ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.10
Committed: Tue Aug 4 20:41:40 2009 UTC (14 years, 10 months ago) by jsr166
Branch: MAIN
Changes since 1.9: +7 -6 lines
Log Message:
sync with jsr166 package

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package java.util.concurrent;
8    
9     import java.util.ArrayList;
10     import java.util.Arrays;
11     import java.util.Collection;
12     import java.util.Collections;
13     import java.util.List;
14     import java.util.concurrent.locks.Condition;
15     import java.util.concurrent.locks.LockSupport;
16     import java.util.concurrent.locks.ReentrantLock;
17     import java.util.concurrent.atomic.AtomicInteger;
18     import java.util.concurrent.atomic.AtomicLong;
19    
20     /**
21 jsr166 1.4 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
22 jsr166 1.8 * A {@code ForkJoinPool} provides the entry point for submissions
23     * from non-{@code ForkJoinTask}s, as well as management and
24 jsr166 1.9 * monitoring operations.
25 jsr166 1.1 *
26 jsr166 1.9 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
27     * ExecutorService} mainly by virtue of employing
28     * <em>work-stealing</em>: all threads in the pool attempt to find and
29     * execute subtasks created by other active tasks (eventually blocking
30     * waiting for work if none exist). This enables efficient processing
31     * when most tasks spawn other subtasks (as do most {@code
32     * ForkJoinTask}s). A {@code ForkJoinPool} may also be used for mixed
33     * execution of some plain {@code Runnable}- or {@code Callable}-
34     * based activities along with {@code ForkJoinTask}s. When setting
35     * {@linkplain #setAsyncMode async mode}, a {@code ForkJoinPool} may
36     * also be appropriate for use with fine-grained tasks of any form
37     * that are never joined. Otherwise, other {@code ExecutorService}
38     * implementations are typically more appropriate choices.
39 jsr166 1.1 *
40 jsr166 1.9 * <p>A {@code ForkJoinPool} is constructed with a given target
41     * parallelism level; by default, equal to the number of available
42     * processors. Unless configured otherwise via {@link
43     * #setMaintainsParallelism}, the pool attempts to maintain this
44     * number of active (or available) threads by dynamically adding,
45     * suspending, or resuming internal worker threads, even if some tasks
46 jsr166 1.10 * are stalled waiting to join others. However, no such adjustments
47     * are performed in the face of blocked IO or other unmanaged
48 jsr166 1.8 * synchronization. The nested {@link ManagedBlocker} interface
49     * enables extension of the kinds of synchronization accommodated.
50     * The target parallelism level may also be changed dynamically
51 jsr166 1.9 * ({@link #setParallelism}). The total number of threads may be
52     * limited using method {@link #setMaximumPoolSize}, in which case it
53     * may become possible for the activities of a pool to stall due to
54     * the lack of available threads to process new tasks.
55 jsr166 1.1 *
56     * <p>In addition to execution and lifecycle control methods, this
57     * class provides status check methods (for example
58 jsr166 1.4 * {@link #getStealCount}) that are intended to aid in developing,
59 jsr166 1.1 * tuning, and monitoring fork/join applications. Also, method
60 jsr166 1.4 * {@link #toString} returns indications of pool state in a
61 jsr166 1.1 * convenient form for informal monitoring.
62     *
63 jsr166 1.9 * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
64     * used for all parallel task execution in a program or subsystem.
65     * Otherwise, use would not usually outweigh the construction and
66     * bookkeeping overhead of creating a large set of threads. For
67     * example, a common pool could be used for the {@code SortTasks}
68     * illustrated in {@link RecursiveAction}. Because {@code
69     * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
70     * daemon} mode, there is typically no need to explicitly {@link
71     * #shutdown} such a pool upon program exit.
72     *
73     * <pre>
74     * static final ForkJoinPool mainPool = new ForkJoinPool();
75     * ...
76     * public void sort(long[] array) {
77     * mainPool.invoke(new SortTask(array, 0, array.length));
78     * }
79     * </pre>
80     *
81 jsr166 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
82     * maximum number of running threads to 32767. Attempts to create
83     * pools with greater than the maximum result in
84 jsr166 1.8 * {@code IllegalArgumentException}.
85 jsr166 1.1 *
86     * @since 1.7
87     * @author Doug Lea
88     */
89     public class ForkJoinPool extends AbstractExecutorService {
90    
91     /*
92     * See the extended comments interspersed below for design,
93     * rationale, and walkthroughs.
94     */
95    
96     /** Mask for packing and unpacking shorts */
97     private static final int shortMask = 0xffff;
98    
99     /** Max pool size -- must be a power of two minus 1 */
100     private static final int MAX_THREADS = 0x7FFF;
101    
102     /**
103 jsr166 1.8 * Factory for creating new {@link ForkJoinWorkerThread}s.
104     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
105     * for {@code ForkJoinWorkerThread} subclasses that extend base
106     * functionality or initialize threads with different contexts.
107 jsr166 1.1 */
108     public static interface ForkJoinWorkerThreadFactory {
109     /**
110     * Returns a new worker thread operating in the given pool.
111     *
112     * @param pool the pool this thread works in
113     * @throws NullPointerException if pool is null
114     */
115     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
116     }
117    
118     /**
119     * Default ForkJoinWorkerThreadFactory implementation; creates a
120     * new ForkJoinWorkerThread.
121     */
122     static class DefaultForkJoinWorkerThreadFactory
123     implements ForkJoinWorkerThreadFactory {
124     public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
125     try {
126     return new ForkJoinWorkerThread(pool);
127     } catch (OutOfMemoryError oom) {
128     return null;
129     }
130     }
131     }
132    
133     /**
134     * Creates a new ForkJoinWorkerThread. This factory is used unless
135     * overridden in ForkJoinPool constructors.
136     */
137     public static final ForkJoinWorkerThreadFactory
138     defaultForkJoinWorkerThreadFactory =
139     new DefaultForkJoinWorkerThreadFactory();
140    
141     /**
142     * Permission required for callers of methods that may start or
143     * kill threads.
144     */
145     private static final RuntimePermission modifyThreadPermission =
146     new RuntimePermission("modifyThread");
147    
148     /**
149     * If there is a security manager, makes sure caller has
150     * permission to modify threads.
151     */
152     private static void checkPermission() {
153     SecurityManager security = System.getSecurityManager();
154     if (security != null)
155     security.checkPermission(modifyThreadPermission);
156     }
157    
158     /**
159     * Generator for assigning sequence numbers as pool names.
160     */
161     private static final AtomicInteger poolNumberGenerator =
162     new AtomicInteger();
163    
164     /**
165     * Array holding all worker threads in the pool. Initialized upon
166     * first use. Array size must be a power of two. Updates and
167     * replacements are protected by workerLock, but it is always kept
168     * in a consistent enough state to be randomly accessed without
169     * locking by workers performing work-stealing.
170     */
171     volatile ForkJoinWorkerThread[] workers;
172    
173     /**
174     * Lock protecting access to workers.
175     */
176     private final ReentrantLock workerLock;
177    
178     /**
179     * Condition for awaitTermination.
180     */
181     private final Condition termination;
182    
183     /**
184     * The uncaught exception handler used when any worker
185     * abruptly terminates
186     */
187     private Thread.UncaughtExceptionHandler ueh;
188    
189     /**
190     * Creation factory for worker threads.
191     */
192     private final ForkJoinWorkerThreadFactory factory;
193    
194     /**
195     * Head of stack of threads that were created to maintain
196     * parallelism when other threads blocked, but have since
197     * suspended when the parallelism level rose.
198     */
199     private volatile WaitQueueNode spareStack;
200    
201     /**
202     * Sum of per-thread steal counts, updated only when threads are
203     * idle or terminating.
204     */
205     private final AtomicLong stealCount;
206    
207     /**
208     * Queue for external submissions.
209     */
210     private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
211    
212     /**
213     * Head of Treiber stack for barrier sync. See below for explanation.
214     */
215     private volatile WaitQueueNode syncStack;
216    
217     /**
218     * The count for event barrier
219     */
220     private volatile long eventCount;
221    
222     /**
223     * Pool number, just for assigning useful names to worker threads
224     */
225     private final int poolNumber;
226    
227     /**
228     * The maximum allowed pool size
229     */
230     private volatile int maxPoolSize;
231    
232     /**
233     * The desired parallelism level, updated only under workerLock.
