ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.161
Committed: Wed Feb 13 18:30:47 2013 UTC (11 years, 3 months ago) by jsr166
Branch: MAIN
Changes since 1.160: +1 -1 lines
Log Message:
small javadoc improvement

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.58 * http://creativecommons.org/publicdomain/zero/1.0/
5 jsr166 1.1 */
6    
7     package java.util.concurrent;
8    
9 jsr166 1.156 import java.lang.Thread.UncaughtExceptionHandler;
10 jsr166 1.1 import java.util.ArrayList;
11     import java.util.Arrays;
12     import java.util.Collection;
13     import java.util.Collections;
14     import java.util.List;
15 dl 1.36 import java.util.concurrent.AbstractExecutorService;
16     import java.util.concurrent.Callable;
17     import java.util.concurrent.ExecutorService;
18     import java.util.concurrent.Future;
19     import java.util.concurrent.RejectedExecutionException;
20     import java.util.concurrent.RunnableFuture;
21     import java.util.concurrent.TimeUnit;
22 jsr166 1.1
23     /**
24 jsr166 1.4 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
25 jsr166 1.8 * A {@code ForkJoinPool} provides the entry point for submissions
26 dl 1.18 * from non-{@code ForkJoinTask} clients, as well as management and
27 jsr166 1.11 * monitoring operations.
28 jsr166 1.1 *
29 jsr166 1.9 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
30     * ExecutorService} mainly by virtue of employing
31     * <em>work-stealing</em>: all threads in the pool attempt to find and
32 dl 1.78 * execute tasks submitted to the pool and/or created by other active
33     * tasks (eventually blocking waiting for work if none exist). This
34     * enables efficient processing when most tasks spawn other subtasks
35     * (as do most {@code ForkJoinTask}s), as well as when many small
36     * tasks are submitted to the pool from external clients. Especially
37     * when setting <em>asyncMode</em> to true in constructors, {@code
38     * ForkJoinPool}s may also be appropriate for use with event-style
39     * tasks that are never joined.
40 jsr166 1.1 *
41 dl 1.112 * <p>A static {@link #commonPool()} is available and appropriate for
42 dl 1.101 * most applications. The common pool is used by any ForkJoinTask that
43     * is not explicitly submitted to a specified pool. Using the common
44     * pool normally reduces resource usage (its threads are slowly
45     * reclaimed during periods of non-use, and reinstated upon subsequent
46 dl 1.105 * use).
47 dl 1.100 *
48     * <p>For applications that require separate or custom pools, a {@code
49     * ForkJoinPool} may be constructed with a given target parallelism
50     * level; by default, equal to the number of available processors. The
51     * pool attempts to maintain enough active (or available) threads by
52     * dynamically adding, suspending, or resuming internal worker
53     * threads, even if some tasks are stalled waiting to join
54     * others. However, no such adjustments are guaranteed in the face of
55 jsr166 1.119 * blocked I/O or other unmanaged synchronization. The nested {@link
56 dl 1.100 * ManagedBlocker} interface enables extension of the kinds of
57 dl 1.18 * synchronization accommodated.
58 jsr166 1.1 *
59     * <p>In addition to execution and lifecycle control methods, this
60     * class provides status check methods (for example
61 jsr166 1.4 * {@link #getStealCount}) that are intended to aid in developing,
62 jsr166 1.1 * tuning, and monitoring fork/join applications. Also, method
63 jsr166 1.4 * {@link #toString} returns indications of pool state in a
64 jsr166 1.1 * convenient form for informal monitoring.
65     *
66 jsr166 1.109 * <p>As is the case with other ExecutorServices, there are three
67 jsr166 1.84 * main task execution methods summarized in the following table.
68     * These are designed to be used primarily by clients not already
69     * engaged in fork/join computations in the current pool. The main
70     * forms of these methods accept instances of {@code ForkJoinTask},
71     * but overloaded forms also allow mixed execution of plain {@code
72     * Runnable}- or {@code Callable}- based activities as well. However,
73     * tasks that are already executing in a pool should normally instead
74     * use the within-computation forms listed in the table unless using
75     * async event-style tasks that are not usually joined, in which case
76     * there is little difference among choice of methods.
77 dl 1.18 *
78     * <table BORDER CELLPADDING=3 CELLSPACING=1>
79 jsr166 1.159 * <caption>Summary of task execution methods</caption>
80 dl 1.18 * <tr>
81     * <td></td>
82     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
83     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
84     * </tr>
85     * <tr>
86 jsr166 1.153 * <td> <b>Arrange async execution</b></td>
87 dl 1.18 * <td> {@link #execute(ForkJoinTask)}</td>
88     * <td> {@link ForkJoinTask#fork}</td>
89     * </tr>
90     * <tr>
91 jsr166 1.153 * <td> <b>Await and obtain result</b></td>
92 dl 1.18 * <td> {@link #invoke(ForkJoinTask)}</td>
93     * <td> {@link ForkJoinTask#invoke}</td>
94     * </tr>
95     * <tr>
96 jsr166 1.153 * <td> <b>Arrange exec and obtain Future</b></td>
97 dl 1.18 * <td> {@link #submit(ForkJoinTask)}</td>
98     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
99     * </tr>
100     * </table>
101 dl 1.19 *
102 dl 1.105 * <p>The common pool is by default constructed with default
103 jsr166 1.155 * parameters, but these may be controlled by setting three
104     * {@linkplain System#getProperty system properties} with prefix
105 jsr166 1.156 * {@code "java.util.concurrent.ForkJoinPool.common."}:
106 dl 1.160 * {@code parallelism} -- a non-negative integer,
107 jsr166 1.155 * {@code threadFactory} -- the class name of a
108     * {@link ForkJoinWorkerThreadFactory}, and
109 jsr166 1.156 * {@code exceptionHandler} --
110     * the class name of a {@link UncaughtExceptionHandler}.
111     * Upon any error in establishing these settings, default parameters
112 dl 1.160 * are used. It is possible to disable or limit the use of threads in
113     * the common pool by setting the parallelism property to zero, and/or
114     * using a factory that may return {@code null}.
115 dl 1.105 *
116 jsr166 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
117     * maximum number of running threads to 32767. Attempts to create
118 jsr166 1.11 * pools with greater than the maximum number result in
119 jsr166 1.8 * {@code IllegalArgumentException}.
120 jsr166 1.1 *
121 jsr166 1.11 * <p>This implementation rejects submitted tasks (that is, by throwing
122 dl 1.19 * {@link RejectedExecutionException}) only when the pool is shut down
123 dl 1.20 * or internal resources have been exhausted.
124 jsr166 1.11 *
125 jsr166 1.1 * @since 1.7
126     * @author Doug Lea
127     */
128     public class ForkJoinPool extends AbstractExecutorService {
129    
130     /*
131 dl 1.14 * Implementation Overview
132     *
133 dl 1.78 * This class and its nested classes provide the main
134     * functionality and control for a set of worker threads:
135 jsr166 1.84 * Submissions from non-FJ threads enter into submission queues.
136     * Workers take these tasks and typically split them into subtasks
137     * that may be stolen by other workers. Preference rules give
138     * first priority to processing tasks from their own queues (LIFO
139     * or FIFO, depending on mode), then to randomized FIFO steals of
140     * tasks in other queues.
141 dl 1.78 *
142 jsr166 1.84 * WorkQueues
143 dl 1.78 * ==========
144     *
145     * Most operations occur within work-stealing queues (in nested
146     * class WorkQueue). These are special forms of Deques that
147     * support only three of the four possible end-operations -- push,
148     * pop, and poll (aka steal), under the further constraints that
149     * push and pop are called only from the owning thread (or, as
150     * extended here, under a lock), while poll may be called from
151     * other threads. (If you are unfamiliar with them, you probably
152     * want to read Herlihy and Shavit's book "The Art of
153     * Multiprocessor programming", chapter 16 describing these in
154     * more detail before proceeding.) The main work-stealing queue
155     * design is roughly similar to those in the papers "Dynamic
156     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
157     * (http://research.sun.com/scalable/pubs/index.html) and
158     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
159     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
160 jsr166 1.84 * The main differences ultimately stem from GC requirements that
161 dl 1.78 * we null out taken slots as soon as we can, to maintain as small
162     * a footprint as possible even in programs generating huge
163     * numbers of tasks. To accomplish this, we shift the CAS
164     * arbitrating pop vs poll (steal) from being on the indices
165     * ("base" and "top") to the slots themselves. So, both a
166     * successful pop and poll mainly entail a CAS of a slot from
167     * non-null to null. Because we rely on CASes of references, we
168     * do not need tag bits on base or top. They are simple ints as
169     * used in any circular array-based queue (see for example
170     * ArrayDeque). Updates to the indices must still be ordered in a
171     * way that guarantees that top == base means the queue is empty,
172     * but otherwise may err on the side of possibly making the queue
173     * appear nonempty when a push, pop, or poll have not fully
174     * committed. Note that this means that the poll operation,
175     * considered individually, is not wait-free. One thief cannot
176     * successfully continue until another in-progress one (or, if
177     * previously empty, a push) completes. However, in the
178     * aggregate, we ensure at least probabilistic non-blockingness.
179     * If an attempted steal fails, a thief always chooses a different
180     * random victim target to try next. So, in order for one thief to
181     * progress, it suffices for any in-progress poll or new push on
182 dl 1.90 * any empty queue to complete. (This is why we normally use
183     * method pollAt and its variants that try once at the apparent
184     * base index, else consider alternative actions, rather than
185     * method poll.)
186 dl 1.78 *
187 dl 1.79 * This approach also enables support of a user mode in which local
188 dl 1.78 * task processing is in FIFO, not LIFO order, simply by using
189     * poll rather than pop. This can be useful in message-passing
190     * frameworks in which tasks are never joined. However neither
191     * mode considers affinities, loads, cache localities, etc, so
192     * rarely provide the best possible performance on a given
193     * machine, but portably provide good throughput by averaging over
194     * these factors. (Further, even if we did try to use such
195 jsr166 1.84 * information, we do not usually have a basis for exploiting it.
196     * For example, some sets of tasks profit from cache affinities,
197     * but others are harmed by cache pollution effects.)
198 dl 1.78 *
199     * WorkQueues are also used in a similar way for tasks submitted
200     * to the pool. We cannot mix these tasks in the same queues used
201     * for work-stealing (this would contaminate lifo/fifo
202 dl 1.105 * processing). Instead, we randomly associate submission queues
203 dl 1.83 * with submitting threads, using a form of hashing. The
204 dl 1.139 * ThreadLocalRandom probe value serves as a hash code for
205     * choosing existing queues, and may be randomly repositioned upon
206     * contention with other submitters. In essence, submitters act
207     * like workers except that they are restricted to executing local
208     * tasks that they submitted (or in the case of CountedCompleters,
209     * others with the same root task). However, because most
210     * shared/external queue operations are more expensive than
211     * internal, and because, at steady state, external submitters
212     * will compete for CPU with workers, ForkJoinTask.join and
213     * related methods disable them from repeatedly helping to process
214     * tasks if all workers are active. Insertion of tasks in shared
215     * mode requires a lock (mainly to protect in the case of
216 dl 1.105 * resizing) but we use only a simple spinlock (using bits in
217     * field qlock), because submitters encountering a busy queue move
218     * on to try or create other queues -- they block only when
219     * creating and registering new queues.
