ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/Executors.java
Revision: 1.90
Committed: Wed Dec 31 07:54:13 2014 UTC (9 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.89: +5 -5 lines
Log Message:
standardize import statement order

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.security.AccessControlContext;
10 import java.security.AccessControlException;
11 import java.security.AccessController;
12 import java.security.PrivilegedAction;
13 import java.security.PrivilegedActionException;
14 import java.security.PrivilegedExceptionAction;
15 import java.util.Collection;
16 import java.util.List;
17 import java.util.concurrent.atomic.AtomicInteger;
18 import sun.security.util.SecurityConstants;
19
20 /**
21 * Factory and utility methods for {@link Executor}, {@link
22 * ExecutorService}, {@link ScheduledExecutorService}, {@link
23 * ThreadFactory}, and {@link Callable} classes defined in this
24 * package. This class supports the following kinds of methods:
25 *
26 * <ul>
27 * <li> Methods that create and return an {@link ExecutorService}
28 * set up with commonly useful configuration settings.
29 * <li> Methods that create and return a {@link ScheduledExecutorService}
30 * set up with commonly useful configuration settings.
31 * <li> Methods that create and return a "wrapped" ExecutorService, that
32 * disables reconfiguration by making implementation-specific methods
33 * inaccessible.
34 * <li> Methods that create and return a {@link ThreadFactory}
35 * that sets newly created threads to a known state.
36 * <li> Methods that create and return a {@link Callable}
37 * out of other closure-like forms, so they can be used
38 * in execution methods requiring {@code Callable}.
39 * </ul>
40 *
41 * @since 1.5
42 * @author Doug Lea
43 */
44 public class Executors {
45
46 /**
47 * Creates a thread pool that reuses a fixed number of threads
48 * operating off a shared unbounded queue. At any point, at most
49 * {@code nThreads} threads will be active processing tasks.
50 * If additional tasks are submitted when all threads are active,
51 * they will wait in the queue until a thread is available.
52 * If any thread terminates due to a failure during execution
53 * prior to shutdown, a new one will take its place if needed to
54 * execute subsequent tasks. The threads in the pool will exist
55 * until it is explicitly {@link ExecutorService#shutdown shutdown}.
56 *
57 * @param nThreads the number of threads in the pool
58 * @return the newly created thread pool
59 * @throws IllegalArgumentException if {@code nThreads <= 0}
60 */
61 public static ExecutorService newFixedThreadPool(int nThreads) {
62 return new ThreadPoolExecutor(nThreads, nThreads,
63 0L, TimeUnit.MILLISECONDS,
64 new LinkedBlockingQueue<Runnable>());
65 }
66
67 /**
68 * Creates a thread pool that maintains enough threads to support
69 * the given parallelism level, and may use multiple queues to
70 * reduce contention. The parallelism level corresponds to the
71 * maximum number of threads actively engaged in, or available to
72 * engage in, task processing. The actual number of threads may
73 * grow and shrink dynamically. A work-stealing pool makes no
74 * guarantees about the order in which submitted tasks are
75 * executed.
76 *
77 * @param parallelism the targeted parallelism level
78 * @return the newly created thread pool
79 * @throws IllegalArgumentException if {@code parallelism <= 0}
80 * @since 1.8
81 */
82 public static ExecutorService newWorkStealingPool(int parallelism) {
83 return new ForkJoinPool
84 (parallelism,
85 ForkJoinPool.defaultForkJoinWorkerThreadFactory,
86 null, true);
87 }
88
89 /**
90 * Creates a work-stealing thread pool using all
91 * {@link Runtime#availableProcessors available processors}
92 * as its target parallelism level.
