ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.159
Committed: Mon Feb 11 17:27:45 2013 UTC (11 years, 3 months ago) by jsr166
Branch: MAIN
Changes since 1.158: +1 -0 lines
Log Message:
add <caption> tags to all tables

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.58 * http://creativecommons.org/publicdomain/zero/1.0/
5 jsr166 1.1 */
6    
7     package java.util.concurrent;
8    
9 jsr166 1.156 import java.lang.Thread.UncaughtExceptionHandler;
10 jsr166 1.1 import java.util.ArrayList;
11     import java.util.Arrays;
12     import java.util.Collection;
13     import java.util.Collections;
14     import java.util.List;
15 dl 1.36 import java.util.concurrent.AbstractExecutorService;
16     import java.util.concurrent.Callable;
17     import java.util.concurrent.ExecutorService;
18     import java.util.concurrent.Future;
19     import java.util.concurrent.RejectedExecutionException;
20     import java.util.concurrent.RunnableFuture;
21     import java.util.concurrent.TimeUnit;
22 jsr166 1.1
23     /**
24 jsr166 1.4 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
25 jsr166 1.8 * A {@code ForkJoinPool} provides the entry point for submissions
26 dl 1.18 * from non-{@code ForkJoinTask} clients, as well as management and
27 jsr166 1.11 * monitoring operations.
28 jsr166 1.1 *
29 jsr166 1.9 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
30     * ExecutorService} mainly by virtue of employing
31     * <em>work-stealing</em>: all threads in the pool attempt to find and
32 dl 1.78 * execute tasks submitted to the pool and/or created by other active
33     * tasks (eventually blocking waiting for work if none exist). This
34     * enables efficient processing when most tasks spawn other subtasks
35     * (as do most {@code ForkJoinTask}s), as well as when many small
36     * tasks are submitted to the pool from external clients. Especially
37     * when setting <em>asyncMode</em> to true in constructors, {@code
38     * ForkJoinPool}s may also be appropriate for use with event-style
39     * tasks that are never joined.
40 jsr166 1.1 *
41 dl 1.112 * <p>A static {@link #commonPool()} is available and appropriate for
42 dl 1.101 * most applications. The common pool is used by any ForkJoinTask that
43     * is not explicitly submitted to a specified pool. Using the common
44     * pool normally reduces resource usage (its threads are slowly
45     * reclaimed during periods of non-use, and reinstated upon subsequent
46 dl 1.105 * use).
47 dl 1.100 *
48     * <p>For applications that require separate or custom pools, a {@code
49     * ForkJoinPool} may be constructed with a given target parallelism
50     * level; by default, equal to the number of available processors. The
51     * pool attempts to maintain enough active (or available) threads by
52     * dynamically adding, suspending, or resuming internal worker
53     * threads, even if some tasks are stalled waiting to join
54     * others. However, no such adjustments are guaranteed in the face of
55 jsr166 1.119 * blocked I/O or other unmanaged synchronization. The nested {@link
56 dl 1.100 * ManagedBlocker} interface enables extension of the kinds of
57 dl 1.18 * synchronization accommodated.
58 jsr166 1.1 *
59     * <p>In addition to execution and lifecycle control methods, this
60     * class provides status check methods (for example
61 jsr166 1.4 * {@link #getStealCount}) that are intended to aid in developing,
62 jsr166 1.1 * tuning, and monitoring fork/join applications. Also, method
63 jsr166 1.4 * {@link #toString} returns indications of pool state in a
64 jsr166 1.1 * convenient form for informal monitoring.
65     *
66 jsr166 1.109 * <p>As is the case with other ExecutorServices, there are three
67 jsr166 1.84 * main task execution methods summarized in the following table.
68     * These are designed to be used primarily by clients not already
69     * engaged in fork/join computations in the current pool. The main
70     * forms of these methods accept instances of {@code ForkJoinTask},
71     * but overloaded forms also allow mixed execution of plain {@code
72     * Runnable}- or {@code Callable}- based activities as well. However,
73     * tasks that are already executing in a pool should normally instead
74     * use the within-computation forms listed in the table unless using
75     * async event-style tasks that are not usually joined, in which case
76     * there is little difference among choice of methods.
77 dl 1.18 *
78     * <table BORDER CELLPADDING=3 CELLSPACING=1>
79 jsr166 1.159 * <caption>Summary of task execution methods</caption>
80 dl 1.18 * <tr>
81     * <td></td>
82     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
83     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
84     * </tr>
85     * <tr>
86 jsr166 1.153 * <td> <b>Arrange async execution</b></td>
87 dl 1.18 * <td> {@link #execute(ForkJoinTask)}</td>
88     * <td> {@link ForkJoinTask#fork}</td>
89     * </tr>
90     * <tr>
91 jsr166 1.153 * <td> <b>Await and obtain result</b></td>
92 dl 1.18 * <td> {@link #invoke(ForkJoinTask)}</td>
93     * <td> {@link ForkJoinTask#invoke}</td>
94     * </tr>
95     * <tr>
96 jsr166 1.153 * <td> <b>Arrange exec and obtain Future</b></td>
97 dl 1.18 * <td> {@link #submit(ForkJoinTask)}</td>
98     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
99     * </tr>
100     * </table>
101 dl 1.19 *
102 dl 1.105 * <p>The common pool is by default constructed with default
103 jsr166 1.155 * parameters, but these may be controlled by setting three
104     * {@linkplain System#getProperty system properties} with prefix
105 jsr166 1.156 * {@code "java.util.concurrent.ForkJoinPool.common."}:
106 jsr166 1.155 * {@code parallelism} -- an integer greater than zero,
107     * {@code threadFactory} -- the class name of a
108     * {@link ForkJoinWorkerThreadFactory}, and
109 jsr166 1.156 * {@code exceptionHandler} --
110     * the class name of a {@link UncaughtExceptionHandler}.
111     * Upon any error in establishing these settings, default parameters
112     * are used.
113 dl 1.105 *
114 jsr166 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
115     * maximum number of running threads to 32767. Attempts to create
116 jsr166 1.11 * pools with greater than the maximum number result in
117 jsr166 1.8 * {@code IllegalArgumentException}.
118 jsr166 1.1 *
119 jsr166 1.11 * <p>This implementation rejects submitted tasks (that is, by throwing
120 dl 1.19 * {@link RejectedExecutionException}) only when the pool is shut down
121 dl 1.20 * or internal resources have been exhausted.
122 jsr166 1.11 *
123 jsr166 1.1 * @since 1.7
124     * @author Doug Lea
125     */
126     public class ForkJoinPool extends AbstractExecutorService {
127    
128     /*
129 dl 1.14 * Implementation Overview
130     *
131 dl 1.78 * This class and its nested classes provide the main
132     * functionality and control for a set of worker threads:
133 jsr166 1.84 * Submissions from non-FJ threads enter into submission queues.
134     * Workers take these tasks and typically split them into subtasks
135     * that may be stolen by other workers. Preference rules give
136     * first priority to processing tasks from their own queues (LIFO
137     * or FIFO, depending on mode), then to randomized FIFO steals of
138     * tasks in other queues.
139 dl 1.78 *
140 jsr166 1.84 * WorkQueues
141 dl 1.78 * ==========
142     *
143     * Most operations occur within work-stealing queues (in nested
144     * class WorkQueue). These are special forms of Deques that
145     * support only three of the four possible end-operations -- push,
146     * pop, and poll (aka steal), under the further constraints that
147     * push and pop are called only from the owning thread (or, as
148     * extended here, under a lock), while poll may be called from
149     * other threads. (If you are unfamiliar with them, you probably
150     * want to read Herlihy and Shavit's book "The Art of
151     * Multiprocessor programming", chapter 16 describing these in
152     * more detail before proceeding.) The main work-stealing queue
153     * design is roughly similar to those in the papers "Dynamic
154     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
155     * (http://research.sun.com/scalable/pubs/index.html) and
156     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
157     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
158 jsr166 1.84 * The main differences ultimately stem from GC requirements that
159 dl 1.78 * we null out taken slots as soon as we can, to maintain as small
160     * a footprint as possible even in programs generating huge
161     * numbers of tasks. To accomplish this, we shift the CAS
162     * arbitrating pop vs poll (steal) from being on the indices
163     * ("base" and "top") to the slots themselves. So, both a
164     * successful pop and poll mainly entail a CAS of a slot from
165     * non-null to null. Because we rely on CASes of references, we
166     * do not need tag bits on base or top. They are simple ints as
167     * used in any circular array-based queue (see for example
168     * ArrayDeque). Updates to the indices must still be ordered in a
169     * way that guarantees that top == base means the queue is empty,
170     * but otherwise may err on the side of possibly making the queue
171     * appear nonempty when a push, pop, or poll have not fully
172     * committed. Note that this means that the poll operation,
173     * considered individually, is not wait-free. One thief cannot
174     * successfully continue until another in-progress one (or, if
175     * previously empty, a push) completes. However, in the
176     * aggregate, we ensure at least probabilistic non-blockingness.
177     * If an attempted steal fails, a thief always chooses a different
178     * random victim target to try next. So, in order for one thief to
179     * progress, it suffices for any in-progress poll or new push on
180 dl 1.90 * any empty queue to complete. (This is why we normally use
181     * method pollAt and its variants that try once at the apparent
182     * base index, else consider alternative actions, rather than
183     * method poll.)
184 dl 1.78 *
185 dl 1.79 * This approach also enables support of a user mode in which local
186 dl 1.78 * task processing is in FIFO, not LIFO order, simply by using
187     * poll rather than pop. This can be useful in message-passing
188     * frameworks in which tasks are never joined. However neither
189     * mode considers affinities, loads, cache localities, etc, so
190     * rarely provide the best possible performance on a given
191     * machine, but portably provide good throughput by averaging over
192     * these factors. (Further, even if we did try to use such
193 jsr166 1.84 * information, we do not usually have a basis for exploiting it.
194     * For example, some sets of tasks profit from cache affinities,
195     * but others are harmed by cache pollution effects.)
196 dl 1.78 *
197     * WorkQueues are also used in a similar way for tasks submitted
198     * to the pool. We cannot mix these tasks in the same queues used
199     * for work-stealing (this would contaminate lifo/fifo
200 dl 1.105 * processing). Instead, we randomly associate submission queues
201 dl 1.83 * with submitting threads, using a form of hashing. The
202 dl 1.139 * ThreadLocalRandom probe value serves as a hash code for
203     * choosing existing queues, and may be randomly repositioned upon
204     * contention with other submitters. In essence, submitters act
205     * like workers except that they are restricted to executing local
206     * tasks that they submitted (or in the case of CountedCompleters,
207     * others with the same root task). However, because most
208     * shared/external queue operations are more expensive than
209     * internal, and because, at steady state, external submitters
210     * will compete for CPU with workers, ForkJoinTask.join and
211     * related methods disable them from repeatedly helping to process
212     * tasks if all workers are active. Insertion of tasks in shared
213     * mode requires a lock (mainly to protect in the case of
214 dl 1.105 * resizing) but we use only a simple spinlock (using bits in
215     * field qlock), because submitters encountering a busy queue move
216     * on to try or create other queues -- they block only when
217     * creating and registering new queues.
218 dl 1.78 *
219 jsr166 1.84 * Management
220 dl 1.78 * ==========
221 dl 1.52 *
222     * The main throughput advantages of work-stealing stem from
223     * decentralized control -- workers mostly take tasks from
224     * themselves or each other. We cannot negate this in the
225     * implementation of other management responsibilities. The main
226     * tactic for avoiding bottlenecks is packing nearly all
227 dl 1.78 * essentially atomic control state into two volatile variables
228     * that are by far most often read (not written) as status and
229 jsr166 1.84 * consistency checks.
230 dl 1.78 *
231     * Field "ctl" contains 64 bits holding all the information needed
232     * to atomically decide to add, inactivate, enqueue (on an event
233     * queue), dequeue, and/or re-activate workers. To enable this
234     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
235     * far in excess of normal operating range) to allow ids, counts,
236     * and their negations (used for thresholding) to fit into 16bit
237     * fields.
238     *
239 dl 1.105 * Field "plock" is a form of sequence lock with a saturating
240     * shutdown bit (similarly for per-queue "qlocks"), mainly
241     * protecting updates to the workQueues array, as well as to
242     * enable shutdown. When used as a lock, it is normally only very
243     * briefly held, so is nearly always available after at most a
244     * brief spin, but we use a monitor-based backup strategy to
245 dl 1.112 * block when needed.
246 dl 1.78 *
247     * Recording WorkQueues. WorkQueues are recorded in the
248 dl 1.101 * "workQueues" array that is created upon first use and expanded
249     * if necessary. Updates to the array while recording new workers
250     * and unrecording terminated ones are protected from each other
251     * by a lock but the array is otherwise concurrently readable, and
252     * accessed directly. To simplify index-based operations, the
253     * array size is always a power of two, and all readers must
254 dl 1.112 * tolerate null slots. Worker queues are at odd indices. Shared
255 dl 1.105 * (submission) queues are at even indices, up to a maximum of 64
256     * slots, to limit growth even if array needs to expand to add
257     * more workers. Grouping them together in this way simplifies and
258     * speeds up task scanning.
259 dl 1.86 *
260     * All worker thread creation is on-demand, triggered by task
261     * submissions, replacement of terminated workers, and/or
262 dl 1.78 * compensation for blocked workers. However, all other support
263     * code is set up to work with other policies. To ensure that we
264     * do not hold on to worker references that would prevent GC, ALL
265     * accesses to workQueues are via indices into the workQueues
266     * array (which is one source of some of the messy code
267     * constructions here). In essence, the workQueues array serves as
268     * a weak reference mechanism. Thus for example the wait queue
269     * field of ctl stores indices, not references. Access to the
270     * workQueues in associated methods (for example signalWork) must
271     * both index-check and null-check the IDs. All such accesses
272     * ignore bad IDs by returning out early from what they are doing,
273     * since this can only be associated with termination, in which
274 dl 1.86 * case it is OK to give up. All uses of the workQueues array
275     * also check that it is non-null (even if previously
276     * non-null). This allows nulling during termination, which is
277     * currently not necessary, but remains an option for
278     * resource-revocation-based shutdown schemes. It also helps
279     * reduce JIT issuance of uncommon-trap code, which tends to
280 dl 1.78 * unnecessarily complicate control flow in some methods.
281 dl 1.52 *
282 dl 1.78 * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
283 dl 1.56 * let workers spin indefinitely scanning for tasks when none can
284     * be found immediately, and we cannot start/resume workers unless
285     * there appear to be tasks available. On the other hand, we must
286     * quickly prod them into action when new tasks are submitted or
287 dl 1.78 * generated. In many usages, ramp-up time to activate workers is
288     * the main limiting factor in overall performance (this is
289     * compounded at program start-up by JIT compilation and
290     * allocation). So we try to streamline this as much as possible.
291     * We park/unpark workers after placing in an event wait queue
292     * when they cannot find work. This "queue" is actually a simple
293     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
294     * counter value (that reflects the number of times a worker has
295     * been inactivated) to avoid ABA effects (we need only as many
296     * version numbers as worker threads). Successors are held in
297     * field WorkQueue.nextWait. Queuing deals with several intrinsic
298     * races, mainly that a task-producing thread can miss seeing (and
299 dl 1.56 * signalling) another thread that gave up looking for work but
300     * has not yet entered the wait queue. We solve this by requiring
301 dl 1.78 * a full sweep of all workers (via repeated calls to method
302     * scan()) both before and after a newly waiting worker is added
303     * to the wait queue. During a rescan, the worker might release
304     * some other queued worker rather than itself, which has the same
305     * net effect. Because enqueued workers may actually be rescanning
306     * rather than waiting, we set and clear the "parker" field of
307 jsr166 1.84 * WorkQueues to reduce unnecessary calls to unpark. (This
308 dl 1.78 * requires a secondary recheck to avoid missed signals.) Note
309     * the unusual conventions about Thread.interrupts surrounding
310     * parking and other blocking: Because interrupts are used solely
311     * to alert threads to check termination, which is checked anyway
312     * upon blocking, we clear status (using Thread.interrupted)
313     * before any call to park, so that park does not immediately
314     * return due to status being set via some other unrelated call to
315     * interrupt in user code.
316 dl 1.52 *
317     * Signalling. We create or wake up workers only when there
318     * appears to be at least one task they might be able to find and
319 dl 1.105 * execute. However, many other threads may notice the same task
320     * and each signal to wake up a thread that might take it. So in
321     * general, pools will be over-signalled. When a submission is
322 dl 1.115 * added or another worker adds a task to a queue that has fewer
323     * than two tasks, they signal waiting workers (or trigger
324     * creation of new ones if fewer than the given parallelism level
325     * -- signalWork), and may leave a hint to the unparked worker to
326     * help signal others upon wakeup). These primary signals are
327     * buttressed by others (see method helpSignal) whenever other
328     * threads scan for work or do not have a task to process. On
329     * most platforms, signalling (unpark) overhead time is noticeably
330     * long, and the time between signalling a thread and it actually
331     * making progress can be very noticeably long, so it is worth
332     * offloading these delays from critical paths as much as
333     * possible.
334 dl 1.52 *
335     * Trimming workers. To release resources after periods of lack of
336     * use, a worker starting to wait when the pool is quiescent will
337 dl 1.100 * time out and terminate if the pool has remained quiescent for a
338     * given period -- a short period if there are more threads than
339     * parallelism, longer as the number of threads decreases. This
340     * will slowly propagate, eventually terminating all workers after
341     * periods of non-use.
342 dl 1.52 *
343 dl 1.78 * Shutdown and Termination. A call to shutdownNow atomically sets
344 dl 1.105 * a plock bit and then (non-atomically) sets each worker's
345     * qlock status, cancels all unprocessed tasks, and wakes up
346 dl 1.78 * all waiting workers. Detecting whether termination should
347     * commence after a non-abrupt shutdown() call requires more work
348     * and bookkeeping. We need consensus about quiescence (i.e., that
349     * there is no more work). The active count provides a primary
350     * indication but non-abrupt shutdown still requires a rechecking
351     * scan for any workers that are inactive but not queued.
