ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/Executors.java
Revision: 1.88
Committed: Thu Jul 18 17:13:42 2013 UTC (10 years, 10 months ago) by jsr166
Branch: MAIN
Changes since 1.87: +3 -0 lines
Log Message:
doclint warning fixes

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8 import java.util.*;
9 import java.util.concurrent.atomic.AtomicInteger;
10 import java.security.AccessControlContext;
11 import java.security.AccessController;
12 import java.security.PrivilegedAction;
13 import java.security.PrivilegedExceptionAction;
14 import java.security.PrivilegedActionException;
15 import java.security.AccessControlException;
16 import sun.security.util.SecurityConstants;
17
18 /**
19 * Factory and utility methods for {@link Executor}, {@link
20 * ExecutorService}, {@link ScheduledExecutorService}, {@link
21 * ThreadFactory}, and {@link Callable} classes defined in this
22 * package. This class supports the following kinds of methods:
23 *
24 * <ul>
25 * <li> Methods that create and return an {@link ExecutorService}
26 * set up with commonly useful configuration settings.
27 * <li> Methods that create and return a {@link ScheduledExecutorService}
28 * set up with commonly useful configuration settings.
29 * <li> Methods that create and return a "wrapped" ExecutorService, that
30 * disables reconfiguration by making implementation-specific methods
31 * inaccessible.
32 * <li> Methods that create and return a {@link ThreadFactory}
33 * that sets newly created threads to a known state.
34 * <li> Methods that create and return a {@link Callable}
35 * out of other closure-like forms, so they can be used
36 * in execution methods requiring {@code Callable}.
37 * </ul>
38 *
39 * @since 1.5
40 * @author Doug Lea
41 */
42 public class Executors {
43
44 /**
45 * Creates a thread pool that reuses a fixed number of threads
46 * operating off a shared unbounded queue. At any point, at most
47 * {@code nThreads} threads will be active processing tasks.
48 * If additional tasks are submitted when all threads are active,
49 * they will wait in the queue until a thread is available.
50 * If any thread terminates due to a failure during execution
51 * prior to shutdown, a new one will take its place if needed to
52 * execute subsequent tasks. The threads in the pool will exist
53 * until it is explicitly {@link ExecutorService#shutdown shutdown}.
54 *
55 * @param nThreads the number of threads in the pool
56 * @return the newly created thread pool
57 * @throws IllegalArgumentException if {@code nThreads <= 0}
58 */
59 public static ExecutorService newFixedThreadPool(int nThreads) {
60 return new ThreadPoolExecutor(nThreads, nThreads,
61 0L, TimeUnit.MILLISECONDS,
62 new LinkedBlockingQueue<Runnable>());
63 }
64
65 /**
66 * Creates a thread pool that maintains enough threads to support
67 * the given parallelism level, and may use multiple queues to
68 * reduce contention. The parallelism level corresponds to the
69 * maximum number of threads actively engaged in, or available to
70 * engage in, task processing. The actual number of threads may
71 * grow and shrink dynamically. A work-stealing pool makes no
72 * guarantees about the order in which submitted tasks are
73 * executed.
74 *
75 * @param parallelism the targeted parallelism level
76 * @return the newly created thread pool
77 * @throws IllegalArgumentException if {@code parallelism <= 0}
78 * @since 1.8
79 */
80 public static ExecutorService newWorkStealingPool(int parallelism) {
81 return new ForkJoinPool
82 (parallelism,
83 ForkJoinPool.defaultForkJoinWorkerThreadFactory,
84 null, true);
85 }
86
87 /**
88 * Creates a work-stealing thread pool using all
89 * {@link Runtime#availableProcessors available processors}
90 * as its target parallelism level.
