ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.145
Committed: Mon Jan 28 17:31:36 2013 UTC (11 years, 4 months ago) by jsr166
Branch: MAIN
Changes since 1.144: +1 -1 lines
Log Message:
convert to javadoc comment

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.58 * http://creativecommons.org/publicdomain/zero/1.0/
5 jsr166 1.1 */
6    
7     package java.util.concurrent;
8    
9     import java.util.ArrayList;
10     import java.util.Arrays;
11     import java.util.Collection;
12     import java.util.Collections;
13     import java.util.List;
14 dl 1.36 import java.util.concurrent.AbstractExecutorService;
15     import java.util.concurrent.Callable;
16     import java.util.concurrent.ExecutorService;
17     import java.util.concurrent.Future;
18     import java.util.concurrent.RejectedExecutionException;
19     import java.util.concurrent.RunnableFuture;
20     import java.util.concurrent.TimeUnit;
21 jsr166 1.1
22     /**
23 jsr166 1.4 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
24 jsr166 1.8 * A {@code ForkJoinPool} provides the entry point for submissions
25 dl 1.18 * from non-{@code ForkJoinTask} clients, as well as management and
26 jsr166 1.11 * monitoring operations.
27 jsr166 1.1 *
28 jsr166 1.9 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
29     * ExecutorService} mainly by virtue of employing
30     * <em>work-stealing</em>: all threads in the pool attempt to find and
31 dl 1.78 * execute tasks submitted to the pool and/or created by other active
32     * tasks (eventually blocking waiting for work if none exist). This
33     * enables efficient processing when most tasks spawn other subtasks
34     * (as do most {@code ForkJoinTask}s), as well as when many small
35     * tasks are submitted to the pool from external clients. Especially
36     * when setting <em>asyncMode</em> to true in constructors, {@code
37     * ForkJoinPool}s may also be appropriate for use with event-style
38     * tasks that are never joined.
39 jsr166 1.1 *
40 dl 1.112 * <p>A static {@link #commonPool()} is available and appropriate for
41 dl 1.101 * most applications. The common pool is used by any ForkJoinTask that
42     * is not explicitly submitted to a specified pool. Using the common
43     * pool normally reduces resource usage (its threads are slowly
44     * reclaimed during periods of non-use, and reinstated upon subsequent
45 dl 1.105 * use).
46 dl 1.100 *
47     * <p>For applications that require separate or custom pools, a {@code
48     * ForkJoinPool} may be constructed with a given target parallelism
49     * level; by default, equal to the number of available processors. The
50     * pool attempts to maintain enough active (or available) threads by
51     * dynamically adding, suspending, or resuming internal worker
52     * threads, even if some tasks are stalled waiting to join
53     * others. However, no such adjustments are guaranteed in the face of
54 jsr166 1.119 * blocked I/O or other unmanaged synchronization. The nested {@link
55 dl 1.100 * ManagedBlocker} interface enables extension of the kinds of
56 dl 1.18 * synchronization accommodated.
57 jsr166 1.1 *
58     * <p>In addition to execution and lifecycle control methods, this
59     * class provides status check methods (for example
60 jsr166 1.4 * {@link #getStealCount}) that are intended to aid in developing,
61 jsr166 1.1 * tuning, and monitoring fork/join applications. Also, method
62 jsr166 1.4 * {@link #toString} returns indications of pool state in a
63 jsr166 1.1 * convenient form for informal monitoring.
64     *
65 jsr166 1.109 * <p>As is the case with other ExecutorServices, there are three
66 jsr166 1.84 * main task execution methods summarized in the following table.
67     * These are designed to be used primarily by clients not already
68     * engaged in fork/join computations in the current pool. The main
69     * forms of these methods accept instances of {@code ForkJoinTask},
70     * but overloaded forms also allow mixed execution of plain {@code
71     * Runnable}- or {@code Callable}- based activities as well. However,
72     * tasks that are already executing in a pool should normally instead
73     * use the within-computation forms listed in the table unless using
74     * async event-style tasks that are not usually joined, in which case
75     * there is little difference among choice of methods.
76 dl 1.18 *
77     * <table BORDER CELLPADDING=3 CELLSPACING=1>
78     * <tr>
79     * <td></td>
80     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
81     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
82     * </tr>
83     * <tr>
84 jsr166 1.25 * <td> <b>Arrange async execution</td>
85 dl 1.18 * <td> {@link #execute(ForkJoinTask)}</td>
86     * <td> {@link ForkJoinTask#fork}</td>
87     * </tr>
88     * <tr>
89     * <td> <b>Await and obtain result</td>
90     * <td> {@link #invoke(ForkJoinTask)}</td>
91     * <td> {@link ForkJoinTask#invoke}</td>
92     * </tr>
93     * <tr>
94     * <td> <b>Arrange exec and obtain Future</td>
95     * <td> {@link #submit(ForkJoinTask)}</td>
96     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
97     * </tr>
98     * </table>
99 dl 1.19 *
100 dl 1.105 * <p>The common pool is by default constructed with default
101     * parameters, but these may be controlled by setting three {@link
102 jsr166 1.117 * System#getProperty system properties} with prefix {@code
103 dl 1.105 * java.util.concurrent.ForkJoinPool.common}: {@code parallelism} --
104     * an integer greater than zero, {@code threadFactory} -- the class
105     * name of a {@link ForkJoinWorkerThreadFactory}, and {@code
106     * exceptionHandler} -- the class name of a {@link
107 jsr166 1.108 * java.lang.Thread.UncaughtExceptionHandler
108 dl 1.105 * Thread.UncaughtExceptionHandler}. Upon any error in establishing
109     * these settings, default parameters are used.
110     *
111 jsr166 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
112     * maximum number of running threads to 32767. Attempts to create
113 jsr166 1.11 * pools with greater than the maximum number result in
114 jsr166 1.8 * {@code IllegalArgumentException}.
115 jsr166 1.1 *
116 jsr166 1.11 * <p>This implementation rejects submitted tasks (that is, by throwing
117 dl 1.19 * {@link RejectedExecutionException}) only when the pool is shut down
118 dl 1.20 * or internal resources have been exhausted.
119 jsr166 1.11 *
120 jsr166 1.1 * @since 1.7
121     * @author Doug Lea
122     */
123     public class ForkJoinPool extends AbstractExecutorService {
124    
125     /*
126 dl 1.14 * Implementation Overview
127     *
128 dl 1.78 * This class and its nested classes provide the main
129     * functionality and control for a set of worker threads:
130 jsr166 1.84 * Submissions from non-FJ threads enter into submission queues.
131     * Workers take these tasks and typically split them into subtasks
132     * that may be stolen by other workers. Preference rules give
133     * first priority to processing tasks from their own queues (LIFO
134     * or FIFO, depending on mode), then to randomized FIFO steals of
135     * tasks in other queues.
136 dl 1.78 *
137 jsr166 1.84 * WorkQueues
138 dl 1.78 * ==========
139     *
140     * Most operations occur within work-stealing queues (in nested
141     * class WorkQueue). These are special forms of Deques that
142     * support only three of the four possible end-operations -- push,
143     * pop, and poll (aka steal), under the further constraints that
144     * push and pop are called only from the owning thread (or, as
145     * extended here, under a lock), while poll may be called from
146     * other threads. (If you are unfamiliar with them, you probably
147     * want to read Herlihy and Shavit's book "The Art of
148     * Multiprocessor programming", chapter 16 describing these in
149     * more detail before proceeding.) The main work-stealing queue
150     * design is roughly similar to those in the papers "Dynamic
151     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
152     * (http://research.sun.com/scalable/pubs/index.html) and
153     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
154     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
155 jsr166 1.84 * The main differences ultimately stem from GC requirements that
156 dl 1.78 * we null out taken slots as soon as we can, to maintain as small
157     * a footprint as possible even in programs generating huge
158     * numbers of tasks. To accomplish this, we shift the CAS
159     * arbitrating pop vs poll (steal) from being on the indices
160     * ("base" and "top") to the slots themselves. So, both a
161     * successful pop and poll mainly entail a CAS of a slot from
162     * non-null to null. Because we rely on CASes of references, we
163     * do not need tag bits on base or top. They are simple ints as
164     * used in any circular array-based queue (see for example
165     * ArrayDeque). Updates to the indices must still be ordered in a
166     * way that guarantees that top == base means the queue is empty,
167     * but otherwise may err on the side of possibly making the queue
168     * appear nonempty when a push, pop, or poll have not fully
169     * committed. Note that this means that the poll operation,
170     * considered individually, is not wait-free. One thief cannot
171     * successfully continue until another in-progress one (or, if
172     * previously empty, a push) completes. However, in the
173     * aggregate, we ensure at least probabilistic non-blockingness.
174     * If an attempted steal fails, a thief always chooses a different
175     * random victim target to try next. So, in order for one thief to
176     * progress, it suffices for any in-progress poll or new push on
177 dl 1.90 * any empty queue to complete. (This is why we normally use
178     * method pollAt and its variants that try once at the apparent
179     * base index, else consider alternative actions, rather than
180     * method poll.)
181 dl 1.78 *
182 dl 1.79 * This approach also enables support of a user mode in which local
183 dl 1.78 * task processing is in FIFO, not LIFO order, simply by using
184     * poll rather than pop. This can be useful in message-passing
185     * frameworks in which tasks are never joined. However neither
186     * mode considers affinities, loads, cache localities, etc, so
187     * rarely provide the best possible performance on a given
188     * machine, but portably provide good throughput by averaging over
189     * these factors. (Further, even if we did try to use such
190 jsr166 1.84 * information, we do not usually have a basis for exploiting it.
191     * For example, some sets of tasks profit from cache affinities,
192     * but others are harmed by cache pollution effects.)
193 dl 1.78 *
194     * WorkQueues are also used in a similar way for tasks submitted
195     * to the pool. We cannot mix these tasks in the same queues used
196     * for work-stealing (this would contaminate lifo/fifo
197 dl 1.105 * processing). Instead, we randomly associate submission queues
198 dl 1.83 * with submitting threads, using a form of hashing. The
199 dl 1.139 * ThreadLocalRandom probe value serves as a hash code for
200     * choosing existing queues, and may be randomly repositioned upon
201     * contention with other submitters. In essence, submitters act
202     * like workers except that they are restricted to executing local
203     * tasks that they submitted (or in the case of CountedCompleters,
204     * others with the same root task). However, because most
205     * shared/external queue operations are more expensive than
206     * internal, and because, at steady state, external submitters
207     * will compete for CPU with workers, ForkJoinTask.join and
208     * related methods disable them from repeatedly helping to process
209     * tasks if all workers are active. Insertion of tasks in shared
210     * mode requires a lock (mainly to protect in the case of
211 dl 1.105 * resizing) but we use only a simple spinlock (using bits in
212     * field qlock), because submitters encountering a busy queue move
213     * on to try or create other queues -- they block only when
214     * creating and registering new queues.
215 dl 1.78 *
216 jsr166 1.84 * Management
217 dl 1.78 * ==========
218 dl 1.52 *
219     * The main throughput advantages of work-stealing stem from
220     * decentralized control -- workers mostly take tasks from
221     * themselves or each other. We cannot negate this in the
222     * implementation of other management responsibilities. The main
223     * tactic for avoiding bottlenecks is packing nearly all
224 dl 1.78 * essentially atomic control state into two volatile variables
225     * that are by far most often read (not written) as status and
226 jsr166 1.84 * consistency checks.
227 dl 1.78 *
228     * Field "ctl" contains 64 bits holding all the information needed
229     * to atomically decide to add, inactivate, enqueue (on an event
230     * queue), dequeue, and/or re-activate workers. To enable this
231     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
232     * far in excess of normal operating range) to allow ids, counts,
233     * and their negations (used for thresholding) to fit into 16bit
234     * fields.
235     *
236 dl 1.105 * Field "plock" is a form of sequence lock with a saturating
237     * shutdown bit (similarly for per-queue "qlocks"), mainly
238     * protecting updates to the workQueues array, as well as to
239     * enable shutdown. When used as a lock, it is normally only very
240     * briefly held, so is nearly always available after at most a
241     * brief spin, but we use a monitor-based backup strategy to
242 dl 1.112 * block when needed.
243 dl 1.78 *
244     * Recording WorkQueues. WorkQueues are recorded in the
245 dl 1.101 * "workQueues" array that is created upon first use and expanded
246     * if necessary. Updates to the array while recording new workers
247     * and unrecording terminated ones are protected from each other
248     * by a lock but the array is otherwise concurrently readable, and
249     * accessed directly. To simplify index-based operations, the
250     * array size is always a power of two, and all readers must
251 dl 1.112 * tolerate null slots. Worker queues are at odd indices. Shared
252 dl 1.105 * (submission) queues are at even indices, up to a maximum of 64
253     * slots, to limit growth even if array needs to expand to add
254     * more workers. Grouping them together in this way simplifies and
255     * speeds up task scanning.
256 dl 1.86 *
257     * All worker thread creation is on-demand, triggered by task
258     * submissions, replacement of terminated workers, and/or
259 dl 1.78 * compensation for blocked workers. However, all other support
260     * code is set up to work with other policies. To ensure that we
261     * do not hold on to worker references that would prevent GC, ALL
262     * accesses to workQueues are via indices into the workQueues
263     * array (which is one source of some of the messy code
264     * constructions here). In essence, the workQueues array serves as
265     * a weak reference mechanism. Thus for example the wait queue
266     * field of ctl stores indices, not references. Access to the
267     * workQueues in associated methods (for example signalWork) must
268     * both index-check and null-check the IDs. All such accesses
269     * ignore bad IDs by returning out early from what they are doing,
270     * since this can only be associated with termination, in which
271 dl 1.86 * case it is OK to give up. All uses of the workQueues array
272     * also check that it is non-null (even if previously
273     * non-null). This allows nulling during termination, which is
274     * currently not necessary, but remains an option for
275     * resource-revocation-based shutdown schemes. It also helps
276     * reduce JIT issuance of uncommon-trap code, which tends to
277 dl 1.78 * unnecessarily complicate control flow in some methods.
278 dl 1.52 *
279 dl 1.78 * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
280 dl 1.56 * let workers spin indefinitely scanning for tasks when none can
281     * be found immediately, and we cannot start/resume workers unless
282     * there appear to be tasks available. On the other hand, we must
283     * quickly prod them into action when new tasks are submitted or
284 dl 1.78 * generated. In many usages, ramp-up time to activate workers is
285     * the main limiting factor in overall performance (this is
286     * compounded at program start-up by JIT compilation and
287     * allocation). So we try to streamline this as much as possible.
288     * We park/unpark workers after placing in an event wait queue
289     * when they cannot find work. This "queue" is actually a simple
290     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
291     * counter value (that reflects the number of times a worker has
292     * been inactivated) to avoid ABA effects (we need only as many
293     * version numbers as worker threads). Successors are held in
294     * field WorkQueue.nextWait. Queuing deals with several intrinsic
295     * races, mainly that a task-producing thread can miss seeing (and
296 dl 1.56 * signalling) another thread that gave up looking for work but
297     * has not yet entered the wait queue. We solve this by requiring
298 dl 1.78 * a full sweep of all workers (via repeated calls to method
299     * scan()) both before and after a newly waiting worker is added
300     * to the wait queue. During a rescan, the worker might release
301     * some other queued worker rather than itself, which has the same
302     * net effect. Because enqueued workers may actually be rescanning
303     * rather than waiting, we set and clear the "parker" field of
304 jsr166 1.84 * WorkQueues to reduce unnecessary calls to unpark. (This
305 dl 1.78 * requires a secondary recheck to avoid missed signals.) Note
306     * the unusual conventions about Thread.interrupts surrounding
307     * parking and other blocking: Because interrupts are used solely
308     * to alert threads to check termination, which is checked anyway
309     * upon blocking, we clear status (using Thread.interrupted)
310     * before any call to park, so that park does not immediately
311     * return due to status being set via some other unrelated call to
312     * interrupt in user code.
313 dl 1.52 *
314     * Signalling. We create or wake up workers only when there
315     * appears to be at least one task they might be able to find and
316 dl 1.105 * execute. However, many other threads may notice the same task
317     * and each signal to wake up a thread that might take it. So in
318     * general, pools will be over-signalled. When a submission is
319 dl 1.115 * added or another worker adds a task to a queue that has fewer
320     * than two tasks, they signal waiting workers (or trigger
321     * creation of new ones if fewer than the given parallelism level
322     * -- signalWork), and may leave a hint to the unparked worker to
323     * help signal others upon wakeup). These primary signals are
324     * buttressed by others (see method helpSignal) whenever other
325     * threads scan for work or do not have a task to process. On
326     * most platforms, signalling (unpark) overhead time is noticeably
327     * long, and the time between signalling a thread and it actually
328     * making progress can be very noticeably long, so it is worth
329     * offloading these delays from critical paths as much as
330     * possible.
331 dl 1.52 *
332     * Trimming workers. To release resources after periods of lack of
333     * use, a worker starting to wait when the pool is quiescent will
334 dl 1.100 * time out and terminate if the pool has remained quiescent for a
335     * given period -- a short period if there are more threads than
336     * parallelism, longer as the number of threads decreases. This
337     * will slowly propagate, eventually terminating all workers after
338     * periods of non-use.
339 dl 1.52 *
340 dl 1.78 * Shutdown and Termination. A call to shutdownNow atomically sets
341 dl 1.105 * a plock bit and then (non-atomically) sets each worker's
342     * qlock status, cancels all unprocessed tasks, and wakes up
343 dl 1.78 * all waiting workers. Detecting whether termination should
344     * commence after a non-abrupt shutdown() call requires more work
345     * and bookkeeping. We need consensus about quiescence (i.e., that
346     * there is no more work). The active count provides a primary
347     * indication but non-abrupt shutdown still requires a rechecking
348     * scan for any workers that are inactive but not queued.
