ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/Exchanger.java
Revision: 1.32
Committed: Sat Dec 10 20:09:28 2005 UTC (18 years, 5 months ago) by dl
Branch: MAIN
Changes since 1.31: +39 -10 lines
Log Message:
Use same spin control as SynchronousQueue

File Contents

# User Rev Content
1 dl 1.2 /*
2 dl 1.16 * Written by Doug Lea, Bill Scherer, and Michael Scott with
3     * assistance from members of JCP JSR-166 Expert Group and released to
4     * the public domain, as explained at
5 dl 1.14 * http://creativecommons.org/licenses/publicdomain
6 dl 1.2 */
7    
8 tim 1.1 package java.util.concurrent;
9 jsr166 1.21 import java.util.concurrent.*; // for javadoc (till 6280605 is fixed)
10 dl 1.4 import java.util.concurrent.locks.*;
11 dl 1.16 import java.util.concurrent.atomic.*;
12     import java.util.Random;
13 tim 1.1
14     /**
15 dl 1.28 * A synchronization point at which threads can pair and swap elements
16     * within pairs. Each thread presents some object on entry to the
17     * {@link #exchange exchange} method, matches with a partner thread,
18     * and receives its partner's object on return.
19 tim 1.1 *
20     * <p><b>Sample Usage:</b>
21 jsr166 1.29 * Here are the highlights of a class that uses an {@code Exchanger}
22     * to swap buffers between threads so that the thread filling the
23     * buffer gets a freshly emptied one when it needs it, handing off the
24     * filled one to the thread emptying the buffer.
25     * <pre>{@code
26 tim 1.1 * class FillAndEmpty {
27 jsr166 1.29 * Exchanger<DataBuffer> exchanger = new Exchanger<DataBuffer>();
28 dl 1.9 * DataBuffer initialEmptyBuffer = ... a made-up type
29     * DataBuffer initialFullBuffer = ...
30 tim 1.1 *
31     * class FillingLoop implements Runnable {
32     * public void run() {
33 dl 1.9 * DataBuffer currentBuffer = initialEmptyBuffer;
34 tim 1.1 * try {
35     * while (currentBuffer != null) {
36     * addToBuffer(currentBuffer);
37 dl 1.30 * if (currentBuffer.isFull())
38 tim 1.1 * currentBuffer = exchanger.exchange(currentBuffer);
39     * }
40 tim 1.7 * } catch (InterruptedException ex) { ... handle ... }
41 tim 1.1 * }
42     * }
43     *
44     * class EmptyingLoop implements Runnable {
45     * public void run() {
46 dl 1.9 * DataBuffer currentBuffer = initialFullBuffer;
47 tim 1.1 * try {
48     * while (currentBuffer != null) {
49     * takeFromBuffer(currentBuffer);
50 dl 1.30 * if (currentBuffer.isEmpty())
51 tim 1.1 * currentBuffer = exchanger.exchange(currentBuffer);
52     * }
53 tim 1.7 * } catch (InterruptedException ex) { ... handle ...}
54 tim 1.1 * }
55     * }
56     *
57     * void start() {
58     * new Thread(new FillingLoop()).start();
59     * new Thread(new EmptyingLoop()).start();
60     * }
61     * }
62 jsr166 1.29 * }</pre>
63 tim 1.1 *
64 jsr166 1.27 * <p>Memory consistency effects: For each pair of threads that
65     * successfully exchange objects via an {@code Exchanger}, actions
66     * prior to the {@code exchange()} in each thread
67     * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
68     * those subsequent to a return from the corresponding {@code exchange()}
69     * in the other thread.
70 brian 1.22 *
71 tim 1.1 * @since 1.5
72 dl 1.16 * @author Doug Lea and Bill Scherer and Michael Scott
73 dl 1.11 * @param <V> The type of objects that may be exchanged
74 tim 1.1 */
75     public class Exchanger<V> {
76 dl 1.16 /*
77     * The underlying idea is to use a stack to hold nodes containing
78     * pairs of items to be exchanged. Except that:
79     *
80     * * Only one element of the pair is known on creation by a
81     * first-arriving thread; the other is a "hole" waiting to be
82     * filled in. This is a degenerate form of the dual stacks
83     * described in "Nonblocking Concurrent Objects with Condition
84     * Synchronization", by W. N. Scherer III and M. L. Scott.
85     * 18th Annual Conf. on Distributed Computing, Oct. 2004.
86     * It is "degenerate" in that both the items and the holes
87     * are shared in the same nodes.