352     *
353 jsr166 1.84 * Joining Tasks
354     * =============
355 dl 1.78 *
356     * Any of several actions may be taken when one worker is waiting
357 jsr166 1.84 * to join a task stolen (or always held) by another. Because we
358 dl 1.78 * are multiplexing many tasks on to a pool of workers, we can't
359     * just let them block (as in Thread.join). We also cannot just
360     * reassign the joiner's run-time stack with another and replace
361     * it later, which would be a form of "continuation", that even if
362     * possible is not necessarily a good idea since we sometimes need
363 jsr166 1.84 * both an unblocked task and its continuation to progress.
364     * Instead we combine two tactics:
365 dl 1.19 *
366     * Helping: Arranging for the joiner to execute some task that it
367 dl 1.78 * would be running if the steal had not occurred.
368 dl 1.19 *
369     * Compensating: Unless there are already enough live threads,
370 dl 1.78 * method tryCompensate() may create or re-activate a spare
371     * thread to compensate for blocked joiners until they unblock.
372     *
373 dl 1.105 * A third form (implemented in tryRemoveAndExec) amounts to
374     * helping a hypothetical compensator: If we can readily tell that
375     * a possible action of a compensator is to steal and execute the
376     * task being joined, the joining thread can do so directly,
377     * without the need for a compensation thread (although at the
378     * expense of larger run-time stacks, but the tradeoff is
379     * typically worthwhile).
380 dl 1.52 *
381     * The ManagedBlocker extension API can't use helping so relies
382     * only on compensation in method awaitBlocker.
383 dl 1.19 *
384 dl 1.78 * The algorithm in tryHelpStealer entails a form of "linear"
385     * helping: Each worker records (in field currentSteal) the most
386     * recent task it stole from some other worker. Plus, it records
387     * (in field currentJoin) the task it is currently actively
388     * joining. Method tryHelpStealer uses these markers to try to
389     * find a worker to help (i.e., steal back a task from and execute
390     * it) that could hasten completion of the actively joined task.
391     * In essence, the joiner executes a task that would be on its own
392     * local deque had the to-be-joined task not been stolen. This may
393     * be seen as a conservative variant of the approach in Wagner &
394     * Calder "Leapfrogging: a portable technique for implementing
395     * efficient futures" SIGPLAN Notices, 1993
396     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
397     * that: (1) We only maintain dependency links across workers upon
398     * steals, rather than use per-task bookkeeping. This sometimes
399 dl 1.90 * requires a linear scan of workQueues array to locate stealers,
400     * but often doesn't because stealers leave hints (that may become
401 dl 1.112 * stale/wrong) of where to locate them. It is only a hint
402     * because a worker might have had multiple steals and the hint
403     * records only one of them (usually the most current). Hinting
404     * isolates cost to when it is needed, rather than adding to
405     * per-task overhead. (2) It is "shallow", ignoring nesting and
406     * potentially cyclic mutual steals. (3) It is intentionally
407 dl 1.78 * racy: field currentJoin is updated only while actively joining,
408     * which means that we miss links in the chain during long-lived
409     * tasks, GC stalls etc (which is OK since blocking in such cases
410     * is usually a good idea). (4) We bound the number of attempts
411 dl 1.90 * to find work (see MAX_HELP) and fall back to suspending the
412     * worker and if necessary replacing it with another.
413 dl 1.78 *
414 dl 1.105 * Helping actions for CountedCompleters are much simpler: Method
415     * helpComplete can take and execute any task with the same root
416     * as the task being waited on. However, this still entails some
417     * traversal of completer chains, so is less efficient than using
418     * CountedCompleters without explicit joins.
419     *
420 dl 1.52 * It is impossible to keep exactly the target parallelism number
421     * of threads running at any given time. Determining the
422 dl 1.24 * existence of conservatively safe helping targets, the
423     * availability of already-created spares, and the apparent need
424 dl 1.78 * to create new spares are all racy, so we rely on multiple
425 dl 1.90 * retries of each. Compensation in the apparent absence of
426     * helping opportunities is challenging to control on JVMs, where
427     * GC and other activities can stall progress of tasks that in
428     * turn stall out many other dependent tasks, without us being
429     * able to determine whether they will ever require compensation.
430     * Even though work-stealing otherwise encounters little
431     * degradation in the presence of more threads than cores,
432     * aggressively adding new threads in such cases entails risk of
433     * unwanted positive feedback control loops in which more threads
434     * cause more dependent stalls (as well as delayed progress of
435     * unblocked threads to the point that we know they are available)
436     * leading to more situations requiring more threads, and so
437     * on. This aspect of control can be seen as an (analytically
438 jsr166 1.92 * intractable) game with an opponent that may choose the worst
439 dl 1.90 * (for us) active thread to stall at any time. We take several
440     * precautions to bound losses (and thus bound gains), mainly in
441 dl 1.105 * methods tryCompensate and awaitJoin.
442     *
443     * Common Pool
444     * ===========
445     *
446 dl 1.134 * The static common Pool always exists after static
447 dl 1.105 * initialization. Since it (or any other created pool) need
448     * never be used, we minimize initial construction overhead and
449     * footprint to the setup of about a dozen fields, with no nested
450     * allocation. Most bootstrapping occurs within method
451     * fullExternalPush during the first submission to the pool.
452     *
453     * When external threads submit to the common pool, they can
454     * perform some subtask processing (see externalHelpJoin and
455     * related methods). We do not need to record whether these
456     * submissions are to the common pool -- if not, externalHelpJoin
457 jsr166 1.107 * returns quickly (at the most helping to signal some common pool
458 dl 1.105 * workers). These submitters would otherwise be blocked waiting
459     * for completion, so the extra effort (with liberally sprinkled
460     * task status checks) in inapplicable cases amounts to an odd
461     * form of limited spin-wait before blocking in ForkJoinTask.join.
462     *
463     * Style notes
464     * ===========
465     *
466     * There is a lot of representation-level coupling among classes
467     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
468     * fields of WorkQueue maintain data structures managed by
469     * ForkJoinPool, so are directly accessed. There is little point
470     * trying to reduce this, since any associated future changes in
471     * representations will need to be accompanied by algorithmic
472     * changes anyway. Several methods intrinsically sprawl because
473     * they must accumulate sets of consistent reads of volatiles held
474     * in local variables. Methods signalWork() and scan() are the
475     * main bottlenecks, so are especially heavily
476 dl 1.86 * micro-optimized/mangled. There are lots of inline assignments
477     * (of form "while ((local = field) != 0)") which are usually the
478     * simplest way to ensure the required read orderings (which are
479     * sometimes critical). This leads to a "C"-like style of listing
480     * declarations of these locals at the heads of methods or blocks.
481     * There are several occurrences of the unusual "do {} while
482     * (!cas...)" which is the simplest way to force an update of a
483 dl 1.105 * CAS'ed variable. There are also other coding oddities (including
484     * several unnecessary-looking hoisted null checks) that help
485 dl 1.86 * some methods perform reasonably even when interpreted (not
486     * compiled).
487 dl 1.52 *
488 jsr166 1.84 * The order of declarations in this file is:
489 dl 1.86 * (1) Static utility functions
490     * (2) Nested (static) classes
491     * (3) Static fields
492     * (4) Fields, along with constants used when unpacking some of them
493     * (5) Internal control methods
494     * (6) Callbacks and other support for ForkJoinTask methods
495     * (7) Exported methods
496     * (8) Static block initializing statics in minimally dependent order
497     */
498    
499     // Static utilities
500    
501     /**
502     * If there is a security manager, makes sure caller has
503     * permission to modify threads.
504 jsr166 1.1 */
505 dl 1.86 private static void checkPermission() {
506     SecurityManager security = System.getSecurityManager();
507     if (security != null)
508     security.checkPermission(modifyThreadPermission);
509     }
510    
511     // Nested classes
512 jsr166 1.1
513     /**
514 jsr166 1.8 * Factory for creating new {@link ForkJoinWorkerThread}s.
515     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
516     * for {@code ForkJoinWorkerThread} subclasses that extend base
517     * functionality or initialize threads with different contexts.
518 jsr166 1.1 */
519     public static interface ForkJoinWorkerThreadFactory {
520     /**
521     * Returns a new worker thread operating in the given pool.
522     *
523     * @param pool the pool this thread works in
524 jsr166 1.11 * @throws NullPointerException if the pool is null
525 jsr166 1.154 * @return the new worker thread
526 jsr166 1.1 */
527     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
528     }
529    
530     /**
531     * Default ForkJoinWorkerThreadFactory implementation; creates a
532     * new ForkJoinWorkerThread.
533     */
534 dl 1.112 static final class DefaultForkJoinWorkerThreadFactory
535 jsr166 1.1 implements ForkJoinWorkerThreadFactory {
536 dl 1.112 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
537 dl 1.14 return new ForkJoinWorkerThread(pool);
538 jsr166 1.1 }
539     }
540    
541     /**
542 dl 1.86 * Class for artificial tasks that are used to replace the target
543     * of local joins if they are removed from an interior queue slot
544     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
545     * actually do anything beyond having a unique identity.
546 jsr166 1.1 */
547 dl 1.86 static final class EmptyTask extends ForkJoinTask<Void> {
548 dl 1.105 private static final long serialVersionUID = -7721805057305804111L;
549 dl 1.86 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
550     public final Void getRawResult() { return null; }
551     public final void setRawResult(Void x) {}
552     public final boolean exec() { return true; }
553 jsr166 1.1 }
554    
555     /**
556 dl 1.78 * Queues supporting work-stealing as well as external task
557     * submission. See above for main rationale and algorithms.
558     * Implementation relies heavily on "Unsafe" intrinsics
559     * and selective use of "volatile":
560     *
561     * Field "base" is the index (mod array.length) of the least valid
562     * queue slot, which is always the next position to steal (poll)
563     * from if nonempty. Reads and writes require volatile orderings
564     * but not CAS, because updates are only performed after slot
565     * CASes.
566     *
567     * Field "top" is the index (mod array.length) of the next queue
568     * slot to push to or pop from. It is written only by owner thread
569 dl 1.105 * for push, or under lock for external/shared push, and accessed
570     * by other threads only after reading (volatile) base. Both top
571     * and base are allowed to wrap around on overflow, but (top -
572     * base) (or more commonly -(base - top) to force volatile read of
573     * base before top) still estimates size. The lock ("qlock") is
574     * forced to -1 on termination, causing all further lock attempts
575     * to fail. (Note: we don't need CAS for termination state because
576     * upon pool shutdown, all shared-queues will stop being used
577     * anyway.) Nearly all lock bodies are set up so that exceptions
578     * within lock bodies are "impossible" (modulo JVM errors that
579     * would cause failure anyway.)
580 dl 1.78 *
581     * The array slots are read and written using the emulation of
582     * volatiles/atomics provided by Unsafe. Insertions must in
583     * general use putOrderedObject as a form of releasing store to
584     * ensure that all writes to the task object are ordered before
585 dl 1.105 * its publication in the queue. All removals entail a CAS to
586     * null. The array is always a power of two. To ensure safety of
587     * Unsafe array operations, all accesses perform explicit null
588     * checks and implicit bounds checks via power-of-two masking.
589 dl 1.78 *
590     * In addition to basic queuing support, this class contains
591     * fields described elsewhere to control execution. It turns out
592 dl 1.105 * to work better memory-layout-wise to include them in this class
593     * rather than a separate class.
594 dl 1.78 *
595     * Performance on most platforms is very sensitive to placement of
596     * instances of both WorkQueues and their arrays -- we absolutely
597     * do not want multiple WorkQueue instances or multiple queue
598     * arrays sharing cache lines. (It would be best for queue objects
599     * and their arrays to share, but there is nothing available to
600     * help arrange that). Unfortunately, because they are recorded
601     * in a common array, WorkQueue instances are often moved to be
602     * adjacent by garbage collectors. To reduce impact, we use field
603     * padding that works OK on common platforms; this effectively
604     * trades off slightly slower average field access for the sake of
605     * avoiding really bad worst-case access. (Until better JVM
606     * support is in place, this padding is dependent on transient
607 dl 1.115 * properties of JVM field layout rules.) We also take care in
608     * allocating, sizing and resizing the array. Non-shared queue
609     * arrays are initialized by workers before use. Others are
610     * allocated on first use.
611 dl 1.78 */
612     static final class WorkQueue {
613     /**
614     * Capacity of work-stealing queue array upon initialization.
615 dl 1.90 * Must be a power of two; at least 4, but should be larger to
616     * reduce or eliminate cacheline sharing among queues.
617     * Currently, it is much larger, as a partial workaround for
618     * the fact that JVMs often place arrays in locations that
619     * share GC bookkeeping (especially cardmarks) such that
620     * per-write accesses encounter serious memory contention.
621 dl 1.78 */
622 dl 1.90 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
623 dl 1.78
624     /**
625     * Maximum size for queue arrays. Must be a power of two less
626     * than or equal to 1 << (31 - width of array entry) to ensure
627     * lack of wraparound of index calculations, but defined to a
628     * value a bit less than this to help users trap runaway
629     * programs before saturating systems.
630     */
631     static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
632    
633 dl 1.115 // Heuristic padding to ameliorate unfortunate memory placements
634     volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
635    
636 dl 1.78 int seed; // for random scanning; initialize nonzero
637     volatile int eventCount; // encoded inactivation count; < 0 if inactive
638     int nextWait; // encoded record of next event waiter
639 dl 1.112 int hint; // steal or signal hint (index)
640 dl 1.78 int poolIndex; // index of this queue in pool (or 0)
641 dl 1.112 final int mode; // 0: lifo, > 0: fifo, < 0: shared
642     int nsteals; // number of steals
643 dl 1.105 volatile int qlock; // 1: locked, -1: terminate; else 0
644 dl 1.78 volatile int base; // index of next slot for poll
645     int top; // index of next slot for push
646     ForkJoinTask<?>[] array; // the elements (initially unallocated)
647 dl 1.90 final ForkJoinPool pool; // the containing pool (may be null)
648 dl 1.78 final ForkJoinWorkerThread owner; // owning thread or null if shared
649     volatile Thread parker; // == owner during call to park; else null
650 dl 1.95 volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
651 dl 1.78 ForkJoinTask<?> currentSteal; // current non-local task being executed
652 dl 1.112
653 dl 1.115 volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
654     volatile Object pad18, pad19, pad1a, pad1b, pad1c, pad1d;
655 dl 1.78
656 dl 1.112 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
657     int seed) {
658 dl 1.90 this.pool = pool;
659 dl 1.78 this.owner = owner;
660 dl 1.112 this.mode = mode;
661     this.seed = seed;
662 dl 1.115 // Place indices in the center of array (that is not yet allocated)
663 dl 1.78 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
664     }
665    
666     /**
667 dl 1.115 * Returns the approximate number of tasks in the queue.
668     */
669     final int queueSize() {
670     int n = base - top; // non-owner callers must read base first
671     return (n >= 0) ? 0 : -n; // ignore transient negative
672     }
673    
674     /**
675     * Provides a more accurate estimate of whether this queue has
676     * any tasks than does queueSize, by checking whether a
677     * near-empty queue has at least one unclaimed task.
678     */
679     final boolean isEmpty() {
680     ForkJoinTask<?>[] a; int m, s;
681     int n = base - (s = top);
682     return (n >= 0 ||
683     (n == -1 &&
684     ((a = array) == null ||
685     (m = a.length - 1) < 0 ||
686     U.getObject
687     (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
688     }
689    
690     /**
691     * Pushes a task. Call only by owner in unshared queues. (The
692     * shared-queue version is embedded in method externalPush.)
693 dl 1.78 *
694     * @param task the task. Caller must ensure non-null.
695 jsr166 1.146 * @throws RejectedExecutionException if array cannot be resized
696 dl 1.78 */
697 dl 1.90 final void push(ForkJoinTask<?> task) {
698 dl 1.112 ForkJoinTask<?>[] a; ForkJoinPool p;
699     int s = top, m, n;
700     if ((a = array) != null) { // ignore if queue removed
701 dl 1.115 int j = (((m = a.length - 1) & s) << ASHIFT) + ABASE;
702     U.putOrderedObject(a, j, task);
703     if ((n = (top = s + 1) - base) <= 2) {
704 dl 1.112 if ((p = pool) != null)
705 dl 1.115 p.signalWork(this);
706 dl 1.112 }
707     else if (n >= m)
708     growArray();
709 dl 1.78 }
710     }
711    
712 dl 1.112 /**
713     * Initializes or doubles the capacity of array. Call either
714     * by owner or with lock held -- it is OK for base, but not
715     * top, to move while resizings are in progress.
716     */
717     final ForkJoinTask<?>[] growArray() {
718     ForkJoinTask<?>[] oldA = array;
719     int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
720     if (size > MAXIMUM_QUEUE_CAPACITY)
721     throw new RejectedExecutionException("Queue capacity exceeded");
722     int oldMask, t, b;
723     ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
724     if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
725     (t = top) - (b = base) > 0) {
726     int mask = size - 1;
727     do {
728     ForkJoinTask<?> x;
729     int oldj = ((b & oldMask) << ASHIFT) + ABASE;
730     int j = ((b & mask) << ASHIFT) + ABASE;
731     x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
732     if (x != null &&
733     U.compareAndSwapObject(oldA, oldj, x, null))
734     U.putObjectVolatile(a, j, x);
735     } while (++b != t);
736 dl 1.78 }
737 dl 1.112 return a;
738 dl 1.78 }
739    
740     /**
741 dl 1.90 * Takes next task, if one exists, in LIFO order. Call only
742 dl 1.102 * by owner in unshared queues.
743 dl 1.90 */
744     final ForkJoinTask<?> pop() {
745 dl 1.94 ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
746     if ((a = array) != null && (m = a.length - 1) >= 0) {
747 dl 1.90 for (int s; (s = top - 1) - base >= 0;) {
748 dl 1.94 long j = ((m & s) << ASHIFT) + ABASE;
749     if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
750 dl 1.90 break;
751     if (U.compareAndSwapObject(a, j, t, null)) {
752     top = s;
753     return t;
754     }
755     }
756     }
757     return null;
758     }
759    
760     /**
761     * Takes a task in FIFO order if b is base of queue and a task
762     * can be claimed without contention. Specialized versions
763     * appear in ForkJoinPool methods scan and tryHelpStealer.