349     *
350 jsr166 1.84 * Joining Tasks
351     * =============
352 dl 1.78 *
353     * Any of several actions may be taken when one worker is waiting
354 jsr166 1.84 * to join a task stolen (or always held) by another. Because we
355 dl 1.78 * are multiplexing many tasks on to a pool of workers, we can't
356     * just let them block (as in Thread.join). We also cannot just
357     * reassign the joiner's run-time stack with another and replace
358     * it later, which would be a form of "continuation", that even if
359     * possible is not necessarily a good idea since we sometimes need
360 jsr166 1.84 * both an unblocked task and its continuation to progress.
361     * Instead we combine two tactics:
362 dl 1.19 *
363     * Helping: Arranging for the joiner to execute some task that it
364 dl 1.78 * would be running if the steal had not occurred.
365 dl 1.19 *
366     * Compensating: Unless there are already enough live threads,
367 dl 1.78 * method tryCompensate() may create or re-activate a spare
368     * thread to compensate for blocked joiners until they unblock.
369     *
370 dl 1.105 * A third form (implemented in tryRemoveAndExec) amounts to
371     * helping a hypothetical compensator: If we can readily tell that
372     * a possible action of a compensator is to steal and execute the
373     * task being joined, the joining thread can do so directly,
374     * without the need for a compensation thread (although at the
375     * expense of larger run-time stacks, but the tradeoff is
376     * typically worthwhile).
377 dl 1.52 *
378     * The ManagedBlocker extension API can't use helping so relies
379     * only on compensation in method awaitBlocker.
380 dl 1.19 *
381 dl 1.78 * The algorithm in tryHelpStealer entails a form of "linear"
382     * helping: Each worker records (in field currentSteal) the most
383     * recent task it stole from some other worker. Plus, it records
384     * (in field currentJoin) the task it is currently actively
385     * joining. Method tryHelpStealer uses these markers to try to
386     * find a worker to help (i.e., steal back a task from and execute
387     * it) that could hasten completion of the actively joined task.
388     * In essence, the joiner executes a task that would be on its own
389     * local deque had the to-be-joined task not been stolen. This may
390     * be seen as a conservative variant of the approach in Wagner &
391     * Calder "Leapfrogging: a portable technique for implementing
392     * efficient futures" SIGPLAN Notices, 1993
393     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
394     * that: (1) We only maintain dependency links across workers upon
395     * steals, rather than use per-task bookkeeping. This sometimes
396 dl 1.90 * requires a linear scan of workQueues array to locate stealers,
397     * but often doesn't because stealers leave hints (that may become
398 dl 1.112 * stale/wrong) of where to locate them. It is only a hint
399     * because a worker might have had multiple steals and the hint
400     * records only one of them (usually the most current). Hinting
401     * isolates cost to when it is needed, rather than adding to
402     * per-task overhead. (2) It is "shallow", ignoring nesting and
403     * potentially cyclic mutual steals. (3) It is intentionally
404 dl 1.78 * racy: field currentJoin is updated only while actively joining,
405     * which means that we miss links in the chain during long-lived
406     * tasks, GC stalls etc (which is OK since blocking in such cases
407     * is usually a good idea). (4) We bound the number of attempts
408 dl 1.90 * to find work (see MAX_HELP) and fall back to suspending the
409     * worker and if necessary replacing it with another.
410 dl 1.78 *
411 dl 1.105 * Helping actions for CountedCompleters are much simpler: Method
412     * helpComplete can take and execute any task with the same root
413     * as the task being waited on. However, this still entails some
414     * traversal of completer chains, so is less efficient than using
415     * CountedCompleters without explicit joins.
416     *
417 dl 1.52 * It is impossible to keep exactly the target parallelism number
418     * of threads running at any given time. Determining the
419 dl 1.24 * existence of conservatively safe helping targets, the
420     * availability of already-created spares, and the apparent need
421 dl 1.78 * to create new spares are all racy, so we rely on multiple
422 dl 1.90 * retries of each. Compensation in the apparent absence of
423     * helping opportunities is challenging to control on JVMs, where
424     * GC and other activities can stall progress of tasks that in
425     * turn stall out many other dependent tasks, without us being
426     * able to determine whether they will ever require compensation.
427     * Even though work-stealing otherwise encounters little
428     * degradation in the presence of more threads than cores,
429     * aggressively adding new threads in such cases entails risk of
430     * unwanted positive feedback control loops in which more threads
431     * cause more dependent stalls (as well as delayed progress of
432     * unblocked threads to the point that we know they are available)
433     * leading to more situations requiring more threads, and so
434     * on. This aspect of control can be seen as an (analytically
435 jsr166 1.92 * intractable) game with an opponent that may choose the worst
436 dl 1.90 * (for us) active thread to stall at any time. We take several
437     * precautions to bound losses (and thus bound gains), mainly in
438 dl 1.105 * methods tryCompensate and awaitJoin.
439     *
440     * Common Pool
441     * ===========
442     *
443 dl 1.134 * The static common Pool always exists after static
444 dl 1.105 * initialization. Since it (or any other created pool) need
445     * never be used, we minimize initial construction overhead and
446     * footprint to the setup of about a dozen fields, with no nested
447     * allocation. Most bootstrapping occurs within method
448     * fullExternalPush during the first submission to the pool.
449     *
450     * When external threads submit to the common pool, they can
451     * perform some subtask processing (see externalHelpJoin and
452     * related methods). We do not need to record whether these
453     * submissions are to the common pool -- if not, externalHelpJoin
454 jsr166 1.107 * returns quickly (at the most helping to signal some common pool
455 dl 1.105 * workers). These submitters would otherwise be blocked waiting
456     * for completion, so the extra effort (with liberally sprinkled
457     * task status checks) in inapplicable cases amounts to an odd
458     * form of limited spin-wait before blocking in ForkJoinTask.join.
459     *
460     * Style notes
461     * ===========
462     *
463     * There is a lot of representation-level coupling among classes
464     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
465     * fields of WorkQueue maintain data structures managed by
466     * ForkJoinPool, so are directly accessed. There is little point
467     * trying to reduce this, since any associated future changes in
468     * representations will need to be accompanied by algorithmic
469     * changes anyway. Several methods intrinsically sprawl because
470     * they must accumulate sets of consistent reads of volatiles held
471     * in local variables. Methods signalWork() and scan() are the
472     * main bottlenecks, so are especially heavily
473 dl 1.86 * micro-optimized/mangled. There are lots of inline assignments
474     * (of form "while ((local = field) != 0)") which are usually the
475     * simplest way to ensure the required read orderings (which are
476     * sometimes critical). This leads to a "C"-like style of listing
477     * declarations of these locals at the heads of methods or blocks.
478     * There are several occurrences of the unusual "do {} while
479     * (!cas...)" which is the simplest way to force an update of a
480 dl 1.105 * CAS'ed variable. There are also other coding oddities (including
481     * several unnecessary-looking hoisted null checks) that help
482 dl 1.86 * some methods perform reasonably even when interpreted (not
483     * compiled).
484 dl 1.52 *
485 jsr166 1.84 * The order of declarations in this file is:
486 dl 1.86 * (1) Static utility functions
487     * (2) Nested (static) classes
488     * (3) Static fields
489     * (4) Fields, along with constants used when unpacking some of them
490     * (5) Internal control methods
491     * (6) Callbacks and other support for ForkJoinTask methods
492     * (7) Exported methods
493     * (8) Static block initializing statics in minimally dependent order
494     */
495    
496     // Static utilities
497    
498     /**
499     * If there is a security manager, makes sure caller has
500     * permission to modify threads.
501 jsr166 1.1 */
502 dl 1.86 private static void checkPermission() {
503     SecurityManager security = System.getSecurityManager();
504     if (security != null)
505     security.checkPermission(modifyThreadPermission);
506     }
507    
508     // Nested classes
509 jsr166 1.1
510     /**
511 jsr166 1.8 * Factory for creating new {@link ForkJoinWorkerThread}s.
512     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
513     * for {@code ForkJoinWorkerThread} subclasses that extend base
514     * functionality or initialize threads with different contexts.
515 jsr166 1.1 */
516     public static interface ForkJoinWorkerThreadFactory {
517     /**
518     * Returns a new worker thread operating in the given pool.
519     *
520     * @param pool the pool this thread works in
521 jsr166 1.11 * @throws NullPointerException if the pool is null
522 jsr166 1.1 */
523     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
524     }
525    
526     /**
527     * Default ForkJoinWorkerThreadFactory implementation; creates a
528     * new ForkJoinWorkerThread.
529     */
530 dl 1.112 static final class DefaultForkJoinWorkerThreadFactory
531 jsr166 1.1 implements ForkJoinWorkerThreadFactory {
532 dl 1.112 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
533 dl 1.14 return new ForkJoinWorkerThread(pool);
534 jsr166 1.1 }
535     }
536    
537     /**
538 dl 1.86 * Class for artificial tasks that are used to replace the target
539     * of local joins if they are removed from an interior queue slot
540     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
541     * actually do anything beyond having a unique identity.
542 jsr166 1.1 */
543 dl 1.86 static final class EmptyTask extends ForkJoinTask<Void> {
544 dl 1.105 private static final long serialVersionUID = -7721805057305804111L;
545 dl 1.86 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
546     public final Void getRawResult() { return null; }
547     public final void setRawResult(Void x) {}
548     public final boolean exec() { return true; }
549 jsr166 1.1 }
550    
551     /**
552 dl 1.78 * Queues supporting work-stealing as well as external task
553     * submission. See above for main rationale and algorithms.
554     * Implementation relies heavily on "Unsafe" intrinsics
555     * and selective use of "volatile":
556     *
557     * Field "base" is the index (mod array.length) of the least valid
558     * queue slot, which is always the next position to steal (poll)
559     * from if nonempty. Reads and writes require volatile orderings
560     * but not CAS, because updates are only performed after slot
561     * CASes.
562     *
563     * Field "top" is the index (mod array.length) of the next queue
564     * slot to push to or pop from. It is written only by owner thread
565 dl 1.105 * for push, or under lock for external/shared push, and accessed
566     * by other threads only after reading (volatile) base. Both top
567     * and base are allowed to wrap around on overflow, but (top -
568     * base) (or more commonly -(base - top) to force volatile read of
569     * base before top) still estimates size. The lock ("qlock") is
570     * forced to -1 on termination, causing all further lock attempts
571     * to fail. (Note: we don't need CAS for termination state because
572     * upon pool shutdown, all shared-queues will stop being used
573     * anyway.) Nearly all lock bodies are set up so that exceptions
574     * within lock bodies are "impossible" (modulo JVM errors that
575     * would cause failure anyway.)
576 dl 1.78 *
577     * The array slots are read and written using the emulation of
578     * volatiles/atomics provided by Unsafe. Insertions must in
579     * general use putOrderedObject as a form of releasing store to
580     * ensure that all writes to the task object are ordered before
581 dl 1.105 * its publication in the queue. All removals entail a CAS to
582     * null. The array is always a power of two. To ensure safety of
583     * Unsafe array operations, all accesses perform explicit null
584     * checks and implicit bounds checks via power-of-two masking.
585 dl 1.78 *
586     * In addition to basic queuing support, this class contains
587     * fields described elsewhere to control execution. It turns out
588 dl 1.105 * to work better memory-layout-wise to include them in this class
589     * rather than a separate class.
590 dl 1.78 *
591     * Performance on most platforms is very sensitive to placement of
592     * instances of both WorkQueues and their arrays -- we absolutely
593     * do not want multiple WorkQueue instances or multiple queue
594     * arrays sharing cache lines. (It would be best for queue objects
595     * and their arrays to share, but there is nothing available to
596     * help arrange that). Unfortunately, because they are recorded
597     * in a common array, WorkQueue instances are often moved to be
598     * adjacent by garbage collectors. To reduce impact, we use field
599     * padding that works OK on common platforms; this effectively
600     * trades off slightly slower average field access for the sake of
601     * avoiding really bad worst-case access. (Until better JVM
602     * support is in place, this padding is dependent on transient
603 dl 1.115 * properties of JVM field layout rules.) We also take care in
604     * allocating, sizing and resizing the array. Non-shared queue
605     * arrays are initialized by workers before use. Others are
606     * allocated on first use.
607 dl 1.78 */
608     static final class WorkQueue {
609     /**
610     * Capacity of work-stealing queue array upon initialization.
611 dl 1.90 * Must be a power of two; at least 4, but should be larger to
612     * reduce or eliminate cacheline sharing among queues.
613     * Currently, it is much larger, as a partial workaround for
614     * the fact that JVMs often place arrays in locations that
615     * share GC bookkeeping (especially cardmarks) such that
616     * per-write accesses encounter serious memory contention.
617 dl 1.78 */
618 dl 1.90 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
619 dl 1.78
620     /**
621     * Maximum size for queue arrays. Must be a power of two less
622     * than or equal to 1 << (31 - width of array entry) to ensure
623     * lack of wraparound of index calculations, but defined to a
624     * value a bit less than this to help users trap runaway
625     * programs before saturating systems.
626     */
627     static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
628    
629 dl 1.115 // Heuristic padding to ameliorate unfortunate memory placements
630     volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
631    
632 dl 1.78 int seed; // for random scanning; initialize nonzero
633     volatile int eventCount; // encoded inactivation count; < 0 if inactive
634     int nextWait; // encoded record of next event waiter
635 dl 1.112 int hint; // steal or signal hint (index)
636 dl 1.78 int poolIndex; // index of this queue in pool (or 0)
637 dl 1.112 final int mode; // 0: lifo, > 0: fifo, < 0: shared
638     int nsteals; // number of steals
639 dl 1.105 volatile int qlock; // 1: locked, -1: terminate; else 0
640 dl 1.78 volatile int base; // index of next slot for poll
641     int top; // index of next slot for push
642     ForkJoinTask<?>[] array; // the elements (initially unallocated)
643 dl 1.90 final ForkJoinPool pool; // the containing pool (may be null)
644 dl 1.78 final ForkJoinWorkerThread owner; // owning thread or null if shared
645     volatile Thread parker; // == owner during call to park; else null
646 dl 1.95 volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
647 dl 1.78 ForkJoinTask<?> currentSteal; // current non-local task being executed
648 dl 1.112
649 dl 1.115 volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
650     volatile Object pad18, pad19, pad1a, pad1b, pad1c, pad1d;
651 dl 1.78
652 dl 1.112 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
653     int seed) {
654 dl 1.90 this.pool = pool;
655 dl 1.78 this.owner = owner;
656 dl 1.112 this.mode = mode;
657     this.seed = seed;
658 dl 1.115 // Place indices in the center of array (that is not yet allocated)
659 dl 1.78 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
660     }
661    
662     /**
663 dl 1.115 * Returns the approximate number of tasks in the queue.
664     */
665     final int queueSize() {
666     int n = base - top; // non-owner callers must read base first
667     return (n >= 0) ? 0 : -n; // ignore transient negative
668     }
669    
670     /**
671     * Provides a more accurate estimate of whether this queue has
672     * any tasks than does queueSize, by checking whether a
673     * near-empty queue has at least one unclaimed task.
674     */
675     final boolean isEmpty() {
676     ForkJoinTask<?>[] a; int m, s;
677     int n = base - (s = top);
678     return (n >= 0 ||
679     (n == -1 &&
680     ((a = array) == null ||
681     (m = a.length - 1) < 0 ||
682     U.getObject
683     (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
684     }
685    
686     /**
687     * Pushes a task. Call only by owner in unshared queues. (The
688     * shared-queue version is embedded in method externalPush.)
689 dl 1.78 *
690     * @param task the task. Caller must ensure non-null.
691 jsr166 1.84 * @throw RejectedExecutionException if array cannot be resized
692 dl 1.78 */
693 dl 1.90 final void push(ForkJoinTask<?> task) {
694 dl 1.112 ForkJoinTask<?>[] a; ForkJoinPool p;
695     int s = top, m, n;
696     if ((a = array) != null) { // ignore if queue removed
697 dl 1.115 int j = (((m = a.length - 1) & s) << ASHIFT) + ABASE;
698     U.putOrderedObject(a, j, task);
699     if ((n = (top = s + 1) - base) <= 2) {
700 dl 1.112 if ((p = pool) != null)
701 dl 1.115 p.signalWork(this);
702 dl 1.112 }
703     else if (n >= m)
704     growArray();
705 dl 1.78 }
706     }
707    
708 dl 1.112 /**
709     * Initializes or doubles the capacity of array. Call either
710     * by owner or with lock held -- it is OK for base, but not
711     * top, to move while resizings are in progress.
712     */
713     final ForkJoinTask<?>[] growArray() {
714     ForkJoinTask<?>[] oldA = array;
715     int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
716     if (size > MAXIMUM_QUEUE_CAPACITY)
717     throw new RejectedExecutionException("Queue capacity exceeded");
718     int oldMask, t, b;
719     ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
720     if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
721     (t = top) - (b = base) > 0) {
722     int mask = size - 1;
723     do {
724     ForkJoinTask<?> x;
725     int oldj = ((b & oldMask) << ASHIFT) + ABASE;
726     int j = ((b & mask) << ASHIFT) + ABASE;
727     x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
728     if (x != null &&
729     U.compareAndSwapObject(oldA, oldj, x, null))
730     U.putObjectVolatile(a, j, x);
731     } while (++b != t);
732 dl 1.78 }
733 dl 1.112 return a;
734 dl 1.78 }
735    
736     /**
737 dl 1.90 * Takes next task, if one exists, in LIFO order. Call only
738 dl 1.102 * by owner in unshared queues.
739 dl 1.90 */
740     final ForkJoinTask<?> pop() {
741 dl 1.94 ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
742     if ((a = array) != null && (m = a.length - 1) >= 0) {
743 dl 1.90 for (int s; (s = top - 1) - base >= 0;) {
744 dl 1.94 long j = ((m & s) << ASHIFT) + ABASE;
745     if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
746 dl 1.90 break;
747     if (U.compareAndSwapObject(a, j, t, null)) {
748     top = s;
749     return t;
750     }
751     }
752     }
753     return null;
754     }
755    
756     /**
757     * Takes a task in FIFO order if b is base of queue and a task
758     * can be claimed without contention. Specialized versions
759     * appear in ForkJoinPool methods scan and tryHelpStealer.