220 dl 1.78 *
221 jsr166 1.84 * Management
222 dl 1.78 * ==========
223 dl 1.52 *
224     * The main throughput advantages of work-stealing stem from
225     * decentralized control -- workers mostly take tasks from
226     * themselves or each other. We cannot negate this in the
227     * implementation of other management responsibilities. The main
228     * tactic for avoiding bottlenecks is packing nearly all
229 dl 1.78 * essentially atomic control state into two volatile variables
230     * that are by far most often read (not written) as status and
231 jsr166 1.84 * consistency checks.
232 dl 1.78 *
233     * Field "ctl" contains 64 bits holding all the information needed
234     * to atomically decide to add, inactivate, enqueue (on an event
235     * queue), dequeue, and/or re-activate workers. To enable this
236     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
237     * far in excess of normal operating range) to allow ids, counts,
238     * and their negations (used for thresholding) to fit into 16bit
239     * fields.
240     *
241 dl 1.105 * Field "plock" is a form of sequence lock with a saturating
242     * shutdown bit (similarly for per-queue "qlocks"), mainly
243     * protecting updates to the workQueues array, as well as to
244     * enable shutdown. When used as a lock, it is normally only very
245     * briefly held, so is nearly always available after at most a
246     * brief spin, but we use a monitor-based backup strategy to
247 dl 1.112 * block when needed.
248 dl 1.78 *
249     * Recording WorkQueues. WorkQueues are recorded in the
250 dl 1.101 * "workQueues" array that is created upon first use and expanded
251     * if necessary. Updates to the array while recording new workers
252     * and unrecording terminated ones are protected from each other
253     * by a lock but the array is otherwise concurrently readable, and
254     * accessed directly. To simplify index-based operations, the
255     * array size is always a power of two, and all readers must
256 dl 1.112 * tolerate null slots. Worker queues are at odd indices. Shared
257 dl 1.105 * (submission) queues are at even indices, up to a maximum of 64
258     * slots, to limit growth even if array needs to expand to add
259     * more workers. Grouping them together in this way simplifies and
260     * speeds up task scanning.
261 dl 1.86 *
262     * All worker thread creation is on-demand, triggered by task
263     * submissions, replacement of terminated workers, and/or
264 dl 1.78 * compensation for blocked workers. However, all other support
265     * code is set up to work with other policies. To ensure that we
266     * do not hold on to worker references that would prevent GC, ALL
267     * accesses to workQueues are via indices into the workQueues
268     * array (which is one source of some of the messy code
269     * constructions here). In essence, the workQueues array serves as
270     * a weak reference mechanism. Thus for example the wait queue
271     * field of ctl stores indices, not references. Access to the
272     * workQueues in associated methods (for example signalWork) must
273     * both index-check and null-check the IDs. All such accesses
274     * ignore bad IDs by returning out early from what they are doing,
275     * since this can only be associated with termination, in which
276 dl 1.86 * case it is OK to give up. All uses of the workQueues array
277     * also check that it is non-null (even if previously
278     * non-null). This allows nulling during termination, which is
279     * currently not necessary, but remains an option for
280     * resource-revocation-based shutdown schemes. It also helps
281     * reduce JIT issuance of uncommon-trap code, which tends to
282 dl 1.78 * unnecessarily complicate control flow in some methods.
283 dl 1.52 *
284 dl 1.78 * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
285 dl 1.56 * let workers spin indefinitely scanning for tasks when none can
286     * be found immediately, and we cannot start/resume workers unless
287     * there appear to be tasks available. On the other hand, we must
288     * quickly prod them into action when new tasks are submitted or
289 dl 1.78 * generated. In many usages, ramp-up time to activate workers is
290     * the main limiting factor in overall performance (this is
291     * compounded at program start-up by JIT compilation and
292     * allocation). So we try to streamline this as much as possible.
293     * We park/unpark workers after placing in an event wait queue
294     * when they cannot find work. This "queue" is actually a simple
295     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
296     * counter value (that reflects the number of times a worker has
297     * been inactivated) to avoid ABA effects (we need only as many
298     * version numbers as worker threads). Successors are held in
299     * field WorkQueue.nextWait. Queuing deals with several intrinsic
300     * races, mainly that a task-producing thread can miss seeing (and
301 dl 1.56 * signalling) another thread that gave up looking for work but
302     * has not yet entered the wait queue. We solve this by requiring
303 dl 1.78 * a full sweep of all workers (via repeated calls to method
304     * scan()) both before and after a newly waiting worker is added
305     * to the wait queue. During a rescan, the worker might release
306     * some other queued worker rather than itself, which has the same
307     * net effect. Because enqueued workers may actually be rescanning
308     * rather than waiting, we set and clear the "parker" field of
309 jsr166 1.84 * WorkQueues to reduce unnecessary calls to unpark. (This
310 dl 1.78 * requires a secondary recheck to avoid missed signals.) Note
311     * the unusual conventions about Thread.interrupts surrounding
312     * parking and other blocking: Because interrupts are used solely
313     * to alert threads to check termination, which is checked anyway
314     * upon blocking, we clear status (using Thread.interrupted)
315     * before any call to park, so that park does not immediately
316     * return due to status being set via some other unrelated call to
317     * interrupt in user code.
318 dl 1.52 *
319     * Signalling. We create or wake up workers only when there
320     * appears to be at least one task they might be able to find and
321 dl 1.105 * execute. However, many other threads may notice the same task
322     * and each signal to wake up a thread that might take it. So in
323     * general, pools will be over-signalled. When a submission is
324 dl 1.115 * added or another worker adds a task to a queue that has fewer
325     * than two tasks, they signal waiting workers (or trigger
326     * creation of new ones if fewer than the given parallelism level
327     * -- signalWork), and may leave a hint to the unparked worker to
328     * help signal others upon wakeup). These primary signals are
329     * buttressed by others (see method helpSignal) whenever other
330     * threads scan for work or do not have a task to process. On
331     * most platforms, signalling (unpark) overhead time is noticeably
332     * long, and the time between signalling a thread and it actually
333     * making progress can be very noticeably long, so it is worth
334     * offloading these delays from critical paths as much as
335     * possible.
336 dl 1.52 *
337     * Trimming workers. To release resources after periods of lack of
338     * use, a worker starting to wait when the pool is quiescent will
339 dl 1.100 * time out and terminate if the pool has remained quiescent for a
340     * given period -- a short period if there are more threads than
341     * parallelism, longer as the number of threads decreases. This
342     * will slowly propagate, eventually terminating all workers after
343     * periods of non-use.
344 dl 1.52 *
345 dl 1.78 * Shutdown and Termination. A call to shutdownNow atomically sets
346 dl 1.105 * a plock bit and then (non-atomically) sets each worker's
347     * qlock status, cancels all unprocessed tasks, and wakes up
348 dl 1.78 * all waiting workers. Detecting whether termination should
349     * commence after a non-abrupt shutdown() call requires more work
350     * and bookkeeping. We need consensus about quiescence (i.e., that
351     * there is no more work). The active count provides a primary
352     * indication but non-abrupt shutdown still requires a rechecking
353     * scan for any workers that are inactive but not queued.
354     *
355 jsr166 1.84 * Joining Tasks
356     * =============
357 dl 1.78 *
358     * Any of several actions may be taken when one worker is waiting
359 jsr166 1.84 * to join a task stolen (or always held) by another. Because we
360 dl 1.78 * are multiplexing many tasks on to a pool of workers, we can't
361     * just let them block (as in Thread.join). We also cannot just
362     * reassign the joiner's run-time stack with another and replace
363     * it later, which would be a form of "continuation", that even if
364     * possible is not necessarily a good idea since we sometimes need
365 jsr166 1.84 * both an unblocked task and its continuation to progress.
366     * Instead we combine two tactics:
367 dl 1.19 *
368     * Helping: Arranging for the joiner to execute some task that it
369 dl 1.78 * would be running if the steal had not occurred.
370 dl 1.19 *
371     * Compensating: Unless there are already enough live threads,
372 dl 1.78 * method tryCompensate() may create or re-activate a spare
373     * thread to compensate for blocked joiners until they unblock.
374     *
375 dl 1.105 * A third form (implemented in tryRemoveAndExec) amounts to
376     * helping a hypothetical compensator: If we can readily tell that
377     * a possible action of a compensator is to steal and execute the
378     * task being joined, the joining thread can do so directly,
379     * without the need for a compensation thread (although at the
380     * expense of larger run-time stacks, but the tradeoff is
381     * typically worthwhile).
382 dl 1.52 *
383     * The ManagedBlocker extension API can't use helping so relies
384     * only on compensation in method awaitBlocker.
385 dl 1.19 *
386 dl 1.78 * The algorithm in tryHelpStealer entails a form of "linear"
387     * helping: Each worker records (in field currentSteal) the most
388     * recent task it stole from some other worker. Plus, it records
389     * (in field currentJoin) the task it is currently actively
390     * joining. Method tryHelpStealer uses these markers to try to
391     * find a worker to help (i.e., steal back a task from and execute
392     * it) that could hasten completion of the actively joined task.
393     * In essence, the joiner executes a task that would be on its own
394     * local deque had the to-be-joined task not been stolen. This may
395     * be seen as a conservative variant of the approach in Wagner &
396     * Calder "Leapfrogging: a portable technique for implementing
397     * efficient futures" SIGPLAN Notices, 1993
398     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
399     * that: (1) We only maintain dependency links across workers upon
400     * steals, rather than use per-task bookkeeping. This sometimes
401 dl 1.90 * requires a linear scan of workQueues array to locate stealers,
402     * but often doesn't because stealers leave hints (that may become
403 dl 1.112 * stale/wrong) of where to locate them. It is only a hint
404     * because a worker might have had multiple steals and the hint
405     * records only one of them (usually the most current). Hinting
406     * isolates cost to when it is needed, rather than adding to
407     * per-task overhead. (2) It is "shallow", ignoring nesting and
408     * potentially cyclic mutual steals. (3) It is intentionally
409 dl 1.78 * racy: field currentJoin is updated only while actively joining,
410     * which means that we miss links in the chain during long-lived
411     * tasks, GC stalls etc (which is OK since blocking in such cases
412     * is usually a good idea). (4) We bound the number of attempts
413 dl 1.90 * to find work (see MAX_HELP) and fall back to suspending the
414     * worker and if necessary replacing it with another.