764 dl 1.78 */
765 dl 1.90 final ForkJoinTask<?> pollAt(int b) {
766     ForkJoinTask<?> t; ForkJoinTask<?>[] a;
767     if ((a = array) != null) {
768 dl 1.86 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
769     if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
770     base == b &&
771 dl 1.78 U.compareAndSwapObject(a, j, t, null)) {
772     base = b + 1;
773     return t;
774     }
775     }
776     return null;
777     }
778    
779     /**
780 dl 1.90 * Takes next task, if one exists, in FIFO order.
781 dl 1.78 */
782 dl 1.90 final ForkJoinTask<?> poll() {
783     ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
784     while ((b = base) - top < 0 && (a = array) != null) {
785     int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
786     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
787     if (t != null) {
788     if (base == b &&
789     U.compareAndSwapObject(a, j, t, null)) {
790     base = b + 1;
791 dl 1.78 return t;
792     }
793     }
794 dl 1.90 else if (base == b) {
795     if (b + 1 == top)
796     break;
797 dl 1.105 Thread.yield(); // wait for lagging update (very rare)
798 dl 1.90 }
799 dl 1.78 }
800     return null;
801     }
802    
803     /**
804     * Takes next task, if one exists, in order specified by mode.
805     */
806     final ForkJoinTask<?> nextLocalTask() {
807     return mode == 0 ? pop() : poll();
808     }
809    
810     /**
811     * Returns next task, if one exists, in order specified by mode.
812     */
813     final ForkJoinTask<?> peek() {
814     ForkJoinTask<?>[] a = array; int m;
815     if (a == null || (m = a.length - 1) < 0)
816     return null;
817     int i = mode == 0 ? top - 1 : base;
818     int j = ((i & m) << ASHIFT) + ABASE;
819     return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
820     }
821    
822     /**
823     * Pops the given task only if it is at the current top.
824 dl 1.105 * (A shared version is available only via FJP.tryExternalUnpush)
825 dl 1.78 */
826     final boolean tryUnpush(ForkJoinTask<?> t) {
827     ForkJoinTask<?>[] a; int s;
828     if ((a = array) != null && (s = top) != base &&
829     U.compareAndSwapObject
830     (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
831     top = s;
832     return true;
833     }
834     return false;
835     }
836    
837     /**
838 jsr166 1.84 * Removes and cancels all known tasks, ignoring any exceptions.
839 dl 1.78 */
840     final void cancelAll() {
841     ForkJoinTask.cancelIgnoringExceptions(currentJoin);
842     ForkJoinTask.cancelIgnoringExceptions(currentSteal);
843     for (ForkJoinTask<?> t; (t = poll()) != null; )
844     ForkJoinTask.cancelIgnoringExceptions(t);
845     }
846    
847 dl 1.86 /**
848     * Computes next value for random probes. Scans don't require
849     * a very high quality generator, but also not a crummy one.
850     * Marsaglia xor-shift is cheap and works well enough. Note:
851 dl 1.90 * This is manually inlined in its usages in ForkJoinPool to
852     * avoid writes inside busy scan loops.
853 dl 1.86 */
854     final int nextSeed() {
855     int r = seed;
856     r ^= r << 13;
857     r ^= r >>> 17;
858     return seed = r ^= r << 5;
859     }
860    
861 dl 1.104 // Specialized execution methods
862 dl 1.78
863     /**
864 dl 1.94 * Pops and runs tasks until empty.
865 dl 1.78 */
866 dl 1.94 private void popAndExecAll() {
867     // A bit faster than repeated pop calls
868     ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
869     while ((a = array) != null && (m = a.length - 1) >= 0 &&
870     (s = top - 1) - base >= 0 &&
871     (t = ((ForkJoinTask<?>)
872     U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
873     != null) {
874     if (U.compareAndSwapObject(a, j, t, null)) {
875     top = s;
876     t.doExec();
877 dl 1.90 }
878 dl 1.94 }
879     }
880    
881     /**
882     * Polls and runs tasks until empty.
883     */
884     private void pollAndExecAll() {
885     for (ForkJoinTask<?> t; (t = poll()) != null;)
886     t.doExec();
887     }
888    
889     /**
890 dl 1.105 * If present, removes from queue and executes the given task,
891     * or any other cancelled task. Returns (true) on any CAS
892 dl 1.94 * or consistency check failure so caller can retry.
893     *
894 jsr166 1.150 * @return false if no progress can be made, else true
895 dl 1.94 */
896 dl 1.105 final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
897     boolean stat = true, removed = false, empty = true;
898 dl 1.94 ForkJoinTask<?>[] a; int m, s, b, n;
899     if ((a = array) != null && (m = a.length - 1) >= 0 &&
900     (n = (s = top) - (b = base)) > 0) {
901     for (ForkJoinTask<?> t;;) { // traverse from s to b
902     int j = ((--s & m) << ASHIFT) + ABASE;
903     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
904     if (t == null) // inconsistent length
905     break;
906     else if (t == task) {
907     if (s + 1 == top) { // pop
908     if (!U.compareAndSwapObject(a, j, task, null))
909 dl 1.90 break;
910 dl 1.94 top = s;
911     removed = true;
912 dl 1.90 }
913 dl 1.94 else if (base == b) // replace with proxy
914     removed = U.compareAndSwapObject(a, j, task,
915     new EmptyTask());
916     break;
917     }
918     else if (t.status >= 0)
919     empty = false;
920     else if (s + 1 == top) { // pop and throw away
921     if (U.compareAndSwapObject(a, j, t, null))
922     top = s;
923     break;
924     }
925     if (--n == 0) {
926     if (!empty && base == b)
927 dl 1.105 stat = false;
928 dl 1.94 break;
929 dl 1.90 }
930     }
931 dl 1.78 }
932 dl 1.94 if (removed)
933     task.doExec();
934 dl 1.95 return stat;
935 dl 1.78 }
936    
937     /**
938 dl 1.105 * Polls for and executes the given task or any other task in
939 jsr166 1.149 * its CountedCompleter computation.
940 dl 1.104 */
941 dl 1.105 final boolean pollAndExecCC(ForkJoinTask<?> root) {
942     ForkJoinTask<?>[] a; int b; Object o;
943     outer: while ((b = base) - top < 0 && (a = array) != null) {
944     long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
945     if ((o = U.getObject(a, j)) == null ||
946     !(o instanceof CountedCompleter))
947     break;
948     for (CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;;) {
949     if (r == root) {
950     if (base == b &&
951     U.compareAndSwapObject(a, j, t, null)) {
952     base = b + 1;
953     t.doExec();
954     return true;
955 dl 1.104 }
956 dl 1.105 else
957     break; // restart
958 dl 1.104 }
959 dl 1.105 if ((r = r.completer) == null)
960     break outer; // not part of root computation
961 dl 1.104 }
962     }
963 dl 1.105 return false;
964 dl 1.104 }
965    
966     /**
967 dl 1.78 * Executes a top-level task and any local tasks remaining
968     * after execution.
969     */
970 dl 1.94 final void runTask(ForkJoinTask<?> t) {
971 dl 1.78 if (t != null) {
972 dl 1.105 (currentSteal = t).doExec();
973     currentSteal = null;
974 dl 1.126 ++nsteals;
975 dl 1.115 if (base - top < 0) { // process remaining local tasks
976 dl 1.94 if (mode == 0)
977     popAndExecAll();
978     else
979     pollAndExecAll();
980     }
981 dl 1.78 }
982     }
983    
984     /**
985 jsr166 1.84 * Executes a non-top-level (stolen) task.
986 dl 1.78 */
987     final void runSubtask(ForkJoinTask<?> t) {
988     if (t != null) {
989     ForkJoinTask<?> ps = currentSteal;
990 dl 1.105 (currentSteal = t).doExec();
991 dl 1.78 currentSteal = ps;
992     }
993     }
994    
995     /**
996 dl 1.86 * Returns true if owned and not known to be blocked.
997     */
998     final boolean isApparentlyUnblocked() {
999     Thread wt; Thread.State s;
1000     return (eventCount >= 0 &&
1001     (wt = owner) != null &&
1002     (s = wt.getState()) != Thread.State.BLOCKED &&
1003     s != Thread.State.WAITING &&
1004     s != Thread.State.TIMED_WAITING);
1005     }
1006    
1007 dl 1.78 // Unsafe mechanics
1008     private static final sun.misc.Unsafe U;
1009 dl 1.105 private static final long QLOCK;
1010 dl 1.78 private static final int ABASE;
1011     private static final int ASHIFT;
1012     static {
1013     try {
1014     U = sun.misc.Unsafe.getUnsafe();
1015     Class<?> k = WorkQueue.class;
1016     Class<?> ak = ForkJoinTask[].class;
1017 dl 1.105 QLOCK = U.objectFieldOffset
1018     (k.getDeclaredField("qlock"));
1019 dl 1.78 ABASE = U.arrayBaseOffset(ak);
1020 jsr166 1.142 int scale = U.arrayIndexScale(ak);
1021     if ((scale & (scale - 1)) != 0)
1022     throw new Error("data type scale not a power of two");
1023     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1024 dl 1.78 } catch (Exception e) {
1025     throw new Error(e);
1026     }
1027     }
1028     }
1029 dl 1.14
1030 dl 1.112 // static fields (initialized in static initializer below)
1031    
1032     /**
1033     * Creates a new ForkJoinWorkerThread. This factory is used unless
1034     * overridden in ForkJoinPool constructors.
1035     */
1036     public static final ForkJoinWorkerThreadFactory
1037     defaultForkJoinWorkerThreadFactory;
1038    
1039 jsr166 1.1 /**
1040 dl 1.115 * Permission required for callers of methods that may start or
1041     * kill threads.
1042     */
1043     private static final RuntimePermission modifyThreadPermission;
1044    
1045     /**
1046 dl 1.101 * Common (static) pool. Non-null for public use unless a static
1047 dl 1.105 * construction exception, but internal usages null-check on use
1048     * to paranoically avoid potential initialization circularities
1049     * as well as to simplify generated code.
1050 dl 1.101 */
1051 dl 1.134 static final ForkJoinPool common;
1052 dl 1.101
1053     /**
1054 dl 1.134 * Common pool parallelism. Must equal common.parallelism.
1055 dl 1.90 */
1056 dl 1.134 static final int commonParallelism;
1057 dl 1.90
1058     /**
1059 dl 1.105 * Sequence number for creating workerNamePrefix.
1060 dl 1.86 */
1061 dl 1.105 private static int poolNumberSequence;
1062 dl 1.86
1063 jsr166 1.1 /**
1064 jsr166 1.132 * Returns the next sequence number. We don't expect this to
1065     * ever contend, so use simple builtin sync.
1066 dl 1.83 */
1067 dl 1.105 private static final synchronized int nextPoolId() {
1068     return ++poolNumberSequence;
1069     }
1070 dl 1.86
1071     // static constants
1072    
1073     /**
1074 dl 1.105 * Initial timeout value (in nanoseconds) for the thread
1075     * triggering quiescence to park waiting for new work. On timeout,
1076     * the thread will instead try to shrink the number of
1077     * workers. The value should be large enough to avoid overly
1078     * aggressive shrinkage during most transient stalls (long GCs
1079     * etc).
1080 dl 1.86 */
1081 dl 1.105 private static final long IDLE_TIMEOUT = 2000L * 1000L * 1000L; // 2sec
1082 dl 1.86
1083     /**
1084 dl 1.100 * Timeout value when there are more threads than parallelism level
1085 dl 1.86 */
1086 dl 1.105 private static final long FAST_IDLE_TIMEOUT = 200L * 1000L * 1000L;
1087 dl 1.86
1088     /**
1089 dl 1.120 * Tolerance for idle timeouts, to cope with timer undershoots
1090     */
1091 dl 1.127 private static final long TIMEOUT_SLOP = 2000000L;
1092 dl 1.120
1093     /**
1094 dl 1.90 * The maximum stolen->joining link depth allowed in method
1095 dl 1.105 * tryHelpStealer. Must be a power of two. Depths for legitimate
1096 dl 1.90 * chains are unbounded, but we use a fixed constant to avoid
1097     * (otherwise unchecked) cycles and to bound staleness of
1098     * traversal parameters at the expense of sometimes blocking when
1099     * we could be helping.
1100     */
1101 dl 1.95 private static final int MAX_HELP = 64;
1102 dl 1.90
1103     /**
1104     * Increment for seed generators. See class ThreadLocal for
1105     * explanation.
1106     */
1107     private static final int SEED_INCREMENT = 0x61c88647;
1108 dl 1.83
1109     /**
1110 dl 1.86 * Bits and masks for control variables
1111     *
1112     * Field ctl is a long packed with:
1113     * AC: Number of active running workers minus target parallelism (16 bits)
1114     * TC: Number of total workers minus target parallelism (16 bits)
1115     * ST: true if pool is terminating (1 bit)
1116     * EC: the wait count of top waiting thread (15 bits)
1117     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1118     *
1119     * When convenient, we can extract the upper 32 bits of counts and
1120     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1121     * (int)ctl. The ec field is never accessed alone, but always
1122     * together with id and st. The offsets of counts by the target
1123     * parallelism and the positionings of fields makes it possible to
1124     * perform the most common checks via sign tests of fields: When
1125     * ac is negative, there are not enough active workers, when tc is
1126     * negative, there are not enough total workers, and when e is
1127     * negative, the pool is terminating. To deal with these possibly
1128     * negative fields, we use casts in and out of "short" and/or
1129     * signed shifts to maintain signedness.
1130     *
1131     * When a thread is queued (inactivated), its eventCount field is
1132     * set negative, which is the only way to tell if a worker is
1133     * prevented from executing tasks, even though it must continue to
1134     * scan for them to avoid queuing races. Note however that
1135     * eventCount updates lag releases so usage requires care.
1136     *
1137 dl 1.105 * Field plock is an int packed with:
1138 dl 1.86 * SHUTDOWN: true if shutdown is enabled (1 bit)
1139 dl 1.105 * SEQ: a sequence lock, with PL_LOCK bit set if locked (30 bits)
1140     * SIGNAL: set when threads may be waiting on the lock (1 bit)
1141 dl 1.86 *
1142 dl 1.90 * The sequence number enables simple consistency checks:
1143     * Staleness of read-only operations on the workQueues array can
1144 dl 1.105 * be checked by comparing plock before vs after the reads.
1145 dl 1.86 */
1146    
1147     // bit positions/shifts for fields
1148     private static final int AC_SHIFT = 48;
1149     private static final int TC_SHIFT = 32;
1150     private static final int ST_SHIFT = 31;
1151     private static final int EC_SHIFT = 16;
1152    
1153     // bounds
1154     private static final int SMASK = 0xffff; // short bits
1155 dl 1.90 private static final int MAX_CAP = 0x7fff; // max #workers - 1
1156 dl 1.105 private static final int EVENMASK = 0xfffe; // even short bits
1157     private static final int SQMASK = 0x007e; // max 64 (even) slots
1158 dl 1.86 private static final int SHORT_SIGN = 1 << 15;
1159     private static final int INT_SIGN = 1 << 31;
1160    
1161     // masks
1162     private static final long STOP_BIT = 0x0001L << ST_SHIFT;
1163     private static final long AC_MASK = ((long)SMASK) << AC_SHIFT;
1164     private static final long TC_MASK = ((long)SMASK) << TC_SHIFT;
1165    
1166     // units for incrementing and decrementing
1167     private static final long TC_UNIT = 1L << TC_SHIFT;
1168     private static final long AC_UNIT = 1L << AC_SHIFT;
1169    
1170     // masks and units for dealing with u = (int)(ctl >>> 32)
1171     private static final int UAC_SHIFT = AC_SHIFT - 32;
1172     private static final int UTC_SHIFT = TC_SHIFT - 32;
1173     private static final int UAC_MASK = SMASK << UAC_SHIFT;
1174     private static final int UTC_MASK = SMASK << UTC_SHIFT;
1175     private static final int UAC_UNIT = 1 << UAC_SHIFT;
1176     private static final int UTC_UNIT = 1 << UTC_SHIFT;
1177    
1178     // masks and units for dealing with e = (int)ctl
1179     private static final int E_MASK = 0x7fffffff; // no STOP_BIT
1180     private static final int E_SEQ = 1 << EC_SHIFT;
1181    
1182 dl 1.105 // plock bits
1183 dl 1.86 private static final int SHUTDOWN = 1 << 31;
1184 dl 1.105 private static final int PL_LOCK = 2;
1185     private static final int PL_SIGNAL = 1;
1186     private static final int PL_SPINS = 1 << 8;
1187 dl 1.86
1188     // access mode for WorkQueue
1189     static final int LIFO_QUEUE = 0;
1190     static final int FIFO_QUEUE = 1;
1191     static final int SHARED_QUEUE = -1;
1192    
1193 dl 1.112 // bounds for #steps in scan loop -- must be power 2 minus 1
1194     private static final int MIN_SCAN = 0x1ff; // cover estimation slop
1195     private static final int MAX_SCAN = 0x1ffff; // 4 * max workers
1196    
1197 dl 1.86 // Instance fields
1198    
1199     /*
1200 dl 1.112 * Field layout of this class tends to matter more than one would
1201     * like. Runtime layout order is only loosely related to
1202 dl 1.86 * declaration order and may differ across JVMs, but the following
1203     * empirically works OK on current JVMs.