234     */
235     private volatile int parallelism;
236    
237     /**
238     * True if use local fifo, not default lifo, for local polling
239     */
240     private volatile boolean locallyFifo;
241    
242     /**
243     * Holds number of total (i.e., created and not yet terminated)
244     * and running (i.e., not blocked on joins or other managed sync)
245     * threads, packed into one int to ensure consistent snapshot when
246     * making decisions about creating and suspending spare
247     * threads. Updated only by CAS. Note: CASes in
248     * updateRunningCount and preJoin assume that running active count
249     * is in low word, so need to be modified if this changes.
250     */
251     private volatile int workerCounts;
252    
253     private static int totalCountOf(int s) { return s >>> 16; }
254     private static int runningCountOf(int s) { return s & shortMask; }
255     private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
256    
257     /**
258     * Adds delta (which may be negative) to running count. This must
259     * be called before (with negative arg) and after (with positive)
260     * any managed synchronization (i.e., mainly, joins).
261     *
262     * @param delta the number to add
263     */
264     final void updateRunningCount(int delta) {
265     int s;
266     do {} while (!casWorkerCounts(s = workerCounts, s + delta));
267     }
268    
269     /**
270     * Adds delta (which may be negative) to both total and running
271     * count. This must be called upon creation and termination of
272     * worker threads.
273     *
274     * @param delta the number to add
275     */
276     private void updateWorkerCount(int delta) {
277     int d = delta + (delta << 16); // add to both lo and hi parts
278     int s;
279     do {} while (!casWorkerCounts(s = workerCounts, s + d));
280     }
281    
282     /**
283     * Lifecycle control. High word contains runState, low word
284     * contains the number of workers that are (probably) executing
285     * tasks. This value is atomically incremented before a worker
286     * gets a task to run, and decremented when worker has no tasks
287     * and cannot find any. These two fields are bundled together to
288     * support correct termination triggering. Note: activeCount
289     * CAS'es cheat by assuming active count is in low word, so need
290     * to be modified if this changes
291     */
292     private volatile int runControl;
293    
294     // RunState values. Order among values matters
295     private static final int RUNNING = 0;
296     private static final int SHUTDOWN = 1;
297     private static final int TERMINATING = 2;
298     private static final int TERMINATED = 3;
299    
300     private static int runStateOf(int c) { return c >>> 16; }
301     private static int activeCountOf(int c) { return c & shortMask; }
302     private static int runControlFor(int r, int a) { return (r << 16) + a; }
303    
304     /**
305     * Tries incrementing active count; fails on contention.
306     * Called by workers before/during executing tasks.
307     *
308     * @return true on success
309     */
310     final boolean tryIncrementActiveCount() {
311     int c = runControl;
312     return casRunControl(c, c+1);
313     }
314    
315     /**
316     * Tries decrementing active count; fails on contention.
317     * Possibly triggers termination on success.
318     * Called by workers when they can't find tasks.
319     *
320     * @return true on success
321     */
322     final boolean tryDecrementActiveCount() {
323     int c = runControl;
324     int nextc = c - 1;
325     if (!casRunControl(c, nextc))
326     return false;
327     if (canTerminateOnShutdown(nextc))
328     terminateOnShutdown();
329     return true;
330     }
331    
332     /**
333 jsr166 1.4 * Returns {@code true} if argument represents zero active count
334     * and nonzero runstate, which is the triggering condition for
335 jsr166 1.1 * terminating on shutdown.
336     */
337     private static boolean canTerminateOnShutdown(int c) {
338     // i.e. least bit is nonzero runState bit
339     return ((c & -c) >>> 16) != 0;
340     }
341    
342     /**
343     * Transition run state to at least the given state. Return true
344     * if not already at least given state.
345     */
346     private boolean transitionRunStateTo(int state) {
347     for (;;) {
348     int c = runControl;
349     if (runStateOf(c) >= state)
350     return false;
351     if (casRunControl(c, runControlFor(state, activeCountOf(c))))
352     return true;
353     }
354     }
355    
356     /**
357     * Controls whether to add spares to maintain parallelism
358     */
359     private volatile boolean maintainsParallelism;
360    
361     // Constructors
362    
363     /**
364 jsr166 1.9 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
365     * java.lang.Runtime#availableProcessors}, and using the {@linkplain
366     * #defaultForkJoinWorkerThreadFactory default thread factory}.
367 jsr166 1.1 *
368     * @throws SecurityException if a security manager exists and
369     * the caller is not permitted to modify threads
370     * because it does not hold {@link
371     * java.lang.RuntimePermission}{@code ("modifyThread")}
372     */
373     public ForkJoinPool() {
374     this(Runtime.getRuntime().availableProcessors(),
375     defaultForkJoinWorkerThreadFactory);
376     }
377    
378     /**
379 jsr166 1.9 * Creates a {@code ForkJoinPool} with the indicated parallelism
380     * level and using the {@linkplain
381     * #defaultForkJoinWorkerThreadFactory default thread factory}.
382 jsr166 1.1 *
383 jsr166 1.9 * @param parallelism the parallelism level
384 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
385     * equal to zero
386     * @throws SecurityException if a security manager exists and
387     * the caller is not permitted to modify threads
388     * because it does not hold {@link
389     * java.lang.RuntimePermission}{@code ("modifyThread")}
390     */
391     public ForkJoinPool(int parallelism) {
392     this(parallelism, defaultForkJoinWorkerThreadFactory);
393     }
394    
395     /**
396 jsr166 1.9 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
397     * java.lang.Runtime#availableProcessors}, and using the given
398     * thread factory.
399 jsr166 1.1 *
400     * @param factory the factory for creating new threads
401     * @throws NullPointerException if factory is null
402     * @throws SecurityException if a security manager exists and
403     * the caller is not permitted to modify threads
404     * because it does not hold {@link
405     * java.lang.RuntimePermission}{@code ("modifyThread")}
406     */
407     public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
408     this(Runtime.getRuntime().availableProcessors(), factory);
409     }
410    
411     /**
412 jsr166 1.8 * Creates a {@code ForkJoinPool} with the given parallelism and
413     * thread factory.
414 jsr166 1.1 *
415 jsr166 1.9 * @param parallelism the parallelism level
416 jsr166 1.1 * @param factory the factory for creating new threads
417     * @throws IllegalArgumentException if parallelism less than or
418     * equal to zero, or greater than implementation limit
419     * @throws NullPointerException if factory is null
420     * @throws SecurityException if a security manager exists and
421     * the caller is not permitted to modify threads
422     * because it does not hold {@link
423     * java.lang.RuntimePermission}{@code ("modifyThread")}
424     */
425     public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
426     if (parallelism <= 0 || parallelism > MAX_THREADS)
427     throw new IllegalArgumentException();
428     if (factory == null)
429     throw new NullPointerException();
430     checkPermission();
431     this.factory = factory;
432     this.parallelism = parallelism;
433     this.maxPoolSize = MAX_THREADS;
434     this.maintainsParallelism = true;
435     this.poolNumber = poolNumberGenerator.incrementAndGet();
436     this.workerLock = new ReentrantLock();
437     this.termination = workerLock.newCondition();
438     this.stealCount = new AtomicLong();
439     this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
440     // worker array and workers are lazily constructed
441     }
442    
443     /**
444     * Creates a new worker thread using factory.
445     *
446     * @param index the index to assign worker
447 jsr166 1.8 * @return new worker, or null if factory failed
448 jsr166 1.1 */
449     private ForkJoinWorkerThread createWorker(int index) {
450     Thread.UncaughtExceptionHandler h = ueh;
451     ForkJoinWorkerThread w = factory.newThread(this);
452     if (w != null) {
453     w.poolIndex = index;
454     w.setDaemon(true);
455     w.setAsyncMode(locallyFifo);
456     w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
457     if (h != null)
458     w.setUncaughtExceptionHandler(h);
459     }
460     return w;
461     }
462    
463     /**
464     * Returns a good size for worker array given pool size.
465     * Currently requires size to be a power of two.
466     */
467     private static int arraySizeFor(int poolSize) {
468 jsr166 1.9 if (poolSize <= 1)
469     return 1;
470     // See Hackers Delight, sec 3.2
471     int c = poolSize >= MAX_THREADS ? MAX_THREADS : (poolSize - 1);
472     c |= c >>> 1;
473     c |= c >>> 2;
474     c |= c >>> 4;
475     c |= c >>> 8;
476     c |= c >>> 16;
477     return c + 1;
478 jsr166 1.1 }
479    
480     /**
481     * Creates or resizes array if necessary to hold newLength.