415 dl 1.78 *
416 dl 1.105 * Helping actions for CountedCompleters are much simpler: Method
417     * helpComplete can take and execute any task with the same root
418     * as the task being waited on. However, this still entails some
419     * traversal of completer chains, so is less efficient than using
420     * CountedCompleters without explicit joins.
421     *
422 dl 1.52 * It is impossible to keep exactly the target parallelism number
423     * of threads running at any given time. Determining the
424 dl 1.24 * existence of conservatively safe helping targets, the
425     * availability of already-created spares, and the apparent need
426 dl 1.78 * to create new spares are all racy, so we rely on multiple
427 dl 1.90 * retries of each. Compensation in the apparent absence of
428     * helping opportunities is challenging to control on JVMs, where
429     * GC and other activities can stall progress of tasks that in
430     * turn stall out many other dependent tasks, without us being
431     * able to determine whether they will ever require compensation.
432     * Even though work-stealing otherwise encounters little
433     * degradation in the presence of more threads than cores,
434     * aggressively adding new threads in such cases entails risk of
435     * unwanted positive feedback control loops in which more threads
436     * cause more dependent stalls (as well as delayed progress of
437     * unblocked threads to the point that we know they are available)
438     * leading to more situations requiring more threads, and so
439     * on. This aspect of control can be seen as an (analytically
440 jsr166 1.92 * intractable) game with an opponent that may choose the worst
441 dl 1.90 * (for us) active thread to stall at any time. We take several
442     * precautions to bound losses (and thus bound gains), mainly in
443 dl 1.105 * methods tryCompensate and awaitJoin.
444     *
445     * Common Pool
446     * ===========
447     *
448 dl 1.134 * The static common Pool always exists after static
449 dl 1.105 * initialization. Since it (or any other created pool) need
450     * never be used, we minimize initial construction overhead and
451     * footprint to the setup of about a dozen fields, with no nested
452     * allocation. Most bootstrapping occurs within method
453     * fullExternalPush during the first submission to the pool.
454     *
455     * When external threads submit to the common pool, they can
456     * perform some subtask processing (see externalHelpJoin and
457     * related methods). We do not need to record whether these
458     * submissions are to the common pool -- if not, externalHelpJoin
459 jsr166 1.107 * returns quickly (at the most helping to signal some common pool
460 dl 1.105 * workers). These submitters would otherwise be blocked waiting
461     * for completion, so the extra effort (with liberally sprinkled
462     * task status checks) in inapplicable cases amounts to an odd
463     * form of limited spin-wait before blocking in ForkJoinTask.join.
464     *
465     * Style notes
466     * ===========
467     *
468     * There is a lot of representation-level coupling among classes
469     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
470     * fields of WorkQueue maintain data structures managed by
471     * ForkJoinPool, so are directly accessed. There is little point
472     * trying to reduce this, since any associated future changes in
473     * representations will need to be accompanied by algorithmic
474     * changes anyway. Several methods intrinsically sprawl because
475     * they must accumulate sets of consistent reads of volatiles held
476     * in local variables. Methods signalWork() and scan() are the
477     * main bottlenecks, so are especially heavily
478 dl 1.86 * micro-optimized/mangled. There are lots of inline assignments
479     * (of form "while ((local = field) != 0)") which are usually the
480     * simplest way to ensure the required read orderings (which are
481     * sometimes critical). This leads to a "C"-like style of listing
482     * declarations of these locals at the heads of methods or blocks.
483     * There are several occurrences of the unusual "do {} while
484     * (!cas...)" which is the simplest way to force an update of a
485 dl 1.105 * CAS'ed variable. There are also other coding oddities (including
486     * several unnecessary-looking hoisted null checks) that help
487 dl 1.86 * some methods perform reasonably even when interpreted (not
488     * compiled).
489 dl 1.52 *
490 jsr166 1.84 * The order of declarations in this file is:
491 dl 1.86 * (1) Static utility functions
492     * (2) Nested (static) classes
493     * (3) Static fields
494     * (4) Fields, along with constants used when unpacking some of them
495     * (5) Internal control methods
496     * (6) Callbacks and other support for ForkJoinTask methods
497     * (7) Exported methods
498     * (8) Static block initializing statics in minimally dependent order
499     */
500    
501     // Static utilities
502    
503     /**
504     * If there is a security manager, makes sure caller has
505     * permission to modify threads.
506 jsr166 1.1 */
507 dl 1.86 private static void checkPermission() {
508     SecurityManager security = System.getSecurityManager();
509     if (security != null)
510     security.checkPermission(modifyThreadPermission);
511     }
512    
513     // Nested classes
514 jsr166 1.1
515     /**
516 jsr166 1.8 * Factory for creating new {@link ForkJoinWorkerThread}s.
517     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
518     * for {@code ForkJoinWorkerThread} subclasses that extend base
519     * functionality or initialize threads with different contexts.
520 jsr166 1.1 */
521     public static interface ForkJoinWorkerThreadFactory {
522     /**
523     * Returns a new worker thread operating in the given pool.
524     *
525     * @param pool the pool this thread works in
526 jsr166 1.11 * @throws NullPointerException if the pool is null
527 jsr166 1.154 * @return the new worker thread
528 jsr166 1.1 */
529     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
530     }
531    
532     /**
533     * Default ForkJoinWorkerThreadFactory implementation; creates a
534     * new ForkJoinWorkerThread.
535     */
536 dl 1.112 static final class DefaultForkJoinWorkerThreadFactory
537 jsr166 1.1 implements ForkJoinWorkerThreadFactory {
538 dl 1.112 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
539 dl 1.14 return new ForkJoinWorkerThread(pool);
540 jsr166 1.1 }
541     }
542    
543     /**
544 dl 1.86 * Class for artificial tasks that are used to replace the target
545     * of local joins if they are removed from an interior queue slot
546     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
547     * actually do anything beyond having a unique identity.
548 jsr166 1.1 */
549 dl 1.86 static final class EmptyTask extends ForkJoinTask<Void> {
550 dl 1.105 private static final long serialVersionUID = -7721805057305804111L;
551 dl 1.86 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
552     public final Void getRawResult() { return null; }
553     public final void setRawResult(Void x) {}
554     public final boolean exec() { return true; }
555 jsr166 1.1 }
556    
557     /**
558 dl 1.78 * Queues supporting work-stealing as well as external task
559     * submission. See above for main rationale and algorithms.
560     * Implementation relies heavily on "Unsafe" intrinsics
561     * and selective use of "volatile":
562     *
563     * Field "base" is the index (mod array.length) of the least valid
564     * queue slot, which is always the next position to steal (poll)
565     * from if nonempty. Reads and writes require volatile orderings
566     * but not CAS, because updates are only performed after slot
567     * CASes.
568     *
569     * Field "top" is the index (mod array.length) of the next queue
570     * slot to push to or pop from. It is written only by owner thread
571 dl 1.105 * for push, or under lock for external/shared push, and accessed
572     * by other threads only after reading (volatile) base. Both top
573     * and base are allowed to wrap around on overflow, but (top -
574     * base) (or more commonly -(base - top) to force volatile read of
575     * base before top) still estimates size. The lock ("qlock") is
576     * forced to -1 on termination, causing all further lock attempts
577     * to fail. (Note: we don't need CAS for termination state because
578     * upon pool shutdown, all shared-queues will stop being used
579     * anyway.) Nearly all lock bodies are set up so that exceptions
580     * within lock bodies are "impossible" (modulo JVM errors that
581     * would cause failure anyway.)
582 dl 1.78 *
583     * The array slots are read and written using the emulation of
584     * volatiles/atomics provided by Unsafe. Insertions must in
585     * general use putOrderedObject as a form of releasing store to
586     * ensure that all writes to the task object are ordered before
587 dl 1.105 * its publication in the queue. All removals entail a CAS to
588     * null. The array is always a power of two. To ensure safety of
589     * Unsafe array operations, all accesses perform explicit null
590     * checks and implicit bounds checks via power-of-two masking.
591 dl 1.78 *
592     * In addition to basic queuing support, this class contains
593     * fields described elsewhere to control execution. It turns out
594 dl 1.105 * to work better memory-layout-wise to include them in this class
595     * rather than a separate class.
596 dl 1.78 *
597     * Performance on most platforms is very sensitive to placement of
598     * instances of both WorkQueues and their arrays -- we absolutely
599     * do not want multiple WorkQueue instances or multiple queue
600     * arrays sharing cache lines. (It would be best for queue objects
601     * and their arrays to share, but there is nothing available to
602     * help arrange that). Unfortunately, because they are recorded
603     * in a common array, WorkQueue instances are often moved to be
604     * adjacent by garbage collectors. To reduce impact, we use field
605     * padding that works OK on common platforms; this effectively
606     * trades off slightly slower average field access for the sake of
607     * avoiding really bad worst-case access. (Until better JVM
608     * support is in place, this padding is dependent on transient
609 dl 1.115 * properties of JVM field layout rules.) We also take care in
610     * allocating, sizing and resizing the array. Non-shared queue
611     * arrays are initialized by workers before use. Others are
612     * allocated on first use.
613 dl 1.78 */
614     static final class WorkQueue {
615     /**
616     * Capacity of work-stealing queue array upon initialization.
617 dl 1.90 * Must be a power of two; at least 4, but should be larger to
618     * reduce or eliminate cacheline sharing among queues.
619     * Currently, it is much larger, as a partial workaround for
620     * the fact that JVMs often place arrays in locations that
621     * share GC bookkeeping (especially cardmarks) such that
622     * per-write accesses encounter serious memory contention.
623 dl 1.78 */
624 dl 1.90 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
625 dl 1.78
626     /**
627     * Maximum size for queue arrays. Must be a power of two less
628     * than or equal to 1 << (31 - width of array entry) to ensure
629     * lack of wraparound of index calculations, but defined to a
630     * value a bit less than this to help users trap runaway
631     * programs before saturating systems.
632     */
633     static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
634    
635 dl 1.115 // Heuristic padding to ameliorate unfortunate memory placements
636     volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
637    
638 dl 1.78 int seed; // for random scanning; initialize nonzero
639     volatile int eventCount; // encoded inactivation count; < 0 if inactive
640     int nextWait; // encoded record of next event waiter
641 dl 1.112 int hint; // steal or signal hint (index)
642 dl 1.78 int poolIndex; // index of this queue in pool (or 0)
643 dl 1.112 final int mode; // 0: lifo, > 0: fifo, < 0: shared
644     int nsteals; // number of steals
645 dl 1.105 volatile int qlock; // 1: locked, -1: terminate; else 0
646 dl 1.78 volatile int base; // index of next slot for poll
647     int top; // index of next slot for push
648     ForkJoinTask<?>[] array; // the elements (initially unallocated)
649 dl 1.90 final ForkJoinPool pool; // the containing pool (may be null)
650 dl 1.78 final ForkJoinWorkerThread owner; // owning thread or null if shared
651     volatile Thread parker; // == owner during call to park; else null
652 dl 1.95 volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
653 dl 1.78 ForkJoinTask<?> currentSteal; // current non-local task being executed
654 dl 1.112
655 dl 1.115 volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
656     volatile Object pad18, pad19, pad1a, pad1b, pad1c, pad1d;
657 dl 1.78
658 dl 1.112 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
659     int seed) {
660 dl 1.90 this.pool = pool;
661 dl 1.78 this.owner = owner;
662 dl 1.112 this.mode = mode;
663     this.seed = seed;
664 dl 1.115 // Place indices in the center of array (that is not yet allocated)
665 dl 1.78 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
666     }
667    
668     /**
669 dl 1.115 * Returns the approximate number of tasks in the queue.