88     *
89     * * There isn't really a stack here! There can't be -- if two
90     * nodes were both in the stack, they should cancel themselves
91     * out by combining. So that's what we do. The 0th element of
92     * the "arena" array serves only as the top of stack. The
93     * remainder of the array is a form of the elimination backoff
94     * collision array described in "A Scalable Lock-free Stack
95     * Algorithm", by D. Hendler, N. Shavit, and L. Yerushalmi.
96     * 16th ACM Symposium on Parallelism in Algorithms and
97     * Architectures, June 2004. Here, threads spin (using short
98     * timed waits with exponential backoff) looking for each
99     * other. If they fail to find others waiting, they try the
100     * top spot again. As shown in that paper, this always
101     * converges.
102     *
103     * The backoff elimination mechanics never come into play in
104     * common usages where only two threads ever meet to exchange
105     * items, but they prevent contention bottlenecks when an
106     * exchanger is used by a large number of threads.
107 dl 1.30 *
108     * For more details, see the paper "A Scalable Elimination-based
109     * Exchange Channel" by William Scherer, Doug Lea, and Michael
110     * Scott in Proceedings of SCOOL05 workshop. Available at:
111     * http://hdl.handle.net/1802/2104
112 dl 1.16 */
113 dl 1.2
114 dl 1.32 /** The number of CPUs, for sizing and spin control */
115     static final int NCPUS = Runtime.getRuntime().availableProcessors();
116    
117 jsr166 1.17 /**
118 dl 1.16 * Size of collision space. Using a size of half the number of
119     * CPUs provides enough space for threads to find each other but
120     * not so much that it would always require one or more to time
121     * out to become unstuck. Note that the arena array holds SIZE+1
122     * elements, to include the top-of-stack slot.
123     */
124 dl 1.32 private static final int SIZE = (NCPUS + 1) / 2;
125    
126     /**
127     * The number of times to spin before blocking in timed waits.
128     * The value is empirically derived -- it works well across a
129     * variety of processors and OSes. Empirically, the best value
130     * seems not to vary with number of CPUs (beyond 2) so is just
131     * a constant.
132     */
133     static final int maxTimedSpins = (NCPUS < 2)? 0 : 16;
134    
135     /**
136     * The number of times to spin before blocking in untimed waits.
137     * This is greater than timed value because untimed waits spin
138     * faster since they don't need to check times on each spin.
139     */
140     static final int maxUntimedSpins = maxTimedSpins * 32;
141    
142     /**
143     * The number of nanoseconds for which it is faster to spin
144     * rather than to use timed park. A rough estimate suffices.
145     */
146     static final long spinForTimeoutThreshold = 1000L;
147 jsr166 1.15
148 dl 1.2 /**
149 dl 1.16 * Base unit in nanoseconds for backoffs. Must be a power of two.
150     * Should be small because backoffs exponentially increase from
151     * base.
152 dl 1.2 */
153 dl 1.16 private static final long BACKOFF_BASE = 128L;
154 dl 1.2
155 jsr166 1.17 /**
156 dl 1.16 * Sentinel item representing cancellation. This value is placed
157     * in holes on cancellation, and used as a return value from Node
158     * methods to indicate failure to set or get hole.
159 jsr166 1.17 */
160 dl 1.16 static final Object FAIL = new Object();
161    
162 jsr166 1.17 /**
163 dl 1.16 * The collision arena. arena[0] is used as the top of the stack.
164     * The remainder is used as the collision elimination space.
165 dl 1.3 */
166 dl 1.30 private final AtomicReference<Node>[] arena;
167 dl 1.5
168 dl 1.16 /** Generator for random backoffs and delays. */
169     private final Random random = new Random();
170 dl 1.5
171 dl 1.16 /**
172     * Creates a new Exchanger.
173     */
174     public Exchanger() {
175 dl 1.30 arena = (AtomicReference<Node>[]) new AtomicReference[SIZE + 1];
176 dl 1.16 for (int i = 0; i < arena.length; ++i)
177 dl 1.30 arena[i] = new AtomicReference<Node>();
178 dl 1.16 }
179 dl 1.2
180 dl 1.16 /**
181     * Main exchange function, handling the different policy variants.
182     * Uses Object, not "V" as argument and return value to simplify
183     * handling of internal sentinel values. Callers from public
184     * methods cast accordingly.