1204 jsr166 1.1 */
1205 dl 1.115
1206     // Heuristic padding to ameliorate unfortunate memory placements
1207     volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
1208    
1209 dl 1.101 volatile long stealCount; // collects worker counts
1210 dl 1.86 volatile long ctl; // main pool control
1211 dl 1.112 volatile int plock; // shutdown status and seqLock
1212 dl 1.105 volatile int indexSeed; // worker/submitter index seed
1213 dl 1.112 final int config; // mode and parallelism level
1214 dl 1.86 WorkQueue[] workQueues; // main registry
1215 dl 1.112 final ForkJoinWorkerThreadFactory factory;
1216 jsr166 1.156 final UncaughtExceptionHandler ueh; // per-worker UEH
1217 dl 1.101 final String workerNamePrefix; // to create worker name string
1218    
1219 dl 1.115 volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
1220     volatile Object pad18, pad19, pad1a, pad1b;
1221    
1222 jsr166 1.145 /**
1223 dl 1.105 * Acquires the plock lock to protect worker array and related
1224     * updates. This method is called only if an initial CAS on plock
1225 jsr166 1.140 * fails. This acts as a spinlock for normal cases, but falls back
1226 dl 1.105 * to builtin monitor to block when (rarely) needed. This would be
1227     * a terrible idea for a highly contended lock, but works fine as
1228 dl 1.126 * a more conservative alternative to a pure spinlock.
1229 dl 1.105 */
1230     private int acquirePlock() {
1231 dl 1.139 int spins = PL_SPINS, ps, nps;
1232 dl 1.105 for (;;) {
1233     if (((ps = plock) & PL_LOCK) == 0 &&
1234     U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1235     return nps;
1236 dl 1.101 else if (spins >= 0) {
1237 dl 1.139 if (ThreadLocalRandom.nextSecondarySeed() >= 0)
1238 dl 1.101 --spins;
1239     }
1240 dl 1.105 else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1241 jsr166 1.106 synchronized (this) {
1242 dl 1.105 if ((plock & PL_SIGNAL) != 0) {
1243 dl 1.101 try {
1244     wait();
1245     } catch (InterruptedException ie) {
1246 dl 1.104 try {
1247     Thread.currentThread().interrupt();
1248     } catch (SecurityException ignore) {
1249     }
1250 dl 1.101 }
1251     }
1252     else
1253 dl 1.105 notifyAll();
1254 dl 1.101 }
1255     }
1256     }
1257     }
1258 dl 1.78
1259 jsr166 1.1 /**
1260 dl 1.105 * Unlocks and signals any thread waiting for plock. Called only
1261     * when CAS of seq value for unlock fails.
1262 jsr166 1.1 */
1263 dl 1.105 private void releasePlock(int ps) {
1264     plock = ps;
1265 jsr166 1.106 synchronized (this) { notifyAll(); }
1266 dl 1.78 }
1267 jsr166 1.1
1268 dl 1.112 /**
1269 dl 1.120 * Tries to create and start one worker if fewer than target
1270     * parallelism level exist. Adjusts counts etc on failure.
1271 dl 1.115 */
1272     private void tryAddWorker() {
1273 dl 1.112 long c; int u;
1274 dl 1.115 while ((u = (int)((c = ctl) >>> 32)) < 0 &&
1275     (u & SHORT_SIGN) != 0 && (int)c == 0) {
1276 dl 1.112 long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1277     ((u + UAC_UNIT) & UAC_MASK)) << 32;
1278 dl 1.115 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1279     ForkJoinWorkerThreadFactory fac;
1280     Throwable ex = null;
1281     ForkJoinWorkerThread wt = null;
1282     try {
1283     if ((fac = factory) != null &&
1284     (wt = fac.newThread(this)) != null) {
1285     wt.start();
1286     break;
1287     }
1288     } catch (Throwable e) {
1289     ex = e;
1290     }
1291     deregisterWorker(wt, ex);
1292     break;
1293     }
1294 dl 1.112 }
1295     }
1296    
1297     // Registering and deregistering workers
1298    
1299     /**
1300     * Callback from ForkJoinWorkerThread to establish and record its
1301     * WorkQueue. To avoid scanning bias due to packing entries in
1302     * front of the workQueues array, we treat the array as a simple
1303     * power-of-two hash table using per-thread seed as hash,
1304     * expanding as needed.
1305     *
1306     * @param wt the worker thread
1307 dl 1.115 * @return the worker's queue
1308 dl 1.112 */
1309 dl 1.115 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1310 jsr166 1.156 UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps;
1311 dl 1.115 wt.setDaemon(true);
1312     if ((handler = ueh) != null)
1313     wt.setUncaughtExceptionHandler(handler);
1314     do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
1315     s += SEED_INCREMENT) ||
1316     s == 0); // skip 0
1317     WorkQueue w = new WorkQueue(this, wt, config >>> 16, s);
1318     if (((ps = plock) & PL_LOCK) != 0 ||
1319     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1320     ps = acquirePlock();
1321     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1322     try {
1323     if ((ws = workQueues) != null) { // skip if shutting down
1324     int n = ws.length, m = n - 1;
1325     int r = (s << 1) | 1; // use odd-numbered indices
1326     if (ws[r &= m] != null) { // collision
1327     int probes = 0; // step by approx half size
1328     int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1329     while (ws[r = (r + step) & m] != null) {
1330     if (++probes >= n) {
1331     workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1332     m = n - 1;
1333     probes = 0;
1334 dl 1.94 }
1335     }
1336     }
1337 dl 1.115 w.eventCount = w.poolIndex = r; // volatile write orders
1338     ws[r] = w;
1339 dl 1.78 }
1340 dl 1.115 } finally {
1341     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1342     releasePlock(nps);
1343 dl 1.78 }
1344 dl 1.115 wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex)));
1345     return w;
1346 dl 1.78 }
1347 dl 1.19
1348 jsr166 1.1 /**
1349 dl 1.86 * Final callback from terminating worker, as well as upon failure
1350 dl 1.105 * to construct or start a worker. Removes record of worker from
1351     * array, and adjusts counts. If pool is shutting down, tries to
1352     * complete termination.
1353 dl 1.78 *
1354 jsr166 1.151 * @param wt the worker thread, or null if construction failed
1355 dl 1.78 * @param ex the exception causing failure, or null if none
1356 dl 1.45 */
1357 dl 1.78 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1358     WorkQueue w = null;
1359     if (wt != null && (w = wt.workQueue) != null) {
1360 dl 1.105 int ps;
1361     w.qlock = -1; // ensure set
1362 dl 1.112 long ns = w.nsteals, sc; // collect steal count
1363     do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1364     sc = stealCount, sc + ns));
1365 dl 1.105 if (((ps = plock) & PL_LOCK) != 0 ||
1366     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1367     ps = acquirePlock();
1368     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1369 dl 1.101 try {
1370 dl 1.105 int idx = w.poolIndex;
1371 dl 1.78 WorkQueue[] ws = workQueues;
1372 dl 1.90 if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1373 dl 1.86 ws[idx] = null;
1374 dl 1.78 } finally {
1375 dl 1.105 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1376     releasePlock(nps);
1377 dl 1.78 }
1378     }
1379    
1380 dl 1.126 long c; // adjust ctl counts
1381 dl 1.78 do {} while (!U.compareAndSwapLong
1382     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1383     ((c - TC_UNIT) & TC_MASK) |
1384     (c & ~(AC_MASK|TC_MASK)))));
1385    
1386 dl 1.120 if (!tryTerminate(false, false) && w != null && w.array != null) {
1387 dl 1.126 w.cancelAll(); // cancel remaining tasks
1388     WorkQueue[] ws; WorkQueue v; Thread p; int u, i, e;
1389     while ((u = (int)((c = ctl) >>> 32)) < 0 && (e = (int)c) >= 0) {
1390     if (e > 0) { // activate or create replacement
1391     if ((ws = workQueues) == null ||
1392     (i = e & SMASK) >= ws.length ||
1393 dl 1.130 (v = ws[i]) == null)
1394 dl 1.126 break;
1395     long nc = (((long)(v.nextWait & E_MASK)) |
1396     ((long)(u + UAC_UNIT) << 32));
1397     if (v.eventCount != (e | INT_SIGN))
1398     break;
1399     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1400     v.eventCount = (e + E_SEQ) & E_MASK;
1401     if ((p = v.parker) != null)
1402     U.unpark(p);
1403     break;
1404 dl 1.120 }
1405     }
1406     else {
1407     if ((short)u < 0)
1408     tryAddWorker();
1409     break;
1410     }
1411     }
1412 dl 1.78 }
1413 dl 1.120 if (ex == null) // help clean refs on way out
1414     ForkJoinTask.helpExpungeStaleExceptions();
1415     else // rethrow
1416 dl 1.104 ForkJoinTask.rethrow(ex);
1417 dl 1.78 }
1418 dl 1.52
1419 dl 1.86 // Submissions
1420    
1421     /**
1422     * Unless shutting down, adds the given task to a submission queue
1423     * at submitter's current queue index (modulo submission
1424 dl 1.105 * range). Only the most common path is directly handled in this
1425     * method. All others are relayed to fullExternalPush.
1426 dl 1.90 *
1427     * @param task the task. Caller must ensure non-null.
1428 dl 1.86 */
1429 dl 1.105 final void externalPush(ForkJoinTask<?> task) {
1430 dl 1.139 WorkQueue[] ws; WorkQueue q; int z, m; ForkJoinTask<?>[] a;
1431     if ((z = ThreadLocalRandom.getProbe()) != 0 && plock > 0 &&
1432 dl 1.105 (ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
1433 dl 1.139 (q = ws[m & z & SQMASK]) != null &&
1434 dl 1.105 U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1435 dl 1.112 int b = q.base, s = q.top, n, an;
1436     if ((a = q.array) != null && (an = a.length) > (n = s + 1 - b)) {
1437 dl 1.115 int j = (((an - 1) & s) << ASHIFT) + ABASE;
1438     U.putOrderedObject(a, j, task);
1439 dl 1.105 q.top = s + 1; // push on to deque
1440     q.qlock = 0;
1441 dl 1.112 if (n <= 2)
1442 dl 1.115 signalWork(q);
1443 dl 1.90 return;
1444     }
1445 dl 1.105 q.qlock = 0;
1446 dl 1.83 }
1447 dl 1.105 fullExternalPush(task);
1448 dl 1.83 }
1449 dl 1.45
1450 dl 1.100 /**
1451 dl 1.105 * Full version of externalPush. This method is called, among
1452     * other times, upon the first submission of the first task to the
1453 dl 1.131 * pool, so must perform secondary initialization. It also
1454     * detects first submission by an external thread by looking up
1455     * its ThreadLocal, and creates a new shared queue if the one at
1456     * index if empty or contended. The plock lock body must be
1457     * exception-free (so no try/finally) so we optimistically
1458     * allocate new queues outside the lock and throw them away if
1459     * (very rarely) not needed.
1460     *
1461     * Secondary initialization occurs when plock is zero, to create
1462     * workQueue array and set plock to a valid value. This lock body
1463     * must also be exception-free. Because the plock seq value can
1464     * eventually wrap around zero, this method harmlessly fails to
1465     * reinitialize if workQueues exists, while still advancing plock.
1466 dl 1.105 */
1467     private void fullExternalPush(ForkJoinTask<?> task) {
1468 dl 1.139 int r;
1469     if ((r = ThreadLocalRandom.getProbe()) == 0) {
1470     ThreadLocalRandom.localInit();
1471     r = ThreadLocalRandom.getProbe();
1472     }
1473     for (;;) {
1474 dl 1.112 WorkQueue[] ws; WorkQueue q; int ps, m, k;
1475 dl 1.139 boolean move = false;
1476     if ((ps = plock) < 0)
1477 dl 1.105 throw new RejectedExecutionException();
1478 dl 1.112 else if (ps == 0 || (ws = workQueues) == null ||
1479 dl 1.131 (m = ws.length - 1) < 0) { // initialize workQueues
1480     int p = config & SMASK; // find power of two table size
1481     int n = (p > 1) ? p - 1 : 1; // ensure at least 2 slots
1482     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4;
1483     n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1;
1484     WorkQueue[] nws = ((ws = workQueues) == null || ws.length == 0 ?
1485     new WorkQueue[n] : null);
1486     if (((ps = plock) & PL_LOCK) != 0 ||
1487     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1488     ps = acquirePlock();
1489     if (((ws = workQueues) == null || ws.length == 0) && nws != null)
1490     workQueues = nws;
1491     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1492     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1493     releasePlock(nps);
1494     }
1495 dl 1.112 else if ((q = ws[k = r & m & SQMASK]) != null) {
1496 dl 1.115 if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
1497     ForkJoinTask<?>[] a = q.array;
1498     int s = q.top;
1499     boolean submitted = false;
1500     try { // locked version of push
1501     if ((a != null && a.length > s + 1 - q.base) ||
1502     (a = q.growArray()) != null) { // must presize
1503     int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
1504     U.putOrderedObject(a, j, task);
1505     q.top = s + 1;
1506     submitted = true;
1507     }
1508     } finally {
1509     q.qlock = 0; // unlock
1510     }
1511     if (submitted) {
1512     signalWork(q);
1513     return;
1514     }
1515     }
1516 dl 1.139 move = true; // move on failure
1517 dl 1.112 }
1518     else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
1519     q = new WorkQueue(this, null, SHARED_QUEUE, r);
1520     if (((ps = plock) & PL_LOCK) != 0 ||
1521 dl 1.105 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1522     ps = acquirePlock();
1523 dl 1.112 if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
1524     ws[k] = q;
1525 dl 1.105 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1526     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1527     releasePlock(nps);
1528     }
1529 dl 1.112 else
1530 dl 1.139 move = true; // move if busy
1531     if (move)
1532     r = ThreadLocalRandom.advanceProbe(r);
1533 dl 1.104 }
1534 dl 1.102 }
1535    
1536 dl 1.78 // Maintaining ctl counts
1537 dl 1.17
1538     /**
1539 jsr166 1.84 * Increments active count; mainly called upon return from blocking.
1540 dl 1.19 */
1541 dl 1.78 final void incrementActiveCount() {
1542 dl 1.52 long c;
1543 dl 1.78 do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1544 dl 1.19 }
1545    
1546     /**
1547 dl 1.115 * Tries to create or activate a worker if too few are active.
1548     *
1549     * @param q the (non-null) queue holding tasks to be signalled
1550 dl 1.105 */
1551 dl 1.115 final void signalWork(WorkQueue q) {
1552     int hint = q.poolIndex;
1553     long c; int e, u, i, n; WorkQueue[] ws; WorkQueue w; Thread p;
1554 dl 1.105 while ((u = (int)((c = ctl) >>> 32)) < 0) {
1555     if ((e = (int)c) > 0) {
1556     if ((ws = workQueues) != null && ws.length > (i = e & SMASK) &&
1557 dl 1.86 (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1558     long nc = (((long)(w.nextWait & E_MASK)) |
1559     ((long)(u + UAC_UNIT) << 32));
1560     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1561 dl 1.115 w.hint = hint;
1562 dl 1.86 w.eventCount = (e + E_SEQ) & E_MASK;
1563 dl 1.115 if ((p = w.parker) != null)
1564 dl 1.105 U.unpark(p);
1565 dl 1.115 break;
1566 dl 1.105 }
1567 dl 1.115 if (q.top - q.base <= 0)
1568 dl 1.86 break;
1569     }
1570     else
1571 dl 1.52 break;
1572 dl 1.78 }
1573 dl 1.115 else {
1574     if ((short)u < 0)
1575     tryAddWorker();
1576     break;
1577 dl 1.52 }
1578     }
1579 dl 1.14 }
1580    
1581 dl 1.90 // Scanning for tasks
1582    
1583 dl 1.14 /**
1584 dl 1.90 * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1585 dl 1.14 */
1586 dl 1.90 final void runWorker(WorkQueue w) {
1587 dl 1.115 w.growArray(); // allocate queue
1588     do { w.runTask(scan(w)); } while (w.qlock >= 0);
1589 dl 1.14 }
1590    
1591     /**
1592 dl 1.78 * Scans for and, if found, returns one task, else possibly
1593     * inactivates the worker. This method operates on single reads of
1594 dl 1.90 * volatile state and is designed to be re-invoked continuously,
1595     * in part because it returns upon detecting inconsistencies,
1596 dl 1.78 * contention, or state changes that indicate possible success on
1597     * re-invocation.
1598     *
1599 dl 1.112 * The scan searches for tasks across queues (starting at a random
1600     * index, and relying on registerWorker to irregularly scatter
1601     * them within array to avoid bias), checking each at least twice.
1602     * The scan terminates upon either finding a non-empty queue, or
1603     * completing the sweep. If the worker is not inactivated, it
1604     * takes and returns a task from this queue. Otherwise, if not
1605     * activated, it signals workers (that may include itself) and
1606     * returns so caller can retry. Also returns for true if the
1607     * worker array may have changed during an empty scan. On failure
1608     * to find a task, we take one of the following actions, after
1609     * which the caller will retry calling this method unless
1610     * terminated.
1611 dl 1.78 *
1612 dl 1.86 * * If pool is terminating, terminate the worker.
1613     *
1614 dl 1.78 * * If not already enqueued, try to inactivate and enqueue the
1615 dl 1.90 * worker on wait queue. Or, if inactivating has caused the pool
1616 dl 1.126 * to be quiescent, relay to idleAwaitWork to possibly shrink
1617     * pool.
1618 dl 1.90 *
1619 dl 1.105 * * If already enqueued and none of the above apply, possibly
1620 dl 1.126 * park awaiting signal, else lingering to help scan and signal.
1621     *
1622     * * If a non-empty queue discovered or left as a hint,
1623 jsr166 1.133 * help wake up other workers before return.