670     */
671     final int queueSize() {
672     int n = base - top; // non-owner callers must read base first
673     return (n >= 0) ? 0 : -n; // ignore transient negative
674     }
675    
676     /**
677     * Provides a more accurate estimate of whether this queue has
678     * any tasks than does queueSize, by checking whether a
679     * near-empty queue has at least one unclaimed task.
680     */
681     final boolean isEmpty() {
682     ForkJoinTask<?>[] a; int m, s;
683     int n = base - (s = top);
684     return (n >= 0 ||
685     (n == -1 &&
686     ((a = array) == null ||
687     (m = a.length - 1) < 0 ||
688     U.getObject
689     (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
690     }
691    
692     /**
693     * Pushes a task. Call only by owner in unshared queues. (The
694     * shared-queue version is embedded in method externalPush.)
695 dl 1.78 *
696     * @param task the task. Caller must ensure non-null.
697 jsr166 1.146 * @throws RejectedExecutionException if array cannot be resized
698 dl 1.78 */
699 dl 1.90 final void push(ForkJoinTask<?> task) {
700 dl 1.112 ForkJoinTask<?>[] a; ForkJoinPool p;
701     int s = top, m, n;
702     if ((a = array) != null) { // ignore if queue removed
703 dl 1.115 int j = (((m = a.length - 1) & s) << ASHIFT) + ABASE;
704     U.putOrderedObject(a, j, task);
705     if ((n = (top = s + 1) - base) <= 2) {
706 dl 1.112 if ((p = pool) != null)
707 dl 1.115 p.signalWork(this);
708 dl 1.112 }
709     else if (n >= m)
710     growArray();
711 dl 1.78 }
712     }
713    
714 dl 1.112 /**
715     * Initializes or doubles the capacity of array. Call either
716     * by owner or with lock held -- it is OK for base, but not
717     * top, to move while resizings are in progress.
718     */
719     final ForkJoinTask<?>[] growArray() {
720     ForkJoinTask<?>[] oldA = array;
721     int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
722     if (size > MAXIMUM_QUEUE_CAPACITY)
723     throw new RejectedExecutionException("Queue capacity exceeded");
724     int oldMask, t, b;
725     ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
726     if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
727     (t = top) - (b = base) > 0) {
728     int mask = size - 1;
729     do {
730     ForkJoinTask<?> x;
731     int oldj = ((b & oldMask) << ASHIFT) + ABASE;
732     int j = ((b & mask) << ASHIFT) + ABASE;
733     x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
734     if (x != null &&
735     U.compareAndSwapObject(oldA, oldj, x, null))
736     U.putObjectVolatile(a, j, x);
737     } while (++b != t);
738 dl 1.78 }
739 dl 1.112 return a;
740 dl 1.78 }
741    
742     /**
743 dl 1.90 * Takes next task, if one exists, in LIFO order. Call only
744 dl 1.102 * by owner in unshared queues.
745 dl 1.90 */
746     final ForkJoinTask<?> pop() {
747 dl 1.94 ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
748     if ((a = array) != null && (m = a.length - 1) >= 0) {
749 dl 1.90 for (int s; (s = top - 1) - base >= 0;) {
750 dl 1.94 long j = ((m & s) << ASHIFT) + ABASE;
751     if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
752 dl 1.90 break;
753     if (U.compareAndSwapObject(a, j, t, null)) {
754     top = s;
755     return t;
756     }
757     }
758     }
759     return null;
760     }
761    
762     /**
763     * Takes a task in FIFO order if b is base of queue and a task
764     * can be claimed without contention. Specialized versions
765     * appear in ForkJoinPool methods scan and tryHelpStealer.
766 dl 1.78 */
767 dl 1.90 final ForkJoinTask<?> pollAt(int b) {
768     ForkJoinTask<?> t; ForkJoinTask<?>[] a;
769     if ((a = array) != null) {
770 dl 1.86 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
771     if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
772     base == b &&
773 dl 1.78 U.compareAndSwapObject(a, j, t, null)) {
774     base = b + 1;
775     return t;
776     }
777     }
778     return null;
779     }
780    
781     /**
782 dl 1.90 * Takes next task, if one exists, in FIFO order.
783 dl 1.78 */
784 dl 1.90 final ForkJoinTask<?> poll() {
785     ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
786     while ((b = base) - top < 0 && (a = array) != null) {
787     int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
788     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
789     if (t != null) {
790     if (base == b &&
791     U.compareAndSwapObject(a, j, t, null)) {
792     base = b + 1;
793 dl 1.78 return t;
794     }
795     }
796 dl 1.90 else if (base == b) {
797     if (b + 1 == top)
798     break;
799 dl 1.105 Thread.yield(); // wait for lagging update (very rare)
800 dl 1.90 }
801 dl 1.78 }
802     return null;
803     }
804    
805     /**
806     * Takes next task, if one exists, in order specified by mode.
807     */
808     final ForkJoinTask<?> nextLocalTask() {
809     return mode == 0 ? pop() : poll();
810     }
811    
812     /**
813     * Returns next task, if one exists, in order specified by mode.
814     */
815     final ForkJoinTask<?> peek() {
816     ForkJoinTask<?>[] a = array; int m;
817     if (a == null || (m = a.length - 1) < 0)
818     return null;
819     int i = mode == 0 ? top - 1 : base;
820     int j = ((i & m) << ASHIFT) + ABASE;
821     return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
822     }
823    
824     /**
825     * Pops the given task only if it is at the current top.
826 dl 1.105 * (A shared version is available only via FJP.tryExternalUnpush)
827 dl 1.78 */
828     final boolean tryUnpush(ForkJoinTask<?> t) {
829     ForkJoinTask<?>[] a; int s;
830     if ((a = array) != null && (s = top) != base &&
831     U.compareAndSwapObject
832     (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
833     top = s;
834     return true;
835     }
836     return false;
837     }
838    
839     /**
840 jsr166 1.84 * Removes and cancels all known tasks, ignoring any exceptions.
841 dl 1.78 */
842     final void cancelAll() {
843     ForkJoinTask.cancelIgnoringExceptions(currentJoin);
844     ForkJoinTask.cancelIgnoringExceptions(currentSteal);
845     for (ForkJoinTask<?> t; (t = poll()) != null; )
846     ForkJoinTask.cancelIgnoringExceptions(t);
847     }
848    
849 dl 1.86 /**
850     * Computes next value for random probes. Scans don't require
851     * a very high quality generator, but also not a crummy one.
852     * Marsaglia xor-shift is cheap and works well enough. Note:
853 dl 1.90 * This is manually inlined in its usages in ForkJoinPool to
854     * avoid writes inside busy scan loops.
855 dl 1.86 */
856     final int nextSeed() {
857     int r = seed;
858     r ^= r << 13;
859     r ^= r >>> 17;
860     return seed = r ^= r << 5;
861     }
862    
863 dl 1.104 // Specialized execution methods
864 dl 1.78
865     /**
866 dl 1.94 * Pops and runs tasks until empty.
867 dl 1.78 */
868 dl 1.94 private void popAndExecAll() {
869     // A bit faster than repeated pop calls
870     ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
871     while ((a = array) != null && (m = a.length - 1) >= 0 &&
872     (s = top - 1) - base >= 0 &&
873     (t = ((ForkJoinTask<?>)
874     U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
875     != null) {
876     if (U.compareAndSwapObject(a, j, t, null)) {
877     top = s;
878     t.doExec();
879 dl 1.90 }
880 dl 1.94 }
881     }
882    
883     /**
884     * Polls and runs tasks until empty.
885     */
886     private void pollAndExecAll() {
887     for (ForkJoinTask<?> t; (t = poll()) != null;)
888     t.doExec();
889     }
890    
891     /**
892 dl 1.105 * If present, removes from queue and executes the given task,
893     * or any other cancelled task. Returns (true) on any CAS
894 dl 1.94 * or consistency check failure so caller can retry.
895     *
896 jsr166 1.150 * @return false if no progress can be made, else true
897 dl 1.94 */
898 dl 1.105 final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
899     boolean stat = true, removed = false, empty = true;
900 dl 1.94 ForkJoinTask<?>[] a; int m, s, b, n;
901     if ((a = array) != null && (m = a.length - 1) >= 0 &&
902     (n = (s = top) - (b = base)) > 0) {
903     for (ForkJoinTask<?> t;;) { // traverse from s to b
904     int j = ((--s & m) << ASHIFT) + ABASE;
905     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
906     if (t == null) // inconsistent length
907     break;
908     else if (t == task) {
909     if (s + 1 == top) { // pop
910     if (!U.compareAndSwapObject(a, j, task, null))
911 dl 1.90 break;
912 dl 1.94 top = s;
913     removed = true;
914 dl 1.90 }
915 dl 1.94 else if (base == b) // replace with proxy
916     removed = U.compareAndSwapObject(a, j, task,
917     new EmptyTask());
918     break;
919     }
920     else if (t.status >= 0)
921     empty = false;
922     else if (s + 1 == top) { // pop and throw away
923     if (U.compareAndSwapObject(a, j, t, null))
924     top = s;
925     break;
926     }
927     if (--n == 0) {
928     if (!empty && base == b)
929 dl 1.105 stat = false;
930 dl 1.94 break;
931 dl 1.90 }
932     }
933 dl 1.78 }
934 dl 1.94 if (removed)
935     task.doExec();
936 dl 1.95 return stat;
937 dl 1.78 }
938    
939     /**
940 dl 1.105 * Polls for and executes the given task or any other task in
941 jsr166 1.149 * its CountedCompleter computation.
942 dl 1.104 */
943 dl 1.105 final boolean pollAndExecCC(ForkJoinTask<?> root) {
944     ForkJoinTask<?>[] a; int b; Object o;
945     outer: while ((b = base) - top < 0 && (a = array) != null) {
946     long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
947     if ((o = U.getObject(a, j)) == null ||
948     !(o instanceof CountedCompleter))
949     break;
950     for (CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;;) {
951     if (r == root) {
952     if (base == b &&
953     U.compareAndSwapObject(a, j, t, null)) {
954     base = b + 1;
955     t.doExec();
956     return true;
957 dl 1.104 }
958 dl 1.105 else
959     break; // restart
960 dl 1.104 }
961 dl 1.105 if ((r = r.completer) == null)
962     break outer; // not part of root computation
963 dl 1.104 }
964     }
965 dl 1.105 return false;
966 dl 1.104 }
967    
968     /**
969 dl 1.78 * Executes a top-level task and any local tasks remaining
970     * after execution.