93 * @return the newly created thread pool
94 * @see #newWorkStealingPool(int)
95 * @since 1.8
96 */
97 public static ExecutorService newWorkStealingPool() {
98 return new ForkJoinPool
99 (Runtime.getRuntime().availableProcessors(),
100 ForkJoinPool.defaultForkJoinWorkerThreadFactory,
101 null, true);
102 }
103
104 /**
105 * Creates a thread pool that reuses a fixed number of threads
106 * operating off a shared unbounded queue, using the provided
107 * ThreadFactory to create new threads when needed. At any point,
108 * at most {@code nThreads} threads will be active processing
109 * tasks. If additional tasks are submitted when all threads are
110 * active, they will wait in the queue until a thread is
111 * available. If any thread terminates due to a failure during
112 * execution prior to shutdown, a new one will take its place if
113 * needed to execute subsequent tasks. The threads in the pool will
114 * exist until it is explicitly {@link ExecutorService#shutdown
115 * shutdown}.
116 *
117 * @param nThreads the number of threads in the pool
118 * @param threadFactory the factory to use when creating new threads
119 * @return the newly created thread pool
120 * @throws NullPointerException if threadFactory is null
121 * @throws IllegalArgumentException if {@code nThreads <= 0}
122 */
123 public static ExecutorService newFixedThreadPool(int nThreads, ThreadFactory threadFactory) {
124 return new ThreadPoolExecutor(nThreads, nThreads,
125 0L, TimeUnit.MILLISECONDS,
126 new LinkedBlockingQueue<Runnable>(),
127 threadFactory);
128 }
129
130 /**
131 * Creates an Executor that uses a single worker thread operating
132 * off an unbounded queue. (Note however that if this single
133 * thread terminates due to a failure during execution prior to
134 * shutdown, a new one will take its place if needed to execute
135 * subsequent tasks.) Tasks are guaranteed to execute
136 * sequentially, and no more than one task will be active at any
137 * given time. Unlike the otherwise equivalent
138 * {@code newFixedThreadPool(1)} the returned executor is
139 * guaranteed not to be reconfigurable to use additional threads.
140 *
141 * @return the newly created single-threaded Executor
142 */
143 public static ExecutorService newSingleThreadExecutor() {
144 return new FinalizableDelegatedExecutorService
145 (new ThreadPoolExecutor(1, 1,
146 0L, TimeUnit.MILLISECONDS,
147 new LinkedBlockingQueue<Runnable>()));
148 }
149
150 /**
151 * Creates an Executor that uses a single worker thread operating
152 * off an unbounded queue, and uses the provided ThreadFactory to
153 * create a new thread when needed. Unlike the otherwise
154 * equivalent {@code newFixedThreadPool(1, threadFactory)} the
155 * returned executor is guaranteed not to be reconfigurable to use
156 * additional threads.
157 *
158 * @param threadFactory the factory to use when creating new
159 * threads
160 *
161 * @return the newly created single-threaded Executor
162 * @throws NullPointerException if threadFactory is null
163 */
164 public static ExecutorService newSingleThreadExecutor(ThreadFactory threadFactory) {
165 return new FinalizableDelegatedExecutorService
166 (new ThreadPoolExecutor(1, 1,
167 0L, TimeUnit.MILLISECONDS,
168 new LinkedBlockingQueue<Runnable>(),
169 threadFactory));
170 }
171
172 /**
173 * Creates a thread pool that creates new threads as needed, but
174 * will reuse previously constructed threads when they are
175 * available. These pools will typically improve the performance
176 * of programs that execute many short-lived asynchronous tasks.
177 * Calls to {@code execute} will reuse previously constructed
178 * threads if available. If no existing thread is available, a new
179 * thread will be created and added to the pool. Threads that have
180 * not been used for sixty seconds are terminated and removed from
181 * the cache. Thus, a pool that remains idle for long enough will
182 * not consume any resources. Note that pools with similar
183 * properties but different details (for example, timeout parameters)
184 * may be created using {@link ThreadPoolExecutor} constructors.