760 dl 1.78 */
761 dl 1.90 final ForkJoinTask<?> pollAt(int b) {
762     ForkJoinTask<?> t; ForkJoinTask<?>[] a;
763     if ((a = array) != null) {
764 dl 1.86 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
765     if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
766     base == b &&
767 dl 1.78 U.compareAndSwapObject(a, j, t, null)) {
768     base = b + 1;
769     return t;
770     }
771     }
772     return null;
773     }
774    
775     /**
776 dl 1.90 * Takes next task, if one exists, in FIFO order.
777 dl 1.78 */
778 dl 1.90 final ForkJoinTask<?> poll() {
779     ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
780     while ((b = base) - top < 0 && (a = array) != null) {
781     int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
782     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
783     if (t != null) {
784     if (base == b &&
785     U.compareAndSwapObject(a, j, t, null)) {
786     base = b + 1;
787 dl 1.78 return t;
788     }
789     }
790 dl 1.90 else if (base == b) {
791     if (b + 1 == top)
792     break;
793 dl 1.105 Thread.yield(); // wait for lagging update (very rare)
794 dl 1.90 }
795 dl 1.78 }
796     return null;
797     }
798    
799     /**
800     * Takes next task, if one exists, in order specified by mode.
801     */
802     final ForkJoinTask<?> nextLocalTask() {
803     return mode == 0 ? pop() : poll();
804     }
805    
806     /**
807     * Returns next task, if one exists, in order specified by mode.
808     */
809     final ForkJoinTask<?> peek() {
810     ForkJoinTask<?>[] a = array; int m;
811     if (a == null || (m = a.length - 1) < 0)
812     return null;
813     int i = mode == 0 ? top - 1 : base;
814     int j = ((i & m) << ASHIFT) + ABASE;
815     return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
816     }
817    
818     /**
819     * Pops the given task only if it is at the current top.
820 dl 1.105 * (A shared version is available only via FJP.tryExternalUnpush)
821 dl 1.78 */
822     final boolean tryUnpush(ForkJoinTask<?> t) {
823     ForkJoinTask<?>[] a; int s;
824     if ((a = array) != null && (s = top) != base &&
825     U.compareAndSwapObject
826     (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
827     top = s;
828     return true;
829     }
830     return false;
831     }
832    
833     /**
834 jsr166 1.84 * Removes and cancels all known tasks, ignoring any exceptions.
835 dl 1.78 */
836     final void cancelAll() {
837     ForkJoinTask.cancelIgnoringExceptions(currentJoin);
838     ForkJoinTask.cancelIgnoringExceptions(currentSteal);
839     for (ForkJoinTask<?> t; (t = poll()) != null; )
840     ForkJoinTask.cancelIgnoringExceptions(t);
841     }
842    
843 dl 1.86 /**
844     * Computes next value for random probes. Scans don't require
845     * a very high quality generator, but also not a crummy one.
846     * Marsaglia xor-shift is cheap and works well enough. Note:
847 dl 1.90 * This is manually inlined in its usages in ForkJoinPool to
848     * avoid writes inside busy scan loops.
849 dl 1.86 */
850     final int nextSeed() {
851     int r = seed;
852     r ^= r << 13;
853     r ^= r >>> 17;
854     return seed = r ^= r << 5;
855     }
856    
857 dl 1.104 // Specialized execution methods
858 dl 1.78
859     /**
860 dl 1.94 * Pops and runs tasks until empty.
861 dl 1.78 */
862 dl 1.94 private void popAndExecAll() {
863     // A bit faster than repeated pop calls
864     ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
865     while ((a = array) != null && (m = a.length - 1) >= 0 &&
866     (s = top - 1) - base >= 0 &&
867     (t = ((ForkJoinTask<?>)
868     U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
869     != null) {
870     if (U.compareAndSwapObject(a, j, t, null)) {
871     top = s;
872     t.doExec();
873 dl 1.90 }
874 dl 1.94 }
875     }
876    
877     /**
878     * Polls and runs tasks until empty.
879     */
880     private void pollAndExecAll() {
881     for (ForkJoinTask<?> t; (t = poll()) != null;)
882     t.doExec();
883     }
884    
885     /**
886 dl 1.105 * If present, removes from queue and executes the given task,
887     * or any other cancelled task. Returns (true) on any CAS
888 dl 1.94 * or consistency check failure so caller can retry.
889     *
890 dl 1.105 * @return false if no progress can be made, else true;
891 dl 1.94 */
892 dl 1.105 final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
893     boolean stat = true, removed = false, empty = true;
894 dl 1.94 ForkJoinTask<?>[] a; int m, s, b, n;
895     if ((a = array) != null && (m = a.length - 1) >= 0 &&
896     (n = (s = top) - (b = base)) > 0) {
897     for (ForkJoinTask<?> t;;) { // traverse from s to b
898     int j = ((--s & m) << ASHIFT) + ABASE;
899     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
900     if (t == null) // inconsistent length
901     break;
902     else if (t == task) {
903     if (s + 1 == top) { // pop
904     if (!U.compareAndSwapObject(a, j, task, null))
905 dl 1.90 break;
906 dl 1.94 top = s;
907     removed = true;
908 dl 1.90 }
909 dl 1.94 else if (base == b) // replace with proxy
910     removed = U.compareAndSwapObject(a, j, task,
911     new EmptyTask());
912     break;
913     }
914     else if (t.status >= 0)
915     empty = false;
916     else if (s + 1 == top) { // pop and throw away
917     if (U.compareAndSwapObject(a, j, t, null))
918     top = s;
919     break;
920     }
921     if (--n == 0) {
922     if (!empty && base == b)
923 dl 1.105 stat = false;
924 dl 1.94 break;
925 dl 1.90 }
926     }
927 dl 1.78 }
928 dl 1.94 if (removed)
929     task.doExec();
930 dl 1.95 return stat;
931 dl 1.78 }
932    
933     /**
934 dl 1.105 * Polls for and executes the given task or any other task in
935     * its CountedCompleter computation
936 dl 1.104 */
937 dl 1.105 final boolean pollAndExecCC(ForkJoinTask<?> root) {
938     ForkJoinTask<?>[] a; int b; Object o;
939     outer: while ((b = base) - top < 0 && (a = array) != null) {
940     long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
941     if ((o = U.getObject(a, j)) == null ||
942     !(o instanceof CountedCompleter))
943     break;
944     for (CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;;) {
945     if (r == root) {
946     if (base == b &&
947     U.compareAndSwapObject(a, j, t, null)) {
948     base = b + 1;
949     t.doExec();
950     return true;
951 dl 1.104 }
952 dl 1.105 else
953     break; // restart
954 dl 1.104 }
955 dl 1.105 if ((r = r.completer) == null)
956     break outer; // not part of root computation
957 dl 1.104 }
958     }
959 dl 1.105 return false;
960 dl 1.104 }
961    
962     /**
963 dl 1.78 * Executes a top-level task and any local tasks remaining
964     * after execution.
965     */
966 dl 1.94 final void runTask(ForkJoinTask<?> t) {
967 dl 1.78 if (t != null) {
968 dl 1.105 (currentSteal = t).doExec();
969     currentSteal = null;
970 dl 1.126 ++nsteals;
971 dl 1.115 if (base - top < 0) { // process remaining local tasks
972 dl 1.94 if (mode == 0)
973     popAndExecAll();
974     else
975     pollAndExecAll();
976     }
977 dl 1.78 }
978     }
979    
980     /**
981 jsr166 1.84 * Executes a non-top-level (stolen) task.
982 dl 1.78 */
983     final void runSubtask(ForkJoinTask<?> t) {
984     if (t != null) {
985     ForkJoinTask<?> ps = currentSteal;
986 dl 1.105 (currentSteal = t).doExec();
987 dl 1.78 currentSteal = ps;
988     }
989     }
990    
991     /**
992 dl 1.86 * Returns true if owned and not known to be blocked.
993     */
994     final boolean isApparentlyUnblocked() {
995     Thread wt; Thread.State s;
996     return (eventCount >= 0 &&
997     (wt = owner) != null &&
998     (s = wt.getState()) != Thread.State.BLOCKED &&
999     s != Thread.State.WAITING &&
1000     s != Thread.State.TIMED_WAITING);
1001     }
1002    
1003 dl 1.78 // Unsafe mechanics
1004     private static final sun.misc.Unsafe U;
1005 dl 1.105 private static final long QLOCK;
1006 dl 1.78 private static final int ABASE;
1007     private static final int ASHIFT;
1008     static {
1009     try {
1010     U = sun.misc.Unsafe.getUnsafe();
1011     Class<?> k = WorkQueue.class;
1012     Class<?> ak = ForkJoinTask[].class;
1013 dl 1.105 QLOCK = U.objectFieldOffset
1014     (k.getDeclaredField("qlock"));
1015 dl 1.78 ABASE = U.arrayBaseOffset(ak);
1016 jsr166 1.142 int scale = U.arrayIndexScale(ak);
1017     if ((scale & (scale - 1)) != 0)
1018     throw new Error("data type scale not a power of two");
1019     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1020 dl 1.78 } catch (Exception e) {
1021     throw new Error(e);
1022     }
1023     }
1024     }
1025 dl 1.14
1026 dl 1.112 // static fields (initialized in static initializer below)
1027    
1028     /**
1029     * Creates a new ForkJoinWorkerThread. This factory is used unless
1030     * overridden in ForkJoinPool constructors.
1031     */
1032     public static final ForkJoinWorkerThreadFactory
1033     defaultForkJoinWorkerThreadFactory;
1034    
1035 jsr166 1.1 /**
1036 dl 1.115 * Permission required for callers of methods that may start or
1037     * kill threads.
1038     */
1039     private static final RuntimePermission modifyThreadPermission;
1040    
1041     /**
1042 dl 1.101 * Common (static) pool. Non-null for public use unless a static
1043 dl 1.105 * construction exception, but internal usages null-check on use
1044     * to paranoically avoid potential initialization circularities
1045     * as well as to simplify generated code.
1046 dl 1.101 */
1047 dl 1.134 static final ForkJoinPool common;
1048 dl 1.101
1049     /**
1050 dl 1.134 * Common pool parallelism. Must equal common.parallelism.
1051 dl 1.90 */
1052 dl 1.134 static final int commonParallelism;
1053 dl 1.90
1054     /**
1055 dl 1.105 * Sequence number for creating workerNamePrefix.
1056 dl 1.86 */
1057 dl 1.105 private static int poolNumberSequence;
1058 dl 1.86
1059 jsr166 1.1 /**
1060 jsr166 1.132 * Returns the next sequence number. We don't expect this to
1061     * ever contend, so use simple builtin sync.
1062 dl 1.83 */
1063 dl 1.105 private static final synchronized int nextPoolId() {
1064     return ++poolNumberSequence;
1065     }
1066 dl 1.86
1067     // static constants
1068    
1069     /**
1070 dl 1.105 * Initial timeout value (in nanoseconds) for the thread
1071     * triggering quiescence to park waiting for new work. On timeout,
1072     * the thread will instead try to shrink the number of
1073     * workers. The value should be large enough to avoid overly
1074     * aggressive shrinkage during most transient stalls (long GCs
1075     * etc).
1076 dl 1.86 */
1077 dl 1.105 private static final long IDLE_TIMEOUT = 2000L * 1000L * 1000L; // 2sec
1078 dl 1.86
1079     /**
1080 dl 1.100 * Timeout value when there are more threads than parallelism level
1081 dl 1.86 */
1082 dl 1.105 private static final long FAST_IDLE_TIMEOUT = 200L * 1000L * 1000L;
1083 dl 1.86
1084     /**
1085 dl 1.120 * Tolerance for idle timeouts, to cope with timer undershoots
1086     */
1087 dl 1.127 private static final long TIMEOUT_SLOP = 2000000L;
1088 dl 1.120
1089     /**
1090 dl 1.90 * The maximum stolen->joining link depth allowed in method
1091 dl 1.105 * tryHelpStealer. Must be a power of two. Depths for legitimate
1092 dl 1.90 * chains are unbounded, but we use a fixed constant to avoid
1093     * (otherwise unchecked) cycles and to bound staleness of
1094     * traversal parameters at the expense of sometimes blocking when
1095     * we could be helping.
1096     */
1097 dl 1.95 private static final int MAX_HELP = 64;
1098 dl 1.90
1099     /**
1100     * Increment for seed generators. See class ThreadLocal for
1101     * explanation.
1102     */
1103     private static final int SEED_INCREMENT = 0x61c88647;
1104 dl 1.83
1105     /**
1106 dl 1.86 * Bits and masks for control variables
1107     *
1108     * Field ctl is a long packed with:
1109     * AC: Number of active running workers minus target parallelism (16 bits)
1110     * TC: Number of total workers minus target parallelism (16 bits)
1111     * ST: true if pool is terminating (1 bit)
1112     * EC: the wait count of top waiting thread (15 bits)
1113     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1114     *
1115     * When convenient, we can extract the upper 32 bits of counts and
1116     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1117     * (int)ctl. The ec field is never accessed alone, but always
1118     * together with id and st. The offsets of counts by the target
1119     * parallelism and the positionings of fields makes it possible to
1120     * perform the most common checks via sign tests of fields: When
1121     * ac is negative, there are not enough active workers, when tc is
1122     * negative, there are not enough total workers, and when e is
1123     * negative, the pool is terminating. To deal with these possibly
1124     * negative fields, we use casts in and out of "short" and/or
1125     * signed shifts to maintain signedness.
1126     *
1127     * When a thread is queued (inactivated), its eventCount field is
1128     * set negative, which is the only way to tell if a worker is
1129     * prevented from executing tasks, even though it must continue to
1130     * scan for them to avoid queuing races. Note however that
1131     * eventCount updates lag releases so usage requires care.
1132     *
1133 dl 1.105 * Field plock is an int packed with:
1134 dl 1.86 * SHUTDOWN: true if shutdown is enabled (1 bit)
1135 dl 1.105 * SEQ: a sequence lock, with PL_LOCK bit set if locked (30 bits)
1136     * SIGNAL: set when threads may be waiting on the lock (1 bit)
1137 dl 1.86 *
1138 dl 1.90 * The sequence number enables simple consistency checks:
1139     * Staleness of read-only operations on the workQueues array can
1140 dl 1.105 * be checked by comparing plock before vs after the reads.
1141 dl 1.86 */
1142    
1143     // bit positions/shifts for fields
1144     private static final int AC_SHIFT = 48;
1145     private static final int TC_SHIFT = 32;
1146     private static final int ST_SHIFT = 31;
1147     private static final int EC_SHIFT = 16;
1148    
1149     // bounds
1150     private static final int SMASK = 0xffff; // short bits
1151 dl 1.90 private static final int MAX_CAP = 0x7fff; // max #workers - 1
1152 dl 1.105 private static final int EVENMASK = 0xfffe; // even short bits
1153     private static final int SQMASK = 0x007e; // max 64 (even) slots
1154 dl 1.86 private static final int SHORT_SIGN = 1 << 15;
1155     private static final int INT_SIGN = 1 << 31;
1156    
1157     // masks
1158     private static final long STOP_BIT = 0x0001L << ST_SHIFT;
1159     private static final long AC_MASK = ((long)SMASK) << AC_SHIFT;
1160     private static final long TC_MASK = ((long)SMASK) << TC_SHIFT;
1161    
1162     // units for incrementing and decrementing
1163     private static final long TC_UNIT = 1L << TC_SHIFT;
1164     private static final long AC_UNIT = 1L << AC_SHIFT;
1165    
1166     // masks and units for dealing with u = (int)(ctl >>> 32)
1167     private static final int UAC_SHIFT = AC_SHIFT - 32;
1168     private static final int UTC_SHIFT = TC_SHIFT - 32;
1169     private static final int UAC_MASK = SMASK << UAC_SHIFT;
1170     private static final int UTC_MASK = SMASK << UTC_SHIFT;
1171     private static final int UAC_UNIT = 1 << UAC_SHIFT;
1172     private static final int UTC_UNIT = 1 << UTC_SHIFT;
1173    
1174     // masks and units for dealing with e = (int)ctl
1175     private static final int E_MASK = 0x7fffffff; // no STOP_BIT
1176     private static final int E_SEQ = 1 << EC_SHIFT;
1177    
1178 dl 1.105 // plock bits
1179 dl 1.86 private static final int SHUTDOWN = 1 << 31;
1180 dl 1.105 private static final int PL_LOCK = 2;
1181     private static final int PL_SIGNAL = 1;
1182     private static final int PL_SPINS = 1 << 8;
1183 dl 1.86
1184     // access mode for WorkQueue
1185     static final int LIFO_QUEUE = 0;
1186     static final int FIFO_QUEUE = 1;
1187     static final int SHARED_QUEUE = -1;
1188    
1189 dl 1.112 // bounds for #steps in scan loop -- must be power 2 minus 1
1190     private static final int MIN_SCAN = 0x1ff; // cover estimation slop
1191     private static final int MAX_SCAN = 0x1ffff; // 4 * max workers
1192    
1193 dl 1.86 // Instance fields
1194    
1195     /*
1196 dl 1.112 * Field layout of this class tends to matter more than one would
1197     * like. Runtime layout order is only loosely related to
1198 dl 1.86 * declaration order and may differ across JVMs, but the following
1199     * empirically works OK on current JVMs.