971     */
972 dl 1.94 final void runTask(ForkJoinTask<?> t) {
973 dl 1.78 if (t != null) {
974 dl 1.105 (currentSteal = t).doExec();
975     currentSteal = null;
976 dl 1.126 ++nsteals;
977 dl 1.115 if (base - top < 0) { // process remaining local tasks
978 dl 1.94 if (mode == 0)
979     popAndExecAll();
980     else
981     pollAndExecAll();
982     }
983 dl 1.78 }
984     }
985    
986     /**
987 jsr166 1.84 * Executes a non-top-level (stolen) task.
988 dl 1.78 */
989     final void runSubtask(ForkJoinTask<?> t) {
990     if (t != null) {
991     ForkJoinTask<?> ps = currentSteal;
992 dl 1.105 (currentSteal = t).doExec();
993 dl 1.78 currentSteal = ps;
994     }
995     }
996    
997     /**
998 dl 1.86 * Returns true if owned and not known to be blocked.
999     */
1000     final boolean isApparentlyUnblocked() {
1001     Thread wt; Thread.State s;
1002     return (eventCount >= 0 &&
1003     (wt = owner) != null &&
1004     (s = wt.getState()) != Thread.State.BLOCKED &&
1005     s != Thread.State.WAITING &&
1006     s != Thread.State.TIMED_WAITING);
1007     }
1008    
1009 dl 1.78 // Unsafe mechanics
1010     private static final sun.misc.Unsafe U;
1011 dl 1.105 private static final long QLOCK;
1012 dl 1.78 private static final int ABASE;
1013     private static final int ASHIFT;
1014     static {
1015     try {
1016     U = sun.misc.Unsafe.getUnsafe();
1017     Class<?> k = WorkQueue.class;
1018     Class<?> ak = ForkJoinTask[].class;
1019 dl 1.105 QLOCK = U.objectFieldOffset
1020     (k.getDeclaredField("qlock"));
1021 dl 1.78 ABASE = U.arrayBaseOffset(ak);
1022 jsr166 1.142 int scale = U.arrayIndexScale(ak);
1023     if ((scale & (scale - 1)) != 0)
1024     throw new Error("data type scale not a power of two");
1025     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1026 dl 1.78 } catch (Exception e) {
1027     throw new Error(e);
1028     }
1029     }
1030     }
1031 dl 1.14
1032 dl 1.112 // static fields (initialized in static initializer below)
1033    
1034     /**
1035     * Creates a new ForkJoinWorkerThread. This factory is used unless
1036     * overridden in ForkJoinPool constructors.
1037     */
1038     public static final ForkJoinWorkerThreadFactory
1039     defaultForkJoinWorkerThreadFactory;
1040    
1041 jsr166 1.1 /**
1042 dl 1.115 * Permission required for callers of methods that may start or
1043     * kill threads.
1044     */
1045     private static final RuntimePermission modifyThreadPermission;
1046    
1047     /**
1048 dl 1.101 * Common (static) pool. Non-null for public use unless a static
1049 dl 1.105 * construction exception, but internal usages null-check on use
1050     * to paranoically avoid potential initialization circularities
1051     * as well as to simplify generated code.
1052 dl 1.101 */
1053 dl 1.134 static final ForkJoinPool common;
1054 dl 1.101
1055     /**
1056 dl 1.160 * Common pool parallelism. To allow simpler use and management
1057     * when common pool threads are disabled, we allow the underlying
1058     * common.config field to be zero, but in that case still report
1059     * parallelism as 1 to reflect resulting caller-runs mechanics.
1060 dl 1.90 */
1061 dl 1.134 static final int commonParallelism;
1062 dl 1.90
1063     /**
1064 dl 1.105 * Sequence number for creating workerNamePrefix.
1065 dl 1.86 */
1066 dl 1.105 private static int poolNumberSequence;
1067 dl 1.86
1068 jsr166 1.1 /**
1069 jsr166 1.132 * Returns the next sequence number. We don't expect this to
1070     * ever contend, so use simple builtin sync.
1071 dl 1.83 */
1072 dl 1.105 private static final synchronized int nextPoolId() {
1073     return ++poolNumberSequence;
1074     }
1075 dl 1.86
1076     // static constants
1077    
1078     /**
1079 dl 1.105 * Initial timeout value (in nanoseconds) for the thread
1080     * triggering quiescence to park waiting for new work. On timeout,
1081     * the thread will instead try to shrink the number of
1082     * workers. The value should be large enough to avoid overly
1083     * aggressive shrinkage during most transient stalls (long GCs
1084     * etc).
1085 dl 1.86 */
1086 dl 1.105 private static final long IDLE_TIMEOUT = 2000L * 1000L * 1000L; // 2sec
1087 dl 1.86
1088     /**
1089 dl 1.100 * Timeout value when there are more threads than parallelism level
1090 dl 1.86 */
1091 dl 1.105 private static final long FAST_IDLE_TIMEOUT = 200L * 1000L * 1000L;
1092 dl 1.86
1093     /**
1094 dl 1.120 * Tolerance for idle timeouts, to cope with timer undershoots
1095     */
1096 dl 1.127 private static final long TIMEOUT_SLOP = 2000000L;
1097 dl 1.120
1098     /**
1099 dl 1.90 * The maximum stolen->joining link depth allowed in method
1100 dl 1.105 * tryHelpStealer. Must be a power of two. Depths for legitimate
1101 dl 1.90 * chains are unbounded, but we use a fixed constant to avoid
1102     * (otherwise unchecked) cycles and to bound staleness of
1103     * traversal parameters at the expense of sometimes blocking when
1104     * we could be helping.
1105     */
1106 dl 1.95 private static final int MAX_HELP = 64;
1107 dl 1.90
1108     /**
1109     * Increment for seed generators. See class ThreadLocal for
1110     * explanation.
1111     */
1112     private static final int SEED_INCREMENT = 0x61c88647;
1113 dl 1.83
1114     /**
1115 dl 1.86 * Bits and masks for control variables
1116     *
1117     * Field ctl is a long packed with:
1118     * AC: Number of active running workers minus target parallelism (16 bits)
1119     * TC: Number of total workers minus target parallelism (16 bits)
1120     * ST: true if pool is terminating (1 bit)
1121     * EC: the wait count of top waiting thread (15 bits)
1122     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1123     *
1124     * When convenient, we can extract the upper 32 bits of counts and
1125     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1126     * (int)ctl. The ec field is never accessed alone, but always
1127     * together with id and st. The offsets of counts by the target
1128     * parallelism and the positionings of fields makes it possible to
1129     * perform the most common checks via sign tests of fields: When
1130     * ac is negative, there are not enough active workers, when tc is
1131     * negative, there are not enough total workers, and when e is
1132     * negative, the pool is terminating. To deal with these possibly
1133     * negative fields, we use casts in and out of "short" and/or
1134     * signed shifts to maintain signedness.
1135     *
1136     * When a thread is queued (inactivated), its eventCount field is
1137     * set negative, which is the only way to tell if a worker is
1138     * prevented from executing tasks, even though it must continue to
1139     * scan for them to avoid queuing races. Note however that
1140     * eventCount updates lag releases so usage requires care.
1141     *
1142 dl 1.105 * Field plock is an int packed with:
1143 dl 1.86 * SHUTDOWN: true if shutdown is enabled (1 bit)
1144 dl 1.105 * SEQ: a sequence lock, with PL_LOCK bit set if locked (30 bits)
1145     * SIGNAL: set when threads may be waiting on the lock (1 bit)
1146 dl 1.86 *
1147 dl 1.90 * The sequence number enables simple consistency checks:
1148     * Staleness of read-only operations on the workQueues array can
1149 dl 1.105 * be checked by comparing plock before vs after the reads.
1150 dl 1.86 */
1151    
1152     // bit positions/shifts for fields
1153     private static final int AC_SHIFT = 48;
1154     private static final int TC_SHIFT = 32;
1155     private static final int ST_SHIFT = 31;
1156     private static final int EC_SHIFT = 16;
1157    
1158     // bounds
1159     private static final int SMASK = 0xffff; // short bits
1160 dl 1.90 private static final int MAX_CAP = 0x7fff; // max #workers - 1
1161 dl 1.105 private static final int EVENMASK = 0xfffe; // even short bits
1162     private static final int SQMASK = 0x007e; // max 64 (even) slots
1163 dl 1.86 private static final int SHORT_SIGN = 1 << 15;
1164     private static final int INT_SIGN = 1 << 31;
1165    
1166     // masks
1167     private static final long STOP_BIT = 0x0001L << ST_SHIFT;
1168     private static final long AC_MASK = ((long)SMASK) << AC_SHIFT;
1169     private static final long TC_MASK = ((long)SMASK) << TC_SHIFT;
1170    
1171     // units for incrementing and decrementing
1172     private static final long TC_UNIT = 1L << TC_SHIFT;
1173     private static final long AC_UNIT = 1L << AC_SHIFT;
1174    
1175     // masks and units for dealing with u = (int)(ctl >>> 32)
1176     private static final int UAC_SHIFT = AC_SHIFT - 32;
1177     private static final int UTC_SHIFT = TC_SHIFT - 32;
1178     private static final int UAC_MASK = SMASK << UAC_SHIFT;
1179     private static final int UTC_MASK = SMASK << UTC_SHIFT;
1180     private static final int UAC_UNIT = 1 << UAC_SHIFT;
1181     private static final int UTC_UNIT = 1 << UTC_SHIFT;
1182    
1183     // masks and units for dealing with e = (int)ctl
1184     private static final int E_MASK = 0x7fffffff; // no STOP_BIT
1185     private static final int E_SEQ = 1 << EC_SHIFT;
1186    
1187 dl 1.105 // plock bits
1188 dl 1.86 private static final int SHUTDOWN = 1 << 31;
1189 dl 1.105 private static final int PL_LOCK = 2;
1190     private static final int PL_SIGNAL = 1;
1191     private static final int PL_SPINS = 1 << 8;
1192 dl 1.86
1193     // access mode for WorkQueue
1194     static final int LIFO_QUEUE = 0;
1195     static final int FIFO_QUEUE = 1;
1196     static final int SHARED_QUEUE = -1;
1197    
1198 dl 1.112 // bounds for #steps in scan loop -- must be power 2 minus 1
1199     private static final int MIN_SCAN = 0x1ff; // cover estimation slop
1200     private static final int MAX_SCAN = 0x1ffff; // 4 * max workers
1201    
1202 dl 1.86 // Instance fields
1203    
1204     /*
1205 dl 1.112 * Field layout of this class tends to matter more than one would
1206     * like. Runtime layout order is only loosely related to
1207 dl 1.86 * declaration order and may differ across JVMs, but the following
1208     * empirically works OK on current JVMs.
