not so much that it would always require one or more to time
113     * out to become unstuck. Note that the arena array holds SIZE+1
114     * elements, to include the top-of-stack slot.
115     */
116 jsr166 1.17 private static final int SIZE =
117 dl 1.16 (Runtime.getRuntime().availableProcessors() + 1) / 2;
118 jsr166 1.15
119 dl 1.2 /**
120 dl 1.16 * Base unit in nanoseconds for backoffs. Must be a power of two.
121     * Should be small because backoffs exponentially increase from
122     * base.
123 dl 1.2 */
124 dl 1.16 private static final long BACKOFF_BASE = 128L;
125 dl 1.2
126 jsr166 1.17 /**
127 dl 1.16 * Sentinel item representing cancellation. This value is placed
128     * in holes on cancellation, and used as a return value from Node
129     * methods to indicate failure to set or get hole.
130 jsr166 1.17 */
131 dl 1.16 static final Object FAIL = new Object();
132    
133 jsr166 1.17 /**
134 dl 1.16 * The collision arena. arena[0] is used as the top of the stack.
135     * The remainder is used as the collision elimination space.
136 jsr166 1.17 * Each slot holds an AtomicReference<Node>, but this cannot be
137 dl 1.16 * expressed for arrays, so elements are casted on each use.
138 dl 1.3 */
139 dl 1.16 private final AtomicReference[] arena;
140 dl 1.5
141 dl 1.16 /** Generator for random backoffs and delays. */
142     private final Random random = new Random();
143 dl 1.5
144 dl 1.16 /**
145     * Creates a new Exchanger.
146     */
147     public Exchanger() {
148     arena = new AtomicReference[SIZE + 1];
149     for (int i = 0; i < arena.length; ++i)
150     arena[i] = new AtomicReference();
151     }
152 dl 1.2
153 dl 1.16 /**
154     * Main exchange function, handling the different policy variants.
155     * Uses Object, not "V" as argument and return value to simplify
156     * handling of internal sentinel values. Callers from public
157     * methods cast accordingly.
158     * @param item the item to exchange.
159     * @param timed true if the wait is timed.
160     * @param nanos if timed, the maximum wait time.
161     * @return the other thread's item.
162     */
163     private Object doExchange(Object item, boolean timed, long nanos)
164     throws InterruptedException, TimeoutException {
165     Node me = new Node(item);
166     long lastTime = (timed)? System.nanoTime() : 0;
167     int idx = 0; // start out at slot representing top
168     int backoff = 0; // increases on failure to occupy a slot
169    
170     for (;;) {
171     AtomicReference<Node> slot = (AtomicReference<Node>)arena[idx];
172    
173     // If this slot is already occupied, there is a waiting item...
174     Node you = slot.get();
175     if (you != null) {
176     Object v = you.fillHole(item);
177     slot.compareAndSet(you, null);
178     if (v != FAIL) // ... unless it was cancelled
179     return v;
180 dl 1.2 }
181    
182 dl 1.16 // Try to occupy this slot
183     if (slot.compareAndSet(null, me)) {
184     // If this is top slot, use regular wait, else backoff-wait
185     Object v = ((idx == 0)?
186     me.waitForHole(timed, nanos) :
187     me.waitForHole(true, randomDelay(backoff)));
188     slot.compareAndSet(me, null);
189     if (v != FAIL)
190     return v;
191     if (Thread.interrupted())
192     throw new InterruptedException();
193     if (timed) {
194     long now = System.nanoTime();
195     nanos -= now - lastTime;
196     lastTime = now;
197     if (nanos <= 0)
198     throw new TimeoutException();
199     }
200 dl 1.2
201 dl 1.16 me = new Node(item); // Throw away nodes on failure
202     if (backoff < SIZE - 1) // Increase or stay saturated
203     ++backoff;
204     idx = 0; // Restart at top
205 dl 1.2 }
206    
207 dl 1.16 else // Retry with a random non-top slot <= backoff
208     idx = 1 + random.nextInt(backoff + 1);
209 dl 1.2
210     }
211     }
212 tim 1.1
213     /**
214 dl 1.16 * Returns a random delay less than (base times (2 raised to backoff))
215     */
216     private long randomDelay(int backoff) {
217     return ((BACKOFF_BASE << backoff) - 1) & random.nextInt();
218     }
219    
220     /**
221     * Nodes hold partially exchanged data. This class
222     * opportunistically subclasses AtomicReference to represent the
223     * hole. So get() returns hole, and compareAndSet CAS'es value
224     * into hole. Note that this class cannot be parameterized as V
225     * because the sentinel value FAIL is only of type Object.
226 jsr166 1.15 */
227 dl 1.16 static final class Node extends AtomicReference<Object> {
228 dl 1.20 private static final long serialVersionUID = -3221313401284163686L;
229 jsr166 1.21
230 dl 1.16 /** The element offered by the Thread creating this node. */
231     final Object item;
232     /** The Thread creating this node. */
233     final Thread waiter;
234    
235     /**
236     * Creates node with given item and empty hole.
237     * @param item the item.
238     */
239     Node(Object item) {
240     this.item = item;
241     waiter = Thread.currentThread();
242     }
243    
244     /**
245     * Tries to fill in hole. On success, wakes up the waiter.
246     * @param val the value to place in hole.
247     * @return on success, the item; on failure, FAIL.