1624 dl 1.78 *
1625     * @param w the worker (via its WorkQueue)
1626 jsr166 1.98 * @return a task or null if none found
1627 dl 1.78 */
1628     private final ForkJoinTask<?> scan(WorkQueue w) {
1629 dl 1.115 WorkQueue[] ws; int m;
1630 dl 1.112 int ps = plock; // read plock before ws
1631     if (w != null && (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1632     int ec = w.eventCount; // ec is negative if inactive
1633     int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1634 dl 1.126 w.hint = -1; // update seed and clear hint
1635 dl 1.115 int j = ((m + m + 1) | MIN_SCAN) & MAX_SCAN;
1636     do {
1637 dl 1.112 WorkQueue q; ForkJoinTask<?>[] a; int b;
1638     if ((q = ws[(r + j) & m]) != null && (b = q.base) - q.top < 0 &&
1639     (a = q.array) != null) { // probably nonempty
1640 dl 1.90 int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1641 dl 1.112 ForkJoinTask<?> t = (ForkJoinTask<?>)
1642     U.getObjectVolatile(a, i);
1643 dl 1.90 if (q.base == b && ec >= 0 && t != null &&
1644     U.compareAndSwapObject(a, i, t, null)) {
1645 dl 1.112 if ((q.base = b + 1) - q.top < 0)
1646 dl 1.115 signalWork(q);
1647 dl 1.112 return t; // taken
1648     }
1649 dl 1.115 else if ((ec < 0 || j < m) && (int)(ctl >> AC_SHIFT) <= 0) {
1650     w.hint = (r + j) & m; // help signal below
1651     break; // cannot take
1652     }
1653     }
1654     } while (--j >= 0);
1655    
1656 dl 1.126 int h, e, ns; long c, sc; WorkQueue q;
1657     if ((ns = w.nsteals) != 0) {
1658     if (U.compareAndSwapLong(this, STEALCOUNT,
1659     sc = stealCount, sc + ns))
1660     w.nsteals = 0; // collect steals and rescan
1661     }
1662     else if (plock != ps) // consistency check
1663     ; // skip
1664     else if ((e = (int)(c = ctl)) < 0)
1665     w.qlock = -1; // pool is terminating
1666     else {
1667     if ((h = w.hint) < 0) {
1668     if (ec >= 0) { // try to enqueue/inactivate
1669     long nc = (((long)ec |
1670     ((c - AC_UNIT) & (AC_MASK|TC_MASK))));
1671     w.nextWait = e; // link and mark inactive
1672     w.eventCount = ec | INT_SIGN;
1673     if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1674     w.eventCount = ec; // unmark on CAS failure
1675     else if ((int)(c >> AC_SHIFT) == 1 - (config & SMASK))
1676     idleAwaitWork(w, nc, c);
1677     }
1678 dl 1.131 else if (w.eventCount < 0 && ctl == c) {
1679 dl 1.126 Thread wt = Thread.currentThread();
1680     Thread.interrupted(); // clear status
1681     U.putObject(wt, PARKBLOCKER, this);
1682     w.parker = wt; // emulate LockSupport.park
1683     if (w.eventCount < 0) // recheck
1684 dl 1.131 U.park(false, 0L); // block
1685 dl 1.126 w.parker = null;
1686     U.putObject(wt, PARKBLOCKER, null);
1687     }
1688     }
1689     if ((h >= 0 || (h = w.hint) >= 0) &&
1690     (ws = workQueues) != null && h < ws.length &&
1691     (q = ws[h]) != null) { // signal others before retry
1692     WorkQueue v; Thread p; int u, i, s;
1693 dl 1.131 for (int n = (config & SMASK) - 1;;) {
1694 dl 1.126 int idleCount = (w.eventCount < 0) ? 0 : -1;
1695     if (((s = idleCount - q.base + q.top) <= n &&
1696     (n = s) <= 0) ||
1697     (u = (int)((c = ctl) >>> 32)) >= 0 ||
1698     (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1699     (v = ws[i]) == null)
1700     break;
1701     long nc = (((long)(v.nextWait & E_MASK)) |
1702     ((long)(u + UAC_UNIT) << 32));
1703     if (v.eventCount != (e | INT_SIGN) ||
1704     !U.compareAndSwapLong(this, CTL, c, nc))
1705     break;
1706     v.hint = h;
1707     v.eventCount = (e + E_SEQ) & E_MASK;
1708     if ((p = v.parker) != null)
1709     U.unpark(p);
1710     if (--n <= 0)
1711     break;
1712     }
1713 dl 1.115 }
1714     }
1715 dl 1.52 }
1716 dl 1.78 return null;
1717 dl 1.14 }
1718    
1719     /**
1720 dl 1.90 * If inactivating worker w has caused the pool to become
1721     * quiescent, checks for pool termination, and, so long as this is
1722 dl 1.100 * not the only worker, waits for event for up to a given
1723     * duration. On timeout, if ctl has not changed, terminates the
1724 dl 1.90 * worker, which will in turn wake up another worker to possibly
1725     * repeat this process.
1726 dl 1.52 *
1727 dl 1.78 * @param w the calling worker
1728 dl 1.90 * @param currentCtl the ctl value triggering possible quiescence
1729     * @param prevCtl the ctl value to restore if thread is terminated
1730 dl 1.14 */
1731 dl 1.90 private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1732 dl 1.112 if (w != null && w.eventCount < 0 &&
1733 dl 1.131 !tryTerminate(false, false) && (int)prevCtl != 0 &&
1734     ctl == currentCtl) {
1735 dl 1.100 int dc = -(short)(currentCtl >>> TC_SHIFT);
1736     long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1737 dl 1.120 long deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
1738 dl 1.90 Thread wt = Thread.currentThread();
1739     while (ctl == currentCtl) {
1740 dl 1.78 Thread.interrupted(); // timed variant of version in scan()
1741     U.putObject(wt, PARKBLOCKER, this);
1742     w.parker = wt;
1743 dl 1.90 if (ctl == currentCtl)
1744 dl 1.100 U.park(false, parkTime);
1745 dl 1.78 w.parker = null;
1746     U.putObject(wt, PARKBLOCKER, null);
1747 dl 1.90 if (ctl != currentCtl)
1748 dl 1.78 break;
1749 dl 1.100 if (deadline - System.nanoTime() <= 0L &&
1750 dl 1.90 U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1751     w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1752 dl 1.131 w.hint = -1;
1753 dl 1.105 w.qlock = -1; // shrink
1754 dl 1.78 break;
1755     }
1756 dl 1.24 }
1757 dl 1.14 }
1758     }
1759    
1760     /**
1761 dl 1.120 * Scans through queues looking for work while joining a task; if
1762     * any present, signals. May return early if more signalling is
1763     * detectably unneeded.
1764 dl 1.105 *
1765 dl 1.120 * @param task return early if done
1766 dl 1.105 * @param origin an index to start scan
1767     */
1768 dl 1.120 private void helpSignal(ForkJoinTask<?> task, int origin) {
1769 dl 1.115 WorkQueue[] ws; WorkQueue w; Thread p; long c; int m, u, e, i, s;
1770 dl 1.120 if (task != null && task.status >= 0 &&
1771     (u = (int)(ctl >>> 32)) < 0 && (u >> UAC_SHIFT) < 0 &&
1772 dl 1.115 (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1773 dl 1.120 outer: for (int k = origin, j = m; j >= 0; --j) {
1774 dl 1.115 WorkQueue q = ws[k++ & m];
1775     for (int n = m;;) { // limit to at most m signals
1776 dl 1.120 if (task.status < 0)
1777 dl 1.115 break outer;
1778     if (q == null ||
1779 dl 1.120 ((s = -q.base + q.top) <= n && (n = s) <= 0))
1780 dl 1.105 break;
1781 dl 1.115 if ((u = (int)((c = ctl) >>> 32)) >= 0 ||
1782     (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1783     (w = ws[i]) == null)
1784     break outer;
1785     long nc = (((long)(w.nextWait & E_MASK)) |
1786     ((long)(u + UAC_UNIT) << 32));
1787 dl 1.126 if (w.eventCount != (e | INT_SIGN))
1788     break outer;
1789     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1790 dl 1.122 w.eventCount = (e + E_SEQ) & E_MASK;
1791     if ((p = w.parker) != null)
1792     U.unpark(p);
1793     if (--n <= 0)
1794     break;
1795     }
1796 dl 1.120 }
1797     }
1798     }
1799     }
1800    
1801     /**
1802 dl 1.78 * Tries to locate and execute tasks for a stealer of the given
1803     * task, or in turn one of its stealers, Traces currentSteal ->
1804     * currentJoin links looking for a thread working on a descendant
1805     * of the given task and with a non-empty queue to steal back and
1806     * execute tasks from. The first call to this method upon a
1807     * waiting join will often entail scanning/search, (which is OK
1808     * because the joiner has nothing better to do), but this method
1809     * leaves hints in workers to speed up subsequent calls. The
1810     * implementation is very branchy to cope with potential
1811     * inconsistencies or loops encountering chains that are stale,
1812 dl 1.95 * unknown, or so long that they are likely cyclic.
1813 dl 1.78 *
1814     * @param joiner the joining worker
1815     * @param task the task to join
1816 dl 1.95 * @return 0 if no progress can be made, negative if task
1817     * known complete, else positive
1818 dl 1.78 */
1819 dl 1.95 private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1820     int stat = 0, steps = 0; // bound to avoid cycles
1821     if (joiner != null && task != null) { // hoist null checks
1822     restart: for (;;) {
1823     ForkJoinTask<?> subtask = task; // current target
1824     for (WorkQueue j = joiner, v;;) { // v is stealer of subtask
1825     WorkQueue[] ws; int m, s, h;
1826     if ((s = task.status) < 0) {
1827     stat = s;
1828     break restart;
1829     }
1830     if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1831     break restart; // shutting down
1832 dl 1.112 if ((v = ws[h = (j.hint | 1) & m]) == null ||
1833 dl 1.95 v.currentSteal != subtask) {
1834     for (int origin = h;;) { // find stealer
1835     if (((h = (h + 2) & m) & 15) == 1 &&
1836     (subtask.status < 0 || j.currentJoin != subtask))
1837     continue restart; // occasional staleness check
1838     if ((v = ws[h]) != null &&
1839     v.currentSteal == subtask) {
1840 dl 1.112 j.hint = h; // save hint
1841 dl 1.95 break;
1842     }
1843     if (h == origin)
1844     break restart; // cannot find stealer
1845 dl 1.78 }
1846     }
1847 dl 1.95 for (;;) { // help stealer or descend to its stealer
1848     ForkJoinTask[] a; int b;
1849     if (subtask.status < 0) // surround probes with
1850     continue restart; // consistency checks
1851     if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1852     int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1853     ForkJoinTask<?> t =
1854     (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1855     if (subtask.status < 0 || j.currentJoin != subtask ||
1856     v.currentSteal != subtask)
1857     continue restart; // stale
1858     stat = 1; // apparent progress
1859     if (t != null && v.base == b &&
1860     U.compareAndSwapObject(a, i, t, null)) {
1861     v.base = b + 1; // help stealer
1862     joiner.runSubtask(t);
1863     }
1864     else if (v.base == b && ++steps == MAX_HELP)
1865     break restart; // v apparently stalled
1866     }
1867     else { // empty -- try to descend
1868     ForkJoinTask<?> next = v.currentJoin;
1869     if (subtask.status < 0 || j.currentJoin != subtask ||
1870     v.currentSteal != subtask)
1871     continue restart; // stale
1872     else if (next == null || ++steps == MAX_HELP)
1873     break restart; // dead-end or maybe cyclic
1874     else {
1875     subtask = next;
1876     j = v;
1877     break;
1878     }
1879 dl 1.78 }
1880 dl 1.52 }
1881 dl 1.19 }
1882 dl 1.78 }
1883 dl 1.14 }
1884 dl 1.95 return stat;
1885 dl 1.22 }
1886    
1887 dl 1.52 /**
1888 dl 1.105 * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1889 jsr166 1.111 * and run tasks within the target's computation.
1890 dl 1.105 *
1891     * @param task the task to join
1892     * @param mode if shared, exit upon completing any task
1893     * if all workers are active
1894 dl 1.19 */
1895 dl 1.105 private int helpComplete(ForkJoinTask<?> task, int mode) {
1896 dl 1.112 WorkQueue[] ws; WorkQueue q; int m, n, s, u;
1897 dl 1.105 if (task != null && (ws = workQueues) != null &&
1898     (m = ws.length - 1) >= 0) {
1899     for (int j = 1, origin = j;;) {
1900     if ((s = task.status) < 0)
1901     return s;
1902     if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) {
1903     origin = j;
1904 dl 1.112 if (mode == SHARED_QUEUE &&
1905     ((u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0))
1906 dl 1.105 break;
1907     }
1908     else if ((j = (j + 2) & m) == origin)
1909 dl 1.78 break;
1910 dl 1.52 }
1911     }
1912 dl 1.105 return 0;
1913 dl 1.14 }
1914    
1915     /**
1916 dl 1.90 * Tries to decrement active count (sometimes implicitly) and
1917     * possibly release or create a compensating worker in preparation
1918     * for blocking. Fails on contention or termination. Otherwise,
1919 dl 1.105 * adds a new thread if no idle workers are available and pool
1920     * may become starved.
1921 dl 1.90 */
1922 dl 1.105 final boolean tryCompensate() {
1923 dl 1.112 int pc = config & SMASK, e, i, tc; long c;
1924 dl 1.105 WorkQueue[] ws; WorkQueue w; Thread p;
1925 dl 1.112 if ((ws = workQueues) != null && (e = (int)(c = ctl)) >= 0) {
1926 dl 1.105 if (e != 0 && (i = e & SMASK) < ws.length &&
1927     (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1928     long nc = ((long)(w.nextWait & E_MASK) |
1929     (c & (AC_MASK|TC_MASK)));
1930     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1931     w.eventCount = (e + E_SEQ) & E_MASK;
1932     if ((p = w.parker) != null)
1933     U.unpark(p);
1934     return true; // replace with idle worker
1935 dl 1.90 }
1936     }
1937 dl 1.112 else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
1938     (int)(c >> AC_SHIFT) + pc > 1) {
1939 dl 1.105 long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1940     if (U.compareAndSwapLong(this, CTL, c, nc))
1941 dl 1.112 return true; // no compensation
1942 dl 1.105 }
1943 dl 1.112 else if (tc + pc < MAX_CAP) {
1944 dl 1.105 long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1945     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1946 dl 1.115 ForkJoinWorkerThreadFactory fac;
1947     Throwable ex = null;
1948     ForkJoinWorkerThread wt = null;
1949     try {
1950     if ((fac = factory) != null &&
1951     (wt = fac.newThread(this)) != null) {
1952     wt.start();
1953     return true;
1954     }
1955     } catch (Throwable rex) {
1956     ex = rex;
1957     }
1958     deregisterWorker(wt, ex); // clean up and return false
1959 dl 1.90 }
1960     }
1961     }
1962     return false;
1963     }
1964    
1965     /**
1966 jsr166 1.93 * Helps and/or blocks until the given task is done.
1967 dl 1.90 *
1968     * @param joiner the joining worker
1969     * @param task the task
1970     * @return task status on exit
1971     */
1972     final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1973 dl 1.105 int s = 0;
1974     if (joiner != null && task != null && (s = task.status) >= 0) {
1975 dl 1.95 ForkJoinTask<?> prevJoin = joiner.currentJoin;
1976 dl 1.94 joiner.currentJoin = task;
1977 dl 1.115 do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
1978 dl 1.105 joiner.tryRemoveAndExec(task)); // process local tasks
1979 dl 1.115 if (s >= 0 && (s = task.status) >= 0) {
1980 dl 1.120 helpSignal(task, joiner.poolIndex);
1981 dl 1.115 if ((s = task.status) >= 0 &&
1982     (task instanceof CountedCompleter))
1983     s = helpComplete(task, LIFO_QUEUE);
1984     }
1985 dl 1.105 while (s >= 0 && (s = task.status) >= 0) {
1986 dl 1.115 if ((!joiner.isEmpty() || // try helping
1987 dl 1.105 (s = tryHelpStealer(joiner, task)) == 0) &&
1988 dl 1.112 (s = task.status) >= 0) {
1989 dl 1.120 helpSignal(task, joiner.poolIndex);
1990 dl 1.115 if ((s = task.status) >= 0 && tryCompensate()) {
1991 dl 1.112 if (task.trySetSignal() && (s = task.status) >= 0) {
1992     synchronized (task) {
1993     if (task.status >= 0) {
1994     try { // see ForkJoinTask
1995     task.wait(); // for explanation
1996     } catch (InterruptedException ie) {
1997     }
1998 dl 1.90 }
1999 dl 1.112 else
2000     task.notifyAll();
2001 dl 1.90 }
2002     }
2003 dl 1.112 long c; // re-activate
2004     do {} while (!U.compareAndSwapLong
2005     (this, CTL, c = ctl, c + AC_UNIT));
2006 dl 1.90 }
2007     }
2008     }
2009 dl 1.105 joiner.currentJoin = prevJoin;
2010 dl 1.90 }
2011 dl 1.94 return s;
2012 dl 1.90 }
2013    
2014     /**
2015     * Stripped-down variant of awaitJoin used by timed joins. Tries
2016     * to help join only while there is continuous progress. (Caller
2017     * will then enter a timed wait.)
2018     *
2019     * @param joiner the joining worker
2020     * @param task the task
2021     */
2022 dl 1.105 final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2023 dl 1.90 int s;
2024 dl 1.105 if (joiner != null && task != null && (s = task.status) >= 0) {
2025     ForkJoinTask<?> prevJoin = joiner.currentJoin;
2026     joiner.currentJoin = task;
2027 dl 1.115 do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
2028 dl 1.105 joiner.tryRemoveAndExec(task));
2029 dl 1.115 if (s >= 0 && (s = task.status) >= 0) {
2030 dl 1.120 helpSignal(task, joiner.poolIndex);
2031 dl 1.115 if ((s = task.status) >= 0 &&
2032     (task instanceof CountedCompleter))
2033     s = helpComplete(task, LIFO_QUEUE);
2034     }
2035     if (s >= 0 && joiner.isEmpty()) {
2036 dl 1.105 do {} while (task.status >= 0 &&
2037     tryHelpStealer(joiner, task) > 0);
2038     }
2039     joiner.currentJoin = prevJoin;
2040     }
2041 dl 1.90 }
2042    
2043     /**
2044     * Returns a (probably) non-empty steal queue, if one is found
2045 dl 1.131 * during a scan, else null. This method must be retried by
2046     * caller if, by the time it tries to use the queue, it is empty.