1200 jsr166 1.1 */
1201 dl 1.115
1202     // Heuristic padding to ameliorate unfortunate memory placements
1203     volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
1204    
1205 dl 1.101 volatile long stealCount; // collects worker counts
1206 dl 1.86 volatile long ctl; // main pool control
1207 dl 1.112 volatile int plock; // shutdown status and seqLock
1208 dl 1.105 volatile int indexSeed; // worker/submitter index seed
1209 dl 1.112 final int config; // mode and parallelism level
1210 dl 1.86 WorkQueue[] workQueues; // main registry
1211 dl 1.112 final ForkJoinWorkerThreadFactory factory;
1212 dl 1.86 final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1213 dl 1.101 final String workerNamePrefix; // to create worker name string
1214    
1215 dl 1.115 volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
1216     volatile Object pad18, pad19, pad1a, pad1b;
1217    
1218 jsr166 1.145 /**
1219 dl 1.105 * Acquires the plock lock to protect worker array and related
1220     * updates. This method is called only if an initial CAS on plock
1221 jsr166 1.140 * fails. This acts as a spinlock for normal cases, but falls back
1222 dl 1.105 * to builtin monitor to block when (rarely) needed. This would be
1223     * a terrible idea for a highly contended lock, but works fine as
1224 dl 1.126 * a more conservative alternative to a pure spinlock.
1225 dl 1.105 */
1226     private int acquirePlock() {
1227 dl 1.139 int spins = PL_SPINS, ps, nps;
1228 dl 1.105 for (;;) {
1229     if (((ps = plock) & PL_LOCK) == 0 &&
1230     U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1231     return nps;
1232 dl 1.101 else if (spins >= 0) {
1233 dl 1.139 if (ThreadLocalRandom.nextSecondarySeed() >= 0)
1234 dl 1.101 --spins;
1235     }
1236 dl 1.105 else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1237 jsr166 1.106 synchronized (this) {
1238 dl 1.105 if ((plock & PL_SIGNAL) != 0) {
1239 dl 1.101 try {
1240     wait();
1241     } catch (InterruptedException ie) {
1242 dl 1.104 try {
1243     Thread.currentThread().interrupt();
1244     } catch (SecurityException ignore) {
1245     }
1246 dl 1.101 }
1247     }
1248     else
1249 dl 1.105 notifyAll();
1250 dl 1.101 }
1251     }
1252     }
1253     }
1254 dl 1.78
1255 jsr166 1.1 /**
1256 dl 1.105 * Unlocks and signals any thread waiting for plock. Called only
1257     * when CAS of seq value for unlock fails.
1258 jsr166 1.1 */
1259 dl 1.105 private void releasePlock(int ps) {
1260     plock = ps;
1261 jsr166 1.106 synchronized (this) { notifyAll(); }
1262 dl 1.78 }
1263 jsr166 1.1
1264 dl 1.112 /**
1265 dl 1.120 * Tries to create and start one worker if fewer than target
1266     * parallelism level exist. Adjusts counts etc on failure.
1267 dl 1.115 */
1268     private void tryAddWorker() {
1269 dl 1.112 long c; int u;
1270 dl 1.115 while ((u = (int)((c = ctl) >>> 32)) < 0 &&
1271     (u & SHORT_SIGN) != 0 && (int)c == 0) {
1272 dl 1.112 long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1273     ((u + UAC_UNIT) & UAC_MASK)) << 32;
1274 dl 1.115 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1275     ForkJoinWorkerThreadFactory fac;
1276     Throwable ex = null;
1277     ForkJoinWorkerThread wt = null;
1278     try {
1279     if ((fac = factory) != null &&
1280     (wt = fac.newThread(this)) != null) {
1281     wt.start();
1282     break;
1283     }
1284     } catch (Throwable e) {
1285     ex = e;
1286     }
1287     deregisterWorker(wt, ex);
1288     break;
1289     }
1290 dl 1.112 }
1291     }
1292    
1293     // Registering and deregistering workers
1294    
1295     /**
1296     * Callback from ForkJoinWorkerThread to establish and record its
1297     * WorkQueue. To avoid scanning bias due to packing entries in
1298     * front of the workQueues array, we treat the array as a simple
1299     * power-of-two hash table using per-thread seed as hash,
1300     * expanding as needed.
1301     *
1302     * @param wt the worker thread
1303 dl 1.115 * @return the worker's queue
1304 dl 1.112 */
1305 dl 1.115 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1306     Thread.UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps;
1307     wt.setDaemon(true);
1308     if ((handler = ueh) != null)
1309     wt.setUncaughtExceptionHandler(handler);
1310     do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
1311     s += SEED_INCREMENT) ||
1312     s == 0); // skip 0
1313     WorkQueue w = new WorkQueue(this, wt, config >>> 16, s);
1314     if (((ps = plock) & PL_LOCK) != 0 ||
1315     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1316     ps = acquirePlock();
1317     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1318     try {
1319     if ((ws = workQueues) != null) { // skip if shutting down
1320     int n = ws.length, m = n - 1;
1321     int r = (s << 1) | 1; // use odd-numbered indices
1322     if (ws[r &= m] != null) { // collision
1323     int probes = 0; // step by approx half size
1324     int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1325     while (ws[r = (r + step) & m] != null) {
1326     if (++probes >= n) {
1327     workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1328     m = n - 1;
1329     probes = 0;
1330 dl 1.94 }
1331     }
1332     }
1333 dl 1.115 w.eventCount = w.poolIndex = r; // volatile write orders
1334     ws[r] = w;
1335 dl 1.78 }
1336 dl 1.115 } finally {
1337     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1338     releasePlock(nps);
1339 dl 1.78 }
1340 dl 1.115 wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex)));
1341     return w;
1342 dl 1.78 }
1343 dl 1.19
1344 jsr166 1.1 /**
1345 dl 1.86 * Final callback from terminating worker, as well as upon failure
1346 dl 1.105 * to construct or start a worker. Removes record of worker from
1347     * array, and adjusts counts. If pool is shutting down, tries to
1348     * complete termination.
1349 dl 1.78 *
1350 dl 1.105 * @param wt the worker thread or null if construction failed
1351 dl 1.78 * @param ex the exception causing failure, or null if none
1352 dl 1.45 */
1353 dl 1.78 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1354     WorkQueue w = null;
1355     if (wt != null && (w = wt.workQueue) != null) {
1356 dl 1.105 int ps;
1357     w.qlock = -1; // ensure set
1358 dl 1.112 long ns = w.nsteals, sc; // collect steal count
1359     do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1360     sc = stealCount, sc + ns));
1361 dl 1.105 if (((ps = plock) & PL_LOCK) != 0 ||
1362     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1363     ps = acquirePlock();
1364     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1365 dl 1.101 try {
1366 dl 1.105 int idx = w.poolIndex;
1367 dl 1.78 WorkQueue[] ws = workQueues;
1368 dl 1.90 if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1369 dl 1.86 ws[idx] = null;
1370 dl 1.78 } finally {
1371 dl 1.105 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1372     releasePlock(nps);
1373 dl 1.78 }
1374     }
1375    
1376 dl 1.126 long c; // adjust ctl counts
1377 dl 1.78 do {} while (!U.compareAndSwapLong
1378     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1379     ((c - TC_UNIT) & TC_MASK) |
1380     (c & ~(AC_MASK|TC_MASK)))));
1381    
1382 dl 1.120 if (!tryTerminate(false, false) && w != null && w.array != null) {
1383 dl 1.126 w.cancelAll(); // cancel remaining tasks
1384     WorkQueue[] ws; WorkQueue v; Thread p; int u, i, e;
1385     while ((u = (int)((c = ctl) >>> 32)) < 0 && (e = (int)c) >= 0) {
1386     if (e > 0) { // activate or create replacement
1387     if ((ws = workQueues) == null ||
1388     (i = e & SMASK) >= ws.length ||
1389 dl 1.130 (v = ws[i]) == null)
1390 dl 1.126 break;
1391     long nc = (((long)(v.nextWait & E_MASK)) |
1392     ((long)(u + UAC_UNIT) << 32));
1393     if (v.eventCount != (e | INT_SIGN))
1394     break;
1395     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1396     v.eventCount = (e + E_SEQ) & E_MASK;
1397     if ((p = v.parker) != null)
1398     U.unpark(p);
1399     break;
1400 dl 1.120 }
1401     }
1402     else {
1403     if ((short)u < 0)
1404     tryAddWorker();
1405     break;
1406     }
1407     }
1408 dl 1.78 }
1409 dl 1.120 if (ex == null) // help clean refs on way out
1410     ForkJoinTask.helpExpungeStaleExceptions();
1411     else // rethrow
1412 dl 1.104 ForkJoinTask.rethrow(ex);
1413 dl 1.78 }
1414 dl 1.52
1415 dl 1.86 // Submissions
1416    
1417     /**
1418     * Unless shutting down, adds the given task to a submission queue
1419     * at submitter's current queue index (modulo submission
1420 dl 1.105 * range). Only the most common path is directly handled in this
1421     * method. All others are relayed to fullExternalPush.
1422 dl 1.90 *
1423     * @param task the task. Caller must ensure non-null.
1424 dl 1.86 */
1425 dl 1.105 final void externalPush(ForkJoinTask<?> task) {
1426 dl 1.139 WorkQueue[] ws; WorkQueue q; int z, m; ForkJoinTask<?>[] a;
1427     if ((z = ThreadLocalRandom.getProbe()) != 0 && plock > 0 &&
1428 dl 1.105 (ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
1429 dl 1.139 (q = ws[m & z & SQMASK]) != null &&
1430 dl 1.105 U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1431 dl 1.112 int b = q.base, s = q.top, n, an;
1432     if ((a = q.array) != null && (an = a.length) > (n = s + 1 - b)) {
1433 dl 1.115 int j = (((an - 1) & s) << ASHIFT) + ABASE;
1434     U.putOrderedObject(a, j, task);
1435 dl 1.105 q.top = s + 1; // push on to deque
1436     q.qlock = 0;
1437 dl 1.112 if (n <= 2)
1438 dl 1.115 signalWork(q);
1439 dl 1.90 return;
1440     }
1441 dl 1.105 q.qlock = 0;
1442 dl 1.83 }
1443 dl 1.105 fullExternalPush(task);
1444 dl 1.83 }
1445 dl 1.45
1446 dl 1.100 /**
1447 dl 1.105 * Full version of externalPush. This method is called, among
1448     * other times, upon the first submission of the first task to the
1449 dl 1.131 * pool, so must perform secondary initialization. It also
1450     * detects first submission by an external thread by looking up
1451     * its ThreadLocal, and creates a new shared queue if the one at
1452     * index if empty or contended. The plock lock body must be
1453     * exception-free (so no try/finally) so we optimistically
1454     * allocate new queues outside the lock and throw them away if
1455     * (very rarely) not needed.
1456     *
1457     * Secondary initialization occurs when plock is zero, to create
1458     * workQueue array and set plock to a valid value. This lock body
1459     * must also be exception-free. Because the plock seq value can
1460     * eventually wrap around zero, this method harmlessly fails to
1461     * reinitialize if workQueues exists, while still advancing plock.
1462 dl 1.105 */
1463     private void fullExternalPush(ForkJoinTask<?> task) {
1464 dl 1.139 int r;
1465     if ((r = ThreadLocalRandom.getProbe()) == 0) {
1466     ThreadLocalRandom.localInit();
1467     r = ThreadLocalRandom.getProbe();
1468     }
1469     for (;;) {
1470 dl 1.112 WorkQueue[] ws; WorkQueue q; int ps, m, k;
1471 dl 1.139 boolean move = false;
1472     if ((ps = plock) < 0)
1473 dl 1.105 throw new RejectedExecutionException();
1474 dl 1.112 else if (ps == 0 || (ws = workQueues) == null ||
1475 dl 1.131 (m = ws.length - 1) < 0) { // initialize workQueues
1476     int p = config & SMASK; // find power of two table size
1477     int n = (p > 1) ? p - 1 : 1; // ensure at least 2 slots
1478     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4;
1479     n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1;
1480     WorkQueue[] nws = ((ws = workQueues) == null || ws.length == 0 ?
1481     new WorkQueue[n] : null);
1482     if (((ps = plock) & PL_LOCK) != 0 ||
1483     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1484     ps = acquirePlock();
1485     if (((ws = workQueues) == null || ws.length == 0) && nws != null)
1486     workQueues = nws;
1487     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1488     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1489     releasePlock(nps);
1490     }
1491 dl 1.112 else if ((q = ws[k = r & m & SQMASK]) != null) {
1492 dl 1.115 if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
1493     ForkJoinTask<?>[] a = q.array;
1494     int s = q.top;
1495     boolean submitted = false;
1496     try { // locked version of push
1497     if ((a != null && a.length > s + 1 - q.base) ||
1498     (a = q.growArray()) != null) { // must presize
1499     int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
1500     U.putOrderedObject(a, j, task);
1501     q.top = s + 1;
1502     submitted = true;
1503     }
1504     } finally {
1505     q.qlock = 0; // unlock
1506     }
1507     if (submitted) {
1508     signalWork(q);
1509     return;
1510     }
1511     }
1512 dl 1.139 move = true; // move on failure
1513 dl 1.112 }
1514     else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
1515     q = new WorkQueue(this, null, SHARED_QUEUE, r);
1516     if (((ps = plock) & PL_LOCK) != 0 ||
1517 dl 1.105 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1518     ps = acquirePlock();
1519 dl 1.112 if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
1520     ws[k] = q;
1521 dl 1.105 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1522     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1523     releasePlock(nps);
1524     }
1525 dl 1.112 else
1526 dl 1.139 move = true; // move if busy
1527     if (move)
1528     r = ThreadLocalRandom.advanceProbe(r);
1529 dl 1.104 }
1530 dl 1.102 }
1531    
1532 dl 1.78 // Maintaining ctl counts
1533 dl 1.17
1534     /**
1535 jsr166 1.84 * Increments active count; mainly called upon return from blocking.
1536 dl 1.19 */
1537 dl 1.78 final void incrementActiveCount() {
1538 dl 1.52 long c;
1539 dl 1.78 do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1540 dl 1.19 }
1541    
1542     /**
1543 dl 1.115 * Tries to create or activate a worker if too few are active.
1544     *
1545     * @param q the (non-null) queue holding tasks to be signalled
1546 dl 1.105 */
1547 dl 1.115 final void signalWork(WorkQueue q) {
1548     int hint = q.poolIndex;
1549     long c; int e, u, i, n; WorkQueue[] ws; WorkQueue w; Thread p;
1550 dl 1.105 while ((u = (int)((c = ctl) >>> 32)) < 0) {
1551     if ((e = (int)c) > 0) {
1552     if ((ws = workQueues) != null && ws.length > (i = e & SMASK) &&
1553 dl 1.86 (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1554     long nc = (((long)(w.nextWait & E_MASK)) |
1555     ((long)(u + UAC_UNIT) << 32));
1556     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1557 dl 1.115 w.hint = hint;
1558 dl 1.86 w.eventCount = (e + E_SEQ) & E_MASK;
1559 dl 1.115 if ((p = w.parker) != null)
1560 dl 1.105 U.unpark(p);
1561 dl 1.115 break;
1562 dl 1.105 }
1563 dl 1.115 if (q.top - q.base <= 0)
1564 dl 1.86 break;
1565     }
1566     else
1567 dl 1.52 break;
1568 dl 1.78 }
1569 dl 1.115 else {
1570     if ((short)u < 0)
1571     tryAddWorker();
1572     break;
1573 dl 1.52 }
1574     }
1575 dl 1.14 }
1576    
1577 dl 1.90 // Scanning for tasks
1578    
1579 dl 1.14 /**
1580 dl 1.90 * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1581 dl 1.14 */
1582 dl 1.90 final void runWorker(WorkQueue w) {
1583 dl 1.115 w.growArray(); // allocate queue
1584     do { w.runTask(scan(w)); } while (w.qlock >= 0);
1585 dl 1.14 }
1586    
1587     /**
1588 dl 1.78 * Scans for and, if found, returns one task, else possibly
1589     * inactivates the worker. This method operates on single reads of
1590 dl 1.90 * volatile state and is designed to be re-invoked continuously,
1591     * in part because it returns upon detecting inconsistencies,
1592 dl 1.78 * contention, or state changes that indicate possible success on
1593     * re-invocation.
1594     *
1595 dl 1.112 * The scan searches for tasks across queues (starting at a random
1596     * index, and relying on registerWorker to irregularly scatter
1597     * them within array to avoid bias), checking each at least twice.
1598     * The scan terminates upon either finding a non-empty queue, or
1599     * completing the sweep. If the worker is not inactivated, it
1600     * takes and returns a task from this queue. Otherwise, if not
1601     * activated, it signals workers (that may include itself) and
1602     * returns so caller can retry. Also returns for true if the
1603     * worker array may have changed during an empty scan. On failure
1604     * to find a task, we take one of the following actions, after
1605     * which the caller will retry calling this method unless
1606     * terminated.
1607 dl 1.78 *
1608 dl 1.86 * * If pool is terminating, terminate the worker.
1609     *
1610 dl 1.78 * * If not already enqueued, try to inactivate and enqueue the
1611 dl 1.90 * worker on wait queue. Or, if inactivating has caused the pool
1612 dl 1.126 * to be quiescent, relay to idleAwaitWork to possibly shrink
1613     * pool.
1614 dl 1.90 *
1615 dl 1.105 * * If already enqueued and none of the above apply, possibly
1616 dl 1.126 * park awaiting signal, else lingering to help scan and signal.
1617     *
1618     * * If a non-empty queue discovered or left as a hint,
1619 jsr166 1.133 * help wake up other workers before return.