185 dl 1.30 *
186     * @param item the item to exchange
187     * @param timed true if the wait is timed
188     * @param nanos if timed, the maximum wait time
189     * @return the other thread's item
190 dl 1.16 */
191     private Object doExchange(Object item, boolean timed, long nanos)
192     throws InterruptedException, TimeoutException {
193     Node me = new Node(item);
194 dl 1.30 long lastTime = timed ? System.nanoTime() : 0;
195 dl 1.16 int idx = 0; // start out at slot representing top
196     int backoff = 0; // increases on failure to occupy a slot
197    
198     for (;;) {
199 dl 1.30 AtomicReference<Node> slot = arena[idx];
200 dl 1.16
201     // If this slot is already occupied, there is a waiting item...
202     Node you = slot.get();
203     if (you != null) {
204     Object v = you.fillHole(item);
205     slot.compareAndSet(you, null);
206     if (v != FAIL) // ... unless it was cancelled
207     return v;
208 dl 1.2 }
209    
210 dl 1.16 // Try to occupy this slot
211     if (slot.compareAndSet(null, me)) {
212     // If this is top slot, use regular wait, else backoff-wait
213     Object v = ((idx == 0)?
214     me.waitForHole(timed, nanos) :
215     me.waitForHole(true, randomDelay(backoff)));
216     slot.compareAndSet(me, null);
217     if (v != FAIL)
218     return v;
219     if (Thread.interrupted())
220     throw new InterruptedException();
221     if (timed) {
222     long now = System.nanoTime();
223     nanos -= now - lastTime;
224     lastTime = now;
225     if (nanos <= 0)
226     throw new TimeoutException();
227     }
228 dl 1.2
229 dl 1.16 me = new Node(item); // Throw away nodes on failure
230     if (backoff < SIZE - 1) // Increase or stay saturated
231     ++backoff;
232     idx = 0; // Restart at top
233 dl 1.2 }
234    
235 dl 1.16 else // Retry with a random non-top slot <= backoff
236     idx = 1 + random.nextInt(backoff + 1);
237 dl 1.2
238     }
239     }
240 tim 1.1
241     /**
242 jsr166 1.31 * Returns a random delay less than (base times (2 raised to backoff)).
243 dl 1.16 */
244     private long randomDelay(int backoff) {
245     return ((BACKOFF_BASE << backoff) - 1) & random.nextInt();
246     }
247    
248     /**
249     * Nodes hold partially exchanged data. This class
250     * opportunistically subclasses AtomicReference to represent the
251     * hole. So get() returns hole, and compareAndSet CAS'es value
252     * into hole. Note that this class cannot be parameterized as V
253     * because the sentinel value FAIL is only of type Object.
254 jsr166 1.15 */
255 dl 1.16 static final class Node extends AtomicReference<Object> {
256 dl 1.20 private static final long serialVersionUID = -3221313401284163686L;
257 jsr166 1.21
258 dl 1.16 /** The element offered by the Thread creating this node. */
259     final Object item;
260 jsr166 1.31
261 dl 1.16 /** The Thread creating this node. */
262     final Thread waiter;
263    
264     /**
265     * Creates node with given item and empty hole.
266 jsr166 1.31 *
267     * @param item the item
268 dl 1.16 */
269     Node(Object item) {
270     this.item = item;
271     waiter = Thread.currentThread();
272     }
273    
274     /**
275     * Tries to fill in hole. On success, wakes up the waiter.
276 jsr166 1.31 *
277     * @param val the value to place in hole
278     * @return on success, the item; on failure, FAIL
279 dl 1.16 */
280     Object fillHole(Object val) {
281     if (compareAndSet(null, val)) {
282     LockSupport.unpark(waiter);
283     return item;
284     }
285     return FAIL;
286     }
287    
288     /**
289 jsr166 1.17 * Waits for and gets the hole filled in by another thread.
290     * Fails if timed out or interrupted before hole filled.
291 dl 1.30 *
292     * @param timed true if the wait is timed
293     * @param nanos if timed, the maximum wait time
294     * @return on success, the hole; on failure, FAIL
295 dl 1.16 */
296     Object waitForHole(boolean timed, long nanos) {
297 dl 1.30 long lastTime = timed ? System.nanoTime() : 0;
298 dl 1.32 int spins = timed? maxTimedSpins : maxUntimedSpins;
299 dl 1.18 Object h;
300     while ((h = get()) == null) {
301     // If interrupted or timed out, try to cancel by
302     // CASing FAIL as hole value.