482     * Call only under exclusion.
483     *
484     * @return the array
485     */
486     private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
487     ForkJoinWorkerThread[] ws = workers;
488     if (ws == null)
489     return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
490     else if (newLength > ws.length)
491     return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
492     else
493     return ws;
494     }
495    
496     /**
497     * Tries to shrink workers into smaller array after one or more terminate.
498     */
499     private void tryShrinkWorkerArray() {
500     ForkJoinWorkerThread[] ws = workers;
501     if (ws != null) {
502     int len = ws.length;
503     int last = len - 1;
504     while (last >= 0 && ws[last] == null)
505     --last;
506     int newLength = arraySizeFor(last+1);
507     if (newLength < len)
508     workers = Arrays.copyOf(ws, newLength);
509     }
510     }
511    
512     /**
513     * Initializes workers if necessary.
514     */
515     final void ensureWorkerInitialization() {
516     ForkJoinWorkerThread[] ws = workers;
517     if (ws == null) {
518     final ReentrantLock lock = this.workerLock;
519     lock.lock();
520     try {
521     ws = workers;
522     if (ws == null) {
523     int ps = parallelism;
524     ws = ensureWorkerArrayCapacity(ps);
525     for (int i = 0; i < ps; ++i) {
526     ForkJoinWorkerThread w = createWorker(i);
527     if (w != null) {
528     ws[i] = w;
529     w.start();
530     updateWorkerCount(1);
531     }
532     }
533     }
534     } finally {
535     lock.unlock();
536     }
537     }
538     }
539    
540     /**
541     * Worker creation and startup for threads added via setParallelism.
542     */
543     private void createAndStartAddedWorkers() {
544     resumeAllSpares(); // Allow spares to convert to nonspare
545     int ps = parallelism;
546     ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
547     int len = ws.length;
548     // Sweep through slots, to keep lowest indices most populated
549     int k = 0;
550     while (k < len) {
551     if (ws[k] != null) {
552     ++k;
553     continue;
554     }
555     int s = workerCounts;
556     int tc = totalCountOf(s);
557     int rc = runningCountOf(s);
558     if (rc >= ps || tc >= ps)
559     break;
560     if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
561     ForkJoinWorkerThread w = createWorker(k);
562     if (w != null) {
563     ws[k++] = w;
564     w.start();
565     }
566     else {
567     updateWorkerCount(-1); // back out on failed creation
568     break;
569     }
570     }
571     }
572     }
573    
574     // Execution methods
575    
576     /**
577     * Common code for execute, invoke and submit
578     */
579     private <T> void doSubmit(ForkJoinTask<T> task) {
580 jsr166 1.2 if (task == null)
581     throw new NullPointerException();
582 jsr166 1.1 if (isShutdown())
583     throw new RejectedExecutionException();
584     if (workers == null)
585     ensureWorkerInitialization();
586     submissionQueue.offer(task);
587     signalIdleWorkers();
588     }
589    
590     /**
591     * Performs the given task, returning its result upon completion.
592     *
593     * @param task the task
594     * @return the task's result
595     * @throws NullPointerException if task is null
596     * @throws RejectedExecutionException if pool is shut down
597     */
598     public <T> T invoke(ForkJoinTask<T> task) {
599     doSubmit(task);
600     return task.join();
601     }
602    
603     /**
604     * Arranges for (asynchronous) execution of the given task.
605     *
606     * @param task the task
607     * @throws NullPointerException if task is null
608     * @throws RejectedExecutionException if pool is shut down
609     */
610 jsr166 1.8 public void execute(ForkJoinTask<?> task) {
611 jsr166 1.1 doSubmit(task);
612     }
613    
614     // AbstractExecutorService methods
615    
616     public void execute(Runnable task) {
617 jsr166 1.2 ForkJoinTask<?> job;
618 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
619     job = (ForkJoinTask<?>) task;
620 jsr166 1.2 else
621 jsr166 1.7 job = ForkJoinTask.adapt(task, null);
622 jsr166 1.2 doSubmit(job);
623 jsr166 1.1 }
624    
625     public <T> ForkJoinTask<T> submit(Callable<T> task) {
626 jsr166 1.7 ForkJoinTask<T> job = ForkJoinTask.adapt(task);
627 jsr166 1.1 doSubmit(job);
628     return job;
629     }
630    
631     public <T> ForkJoinTask<T> submit(Runnable task, T result) {
632 jsr166 1.7 ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
633 jsr166 1.1 doSubmit(job);
634     return job;
635     }
636    
637     public ForkJoinTask<?> submit(Runnable task) {
638 jsr166 1.2 ForkJoinTask<?> job;
639 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
640     job = (ForkJoinTask<?>) task;
641 jsr166 1.2 else
642 jsr166 1.7 job = ForkJoinTask.adapt(task, null);
643 jsr166 1.1 doSubmit(job);
644     return job;
645     }
646    
647     /**
648 jsr166 1.2 * Submits a ForkJoinTask for execution.
649     *
650     * @param task the task to submit
651     * @return the task
652     * @throws RejectedExecutionException if the task cannot be
653     * scheduled for execution
654     * @throws NullPointerException if the task is null
655     */
656     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
657     doSubmit(task);
658     return task;
659     }
660    
661 jsr166 1.1
662     public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
663     ArrayList<ForkJoinTask<T>> forkJoinTasks =
664     new ArrayList<ForkJoinTask<T>>(tasks.size());
665     for (Callable<T> task : tasks)
666 jsr166 1.7 forkJoinTasks.add(ForkJoinTask.adapt(task));
667 jsr166 1.1 invoke(new InvokeAll<T>(forkJoinTasks));
668    
669     @SuppressWarnings({"unchecked", "rawtypes"})
670     List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
671     return futures;
672     }
673    
674     static final class InvokeAll<T> extends RecursiveAction {
675     final ArrayList<ForkJoinTask<T>> tasks;
676     InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
677     public void compute() {
678     try { invokeAll(tasks); }
679     catch (Exception ignore) {}
680     }
681     private static final long serialVersionUID = -7914297376763021607L;
682     }
683    
684     // Configuration and status settings and queries
685    
686     /**
687     * Returns the factory used for constructing new workers.
688     *
689     * @return the factory used for constructing new workers
690     */
691     public ForkJoinWorkerThreadFactory getFactory() {
692     return factory;
693     }
694    
695     /**
696     * Returns the handler for internal worker threads that terminate
697     * due to unrecoverable errors encountered while executing tasks.
698     *
699 jsr166 1.4 * @return the handler, or {@code null} if none
700 jsr166 1.1 */
701     public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
702     Thread.UncaughtExceptionHandler h;
703     final ReentrantLock lock = this.workerLock;
704     lock.lock();
705     try {
706     h = ueh;
707     } finally {
708     lock.unlock();
709     }
710     return h;
711     }
712    
713     /**
714     * Sets the handler for internal worker threads that terminate due
715     * to unrecoverable errors encountered while executing tasks.
716     * Unless set, the current default or ThreadGroup handler is used
717     * as handler.
718     *
719     * @param h the new handler
720 jsr166 1.4 * @return the old handler, or {@code null} if none
721 jsr166 1.1 * @throws SecurityException if a security manager exists and
722     * the caller is not permitted to modify threads
723     * because it does not hold {@link
724     * java.lang.RuntimePermission}{@code ("modifyThread")}
725     */
726     public Thread.UncaughtExceptionHandler
727     setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
728     checkPermission();
729     Thread.UncaughtExceptionHandler old = null;
730     final ReentrantLock lock = this.workerLock;
731     lock.lock();
732     try {
733     old = ueh;
734     ueh = h;
735     ForkJoinWorkerThread[] ws = workers;
736     if (ws != null) {
737     for (int i = 0; i < ws.length; ++i) {
738     ForkJoinWorkerThread w = ws[i];
739     if (w != null)
740     w.setUncaughtExceptionHandler(h);
741     }
742     }
743     } finally {
744     lock.unlock();
745     }
746     return old;
747     }
748    
749    
750     /**
751     * Sets the target parallelism level of this pool.