1209 jsr166 1.1 */
1210 dl 1.115
1211     // Heuristic padding to ameliorate unfortunate memory placements
1212     volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
1213    
1214 dl 1.101 volatile long stealCount; // collects worker counts
1215 dl 1.86 volatile long ctl; // main pool control
1216 dl 1.112 volatile int plock; // shutdown status and seqLock
1217 dl 1.105 volatile int indexSeed; // worker/submitter index seed
1218 dl 1.112 final int config; // mode and parallelism level
1219 dl 1.86 WorkQueue[] workQueues; // main registry
1220 dl 1.112 final ForkJoinWorkerThreadFactory factory;
1221 jsr166 1.156 final UncaughtExceptionHandler ueh; // per-worker UEH
1222 dl 1.101 final String workerNamePrefix; // to create worker name string
1223    
1224 dl 1.115 volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
1225     volatile Object pad18, pad19, pad1a, pad1b;
1226    
1227 jsr166 1.145 /**
1228 dl 1.105 * Acquires the plock lock to protect worker array and related
1229     * updates. This method is called only if an initial CAS on plock
1230 jsr166 1.140 * fails. This acts as a spinlock for normal cases, but falls back
1231 dl 1.105 * to builtin monitor to block when (rarely) needed. This would be
1232     * a terrible idea for a highly contended lock, but works fine as
1233 dl 1.126 * a more conservative alternative to a pure spinlock.
1234 dl 1.105 */
1235     private int acquirePlock() {
1236 dl 1.139 int spins = PL_SPINS, ps, nps;
1237 dl 1.105 for (;;) {
1238     if (((ps = plock) & PL_LOCK) == 0 &&
1239     U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1240     return nps;
1241 dl 1.101 else if (spins >= 0) {
1242 dl 1.139 if (ThreadLocalRandom.nextSecondarySeed() >= 0)
1243 dl 1.101 --spins;
1244     }
1245 dl 1.105 else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1246 jsr166 1.106 synchronized (this) {
1247 dl 1.105 if ((plock & PL_SIGNAL) != 0) {
1248 dl 1.101 try {
1249     wait();
1250     } catch (InterruptedException ie) {
1251 dl 1.104 try {
1252     Thread.currentThread().interrupt();
1253     } catch (SecurityException ignore) {
1254     }
1255 dl 1.101 }
1256     }
1257     else
1258 dl 1.105 notifyAll();
1259 dl 1.101 }
1260     }
1261     }
1262     }
1263 dl 1.78
1264 jsr166 1.1 /**
1265 dl 1.105 * Unlocks and signals any thread waiting for plock. Called only
1266     * when CAS of seq value for unlock fails.
1267 jsr166 1.1 */
1268 dl 1.105 private void releasePlock(int ps) {
1269     plock = ps;
1270 jsr166 1.106 synchronized (this) { notifyAll(); }
1271 dl 1.78 }
1272 jsr166 1.1
1273 dl 1.112 /**
1274 dl 1.120 * Tries to create and start one worker if fewer than target
1275     * parallelism level exist. Adjusts counts etc on failure.
1276 dl 1.115 */
1277     private void tryAddWorker() {
1278 dl 1.112 long c; int u;
1279 dl 1.115 while ((u = (int)((c = ctl) >>> 32)) < 0 &&
1280     (u & SHORT_SIGN) != 0 && (int)c == 0) {
1281 dl 1.112 long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1282     ((u + UAC_UNIT) & UAC_MASK)) << 32;
1283 dl 1.115 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1284     ForkJoinWorkerThreadFactory fac;
1285     Throwable ex = null;
1286     ForkJoinWorkerThread wt = null;
1287     try {
1288     if ((fac = factory) != null &&
1289     (wt = fac.newThread(this)) != null) {
1290     wt.start();
1291     break;
1292     }
1293     } catch (Throwable e) {
1294     ex = e;
1295     }
1296     deregisterWorker(wt, ex);
1297     break;
1298     }
1299 dl 1.112 }
1300     }
1301    
1302     // Registering and deregistering workers
1303    
1304     /**
1305     * Callback from ForkJoinWorkerThread to establish and record its
1306     * WorkQueue. To avoid scanning bias due to packing entries in
1307     * front of the workQueues array, we treat the array as a simple
1308     * power-of-two hash table using per-thread seed as hash,
1309     * expanding as needed.
1310     *
1311     * @param wt the worker thread
1312 dl 1.115 * @return the worker's queue
1313 dl 1.112 */
1314 dl 1.115 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1315 jsr166 1.156 UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps;
1316 dl 1.115 wt.setDaemon(true);
1317     if ((handler = ueh) != null)
1318     wt.setUncaughtExceptionHandler(handler);
1319     do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
1320     s += SEED_INCREMENT) ||
1321     s == 0); // skip 0
1322     WorkQueue w = new WorkQueue(this, wt, config >>> 16, s);
1323     if (((ps = plock) & PL_LOCK) != 0 ||
1324     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1325     ps = acquirePlock();
1326     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1327     try {
1328     if ((ws = workQueues) != null) { // skip if shutting down
1329     int n = ws.length, m = n - 1;
1330     int r = (s << 1) | 1; // use odd-numbered indices
1331     if (ws[r &= m] != null) { // collision
1332     int probes = 0; // step by approx half size
1333     int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1334     while (ws[r = (r + step) & m] != null) {
1335     if (++probes >= n) {
1336     workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1337     m = n - 1;
1338     probes = 0;
1339 dl 1.94 }
1340     }
1341     }
1342 dl 1.115 w.eventCount = w.poolIndex = r; // volatile write orders
1343     ws[r] = w;
1344 dl 1.78 }
1345 dl 1.115 } finally {
1346     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1347     releasePlock(nps);
1348 dl 1.78 }
1349 dl 1.115 wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex)));
1350     return w;
1351 dl 1.78 }
1352 dl 1.19
1353 jsr166 1.1 /**
1354 dl 1.86 * Final callback from terminating worker, as well as upon failure
1355 dl 1.105 * to construct or start a worker. Removes record of worker from
1356     * array, and adjusts counts. If pool is shutting down, tries to
1357     * complete termination.
1358 dl 1.78 *
1359 jsr166 1.151 * @param wt the worker thread, or null if construction failed
1360 dl 1.78 * @param ex the exception causing failure, or null if none
1361 dl 1.45 */
1362 dl 1.78 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1363     WorkQueue w = null;
1364     if (wt != null && (w = wt.workQueue) != null) {
1365 dl 1.105 int ps;
1366     w.qlock = -1; // ensure set
1367 dl 1.112 long ns = w.nsteals, sc; // collect steal count
1368     do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1369     sc = stealCount, sc + ns));
1370 dl 1.105 if (((ps = plock) & PL_LOCK) != 0 ||
1371     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1372     ps = acquirePlock();
1373     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1374 dl 1.101 try {
1375 dl 1.105 int idx = w.poolIndex;
1376 dl 1.78 WorkQueue[] ws = workQueues;
1377 dl 1.90 if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1378 dl 1.86 ws[idx] = null;
1379 dl 1.78 } finally {
1380 dl 1.105 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1381     releasePlock(nps);
1382 dl 1.78 }
1383     }
1384    
1385 dl 1.126 long c; // adjust ctl counts
1386 dl 1.78 do {} while (!U.compareAndSwapLong
1387     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1388     ((c - TC_UNIT) & TC_MASK) |
1389     (c & ~(AC_MASK|TC_MASK)))));
1390    
1391 dl 1.120 if (!tryTerminate(false, false) && w != null && w.array != null) {
1392 dl 1.126 w.cancelAll(); // cancel remaining tasks
1393     WorkQueue[] ws; WorkQueue v; Thread p; int u, i, e;
1394     while ((u = (int)((c = ctl) >>> 32)) < 0 && (e = (int)c) >= 0) {
1395     if (e > 0) { // activate or create replacement
1396     if ((ws = workQueues) == null ||
1397     (i = e & SMASK) >= ws.length ||
1398 dl 1.130 (v = ws[i]) == null)
1399 dl 1.126 break;
1400     long nc = (((long)(v.nextWait & E_MASK)) |
1401     ((long)(u + UAC_UNIT) << 32));
1402     if (v.eventCount != (e | INT_SIGN))
1403     break;
1404     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1405     v.eventCount = (e + E_SEQ) & E_MASK;
1406     if ((p = v.parker) != null)
1407     U.unpark(p);
1408     break;
1409 dl 1.120 }
1410     }
1411     else {
1412     if ((short)u < 0)
1413     tryAddWorker();
1414     break;
1415     }
1416     }
1417 dl 1.78 }
1418 dl 1.120 if (ex == null) // help clean refs on way out
1419     ForkJoinTask.helpExpungeStaleExceptions();
1420     else // rethrow
1421 dl 1.104 ForkJoinTask.rethrow(ex);
1422 dl 1.78 }
1423 dl 1.52
1424 dl 1.86 // Submissions
1425    
1426     /**
1427     * Unless shutting down, adds the given task to a submission queue
1428     * at submitter's current queue index (modulo submission
1429 dl 1.105 * range). Only the most common path is directly handled in this
1430     * method. All others are relayed to fullExternalPush.
1431 dl 1.90 *
1432     * @param task the task. Caller must ensure non-null.
1433 dl 1.86 */
1434 dl 1.105 final void externalPush(ForkJoinTask<?> task) {
1435 dl 1.139 WorkQueue[] ws; WorkQueue q; int z, m; ForkJoinTask<?>[] a;
1436     if ((z = ThreadLocalRandom.getProbe()) != 0 && plock > 0 &&
1437 dl 1.105 (ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
1438 dl 1.139 (q = ws[m & z & SQMASK]) != null &&
1439 dl 1.105 U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1440 dl 1.112 int b = q.base, s = q.top, n, an;
1441     if ((a = q.array) != null && (an = a.length) > (n = s + 1 - b)) {
1442 dl 1.115 int j = (((an - 1) & s) << ASHIFT) + ABASE;
1443     U.putOrderedObject(a, j, task);
1444 dl 1.105 q.top = s + 1; // push on to deque
1445     q.qlock = 0;
1446 dl 1.112 if (n <= 2)
1447 dl 1.115 signalWork(q);
1448 dl 1.90 return;
1449     }
1450 dl 1.105 q.qlock = 0;
1451 dl 1.83 }
1452 dl 1.105 fullExternalPush(task);
1453 dl 1.83 }
1454 dl 1.45
1455 dl 1.100 /**
1456 dl 1.105 * Full version of externalPush. This method is called, among
1457     * other times, upon the first submission of the first task to the
1458 dl 1.131 * pool, so must perform secondary initialization. It also
1459     * detects first submission by an external thread by looking up
1460     * its ThreadLocal, and creates a new shared queue if the one at
1461     * index if empty or contended. The plock lock body must be
1462     * exception-free (so no try/finally) so we optimistically
1463     * allocate new queues outside the lock and throw them away if
1464     * (very rarely) not needed.