185 *
186 * @return the newly created thread pool
187 */
188 public static ExecutorService newCachedThreadPool() {
189 return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
190 60L, TimeUnit.SECONDS,
191 new SynchronousQueue<Runnable>());
192 }
193
194 /**
195 * Creates a thread pool that creates new threads as needed, but
196 * will reuse previously constructed threads when they are
197 * available, and uses the provided
198 * ThreadFactory to create new threads when needed.
199 * @param threadFactory the factory to use when creating new threads
200 * @return the newly created thread pool
201 * @throws NullPointerException if threadFactory is null
202 */
203 public static ExecutorService newCachedThreadPool(ThreadFactory threadFactory) {
204 return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
205 60L, TimeUnit.SECONDS,
206 new SynchronousQueue<Runnable>(),
207 threadFactory);
208 }
209
210 /**
211 * Creates a single-threaded executor that can schedule commands
212 * to run after a given delay, or to execute periodically.
213 * (Note however that if this single
214 * thread terminates due to a failure during execution prior to
215 * shutdown, a new one will take its place if needed to execute
216 * subsequent tasks.) Tasks are guaranteed to execute
217 * sequentially, and no more than one task will be active at any
218 * given time. Unlike the otherwise equivalent
219 * {@code newScheduledThreadPool(1)} the returned executor is
220 * guaranteed not to be reconfigurable to use additional threads.
221 * @return the newly created scheduled executor
222 */
223 public static ScheduledExecutorService newSingleThreadScheduledExecutor() {
224 return new DelegatedScheduledExecutorService
225 (new ScheduledThreadPoolExecutor(1));
226 }
227
228 /**
229 * Creates a single-threaded executor that can schedule commands
230 * to run after a given delay, or to execute periodically. (Note
231 * however that if this single thread terminates due to a failure
232 * during execution prior to shutdown, a new one will take its
233 * place if needed to execute subsequent tasks.) Tasks are
234 * guaranteed to execute sequentially, and no more than one task
235 * will be active at any given time. Unlike the otherwise
236 * equivalent {@code newScheduledThreadPool(1, threadFactory)}
237 * the returned executor is guaranteed not to be reconfigurable to
238 * use additional threads.
239 * @param threadFactory the factory to use when creating new
240 * threads
241 * @return a newly created scheduled executor
242 * @throws NullPointerException if threadFactory is null
243 */
244 public static ScheduledExecutorService newSingleThreadScheduledExecutor(ThreadFactory threadFactory) {
245 return new DelegatedScheduledExecutorService
246 (new ScheduledThreadPoolExecutor(1, threadFactory));
247 }
248
249 /**
250 * Creates a thread pool that can schedule commands to run after a
251 * given delay, or to execute periodically.
252 * @param corePoolSize the number of threads to keep in the pool,
253 * even if they are idle
254 * @return a newly created scheduled thread pool
255 * @throws IllegalArgumentException if {@code corePoolSize < 0}
256 */
257 public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) {
258 return new ScheduledThreadPoolExecutor(corePoolSize);
259 }
260
261 /**
262 * Creates a thread pool that can schedule commands to run after a
263 * given delay, or to execute periodically.
264 * @param corePoolSize the number of threads to keep in the pool,
265 * even if they are idle
266 * @param threadFactory the factory to use when the executor
267 * creates a new thread
268 * @return a newly created scheduled thread pool
269 * @throws IllegalArgumentException if {@code corePoolSize < 0}
270 * @throws NullPointerException if threadFactory is null
271 */
272 public static ScheduledExecutorService newScheduledThreadPool(
273 int corePoolSize, ThreadFactory threadFactory) {
274 return new ScheduledThreadPoolExecutor(corePoolSize, threadFactory);
275 }
276
277 /**
278 * Returns an object that delegates all defined {@link
279 * ExecutorService} methods to the given executor, but not any
280 * other methods that might otherwise be accessible using
281 * casts. This provides a way to safely "freeze" configuration and
282 * disallow tuning of a given concrete implementation.