752     *
753     * @param parallelism the target parallelism
754     * @throws IllegalArgumentException if parallelism less than or
755     * equal to zero or greater than maximum size bounds
756     * @throws SecurityException if a security manager exists and
757     * the caller is not permitted to modify threads
758     * because it does not hold {@link
759     * java.lang.RuntimePermission}{@code ("modifyThread")}
760     */
761     public void setParallelism(int parallelism) {
762     checkPermission();
763     if (parallelism <= 0 || parallelism > maxPoolSize)
764     throw new IllegalArgumentException();
765     final ReentrantLock lock = this.workerLock;
766     lock.lock();
767     try {
768 jsr166 1.9 if (isProcessingTasks()) {
769 jsr166 1.1 int p = this.parallelism;
770     this.parallelism = parallelism;
771     if (parallelism > p)
772     createAndStartAddedWorkers();
773     else
774     trimSpares();
775     }
776     } finally {
777     lock.unlock();
778     }
779     signalIdleWorkers();
780     }
781    
782     /**
783 jsr166 1.9 * Returns the targeted parallelism level of this pool.
784 jsr166 1.1 *
785 jsr166 1.9 * @return the targeted parallelism level of this pool
786 jsr166 1.1 */
787     public int getParallelism() {
788     return parallelism;
789     }
790    
791     /**
792     * Returns the number of worker threads that have started but not
793     * yet terminated. This result returned by this method may differ
794 jsr166 1.4 * from {@link #getParallelism} when threads are created to
795 jsr166 1.1 * maintain parallelism when others are cooperatively blocked.
796     *
797     * @return the number of worker threads
798     */
799     public int getPoolSize() {
800     return totalCountOf(workerCounts);
801     }
802    
803     /**
804     * Returns the maximum number of threads allowed to exist in the
805 jsr166 1.10 * pool. Unless set using {@link #setMaximumPoolSize}, the
806 jsr166 1.9 * maximum is an implementation-defined value designed only to
807     * prevent runaway growth.
808 jsr166 1.1 *
809     * @return the maximum
810     */
811     public int getMaximumPoolSize() {
812     return maxPoolSize;
813     }
814    
815     /**
816     * Sets the maximum number of threads allowed to exist in the
817 jsr166 1.10 * pool. The given value should normally be greater than or equal
818     * to the {@link #getParallelism parallelism} level. Setting this
819     * value has no effect on current pool size. It controls
820     * construction of new threads.
821 jsr166 1.1 *
822 jsr166 1.8 * @throws IllegalArgumentException if negative or greater than
823 jsr166 1.1 * internal implementation limit
824     */
825     public void setMaximumPoolSize(int newMax) {
826     if (newMax < 0 || newMax > MAX_THREADS)
827     throw new IllegalArgumentException();
828     maxPoolSize = newMax;
829     }
830    
831    
832     /**
833 jsr166 1.4 * Returns {@code true} if this pool dynamically maintains its
834     * target parallelism level. If false, new threads are added only
835     * to avoid possible starvation. This setting is by default true.
836 jsr166 1.1 *
837 jsr166 1.4 * @return {@code true} if maintains parallelism
838 jsr166 1.1 */
839     public boolean getMaintainsParallelism() {
840     return maintainsParallelism;
841     }
842    
843     /**
844     * Sets whether this pool dynamically maintains its target
845     * parallelism level. If false, new threads are added only to
846     * avoid possible starvation.
847     *
848 jsr166 1.4 * @param enable {@code true} to maintain parallelism
849 jsr166 1.1 */
850     public void setMaintainsParallelism(boolean enable) {
851     maintainsParallelism = enable;
852     }
853    
854     /**
855     * Establishes local first-in-first-out scheduling mode for forked
856     * tasks that are never joined. This mode may be more appropriate
857     * than default locally stack-based mode in applications in which
858     * worker threads only process asynchronous tasks. This method is
859 jsr166 1.4 * designed to be invoked only when the pool is quiescent, and
860 jsr166 1.1 * typically only before any tasks are submitted. The effects of
861     * invocations at other times may be unpredictable.
862     *
863 jsr166 1.4 * @param async if {@code true}, use locally FIFO scheduling
864 jsr166 1.1 * @return the previous mode
865 jsr166 1.4 * @see #getAsyncMode
866 jsr166 1.1 */
867     public boolean setAsyncMode(boolean async) {
868     boolean oldMode = locallyFifo;
869     locallyFifo = async;
870     ForkJoinWorkerThread[] ws = workers;
871     if (ws != null) {
872     for (int i = 0; i < ws.length; ++i) {
873     ForkJoinWorkerThread t = ws[i];
874     if (t != null)
875     t.setAsyncMode(async);
876     }
877     }
878     return oldMode;
879     }
880    
881     /**
882 jsr166 1.4 * Returns {@code true} if this pool uses local first-in-first-out
883 jsr166 1.1 * scheduling mode for forked tasks that are never joined.
884     *
885 jsr166 1.4 * @return {@code true} if this pool uses async mode
886     * @see #setAsyncMode
887 jsr166 1.1 */
888     public boolean getAsyncMode() {
889     return locallyFifo;
890     }
891    
892     /**
893     * Returns an estimate of the number of worker threads that are
894     * not blocked waiting to join tasks or for other managed
895     * synchronization.
896     *
897     * @return the number of worker threads
898     */
899     public int getRunningThreadCount() {
900     return runningCountOf(workerCounts);
901     }
902    
903     /**
904     * Returns an estimate of the number of threads that are currently
905     * stealing or executing tasks. This method may overestimate the
906     * number of active threads.
907     *
908     * @return the number of active threads
909     */
910     public int getActiveThreadCount() {
911     return activeCountOf(runControl);
912     }
913    
914     /**
915     * Returns an estimate of the number of threads that are currently
916     * idle waiting for tasks. This method may underestimate the
917     * number of idle threads.
918     *
919     * @return the number of idle threads
920     */
921     final int getIdleThreadCount() {
922     int c = runningCountOf(workerCounts) - activeCountOf(runControl);
923     return (c <= 0) ? 0 : c;
924     }
925    
926     /**
927 jsr166 1.4 * Returns {@code true} if all worker threads are currently idle.
928     * An idle worker is one that cannot obtain a task to execute
929     * because none are available to steal from other threads, and
930     * there are no pending submissions to the pool. This method is
931     * conservative; it might not return {@code true} immediately upon
932     * idleness of all threads, but will eventually become true if
933     * threads remain inactive.
934 jsr166 1.1 *
935 jsr166 1.4 * @return {@code true} if all threads are currently idle
936 jsr166 1.1 */
937     public boolean isQuiescent() {
938     return activeCountOf(runControl) == 0;
939     }
940    
941     /**
942     * Returns an estimate of the total number of tasks stolen from
943     * one thread's work queue by another. The reported value
944     * underestimates the actual total number of steals when the pool
945     * is not quiescent. This value may be useful for monitoring and
946     * tuning fork/join programs: in general, steal counts should be
947     * high enough to keep threads busy, but low enough to avoid
948     * overhead and contention across threads.
949     *
950     * @return the number of steals
951     */
952     public long getStealCount() {
953     return stealCount.get();
954     }
955    
956     /**
957     * Accumulates steal count from a worker.
958     * Call only when worker known to be idle.
959     */
960     private void updateStealCount(ForkJoinWorkerThread w) {
961     int sc = w.getAndClearStealCount();
962     if (sc != 0)
963     stealCount.addAndGet(sc);
964     }
965    
966     /**
967     * Returns an estimate of the total number of tasks currently held
968     * in queues by worker threads (but not including tasks submitted
969     * to the pool that have not begun executing). This value is only
970     * an approximation, obtained by iterating across all threads in
971     * the pool. This method may be useful for tuning task
972     * granularities.
973     *
974     * @return the number of queued tasks
975     */
976     public long getQueuedTaskCount() {
977     long count = 0;
978     ForkJoinWorkerThread[] ws = workers;
979     if (ws != null) {
980     for (int i = 0; i < ws.length; ++i) {
981     ForkJoinWorkerThread t = ws[i];
982     if (t != null)
983     count += t.getQueueSize();
984     }
985     }
986     return count;
987     }
988    
989     /**
990 jsr166 1.8 * Returns an estimate of the number of tasks submitted to this
991     * pool that have not yet begun executing. This method takes time
992 jsr166 1.1 * proportional to the number of submissions.
993     *
994     * @return the number of queued submissions
995     */
996     public int getQueuedSubmissionCount() {
997     return submissionQueue.size();
998     }
999    
1000     /**
1001 jsr166 1.4 * Returns {@code true} if there are any tasks submitted to this
1002     * pool that have not yet begun executing.