1620 dl 1.78 *
1621     * @param w the worker (via its WorkQueue)
1622 jsr166 1.98 * @return a task or null if none found
1623 dl 1.78 */
1624     private final ForkJoinTask<?> scan(WorkQueue w) {
1625 dl 1.115 WorkQueue[] ws; int m;
1626 dl 1.112 int ps = plock; // read plock before ws
1627     if (w != null && (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1628     int ec = w.eventCount; // ec is negative if inactive
1629     int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1630 dl 1.126 w.hint = -1; // update seed and clear hint
1631 dl 1.115 int j = ((m + m + 1) | MIN_SCAN) & MAX_SCAN;
1632     do {
1633 dl 1.112 WorkQueue q; ForkJoinTask<?>[] a; int b;
1634     if ((q = ws[(r + j) & m]) != null && (b = q.base) - q.top < 0 &&
1635     (a = q.array) != null) { // probably nonempty
1636 dl 1.90 int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1637 dl 1.112 ForkJoinTask<?> t = (ForkJoinTask<?>)
1638     U.getObjectVolatile(a, i);
1639 dl 1.90 if (q.base == b && ec >= 0 && t != null &&
1640     U.compareAndSwapObject(a, i, t, null)) {
1641 dl 1.112 if ((q.base = b + 1) - q.top < 0)
1642 dl 1.115 signalWork(q);
1643 dl 1.112 return t; // taken
1644     }
1645 dl 1.115 else if ((ec < 0 || j < m) && (int)(ctl >> AC_SHIFT) <= 0) {
1646     w.hint = (r + j) & m; // help signal below
1647     break; // cannot take
1648     }
1649     }
1650     } while (--j >= 0);
1651    
1652 dl 1.126 int h, e, ns; long c, sc; WorkQueue q;
1653     if ((ns = w.nsteals) != 0) {
1654     if (U.compareAndSwapLong(this, STEALCOUNT,
1655     sc = stealCount, sc + ns))
1656     w.nsteals = 0; // collect steals and rescan
1657     }
1658     else if (plock != ps) // consistency check
1659     ; // skip
1660     else if ((e = (int)(c = ctl)) < 0)
1661     w.qlock = -1; // pool is terminating
1662     else {
1663     if ((h = w.hint) < 0) {
1664     if (ec >= 0) { // try to enqueue/inactivate
1665     long nc = (((long)ec |
1666     ((c - AC_UNIT) & (AC_MASK|TC_MASK))));
1667     w.nextWait = e; // link and mark inactive
1668     w.eventCount = ec | INT_SIGN;
1669     if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1670     w.eventCount = ec; // unmark on CAS failure
1671     else if ((int)(c >> AC_SHIFT) == 1 - (config & SMASK))
1672     idleAwaitWork(w, nc, c);
1673     }
1674 dl 1.131 else if (w.eventCount < 0 && ctl == c) {
1675 dl 1.126 Thread wt = Thread.currentThread();
1676     Thread.interrupted(); // clear status
1677     U.putObject(wt, PARKBLOCKER, this);
1678     w.parker = wt; // emulate LockSupport.park
1679     if (w.eventCount < 0) // recheck
1680 dl 1.131 U.park(false, 0L); // block
1681 dl 1.126 w.parker = null;
1682     U.putObject(wt, PARKBLOCKER, null);
1683     }
1684     }
1685     if ((h >= 0 || (h = w.hint) >= 0) &&
1686     (ws = workQueues) != null && h < ws.length &&
1687     (q = ws[h]) != null) { // signal others before retry
1688     WorkQueue v; Thread p; int u, i, s;
1689 dl 1.131 for (int n = (config & SMASK) - 1;;) {
1690 dl 1.126 int idleCount = (w.eventCount < 0) ? 0 : -1;
1691     if (((s = idleCount - q.base + q.top) <= n &&
1692     (n = s) <= 0) ||
1693     (u = (int)((c = ctl) >>> 32)) >= 0 ||
1694     (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1695     (v = ws[i]) == null)
1696     break;
1697     long nc = (((long)(v.nextWait & E_MASK)) |
1698     ((long)(u + UAC_UNIT) << 32));
1699     if (v.eventCount != (e | INT_SIGN) ||
1700     !U.compareAndSwapLong(this, CTL, c, nc))
1701     break;
1702     v.hint = h;
1703     v.eventCount = (e + E_SEQ) & E_MASK;
1704     if ((p = v.parker) != null)
1705     U.unpark(p);
1706     if (--n <= 0)
1707     break;
1708     }
1709 dl 1.115 }
1710     }
1711 dl 1.52 }
1712 dl 1.78 return null;
1713 dl 1.14 }
1714    
1715     /**
1716 dl 1.90 * If inactivating worker w has caused the pool to become
1717     * quiescent, checks for pool termination, and, so long as this is
1718 dl 1.100 * not the only worker, waits for event for up to a given
1719     * duration. On timeout, if ctl has not changed, terminates the
1720 dl 1.90 * worker, which will in turn wake up another worker to possibly
1721     * repeat this process.
1722 dl 1.52 *
1723 dl 1.78 * @param w the calling worker
1724 dl 1.90 * @param currentCtl the ctl value triggering possible quiescence
1725     * @param prevCtl the ctl value to restore if thread is terminated
1726 dl 1.14 */
1727 dl 1.90 private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1728 dl 1.112 if (w != null && w.eventCount < 0 &&
1729 dl 1.131 !tryTerminate(false, false) && (int)prevCtl != 0 &&
1730     ctl == currentCtl) {
1731 dl 1.100 int dc = -(short)(currentCtl >>> TC_SHIFT);
1732     long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1733 dl 1.120 long deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
1734 dl 1.90 Thread wt = Thread.currentThread();
1735     while (ctl == currentCtl) {
1736 dl 1.78 Thread.interrupted(); // timed variant of version in scan()
1737     U.putObject(wt, PARKBLOCKER, this);
1738     w.parker = wt;
1739 dl 1.90 if (ctl == currentCtl)
1740 dl 1.100 U.park(false, parkTime);
1741 dl 1.78 w.parker = null;
1742     U.putObject(wt, PARKBLOCKER, null);
1743 dl 1.90 if (ctl != currentCtl)
1744 dl 1.78 break;
1745 dl 1.100 if (deadline - System.nanoTime() <= 0L &&
1746 dl 1.90 U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1747     w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1748 dl 1.131 w.hint = -1;
1749 dl 1.105 w.qlock = -1; // shrink
1750 dl 1.78 break;
1751     }
1752 dl 1.24 }
1753 dl 1.14 }
1754     }
1755    
1756     /**
1757 dl 1.120 * Scans through queues looking for work while joining a task; if
1758     * any present, signals. May return early if more signalling is
1759     * detectably unneeded.
1760 dl 1.105 *
1761 dl 1.120 * @param task return early if done
1762 dl 1.105 * @param origin an index to start scan
1763     */
1764 dl 1.120 private void helpSignal(ForkJoinTask<?> task, int origin) {
1765 dl 1.115 WorkQueue[] ws; WorkQueue w; Thread p; long c; int m, u, e, i, s;
1766 dl 1.120 if (task != null && task.status >= 0 &&
1767     (u = (int)(ctl >>> 32)) < 0 && (u >> UAC_SHIFT) < 0 &&
1768 dl 1.115 (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1769 dl 1.120 outer: for (int k = origin, j = m; j >= 0; --j) {
1770 dl 1.115 WorkQueue q = ws[k++ & m];
1771     for (int n = m;;) { // limit to at most m signals
1772 dl 1.120 if (task.status < 0)
1773 dl 1.115 break outer;
1774     if (q == null ||
1775 dl 1.120 ((s = -q.base + q.top) <= n && (n = s) <= 0))
1776 dl 1.105 break;
1777 dl 1.115 if ((u = (int)((c = ctl) >>> 32)) >= 0 ||
1778     (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1779     (w = ws[i]) == null)
1780     break outer;
1781     long nc = (((long)(w.nextWait & E_MASK)) |
1782     ((long)(u + UAC_UNIT) << 32));
1783 dl 1.126 if (w.eventCount != (e | INT_SIGN))
1784     break outer;
1785     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1786 dl 1.122 w.eventCount = (e + E_SEQ) & E_MASK;
1787     if ((p = w.parker) != null)
1788     U.unpark(p);
1789     if (--n <= 0)
1790     break;
1791     }
1792 dl 1.120 }
1793     }
1794     }
1795     }
1796    
1797     /**
1798 dl 1.78 * Tries to locate and execute tasks for a stealer of the given
1799     * task, or in turn one of its stealers, Traces currentSteal ->
1800     * currentJoin links looking for a thread working on a descendant
1801     * of the given task and with a non-empty queue to steal back and
1802     * execute tasks from. The first call to this method upon a
1803     * waiting join will often entail scanning/search, (which is OK
1804     * because the joiner has nothing better to do), but this method
1805     * leaves hints in workers to speed up subsequent calls. The
1806     * implementation is very branchy to cope with potential
1807     * inconsistencies or loops encountering chains that are stale,
1808 dl 1.95 * unknown, or so long that they are likely cyclic.
1809 dl 1.78 *
1810     * @param joiner the joining worker
1811     * @param task the task to join
1812 dl 1.95 * @return 0 if no progress can be made, negative if task
1813     * known complete, else positive
1814 dl 1.78 */
1815 dl 1.95 private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1816     int stat = 0, steps = 0; // bound to avoid cycles
1817     if (joiner != null && task != null) { // hoist null checks
1818     restart: for (;;) {
1819     ForkJoinTask<?> subtask = task; // current target
1820     for (WorkQueue j = joiner, v;;) { // v is stealer of subtask
1821     WorkQueue[] ws; int m, s, h;
1822     if ((s = task.status) < 0) {
1823     stat = s;
1824     break restart;
1825     }
1826     if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1827     break restart; // shutting down
1828 dl 1.112 if ((v = ws[h = (j.hint | 1) & m]) == null ||
1829 dl 1.95 v.currentSteal != subtask) {
1830     for (int origin = h;;) { // find stealer
1831     if (((h = (h + 2) & m) & 15) == 1 &&
1832     (subtask.status < 0 || j.currentJoin != subtask))
1833     continue restart; // occasional staleness check
1834     if ((v = ws[h]) != null &&
1835     v.currentSteal == subtask) {
1836 dl 1.112 j.hint = h; // save hint
1837 dl 1.95 break;
1838     }
1839     if (h == origin)
1840     break restart; // cannot find stealer
1841 dl 1.78 }
1842     }
1843 dl 1.95 for (;;) { // help stealer or descend to its stealer
1844     ForkJoinTask[] a; int b;
1845     if (subtask.status < 0) // surround probes with
1846     continue restart; // consistency checks
1847     if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1848     int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1849     ForkJoinTask<?> t =
1850     (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1851     if (subtask.status < 0 || j.currentJoin != subtask ||
1852     v.currentSteal != subtask)
1853     continue restart; // stale
1854     stat = 1; // apparent progress
1855     if (t != null && v.base == b &&
1856     U.compareAndSwapObject(a, i, t, null)) {
1857     v.base = b + 1; // help stealer
1858     joiner.runSubtask(t);
1859     }
1860     else if (v.base == b && ++steps == MAX_HELP)
1861     break restart; // v apparently stalled
1862     }
1863     else { // empty -- try to descend
1864     ForkJoinTask<?> next = v.currentJoin;
1865     if (subtask.status < 0 || j.currentJoin != subtask ||
1866     v.currentSteal != subtask)
1867     continue restart; // stale
1868     else if (next == null || ++steps == MAX_HELP)
1869     break restart; // dead-end or maybe cyclic
1870     else {
1871     subtask = next;
1872     j = v;
1873     break;
1874     }
1875 dl 1.78 }
1876 dl 1.52 }
1877 dl 1.19 }
1878 dl 1.78 }
1879 dl 1.14 }
1880 dl 1.95 return stat;
1881 dl 1.22 }
1882    
1883 dl 1.52 /**
1884 dl 1.105 * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1885 jsr166 1.111 * and run tasks within the target's computation.
1886 dl 1.105 *
1887     * @param task the task to join
1888     * @param mode if shared, exit upon completing any task
1889     * if all workers are active
1890 dl 1.19 */
1891 dl 1.105 private int helpComplete(ForkJoinTask<?> task, int mode) {
1892 dl 1.112 WorkQueue[] ws; WorkQueue q; int m, n, s, u;
1893 dl 1.105 if (task != null && (ws = workQueues) != null &&
1894     (m = ws.length - 1) >= 0) {
1895     for (int j = 1, origin = j;;) {
1896     if ((s = task.status) < 0)
1897     return s;
1898     if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) {
1899     origin = j;
1900 dl 1.112 if (mode == SHARED_QUEUE &&
1901     ((u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0))
1902 dl 1.105 break;
1903     }
1904     else if ((j = (j + 2) & m) == origin)
1905 dl 1.78 break;
1906 dl 1.52 }
1907     }
1908 dl 1.105 return 0;
1909 dl 1.14 }
1910    
1911     /**
1912 dl 1.90 * Tries to decrement active count (sometimes implicitly) and
1913     * possibly release or create a compensating worker in preparation
1914     * for blocking. Fails on contention or termination. Otherwise,
1915 dl 1.105 * adds a new thread if no idle workers are available and pool
1916     * may become starved.
1917 dl 1.90 */
1918 dl 1.105 final boolean tryCompensate() {
1919 dl 1.112 int pc = config & SMASK, e, i, tc; long c;
1920 dl 1.105 WorkQueue[] ws; WorkQueue w; Thread p;
1921 dl 1.112 if ((ws = workQueues) != null && (e = (int)(c = ctl)) >= 0) {
1922 dl 1.105 if (e != 0 && (i = e & SMASK) < ws.length &&
1923     (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1924     long nc = ((long)(w.nextWait & E_MASK) |
1925     (c & (AC_MASK|TC_MASK)));
1926     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1927     w.eventCount = (e + E_SEQ) & E_MASK;
1928     if ((p = w.parker) != null)
1929     U.unpark(p);
1930     return true; // replace with idle worker
1931 dl 1.90 }
1932     }
1933 dl 1.112 else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
1934     (int)(c >> AC_SHIFT) + pc > 1) {
1935 dl 1.105 long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1936     if (U.compareAndSwapLong(this, CTL, c, nc))
1937 dl 1.112 return true; // no compensation
1938 dl 1.105 }
1939 dl 1.112 else if (tc + pc < MAX_CAP) {
1940 dl 1.105 long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1941     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1942 dl 1.115 ForkJoinWorkerThreadFactory fac;
1943     Throwable ex = null;
1944     ForkJoinWorkerThread wt = null;
1945     try {
1946     if ((fac = factory) != null &&
1947     (wt = fac.newThread(this)) != null) {
1948     wt.start();
1949     return true;
1950     }
1951     } catch (Throwable rex) {
1952     ex = rex;
1953     }
1954     deregisterWorker(wt, ex); // clean up and return false
1955 dl 1.90 }
1956     }
1957     }
1958     return false;
1959     }
1960    
1961     /**
1962 jsr166 1.93 * Helps and/or blocks until the given task is done.
1963 dl 1.90 *
1964     * @param joiner the joining worker
1965     * @param task the task
1966     * @return task status on exit
1967     */
1968     final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1969 dl 1.105 int s = 0;
1970     if (joiner != null && task != null && (s = task.status) >= 0) {
1971 dl 1.95 ForkJoinTask<?> prevJoin = joiner.currentJoin;
1972 dl 1.94 joiner.currentJoin = task;
1973 dl 1.115 do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
1974 dl 1.105 joiner.tryRemoveAndExec(task)); // process local tasks
1975 dl 1.115 if (s >= 0 && (s = task.status) >= 0) {
1976 dl 1.120 helpSignal(task, joiner.poolIndex);
1977 dl 1.115 if ((s = task.status) >= 0 &&
1978     (task instanceof CountedCompleter))
1979     s = helpComplete(task, LIFO_QUEUE);
1980     }
1981 dl 1.105 while (s >= 0 && (s = task.status) >= 0) {
1982 dl 1.115 if ((!joiner.isEmpty() || // try helping
1983 dl 1.105 (s = tryHelpStealer(joiner, task)) == 0) &&
1984 dl 1.112 (s = task.status) >= 0) {
1985 dl 1.120 helpSignal(task, joiner.poolIndex);
1986 dl 1.115 if ((s = task.status) >= 0 && tryCompensate()) {
1987 dl 1.112 if (task.trySetSignal() && (s = task.status) >= 0) {
1988     synchronized (task) {
1989     if (task.status >= 0) {
1990     try { // see ForkJoinTask
1991     task.wait(); // for explanation
1992     } catch (InterruptedException ie) {
1993     }
1994 dl 1.90 }
1995 dl 1.112 else
1996     task.notifyAll();
1997 dl 1.90 }
1998     }
1999 dl 1.112 long c; // re-activate
2000     do {} while (!U.compareAndSwapLong
2001     (this, CTL, c = ctl, c + AC_UNIT));
2002 dl 1.90 }
2003     }
2004     }
2005 dl 1.105 joiner.currentJoin = prevJoin;
2006 dl 1.90 }
2007 dl 1.94 return s;
2008 dl 1.90 }
2009    
2010     /**
2011     * Stripped-down variant of awaitJoin used by timed joins. Tries
2012     * to help join only while there is continuous progress. (Caller
2013     * will then enter a timed wait.)
2014     *
2015     * @param joiner the joining worker
2016     * @param task the task
2017     */
2018 dl 1.105 final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2019 dl 1.90 int s;
2020 dl 1.105 if (joiner != null && task != null && (s = task.status) >= 0) {
2021     ForkJoinTask<?> prevJoin = joiner.currentJoin;
2022     joiner.currentJoin = task;
2023 dl 1.115 do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
2024 dl 1.105 joiner.tryRemoveAndExec(task));
2025 dl 1.115 if (s >= 0 && (s = task.status) >= 0) {
2026 dl 1.120 helpSignal(task, joiner.poolIndex);
2027 dl 1.115 if ((s = task.status) >= 0 &&
2028     (task instanceof CountedCompleter))
2029     s = helpComplete(task, LIFO_QUEUE);
2030     }
2031     if (s >= 0 && joiner.isEmpty()) {
2032 dl 1.105 do {} while (task.status >= 0 &&
2033     tryHelpStealer(joiner, task) > 0);
2034     }
2035     joiner.currentJoin = prevJoin;
2036     }
2037 dl 1.90 }
2038    
2039     /**
2040     * Returns a (probably) non-empty steal queue, if one is found
2041 dl 1.131 * during a scan, else null. This method must be retried by
2042     * caller if, by the time it tries to use the queue, it is empty.