2047 dl 1.105 * @param r a (random) seed for scanning
2048 dl 1.78 */
2049 dl 1.105 private WorkQueue findNonEmptyStealQueue(int r) {
2050 dl 1.131 for (;;) {
2051     int ps = plock, m; WorkQueue[] ws; WorkQueue q;
2052     if ((ws = workQueues) != null && (m = ws.length - 1) >= 0) {
2053     for (int j = (m + 1) << 2; j >= 0; --j) {
2054     if ((q = ws[(((r + j) << 1) | 1) & m]) != null &&
2055     q.base - q.top < 0)
2056     return q;
2057 dl 1.52 }
2058     }
2059 dl 1.131 if (plock == ps)
2060     return null;
2061 dl 1.22 }
2062     }
2063    
2064     /**
2065 dl 1.78 * Runs tasks until {@code isQuiescent()}. We piggyback on
2066     * active count ctl maintenance, but rather than blocking
2067     * when tasks cannot be found, we rescan until all others cannot
2068     * find tasks either.
2069     */
2070     final void helpQuiescePool(WorkQueue w) {
2071     for (boolean active = true;;) {
2072 dl 1.131 long c; WorkQueue q; ForkJoinTask<?> t; int b;
2073     while ((t = w.nextLocalTask()) != null) {
2074     if (w.base - w.top < 0)
2075     signalWork(w);
2076     t.doExec();
2077     }
2078     if ((q = findNonEmptyStealQueue(w.nextSeed())) != null) {
2079 dl 1.78 if (!active) { // re-establish active count
2080     active = true;
2081     do {} while (!U.compareAndSwapLong
2082     (this, CTL, c = ctl, c + AC_UNIT));
2083     }
2084 dl 1.130 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2085     if (q.base - q.top < 0)
2086     signalWork(q);
2087 dl 1.78 w.runSubtask(t);
2088 dl 1.130 }
2089 dl 1.78 }
2090 dl 1.131 else if (active) { // decrement active count without queuing
2091     long nc = (c = ctl) - AC_UNIT;
2092     if ((int)(nc >> AC_SHIFT) + (config & SMASK) == 0)
2093     return; // bypass decrement-then-increment
2094     if (U.compareAndSwapLong(this, CTL, c, nc))
2095 dl 1.78 active = false;
2096 dl 1.22 }
2097 dl 1.131 else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) == 0 &&
2098     U.compareAndSwapLong(this, CTL, c, c + AC_UNIT))
2099     return;
2100 dl 1.22 }
2101     }
2102    
2103     /**
2104 jsr166 1.84 * Gets and removes a local or stolen task for the given worker.
2105 dl 1.78 *
2106     * @return a task, if available
2107 dl 1.22 */
2108 dl 1.78 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2109     for (ForkJoinTask<?> t;;) {
2110 dl 1.90 WorkQueue q; int b;
2111 dl 1.78 if ((t = w.nextLocalTask()) != null)
2112     return t;
2113 dl 1.105 if ((q = findNonEmptyStealQueue(w.nextSeed())) == null)
2114 dl 1.78 return null;
2115 dl 1.130 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2116     if (q.base - q.top < 0)
2117     signalWork(q);
2118 dl 1.78 return t;
2119 dl 1.130 }
2120 dl 1.52 }
2121 dl 1.14 }
2122    
2123     /**
2124 dl 1.105 * Returns a cheap heuristic guide for task partitioning when
2125     * programmers, frameworks, tools, or languages have little or no
2126     * idea about task granularity. In essence by offering this
2127     * method, we ask users only about tradeoffs in overhead vs
2128     * expected throughput and its variance, rather than how finely to
2129     * partition tasks.
2130     *
2131     * In a steady state strict (tree-structured) computation, each
2132     * thread makes available for stealing enough tasks for other
2133     * threads to remain active. Inductively, if all threads play by
2134     * the same rules, each thread should make available only a
2135     * constant number of tasks.
2136     *
2137     * The minimum useful constant is just 1. But using a value of 1
2138     * would require immediate replenishment upon each steal to
2139     * maintain enough tasks, which is infeasible. Further,
2140     * partitionings/granularities of offered tasks should minimize
2141     * steal rates, which in general means that threads nearer the top
2142     * of computation tree should generate more than those nearer the
2143     * bottom. In perfect steady state, each thread is at
2144     * approximately the same level of computation tree. However,
2145     * producing extra tasks amortizes the uncertainty of progress and
2146     * diffusion assumptions.
2147     *
2148     * So, users will want to use values larger, but not much larger
2149     * than 1 to both smooth over transient shortages and hedge
2150     * against uneven progress; as traded off against the cost of
2151     * extra task overhead. We leave the user to pick a threshold
2152     * value to compare with the results of this call to guide
2153     * decisions, but recommend values such as 3.
2154     *
2155     * When all threads are active, it is on average OK to estimate
2156     * surplus strictly locally. In steady-state, if one thread is
2157     * maintaining say 2 surplus tasks, then so are others. So we can
2158     * just use estimated queue length. However, this strategy alone
2159     * leads to serious mis-estimates in some non-steady-state
2160     * conditions (ramp-up, ramp-down, other stalls). We can detect
2161     * many of these by further considering the number of "idle"
2162     * threads, that are known to have zero queued tasks, so
2163     * compensate by a factor of (#idle/#active) threads.
2164     *
2165     * Note: The approximation of #busy workers as #active workers is
2166     * not very good under current signalling scheme, and should be
2167     * improved.
2168     */
2169     static int getSurplusQueuedTaskCount() {
2170     Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2171     if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2172 dl 1.112 int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2173     int n = (q = wt.workQueue).top - q.base;
2174 dl 1.105 int a = (int)(pool.ctl >> AC_SHIFT) + p;
2175 dl 1.112 return n - (a > (p >>>= 1) ? 0 :
2176     a > (p >>>= 1) ? 1 :
2177     a > (p >>>= 1) ? 2 :
2178     a > (p >>>= 1) ? 4 :
2179     8);
2180 dl 1.105 }
2181     return 0;
2182 dl 1.100 }
2183    
2184 dl 1.86 // Termination
2185 dl 1.14
2186     /**
2187 dl 1.86 * Possibly initiates and/or completes termination. The caller
2188     * triggering termination runs three passes through workQueues:
2189     * (0) Setting termination status, followed by wakeups of queued
2190     * workers; (1) cancelling all tasks; (2) interrupting lagging
2191     * threads (likely in external tasks, but possibly also blocked in
2192     * joins). Each pass repeats previous steps because of potential
2193     * lagging thread creation.
2194 dl 1.14 *
2195     * @param now if true, unconditionally terminate, else only
2196 dl 1.78 * if no work and no active workers
2197 jsr166 1.87 * @param enable if true, enable shutdown when next possible
2198 dl 1.14 * @return true if now terminating or terminated
2199 jsr166 1.1 */
2200 dl 1.86 private boolean tryTerminate(boolean now, boolean enable) {
2201 dl 1.131 int ps;
2202 dl 1.134 if (this == common) // cannot shut down
2203 dl 1.105 return false;
2204 dl 1.131 if ((ps = plock) >= 0) { // enable by setting plock
2205     if (!enable)
2206     return false;
2207     if ((ps & PL_LOCK) != 0 ||
2208     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2209     ps = acquirePlock();
2210     int nps = ((ps + PL_LOCK) & ~SHUTDOWN) | SHUTDOWN;
2211     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2212     releasePlock(nps);
2213     }
2214 dl 1.78 for (long c;;) {
2215 dl 1.131 if (((c = ctl) & STOP_BIT) != 0) { // already terminating
2216 dl 1.112 if ((short)(c >>> TC_SHIFT) == -(config & SMASK)) {
2217 jsr166 1.103 synchronized (this) {
2218 dl 1.131 notifyAll(); // signal when 0 workers
2219 dl 1.101 }
2220 dl 1.78 }
2221     return true;
2222     }
2223 dl 1.131 if (!now) { // check if idle & no tasks
2224     WorkQueue[] ws; WorkQueue w;
2225     if ((int)(c >> AC_SHIFT) != -(config & SMASK))
2226 dl 1.86 return false;
2227 dl 1.131 if ((ws = workQueues) != null) {
2228     for (int i = 0; i < ws.length; ++i) {
2229     if ((w = ws[i]) != null) {
2230     if (!w.isEmpty()) { // signal unprocessed tasks
2231     signalWork(w);
2232     return false;
2233     }
2234     if ((i & 1) != 0 && w.eventCount >= 0)
2235     return false; // unqueued inactive worker
2236     }
2237 dl 1.78 }
2238 dl 1.52 }
2239     }
2240 dl 1.86 if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2241     for (int pass = 0; pass < 3; ++pass) {
2242 dl 1.131 WorkQueue[] ws; WorkQueue w; Thread wt;
2243     if ((ws = workQueues) != null) {
2244 dl 1.86 int n = ws.length;
2245     for (int i = 0; i < n; ++i) {
2246     if ((w = ws[i]) != null) {
2247 dl 1.105 w.qlock = -1;
2248 dl 1.86 if (pass > 0) {
2249     w.cancelAll();
2250 dl 1.126 if (pass > 1 && (wt = w.owner) != null) {
2251     if (!wt.isInterrupted()) {
2252     try {
2253     wt.interrupt();
2254 dl 1.131 } catch (Throwable ignore) {
2255 dl 1.126 }
2256     }
2257     U.unpark(wt);
2258     }
2259 dl 1.52 }
2260 dl 1.19 }
2261     }
2262 dl 1.86 // Wake up workers parked on event queue
2263     int i, e; long cc; Thread p;
2264     while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2265 dl 1.131 (i = e & SMASK) < n && i >= 0 &&
2266 dl 1.86 (w = ws[i]) != null) {
2267     long nc = ((long)(w.nextWait & E_MASK) |
2268     ((cc + AC_UNIT) & AC_MASK) |
2269     (cc & (TC_MASK|STOP_BIT)));
2270     if (w.eventCount == (e | INT_SIGN) &&
2271     U.compareAndSwapLong(this, CTL, cc, nc)) {
2272     w.eventCount = (e + E_SEQ) & E_MASK;
2273 dl 1.105 w.qlock = -1;
2274 dl 1.86 if ((p = w.parker) != null)
2275     U.unpark(p);
2276     }
2277     }
2278 dl 1.78 }
2279 dl 1.52 }
2280     }
2281     }
2282     }
2283    
2284 dl 1.105 // external operations on common pool
2285    
2286     /**
2287     * Returns common pool queue for a thread that has submitted at
2288     * least one task.
2289     */
2290     static WorkQueue commonSubmitterQueue() {
2291 dl 1.139 ForkJoinPool p; WorkQueue[] ws; int m, z;
2292     return ((z = ThreadLocalRandom.getProbe()) != 0 &&
2293 dl 1.134 (p = common) != null &&
2294 dl 1.105 (ws = p.workQueues) != null &&
2295     (m = ws.length - 1) >= 0) ?
2296 dl 1.139 ws[m & z & SQMASK] : null;
2297 dl 1.105 }
2298    
2299     /**
2300     * Tries to pop the given task from submitter's queue in common pool.
2301     */
2302     static boolean tryExternalUnpush(ForkJoinTask<?> t) {
2303 dl 1.139 ForkJoinPool p; WorkQueue[] ws; WorkQueue q;
2304     ForkJoinTask<?>[] a; int m, s, z;
2305 dl 1.115 if (t != null &&
2306 dl 1.139 (z = ThreadLocalRandom.getProbe()) != 0 &&
2307 dl 1.134 (p = common) != null &&
2308 dl 1.105 (ws = p.workQueues) != null &&
2309     (m = ws.length - 1) >= 0 &&
2310 dl 1.139 (q = ws[m & z & SQMASK]) != null &&
2311 dl 1.105 (s = q.top) != q.base &&
2312 dl 1.115 (a = q.array) != null) {
2313     long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
2314     if (U.getObject(a, j) == t &&
2315     U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2316     if (q.array == a && q.top == s && // recheck
2317     U.compareAndSwapObject(a, j, t, null)) {
2318     q.top = s - 1;
2319     q.qlock = 0;
2320     return true;
2321     }
2322 dl 1.105 q.qlock = 0;
2323     }
2324     }
2325     return false;
2326     }
2327    
2328     /**
2329     * Tries to pop and run local tasks within the same computation
2330     * as the given root. On failure, tries to help complete from
2331     * other queues via helpComplete.
2332     */
2333     private void externalHelpComplete(WorkQueue q, ForkJoinTask<?> root) {
2334     ForkJoinTask<?>[] a; int m;
2335     if (q != null && (a = q.array) != null && (m = (a.length - 1)) >= 0 &&
2336     root != null && root.status >= 0) {
2337     for (;;) {
2338 dl 1.112 int s, u; Object o; CountedCompleter<?> task = null;
2339 dl 1.105 if ((s = q.top) - q.base > 0) {
2340     long j = ((m & (s - 1)) << ASHIFT) + ABASE;
2341     if ((o = U.getObject(a, j)) != null &&
2342     (o instanceof CountedCompleter)) {
2343     CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2344     do {
2345     if (r == root) {
2346     if (U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2347     if (q.array == a && q.top == s &&
2348     U.compareAndSwapObject(a, j, t, null)) {
2349     q.top = s - 1;
2350     task = t;
2351     }
2352     q.qlock = 0;
2353     }
2354     break;
2355     }
2356 jsr166 1.106 } while ((r = r.completer) != null);
2357 dl 1.105 }
2358     }
2359     if (task != null)
2360     task.doExec();
2361 dl 1.112 if (root.status < 0 ||
2362     (u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0)
2363 dl 1.105 break;
2364     if (task == null) {
2365 dl 1.120 helpSignal(root, q.poolIndex);
2366 dl 1.115 if (root.status >= 0)
2367 dl 1.105 helpComplete(root, SHARED_QUEUE);
2368     break;
2369     }
2370     }
2371     }
2372     }
2373    
2374     /**
2375     * Tries to help execute or signal availability of the given task
2376     * from submitter's queue in common pool.
2377     */
2378     static void externalHelpJoin(ForkJoinTask<?> t) {
2379     // Some hard-to-avoid overlap with tryExternalUnpush
2380 dl 1.139 ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w;
2381     ForkJoinTask<?>[] a; int m, s, n, z;
2382 dl 1.112 if (t != null &&
2383 dl 1.139 (z = ThreadLocalRandom.getProbe()) != 0 &&
2384 dl 1.134 (p = common) != null &&
2385 dl 1.105 (ws = p.workQueues) != null &&
2386     (m = ws.length - 1) >= 0 &&
2387 dl 1.139 (q = ws[m & z & SQMASK]) != null &&
2388 dl 1.115 (a = q.array) != null) {
2389     int am = a.length - 1;
2390     if ((s = q.top) != q.base) {
2391     long j = ((am & (s - 1)) << ASHIFT) + ABASE;
2392     if (U.getObject(a, j) == t &&
2393     U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2394     if (q.array == a && q.top == s &&
2395     U.compareAndSwapObject(a, j, t, null)) {
2396     q.top = s - 1;
2397     q.qlock = 0;
2398     t.doExec();
2399     }
2400     else
2401     q.qlock = 0;
2402 dl 1.105 }
2403     }
2404     if (t.status >= 0) {
2405     if (t instanceof CountedCompleter)
2406     p.externalHelpComplete(q, t);
2407     else
2408 dl 1.120 p.helpSignal(t, q.poolIndex);
2409 dl 1.105 }
2410     }
2411     }
2412    
2413 dl 1.52 // Exported methods
2414 jsr166 1.1
2415     // Constructors
2416    
2417     /**
2418 jsr166 1.9 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2419 dl 1.18 * java.lang.Runtime#availableProcessors}, using the {@linkplain
2420     * #defaultForkJoinWorkerThreadFactory default thread factory},
2421     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2422 jsr166 1.1 *
2423     * @throws SecurityException if a security manager exists and
2424     * the caller is not permitted to modify threads
2425     * because it does not hold {@link
2426     * java.lang.RuntimePermission}{@code ("modifyThread")}
2427     */
2428     public ForkJoinPool() {
2429 jsr166 1.148 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2430     defaultForkJoinWorkerThreadFactory, null, false);
2431 jsr166 1.1 }
2432    
2433     /**
2434 jsr166 1.9 * Creates a {@code ForkJoinPool} with the indicated parallelism
2435 dl 1.18 * level, the {@linkplain
2436     * #defaultForkJoinWorkerThreadFactory default thread factory},
2437     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2438 jsr166 1.1 *
2439 jsr166 1.9 * @param parallelism the parallelism level
2440 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
2441 jsr166 1.11 * equal to zero, or greater than implementation limit
2442 jsr166 1.1 * @throws SecurityException if a security manager exists and
2443     * the caller is not permitted to modify threads
2444     * because it does not hold {@link
2445     * java.lang.RuntimePermission}{@code ("modifyThread")}
2446     */
2447     public ForkJoinPool(int parallelism) {
2448 dl 1.18 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2449 jsr166 1.1 }
2450    
2451     /**
2452 dl 1.18 * Creates a {@code ForkJoinPool} with the given parameters.
2453 jsr166 1.1 *
2454 dl 1.18 * @param parallelism the parallelism level. For default value,
2455     * use {@link java.lang.Runtime#availableProcessors}.
2456     * @param factory the factory for creating new threads. For default value,
2457     * use {@link #defaultForkJoinWorkerThreadFactory}.
2458 dl 1.19 * @param handler the handler for internal worker threads that
2459     * terminate due to unrecoverable errors encountered while executing
2460 jsr166 1.31 * tasks. For default value, use {@code null}.
2461 dl 1.19 * @param asyncMode if true,
2462 dl 1.18 * establishes local first-in-first-out scheduling mode for forked
2463     * tasks that are never joined. This mode may be more appropriate
2464     * than default locally stack-based mode in applications in which
2465     * worker threads only process event-style asynchronous tasks.
2466 jsr166 1.31 * For default value, use {@code false}.