283 * @param executor the underlying implementation
284 * @return an {@code ExecutorService} instance
285 * @throws NullPointerException if executor null
286 */
287 public static ExecutorService unconfigurableExecutorService(ExecutorService executor) {
288 if (executor == null)
289 throw new NullPointerException();
290 return new DelegatedExecutorService(executor);
291 }
292
293 /**
294 * Returns an object that delegates all defined {@link
295 * ScheduledExecutorService} methods to the given executor, but
296 * not any other methods that might otherwise be accessible using
297 * casts. This provides a way to safely "freeze" configuration and
298 * disallow tuning of a given concrete implementation.
299 * @param executor the underlying implementation
300 * @return a {@code ScheduledExecutorService} instance
301 * @throws NullPointerException if executor null
302 */
303 public static ScheduledExecutorService unconfigurableScheduledExecutorService(ScheduledExecutorService executor) {
304 if (executor == null)
305 throw new NullPointerException();
306 return new DelegatedScheduledExecutorService(executor);
307 }
308
309 /**
310 * Returns a default thread factory used to create new threads.
311 * This factory creates all new threads used by an Executor in the
312 * same {@link ThreadGroup}. If there is a {@link
313 * java.lang.SecurityManager}, it uses the group of {@link
314 * System#getSecurityManager}, else the group of the thread
315 * invoking this {@code defaultThreadFactory} method. Each new
316 * thread is created as a non-daemon thread with priority set to
317 * the smaller of {@code Thread.NORM_PRIORITY} and the maximum
318 * priority permitted in the thread group. New threads have names
319 * accessible via {@link Thread#getName} of
320 * <em>pool-N-thread-M</em>, where <em>N</em> is the sequence
321 * number of this factory, and <em>M</em> is the sequence number
322 * of the thread created by this factory.
323 * @return a thread factory
324 */
325 public static ThreadFactory defaultThreadFactory() {
326 return new DefaultThreadFactory();
327 }
328
329 /**
330 * Returns a thread factory used to create new threads that
331 * have the same permissions as the current thread.
332 * This factory creates threads with the same settings as {@link
333 * Executors#defaultThreadFactory}, additionally setting the
334 * AccessControlContext and contextClassLoader of new threads to
335 * be the same as the thread invoking this
336 * {@code privilegedThreadFactory} method. A new
337 * {@code privilegedThreadFactory} can be created within an
338 * {@link AccessController#doPrivileged AccessController.doPrivileged}
339 * action setting the current thread's access control context to
340 * create threads with the selected permission settings holding
341 * within that action.
342 *
343 * <p>Note that while tasks running within such threads will have
344 * the same access control and class loader settings as the
345 * current thread, they need not have the same {@link
346 * java.lang.ThreadLocal} or {@link
347 * java.lang.InheritableThreadLocal} values. If necessary,
348 * particular values of thread locals can be set or reset before
349 * any task runs in {@link ThreadPoolExecutor} subclasses using
350 * {@link ThreadPoolExecutor#beforeExecute(Thread, Runnable)}.
351 * Also, if it is necessary to initialize worker threads to have
352 * the same InheritableThreadLocal settings as some other
353 * designated thread, you can create a custom ThreadFactory in
354 * which that thread waits for and services requests to create
355 * others that will inherit its values.
356 *
357 * @return a thread factory
358 * @throws AccessControlException if the current access control
359 * context does not have permission to both get and set context
360 * class loader
361 */
362 public static ThreadFactory privilegedThreadFactory() {
363 return new PrivilegedThreadFactory();
364 }
365
366 /**
367 * Returns a {@link Callable} object that, when
368 * called, runs the given task and returns the given result. This
369 * can be useful when applying methods requiring a
370 * {@code Callable} to an otherwise resultless action.
