ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/Executors.java
Revision: 1.38
Committed: Fri Dec 19 20:38:31 2003 UTC (20 years, 5 months ago) by dl
Branch: MAIN
Changes since 1.37: +84 -30 lines
Log Message:
Define and use Executors.callable instead of submit/invoke variants

File Contents

# User Rev Content
1 tim 1.1 /*
2 dl 1.2 * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain. Use, modify, and
4     * redistribute this code in any way without acknowledgement.
5 tim 1.1 */
6    
7     package java.util.concurrent;
8 dl 1.2 import java.util.*;
9 dl 1.22 import java.util.concurrent.atomic.AtomicInteger;
10 tim 1.20 import java.security.AccessControlContext;
11     import java.security.AccessController;
12     import java.security.PrivilegedAction;
13     import java.security.PrivilegedExceptionAction;
14 tim 1.1
15     /**
16 dl 1.18 * Factory and utility methods for {@link Executor}, {@link
17 dl 1.34 * ExecutorService}, and {@link ThreadFactory} classes defined in this
18     * package.
19 tim 1.1 *
20     * @since 1.5
21 dl 1.12 * @author Doug Lea
22 tim 1.1 */
23     public class Executors {
24    
25     /**
26     * Creates a thread pool that reuses a fixed set of threads
27 dl 1.16 * operating off a shared unbounded queue. If any thread
28     * terminates due to a failure during execution prior to shutdown,
29     * a new one will take its place if needed to execute subsequent
30     * tasks.
31 tim 1.1 *
32     * @param nThreads the number of threads in the pool
33     * @return the newly created thread pool
34     */
35 dl 1.2 public static ExecutorService newFixedThreadPool(int nThreads) {
36 dl 1.35 return new ThreadPoolExecutor(nThreads, nThreads,
37     0L, TimeUnit.MILLISECONDS,
38     new LinkedBlockingQueue<Runnable>());
39 dl 1.2 }
40    
41     /**
42     * Creates a thread pool that reuses a fixed set of threads
43     * operating off a shared unbounded queue, using the provided
44     * ThreadFactory to create new threads when needed.
45     *
46     * @param nThreads the number of threads in the pool
47 dl 1.12 * @param threadFactory the factory to use when creating new threads
48 dl 1.2 * @return the newly created thread pool
49     */
50     public static ExecutorService newFixedThreadPool(int nThreads, ThreadFactory threadFactory) {
51 dl 1.35 return new ThreadPoolExecutor(nThreads, nThreads,
52     0L, TimeUnit.MILLISECONDS,
53     new LinkedBlockingQueue<Runnable>(),
54     threadFactory);
55 dl 1.2 }
56    
57     /**
58     * Creates an Executor that uses a single worker thread operating
59     * off an unbounded queue. (Note however that if this single
60     * thread terminates due to a failure during execution prior to
61     * shutdown, a new one will take its place if needed to execute
62     * subsequent tasks.) Tasks are guaranteed to execute
63     * sequentially, and no more than one task will be active at any
64 dl 1.36 * given time. The returned executor cannot be reconfigured
65     * to use additional threads.
66 dl 1.2 *
67     * @return the newly-created single-threaded Executor
68     */
69     public static ExecutorService newSingleThreadExecutor() {
70 dl 1.36 return unconfigurableExecutorService
71     (new ThreadPoolExecutor(1, 1,
72     0L, TimeUnit.MILLISECONDS,
73     new LinkedBlockingQueue<Runnable>()));
74 dl 1.2 }
75    
76     /**
77     * Creates an Executor that uses a single worker thread operating
78     * off an unbounded queue, and uses the provided ThreadFactory to
79 dl 1.37 * create a new thread when needed. Unlike the otherwise
80     * equivalent <tt>newFixedThreadPool(1)</tt> the returned executor
81     * is guaranteed not to be reconfigurable to use additional
82     * threads.