303     if (Thread.currentThread().isInterrupted() ||
304 dl 1.30 (timed && nanos <= 0)) {
305     if (compareAndSet(null, FAIL))
306     return FAIL;
307 dl 1.32 } else {
308     if (timed) {
309     long now = System.nanoTime();
310     nanos -= now - lastTime;
311     lastTime = now;
312     }
313     if (spins > 0)
314     --spins;
315     else if (!timed)
316     LockSupport.park();
317     else if (nanos > spinForTimeoutThreshold)
318     LockSupport.parkNanos(nanos);
319 dl 1.16 }
320     }
321     return h;
322     }
323 tim 1.1 }
324    
325     /**
326     * Waits for another thread to arrive at this exchange point (unless
327 jsr166 1.31 * the current thread is {@link Thread#interrupt interrupted}),
328 tim 1.1 * and then transfers the given object to it, receiving its object
329     * in return.
330 jsr166 1.17 *
331 tim 1.1 * <p>If another thread is already waiting at the exchange point then
332     * it is resumed for thread scheduling purposes and receives the object
333     * passed in by the current thread. The current thread returns immediately,
334     * receiving the object passed to the exchange by that other thread.
335 jsr166 1.17 *
336 jsr166 1.15 * <p>If no other thread is already waiting at the exchange then the
337 tim 1.1 * current thread is disabled for thread scheduling purposes and lies
338     * dormant until one of two things happens:
339     * <ul>
340     * <li>Some other thread enters the exchange; or
341     * <li>Some other thread {@link Thread#interrupt interrupts} the current
342     * thread.
343     * </ul>
344     * <p>If the current thread:
345     * <ul>
346 jsr166 1.15 * <li>has its interrupted status set on entry to this method; or
347 tim 1.1 * <li>is {@link Thread#interrupt interrupted} while waiting
348 jsr166 1.15 * for the exchange,
349 tim 1.1 * </ul>
350 jsr166 1.15 * then {@link InterruptedException} is thrown and the current thread's
351     * interrupted status is cleared.
352 tim 1.1 *
353     * @param x the object to exchange
354 dl 1.30 * @return the object provided by the other thread
355     * @throws InterruptedException if the current thread was
356     * interrupted while waiting
357 jsr166 1.15 */
358 tim 1.1 public V exchange(V x) throws InterruptedException {
359 dl 1.2 try {
360 dl 1.16 return (V)doExchange(x, false, 0);
361 jsr166 1.15 } catch (TimeoutException cannotHappen) {
362 dl 1.2 throw new Error(cannotHappen);
363     }
364 tim 1.1 }
365    
366     /**
367     * Waits for another thread to arrive at this exchange point (unless
368 jsr166 1.31 * the current thread is {@link Thread#interrupt interrupted} or
369     * the specified waiting time elapses), and then transfers the given
370     * object to it, receiving its object in return.
371 tim 1.1 *
372     * <p>If another thread is already waiting at the exchange point then
373     * it is resumed for thread scheduling purposes and receives the object
374     * passed in by the current thread. The current thread returns immediately,
375     * receiving the object passed to the exchange by that other thread.
376     *
377 jsr166 1.15 * <p>If no other thread is already waiting at the exchange then the
378 tim 1.1 * current thread is disabled for thread scheduling purposes and lies
379     * dormant until one of three things happens:
380     * <ul>
381     * <li>Some other thread enters the exchange; or
382     * <li>Some other thread {@link Thread#interrupt interrupts} the current
383     * thread; or
384     * <li>The specified waiting time elapses.
385     * </ul>
386     * <p>If the current thread:
387     * <ul>
388 jsr166 1.15 * <li>has its interrupted status set on entry to this method; or
389 tim 1.1 * <li>is {@link Thread#interrupt interrupted} while waiting
390 jsr166 1.15 * for the exchange,
391 tim 1.1 * </ul>
392 jsr166 1.15 * then {@link InterruptedException} is thrown and the current thread's
393     * interrupted status is cleared.
394 tim 1.1 *
395     * <p>If the specified waiting time elapses then {@link TimeoutException}
396     * is thrown.
397 jsr166 1.15 * If the time is
398 tim 1.1 * less than or equal to zero, the method will not wait at all.
399     *
400     * @param x the object to exchange
401     * @param timeout the maximum time to wait
402 dl 1.30 * @param unit the time unit of the <tt>timeout</tt> argument
403     * @return the object provided by the other thread
404     * @throws InterruptedException if the current thread was
405     * interrupted while waiting
406     * @throws TimeoutException if the specified waiting time elapses
407     * before another thread enters the exchange
408 jsr166 1.15 */
409     public V exchange(V x, long timeout, TimeUnit unit)
410 tim 1.1 throws InterruptedException, TimeoutException {
411 dl 1.16 return (V)doExchange(x, true, unit.toNanos(timeout));
412 tim 1.1 }
413     }