91 * @return the newly created thread pool
92 * @see #newWorkStealingPool(int)
93 * @since 1.8
94 */
95 public static ExecutorService newWorkStealingPool() {
96 return new ForkJoinPool
97 (Runtime.getRuntime().availableProcessors(),
98 ForkJoinPool.defaultForkJoinWorkerThreadFactory,
99 null, true);
100 }
101
102 /**
103 * Creates a thread pool that reuses a fixed number of threads
104 * operating off a shared unbounded queue, using the provided
105 * ThreadFactory to create new threads when needed. At any point,
106 * at most {@code nThreads} threads will be active processing
107 * tasks. If additional tasks are submitted when all threads are
108 * active, they will wait in the queue until a thread is
109 * available. If any thread terminates due to a failure during
110 * execution prior to shutdown, a new one will take its place if
111 * needed to execute subsequent tasks. The threads in the pool will
112 * exist until it is explicitly {@link ExecutorService#shutdown
113 * shutdown}.
114 *
115 * @param nThreads the number of threads in the pool
116 * @param threadFactory the factory to use when creating new threads
117 * @return the newly created thread pool
118 * @throws NullPointerException if threadFactory is null
119 * @throws IllegalArgumentException if {@code nThreads <= 0}
120 */
121 public static ExecutorService newFixedThreadPool(int nThreads, ThreadFactory threadFactory) {
122 return new ThreadPoolExecutor(nThreads, nThreads,
123 0L, TimeUnit.MILLISECONDS,
124 new LinkedBlockingQueue<Runnable>(),
125 threadFactory);
126 }
127
128 /**
129 * Creates an Executor that uses a single worker thread operating
130 * off an unbounded queue. (Note however that if this single
131 * thread terminates due to a failure during execution prior to
132 * shutdown, a new one will take its place if needed to execute
133 * subsequent tasks.) Tasks are guaranteed to execute
134 * sequentially, and no more than one task will be active at any
135 * given time. Unlike the otherwise equivalent
136 * {@code newFixedThreadPool(1)} the returned executor is
137 * guaranteed not to be reconfigurable to use additional threads.
138 *
139 * @return the newly created single-threaded Executor
140 */
141 public static ExecutorService newSingleThreadExecutor() {
142 return new FinalizableDelegatedExecutorService
143 (new ThreadPoolExecutor(1, 1,
144 0L, TimeUnit.MILLISECONDS,
145 new LinkedBlockingQueue<Runnable>()));
146 }
147
148 /**
149 * Creates an Executor that uses a single worker thread operating
150 * off an unbounded queue, and uses the provided ThreadFactory to
151 * create a new thread when needed. Unlike the otherwise
152 * equivalent {@code newFixedThreadPool(1, threadFactory)} the
153 * returned executor is guaranteed not to be reconfigurable to use
154 * additional threads.
155 *
156 * @param threadFactory the factory to use when creating new
157 * threads
158 *
159 * @return the newly created single-threaded Executor
160 * @throws NullPointerException if threadFactory is null
161 */
162 public static ExecutorService newSingleThreadExecutor(ThreadFactory threadFactory) {
163 return new FinalizableDelegatedExecutorService
164 (new ThreadPoolExecutor(1, 1,
165 0L, TimeUnit.MILLISECONDS,
166 new LinkedBlockingQueue<Runnable>(),
167 threadFactory));
168 }
169
170 /**
171 * Creates a thread pool that creates new threads as needed, but
172 * will reuse previously constructed threads when they are
173 * available. These pools will typically improve the performance
174 * of programs that execute many short-lived asynchronous tasks.
175 * Calls to {@code execute} will reuse previously constructed
176 * threads if available. If no existing thread is available, a new
177 * thread will be created and added to the pool. Threads that have
178 * not been used for sixty seconds are terminated and removed from
179 * the cache. Thus, a pool that remains idle for long enough will
180 * not consume any resources. Note that pools with similar
181 * properties but different details (for example, timeout parameters)
182 * may be created using {@link ThreadPoolExecutor} constructors.