83     *
84 dl 1.12 * @param threadFactory the factory to use when creating new
85 dl 1.2 * threads
86     *
87     * @return the newly-created single-threaded Executor
88     */
89     public static ExecutorService newSingleThreadExecutor(ThreadFactory threadFactory) {
90 dl 1.36 return unconfigurableExecutorService
91     (new ThreadPoolExecutor(1, 1,
92     0L, TimeUnit.MILLISECONDS,
93     new LinkedBlockingQueue<Runnable>(),
94     threadFactory));
95 tim 1.1 }
96    
97     /**
98     * Creates a thread pool that creates new threads as needed, but
99     * will reuse previously constructed threads when they are
100     * available. These pools will typically improve the performance
101     * of programs that execute many short-lived asynchronous tasks.
102     * Calls to <tt>execute</tt> will reuse previously constructed
103     * threads if available. If no existing thread is available, a new
104     * thread will be created and added to the pool. Threads that have
105     * not been used for sixty seconds are terminated and removed from
106     * the cache. Thus, a pool that remains idle for long enough will
107 dl 1.16 * not consume any resources. Note that pools with similar
108     * properties but different details (for example, timeout parameters)
109     * may be created using {@link ThreadPoolExecutor} constructors.
110 tim 1.1 *
111     * @return the newly created thread pool
112     */
113 dl 1.2 public static ExecutorService newCachedThreadPool() {
114 dl 1.35 return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
115     60, TimeUnit.SECONDS,
116     new SynchronousQueue<Runnable>());
117 tim 1.1 }
118    
119     /**
120 dl 1.2 * Creates a thread pool that creates new threads as needed, but
121     * will reuse previously constructed threads when they are
122 tim 1.6 * available, and uses the provided
123 dl 1.2 * ThreadFactory to create new threads when needed.
124 dl 1.12 * @param threadFactory the factory to use when creating new threads
125 tim 1.1 * @return the newly created thread pool
126     */
127 dl 1.2 public static ExecutorService newCachedThreadPool(ThreadFactory threadFactory) {
128 dl 1.35 return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
129     60, TimeUnit.SECONDS,
130     new SynchronousQueue<Runnable>(),
131     threadFactory);
132 tim 1.1 }
133 tim 1.27
134 tim 1.26 /**
135     * Creates a thread pool that can schedule commands to run after a
136     * given delay, or to execute periodically.
137 tim 1.29 * @return a newly created scheduled thread pool with termination management
138 tim 1.26 */
139 tim 1.28 public static ScheduledExecutorService newScheduledThreadPool() {
140 tim 1.27 return newScheduledThreadPool(1);
141 tim 1.26 }
142    
143     /**
144     * Creates a thread pool that can schedule commands to run after a
145     * given delay, or to execute periodically.
146     * @param corePoolSize the number of threads to keep in the pool,
147     * even if they are idle.
148 tim 1.29 * @return a newly created scheduled thread pool with termination management
149 tim 1.26 */
150 tim 1.28 public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) {
151 dl 1.35 return new ScheduledThreadPoolExecutor(corePoolSize);
152     }
153 tim 1.26
154     /**
155     * Creates a thread pool that can schedule commands to run after a
156     * given delay, or to execute periodically.
157     * @param corePoolSize the number of threads to keep in the pool,
158     * even if they are idle.
159     * @param threadFactory the factory to use when the executor
160     * creates a new thread.
161 tim 1.29 * @return a newly created scheduled thread pool with termination management
162 tim 1.26 */
163 tim 1.28 public static ScheduledExecutorService newScheduledThreadPool(
164     int corePoolSize, ThreadFactory threadFactory) {
165 dl 1.35 return new ScheduledThreadPoolExecutor(corePoolSize, threadFactory);
166 tim 1.20 }
167 dl 1.36
168    
169     /**
170     * Creates and returns an object that delegates all defined {@link
171     * ExecutorService} methods to the given executor, but not any
172     * other methods that might otherwise be accessible using
173     * casts. This provides a way to safely "freeze" configuration and
174     * disallow tuning of a given concrete implementation.