2043 dl 1.105 * @param r a (random) seed for scanning
2044 dl 1.78 */
2045 dl 1.105 private WorkQueue findNonEmptyStealQueue(int r) {
2046 dl 1.131 for (;;) {
2047     int ps = plock, m; WorkQueue[] ws; WorkQueue q;
2048     if ((ws = workQueues) != null && (m = ws.length - 1) >= 0) {
2049     for (int j = (m + 1) << 2; j >= 0; --j) {
2050     if ((q = ws[(((r + j) << 1) | 1) & m]) != null &&
2051     q.base - q.top < 0)
2052     return q;
2053 dl 1.52 }
2054     }
2055 dl 1.131 if (plock == ps)
2056     return null;
2057 dl 1.22 }
2058     }
2059    
2060     /**
2061 dl 1.78 * Runs tasks until {@code isQuiescent()}. We piggyback on
2062     * active count ctl maintenance, but rather than blocking
2063     * when tasks cannot be found, we rescan until all others cannot
2064     * find tasks either.
2065     */
2066     final void helpQuiescePool(WorkQueue w) {
2067     for (boolean active = true;;) {
2068 dl 1.131 long c; WorkQueue q; ForkJoinTask<?> t; int b;
2069     while ((t = w.nextLocalTask()) != null) {
2070     if (w.base - w.top < 0)
2071     signalWork(w);
2072     t.doExec();
2073     }
2074     if ((q = findNonEmptyStealQueue(w.nextSeed())) != null) {
2075 dl 1.78 if (!active) { // re-establish active count
2076     active = true;
2077     do {} while (!U.compareAndSwapLong
2078     (this, CTL, c = ctl, c + AC_UNIT));
2079     }
2080 dl 1.130 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2081     if (q.base - q.top < 0)
2082     signalWork(q);
2083 dl 1.78 w.runSubtask(t);
2084 dl 1.130 }
2085 dl 1.78 }
2086 dl 1.131 else if (active) { // decrement active count without queuing
2087     long nc = (c = ctl) - AC_UNIT;
2088     if ((int)(nc >> AC_SHIFT) + (config & SMASK) == 0)
2089     return; // bypass decrement-then-increment
2090     if (U.compareAndSwapLong(this, CTL, c, nc))
2091 dl 1.78 active = false;
2092 dl 1.22 }
2093 dl 1.131 else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) == 0 &&
2094     U.compareAndSwapLong(this, CTL, c, c + AC_UNIT))
2095     return;
2096 dl 1.22 }
2097     }
2098    
2099     /**
2100 jsr166 1.84 * Gets and removes a local or stolen task for the given worker.
2101 dl 1.78 *
2102     * @return a task, if available
2103 dl 1.22 */
2104 dl 1.78 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2105     for (ForkJoinTask<?> t;;) {
2106 dl 1.90 WorkQueue q; int b;
2107 dl 1.78 if ((t = w.nextLocalTask()) != null)
2108     return t;
2109 dl 1.105 if ((q = findNonEmptyStealQueue(w.nextSeed())) == null)
2110 dl 1.78 return null;
2111 dl 1.130 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2112     if (q.base - q.top < 0)
2113     signalWork(q);
2114 dl 1.78 return t;
2115 dl 1.130 }
2116 dl 1.52 }
2117 dl 1.14 }
2118    
2119     /**
2120 dl 1.105 * Returns a cheap heuristic guide for task partitioning when
2121     * programmers, frameworks, tools, or languages have little or no
2122     * idea about task granularity. In essence by offering this
2123     * method, we ask users only about tradeoffs in overhead vs
2124     * expected throughput and its variance, rather than how finely to
2125     * partition tasks.
2126     *
2127     * In a steady state strict (tree-structured) computation, each
2128     * thread makes available for stealing enough tasks for other
2129     * threads to remain active. Inductively, if all threads play by
2130     * the same rules, each thread should make available only a
2131     * constant number of tasks.
2132     *
2133     * The minimum useful constant is just 1. But using a value of 1
2134     * would require immediate replenishment upon each steal to
2135     * maintain enough tasks, which is infeasible. Further,
2136     * partitionings/granularities of offered tasks should minimize
2137     * steal rates, which in general means that threads nearer the top
2138     * of computation tree should generate more than those nearer the
2139     * bottom. In perfect steady state, each thread is at
2140     * approximately the same level of computation tree. However,
2141     * producing extra tasks amortizes the uncertainty of progress and
2142     * diffusion assumptions.
2143     *
2144     * So, users will want to use values larger, but not much larger
2145     * than 1 to both smooth over transient shortages and hedge
2146     * against uneven progress; as traded off against the cost of
2147     * extra task overhead. We leave the user to pick a threshold
2148     * value to compare with the results of this call to guide
2149     * decisions, but recommend values such as 3.
2150     *
2151     * When all threads are active, it is on average OK to estimate
2152     * surplus strictly locally. In steady-state, if one thread is
2153     * maintaining say 2 surplus tasks, then so are others. So we can
2154     * just use estimated queue length. However, this strategy alone
2155     * leads to serious mis-estimates in some non-steady-state
2156     * conditions (ramp-up, ramp-down, other stalls). We can detect
2157     * many of these by further considering the number of "idle"
2158     * threads, that are known to have zero queued tasks, so
2159     * compensate by a factor of (#idle/#active) threads.
2160     *
2161     * Note: The approximation of #busy workers as #active workers is
2162     * not very good under current signalling scheme, and should be
2163     * improved.
2164     */
2165     static int getSurplusQueuedTaskCount() {
2166     Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2167     if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2168 dl 1.112 int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2169     int n = (q = wt.workQueue).top - q.base;
2170 dl 1.105 int a = (int)(pool.ctl >> AC_SHIFT) + p;
2171 dl 1.112 return n - (a > (p >>>= 1) ? 0 :
2172     a > (p >>>= 1) ? 1 :
2173     a > (p >>>= 1) ? 2 :
2174     a > (p >>>= 1) ? 4 :
2175     8);
2176 dl 1.105 }
2177     return 0;
2178 dl 1.100 }
2179    
2180 dl 1.86 // Termination
2181 dl 1.14
2182     /**
2183 dl 1.86 * Possibly initiates and/or completes termination. The caller
2184     * triggering termination runs three passes through workQueues:
2185     * (0) Setting termination status, followed by wakeups of queued
2186     * workers; (1) cancelling all tasks; (2) interrupting lagging
2187     * threads (likely in external tasks, but possibly also blocked in
2188     * joins). Each pass repeats previous steps because of potential
2189     * lagging thread creation.
2190 dl 1.14 *
2191     * @param now if true, unconditionally terminate, else only
2192 dl 1.78 * if no work and no active workers
2193 jsr166 1.87 * @param enable if true, enable shutdown when next possible
2194 dl 1.14 * @return true if now terminating or terminated
2195 jsr166 1.1 */
2196 dl 1.86 private boolean tryTerminate(boolean now, boolean enable) {
2197 dl 1.131 int ps;
2198 dl 1.134 if (this == common) // cannot shut down
2199 dl 1.105 return false;
2200 dl 1.131 if ((ps = plock) >= 0) { // enable by setting plock
2201     if (!enable)
2202     return false;
2203     if ((ps & PL_LOCK) != 0 ||
2204     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2205     ps = acquirePlock();
2206     int nps = ((ps + PL_LOCK) & ~SHUTDOWN) | SHUTDOWN;
2207     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2208     releasePlock(nps);
2209     }
2210 dl 1.78 for (long c;;) {
2211 dl 1.131 if (((c = ctl) & STOP_BIT) != 0) { // already terminating
2212 dl 1.112 if ((short)(c >>> TC_SHIFT) == -(config & SMASK)) {
2213 jsr166 1.103 synchronized (this) {
2214 dl 1.131 notifyAll(); // signal when 0 workers
2215 dl 1.101 }
2216 dl 1.78 }
2217     return true;
2218     }
2219 dl 1.131 if (!now) { // check if idle & no tasks
2220     WorkQueue[] ws; WorkQueue w;
2221     if ((int)(c >> AC_SHIFT) != -(config & SMASK))
2222 dl 1.86 return false;
2223 dl 1.131 if ((ws = workQueues) != null) {
2224     for (int i = 0; i < ws.length; ++i) {
2225     if ((w = ws[i]) != null) {
2226     if (!w.isEmpty()) { // signal unprocessed tasks
2227     signalWork(w);
2228     return false;
2229     }
2230     if ((i & 1) != 0 && w.eventCount >= 0)
2231     return false; // unqueued inactive worker
2232     }
2233 dl 1.78 }
2234 dl 1.52 }
2235     }
2236 dl 1.86 if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2237     for (int pass = 0; pass < 3; ++pass) {
2238 dl 1.131 WorkQueue[] ws; WorkQueue w; Thread wt;
2239     if ((ws = workQueues) != null) {
2240 dl 1.86 int n = ws.length;
2241     for (int i = 0; i < n; ++i) {
2242     if ((w = ws[i]) != null) {
2243 dl 1.105 w.qlock = -1;
2244 dl 1.86 if (pass > 0) {
2245     w.cancelAll();
2246 dl 1.126 if (pass > 1 && (wt = w.owner) != null) {
2247     if (!wt.isInterrupted()) {
2248     try {
2249     wt.interrupt();
2250 dl 1.131 } catch (Throwable ignore) {
2251 dl 1.126 }
2252     }
2253     U.unpark(wt);
2254     }
2255 dl 1.52 }
2256 dl 1.19 }
2257     }
2258 dl 1.86 // Wake up workers parked on event queue
2259     int i, e; long cc; Thread p;
2260     while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2261 dl 1.131 (i = e & SMASK) < n && i >= 0 &&
2262 dl 1.86 (w = ws[i]) != null) {
2263     long nc = ((long)(w.nextWait & E_MASK) |
2264     ((cc + AC_UNIT) & AC_MASK) |
2265     (cc & (TC_MASK|STOP_BIT)));
2266     if (w.eventCount == (e | INT_SIGN) &&
2267     U.compareAndSwapLong(this, CTL, cc, nc)) {
2268     w.eventCount = (e + E_SEQ) & E_MASK;
2269 dl 1.105 w.qlock = -1;
2270 dl 1.86 if ((p = w.parker) != null)
2271     U.unpark(p);
2272     }
2273     }
2274 dl 1.78 }
2275 dl 1.52 }
2276     }
2277     }
2278     }
2279    
2280 dl 1.105 // external operations on common pool
2281    
2282     /**
2283     * Returns common pool queue for a thread that has submitted at
2284     * least one task.
2285     */
2286     static WorkQueue commonSubmitterQueue() {
2287 dl 1.139 ForkJoinPool p; WorkQueue[] ws; int m, z;
2288     return ((z = ThreadLocalRandom.getProbe()) != 0 &&
2289 dl 1.134 (p = common) != null &&
2290 dl 1.105 (ws = p.workQueues) != null &&
2291     (m = ws.length - 1) >= 0) ?
2292 dl 1.139 ws[m & z & SQMASK] : null;
2293 dl 1.105 }
2294    
2295     /**
2296     * Tries to pop the given task from submitter's queue in common pool.
2297     */
2298     static boolean tryExternalUnpush(ForkJoinTask<?> t) {
2299 dl 1.139 ForkJoinPool p; WorkQueue[] ws; WorkQueue q;
2300     ForkJoinTask<?>[] a; int m, s, z;
2301 dl 1.115 if (t != null &&
2302 dl 1.139 (z = ThreadLocalRandom.getProbe()) != 0 &&
2303 dl 1.134 (p = common) != null &&
2304 dl 1.105 (ws = p.workQueues) != null &&
2305     (m = ws.length - 1) >= 0 &&
2306 dl 1.139 (q = ws[m & z & SQMASK]) != null &&
2307 dl 1.105 (s = q.top) != q.base &&
2308 dl 1.115 (a = q.array) != null) {
2309     long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
2310     if (U.getObject(a, j) == t &&
2311     U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2312     if (q.array == a && q.top == s && // recheck
2313     U.compareAndSwapObject(a, j, t, null)) {
2314     q.top = s - 1;
2315     q.qlock = 0;
2316     return true;
2317     }
2318 dl 1.105 q.qlock = 0;
2319     }
2320     }
2321     return false;
2322     }
2323    
2324     /**
2325     * Tries to pop and run local tasks within the same computation
2326     * as the given root. On failure, tries to help complete from
2327     * other queues via helpComplete.
2328     */
2329     private void externalHelpComplete(WorkQueue q, ForkJoinTask<?> root) {
2330     ForkJoinTask<?>[] a; int m;
2331     if (q != null && (a = q.array) != null && (m = (a.length - 1)) >= 0 &&
2332     root != null && root.status >= 0) {
2333     for (;;) {
2334 dl 1.112 int s, u; Object o; CountedCompleter<?> task = null;
2335 dl 1.105 if ((s = q.top) - q.base > 0) {
2336     long j = ((m & (s - 1)) << ASHIFT) + ABASE;
2337     if ((o = U.getObject(a, j)) != null &&
2338     (o instanceof CountedCompleter)) {
2339     CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2340     do {
2341     if (r == root) {
2342     if (U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2343     if (q.array == a && q.top == s &&
2344     U.compareAndSwapObject(a, j, t, null)) {
2345     q.top = s - 1;
2346     task = t;
2347     }
2348     q.qlock = 0;
2349     }
2350     break;
2351     }
2352 jsr166 1.106 } while ((r = r.completer) != null);
2353 dl 1.105 }
2354     }
2355     if (task != null)
2356     task.doExec();
2357 dl 1.112 if (root.status < 0 ||
2358     (u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0)
2359 dl 1.105 break;
2360     if (task == null) {
2361 dl 1.120 helpSignal(root, q.poolIndex);
2362 dl 1.115 if (root.status >= 0)
2363 dl 1.105 helpComplete(root, SHARED_QUEUE);
2364     break;
2365     }
2366     }
2367     }
2368     }
2369    
2370     /**
2371     * Tries to help execute or signal availability of the given task
2372     * from submitter's queue in common pool.
2373     */
2374     static void externalHelpJoin(ForkJoinTask<?> t) {
2375     // Some hard-to-avoid overlap with tryExternalUnpush
2376 dl 1.139 ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w;
2377     ForkJoinTask<?>[] a; int m, s, n, z;
2378 dl 1.112 if (t != null &&
2379 dl 1.139 (z = ThreadLocalRandom.getProbe()) != 0 &&
2380 dl 1.134 (p = common) != null &&
2381 dl 1.105 (ws = p.workQueues) != null &&
2382     (m = ws.length - 1) >= 0 &&
2383 dl 1.139 (q = ws[m & z & SQMASK]) != null &&
2384 dl 1.115 (a = q.array) != null) {
2385     int am = a.length - 1;
2386     if ((s = q.top) != q.base) {
2387     long j = ((am & (s - 1)) << ASHIFT) + ABASE;
2388     if (U.getObject(a, j) == t &&
2389     U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2390     if (q.array == a && q.top == s &&
2391     U.compareAndSwapObject(a, j, t, null)) {
2392     q.top = s - 1;
2393     q.qlock = 0;
2394     t.doExec();
2395     }
2396     else
2397     q.qlock = 0;
2398 dl 1.105 }
2399     }
2400     if (t.status >= 0) {
2401     if (t instanceof CountedCompleter)
2402     p.externalHelpComplete(q, t);
2403     else
2404 dl 1.120 p.helpSignal(t, q.poolIndex);
2405 dl 1.105 }
2406     }
2407     }
2408    
2409 dl 1.52 // Exported methods
2410 jsr166 1.1
2411     // Constructors
2412    
2413     /**
2414 jsr166 1.9 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2415 dl 1.18 * java.lang.Runtime#availableProcessors}, using the {@linkplain
2416     * #defaultForkJoinWorkerThreadFactory default thread factory},
2417     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2418 jsr166 1.1 *
2419     * @throws SecurityException if a security manager exists and
2420     * the caller is not permitted to modify threads
2421     * because it does not hold {@link
2422     * java.lang.RuntimePermission}{@code ("modifyThread")}
2423     */
2424     public ForkJoinPool() {
2425     this(Runtime.getRuntime().availableProcessors(),
2426 dl 1.18 defaultForkJoinWorkerThreadFactory, null, false);
2427 jsr166 1.1 }
2428    
2429     /**
2430 jsr166 1.9 * Creates a {@code ForkJoinPool} with the indicated parallelism
2431 dl 1.18 * level, the {@linkplain
2432     * #defaultForkJoinWorkerThreadFactory default thread factory},
2433     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2434 jsr166 1.1 *
2435 jsr166 1.9 * @param parallelism the parallelism level
2436 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
2437 jsr166 1.11 * equal to zero, or greater than implementation limit
2438 jsr166 1.1 * @throws SecurityException if a security manager exists and
2439     * the caller is not permitted to modify threads
2440     * because it does not hold {@link
2441     * java.lang.RuntimePermission}{@code ("modifyThread")}
2442     */
2443     public ForkJoinPool(int parallelism) {
2444 dl 1.18 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2445 jsr166 1.1 }
2446    
2447     /**
2448 dl 1.18 * Creates a {@code ForkJoinPool} with the given parameters.
2449 jsr166 1.1 *
2450 dl 1.18 * @param parallelism the parallelism level. For default value,
2451     * use {@link java.lang.Runtime#availableProcessors}.
2452     * @param factory the factory for creating new threads. For default value,
2453     * use {@link #defaultForkJoinWorkerThreadFactory}.
2454 dl 1.19 * @param handler the handler for internal worker threads that
2455     * terminate due to unrecoverable errors encountered while executing
2456 jsr166 1.31 * tasks. For default value, use {@code null}.
2457 dl 1.19 * @param asyncMode if true,
2458 dl 1.18 * establishes local first-in-first-out scheduling mode for forked
2459     * tasks that are never joined. This mode may be more appropriate
2460     * than default locally stack-based mode in applications in which
2461     * worker threads only process event-style asynchronous tasks.
2462 jsr166 1.31 * For default value, use {@code false}.