1003 jsr166 1.1 *
1004     * @return {@code true} if there are any queued submissions
1005     */
1006     public boolean hasQueuedSubmissions() {
1007     return !submissionQueue.isEmpty();
1008     }
1009    
1010     /**
1011     * Removes and returns the next unexecuted submission if one is
1012     * available. This method may be useful in extensions to this
1013     * class that re-assign work in systems with multiple pools.
1014     *
1015 jsr166 1.4 * @return the next submission, or {@code null} if none
1016 jsr166 1.1 */
1017     protected ForkJoinTask<?> pollSubmission() {
1018     return submissionQueue.poll();
1019     }
1020    
1021     /**
1022     * Removes all available unexecuted submitted and forked tasks
1023     * from scheduling queues and adds them to the given collection,
1024     * without altering their execution status. These may include
1025 jsr166 1.8 * artificially generated or wrapped tasks. This method is
1026     * designed to be invoked only when the pool is known to be
1027 jsr166 1.1 * quiescent. Invocations at other times may not remove all
1028     * tasks. A failure encountered while attempting to add elements
1029     * to collection {@code c} may result in elements being in
1030     * neither, either or both collections when the associated
1031     * exception is thrown. The behavior of this operation is
1032     * undefined if the specified collection is modified while the
1033     * operation is in progress.
1034     *
1035     * @param c the collection to transfer elements into
1036     * @return the number of elements transferred
1037     */
1038 jsr166 1.5 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1039 jsr166 1.1 int n = submissionQueue.drainTo(c);
1040     ForkJoinWorkerThread[] ws = workers;
1041     if (ws != null) {
1042     for (int i = 0; i < ws.length; ++i) {
1043     ForkJoinWorkerThread w = ws[i];
1044     if (w != null)
1045     n += w.drainTasksTo(c);
1046     }
1047     }
1048     return n;
1049     }
1050    
1051     /**
1052     * Returns a string identifying this pool, as well as its state,
1053     * including indications of run state, parallelism level, and
1054     * worker and task counts.
1055     *
1056     * @return a string identifying this pool, as well as its state
1057     */
1058     public String toString() {
1059     int ps = parallelism;
1060     int wc = workerCounts;
1061     int rc = runControl;
1062     long st = getStealCount();
1063     long qt = getQueuedTaskCount();
1064     long qs = getQueuedSubmissionCount();
1065     return super.toString() +
1066     "[" + runStateToString(runStateOf(rc)) +
1067     ", parallelism = " + ps +
1068     ", size = " + totalCountOf(wc) +
1069     ", active = " + activeCountOf(rc) +
1070     ", running = " + runningCountOf(wc) +
1071     ", steals = " + st +
1072     ", tasks = " + qt +
1073     ", submissions = " + qs +
1074     "]";
1075     }
1076    
1077     private static String runStateToString(int rs) {
1078     switch(rs) {
1079     case RUNNING: return "Running";
1080     case SHUTDOWN: return "Shutting down";
1081     case TERMINATING: return "Terminating";
1082     case TERMINATED: return "Terminated";
1083     default: throw new Error("Unknown run state");
1084     }
1085     }
1086    
1087     // lifecycle control
1088    
1089     /**
1090     * Initiates an orderly shutdown in which previously submitted
1091     * tasks are executed, but no new tasks will be accepted.
1092     * Invocation has no additional effect if already shut down.
1093     * Tasks that are in the process of being submitted concurrently
1094     * during the course of this method may or may not be rejected.
1095     *
1096     * @throws SecurityException if a security manager exists and
1097     * the caller is not permitted to modify threads
1098     * because it does not hold {@link
1099     * java.lang.RuntimePermission}{@code ("modifyThread")}
1100     */
1101     public void shutdown() {
1102     checkPermission();
1103     transitionRunStateTo(SHUTDOWN);
1104 jsr166 1.6 if (canTerminateOnShutdown(runControl)) {
1105     if (workers == null) { // shutting down before workers created
1106     final ReentrantLock lock = this.workerLock;
1107     lock.lock();
1108     try {
1109     if (workers == null) {
1110     terminate();
1111     transitionRunStateTo(TERMINATED);
1112     termination.signalAll();
1113     }
1114     } finally {
1115     lock.unlock();
1116     }
1117     }
1118 jsr166 1.1 terminateOnShutdown();
1119 jsr166 1.6 }
1120 jsr166 1.1 }
1121    
1122     /**
1123 jsr166 1.9 * Attempts to cancel and/or stop all tasks, and reject all
1124     * subsequently submitted tasks. Tasks that are in the process of
1125     * being submitted or executed concurrently during the course of
1126     * this method may or may not be rejected. This method cancels
1127     * both existing and unexecuted tasks, in order to permit
1128     * termination in the presence of task dependencies. So the method
1129     * always returns an empty list (unlike the case for some other
1130     * Executors).
1131 jsr166 1.1 *
1132     * @return an empty list
1133     * @throws SecurityException if a security manager exists and
1134     * the caller is not permitted to modify threads
1135     * because it does not hold {@link
1136     * java.lang.RuntimePermission}{@code ("modifyThread")}
1137     */
1138     public List<Runnable> shutdownNow() {
1139     checkPermission();
1140     terminate();
1141     return Collections.emptyList();
1142     }
1143    
1144     /**
1145     * Returns {@code true} if all tasks have completed following shut down.
1146     *
1147     * @return {@code true} if all tasks have completed following shut down
1148     */
1149     public boolean isTerminated() {
1150     return runStateOf(runControl) == TERMINATED;
1151     }
1152    
1153     /**
1154     * Returns {@code true} if the process of termination has
1155 jsr166 1.9 * commenced but not yet completed. This method may be useful for
1156     * debugging. A return of {@code true} reported a sufficient
1157     * period after shutdown may indicate that submitted tasks have
1158     * ignored or suppressed interruption, causing this executor not
1159     * to properly terminate.
1160 jsr166 1.1 *
1161 jsr166 1.9 * @return {@code true} if terminating but not yet terminated
1162 jsr166 1.1 */
1163     public boolean isTerminating() {
1164 jsr166 1.9 return runStateOf(runControl) == TERMINATING;
1165 jsr166 1.1 }
1166    
1167     /**
1168     * Returns {@code true} if this pool has been shut down.
1169     *
1170     * @return {@code true} if this pool has been shut down
1171     */
1172     public boolean isShutdown() {
1173     return runStateOf(runControl) >= SHUTDOWN;
1174     }
1175    
1176     /**
1177 jsr166 1.9 * Returns true if pool is not terminating or terminated.
1178     * Used internally to suppress execution when terminating.
1179     */
1180     final boolean isProcessingTasks() {
1181     return runStateOf(runControl) < TERMINATING;
1182     }
1183    
1184     /**
1185 jsr166 1.1 * Blocks until all tasks have completed execution after a shutdown
1186     * request, or the timeout occurs, or the current thread is
1187     * interrupted, whichever happens first.
1188     *
1189     * @param timeout the maximum time to wait
1190     * @param unit the time unit of the timeout argument
1191     * @return {@code true} if this executor terminated and
1192     * {@code false} if the timeout elapsed before termination
1193     * @throws InterruptedException if interrupted while waiting
1194     */
1195     public boolean awaitTermination(long timeout, TimeUnit unit)
1196     throws InterruptedException {
1197     long nanos = unit.toNanos(timeout);
1198     final ReentrantLock lock = this.workerLock;
1199     lock.lock();
1200     try {
1201     for (;;) {
1202     if (isTerminated())
1203     return true;
1204     if (nanos <= 0)
1205     return false;
1206     nanos = termination.awaitNanos(nanos);
1207     }
1208     } finally {
1209     lock.unlock();
1210     }
1211     }
1212    
1213     // Shutdown and termination support
1214    
1215     /**
1216     * Callback from terminating worker. Nulls out the corresponding
1217     * workers slot, and if terminating, tries to terminate; else
1218     * tries to shrink workers array.