175     * @param executor the underlying implementation
176     * @return an <tt>ExecutorService</tt> instance
177     * @throws NullPointerException if executor null
178     */
179     public static ExecutorService unconfigurableExecutorService(ExecutorService executor) {
180     if (executor == null)
181     throw new NullPointerException();
182     return new DelegatedExecutorService(executor);
183     }
184    
185     /**
186     * Creates and returns an object that delegates all defined {@link
187     * ScheduledExecutorService} methods to the given executor, but
188     * not any other methods that might otherwise be accessible using
189     * casts. This provides a way to safely "freeze" configuration and
190     * disallow tuning of a given concrete implementation.
191     * @param executor the underlying implementation
192     * @return a <tt>ScheduledExecutorService</tt> instance
193     * @throws NullPointerException if executor null
194     */
195     public static ScheduledExecutorService unconfigurableScheduledExecutorService(ScheduledExecutorService executor) {
196     if (executor == null)
197     throw new NullPointerException();
198     return new DelegatedScheduledExecutorService(executor);
199     }
200 tim 1.20
201 dl 1.22 /**
202     * Return a default thread factory used to create new threads.
203     * This factory creates all new threads used by an Executor in the
204     * same {@link ThreadGroup}. If there is a {@link
205     * java.lang.SecurityManager}, it uses the group of {@link
206     * System#getSecurityManager}, else the group of the thread
207     * invoking this <tt>defaultThreadFactory</tt> method. Each new
208     * thread is created as a non-daemon thread with priority
209     * <tt>Thread.NORM_PRIORITY</tt>. New threads have names
210     * accessible via {@link Thread#getName} of
211     * <em>pool-N-thread-M</em>, where <em>N</em> is the sequence
212     * number of this factory, and <em>M</em> is the sequence number
213     * of the thread created by this factory.
214     * @return the thread factory
215     */
216     public static ThreadFactory defaultThreadFactory() {
217 tim 1.26 return new DefaultThreadFactory();
218 dl 1.22 }
219    
220     /**
221 dl 1.24 * Return a thread factory used to create new threads that
222     * have the same permissions as the current thread.
223 dl 1.22 * This factory creates threads with the same settings as {@link
224     * Executors#defaultThreadFactory}, additionally setting the
225     * AccessControlContext and contextClassLoader of new threads to
226     * be the same as the thread invoking this
227     * <tt>privilegedThreadFactory</tt> method. A new
228     * <tt>privilegedThreadFactory</tt> can be created within an
229 dl 1.23 * {@link AccessController#doPrivileged} action setting the
230 dl 1.24 * current thread's access control context to create threads with
231 dl 1.23 * the selected permission settings holding within that action.
232 dl 1.22 *
233     * <p> Note that while tasks running within such threads will have
234     * the same access control and class loader settings as the
235     * current thread, they need not have the same {@link
236     * java.lang.ThreadLocal} or {@link
237     * java.lang.InheritableThreadLocal} values. If necessary,
238     * particular values of thread locals can be set or reset before
239     * any task runs in {@link ThreadPoolExecutor} subclasses using
240     * {@link ThreadPoolExecutor#beforeExecute}. Also, if it is
241     * necessary to initialize worker threads to have the same
242     * InheritableThreadLocal settings as some other designated
243     * thread, you can create a custom ThreadFactory in which that
244     * thread waits for and services requests to create others that
245     * will inherit its values.
246     *
247     * @return the thread factory
248     * @throws AccessControlException if the current access control
249     * context does not have permission to both get and set context
250     * class loader.