2463 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
2464 jsr166 1.11 * equal to zero, or greater than implementation limit
2465     * @throws NullPointerException if the factory is null
2466 jsr166 1.1 * @throws SecurityException if a security manager exists and
2467     * the caller is not permitted to modify threads
2468     * because it does not hold {@link
2469     * java.lang.RuntimePermission}{@code ("modifyThread")}
2470     */
2471 dl 1.19 public ForkJoinPool(int parallelism,
2472 dl 1.18 ForkJoinWorkerThreadFactory factory,
2473     Thread.UncaughtExceptionHandler handler,
2474     boolean asyncMode) {
2475 dl 1.14 checkPermission();
2476     if (factory == null)
2477     throw new NullPointerException();
2478 dl 1.90 if (parallelism <= 0 || parallelism > MAX_CAP)
2479 jsr166 1.1 throw new IllegalArgumentException();
2480     this.factory = factory;
2481 dl 1.18 this.ueh = handler;
2482 jsr166 1.113 this.config = parallelism | (asyncMode ? (FIFO_QUEUE << 16) : 0);
2483 dl 1.52 long np = (long)(-parallelism); // offset ctl counts
2484     this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2485 dl 1.105 int pn = nextPoolId();
2486 dl 1.52 StringBuilder sb = new StringBuilder("ForkJoinPool-");
2487 dl 1.90 sb.append(Integer.toString(pn));
2488 dl 1.52 sb.append("-worker-");
2489     this.workerNamePrefix = sb.toString();
2490 jsr166 1.1 }
2491    
2492 dl 1.100 /**
2493 dl 1.101 * Constructor for common pool, suitable only for static initialization.
2494     * Basically the same as above, but uses smallest possible initial footprint.
2495     */
2496 dl 1.105 ForkJoinPool(int parallelism, long ctl,
2497 dl 1.101 ForkJoinWorkerThreadFactory factory,
2498     Thread.UncaughtExceptionHandler handler) {
2499 dl 1.112 this.config = parallelism;
2500 dl 1.105 this.ctl = ctl;
2501 dl 1.101 this.factory = factory;
2502     this.ueh = handler;
2503     this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2504     }
2505    
2506     /**
2507 dl 1.128 * Returns the common pool instance. This pool is statically
2508 dl 1.134 * constructed; its run state is unaffected by attempts to {@link
2509     * #shutdown} or {@link #shutdownNow}. However this pool and any
2510     * ongoing processing are automatically terminated upon program
2511     * {@link System#exit}. Any program that relies on asynchronous
2512     * task processing to complete before program termination should
2513 dl 1.136 * invoke {@code commonPool().}{@link #awaitQuiescence}, before
2514     * exit.
2515 dl 1.100 *
2516     * @return the common pool instance
2517 jsr166 1.138 * @since 1.8
2518 dl 1.100 */
2519     public static ForkJoinPool commonPool() {
2520 dl 1.134 // assert common != null : "static init error";
2521     return common;
2522 dl 1.100 }
2523    
2524 jsr166 1.1 // Execution methods
2525    
2526     /**
2527     * Performs the given task, returning its result upon completion.
2528 dl 1.52 * If the computation encounters an unchecked Exception or Error,
2529     * it is rethrown as the outcome of this invocation. Rethrown
2530     * exceptions behave in the same way as regular exceptions, but,
2531     * when possible, contain stack traces (as displayed for example
2532     * using {@code ex.printStackTrace()}) of both the current thread
2533     * as well as the thread actually encountering the exception;
2534     * minimally only the latter.
2535 jsr166 1.1 *
2536     * @param task the task
2537     * @return the task's result
2538 jsr166 1.11 * @throws NullPointerException if the task is null
2539     * @throws RejectedExecutionException if the task cannot be
2540     * scheduled for execution
2541 jsr166 1.1 */
2542     public <T> T invoke(ForkJoinTask<T> task) {
2543 dl 1.90 if (task == null)
2544     throw new NullPointerException();
2545 dl 1.105 externalPush(task);
2546 dl 1.78 return task.join();
2547 jsr166 1.1 }
2548    
2549     /**
2550     * Arranges for (asynchronous) execution of the given task.
2551     *
2552     * @param task the task
2553 jsr166 1.11 * @throws NullPointerException if the task is null
2554     * @throws RejectedExecutionException if the task cannot be
2555     * scheduled for execution
2556 jsr166 1.1 */
2557 jsr166 1.8 public void execute(ForkJoinTask<?> task) {
2558 dl 1.90 if (task == null)
2559     throw new NullPointerException();
2560 dl 1.105 externalPush(task);
2561 jsr166 1.1 }
2562    
2563     // AbstractExecutorService methods
2564    
2565 jsr166 1.11 /**
2566     * @throws NullPointerException if the task is null
2567     * @throws RejectedExecutionException if the task cannot be
2568     * scheduled for execution
2569     */
2570 jsr166 1.1 public void execute(Runnable task) {
2571 dl 1.41 if (task == null)
2572     throw new NullPointerException();
2573 jsr166 1.2 ForkJoinTask<?> job;
2574 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2575     job = (ForkJoinTask<?>) task;
2576 jsr166 1.2 else
2577 dl 1.90 job = new ForkJoinTask.AdaptedRunnableAction(task);
2578 dl 1.105 externalPush(job);
2579 jsr166 1.1 }
2580    
2581 jsr166 1.11 /**
2582 dl 1.18 * Submits a ForkJoinTask for execution.
2583     *
2584     * @param task the task to submit
2585     * @return the task
2586     * @throws NullPointerException if the task is null
2587     * @throws RejectedExecutionException if the task cannot be
2588     * scheduled for execution
2589     */
2590     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2591 dl 1.90 if (task == null)
2592     throw new NullPointerException();
2593 dl 1.105 externalPush(task);
2594 dl 1.18 return task;
2595     }
2596    
2597     /**
2598 jsr166 1.11 * @throws NullPointerException if the task is null
2599     * @throws RejectedExecutionException if the task cannot be
2600     * scheduled for execution
2601     */
2602 jsr166 1.1 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2603 dl 1.90 ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2604 dl 1.105 externalPush(job);
2605 jsr166 1.1 return job;
2606     }
2607    
2608 jsr166 1.11 /**
2609     * @throws NullPointerException if the task is null
2610     * @throws RejectedExecutionException if the task cannot be
2611     * scheduled for execution
2612     */
2613 jsr166 1.1 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2614 dl 1.90 ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2615 dl 1.105 externalPush(job);
2616 jsr166 1.1 return job;
2617     }
2618    
2619 jsr166 1.11 /**
2620     * @throws NullPointerException if the task is null
2621     * @throws RejectedExecutionException if the task cannot be
2622     * scheduled for execution
2623     */
2624 jsr166 1.1 public ForkJoinTask<?> submit(Runnable task) {
2625 dl 1.41 if (task == null)
2626     throw new NullPointerException();
2627 jsr166 1.2 ForkJoinTask<?> job;
2628 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2629     job = (ForkJoinTask<?>) task;
2630 jsr166 1.2 else
2631 dl 1.90 job = new ForkJoinTask.AdaptedRunnableAction(task);
2632 dl 1.105 externalPush(job);
2633 jsr166 1.1 return job;
2634     }
2635    
2636     /**
2637 jsr166 1.11 * @throws NullPointerException {@inheritDoc}
2638     * @throws RejectedExecutionException {@inheritDoc}
2639     */
2640 jsr166 1.1 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2641 dl 1.86 // In previous versions of this class, this method constructed
2642     // a task to run ForkJoinTask.invokeAll, but now external
2643     // invocation of multiple tasks is at least as efficient.
2644 jsr166 1.143 ArrayList<Future<T>> futures = new ArrayList<Future<T>>(tasks.size());
2645 jsr166 1.1
2646 dl 1.86 boolean done = false;
2647     try {
2648     for (Callable<T> t : tasks) {
2649 dl 1.90 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2650 jsr166 1.144 futures.add(f);
2651 dl 1.105 externalPush(f);
2652 dl 1.86 }
2653 jsr166 1.143 for (int i = 0, size = futures.size(); i < size; i++)
2654     ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2655 dl 1.86 done = true;
2656     return futures;
2657     } finally {
2658     if (!done)
2659 jsr166 1.143 for (int i = 0, size = futures.size(); i < size; i++)
2660     futures.get(i).cancel(false);
2661 jsr166 1.1 }
2662     }
2663    
2664     /**
2665     * Returns the factory used for constructing new workers.
2666     *
2667     * @return the factory used for constructing new workers
2668     */
2669     public ForkJoinWorkerThreadFactory getFactory() {
2670     return factory;
2671     }
2672    
2673     /**
2674     * Returns the handler for internal worker threads that terminate
2675     * due to unrecoverable errors encountered while executing tasks.
2676     *
2677 jsr166 1.4 * @return the handler, or {@code null} if none
2678 jsr166 1.1 */
2679     public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
2680 dl 1.14 return ueh;
2681 jsr166 1.1 }
2682    
2683     /**
2684 jsr166 1.9 * Returns the targeted parallelism level of this pool.
2685 jsr166 1.1 *
2686 jsr166 1.9 * @return the targeted parallelism level of this pool
2687 jsr166 1.1 */
2688     public int getParallelism() {
2689 dl 1.112 return config & SMASK;
2690 jsr166 1.1 }
2691    
2692     /**
2693 dl 1.100 * Returns the targeted parallelism level of the common pool.
2694     *
2695     * @return the targeted parallelism level of the common pool
2696 jsr166 1.138 * @since 1.8
2697 dl 1.100 */
2698     public static int getCommonPoolParallelism() {
2699 dl 1.134 return commonParallelism;
2700 dl 1.100 }
2701    
2702     /**
2703 jsr166 1.1 * Returns the number of worker threads that have started but not
2704 jsr166 1.34 * yet terminated. The result returned by this method may differ
2705 jsr166 1.4 * from {@link #getParallelism} when threads are created to
2706 jsr166 1.1 * maintain parallelism when others are cooperatively blocked.
2707     *
2708     * @return the number of worker threads
2709     */
2710     public int getPoolSize() {
2711 dl 1.112 return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2712 jsr166 1.1 }
2713    
2714     /**
2715 jsr166 1.4 * Returns {@code true} if this pool uses local first-in-first-out
2716 jsr166 1.1 * scheduling mode for forked tasks that are never joined.
2717     *
2718 jsr166 1.4 * @return {@code true} if this pool uses async mode
2719 jsr166 1.1 */
2720     public boolean getAsyncMode() {
2721 dl 1.112 return (config >>> 16) == FIFO_QUEUE;
2722 jsr166 1.1 }
2723    
2724     /**
2725     * Returns an estimate of the number of worker threads that are
2726     * not blocked waiting to join tasks or for other managed
2727 dl 1.14 * synchronization. This method may overestimate the
2728     * number of running threads.
2729 jsr166 1.1 *
2730     * @return the number of worker threads
2731     */
2732     public int getRunningThreadCount() {
2733 dl 1.78 int rc = 0;
2734     WorkQueue[] ws; WorkQueue w;
2735     if ((ws = workQueues) != null) {
2736 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2737     if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2738 dl 1.78 ++rc;
2739     }
2740     }
2741     return rc;
2742 jsr166 1.1 }
2743    
2744     /**
2745     * Returns an estimate of the number of threads that are currently
2746     * stealing or executing tasks. This method may overestimate the
2747     * number of active threads.
2748     *
2749     * @return the number of active threads
2750     */
2751     public int getActiveThreadCount() {
2752 dl 1.112 int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2753 jsr166 1.63 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2754 jsr166 1.1 }
2755    
2756     /**
2757 jsr166 1.4 * Returns {@code true} if all worker threads are currently idle.
2758     * An idle worker is one that cannot obtain a task to execute
2759     * because none are available to steal from other threads, and
2760     * there are no pending submissions to the pool. This method is
2761     * conservative; it might not return {@code true} immediately upon
2762     * idleness of all threads, but will eventually become true if
2763     * threads remain inactive.
2764 jsr166 1.1 *
2765 jsr166 1.4 * @return {@code true} if all threads are currently idle
2766 jsr166 1.1 */
2767     public boolean isQuiescent() {
2768 dl 1.112 return (int)(ctl >> AC_SHIFT) + (config & SMASK) == 0;
2769 jsr166 1.1 }
2770    
2771     /**
2772     * Returns an estimate of the total number of tasks stolen from
2773     * one thread's work queue by another. The reported value
2774     * underestimates the actual total number of steals when the pool
2775     * is not quiescent. This value may be useful for monitoring and
2776     * tuning fork/join programs: in general, steal counts should be
2777     * high enough to keep threads busy, but low enough to avoid
2778     * overhead and contention across threads.
2779     *
2780     * @return the number of steals
2781     */
2782     public long getStealCount() {
2783 dl 1.101 long count = stealCount;
2784 dl 1.78 WorkQueue[] ws; WorkQueue w;
2785     if ((ws = workQueues) != null) {
2786 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2787 dl 1.78 if ((w = ws[i]) != null)
2788 dl 1.105 count += w.nsteals;
2789 dl 1.78 }
2790     }
2791     return count;
2792 jsr166 1.1 }
2793    
2794     /**
2795     * Returns an estimate of the total number of tasks currently held
2796     * in queues by worker threads (but not including tasks submitted
2797     * to the pool that have not begun executing). This value is only
2798     * an approximation, obtained by iterating across all threads in
2799     * the pool. This method may be useful for tuning task
2800     * granularities.
2801     *
2802     * @return the number of queued tasks
2803     */
2804     public long getQueuedTaskCount() {
2805     long count = 0;
2806 dl 1.78 WorkQueue[] ws; WorkQueue w;
2807     if ((ws = workQueues) != null) {
2808 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2809 dl 1.78 if ((w = ws[i]) != null)
2810     count += w.queueSize();
2811     }
2812 dl 1.52 }
2813 jsr166 1.1 return count;
2814     }
2815    
2816     /**
2817 jsr166 1.8 * Returns an estimate of the number of tasks submitted to this
2818 dl 1.55 * pool that have not yet begun executing. This method may take
2819 dl 1.52 * time proportional to the number of submissions.
2820 jsr166 1.1 *
2821     * @return the number of queued submissions
2822     */
2823     public int getQueuedSubmissionCount() {
2824 dl 1.78 int count = 0;
2825     WorkQueue[] ws; WorkQueue w;
2826     if ((ws = workQueues) != null) {
2827 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2828 dl 1.78 if ((w = ws[i]) != null)
2829     count += w.queueSize();
2830     }
2831     }
2832     return count;
2833 jsr166 1.1 }
2834    
2835     /**
2836 jsr166 1.4 * Returns {@code true} if there are any tasks submitted to this
2837     * pool that have not yet begun executing.
2838 jsr166 1.1 *
2839     * @return {@code true} if there are any queued submissions
2840     */
2841     public boolean hasQueuedSubmissions() {
2842 dl 1.78 WorkQueue[] ws; WorkQueue w;
2843     if ((ws = workQueues) != null) {
2844 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2845 dl 1.115 if ((w = ws[i]) != null && !w.isEmpty())
2846 dl 1.78 return true;
2847     }
2848     }
2849     return false;
2850 jsr166 1.1 }
2851    
2852     /**
2853     * Removes and returns the next unexecuted submission if one is
2854     * available. This method may be useful in extensions to this
2855     * class that re-assign work in systems with multiple pools.
2856     *
2857 jsr166 1.4 * @return the next submission, or {@code null} if none
2858 jsr166 1.1 */
2859     protected ForkJoinTask<?> pollSubmission() {
2860 dl 1.78 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2861     if ((ws = workQueues) != null) {
2862 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2863 dl 1.78 if ((w = ws[i]) != null && (t = w.poll()) != null)
2864     return t;
2865 dl 1.52 }
2866     }
2867     return null;
2868 jsr166 1.1 }
2869    
2870     /**
2871     * Removes all available unexecuted submitted and forked tasks
2872     * from scheduling queues and adds them to the given collection,
2873     * without altering their execution status. These may include
2874 jsr166 1.8 * artificially generated or wrapped tasks. This method is
2875     * designed to be invoked only when the pool is known to be
2876 jsr166 1.1 * quiescent. Invocations at other times may not remove all
2877     * tasks. A failure encountered while attempting to add elements
2878     * to collection {@code c} may result in elements being in
2879     * neither, either or both collections when the associated
2880     * exception is thrown. The behavior of this operation is
2881     * undefined if the specified collection is modified while the
2882     * operation is in progress.
2883     *
2884     * @param c the collection to transfer elements into
2885     * @return the number of elements transferred
2886     */
2887 jsr166 1.5 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2888 dl 1.52 int count = 0;
2889 dl 1.78 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2890     if ((ws = workQueues) != null) {
2891 dl 1.86 for (int i = 0; i < ws.length; ++i) {
2892 dl 1.78 if ((w = ws[i]) != null) {
2893     while ((t = w.poll()) != null) {
2894     c.add(t);
2895     ++count;
2896     }
2897     }
2898 dl 1.52 }
2899     }
2900 dl 1.18 return count;
2901     }
2902    
2903     /**
2904 jsr166 1.1 * Returns a string identifying this pool, as well as its state,
2905     * including indications of run state, parallelism level, and
2906     * worker and task counts.