1219     *
1220     * @param w the worker
1221     */
1222     final void workerTerminated(ForkJoinWorkerThread w) {
1223     updateStealCount(w);
1224     updateWorkerCount(-1);
1225     final ReentrantLock lock = this.workerLock;
1226     lock.lock();
1227     try {
1228     ForkJoinWorkerThread[] ws = workers;
1229     if (ws != null) {
1230     int idx = w.poolIndex;
1231     if (idx >= 0 && idx < ws.length && ws[idx] == w)
1232     ws[idx] = null;
1233     if (totalCountOf(workerCounts) == 0) {
1234     terminate(); // no-op if already terminating
1235     transitionRunStateTo(TERMINATED);
1236     termination.signalAll();
1237     }
1238 jsr166 1.9 else if (isProcessingTasks()) {
1239 jsr166 1.1 tryShrinkWorkerArray();
1240     tryResumeSpare(true); // allow replacement
1241     }
1242     }
1243     } finally {
1244     lock.unlock();
1245     }
1246     signalIdleWorkers();
1247     }
1248    
1249     /**
1250     * Initiates termination.
1251     */
1252     private void terminate() {
1253     if (transitionRunStateTo(TERMINATING)) {
1254     stopAllWorkers();
1255     resumeAllSpares();
1256     signalIdleWorkers();
1257     cancelQueuedSubmissions();
1258     cancelQueuedWorkerTasks();
1259     interruptUnterminatedWorkers();
1260     signalIdleWorkers(); // resignal after interrupt
1261     }
1262     }
1263    
1264     /**
1265     * Possibly terminates when on shutdown state.
1266     */
1267     private void terminateOnShutdown() {
1268     if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1269     terminate();
1270     }
1271    
1272     /**
1273     * Clears out and cancels submissions.
1274     */
1275     private void cancelQueuedSubmissions() {
1276     ForkJoinTask<?> task;
1277     while ((task = pollSubmission()) != null)
1278     task.cancel(false);
1279     }
1280    
1281     /**
1282     * Cleans out worker queues.
1283     */
1284     private void cancelQueuedWorkerTasks() {
1285     final ReentrantLock lock = this.workerLock;
1286     lock.lock();
1287     try {
1288     ForkJoinWorkerThread[] ws = workers;
1289     if (ws != null) {
1290     for (int i = 0; i < ws.length; ++i) {
1291     ForkJoinWorkerThread t = ws[i];
1292     if (t != null)
1293     t.cancelTasks();
1294     }
1295     }
1296     } finally {
1297     lock.unlock();
1298     }
1299     }
1300    
1301     /**
1302     * Sets each worker's status to terminating. Requires lock to avoid
1303     * conflicts with add/remove.
1304     */
1305     private void stopAllWorkers() {
1306     final ReentrantLock lock = this.workerLock;
1307     lock.lock();
1308     try {
1309     ForkJoinWorkerThread[] ws = workers;
1310     if (ws != null) {
1311     for (int i = 0; i < ws.length; ++i) {
1312     ForkJoinWorkerThread t = ws[i];
1313     if (t != null)
1314     t.shutdownNow();
1315     }
1316     }
1317     } finally {
1318     lock.unlock();
1319     }
1320     }
1321    
1322     /**
1323     * Interrupts all unterminated workers. This is not required for
1324     * sake of internal control, but may help unstick user code during
1325     * shutdown.
1326     */
1327     private void interruptUnterminatedWorkers() {
1328     final ReentrantLock lock = this.workerLock;
1329     lock.lock();
1330     try {
1331     ForkJoinWorkerThread[] ws = workers;
1332     if (ws != null) {
1333     for (int i = 0; i < ws.length; ++i) {
1334     ForkJoinWorkerThread t = ws[i];
1335     if (t != null && !t.isTerminated()) {
1336     try {
1337     t.interrupt();
1338     } catch (SecurityException ignore) {
1339     }
1340     }
1341     }
1342     }
1343     } finally {
1344     lock.unlock();
1345     }
1346     }
1347    
1348    
1349     /*
1350     * Nodes for event barrier to manage idle threads. Queue nodes
1351     * are basic Treiber stack nodes, also used for spare stack.
1352     *
1353     * The event barrier has an event count and a wait queue (actually
1354     * a Treiber stack). Workers are enabled to look for work when
1355     * the eventCount is incremented. If they fail to find work, they
1356     * may wait for next count. Upon release, threads help others wake
1357     * up.
1358     *
1359     * Synchronization events occur only in enough contexts to
1360     * maintain overall liveness:
1361     *
1362     * - Submission of a new task to the pool
1363     * - Resizes or other changes to the workers array
1364     * - pool termination
1365     * - A worker pushing a task on an empty queue
1366     *
1367     * The case of pushing a task occurs often enough, and is heavy
1368     * enough compared to simple stack pushes, to require special
1369     * handling: Method signalWork returns without advancing count if
1370     * the queue appears to be empty. This would ordinarily result in
1371     * races causing some queued waiters not to be woken up. To avoid
1372     * this, the first worker enqueued in method sync (see
1373     * syncIsReleasable) rescans for tasks after being enqueued, and
1374     * helps signal if any are found. This works well because the
1375     * worker has nothing better to do, and so might as well help
1376     * alleviate the overhead and contention on the threads actually
1377     * doing work. Also, since event counts increments on task
1378     * availability exist to maintain liveness (rather than to force
1379     * refreshes etc), it is OK for callers to exit early if
1380     * contending with another signaller.
1381     */
1382     static final class WaitQueueNode {
1383     WaitQueueNode next; // only written before enqueued
1384     volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1385     final long count; // unused for spare stack
1386    
1387     WaitQueueNode(long c, ForkJoinWorkerThread w) {
1388     count = c;
1389     thread = w;
1390     }
1391    
1392     /**
1393     * Wakes up waiter, returning false if known to already
1394     */
1395     boolean signal() {
1396     ForkJoinWorkerThread t = thread;
1397     if (t == null)
1398     return false;
1399     thread = null;
1400     LockSupport.unpark(t);
1401     return true;
1402     }
1403    
1404     /**
1405     * Awaits release on sync.
1406     */
1407     void awaitSyncRelease(ForkJoinPool p) {
1408     while (thread != null && !p.syncIsReleasable(this))
1409     LockSupport.park(this);
1410     }
1411    
1412     /**
1413     * Awaits resumption as spare.
1414     */
1415     void awaitSpareRelease() {
1416     while (thread != null) {
1417     if (!Thread.interrupted())
1418     LockSupport.park(this);
1419     }
1420     }
1421     }
1422    
1423     /**
1424     * Ensures that no thread is waiting for count to advance from the
1425     * current value of eventCount read on entry to this method, by
1426     * releasing waiting threads if necessary.
1427     *
1428     * @return the count
1429     */
1430     final long ensureSync() {
1431     long c = eventCount;
1432     WaitQueueNode q;
1433     while ((q = syncStack) != null && q.count < c) {
1434     if (casBarrierStack(q, null)) {
1435     do {
1436     q.signal();
1437     } while ((q = q.next) != null);
1438     break;
1439     }
1440     }
1441     return c;
1442     }
1443    
1444     /**
1445     * Increments event count and releases waiting threads.
1446     */
1447     private void signalIdleWorkers() {
1448     long c;
1449     do {} while (!casEventCount(c = eventCount, c+1));
1450     ensureSync();
1451     }
1452    
1453     /**
1454     * Signals threads waiting to poll a task. Because method sync
1455     * rechecks availability, it is OK to only proceed if queue
1456     * appears to be non-empty, and OK to skip under contention to
1457     * increment count (since some other thread succeeded).
1458     */
1459     final void signalWork() {
1460     long c;
1461     WaitQueueNode q;
1462     if (syncStack != null &&
1463     casEventCount(c = eventCount, c+1) &&
1464     (((q = syncStack) != null && q.count <= c) &&
1465     (!casBarrierStack(q, q.next) || !q.signal())))
1466     ensureSync();
1467     }
1468    
1469     /**
1470     * Waits until event count advances from last value held by
1471     * caller, or if excess threads, caller is resumed as spare, or
1472     * caller or pool is terminating. Updates caller's event on exit.