1465     *
1466     * Secondary initialization occurs when plock is zero, to create
1467     * workQueue array and set plock to a valid value. This lock body
1468     * must also be exception-free. Because the plock seq value can
1469     * eventually wrap around zero, this method harmlessly fails to
1470     * reinitialize if workQueues exists, while still advancing plock.
1471 dl 1.105 */
1472     private void fullExternalPush(ForkJoinTask<?> task) {
1473 dl 1.139 int r;
1474     if ((r = ThreadLocalRandom.getProbe()) == 0) {
1475     ThreadLocalRandom.localInit();
1476     r = ThreadLocalRandom.getProbe();
1477     }
1478     for (;;) {
1479 dl 1.112 WorkQueue[] ws; WorkQueue q; int ps, m, k;
1480 dl 1.139 boolean move = false;
1481     if ((ps = plock) < 0)
1482 dl 1.105 throw new RejectedExecutionException();
1483 dl 1.112 else if (ps == 0 || (ws = workQueues) == null ||
1484 dl 1.131 (m = ws.length - 1) < 0) { // initialize workQueues
1485     int p = config & SMASK; // find power of two table size
1486     int n = (p > 1) ? p - 1 : 1; // ensure at least 2 slots
1487     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4;
1488     n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1;
1489     WorkQueue[] nws = ((ws = workQueues) == null || ws.length == 0 ?
1490     new WorkQueue[n] : null);
1491     if (((ps = plock) & PL_LOCK) != 0 ||
1492     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1493     ps = acquirePlock();
1494     if (((ws = workQueues) == null || ws.length == 0) && nws != null)
1495     workQueues = nws;
1496     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1497     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1498     releasePlock(nps);
1499     }
1500 dl 1.112 else if ((q = ws[k = r & m & SQMASK]) != null) {
1501 dl 1.115 if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
1502     ForkJoinTask<?>[] a = q.array;
1503     int s = q.top;
1504     boolean submitted = false;
1505     try { // locked version of push
1506     if ((a != null && a.length > s + 1 - q.base) ||
1507     (a = q.growArray()) != null) { // must presize
1508     int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
1509     U.putOrderedObject(a, j, task);
1510     q.top = s + 1;
1511     submitted = true;
1512     }
1513     } finally {
1514     q.qlock = 0; // unlock
1515     }
1516     if (submitted) {
1517     signalWork(q);
1518     return;
1519     }
1520     }
1521 dl 1.139 move = true; // move on failure
1522 dl 1.112 }
1523     else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
1524     q = new WorkQueue(this, null, SHARED_QUEUE, r);
1525     if (((ps = plock) & PL_LOCK) != 0 ||
1526 dl 1.105 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1527     ps = acquirePlock();
1528 dl 1.112 if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
1529     ws[k] = q;
1530 dl 1.105 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1531     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1532     releasePlock(nps);
1533     }
1534 dl 1.112 else
1535 dl 1.139 move = true; // move if busy
1536     if (move)
1537     r = ThreadLocalRandom.advanceProbe(r);
1538 dl 1.104 }
1539 dl 1.102 }
1540    
1541 dl 1.78 // Maintaining ctl counts
1542 dl 1.17
1543     /**
1544 jsr166 1.84 * Increments active count; mainly called upon return from blocking.
1545 dl 1.19 */
1546 dl 1.78 final void incrementActiveCount() {
1547 dl 1.52 long c;
1548 dl 1.78 do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1549 dl 1.19 }
1550    
1551     /**
1552 dl 1.115 * Tries to create or activate a worker if too few are active.
1553     *
1554     * @param q the (non-null) queue holding tasks to be signalled
1555 dl 1.105 */
1556 dl 1.115 final void signalWork(WorkQueue q) {
1557     int hint = q.poolIndex;
1558     long c; int e, u, i, n; WorkQueue[] ws; WorkQueue w; Thread p;
1559 dl 1.105 while ((u = (int)((c = ctl) >>> 32)) < 0) {
1560     if ((e = (int)c) > 0) {
1561     if ((ws = workQueues) != null && ws.length > (i = e & SMASK) &&
1562 dl 1.86 (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1563     long nc = (((long)(w.nextWait & E_MASK)) |
1564     ((long)(u + UAC_UNIT) << 32));
1565     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1566 dl 1.115 w.hint = hint;
1567 dl 1.86 w.eventCount = (e + E_SEQ) & E_MASK;
1568 dl 1.115 if ((p = w.parker) != null)
1569 dl 1.105 U.unpark(p);
1570 dl 1.115 break;
1571 dl 1.105 }
1572 dl 1.115 if (q.top - q.base <= 0)
1573 dl 1.86 break;
1574     }
1575     else
1576 dl 1.52 break;
1577 dl 1.78 }
1578 dl 1.115 else {
1579     if ((short)u < 0)
1580     tryAddWorker();
1581     break;
1582 dl 1.52 }
1583     }
1584 dl 1.14 }
1585    
1586 dl 1.90 // Scanning for tasks
1587    
1588 dl 1.14 /**
1589 dl 1.90 * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1590 dl 1.14 */
1591 dl 1.90 final void runWorker(WorkQueue w) {
1592 dl 1.115 w.growArray(); // allocate queue
1593     do { w.runTask(scan(w)); } while (w.qlock >= 0);
1594 dl 1.14 }
1595    
1596     /**
1597 dl 1.78 * Scans for and, if found, returns one task, else possibly
1598     * inactivates the worker. This method operates on single reads of
1599 dl 1.90 * volatile state and is designed to be re-invoked continuously,
1600     * in part because it returns upon detecting inconsistencies,
1601 dl 1.78 * contention, or state changes that indicate possible success on
1602     * re-invocation.
1603     *
1604 dl 1.112 * The scan searches for tasks across queues (starting at a random
1605     * index, and relying on registerWorker to irregularly scatter
1606     * them within array to avoid bias), checking each at least twice.
1607     * The scan terminates upon either finding a non-empty queue, or
1608     * completing the sweep. If the worker is not inactivated, it
1609     * takes and returns a task from this queue. Otherwise, if not
1610     * activated, it signals workers (that may include itself) and
1611     * returns so caller can retry. Also returns for true if the
1612     * worker array may have changed during an empty scan. On failure
1613     * to find a task, we take one of the following actions, after
1614     * which the caller will retry calling this method unless
1615     * terminated.
1616 dl 1.78 *
1617 dl 1.86 * * If pool is terminating, terminate the worker.
1618     *
1619 dl 1.78 * * If not already enqueued, try to inactivate and enqueue the
1620 dl 1.90 * worker on wait queue. Or, if inactivating has caused the pool
1621 dl 1.126 * to be quiescent, relay to idleAwaitWork to possibly shrink
1622     * pool.
1623 dl 1.90 *
1624 dl 1.105 * * If already enqueued and none of the above apply, possibly
1625 dl 1.126 * park awaiting signal, else lingering to help scan and signal.
1626     *
1627     * * If a non-empty queue discovered or left as a hint,
1628 jsr166 1.133 * help wake up other workers before return.
1629 dl 1.78 *
1630     * @param w the worker (via its WorkQueue)
1631 jsr166 1.98 * @return a task or null if none found
1632 dl 1.78 */
1633     private final ForkJoinTask<?> scan(WorkQueue w) {
1634 dl 1.115 WorkQueue[] ws; int m;
1635 dl 1.112 int ps = plock; // read plock before ws
1636     if (w != null && (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1637     int ec = w.eventCount; // ec is negative if inactive
1638     int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1639 dl 1.126 w.hint = -1; // update seed and clear hint
1640 dl 1.115 int j = ((m + m + 1) | MIN_SCAN) & MAX_SCAN;
1641     do {
1642 dl 1.112 WorkQueue q; ForkJoinTask<?>[] a; int b;
1643     if ((q = ws[(r + j) & m]) != null && (b = q.base) - q.top < 0 &&
1644     (a = q.array) != null) { // probably nonempty
1645 dl 1.90 int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1646 dl 1.112 ForkJoinTask<?> t = (ForkJoinTask<?>)
1647     U.getObjectVolatile(a, i);
1648 dl 1.90 if (q.base == b && ec >= 0 && t != null &&
1649     U.compareAndSwapObject(a, i, t, null)) {
1650 dl 1.112 if ((q.base = b + 1) - q.top < 0)
1651 dl 1.115 signalWork(q);
1652 dl 1.112 return t; // taken
1653     }
1654 dl 1.115 else if ((ec < 0 || j < m) && (int)(ctl >> AC_SHIFT) <= 0) {
1655     w.hint = (r + j) & m; // help signal below
1656     break; // cannot take
1657     }
1658     }
1659     } while (--j >= 0);
1660    
1661 dl 1.126 int h, e, ns; long c, sc; WorkQueue q;
1662     if ((ns = w.nsteals) != 0) {
1663     if (U.compareAndSwapLong(this, STEALCOUNT,
1664     sc = stealCount, sc + ns))
1665     w.nsteals = 0; // collect steals and rescan
1666     }
1667     else if (plock != ps) // consistency check
1668     ; // skip
1669     else if ((e = (int)(c = ctl)) < 0)
1670     w.qlock = -1; // pool is terminating
1671     else {
1672     if ((h = w.hint) < 0) {
1673     if (ec >= 0) { // try to enqueue/inactivate
1674     long nc = (((long)ec |
1675     ((c - AC_UNIT) & (AC_MASK|TC_MASK))));
1676     w.nextWait = e; // link and mark inactive
1677     w.eventCount = ec | INT_SIGN;
1678     if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1679     w.eventCount = ec; // unmark on CAS failure
1680     else if ((int)(c >> AC_SHIFT) == 1 - (config & SMASK))
1681     idleAwaitWork(w, nc, c);
1682     }
1683 dl 1.131 else if (w.eventCount < 0 && ctl == c) {
1684 dl 1.126 Thread wt = Thread.currentThread();
1685     Thread.interrupted(); // clear status
1686     U.putObject(wt, PARKBLOCKER, this);
1687     w.parker = wt; // emulate LockSupport.park
1688     if (w.eventCount < 0) // recheck
1689 dl 1.131 U.park(false, 0L); // block
1690 dl 1.126 w.parker = null;
1691     U.putObject(wt, PARKBLOCKER, null);
1692     }
1693     }
1694     if ((h >= 0 || (h = w.hint) >= 0) &&
1695     (ws = workQueues) != null && h < ws.length &&
1696     (q = ws[h]) != null) { // signal others before retry
1697     WorkQueue v; Thread p; int u, i, s;
1698 dl 1.131 for (int n = (config & SMASK) - 1;;) {
1699 dl 1.126 int idleCount = (w.eventCount < 0) ? 0 : -1;
1700     if (((s = idleCount - q.base + q.top) <= n &&
1701     (n = s) <= 0) ||
1702     (u = (int)((c = ctl) >>> 32)) >= 0 ||
1703     (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1704     (v = ws[i]) == null)
1705     break;
1706     long nc = (((long)(v.nextWait & E_MASK)) |
1707     ((long)(u + UAC_UNIT) << 32));
1708     if (v.eventCount != (e | INT_SIGN) ||
1709     !U.compareAndSwapLong(this, CTL, c, nc))
1710     break;
1711     v.hint = h;
1712     v.eventCount = (e + E_SEQ) & E_MASK;
1713     if ((p = v.parker) != null)
1714     U.unpark(p);
1715     if (--n <= 0)
1716     break;
1717     }
1718 dl 1.115 }
1719     }
1720 dl 1.52 }
1721 dl 1.78 return null;
1722 dl 1.14 }
1723    
1724     /**
1725 dl 1.90 * If inactivating worker w has caused the pool to become
1726     * quiescent, checks for pool termination, and, so long as this is
1727 dl 1.100 * not the only worker, waits for event for up to a given
1728     * duration. On timeout, if ctl has not changed, terminates the
1729 dl 1.90 * worker, which will in turn wake up another worker to possibly
1730     * repeat this process.