2467 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
2468 jsr166 1.11 * equal to zero, or greater than implementation limit
2469     * @throws NullPointerException if the factory is null
2470 jsr166 1.1 * @throws SecurityException if a security manager exists and
2471     * the caller is not permitted to modify threads
2472     * because it does not hold {@link
2473     * java.lang.RuntimePermission}{@code ("modifyThread")}
2474     */
2475 dl 1.19 public ForkJoinPool(int parallelism,
2476 dl 1.18 ForkJoinWorkerThreadFactory factory,
2477 jsr166 1.156 UncaughtExceptionHandler handler,
2478 dl 1.18 boolean asyncMode) {
2479 dl 1.152 this(checkParallelism(parallelism),
2480     checkFactory(factory),
2481     handler,
2482     asyncMode,
2483     "ForkJoinPool-" + nextPoolId() + "-worker-");
2484 dl 1.14 checkPermission();
2485 dl 1.152 }
2486    
2487     private static int checkParallelism(int parallelism) {
2488     if (parallelism <= 0 || parallelism > MAX_CAP)
2489     throw new IllegalArgumentException();
2490     return parallelism;
2491     }
2492    
2493     private static ForkJoinWorkerThreadFactory checkFactory
2494     (ForkJoinWorkerThreadFactory factory) {
2495 dl 1.14 if (factory == null)
2496     throw new NullPointerException();
2497 dl 1.152 return factory;
2498     }
2499    
2500     /**
2501     * Creates a {@code ForkJoinPool} with the given parameters, without
2502     * any security checks or parameter validation. Invoked directly by
2503     * makeCommonPool.
2504     */
2505     private ForkJoinPool(int parallelism,
2506     ForkJoinWorkerThreadFactory factory,
2507 jsr166 1.156 UncaughtExceptionHandler handler,
2508 dl 1.152 boolean asyncMode,
2509     String workerNamePrefix) {
2510     this.workerNamePrefix = workerNamePrefix;
2511 jsr166 1.1 this.factory = factory;
2512 dl 1.18 this.ueh = handler;
2513 jsr166 1.113 this.config = parallelism | (asyncMode ? (FIFO_QUEUE << 16) : 0);
2514 dl 1.52 long np = (long)(-parallelism); // offset ctl counts
2515     this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2516 dl 1.101 }
2517    
2518     /**
2519 dl 1.128 * Returns the common pool instance. This pool is statically
2520 dl 1.134 * constructed; its run state is unaffected by attempts to {@link
2521     * #shutdown} or {@link #shutdownNow}. However this pool and any
2522     * ongoing processing are automatically terminated upon program
2523     * {@link System#exit}. Any program that relies on asynchronous
2524     * task processing to complete before program termination should
2525 jsr166 1.158 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2526     * before exit.
2527 dl 1.100 *
2528     * @return the common pool instance
2529 jsr166 1.138 * @since 1.8
2530 dl 1.100 */
2531     public static ForkJoinPool commonPool() {
2532 dl 1.134 // assert common != null : "static init error";
2533     return common;
2534 dl 1.100 }
2535    
2536 jsr166 1.1 // Execution methods
2537    
2538     /**
2539     * Performs the given task, returning its result upon completion.
2540 dl 1.52 * If the computation encounters an unchecked Exception or Error,
2541     * it is rethrown as the outcome of this invocation. Rethrown
2542     * exceptions behave in the same way as regular exceptions, but,
2543     * when possible, contain stack traces (as displayed for example
2544     * using {@code ex.printStackTrace()}) of both the current thread
2545     * as well as the thread actually encountering the exception;
2546     * minimally only the latter.
2547 jsr166 1.1 *
2548     * @param task the task
2549     * @return the task's result
2550 jsr166 1.11 * @throws NullPointerException if the task is null
2551     * @throws RejectedExecutionException if the task cannot be
2552     * scheduled for execution
2553 jsr166 1.1 */
2554     public <T> T invoke(ForkJoinTask<T> task) {
2555 dl 1.90 if (task == null)
2556     throw new NullPointerException();
2557 dl 1.105 externalPush(task);
2558 dl 1.78 return task.join();
2559 jsr166 1.1 }
2560    
2561     /**
2562     * Arranges for (asynchronous) execution of the given task.
2563     *
2564     * @param task the task
2565 jsr166 1.11 * @throws NullPointerException if the task is null
2566     * @throws RejectedExecutionException if the task cannot be
2567     * scheduled for execution
2568 jsr166 1.1 */
2569 jsr166 1.8 public void execute(ForkJoinTask<?> task) {
2570 dl 1.90 if (task == null)
2571     throw new NullPointerException();
2572 dl 1.105 externalPush(task);
2573 jsr166 1.1 }
2574    
2575     // AbstractExecutorService methods
2576    
2577 jsr166 1.11 /**
2578     * @throws NullPointerException if the task is null
2579     * @throws RejectedExecutionException if the task cannot be
2580     * scheduled for execution
2581     */
2582 jsr166 1.1 public void execute(Runnable task) {
2583 dl 1.41 if (task == null)
2584     throw new NullPointerException();
2585 jsr166 1.2 ForkJoinTask<?> job;
2586 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2587     job = (ForkJoinTask<?>) task;
2588 jsr166 1.2 else
2589 dl 1.152 job = new ForkJoinTask.RunnableExecuteAction(task);
2590 dl 1.105 externalPush(job);
2591 jsr166 1.1 }
2592    
2593 jsr166 1.11 /**
2594 dl 1.18 * Submits a ForkJoinTask for execution.
2595     *
2596     * @param task the task to submit
2597     * @return the task
2598     * @throws NullPointerException if the task is null
2599     * @throws RejectedExecutionException if the task cannot be
2600     * scheduled for execution
2601     */
2602     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2603 dl 1.90 if (task == null)
2604     throw new NullPointerException();
2605 dl 1.105 externalPush(task);
2606 dl 1.18 return task;
2607     }
2608    
2609     /**
2610 jsr166 1.11 * @throws NullPointerException if the task is null
2611     * @throws RejectedExecutionException if the task cannot be
2612     * scheduled for execution
2613     */
2614 jsr166 1.1 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2615 dl 1.90 ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2616 dl 1.105 externalPush(job);
2617 jsr166 1.1 return job;
2618     }
2619    
2620 jsr166 1.11 /**
2621     * @throws NullPointerException if the task is null
2622     * @throws RejectedExecutionException if the task cannot be
2623     * scheduled for execution
2624     */
2625 jsr166 1.1 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2626 dl 1.90 ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2627 dl 1.105 externalPush(job);
2628 jsr166 1.1 return job;
2629     }
2630    
2631 jsr166 1.11 /**
2632     * @throws NullPointerException if the task is null
2633     * @throws RejectedExecutionException if the task cannot be
2634     * scheduled for execution
2635     */
2636 jsr166 1.1 public ForkJoinTask<?> submit(Runnable task) {
2637 dl 1.41 if (task == null)
2638     throw new NullPointerException();
2639 jsr166 1.2 ForkJoinTask<?> job;
2640 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2641     job = (ForkJoinTask<?>) task;
2642 jsr166 1.2 else
2643 dl 1.90 job = new ForkJoinTask.AdaptedRunnableAction(task);
2644 dl 1.105 externalPush(job);
2645 jsr166 1.1 return job;
2646     }
2647    
2648     /**
2649 jsr166 1.11 * @throws NullPointerException {@inheritDoc}
2650     * @throws RejectedExecutionException {@inheritDoc}
2651     */
2652 jsr166 1.1 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2653 dl 1.86 // In previous versions of this class, this method constructed
2654     // a task to run ForkJoinTask.invokeAll, but now external
2655     // invocation of multiple tasks is at least as efficient.
2656 jsr166 1.143 ArrayList<Future<T>> futures = new ArrayList<Future<T>>(tasks.size());
2657 jsr166 1.1
2658 dl 1.86 boolean done = false;
2659     try {
2660     for (Callable<T> t : tasks) {
2661 dl 1.90 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2662 jsr166 1.144 futures.add(f);
2663 dl 1.105 externalPush(f);
2664 dl 1.86 }
2665 jsr166 1.143 for (int i = 0, size = futures.size(); i < size; i++)
2666     ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2667 dl 1.86 done = true;
2668     return futures;
2669     } finally {
2670     if (!done)
2671 jsr166 1.143 for (int i = 0, size = futures.size(); i < size; i++)
2672     futures.get(i).cancel(false);
2673 jsr166 1.1 }
2674     }
2675    
2676     /**
2677     * Returns the factory used for constructing new workers.
2678     *
2679     * @return the factory used for constructing new workers
2680     */
2681     public ForkJoinWorkerThreadFactory getFactory() {
2682     return factory;
2683     }
2684    
2685     /**
2686     * Returns the handler for internal worker threads that terminate
2687     * due to unrecoverable errors encountered while executing tasks.
2688     *
2689 jsr166 1.4 * @return the handler, or {@code null} if none
2690 jsr166 1.1 */
2691 jsr166 1.156 public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2692 dl 1.14 return ueh;
2693 jsr166 1.1 }
2694    
2695     /**
2696 jsr166 1.9 * Returns the targeted parallelism level of this pool.
2697 jsr166 1.1 *
2698 jsr166 1.9 * @return the targeted parallelism level of this pool
2699 jsr166 1.1 */
2700     public int getParallelism() {
2701 dl 1.112 return config & SMASK;
2702 jsr166 1.1 }
2703    
2704     /**
2705 dl 1.100 * Returns the targeted parallelism level of the common pool.
2706     *
2707     * @return the targeted parallelism level of the common pool
2708 jsr166 1.138 * @since 1.8
2709 dl 1.100 */
2710     public static int getCommonPoolParallelism() {
2711 dl 1.134 return commonParallelism;
2712 dl 1.100 }
2713    
2714     /**
2715 jsr166 1.1 * Returns the number of worker threads that have started but not
2716 jsr166 1.34 * yet terminated. The result returned by this method may differ
2717 jsr166 1.4 * from {@link #getParallelism} when threads are created to
2718 jsr166 1.1 * maintain parallelism when others are cooperatively blocked.
2719     *
2720     * @return the number of worker threads
2721     */
2722     public int getPoolSize() {
2723 dl 1.112 return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2724 jsr166 1.1 }
2725    
2726     /**
2727 jsr166 1.4 * Returns {@code true} if this pool uses local first-in-first-out
2728 jsr166 1.1 * scheduling mode for forked tasks that are never joined.
2729     *
2730 jsr166 1.4 * @return {@code true} if this pool uses async mode
2731 jsr166 1.1 */
2732     public boolean getAsyncMode() {
2733 dl 1.112 return (config >>> 16) == FIFO_QUEUE;
2734 jsr166 1.1 }
2735    
2736     /**
2737     * Returns an estimate of the number of worker threads that are
2738     * not blocked waiting to join tasks or for other managed
2739 dl 1.14 * synchronization. This method may overestimate the
2740     * number of running threads.
2741 jsr166 1.1 *
2742     * @return the number of worker threads
2743     */
2744     public int getRunningThreadCount() {
2745 dl 1.78 int rc = 0;
2746     WorkQueue[] ws; WorkQueue w;
2747     if ((ws = workQueues) != null) {
2748 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2749     if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2750 dl 1.78 ++rc;
2751     }
2752     }
2753     return rc;
2754 jsr166 1.1 }
2755    
2756     /**
2757     * Returns an estimate of the number of threads that are currently
2758     * stealing or executing tasks. This method may overestimate the
2759     * number of active threads.
2760     *
2761     * @return the number of active threads
2762     */
2763     public int getActiveThreadCount() {
2764 dl 1.112 int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2765 jsr166 1.63 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2766 jsr166 1.1 }
2767    
2768     /**
2769 jsr166 1.4 * Returns {@code true} if all worker threads are currently idle.
2770     * An idle worker is one that cannot obtain a task to execute
2771     * because none are available to steal from other threads, and
2772     * there are no pending submissions to the pool. This method is
2773     * conservative; it might not return {@code true} immediately upon
2774     * idleness of all threads, but will eventually become true if
2775     * threads remain inactive.
2776 jsr166 1.1 *
2777 jsr166 1.4 * @return {@code true} if all threads are currently idle
2778 jsr166 1.1 */
2779     public boolean isQuiescent() {
2780 dl 1.112 return (int)(ctl >> AC_SHIFT) + (config & SMASK) == 0;
2781 jsr166 1.1 }
2782    
2783     /**
2784     * Returns an estimate of the total number of tasks stolen from
2785     * one thread's work queue by another. The reported value
2786     * underestimates the actual total number of steals when the pool
2787     * is not quiescent. This value may be useful for monitoring and
2788     * tuning fork/join programs: in general, steal counts should be
2789     * high enough to keep threads busy, but low enough to avoid
2790     * overhead and contention across threads.
2791     *
2792     * @return the number of steals
2793     */
2794     public long getStealCount() {
2795 dl 1.101 long count = stealCount;
2796 dl 1.78 WorkQueue[] ws; WorkQueue w;
2797     if ((ws = workQueues) != null) {
2798 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2799 dl 1.78 if ((w = ws[i]) != null)
2800 dl 1.105 count += w.nsteals;
2801 dl 1.78 }
2802     }
2803     return count;
2804 jsr166 1.1 }
2805    
2806     /**
2807     * Returns an estimate of the total number of tasks currently held
2808     * in queues by worker threads (but not including tasks submitted
2809     * to the pool that have not begun executing). This value is only
2810     * an approximation, obtained by iterating across all threads in
2811     * the pool. This method may be useful for tuning task
2812     * granularities.
2813     *
2814     * @return the number of queued tasks
2815     */
2816     public long getQueuedTaskCount() {
2817     long count = 0;
2818 dl 1.78 WorkQueue[] ws; WorkQueue w;
2819     if ((ws = workQueues) != null) {
2820 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2821 dl 1.78 if ((w = ws[i]) != null)
2822     count += w.queueSize();
2823     }
2824 dl 1.52 }
2825 jsr166 1.1 return count;
2826     }
2827    
2828     /**
2829 jsr166 1.8 * Returns an estimate of the number of tasks submitted to this
2830 dl 1.55 * pool that have not yet begun executing. This method may take
2831 dl 1.52 * time proportional to the number of submissions.
2832 jsr166 1.1 *
2833     * @return the number of queued submissions
2834     */
2835     public int getQueuedSubmissionCount() {
2836 dl 1.78 int count = 0;
2837     WorkQueue[] ws; WorkQueue w;
2838     if ((ws = workQueues) != null) {
2839 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2840 dl 1.78 if ((w = ws[i]) != null)
2841     count += w.queueSize();
2842     }
2843     }
2844     return count;
2845 jsr166 1.1 }
2846    
2847     /**
2848 jsr166 1.4 * Returns {@code true} if there are any tasks submitted to this
2849     * pool that have not yet begun executing.
2850 jsr166 1.1 *
2851     * @return {@code true} if there are any queued submissions
2852     */
2853     public boolean hasQueuedSubmissions() {
2854 dl 1.78 WorkQueue[] ws; WorkQueue w;
2855     if ((ws = workQueues) != null) {
2856 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2857 dl 1.115 if ((w = ws[i]) != null && !w.isEmpty())
2858 dl 1.78 return true;
2859     }
2860     }
2861     return false;
2862 jsr166 1.1 }
2863    
2864     /**
2865     * Removes and returns the next unexecuted submission if one is
2866     * available. This method may be useful in extensions to this
2867     * class that re-assign work in systems with multiple pools.
2868     *
2869 jsr166 1.4 * @return the next submission, or {@code null} if none
2870 jsr166 1.1 */
2871     protected ForkJoinTask<?> pollSubmission() {
2872 dl 1.78 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2873     if ((ws = workQueues) != null) {
2874 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2875 dl 1.78 if ((w = ws[i]) != null && (t = w.poll()) != null)
2876     return t;
2877 dl 1.52 }
2878     }
2879     return null;
2880 jsr166 1.1 }
2881    
2882     /**
2883     * Removes all available unexecuted submitted and forked tasks
2884     * from scheduling queues and adds them to the given collection,
2885     * without altering their execution status. These may include
2886 jsr166 1.8 * artificially generated or wrapped tasks. This method is
2887     * designed to be invoked only when the pool is known to be
2888 jsr166 1.1 * quiescent. Invocations at other times may not remove all
2889     * tasks. A failure encountered while attempting to add elements
2890     * to collection {@code c} may result in elements being in
2891     * neither, either or both collections when the associated
2892     * exception is thrown. The behavior of this operation is
2893     * undefined if the specified collection is modified while the
2894     * operation is in progress.
2895     *
2896     * @param c the collection to transfer elements into
2897     * @return the number of elements transferred
2898     */
2899 jsr166 1.5 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2900 dl 1.52 int count = 0;
2901 dl 1.78 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2902     if ((ws = workQueues) != null) {
2903 dl 1.86 for (int i = 0; i < ws.length; ++i) {
2904 dl 1.78 if ((w = ws[i]) != null) {
2905     while ((t = w.poll()) != null) {
2906     c.add(t);
2907     ++count;
2908     }
2909     }
2910 dl 1.52 }
2911     }
2912 dl 1.18 return count;
2913     }
2914    
2915     /**
2916 jsr166 1.1 * Returns a string identifying this pool, as well as its state,
2917     * including indications of run state, parallelism level, and
2918     * worker and task counts.
2919     *
2920     * @return a string identifying this pool, as well as its state
2921     */
2922     public String toString() {
2923 dl 1.86 // Use a single pass through workQueues to collect counts
2924     long qt = 0L, qs = 0L; int rc = 0;
2925 dl 1.101 long st = stealCount;
2926 dl 1.86 long c = ctl;
2927     WorkQueue[] ws; WorkQueue w;
2928     if ((ws = workQueues) != null) {
2929     for (int i = 0; i < ws.length; ++i) {
2930     if ((w = ws[i]) != null) {
2931     int size = w.queueSize();
2932     if ((i & 1) == 0)
2933     qs += size;
2934     else {
2935     qt += size;
2936 dl 1.105 st += w.nsteals;
2937 dl 1.86 if (w.isApparentlyUnblocked())
2938     ++rc;
2939     }
2940     }
2941     }
2942     }
2943 dl 1.112 int pc = (config & SMASK);
2944 dl 1.52 int tc = pc + (short)(c >>> TC_SHIFT);
2945 dl 1.78 int ac = pc + (int)(c >> AC_SHIFT);
2946     if (ac < 0) // ignore transient negative
2947     ac = 0;
2948 dl 1.52 String level;
2949     if ((c & STOP_BIT) != 0)
2950 jsr166 1.63 level = (tc == 0) ? "Terminated" : "Terminating";
2951 dl 1.52 else
2952 dl 1.105 level = plock < 0 ? "Shutting down" : "Running";
2953 jsr166 1.1 return super.toString() +
2954 dl 1.52 "[" + level +
2955 dl 1.14 ", parallelism = " + pc +
2956     ", size = " + tc +
2957     ", active = " + ac +
2958     ", running = " + rc +
2959 jsr166 1.1 ", steals = " + st +
2960     ", tasks = " + qt +
2961     ", submissions = " + qs +
2962     "]";
2963     }
2964    
2965     /**
2966 dl 1.100 * Possibly initiates an orderly shutdown in which previously
2967     * submitted tasks are executed, but no new tasks will be
2968     * accepted. Invocation has no effect on execution state if this
2969 jsr166 1.137 * is the {@link #commonPool()}, and no additional effect if
2970 dl 1.100 * already shut down. Tasks that are in the process of being
2971     * submitted concurrently during the course of this method may or
2972     * may not be rejected.