1473     *
1474     * @param w the calling worker thread
1475     */
1476     final void sync(ForkJoinWorkerThread w) {
1477     updateStealCount(w); // Transfer w's count while it is idle
1478    
1479 jsr166 1.9 while (!w.isShutdown() && isProcessingTasks() && !suspendIfSpare(w)) {
1480 jsr166 1.1 long prev = w.lastEventCount;
1481     WaitQueueNode node = null;
1482     WaitQueueNode h;
1483     while (eventCount == prev &&
1484     ((h = syncStack) == null || h.count == prev)) {
1485     if (node == null)
1486     node = new WaitQueueNode(prev, w);
1487     if (casBarrierStack(node.next = h, node)) {
1488     node.awaitSyncRelease(this);
1489     break;
1490     }
1491     }
1492     long ec = ensureSync();
1493     if (ec != prev) {
1494     w.lastEventCount = ec;
1495     break;
1496     }
1497     }
1498     }
1499    
1500     /**
1501 jsr166 1.4 * Returns {@code true} if worker waiting on sync can proceed:
1502 jsr166 1.1 * - on signal (thread == null)
1503     * - on event count advance (winning race to notify vs signaller)
1504     * - on interrupt
1505     * - if the first queued node, we find work available
1506     * If node was not signalled and event count not advanced on exit,
1507     * then we also help advance event count.
1508     *
1509 jsr166 1.4 * @return {@code true} if node can be released
1510 jsr166 1.1 */
1511     final boolean syncIsReleasable(WaitQueueNode node) {
1512     long prev = node.count;
1513     if (!Thread.interrupted() && node.thread != null &&
1514     (node.next != null ||
1515     !ForkJoinWorkerThread.hasQueuedTasks(workers)) &&
1516     eventCount == prev)
1517     return false;
1518     if (node.thread != null) {
1519     node.thread = null;
1520     long ec = eventCount;
1521     if (prev <= ec) // help signal
1522     casEventCount(ec, ec+1);
1523     }
1524     return true;
1525     }
1526    
1527     /**
1528 jsr166 1.4 * Returns {@code true} if a new sync event occurred since last
1529     * call to sync or this method, if so, updating caller's count.
1530 jsr166 1.1 */
1531     final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
1532     long lc = w.lastEventCount;
1533     long ec = ensureSync();
1534     if (ec == lc)
1535     return false;
1536     w.lastEventCount = ec;
1537     return true;
1538     }
1539    
1540     // Parallelism maintenance
1541    
1542     /**
1543     * Decrements running count; if too low, adds spare.
1544     *
1545     * Conceptually, all we need to do here is add or resume a
1546     * spare thread when one is about to block (and remove or
1547     * suspend it later when unblocked -- see suspendIfSpare).
1548     * However, implementing this idea requires coping with
1549     * several problems: we have imperfect information about the
1550     * states of threads. Some count updates can and usually do
1551     * lag run state changes, despite arrangements to keep them
1552     * accurate (for example, when possible, updating counts
1553     * before signalling or resuming), especially when running on
1554     * dynamic JVMs that don't optimize the infrequent paths that
1555     * update counts. Generating too many threads can make these
1556     * problems become worse, because excess threads are more
1557     * likely to be context-switched with others, slowing them all
1558     * down, especially if there is no work available, so all are
1559     * busy scanning or idling. Also, excess spare threads can
1560     * only be suspended or removed when they are idle, not
1561     * immediately when they aren't needed. So adding threads will
1562     * raise parallelism level for longer than necessary. Also,
1563     * FJ applications often encounter highly transient peaks when
1564     * many threads are blocked joining, but for less time than it
1565     * takes to create or resume spares.
1566     *
1567     * @param joinMe if non-null, return early if done
1568     * @param maintainParallelism if true, try to stay within
1569     * target counts, else create only to avoid starvation
1570     * @return true if joinMe known to be done
1571     */
1572     final boolean preJoin(ForkJoinTask<?> joinMe,
1573     boolean maintainParallelism) {
1574     maintainParallelism &= maintainsParallelism; // overrride
1575     boolean dec = false; // true when running count decremented
1576     while (spareStack == null || !tryResumeSpare(dec)) {
1577     int counts = workerCounts;
1578     if (dec || (dec = casWorkerCounts(counts, --counts))) {
1579     if (!needSpare(counts, maintainParallelism))
1580     break;
1581     if (joinMe.status < 0)
1582     return true;
1583     if (tryAddSpare(counts))
1584     break;
1585     }
1586     }
1587     return false;
1588     }
1589    
1590     /**
1591     * Same idea as preJoin
1592     */
1593     final boolean preBlock(ManagedBlocker blocker,
1594     boolean maintainParallelism) {
1595     maintainParallelism &= maintainsParallelism;
1596     boolean dec = false;
1597     while (spareStack == null || !tryResumeSpare(dec)) {
1598     int counts = workerCounts;
1599     if (dec || (dec = casWorkerCounts(counts, --counts))) {
1600     if (!needSpare(counts, maintainParallelism))
1601     break;
1602     if (blocker.isReleasable())
1603     return true;
1604     if (tryAddSpare(counts))
1605     break;
1606     }
1607     }
1608     return false;
1609     }
1610    
1611     /**
1612 jsr166 1.4 * Returns {@code true} if a spare thread appears to be needed.
1613     * If maintaining parallelism, returns true when the deficit in
1614 jsr166 1.1 * running threads is more than the surplus of total threads, and
1615     * there is apparently some work to do. This self-limiting rule
1616     * means that the more threads that have already been added, the
1617     * less parallelism we will tolerate before adding another.
1618     *
1619     * @param counts current worker counts
1620     * @param maintainParallelism try to maintain parallelism
1621     */
1622     private boolean needSpare(int counts, boolean maintainParallelism) {
1623     int ps = parallelism;
1624     int rc = runningCountOf(counts);
1625     int tc = totalCountOf(counts);
1626     int runningDeficit = ps - rc;
1627     int totalSurplus = tc - ps;
1628     return (tc < maxPoolSize &&
1629     (rc == 0 || totalSurplus < 0 ||
1630     (maintainParallelism &&
1631     runningDeficit > totalSurplus &&
1632     ForkJoinWorkerThread.hasQueuedTasks(workers))));
1633     }
1634    
1635     /**
1636     * Adds a spare worker if lock available and no more than the
1637     * expected numbers of threads exist.
1638     *
1639     * @return true if successful
1640     */
1641     private boolean tryAddSpare(int expectedCounts) {
1642     final ReentrantLock lock = this.workerLock;
1643     int expectedRunning = runningCountOf(expectedCounts);
1644     int expectedTotal = totalCountOf(expectedCounts);
1645     boolean success = false;
1646     boolean locked = false;
1647     // confirm counts while locking; CAS after obtaining lock
1648     try {
1649     for (;;) {
1650     int s = workerCounts;
1651     int tc = totalCountOf(s);
1652     int rc = runningCountOf(s);
1653     if (rc > expectedRunning || tc > expectedTotal)
1654     break;
1655     if (!locked && !(locked = lock.tryLock()))
1656     break;
1657     if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1658     createAndStartSpare(tc);
1659     success = true;
1660     break;
1661     }
1662     }
1663     } finally {
1664     if (locked)
1665     lock.unlock();
1666     }
1667     return success;
1668     }
1669    
1670     /**
1671     * Adds the kth spare worker. On entry, pool counts are already
1672     * adjusted to reflect addition.
1673     */
1674     private void createAndStartSpare(int k) {
1675     ForkJoinWorkerThread w = null;
1676     ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1677     int len = ws.length;
1678     // Probably, we can place at slot k. If not, find empty slot
1679     if (k < len && ws[k] != null) {
1680     for (k = 0; k < len && ws[k] != null; ++k)
1681     ;
1682     }
1683 jsr166 1.9 if (k < len && isProcessingTasks() && (w = createWorker(k)) != null) {
1684 jsr166 1.1 ws[k] = w;
1685     w.start();
1686     }
1687     else
1688     updateWorkerCount(-1); // adjust on failure
1689     signalIdleWorkers();
1690     }
1691    
1692     /**
1693     * Suspends calling thread w if there are excess threads. Called
1694     * only from sync. Spares are enqueued in a Treiber stack using
1695     * the same WaitQueueNodes as barriers. They are resumed mainly
1696     * in preJoin, but are also woken on pool events that require all
1697     * threads to check run state.
1698     *
1699     * @param w the caller
1700     */
1701     private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1702     WaitQueueNode node = null;
1703     int s;
1704     while (parallelism < runningCountOf(s = workerCounts)) {
1705     if (node == null)
1706     node = new WaitQueueNode(0, w);
1707     if (casWorkerCounts(s, s-1)) { // representation-dependent
1708     // push onto stack
1709     do {} while (!casSpareStack(node.next = spareStack, node));
1710     // block until released by resumeSpare
1711     node.awaitSpareRelease();
1712     return true;
1713     }
1714     }
1715     return false;
1716     }
1717    
1718     /**
1719     * Tries to pop and resume a spare thread.