183 *
184 * @return the newly created thread pool
185 */
186 public static ExecutorService newCachedThreadPool() {
187 return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
188 60L, TimeUnit.SECONDS,
189 new SynchronousQueue<Runnable>());
190 }
191
192 /**
193 * Creates a thread pool that creates new threads as needed, but
194 * will reuse previously constructed threads when they are
195 * available, and uses the provided
196 * ThreadFactory to create new threads when needed.
197 * @param threadFactory the factory to use when creating new threads
198 * @return the newly created thread pool
199 * @throws NullPointerException if threadFactory is null
200 */
201 public static ExecutorService newCachedThreadPool(ThreadFactory threadFactory) {
202 return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
203 60L, TimeUnit.SECONDS,
204 new SynchronousQueue<Runnable>(),
205 threadFactory);
206 }
207
208 /**
209 * Creates a single-threaded executor that can schedule commands
210 * to run after a given delay, or to execute periodically.
211 * (Note however that if this single
212 * thread terminates due to a failure during execution prior to
213 * shutdown, a new one will take its place if needed to execute
214 * subsequent tasks.) Tasks are guaranteed to execute
215 * sequentially, and no more than one task will be active at any
216 * given time. Unlike the otherwise equivalent
217 * {@code newScheduledThreadPool(1)} the returned executor is
218 * guaranteed not to be reconfigurable to use additional threads.
219 * @return the newly created scheduled executor
220 */
221 public static ScheduledExecutorService newSingleThreadScheduledExecutor() {
222 return new DelegatedScheduledExecutorService
223 (new ScheduledThreadPoolExecutor(1));
224 }
225
226 /**
227 * Creates a single-threaded executor that can schedule commands
228 * to run after a given delay, or to execute periodically. (Note
229 * however that if this single thread terminates due to a failure
230 * during execution prior to shutdown, a new one will take its
231 * place if needed to execute subsequent tasks.) Tasks are
232 * guaranteed to execute sequentially, and no more than one task
233 * will be active at any given time. Unlike the otherwise
234 * equivalent {@code newScheduledThreadPool(1, threadFactory)}
235 * the returned executor is guaranteed not to be reconfigurable to
236 * use additional threads.
237 * @param threadFactory the factory to use when creating new
238 * threads
239 * @return a newly created scheduled executor
240 * @throws NullPointerException if threadFactory is null
241 */
242 public static ScheduledExecutorService newSingleThreadScheduledExecutor(ThreadFactory threadFactory) {
243 return new DelegatedScheduledExecutorService
244 (new ScheduledThreadPoolExecutor(1, threadFactory));
245 }
246
247 /**
248 * Creates a thread pool that can schedule commands to run after a
249 * given delay, or to execute periodically.
250 * @param corePoolSize the number of threads to keep in the pool,
251 * even if they are idle
252 * @return a newly created scheduled thread pool
253 * @throws IllegalArgumentException if {@code corePoolSize < 0}
254 */
255 public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) {
256 return new ScheduledThreadPoolExecutor(corePoolSize);
257 }
258
259 /**
260 * Creates a thread pool that can schedule commands to run after a
261 * given delay, or to execute periodically.
262 * @param corePoolSize the number of threads to keep in the pool,
263 * even if they are idle
264 * @param threadFactory the factory to use when the executor
265 * creates a new thread
266 * @return a newly created scheduled thread pool
267 * @throws IllegalArgumentException if {@code corePoolSize < 0}
268 * @throws NullPointerException if threadFactory is null
269 */
270 public static ScheduledExecutorService newScheduledThreadPool(
271 int corePoolSize, ThreadFactory threadFactory) {
272 return new ScheduledThreadPoolExecutor(corePoolSize, threadFactory);
273 }
274
275 /**
276 * Returns an object that delegates all defined {@link
277 * ExecutorService} methods to the given executor, but not any
278 * other methods that might otherwise be accessible using
279 * casts. This provides a way to safely "freeze" configuration and
280 * disallow tuning of a given concrete implementation.