371 * @param task the task to run
372 * @param result the result to return
373 * @param <T> the type of the result
374 * @return a callable object
375 * @throws NullPointerException if task null
376 */
377 public static <T> Callable<T> callable(Runnable task, T result) {
378 if (task == null)
379 throw new NullPointerException();
380 return new RunnableAdapter<T>(task, result);
381 }
382
383 /**
384 * Returns a {@link Callable} object that, when
385 * called, runs the given task and returns {@code null}.
386 * @param task the task to run
387 * @return a callable object
388 * @throws NullPointerException if task null
389 */
390 public static Callable<Object> callable(Runnable task) {
391 if (task == null)
392 throw new NullPointerException();
393 return new RunnableAdapter<Object>(task, null);
394 }
395
396 /**
397 * Returns a {@link Callable} object that, when
398 * called, runs the given privileged action and returns its result.
399 * @param action the privileged action to run
400 * @return a callable object
401 * @throws NullPointerException if action null
402 */
403 public static Callable<Object> callable(final PrivilegedAction<?> action) {
404 if (action == null)
405 throw new NullPointerException();
406 return new Callable<Object>() {
407 public Object call() { return action.run(); }};
408 }
409
410 /**
411 * Returns a {@link Callable} object that, when
412 * called, runs the given privileged exception action and returns
413 * its result.
414 * @param action the privileged exception action to run
415 * @return a callable object
416 * @throws NullPointerException if action null
417 */
418 public static Callable<Object> callable(final PrivilegedExceptionAction<?> action) {
419 if (action == null)
420 throw new NullPointerException();
421 return new Callable<Object>() {
422 public Object call() throws Exception { return action.run(); }};
423 }
424
425 /**
426 * Returns a {@link Callable} object that will, when called,
427 * execute the given {@code callable} under the current access
428 * control context. This method should normally be invoked within
429 * an {@link AccessController#doPrivileged AccessController.doPrivileged}
430 * action to create callables that will, if possible, execute
431 * under the selected permission settings holding within that
432 * action; or if not possible, throw an associated {@link
433 * AccessControlException}.
434 * @param callable the underlying task
435 * @param <T> the type of the callable's result
436 * @return a callable object
437 * @throws NullPointerException if callable null
438 */
439 public static <T> Callable<T> privilegedCallable(Callable<T> callable) {
440 if (callable == null)
441 throw new NullPointerException();
442 return new PrivilegedCallable<T>(callable);
443 }
444
445 /**
446 * Returns a {@link Callable} object that will, when called,
447 * execute the given {@code callable} under the current access
448 * control context, with the current context class loader as the
449 * context class loader. This method should normally be invoked
450 * within an
451 * {@link AccessController#doPrivileged AccessController.doPrivileged}
452 * action to create callables that will, if possible, execute
453 * under the selected permission settings holding within that
454 * action; or if not possible, throw an associated {@link
455 * AccessControlException}.
456 *
457 * @param callable the underlying task
458 * @param <T> the type of the callable's result
459 * @return a callable object
460 * @throws NullPointerException if callable null
461 * @throws AccessControlException if the current access control
462 * context does not have permission to both set and get context
463 * class loader
464 */
465 public static <T> Callable<T> privilegedCallableUsingCurrentClassLoader(Callable<T> callable) {
466 if (callable == null)
467 throw new NullPointerException();
468 return new PrivilegedCallableUsingCurrentClassLoader<T>(callable);
469 }
470
471 // Non-public classes supporting the public methods
472
473 /**
474 * A callable that runs given task and returns given result
475 */
476 static final class RunnableAdapter<T> implements Callable<T> {
477 final Runnable task;
478 final T result;
479 RunnableAdapter(Runnable task, T result) {
480 this.task = task;
481 this.result = result;
482 }
483 public T call() {
484 task.run();
485 return result;
486 }
487 }
488
489 /**
490 * A callable that runs under established access control settings
491 */
492 static final class PrivilegedCallable<T> implements Callable<T> {
493 private final Callable<T> task;
494 private final AccessControlContext acc;
495
496 PrivilegedCallable(Callable<T> task) {
497 this.task = task;
498 this.acc = AccessController.getContext();
499 }
500
501 public T call() throws Exception {
502 try {
503 return AccessController.doPrivileged(
504 new PrivilegedExceptionAction<T>() {
505 public T run() throws Exception {
506 return task.call();
507 }
508 }, acc);
509 } catch (PrivilegedActionException e) {
510 throw e.getException();
511 }
512 }
513 }
514
515 /**
516 * A callable that runs under established access control settings and
517 * current ClassLoader
518 */
519 static final class PrivilegedCallableUsingCurrentClassLoader<T> implements Callable<T> {
520 private final Callable<T> task;
521 private final AccessControlContext acc;
522 private final ClassLoader ccl;
523
524 PrivilegedCallableUsingCurrentClassLoader(Callable<T> task) {
525 SecurityManager sm = System.getSecurityManager();
526 if (sm != null) {
527 // Calls to getContextClassLoader from this class
528 // never trigger a security check, but we check
529 // whether our callers have this permission anyways.