248     */
249     Object fillHole(Object val) {
250     if (compareAndSet(null, val)) {
251     LockSupport.unpark(waiter);
252     return item;
253     }
254     return FAIL;
255     }
256    
257     /**
258 jsr166 1.17 * Waits for and gets the hole filled in by another thread.
259     * Fails if timed out or interrupted before hole filled.
260 dl 1.16 * @param timed true if the wait is timed.
261     * @param nanos if timed, the maximum wait time.
262     * @return on success, the hole; on failure, FAIL.
263     */
264     Object waitForHole(boolean timed, long nanos) {
265     long lastTime = (timed)? System.nanoTime() : 0;
266 dl 1.18 Object h;
267     while ((h = get()) == null) {
268     // If interrupted or timed out, try to cancel by
269     // CASing FAIL as hole value.
270     if (Thread.currentThread().isInterrupted() ||
271 jsr166 1.19 (timed && nanos <= 0))
272 dl 1.18 compareAndSet(null, FAIL);
273     else if (!timed)
274 dl 1.16 LockSupport.park();
275     else {
276     LockSupport.parkNanos(nanos);
277     long now = System.nanoTime();
278     nanos -= now - lastTime;
279     lastTime = now;
280     }
281     }
282     return h;
283     }
284 tim 1.1 }
285    
286     /**
287     * Waits for another thread to arrive at this exchange point (unless
288     * it is {@link Thread#interrupt interrupted}),
289     * and then transfers the given object to it, receiving its object
290     * in return.
291 jsr166 1.17 *
292 tim 1.1 * <p>If another thread is already waiting at the exchange point then
293     * it is resumed for thread scheduling purposes and receives the object
294     * passed in by the current thread. The current thread returns immediately,
295     * receiving the object passed to the exchange by that other thread.
296 jsr166 1.17 *
297 jsr166 1.15 * <p>If no other thread is already waiting at the exchange then the
298 tim 1.1 * current thread is disabled for thread scheduling purposes and lies
299     * dormant until one of two things happens:
300     * <ul>
301     * <li>Some other thread enters the exchange; or
302     * <li>Some other thread {@link Thread#interrupt interrupts} the current
303     * thread.
304     * </ul>
305     * <p>If the current thread:
306     * <ul>
307 jsr166 1.15 * <li>has its interrupted status set on entry to this method; or
308 tim 1.1 * <li>is {@link Thread#interrupt interrupted} while waiting
309 jsr166 1.15 * for the exchange,
310 tim 1.1 * </ul>
311 jsr166 1.15 * then {@link InterruptedException} is thrown and the current thread's
312     * interrupted status is cleared.
313 tim 1.1 *
314     * @param x the object to exchange
315     * @return the object provided by the other thread.
316 jsr166 1.15 * @throws InterruptedException if current thread was interrupted
317 dl 1.3 * while waiting
318 jsr166 1.15 */
319 tim 1.1 public V exchange(V x) throws InterruptedException {
320 dl 1.2 try {
321 dl 1.16 return (V)doExchange(x, false, 0);
322 jsr166 1.15 } catch (TimeoutException cannotHappen) {
323 dl 1.2 throw new Error(cannotHappen);
324     }
325 tim 1.1 }
326    
327     /**
328     * Waits for another thread to arrive at this exchange point (unless
329     * it is {@link Thread#interrupt interrupted}, or the specified waiting
330     * time elapses),
331     * and then transfers the given object to it, receiving its object
332     * in return.
333     *
334     * <p>If another thread is already waiting at the exchange point then
335     * it is resumed for thread scheduling purposes and receives the object
336     * passed in by the current thread. The current thread returns immediately,
337     * receiving the object passed to the exchange by that other thread.
338     *
339 jsr166 1.15 * <p>If no other thread is already waiting at the exchange then the
340 tim 1.1 * current thread is disabled for thread scheduling purposes and lies
341     * dormant until one of three things happens:
342     * <ul>
343     * <li>Some other thread enters the exchange; or
344     * <li>Some other thread {@link Thread#interrupt interrupts} the current
345     * thread; or
346     * <li>The specified waiting time elapses.
347     * </ul>
348     * <p>If the current thread:
349     * <ul>
350 jsr166 1.15 * <li>has its interrupted status set on entry to this method; or
351 tim 1.1 * <li>is {@link Thread#interrupt interrupted} while waiting
352 jsr166 1.15 * for the exchange,
353 tim 1.1 * </ul>
354 jsr166 1.15 * then {@link InterruptedException} is thrown and the current thread's
355     * interrupted status is cleared.
356 tim 1.1 *
357     * <p>If the specified waiting time elapses then {@link TimeoutException}
358     * is thrown.
359 jsr166 1.15 * If the time is
360 tim 1.1 * less than or equal to zero, the method will not wait at all.
361     *
362     * @param x the object to exchange
363     * @param timeout the maximum time to wait
364 dl 1.2 * @param unit the time unit of the <tt>timeout</tt> argument.
365 tim 1.1 * @return the object provided by the other thread.
366 dl 1.3 * @throws InterruptedException if current thread was interrupted
367     * while waiting
368 tim 1.1 * @throws TimeoutException if the specified waiting time elapses before
369     * another thread enters the exchange.
370 jsr166 1.15 */
371     public V exchange(V x, long timeout, TimeUnit unit)
372 tim 1.1 throws InterruptedException, TimeoutException {
373 dl 1.16 return (V)doExchange(x, true, unit.toNanos(timeout));
374 tim 1.1 }
375     }