281 * @param executor the underlying implementation
282 * @return an {@code ExecutorService} instance
283 * @throws NullPointerException if executor null
284 */
285 public static ExecutorService unconfigurableExecutorService(ExecutorService executor) {
286 if (executor == null)
287 throw new NullPointerException();
288 return new DelegatedExecutorService(executor);
289 }
290
291 /**
292 * Returns an object that delegates all defined {@link
293 * ScheduledExecutorService} methods to the given executor, but
294 * not any other methods that might otherwise be accessible using
295 * casts. This provides a way to safely "freeze" configuration and
296 * disallow tuning of a given concrete implementation.
297 * @param executor the underlying implementation
298 * @return a {@code ScheduledExecutorService} instance
299 * @throws NullPointerException if executor null
300 */
301 public static ScheduledExecutorService unconfigurableScheduledExecutorService(ScheduledExecutorService executor) {
302 if (executor == null)
303 throw new NullPointerException();
304 return new DelegatedScheduledExecutorService(executor);
305 }
306
307 /**
308 * Returns a default thread factory used to create new threads.
309 * This factory creates all new threads used by an Executor in the
310 * same {@link ThreadGroup}. If there is a {@link
311 * java.lang.SecurityManager}, it uses the group of {@link
312 * System#getSecurityManager}, else the group of the thread
313 * invoking this {@code defaultThreadFactory} method. Each new
314 * thread is created as a non-daemon thread with priority set to
315 * the smaller of {@code Thread.NORM_PRIORITY} and the maximum
316 * priority permitted in the thread group. New threads have names
317 * accessible via {@link Thread#getName} of
318 * <em>pool-N-thread-M</em>, where <em>N</em> is the sequence
319 * number of this factory, and <em>M</em> is the sequence number
320 * of the thread created by this factory.
321 * @return a thread factory
322 */
323 public static ThreadFactory defaultThreadFactory() {
324 return new DefaultThreadFactory();
325 }
326
327 /**
328 * Returns a thread factory used to create new threads that
329 * have the same permissions as the current thread.
330 * This factory creates threads with the same settings as {@link
331 * Executors#defaultThreadFactory}, additionally setting the
332 * AccessControlContext and contextClassLoader of new threads to
333 * be the same as the thread invoking this
334 * {@code privilegedThreadFactory} method. A new
335 * {@code privilegedThreadFactory} can be created within an
336 * {@link AccessController#doPrivileged AccessController.doPrivileged}
337 * action setting the current thread's access control context to
338 * create threads with the selected permission settings holding
339 * within that action.
340 *
341 * <p>Note that while tasks running within such threads will have
342 * the same access control and class loader settings as the
343 * current thread, they need not have the same {@link
344 * java.lang.ThreadLocal} or {@link
345 * java.lang.InheritableThreadLocal} values. If necessary,
346 * particular values of thread locals can be set or reset before
347 * any task runs in {@link ThreadPoolExecutor} subclasses using
348 * {@link ThreadPoolExecutor#beforeExecute(Thread, Runnable)}.
349 * Also, if it is necessary to initialize worker threads to have
350 * the same InheritableThreadLocal settings as some other
351 * designated thread, you can create a custom ThreadFactory in
352 * which that thread waits for and services requests to create
353 * others that will inherit its values.
354 *
355 * @return a thread factory
356 * @throws AccessControlException if the current access control
357 * context does not have permission to both get and set context
358 * class loader
359 */
360 public static ThreadFactory privilegedThreadFactory() {
361 return new PrivilegedThreadFactory();
362 }
363
364 /**
365 * Returns a {@link Callable} object that, when
366 * called, runs the given task and returns the given result. This
367 * can be useful when applying methods requiring a
368 * {@code Callable} to an otherwise resultless action.