1720     *
1721     * @param updateCount if true, increment running count on success
1722     * @return true if successful
1723     */
1724     private boolean tryResumeSpare(boolean updateCount) {
1725     WaitQueueNode q;
1726     while ((q = spareStack) != null) {
1727     if (casSpareStack(q, q.next)) {
1728     if (updateCount)
1729     updateRunningCount(1);
1730     q.signal();
1731     return true;
1732     }
1733     }
1734     return false;
1735     }
1736    
1737     /**
1738     * Pops and resumes all spare threads. Same idea as ensureSync.
1739     *
1740     * @return true if any spares released
1741     */
1742     private boolean resumeAllSpares() {
1743     WaitQueueNode q;
1744     while ( (q = spareStack) != null) {
1745     if (casSpareStack(q, null)) {
1746     do {
1747     updateRunningCount(1);
1748     q.signal();
1749     } while ((q = q.next) != null);
1750     return true;
1751     }
1752     }
1753     return false;
1754     }
1755    
1756     /**
1757     * Pops and shuts down excessive spare threads. Call only while
1758     * holding lock. This is not guaranteed to eliminate all excess
1759     * threads, only those suspended as spares, which are the ones
1760     * unlikely to be needed in the future.
1761     */
1762     private void trimSpares() {
1763     int surplus = totalCountOf(workerCounts) - parallelism;
1764     WaitQueueNode q;
1765     while (surplus > 0 && (q = spareStack) != null) {
1766     if (casSpareStack(q, null)) {
1767     do {
1768     updateRunningCount(1);
1769     ForkJoinWorkerThread w = q.thread;
1770     if (w != null && surplus > 0 &&
1771     runningCountOf(workerCounts) > 0 && w.shutdown())
1772     --surplus;
1773     q.signal();
1774     } while ((q = q.next) != null);
1775     }
1776     }
1777     }
1778    
1779     /**
1780     * Interface for extending managed parallelism for tasks running
1781 jsr166 1.8 * in {@link ForkJoinPool}s.
1782     *
1783     * <p>A {@code ManagedBlocker} provides two methods.
1784 jsr166 1.4 * Method {@code isReleasable} must return {@code true} if
1785     * blocking is not necessary. Method {@code block} blocks the
1786     * current thread if necessary (perhaps internally invoking
1787 jsr166 1.8 * {@code isReleasable} before actually blocking).
1788 jsr166 1.1 *
1789     * <p>For example, here is a ManagedBlocker based on a
1790     * ReentrantLock:
1791     * <pre> {@code
1792     * class ManagedLocker implements ManagedBlocker {
1793     * final ReentrantLock lock;
1794     * boolean hasLock = false;
1795     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
1796     * public boolean block() {
1797     * if (!hasLock)
1798     * lock.lock();
1799     * return true;
1800     * }
1801     * public boolean isReleasable() {
1802     * return hasLock || (hasLock = lock.tryLock());
1803     * }
1804     * }}</pre>
1805     */
1806     public static interface ManagedBlocker {
1807     /**
1808     * Possibly blocks the current thread, for example waiting for
1809     * a lock or condition.
1810     *
1811 jsr166 1.4 * @return {@code true} if no additional blocking is necessary
1812     * (i.e., if isReleasable would return true)
1813 jsr166 1.1 * @throws InterruptedException if interrupted while waiting
1814     * (the method is not required to do so, but is allowed to)
1815     */
1816     boolean block() throws InterruptedException;
1817    
1818     /**
1819 jsr166 1.4 * Returns {@code true} if blocking is unnecessary.
1820 jsr166 1.1 */
1821     boolean isReleasable();
1822     }
1823    
1824     /**
1825     * Blocks in accord with the given blocker. If the current thread
1826 jsr166 1.8 * is a {@link ForkJoinWorkerThread}, this method possibly
1827     * arranges for a spare thread to be activated if necessary to
1828     * ensure parallelism while the current thread is blocked.
1829     *
1830     * <p>If {@code maintainParallelism} is {@code true} and the pool
1831     * supports it ({@link #getMaintainsParallelism}), this method
1832     * attempts to maintain the pool's nominal parallelism. Otherwise
1833     * it activates a thread only if necessary to avoid complete
1834     * starvation. This option may be preferable when blockages use
1835     * timeouts, or are almost always brief.
1836 jsr166 1.1 *
1837 jsr166 1.8 * <p>If the caller is not a {@link ForkJoinTask}, this method is
1838     * behaviorally equivalent to
1839 jsr166 1.1 * <pre> {@code
1840     * while (!blocker.isReleasable())
1841     * if (blocker.block())
1842     * return;
1843     * }</pre>
1844 jsr166 1.8 *
1845     * If the caller is a {@code ForkJoinTask}, then the pool may
1846     * first be expanded to ensure parallelism, and later adjusted.
1847 jsr166 1.1 *
1848     * @param blocker the blocker
1849 jsr166 1.4 * @param maintainParallelism if {@code true} and supported by
1850     * this pool, attempt to maintain the pool's nominal parallelism;
1851     * otherwise activate a thread only if necessary to avoid
1852     * complete starvation.
1853 jsr166 1.1 * @throws InterruptedException if blocker.block did so
1854     */
1855     public static void managedBlock(ManagedBlocker blocker,
1856     boolean maintainParallelism)
1857     throws InterruptedException {
1858     Thread t = Thread.currentThread();
1859     ForkJoinPool pool = ((t instanceof ForkJoinWorkerThread) ?
1860     ((ForkJoinWorkerThread) t).pool : null);
1861     if (!blocker.isReleasable()) {
1862     try {
1863     if (pool == null ||
1864     !pool.preBlock(blocker, maintainParallelism))
1865     awaitBlocker(blocker);
1866     } finally {
1867     if (pool != null)
1868     pool.updateRunningCount(1);
1869     }
1870     }
1871     }
1872    
1873     private static void awaitBlocker(ManagedBlocker blocker)
1874     throws InterruptedException {
1875     do {} while (!blocker.isReleasable() && !blocker.block());
1876     }
1877    
1878 jsr166 1.7 // AbstractExecutorService overrides. These rely on undocumented
1879     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
1880     // implement RunnableFuture.
1881 jsr166 1.1
1882     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
1883 jsr166 1.7 return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
1884 jsr166 1.1 }
1885    
1886     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
1887 jsr166 1.7 return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
1888 jsr166 1.1 }
1889    
1890     // Unsafe mechanics
1891    
1892     private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
1893 jsr166 1.2 private static final long eventCountOffset =
1894 jsr166 1.3 objectFieldOffset("eventCount", ForkJoinPool.class);
1895 jsr166 1.2 private static final long workerCountsOffset =
1896 jsr166 1.3 objectFieldOffset("workerCounts", ForkJoinPool.class);
1897 jsr166 1.2 private static final long runControlOffset =
1898 jsr166 1.3 objectFieldOffset("runControl", ForkJoinPool.class);
1899 jsr166 1.2 private static final long syncStackOffset =
1900 jsr166 1.3 objectFieldOffset("syncStack",ForkJoinPool.class);
1901 jsr166 1.2 private static final long spareStackOffset =
1902 jsr166 1.3 objectFieldOffset("spareStack", ForkJoinPool.class);
1903 jsr166 1.1
1904     private boolean casEventCount(long cmp, long val) {
1905     return UNSAFE.compareAndSwapLong(this, eventCountOffset, cmp, val);
1906     }
1907     private boolean casWorkerCounts(int cmp, int val) {
1908     return UNSAFE.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1909     }
1910     private boolean casRunControl(int cmp, int val) {
1911     return UNSAFE.compareAndSwapInt(this, runControlOffset, cmp, val);
1912     }
1913     private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1914     return UNSAFE.compareAndSwapObject(this, spareStackOffset, cmp, val);
1915     }
1916     private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1917     return UNSAFE.compareAndSwapObject(this, syncStackOffset, cmp, val);
1918     }
1919 jsr166 1.3
1920     private static long objectFieldOffset(String field, Class<?> klazz) {
1921     try {
1922     return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1923     } catch (NoSuchFieldException e) {
1924     // Convert Exception to corresponding Error
1925     NoSuchFieldError error = new NoSuchFieldError(field);
1926     error.initCause(e);
1927     throw error;
1928     }
1929     }
1930 jsr166 1.1 }