251     * @see PrivilegedFutureTask
252     */
253     public static ThreadFactory privilegedThreadFactory() {
254 tim 1.26 return new PrivilegedThreadFactory();
255 dl 1.22 }
256    
257 dl 1.38
258     /**
259     * Creates and returns a {@link Callable} object that, when
260     * called, runs the given task and returns the given result. This
261     * can be useful when applying methods requiring a
262     * <tt>Callable</tt> to an otherwise resultless action.
263     * @param task the task to run
264     * @param result the result to return
265     */
266     public static <T> Callable<T> callable(Runnable task, T result) {
267     return new RunnableAdapter<T>(task, result);
268     }
269    
270     /**
271     * Creates and returns a {@link Callable} object that, when
272     * called, runs the given task and returns <tt>null</tt>
273     * @param task the task to run
274     */
275     public static Callable<Object> callable(Runnable task) {
276     return new RunnableAdapter<Object>(task, null);
277     }
278    
279     /**
280     * Creates and returns a {@link Callable} object that, when
281     * called, runs the given privileged action and returns its result
282     * @param action the privileged action to run
283     */
284     public static Callable<Object> callable(PrivilegedAction action) {
285     return new PrivilegedActionAdapter(action);
286     }
287    
288     /**
289     * Creates and returns a {@link Callable} object that, when
290     * called, runs the given privileged exception action and returns its result
291     * @param action the privileged exception action to run
292     */
293     public static Callable<Object> callable(PrivilegedExceptionAction action) {
294     return new PrivilegedExceptionActionAdapter(action);
295     }
296    
297     /**
298     * A callable that runs given task and returns given result
299     */
300     static class RunnableAdapter<T> implements Callable<T> {
301     private final Runnable task;
302     private final T result;
303     RunnableAdapter(Runnable task, T result) {
304     this.task = task;
305     this.result = result;
306     }
307     public T call() {
308     task.run();
309     return result;
310     }
311     }
312    
313     /**
314     * A callable that runs given privileged action and returns its result
315     */
316     static class PrivilegedActionAdapter implements Callable<Object> {
317     PrivilegedActionAdapter(PrivilegedAction action) {
318     this.action = action;
319     }
320     public Object call () {
321     return action.run();
322     }
323     private final PrivilegedAction action;
324     }
325    
326     /**
327     * A callable that runs given privileged exception action and returns its result
328     */
329     static class PrivilegedExceptionActionAdapter implements Callable<Object> {
330     PrivilegedExceptionActionAdapter(PrivilegedExceptionAction action) {
331     this.action = action;
332     }
333     public Object call () throws Exception {
334     return action.run();
335     }
336     private final PrivilegedExceptionAction action;
337     }
338    
339 dl 1.22 static class DefaultThreadFactory implements ThreadFactory {
340 tim 1.26 static final AtomicInteger poolNumber = new AtomicInteger(1);
341     final ThreadGroup group;
342     final AtomicInteger threadNumber = new AtomicInteger(1);
343     final String namePrefix;
344 dl 1.22
345 tim 1.26 DefaultThreadFactory() {
346 dl 1.22 SecurityManager s = System.getSecurityManager();
347     group = (s != null)? s.getThreadGroup() :
348     Thread.currentThread().getThreadGroup();
349     namePrefix = "pool-" +
350     poolNumber.getAndIncrement() +
351     "-thread-";
352     }
353    
354     public Thread newThread(Runnable r) {
355     Thread t = new Thread(group, r,
356     namePrefix + threadNumber.getAndIncrement(),
357     0);
358     if (t.isDaemon())
359     t.setDaemon(false);
360     if (t.getPriority() != Thread.NORM_PRIORITY)
361     t.setPriority(Thread.NORM_PRIORITY);
362     return t;
363     }
364     }
365    
366     static class PrivilegedThreadFactory extends DefaultThreadFactory {
367     private final ClassLoader ccl;
368     private final AccessControlContext acc;
369    
370     PrivilegedThreadFactory() {
371     super();
372     this.ccl = Thread.currentThread().getContextClassLoader();
373     this.acc = AccessController.getContext();
374     acc.checkPermission(new RuntimePermission("setContextClassLoader"));
375     }
376    
377     public Thread newThread(final Runnable r) {
378     return super.newThread(new Runnable() {
379     public void run() {
380     AccessController.doPrivileged(new PrivilegedAction() {
381     public Object run() {
382     Thread.currentThread().setContextClassLoader(ccl);
383     r.run();
384     return null;
385     }
386     }, acc);
387     }
388     });
389     }
390    
391 dl 1.36 }
392    
393     /**
394     * A wrapper class that exposes only the ExecutorService methods
395     * of an implementation.