369 * @param task the task to run
370 * @param result the result to return
371 * @param <T> the type of the result
372 * @return a callable object
373 * @throws NullPointerException if task null
374 */
375 public static <T> Callable<T> callable(Runnable task, T result) {
376 if (task == null)
377 throw new NullPointerException();
378 return new RunnableAdapter<T>(task, result);
379 }
380
381 /**
382 * Returns a {@link Callable} object that, when
383 * called, runs the given task and returns {@code null}.
384 * @param task the task to run
385 * @return a callable object
386 * @throws NullPointerException if task null
387 */
388 public static Callable<Object> callable(Runnable task) {
389 if (task == null)
390 throw new NullPointerException();
391 return new RunnableAdapter<Object>(task, null);
392 }
393
394 /**
395 * Returns a {@link Callable} object that, when
396 * called, runs the given privileged action and returns its result.
397 * @param action the privileged action to run
398 * @return a callable object
399 * @throws NullPointerException if action null
400 */
401 public static Callable<Object> callable(final PrivilegedAction<?> action) {
402 if (action == null)
403 throw new NullPointerException();
404 return new Callable<Object>() {
405 public Object call() { return action.run(); }};
406 }
407
408 /**
409 * Returns a {@link Callable} object that, when
410 * called, runs the given privileged exception action and returns
411 * its result.
412 * @param action the privileged exception action to run
413 * @return a callable object
414 * @throws NullPointerException if action null
415 */
416 public static Callable<Object> callable(final PrivilegedExceptionAction<?> action) {
417 if (action == null)
418 throw new NullPointerException();
419 return new Callable<Object>() {
420 public Object call() throws Exception { return action.run(); }};
421 }
422
423 /**
424 * Returns a {@link Callable} object that will, when called,
425 * execute the given {@code callable} under the current access
426 * control context. This method should normally be invoked within
427 * an {@link AccessController#doPrivileged AccessController.doPrivileged}
428 * action to create callables that will, if possible, execute
429 * under the selected permission settings holding within that
430 * action; or if not possible, throw an associated {@link
431 * AccessControlException}.
432 * @param callable the underlying task
433 * @param <T> the type of the callable's result
434 * @return a callable object
435 * @throws NullPointerException if callable null
436 */
437 public static <T> Callable<T> privilegedCallable(Callable<T> callable) {
438 if (callable == null)
439 throw new NullPointerException();
440 return new PrivilegedCallable<T>(callable);
441 }
442
443 /**
444 * Returns a {@link Callable} object that will, when called,
445 * execute the given {@code callable} under the current access
446 * control context, with the current context class loader as the
447 * context class loader. This method should normally be invoked
448 * within an
449 * {@link AccessController#doPrivileged AccessController.doPrivileged}
450 * action to create callables that will, if possible, execute
451 * under the selected permission settings holding within that
452 * action; or if not possible, throw an associated {@link
453 * AccessControlException}.
454 *
455 * @param callable the underlying task
456 * @param <T> the type of the callable's result
457 * @return a callable object
458 * @throws NullPointerException if callable null
459 * @throws AccessControlException if the current access control
460 * context does not have permission to both set and get context
461 * class loader
462 */
463 public static <T> Callable<T> privilegedCallableUsingCurrentClassLoader(Callable<T> callable) {
464 if (callable == null)
465 throw new NullPointerException();
466 return new PrivilegedCallableUsingCurrentClassLoader<T>(callable);
467 }
468
469 // Non-public classes supporting the public methods
470
471 /**
472 * A callable that runs given task and returns given result
473 */
474 static final class RunnableAdapter<T> implements Callable<T> {
475 final Runnable task;
476 final T result;
477 RunnableAdapter(Runnable task, T result) {
478 this.task = task;
479 this.result = result;
480 }
481 public T call() {
482 task.run();
483 return result;
484 }
485 }
486
487 /**
488 * A callable that runs under established access control settings
489 */
490 static final class PrivilegedCallable<T> implements Callable<T> {
491 private final Callable<T> task;
492 private final AccessControlContext acc;
493
494 PrivilegedCallable(Callable<T> task) {
495 this.task = task;
496 this.acc = AccessController.getContext();
497 }
498
499 public T call() throws Exception {
500 try {
501 return AccessController.doPrivileged(
502 new PrivilegedExceptionAction<T>() {
503 public T run() throws Exception {
504 return task.call();
505 }
506 }, acc);
507 } catch (PrivilegedActionException e) {
508 throw e.getException();
509 }
510 }
511 }
512
513 /**
514 * A callable that runs under established access control settings and
515 * current ClassLoader
516 */
517 static final class PrivilegedCallableUsingCurrentClassLoader<T> implements Callable<T> {
518 private final Callable<T> task;
519 private final AccessControlContext acc;
520 private final ClassLoader ccl;
521
522 PrivilegedCallableUsingCurrentClassLoader(Callable<T> task) {
523 SecurityManager sm = System.getSecurityManager();
524 if (sm != null) {
525 // Calls to getContextClassLoader from this class
526 // never trigger a security check, but we check
527 // whether our callers have this permission anyways.