530 sm.checkPermission(SecurityConstants.GET_CLASSLOADER_PERMISSION);
531
532 // Whether setContextClassLoader turns out to be necessary
533 // or not, we fail fast if permission is not available.
534 sm.checkPermission(new RuntimePermission("setContextClassLoader"));
535 }
536 this.task = task;
537 this.acc = AccessController.getContext();
538 this.ccl = Thread.currentThread().getContextClassLoader();
539 }
540
541 public T call() throws Exception {
542 try {
543 return AccessController.doPrivileged(
544 new PrivilegedExceptionAction<T>() {
545 public T run() throws Exception {
546 Thread t = Thread.currentThread();
547 ClassLoader cl = t.getContextClassLoader();
548 if (ccl == cl) {
549 return task.call();
550 } else {
551 t.setContextClassLoader(ccl);
552 try {
553 return task.call();
554 } finally {
555 t.setContextClassLoader(cl);
556 }
557 }
558 }
559 }, acc);
560 } catch (PrivilegedActionException e) {
561 throw e.getException();
562 }
563 }
564 }
565
566 /**
567 * The default thread factory
568 */
569 static class DefaultThreadFactory implements ThreadFactory {
570 private static final AtomicInteger poolNumber = new AtomicInteger(1);
571 private final ThreadGroup group;
572 private final AtomicInteger threadNumber = new AtomicInteger(1);
573 private final String namePrefix;
574
575 DefaultThreadFactory() {
576 SecurityManager s = System.getSecurityManager();
577 group = (s != null) ? s.getThreadGroup() :
578 Thread.currentThread().getThreadGroup();
579 namePrefix = "pool-" +
580 poolNumber.getAndIncrement() +
581 "-thread-";
582 }
583
584 public Thread newThread(Runnable r) {
585 Thread t = new Thread(group, r,
586 namePrefix + threadNumber.getAndIncrement(),
587 0);
588 if (t.isDaemon())
589 t.setDaemon(false);
590 if (t.getPriority() != Thread.NORM_PRIORITY)
591 t.setPriority(Thread.NORM_PRIORITY);
592 return t;
593 }
594 }
595
596 /**
597 * Thread factory capturing access control context and class loader
598 */
599 static class PrivilegedThreadFactory extends DefaultThreadFactory {
600 private final AccessControlContext acc;
601 private final ClassLoader ccl;
602
603 PrivilegedThreadFactory() {
604 super();
605 SecurityManager sm = System.getSecurityManager();
606 if (sm != null) {
607 // Calls to getContextClassLoader from this class
608 // never trigger a security check, but we check
609 // whether our callers have this permission anyways.