2973 jsr166 1.1 *
2974     * @throws SecurityException if a security manager exists and
2975     * the caller is not permitted to modify threads
2976     * because it does not hold {@link
2977     * java.lang.RuntimePermission}{@code ("modifyThread")}
2978     */
2979     public void shutdown() {
2980     checkPermission();
2981 dl 1.105 tryTerminate(false, true);
2982 jsr166 1.1 }
2983    
2984     /**
2985 dl 1.100 * Possibly attempts to cancel and/or stop all tasks, and reject
2986     * all subsequently submitted tasks. Invocation has no effect on
2987 jsr166 1.137 * execution state if this is the {@link #commonPool()}, and no
2988 dl 1.100 * additional effect if already shut down. Otherwise, tasks that
2989     * are in the process of being submitted or executed concurrently
2990     * during the course of this method may or may not be
2991     * rejected. This method cancels both existing and unexecuted
2992     * tasks, in order to permit termination in the presence of task
2993     * dependencies. So the method always returns an empty list
2994     * (unlike the case for some other Executors).
2995 jsr166 1.1 *
2996     * @return an empty list
2997     * @throws SecurityException if a security manager exists and
2998     * the caller is not permitted to modify threads
2999     * because it does not hold {@link
3000     * java.lang.RuntimePermission}{@code ("modifyThread")}
3001     */
3002     public List<Runnable> shutdownNow() {
3003     checkPermission();
3004 dl 1.105 tryTerminate(true, true);
3005 jsr166 1.1 return Collections.emptyList();
3006     }
3007    
3008     /**
3009     * Returns {@code true} if all tasks have completed following shut down.
3010     *
3011     * @return {@code true} if all tasks have completed following shut down
3012     */
3013     public boolean isTerminated() {
3014 dl 1.52 long c = ctl;
3015     return ((c & STOP_BIT) != 0L &&
3016 dl 1.112 (short)(c >>> TC_SHIFT) == -(config & SMASK));
3017 jsr166 1.1 }
3018    
3019     /**
3020     * Returns {@code true} if the process of termination has
3021 jsr166 1.9 * commenced but not yet completed. This method may be useful for
3022     * debugging. A return of {@code true} reported a sufficient
3023     * period after shutdown may indicate that submitted tasks have
3024 jsr166 1.119 * ignored or suppressed interruption, or are waiting for I/O,
3025 dl 1.49 * causing this executor not to properly terminate. (See the
3026     * advisory notes for class {@link ForkJoinTask} stating that
3027     * tasks should not normally entail blocking operations. But if
3028     * they do, they must abort them on interrupt.)
3029 jsr166 1.1 *
3030 jsr166 1.9 * @return {@code true} if terminating but not yet terminated
3031 jsr166 1.1 */
3032     public boolean isTerminating() {
3033 dl 1.52 long c = ctl;
3034     return ((c & STOP_BIT) != 0L &&
3035 dl 1.112 (short)(c >>> TC_SHIFT) != -(config & SMASK));
3036 jsr166 1.1 }
3037    
3038     /**
3039     * Returns {@code true} if this pool has been shut down.
3040     *
3041     * @return {@code true} if this pool has been shut down
3042     */
3043     public boolean isShutdown() {
3044 dl 1.105 return plock < 0;
3045 jsr166 1.9 }
3046    
3047     /**
3048 dl 1.105 * Blocks until all tasks have completed execution after a
3049     * shutdown request, or the timeout occurs, or the current thread
3050 dl 1.134 * is interrupted, whichever happens first. Because the {@link
3051     * #commonPool()} never terminates until program shutdown, when
3052     * applied to the common pool, this method is equivalent to {@link
3053 jsr166 1.158 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
3054 jsr166 1.1 *
3055     * @param timeout the maximum time to wait
3056     * @param unit the time unit of the timeout argument
3057     * @return {@code true} if this executor terminated and
3058     * {@code false} if the timeout elapsed before termination
3059     * @throws InterruptedException if interrupted while waiting
3060     */
3061     public boolean awaitTermination(long timeout, TimeUnit unit)
3062     throws InterruptedException {
3063 dl 1.134 if (Thread.interrupted())
3064     throw new InterruptedException();
3065     if (this == common) {
3066     awaitQuiescence(timeout, unit);
3067     return false;
3068     }
3069 dl 1.52 long nanos = unit.toNanos(timeout);
3070 dl 1.101 if (isTerminated())
3071     return true;
3072     long startTime = System.nanoTime();
3073     boolean terminated = false;
3074 jsr166 1.103 synchronized (this) {
3075 dl 1.101 for (long waitTime = nanos, millis = 0L;;) {
3076     if (terminated = isTerminated() ||
3077     waitTime <= 0L ||
3078     (millis = unit.toMillis(waitTime)) <= 0L)
3079     break;
3080     wait(millis);
3081     waitTime = nanos - (System.nanoTime() - startTime);
3082 dl 1.52 }
3083 dl 1.18 }
3084 dl 1.101 return terminated;
3085 jsr166 1.1 }
3086    
3087     /**
3088 dl 1.134 * If called by a ForkJoinTask operating in this pool, equivalent
3089     * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3090     * waits and/or attempts to assist performing tasks until this
3091     * pool {@link #isQuiescent} or the indicated timeout elapses.
3092     *
3093     * @param timeout the maximum time to wait
3094     * @param unit the time unit of the timeout argument
3095     * @return {@code true} if quiescent; {@code false} if the
3096     * timeout elapsed.
3097     */
3098     public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3099     long nanos = unit.toNanos(timeout);
3100     ForkJoinWorkerThread wt;
3101     Thread thread = Thread.currentThread();
3102     if ((thread instanceof ForkJoinWorkerThread) &&
3103     (wt = (ForkJoinWorkerThread)thread).pool == this) {
3104     helpQuiescePool(wt.workQueue);
3105     return true;
3106     }
3107     long startTime = System.nanoTime();
3108     WorkQueue[] ws;
3109     int r = 0, m;
3110     boolean found = true;
3111     while (!isQuiescent() && (ws = workQueues) != null &&
3112     (m = ws.length - 1) >= 0) {
3113     if (!found) {
3114     if ((System.nanoTime() - startTime) > nanos)
3115     return false;
3116     Thread.yield(); // cannot block
3117     }
3118     found = false;
3119     for (int j = (m + 1) << 2; j >= 0; --j) {
3120     ForkJoinTask<?> t; WorkQueue q; int b;
3121     if ((q = ws[r++ & m]) != null && (b = q.base) - q.top < 0) {
3122     found = true;
3123     if ((t = q.pollAt(b)) != null) {
3124     if (q.base - q.top < 0)
3125     signalWork(q);
3126     t.doExec();
3127     }
3128     break;
3129     }
3130     }
3131     }
3132     return true;
3133     }
3134    
3135     /**
3136     * Waits and/or attempts to assist performing tasks indefinitely
3137 jsr166 1.141 * until the {@link #commonPool()} {@link #isQuiescent}.
3138 dl 1.134 */
3139 dl 1.136 static void quiesceCommonPool() {
3140 dl 1.134 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3141     }
3142    
3143     /**
3144 jsr166 1.1 * Interface for extending managed parallelism for tasks running
3145 jsr166 1.8 * in {@link ForkJoinPool}s.
3146     *
3147 dl 1.19 * <p>A {@code ManagedBlocker} provides two methods. Method
3148     * {@code isReleasable} must return {@code true} if blocking is
3149     * not necessary. Method {@code block} blocks the current thread
3150     * if necessary (perhaps internally invoking {@code isReleasable}
3151 dl 1.54 * before actually blocking). These actions are performed by any
3152 jsr166 1.157 * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
3153     * The unusual methods in this API accommodate synchronizers that
3154     * may, but don't usually, block for long periods. Similarly, they
3155 dl 1.54 * allow more efficient internal handling of cases in which
3156     * additional workers may be, but usually are not, needed to
3157     * ensure sufficient parallelism. Toward this end,
3158     * implementations of method {@code isReleasable} must be amenable
3159     * to repeated invocation.
3160 jsr166 1.1 *
3161     * <p>For example, here is a ManagedBlocker based on a
3162     * ReentrantLock:
3163     * <pre> {@code
3164     * class ManagedLocker implements ManagedBlocker {
3165     * final ReentrantLock lock;
3166     * boolean hasLock = false;
3167     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3168     * public boolean block() {
3169     * if (!hasLock)
3170     * lock.lock();
3171     * return true;
3172     * }
3173     * public boolean isReleasable() {
3174     * return hasLock || (hasLock = lock.tryLock());
3175     * }
3176     * }}</pre>
3177 dl 1.19 *
3178     * <p>Here is a class that possibly blocks waiting for an
3179     * item on a given queue:
3180     * <pre> {@code
3181     * class QueueTaker<E> implements ManagedBlocker {
3182     * final BlockingQueue<E> queue;
3183     * volatile E item = null;
3184     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3185     * public boolean block() throws InterruptedException {
3186     * if (item == null)
3187 dl 1.23 * item = queue.take();
3188 dl 1.19 * return true;
3189     * }
3190     * public boolean isReleasable() {
3191 dl 1.23 * return item != null || (item = queue.poll()) != null;
3192 dl 1.19 * }
3193     * public E getItem() { // call after pool.managedBlock completes
3194     * return item;
3195     * }
3196     * }}</pre>
3197 jsr166 1.1 */
3198     public static interface ManagedBlocker {
3199     /**
3200     * Possibly blocks the current thread, for example waiting for
3201     * a lock or condition.
3202     *
3203 jsr166 1.4 * @return {@code true} if no additional blocking is necessary
3204     * (i.e., if isReleasable would return true)
3205 jsr166 1.1 * @throws InterruptedException if interrupted while waiting
3206     * (the method is not required to do so, but is allowed to)
3207     */
3208     boolean block() throws InterruptedException;
3209    
3210     /**
3211 jsr166 1.4 * Returns {@code true} if blocking is unnecessary.
3212 jsr166 1.154 * @return {@code true} if blocking is unnecessary
3213 jsr166 1.1 */
3214     boolean isReleasable();
3215     }
3216    
3217     /**
3218     * Blocks in accord with the given blocker. If the current thread
3219 jsr166 1.8 * is a {@link ForkJoinWorkerThread}, this method possibly
3220     * arranges for a spare thread to be activated if necessary to
3221 dl 1.18 * ensure sufficient parallelism while the current thread is blocked.
3222 jsr166 1.1 *
3223 jsr166 1.8 * <p>If the caller is not a {@link ForkJoinTask}, this method is
3224     * behaviorally equivalent to
3225 jsr166 1.82 * <pre> {@code
3226 jsr166 1.1 * while (!blocker.isReleasable())
3227     * if (blocker.block())
3228     * return;
3229     * }</pre>
3230 jsr166 1.8 *
3231     * If the caller is a {@code ForkJoinTask}, then the pool may
3232     * first be expanded to ensure parallelism, and later adjusted.
3233 jsr166 1.1 *
3234     * @param blocker the blocker
3235     * @throws InterruptedException if blocker.block did so
3236     */
3237 dl 1.18 public static void managedBlock(ManagedBlocker blocker)
3238 jsr166 1.1 throws InterruptedException {
3239     Thread t = Thread.currentThread();
3240 dl 1.105 if (t instanceof ForkJoinWorkerThread) {
3241     ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3242     while (!blocker.isReleasable()) { // variant of helpSignal
3243 dl 1.115 WorkQueue[] ws; WorkQueue q; int m, u;
3244 dl 1.105 if ((ws = p.workQueues) != null && (m = ws.length - 1) >= 0) {
3245     for (int i = 0; i <= m; ++i) {
3246     if (blocker.isReleasable())
3247     return;
3248 dl 1.115 if ((q = ws[i]) != null && q.base - q.top < 0) {
3249     p.signalWork(q);
3250 dl 1.112 if ((u = (int)(p.ctl >>> 32)) >= 0 ||
3251     (u >> UAC_SHIFT) >= 0)
3252 dl 1.105 break;
3253     }
3254     }
3255     }
3256     if (p.tryCompensate()) {
3257     try {
3258     do {} while (!blocker.isReleasable() &&
3259     !blocker.block());
3260     } finally {
3261 dl 1.78 p.incrementActiveCount();
3262 dl 1.105 }
3263     break;
3264 dl 1.78 }
3265     }
3266 dl 1.18 }
3267 dl 1.105 else {
3268     do {} while (!blocker.isReleasable() &&
3269     !blocker.block());
3270     }
3271 jsr166 1.1 }
3272    
3273 jsr166 1.7 // AbstractExecutorService overrides. These rely on undocumented
3274     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3275     // implement RunnableFuture.
3276 jsr166 1.1
3277     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3278 dl 1.90 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3279 jsr166 1.1 }
3280    
3281     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3282 dl 1.90 return new ForkJoinTask.AdaptedCallable<T>(callable);
3283 jsr166 1.1 }
3284    
3285     // Unsafe mechanics
3286 dl 1.78 private static final sun.misc.Unsafe U;
3287     private static final long CTL;
3288     private static final long PARKBLOCKER;
3289 dl 1.90 private static final int ABASE;
3290     private static final int ASHIFT;
3291 dl 1.101 private static final long STEALCOUNT;
3292 dl 1.105 private static final long PLOCK;
3293     private static final long INDEXSEED;
3294     private static final long QLOCK;
3295 dl 1.52
3296     static {
3297 jsr166 1.142 // initialize field offsets for CAS etc
3298 jsr166 1.3 try {
3299 dl 1.78 U = sun.misc.Unsafe.getUnsafe();
3300 jsr166 1.64 Class<?> k = ForkJoinPool.class;
3301 dl 1.78 CTL = U.objectFieldOffset
3302 dl 1.52 (k.getDeclaredField("ctl"));
3303 dl 1.101 STEALCOUNT = U.objectFieldOffset
3304     (k.getDeclaredField("stealCount"));
3305 dl 1.105 PLOCK = U.objectFieldOffset
3306     (k.getDeclaredField("plock"));
3307     INDEXSEED = U.objectFieldOffset
3308     (k.getDeclaredField("indexSeed"));
3309 dl 1.86 Class<?> tk = Thread.class;
3310 dl 1.78 PARKBLOCKER = U.objectFieldOffset
3311     (tk.getDeclaredField("parkBlocker"));
3312 dl 1.105 Class<?> wk = WorkQueue.class;
3313     QLOCK = U.objectFieldOffset
3314     (wk.getDeclaredField("qlock"));
3315     Class<?> ak = ForkJoinTask[].class;
3316 dl 1.90 ABASE = U.arrayBaseOffset(ak);
3317 jsr166 1.142 int scale = U.arrayIndexScale(ak);
3318     if ((scale & (scale - 1)) != 0)
3319     throw new Error("data type scale not a power of two");
3320     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3321 dl 1.52 } catch (Exception e) {
3322     throw new Error(e);
3323     }
3324 dl 1.105
3325 dl 1.152 defaultForkJoinWorkerThreadFactory =
3326 dl 1.112 new DefaultForkJoinWorkerThreadFactory();
3327 dl 1.115 modifyThreadPermission = new RuntimePermission("modifyThread");
3328    
3329 dl 1.152 common = java.security.AccessController.doPrivileged
3330     (new java.security.PrivilegedAction<ForkJoinPool>() {
3331     public ForkJoinPool run() { return makeCommonPool(); }});
3332     commonParallelism = common.config; // cannot be async
3333     }
3334 dl 1.112
3335 dl 1.152 /**
3336     * Creates and returns the common pool, respecting user settings
3337     * specified via system properties.
3338     */
3339     private static ForkJoinPool makeCommonPool() {
3340     int parallelism = 0;
3341     ForkJoinWorkerThreadFactory factory
3342     = defaultForkJoinWorkerThreadFactory;
3343 jsr166 1.156 UncaughtExceptionHandler handler = null;
3344 dl 1.152 try { // ignore exceptions in accesing/parsing properties
3345 dl 1.112 String pp = System.getProperty
3346     ("java.util.concurrent.ForkJoinPool.common.parallelism");
3347 dl 1.152 String fp = System.getProperty
3348     ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3349 dl 1.112 String hp = System.getProperty
3350     ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3351 dl 1.152 if (pp != null)
3352     parallelism = Integer.parseInt(pp);
3353 dl 1.112 if (fp != null)
3354 dl 1.152 factory = ((ForkJoinWorkerThreadFactory)ClassLoader.
3355     getSystemClassLoader().loadClass(fp).newInstance());
3356 dl 1.112 if (hp != null)
3357 jsr166 1.156 handler = ((UncaughtExceptionHandler)ClassLoader.
3358 dl 1.112 getSystemClassLoader().loadClass(hp).newInstance());
3359     } catch (Exception ignore) {
3360     }
3361    
3362 dl 1.152 if (parallelism <= 0)
3363     parallelism = Runtime.getRuntime().availableProcessors();
3364     if (parallelism > MAX_CAP)
3365     parallelism = MAX_CAP;
3366 dl 1.105
3367 dl 1.152 return new ForkJoinPool(parallelism, factory, handler, false,
3368     "ForkJoinPool.commonPool-worker-");
3369 jsr166 1.3 }
3370 dl 1.52
3371 jsr166 1.1 }