528 sm.checkPermission(SecurityConstants.GET_CLASSLOADER_PERMISSION);
529
530 // Whether setContextClassLoader turns out to be necessary
531 // or not, we fail fast if permission is not available.
532 sm.checkPermission(new RuntimePermission("setContextClassLoader"));
533 }
534 this.task = task;
535 this.acc = AccessController.getContext();
536 this.ccl = Thread.currentThread().getContextClassLoader();
537 }
538
539 public T call() throws Exception {
540 try {
541 return AccessController.doPrivileged(
542 new PrivilegedExceptionAction<T>() {
543 public T run() throws Exception {
544 Thread t = Thread.currentThread();
545 ClassLoader cl = t.getContextClassLoader();
546 if (ccl == cl) {
547 return task.call();
548 } else {
549 t.setContextClassLoader(ccl);
550 try {
551 return task.call();
552 } finally {
553 t.setContextClassLoader(cl);
554 }
555 }
556 }
557 }, acc);
558 } catch (PrivilegedActionException e) {
559 throw e.getException();
560 }
561 }
562 }
563
564 /**
565 * The default thread factory
566 */
567 static class DefaultThreadFactory implements ThreadFactory {
568 private static final AtomicInteger poolNumber = new AtomicInteger(1);
569 private final ThreadGroup group;
570 private final AtomicInteger threadNumber = new AtomicInteger(1);
571 private final String namePrefix;
572
573 DefaultThreadFactory() {
574 SecurityManager s = System.getSecurityManager();
575 group = (s != null) ? s.getThreadGroup() :
576 Thread.currentThread().getThreadGroup();
577 namePrefix = "pool-" +
578 poolNumber.getAndIncrement() +
579 "-thread-";
580 }
581
582 public Thread newThread(Runnable r) {
583 Thread t = new Thread(group, r,
584 namePrefix + threadNumber.getAndIncrement(),
585 0);
586 if (t.isDaemon())
587 t.setDaemon(false);
588 if (t.getPriority() != Thread.NORM_PRIORITY)
589 t.setPriority(Thread.NORM_PRIORITY);
590 return t;
591 }
592 }
593
594 /**
595 * Thread factory capturing access control context and class loader
596 */
597 static class PrivilegedThreadFactory extends DefaultThreadFactory {
598 private final AccessControlContext acc;
599 private final ClassLoader ccl;
600
601 PrivilegedThreadFactory() {
602 super();
603 SecurityManager sm = System.getSecurityManager();
604 if (sm != null) {
605 // Calls to getContextClassLoader from this class
606 // never trigger a security check, but we check
607 // whether our callers have this permission anyways.