610 sm.checkPermission(SecurityConstants.GET_CLASSLOADER_PERMISSION);
611
612 // Fail fast
613 sm.checkPermission(new RuntimePermission("setContextClassLoader"));
614 }
615 this.acc = AccessController.getContext();
616 this.ccl = Thread.currentThread().getContextClassLoader();
617 }
618
619 public Thread newThread(final Runnable r) {
620 return super.newThread(new Runnable() {
621 public void run() {
622 AccessController.doPrivileged(new PrivilegedAction<Void>() {
623 public Void run() {
624 Thread.currentThread().setContextClassLoader(ccl);
625 r.run();
626 return null;
627 }
628 }, acc);
629 }
630 });
631 }
632 }
633
634 /**
635 * A wrapper class that exposes only the ExecutorService methods
636 * of an ExecutorService implementation.
637 */
638 static class DelegatedExecutorService extends AbstractExecutorService {
639 private final ExecutorService e;
640 DelegatedExecutorService(ExecutorService executor) { e = executor; }
641 public void execute(Runnable command) { e.execute(command); }
642 public void shutdown() { e.shutdown(); }
643 public List<Runnable> shutdownNow() { return e.shutdownNow(); }
644 public boolean isShutdown() { return e.isShutdown(); }
645 public boolean isTerminated() { return e.isTerminated(); }
646 public boolean awaitTermination(long timeout, TimeUnit unit)
647 throws InterruptedException {
648 return e.awaitTermination(timeout, unit);
649 }
650 public Future<?> submit(Runnable task) {
651 return e.submit(task);
652 }
653 public <T> Future<T> submit(Callable<T> task) {
654 return e.submit(task);
655 }
656 public <T> Future<T> submit(Runnable task, T result) {
657 return e.submit(task, result);
658 }
659 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks)
660 throws InterruptedException {
661 return e.invokeAll(tasks);
662 }
663 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks,
664 long timeout, TimeUnit unit)
665 throws InterruptedException {
666 return e.invokeAll(tasks, timeout, unit);
667 }
668 public <T> T invokeAny(Collection<? extends Callable<T>> tasks)
669 throws InterruptedException, ExecutionException {
670 return e.invokeAny(tasks);
671 }
672 public <T> T invokeAny(Collection<? extends Callable<T>> tasks,
673 long timeout, TimeUnit unit)
674 throws InterruptedException, ExecutionException, TimeoutException {
675 return e.invokeAny(tasks, timeout, unit);
676 }
677 }
678
679 static class FinalizableDelegatedExecutorService
680 extends DelegatedExecutorService {
681 FinalizableDelegatedExecutorService(ExecutorService executor) {
682 super(executor);
683 }
684 protected void finalize() {
685 super.shutdown();
686 }
687 }
688
689 /**
690 * A wrapper class that exposes only the ScheduledExecutorService
691 * methods of a ScheduledExecutorService implementation.
692 */
693 static class DelegatedScheduledExecutorService
694 extends DelegatedExecutorService
695 implements ScheduledExecutorService {
696 private final ScheduledExecutorService e;
697 DelegatedScheduledExecutorService(ScheduledExecutorService executor) {
698 super(executor);
699 e = executor;
700 }
701 public ScheduledFuture<?> schedule(Runnable command, long delay, TimeUnit unit) {
702 return e.schedule(command, delay, unit);
703 }
704 public <V> ScheduledFuture<V> schedule(Callable<V> callable, long delay, TimeUnit unit) {
705 return e.schedule(callable, delay, unit);
706 }
707 public ScheduledFuture<?> scheduleAtFixedRate(Runnable command, long initialDelay, long period, TimeUnit unit) {
708 return e.scheduleAtFixedRate(command, initialDelay, period, unit);
709 }
710 public ScheduledFuture<?> scheduleWithFixedDelay(Runnable command, long initialDelay, long delay, TimeUnit unit) {
711 return e.scheduleWithFixedDelay(command, initialDelay, delay, unit);
712 }
713 }
714
715 /** Cannot instantiate. */
716 private Executors() {}
717 }