396     */
397 dl 1.37 static class DelegatedExecutorService extends AbstractExecutorService {
398 dl 1.36 private final ExecutorService e;
399     DelegatedExecutorService(ExecutorService executor) { e = executor; }
400     public void execute(Runnable command) { e.execute(command); }
401     public void shutdown() { e.shutdown(); }
402     public List<Runnable> shutdownNow() { return e.shutdownNow(); }
403     public boolean isShutdown() { return e.isShutdown(); }
404     public boolean isTerminated() { return e.isTerminated(); }
405     public boolean awaitTermination(long timeout, TimeUnit unit)
406     throws InterruptedException {
407     return e.awaitTermination(timeout, unit);
408     }
409 dl 1.38 public Future<?> submit(Runnable task) {
410     return e.submit(task);
411 dl 1.36 }
412     public <T> Future<T> submit(Callable<T> task) {
413     return e.submit(task);
414     }
415    
416     public <T> T invoke(Callable<T> task) throws ExecutionException, InterruptedException {
417     return e.invoke(task);
418     }
419     public <T> List<Future<T>> invokeAll(Collection<Callable<T>> tasks)
420     throws InterruptedException {
421     return e.invokeAll(tasks);
422     }
423     public <T> List<Future<T>> invokeAll(Collection<Callable<T>> tasks,
424     long timeout, TimeUnit unit)
425     throws InterruptedException {
426     return e.invokeAll(tasks, timeout, unit);
427     }
428     public <T> T invokeAny(Collection<Callable<T>> tasks)
429     throws InterruptedException, ExecutionException {
430     return e.invokeAny(tasks);
431     }
432     public <T> T invokeAny(Collection<Callable<T>> tasks,
433     long timeout, TimeUnit unit)
434     throws InterruptedException, ExecutionException, TimeoutException {
435     return e.invokeAny(tasks, timeout, unit);
436     }
437     }
438    
439     /**
440     * A wrapper class that exposes only the ExecutorService and
441     * ScheduleExecutor methods of a ScheduledThreadPoolExecutor.
442     */
443 dl 1.37 static class DelegatedScheduledExecutorService
444 dl 1.36 extends DelegatedExecutorService
445     implements ScheduledExecutorService {
446     private final ScheduledExecutorService e;
447     DelegatedScheduledExecutorService(ScheduledExecutorService executor) {
448     super(executor);
449     e = executor;
450     }
451     public ScheduledFuture<?> schedule(Runnable command, long delay, TimeUnit unit) {
452     return e.schedule(command, delay, unit);
453     }
454     public <V> ScheduledFuture<V> schedule(Callable<V> callable, long delay, TimeUnit unit) {
455     return e.schedule(callable, delay, unit);
456     }
457     public ScheduledFuture<?> scheduleAtFixedRate(Runnable command, long initialDelay, long period, TimeUnit unit) {
458     return e.scheduleAtFixedRate(command, initialDelay, period, unit);
459     }
460     public ScheduledFuture<?> scheduleWithFixedDelay(Runnable command, long initialDelay, long delay, TimeUnit unit) {
461     return e.scheduleWithFixedDelay(command, initialDelay, delay, unit);
462     }
463 dl 1.22 }
464    
465 tim 1.20
466 tim 1.15 /** Cannot instantiate. */
467     private Executors() {}
468 tim 1.1 }