608 sm.checkPermission(SecurityConstants.GET_CLASSLOADER_PERMISSION);
609
610 // Fail fast
611 sm.checkPermission(new RuntimePermission("setContextClassLoader"));
612 }
613 this.acc = AccessController.getContext();
614 this.ccl = Thread.currentThread().getContextClassLoader();
615 }
616
617 public Thread newThread(final Runnable r) {
618 return super.newThread(new Runnable() {
619 public void run() {
620 AccessController.doPrivileged(new PrivilegedAction<Void>() {
621 public Void run() {
622 Thread.currentThread().setContextClassLoader(ccl);
623 r.run();
624 return null;
625 }
626 }, acc);
627 }
628 });
629 }
630 }
631
632 /**
633 * A wrapper class that exposes only the ExecutorService methods
634 * of an ExecutorService implementation.
635 */
636 static class DelegatedExecutorService extends AbstractExecutorService {
637 private final ExecutorService e;
638 DelegatedExecutorService(ExecutorService executor) { e = executor; }
639 public void execute(Runnable command) { e.execute(command); }
640 public void shutdown() { e.shutdown(); }
641 public List<Runnable> shutdownNow() { return e.shutdownNow(); }
642 public boolean isShutdown() { return e.isShutdown(); }
643 public boolean isTerminated() { return e.isTerminated(); }
644 public boolean awaitTermination(long timeout, TimeUnit unit)
645 throws InterruptedException {
646 return e.awaitTermination(timeout, unit);
647 }
648 public Future<?> submit(Runnable task) {
649 return e.submit(task);
650 }
651 public <T> Future<T> submit(Callable<T> task) {
652 return e.submit(task);
653 }
654 public <T> Future<T> submit(Runnable task, T result) {
655 return e.submit(task, result);
656 }
657 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks)
658 throws InterruptedException {
659 return e.invokeAll(tasks);
660 }
661 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks,
662 long timeout, TimeUnit unit)
663 throws InterruptedException {
664 return e.invokeAll(tasks, timeout, unit);
665 }
666 public <T> T invokeAny(Collection<? extends Callable<T>> tasks)
667 throws InterruptedException, ExecutionException {
668 return e.invokeAny(tasks);
669 }
670 public <T> T invokeAny(Collection<? extends Callable<T>> tasks,
671 long timeout, TimeUnit unit)
672 throws InterruptedException, ExecutionException, TimeoutException {
673 return e.invokeAny(tasks, timeout, unit);
674 }
675 }
676
677 static class FinalizableDelegatedExecutorService
678 extends DelegatedExecutorService {
679 FinalizableDelegatedExecutorService(ExecutorService executor) {
680 super(executor);
681 }
682 protected void finalize() {
683 super.shutdown();
684 }
685 }
686
687 /**
688 * A wrapper class that exposes only the ScheduledExecutorService
689 * methods of a ScheduledExecutorService implementation.
690 */
691 static class DelegatedScheduledExecutorService
692 extends DelegatedExecutorService
693 implements ScheduledExecutorService {
694 private final ScheduledExecutorService e;
695 DelegatedScheduledExecutorService(ScheduledExecutorService executor) {
696 super(executor);
697 e = executor;
698 }
699 public ScheduledFuture<?> schedule(Runnable command, long delay, TimeUnit unit) {
700 return e.schedule(command, delay, unit);
701 }
702 public <V> ScheduledFuture<V> schedule(Callable<V> callable, long delay, TimeUnit unit) {
703 return e.schedule(callable, delay, unit);
704 }
705 public ScheduledFuture<?> scheduleAtFixedRate(Runnable command, long initialDelay, long period, TimeUnit unit) {
706 return e.scheduleAtFixedRate(command, initialDelay, period, unit);
707 }
708 public ScheduledFuture<?> scheduleWithFixedDelay(Runnable command, long initialDelay, long delay, TimeUnit unit) {
709 return e.scheduleWithFixedDelay(command, initialDelay, delay, unit);
710 }
711 }
712
713 /** Cannot instantiate. */
714 private Executors() {}
715 }