2907     *
2908     * @return a string identifying this pool, as well as its state
2909     */
2910     public String toString() {
2911 dl 1.86 // Use a single pass through workQueues to collect counts
2912     long qt = 0L, qs = 0L; int rc = 0;
2913 dl 1.101 long st = stealCount;
2914 dl 1.86 long c = ctl;
2915     WorkQueue[] ws; WorkQueue w;
2916     if ((ws = workQueues) != null) {
2917     for (int i = 0; i < ws.length; ++i) {
2918     if ((w = ws[i]) != null) {
2919     int size = w.queueSize();
2920     if ((i & 1) == 0)
2921     qs += size;
2922     else {
2923     qt += size;
2924 dl 1.105 st += w.nsteals;
2925 dl 1.86 if (w.isApparentlyUnblocked())
2926     ++rc;
2927     }
2928     }
2929     }
2930     }
2931 dl 1.112 int pc = (config & SMASK);
2932 dl 1.52 int tc = pc + (short)(c >>> TC_SHIFT);
2933 dl 1.78 int ac = pc + (int)(c >> AC_SHIFT);
2934     if (ac < 0) // ignore transient negative
2935     ac = 0;
2936 dl 1.52 String level;
2937     if ((c & STOP_BIT) != 0)
2938 jsr166 1.63 level = (tc == 0) ? "Terminated" : "Terminating";
2939 dl 1.52 else
2940 dl 1.105 level = plock < 0 ? "Shutting down" : "Running";
2941 jsr166 1.1 return super.toString() +
2942 dl 1.52 "[" + level +
2943 dl 1.14 ", parallelism = " + pc +
2944     ", size = " + tc +
2945     ", active = " + ac +
2946     ", running = " + rc +
2947 jsr166 1.1 ", steals = " + st +
2948     ", tasks = " + qt +
2949     ", submissions = " + qs +
2950     "]";
2951     }
2952    
2953     /**
2954 dl 1.100 * Possibly initiates an orderly shutdown in which previously
2955     * submitted tasks are executed, but no new tasks will be
2956     * accepted. Invocation has no effect on execution state if this
2957 jsr166 1.137 * is the {@link #commonPool()}, and no additional effect if
2958 dl 1.100 * already shut down. Tasks that are in the process of being
2959     * submitted concurrently during the course of this method may or
2960     * may not be rejected.
2961 jsr166 1.1 *
2962     * @throws SecurityException if a security manager exists and
2963     * the caller is not permitted to modify threads
2964     * because it does not hold {@link
2965     * java.lang.RuntimePermission}{@code ("modifyThread")}
2966     */
2967     public void shutdown() {
2968     checkPermission();
2969 dl 1.105 tryTerminate(false, true);
2970 jsr166 1.1 }
2971    
2972     /**
2973 dl 1.100 * Possibly attempts to cancel and/or stop all tasks, and reject
2974     * all subsequently submitted tasks. Invocation has no effect on
2975 jsr166 1.137 * execution state if this is the {@link #commonPool()}, and no
2976 dl 1.100 * additional effect if already shut down. Otherwise, tasks that
2977     * are in the process of being submitted or executed concurrently
2978     * during the course of this method may or may not be
2979     * rejected. This method cancels both existing and unexecuted
2980     * tasks, in order to permit termination in the presence of task
2981     * dependencies. So the method always returns an empty list
2982     * (unlike the case for some other Executors).
2983 jsr166 1.1 *
2984     * @return an empty list
2985     * @throws SecurityException if a security manager exists and
2986     * the caller is not permitted to modify threads
2987     * because it does not hold {@link
2988     * java.lang.RuntimePermission}{@code ("modifyThread")}
2989     */
2990     public List<Runnable> shutdownNow() {
2991     checkPermission();
2992 dl 1.105 tryTerminate(true, true);
2993 jsr166 1.1 return Collections.emptyList();
2994     }
2995    
2996     /**
2997     * Returns {@code true} if all tasks have completed following shut down.
2998     *
2999     * @return {@code true} if all tasks have completed following shut down
3000     */
3001     public boolean isTerminated() {
3002 dl 1.52 long c = ctl;
3003     return ((c & STOP_BIT) != 0L &&
3004 dl 1.112 (short)(c >>> TC_SHIFT) == -(config & SMASK));
3005 jsr166 1.1 }
3006    
3007     /**
3008     * Returns {@code true} if the process of termination has
3009 jsr166 1.9 * commenced but not yet completed. This method may be useful for
3010     * debugging. A return of {@code true} reported a sufficient
3011     * period after shutdown may indicate that submitted tasks have
3012 jsr166 1.119 * ignored or suppressed interruption, or are waiting for I/O,
3013 dl 1.49 * causing this executor not to properly terminate. (See the
3014     * advisory notes for class {@link ForkJoinTask} stating that
3015     * tasks should not normally entail blocking operations. But if
3016     * they do, they must abort them on interrupt.)
3017 jsr166 1.1 *
3018 jsr166 1.9 * @return {@code true} if terminating but not yet terminated
3019 jsr166 1.1 */
3020     public boolean isTerminating() {
3021 dl 1.52 long c = ctl;
3022     return ((c & STOP_BIT) != 0L &&
3023 dl 1.112 (short)(c >>> TC_SHIFT) != -(config & SMASK));
3024 jsr166 1.1 }
3025    
3026     /**
3027     * Returns {@code true} if this pool has been shut down.
3028     *
3029     * @return {@code true} if this pool has been shut down
3030     */
3031     public boolean isShutdown() {
3032 dl 1.105 return plock < 0;
3033 jsr166 1.9 }
3034    
3035     /**
3036 dl 1.105 * Blocks until all tasks have completed execution after a
3037     * shutdown request, or the timeout occurs, or the current thread
3038 dl 1.134 * is interrupted, whichever happens first. Because the {@link
3039     * #commonPool()} never terminates until program shutdown, when
3040     * applied to the common pool, this method is equivalent to {@link
3041     * #awaitQuiescence} but always returns {@code false}.
3042 jsr166 1.1 *
3043     * @param timeout the maximum time to wait
3044     * @param unit the time unit of the timeout argument
3045     * @return {@code true} if this executor terminated and
3046     * {@code false} if the timeout elapsed before termination
3047     * @throws InterruptedException if interrupted while waiting
3048     */
3049     public boolean awaitTermination(long timeout, TimeUnit unit)
3050     throws InterruptedException {
3051 dl 1.134 if (Thread.interrupted())
3052     throw new InterruptedException();
3053     if (this == common) {
3054     awaitQuiescence(timeout, unit);
3055     return false;
3056     }
3057 dl 1.52 long nanos = unit.toNanos(timeout);
3058 dl 1.101 if (isTerminated())
3059     return true;
3060     long startTime = System.nanoTime();
3061     boolean terminated = false;
3062 jsr166 1.103 synchronized (this) {
3063 dl 1.101 for (long waitTime = nanos, millis = 0L;;) {
3064     if (terminated = isTerminated() ||
3065     waitTime <= 0L ||
3066     (millis = unit.toMillis(waitTime)) <= 0L)
3067     break;
3068     wait(millis);
3069     waitTime = nanos - (System.nanoTime() - startTime);
3070 dl 1.52 }
3071 dl 1.18 }
3072 dl 1.101 return terminated;
3073 jsr166 1.1 }
3074    
3075     /**
3076 dl 1.134 * If called by a ForkJoinTask operating in this pool, equivalent
3077     * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3078     * waits and/or attempts to assist performing tasks until this
3079     * pool {@link #isQuiescent} or the indicated timeout elapses.
3080     *
3081     * @param timeout the maximum time to wait
3082     * @param unit the time unit of the timeout argument
3083     * @return {@code true} if quiescent; {@code false} if the
3084     * timeout elapsed.
3085     */
3086     public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3087     long nanos = unit.toNanos(timeout);
3088     ForkJoinWorkerThread wt;
3089     Thread thread = Thread.currentThread();
3090     if ((thread instanceof ForkJoinWorkerThread) &&
3091     (wt = (ForkJoinWorkerThread)thread).pool == this) {
3092     helpQuiescePool(wt.workQueue);
3093     return true;
3094     }
3095     long startTime = System.nanoTime();
3096     WorkQueue[] ws;
3097     int r = 0, m;
3098     boolean found = true;
3099     while (!isQuiescent() && (ws = workQueues) != null &&
3100     (m = ws.length - 1) >= 0) {
3101     if (!found) {
3102     if ((System.nanoTime() - startTime) > nanos)
3103     return false;
3104     Thread.yield(); // cannot block
3105     }
3106     found = false;
3107     for (int j = (m + 1) << 2; j >= 0; --j) {
3108     ForkJoinTask<?> t; WorkQueue q; int b;
3109     if ((q = ws[r++ & m]) != null && (b = q.base) - q.top < 0) {
3110     found = true;
3111     if ((t = q.pollAt(b)) != null) {
3112     if (q.base - q.top < 0)
3113     signalWork(q);
3114     t.doExec();
3115     }
3116     break;
3117     }
3118     }
3119     }
3120     return true;
3121     }
3122    
3123     /**
3124     * Waits and/or attempts to assist performing tasks indefinitely
3125 jsr166 1.141 * until the {@link #commonPool()} {@link #isQuiescent}.
3126 dl 1.134 */
3127 dl 1.136 static void quiesceCommonPool() {
3128 dl 1.134 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3129     }
3130    
3131     /**
3132 jsr166 1.1 * Interface for extending managed parallelism for tasks running
3133 jsr166 1.8 * in {@link ForkJoinPool}s.
3134     *
3135 dl 1.19 * <p>A {@code ManagedBlocker} provides two methods. Method
3136     * {@code isReleasable} must return {@code true} if blocking is
3137     * not necessary. Method {@code block} blocks the current thread
3138     * if necessary (perhaps internally invoking {@code isReleasable}
3139 dl 1.54 * before actually blocking). These actions are performed by any
3140     * thread invoking {@link ForkJoinPool#managedBlock}. The
3141     * unusual methods in this API accommodate synchronizers that may,
3142     * but don't usually, block for long periods. Similarly, they
3143     * allow more efficient internal handling of cases in which
3144     * additional workers may be, but usually are not, needed to
3145     * ensure sufficient parallelism. Toward this end,
3146     * implementations of method {@code isReleasable} must be amenable
3147     * to repeated invocation.
3148 jsr166 1.1 *
3149     * <p>For example, here is a ManagedBlocker based on a
3150     * ReentrantLock:
3151     * <pre> {@code
3152     * class ManagedLocker implements ManagedBlocker {
3153     * final ReentrantLock lock;
3154     * boolean hasLock = false;
3155     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3156     * public boolean block() {
3157     * if (!hasLock)
3158     * lock.lock();
3159     * return true;
3160     * }
3161     * public boolean isReleasable() {
3162     * return hasLock || (hasLock = lock.tryLock());
3163     * }
3164     * }}</pre>
3165 dl 1.19 *
3166     * <p>Here is a class that possibly blocks waiting for an
3167     * item on a given queue:
3168     * <pre> {@code
3169     * class QueueTaker<E> implements ManagedBlocker {
3170     * final BlockingQueue<E> queue;
3171     * volatile E item = null;
3172     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3173     * public boolean block() throws InterruptedException {
3174     * if (item == null)
3175 dl 1.23 * item = queue.take();
3176 dl 1.19 * return true;
3177     * }
3178     * public boolean isReleasable() {
3179 dl 1.23 * return item != null || (item = queue.poll()) != null;
3180 dl 1.19 * }
3181     * public E getItem() { // call after pool.managedBlock completes
3182     * return item;
3183     * }
3184     * }}</pre>
3185 jsr166 1.1 */
3186     public static interface ManagedBlocker {
3187     /**
3188     * Possibly blocks the current thread, for example waiting for
3189     * a lock or condition.
3190     *
3191 jsr166 1.4 * @return {@code true} if no additional blocking is necessary
3192     * (i.e., if isReleasable would return true)
3193 jsr166 1.1 * @throws InterruptedException if interrupted while waiting
3194     * (the method is not required to do so, but is allowed to)
3195     */
3196     boolean block() throws InterruptedException;
3197    
3198     /**
3199 jsr166 1.4 * Returns {@code true} if blocking is unnecessary.
3200 jsr166 1.1 */
3201     boolean isReleasable();
3202     }
3203    
3204     /**
3205     * Blocks in accord with the given blocker. If the current thread
3206 jsr166 1.8 * is a {@link ForkJoinWorkerThread}, this method possibly
3207     * arranges for a spare thread to be activated if necessary to
3208 dl 1.18 * ensure sufficient parallelism while the current thread is blocked.
3209 jsr166 1.1 *
3210 jsr166 1.8 * <p>If the caller is not a {@link ForkJoinTask}, this method is
3211     * behaviorally equivalent to
3212 jsr166 1.82 * <pre> {@code
3213 jsr166 1.1 * while (!blocker.isReleasable())
3214     * if (blocker.block())
3215     * return;
3216     * }</pre>
3217 jsr166 1.8 *
3218     * If the caller is a {@code ForkJoinTask}, then the pool may
3219     * first be expanded to ensure parallelism, and later adjusted.
3220 jsr166 1.1 *
3221     * @param blocker the blocker
3222     * @throws InterruptedException if blocker.block did so
3223     */
3224 dl 1.18 public static void managedBlock(ManagedBlocker blocker)
3225 jsr166 1.1 throws InterruptedException {
3226     Thread t = Thread.currentThread();
3227 dl 1.105 if (t instanceof ForkJoinWorkerThread) {
3228     ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3229     while (!blocker.isReleasable()) { // variant of helpSignal
3230 dl 1.115 WorkQueue[] ws; WorkQueue q; int m, u;
3231 dl 1.105 if ((ws = p.workQueues) != null && (m = ws.length - 1) >= 0) {
3232     for (int i = 0; i <= m; ++i) {
3233     if (blocker.isReleasable())
3234     return;
3235 dl 1.115 if ((q = ws[i]) != null && q.base - q.top < 0) {
3236     p.signalWork(q);
3237 dl 1.112 if ((u = (int)(p.ctl >>> 32)) >= 0 ||
3238     (u >> UAC_SHIFT) >= 0)
3239 dl 1.105 break;
3240     }
3241     }
3242     }
3243     if (p.tryCompensate()) {
3244     try {
3245     do {} while (!blocker.isReleasable() &&
3246     !blocker.block());
3247     } finally {
3248 dl 1.78 p.incrementActiveCount();
3249 dl 1.105 }
3250     break;
3251 dl 1.78 }
3252     }
3253 dl 1.18 }
3254 dl 1.105 else {
3255     do {} while (!blocker.isReleasable() &&
3256     !blocker.block());
3257     }
3258 jsr166 1.1 }
3259    
3260 jsr166 1.7 // AbstractExecutorService overrides. These rely on undocumented
3261     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3262     // implement RunnableFuture.
3263 jsr166 1.1
3264     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3265 dl 1.90 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3266 jsr166 1.1 }
3267    
3268     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3269 dl 1.90 return new ForkJoinTask.AdaptedCallable<T>(callable);
3270 jsr166 1.1 }
3271    
3272     // Unsafe mechanics
3273 dl 1.78 private static final sun.misc.Unsafe U;
3274     private static final long CTL;
3275     private static final long PARKBLOCKER;
3276 dl 1.90 private static final int ABASE;
3277     private static final int ASHIFT;
3278 dl 1.101 private static final long STEALCOUNT;
3279 dl 1.105 private static final long PLOCK;
3280     private static final long INDEXSEED;
3281     private static final long QLOCK;
3282 dl 1.52
3283     static {
3284 jsr166 1.142 // initialize field offsets for CAS etc
3285 jsr166 1.3 try {
3286 dl 1.78 U = sun.misc.Unsafe.getUnsafe();
3287 jsr166 1.64 Class<?> k = ForkJoinPool.class;
3288 dl 1.78 CTL = U.objectFieldOffset
3289 dl 1.52 (k.getDeclaredField("ctl"));
3290 dl 1.101 STEALCOUNT = U.objectFieldOffset
3291     (k.getDeclaredField("stealCount"));
3292 dl 1.105 PLOCK = U.objectFieldOffset
3293     (k.getDeclaredField("plock"));
3294     INDEXSEED = U.objectFieldOffset
3295     (k.getDeclaredField("indexSeed"));
3296 dl 1.86 Class<?> tk = Thread.class;
3297 dl 1.78 PARKBLOCKER = U.objectFieldOffset
3298     (tk.getDeclaredField("parkBlocker"));
3299 dl 1.105 Class<?> wk = WorkQueue.class;
3300     QLOCK = U.objectFieldOffset
3301     (wk.getDeclaredField("qlock"));
3302     Class<?> ak = ForkJoinTask[].class;
3303 dl 1.90 ABASE = U.arrayBaseOffset(ak);
3304 jsr166 1.142 int scale = U.arrayIndexScale(ak);
3305     if ((scale & (scale - 1)) != 0)
3306     throw new Error("data type scale not a power of two");
3307     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3308 dl 1.52 } catch (Exception e) {
3309     throw new Error(e);
3310     }
3311 dl 1.105
3312 dl 1.112 ForkJoinWorkerThreadFactory fac = defaultForkJoinWorkerThreadFactory =
3313     new DefaultForkJoinWorkerThreadFactory();
3314 dl 1.115 modifyThreadPermission = new RuntimePermission("modifyThread");
3315    
3316 dl 1.105 /*
3317 dl 1.112 * Establish common pool parameters. For extra caution,
3318     * computations to set up common pool state are here; the
3319     * constructor just assigns these values to fields.
3320 dl 1.105 */
3321 dl 1.112
3322     int par = 0;
3323     Thread.UncaughtExceptionHandler handler = null;
3324     try { // TBD: limit or report ignored exceptions?
3325     String pp = System.getProperty
3326     ("java.util.concurrent.ForkJoinPool.common.parallelism");
3327     String hp = System.getProperty
3328     ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3329     String fp = System.getProperty
3330     ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3331     if (fp != null)
3332     fac = ((ForkJoinWorkerThreadFactory)ClassLoader.
3333     getSystemClassLoader().loadClass(fp).newInstance());
3334     if (hp != null)
3335     handler = ((Thread.UncaughtExceptionHandler)ClassLoader.
3336     getSystemClassLoader().loadClass(hp).newInstance());
3337     if (pp != null)
3338     par = Integer.parseInt(pp);
3339     } catch (Exception ignore) {
3340     }
3341    
3342 dl 1.105 if (par <= 0)
3343     par = Runtime.getRuntime().availableProcessors();
3344     if (par > MAX_CAP)
3345     par = MAX_CAP;
3346 dl 1.134 commonParallelism = par;
3347 dl 1.105 long np = (long)(-par); // precompute initial ctl value
3348     long ct = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
3349    
3350 dl 1.134 common = new ForkJoinPool(par, ct, fac, handler);
3351 jsr166 1.3 }
3352 dl 1.52
3353 jsr166 1.1 }