1731 dl 1.52 *
1732 dl 1.78 * @param w the calling worker
1733 dl 1.90 * @param currentCtl the ctl value triggering possible quiescence
1734     * @param prevCtl the ctl value to restore if thread is terminated
1735 dl 1.14 */
1736 dl 1.90 private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1737 dl 1.112 if (w != null && w.eventCount < 0 &&
1738 dl 1.131 !tryTerminate(false, false) && (int)prevCtl != 0 &&
1739     ctl == currentCtl) {
1740 dl 1.100 int dc = -(short)(currentCtl >>> TC_SHIFT);
1741     long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1742 dl 1.120 long deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
1743 dl 1.90 Thread wt = Thread.currentThread();
1744     while (ctl == currentCtl) {
1745 dl 1.78 Thread.interrupted(); // timed variant of version in scan()
1746     U.putObject(wt, PARKBLOCKER, this);
1747     w.parker = wt;
1748 dl 1.90 if (ctl == currentCtl)
1749 dl 1.100 U.park(false, parkTime);
1750 dl 1.78 w.parker = null;
1751     U.putObject(wt, PARKBLOCKER, null);
1752 dl 1.90 if (ctl != currentCtl)
1753 dl 1.78 break;
1754 dl 1.100 if (deadline - System.nanoTime() <= 0L &&
1755 dl 1.90 U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1756     w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1757 dl 1.131 w.hint = -1;
1758 dl 1.105 w.qlock = -1; // shrink
1759 dl 1.78 break;
1760     }
1761 dl 1.24 }
1762 dl 1.14 }
1763     }
1764    
1765     /**
1766 dl 1.120 * Scans through queues looking for work while joining a task; if
1767     * any present, signals. May return early if more signalling is
1768     * detectably unneeded.
1769 dl 1.105 *
1770 dl 1.120 * @param task return early if done
1771 dl 1.105 * @param origin an index to start scan
1772     */
1773 dl 1.120 private void helpSignal(ForkJoinTask<?> task, int origin) {
1774 dl 1.115 WorkQueue[] ws; WorkQueue w; Thread p; long c; int m, u, e, i, s;
1775 dl 1.120 if (task != null && task.status >= 0 &&
1776     (u = (int)(ctl >>> 32)) < 0 && (u >> UAC_SHIFT) < 0 &&
1777 dl 1.115 (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1778 dl 1.120 outer: for (int k = origin, j = m; j >= 0; --j) {
1779 dl 1.115 WorkQueue q = ws[k++ & m];
1780     for (int n = m;;) { // limit to at most m signals
1781 dl 1.120 if (task.status < 0)
1782 dl 1.115 break outer;
1783     if (q == null ||
1784 dl 1.120 ((s = -q.base + q.top) <= n && (n = s) <= 0))
1785 dl 1.105 break;
1786 dl 1.115 if ((u = (int)((c = ctl) >>> 32)) >= 0 ||
1787     (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1788     (w = ws[i]) == null)
1789     break outer;
1790     long nc = (((long)(w.nextWait & E_MASK)) |
1791     ((long)(u + UAC_UNIT) << 32));
1792 dl 1.126 if (w.eventCount != (e | INT_SIGN))
1793     break outer;
1794     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1795 dl 1.122 w.eventCount = (e + E_SEQ) & E_MASK;
1796     if ((p = w.parker) != null)
1797     U.unpark(p);
1798     if (--n <= 0)
1799     break;
1800     }
1801 dl 1.120 }
1802     }
1803     }
1804     }
1805    
1806     /**
1807 dl 1.78 * Tries to locate and execute tasks for a stealer of the given
1808     * task, or in turn one of its stealers, Traces currentSteal ->
1809     * currentJoin links looking for a thread working on a descendant
1810     * of the given task and with a non-empty queue to steal back and
1811     * execute tasks from. The first call to this method upon a
1812     * waiting join will often entail scanning/search, (which is OK
1813     * because the joiner has nothing better to do), but this method
1814     * leaves hints in workers to speed up subsequent calls. The
1815     * implementation is very branchy to cope with potential
1816     * inconsistencies or loops encountering chains that are stale,
1817 dl 1.95 * unknown, or so long that they are likely cyclic.
1818 dl 1.78 *
1819     * @param joiner the joining worker
1820     * @param task the task to join
1821 dl 1.95 * @return 0 if no progress can be made, negative if task
1822     * known complete, else positive
1823 dl 1.78 */
1824 dl 1.95 private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1825     int stat = 0, steps = 0; // bound to avoid cycles
1826     if (joiner != null && task != null) { // hoist null checks
1827     restart: for (;;) {
1828     ForkJoinTask<?> subtask = task; // current target
1829     for (WorkQueue j = joiner, v;;) { // v is stealer of subtask
1830     WorkQueue[] ws; int m, s, h;
1831     if ((s = task.status) < 0) {
1832     stat = s;
1833     break restart;
1834     }
1835     if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1836     break restart; // shutting down
1837 dl 1.112 if ((v = ws[h = (j.hint | 1) & m]) == null ||
1838 dl 1.95 v.currentSteal != subtask) {
1839     for (int origin = h;;) { // find stealer
1840     if (((h = (h + 2) & m) & 15) == 1 &&
1841     (subtask.status < 0 || j.currentJoin != subtask))
1842     continue restart; // occasional staleness check
1843     if ((v = ws[h]) != null &&
1844     v.currentSteal == subtask) {
1845 dl 1.112 j.hint = h; // save hint
1846 dl 1.95 break;
1847     }
1848     if (h == origin)
1849     break restart; // cannot find stealer
1850 dl 1.78 }
1851     }
1852 dl 1.95 for (;;) { // help stealer or descend to its stealer
1853     ForkJoinTask[] a; int b;
1854     if (subtask.status < 0) // surround probes with
1855     continue restart; // consistency checks
1856     if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1857     int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1858     ForkJoinTask<?> t =
1859     (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1860     if (subtask.status < 0 || j.currentJoin != subtask ||
1861     v.currentSteal != subtask)
1862     continue restart; // stale
1863     stat = 1; // apparent progress
1864     if (t != null && v.base == b &&
1865     U.compareAndSwapObject(a, i, t, null)) {
1866     v.base = b + 1; // help stealer
1867     joiner.runSubtask(t);
1868     }
1869     else if (v.base == b && ++steps == MAX_HELP)
1870     break restart; // v apparently stalled
1871     }
1872     else { // empty -- try to descend
1873     ForkJoinTask<?> next = v.currentJoin;
1874     if (subtask.status < 0 || j.currentJoin != subtask ||
1875     v.currentSteal != subtask)
1876     continue restart; // stale
1877     else if (next == null || ++steps == MAX_HELP)
1878     break restart; // dead-end or maybe cyclic
1879     else {
1880     subtask = next;
1881     j = v;
1882     break;
1883     }
1884 dl 1.78 }
1885 dl 1.52 }
1886 dl 1.19 }
1887 dl 1.78 }
1888 dl 1.14 }
1889 dl 1.95 return stat;
1890 dl 1.22 }
1891    
1892 dl 1.52 /**
1893 dl 1.105 * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1894 jsr166 1.111 * and run tasks within the target's computation.
1895 dl 1.105 *
1896     * @param task the task to join
1897     * @param mode if shared, exit upon completing any task
1898     * if all workers are active
1899 dl 1.19 */
1900 dl 1.105 private int helpComplete(ForkJoinTask<?> task, int mode) {
1901 dl 1.112 WorkQueue[] ws; WorkQueue q; int m, n, s, u;
1902 dl 1.105 if (task != null && (ws = workQueues) != null &&
1903     (m = ws.length - 1) >= 0) {
1904     for (int j = 1, origin = j;;) {
1905     if ((s = task.status) < 0)
1906     return s;
1907     if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) {
1908     origin = j;
1909 dl 1.112 if (mode == SHARED_QUEUE &&
1910     ((u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0))
1911 dl 1.105 break;
1912     }
1913     else if ((j = (j + 2) & m) == origin)
1914 dl 1.78 break;
1915 dl 1.52 }
1916     }
1917 dl 1.105 return 0;
1918 dl 1.14 }
1919    
1920     /**
1921 dl 1.90 * Tries to decrement active count (sometimes implicitly) and
1922     * possibly release or create a compensating worker in preparation
1923     * for blocking. Fails on contention or termination. Otherwise,
1924 dl 1.105 * adds a new thread if no idle workers are available and pool
1925     * may become starved.
1926 dl 1.90 */
1927 dl 1.105 final boolean tryCompensate() {
1928 dl 1.112 int pc = config & SMASK, e, i, tc; long c;
1929 dl 1.105 WorkQueue[] ws; WorkQueue w; Thread p;
1930 dl 1.112 if ((ws = workQueues) != null && (e = (int)(c = ctl)) >= 0) {
1931 dl 1.105 if (e != 0 && (i = e & SMASK) < ws.length &&
1932     (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1933     long nc = ((long)(w.nextWait & E_MASK) |
1934     (c & (AC_MASK|TC_MASK)));
1935     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1936     w.eventCount = (e + E_SEQ) & E_MASK;
1937     if ((p = w.parker) != null)
1938     U.unpark(p);
1939     return true; // replace with idle worker
1940 dl 1.90 }
1941     }
1942 dl 1.112 else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
1943     (int)(c >> AC_SHIFT) + pc > 1) {
1944 dl 1.105 long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1945     if (U.compareAndSwapLong(this, CTL, c, nc))
1946 dl 1.112 return true; // no compensation
1947 dl 1.105 }
1948 dl 1.112 else if (tc + pc < MAX_CAP) {
1949 dl 1.105 long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1950     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1951 dl 1.115 ForkJoinWorkerThreadFactory fac;
1952     Throwable ex = null;
1953     ForkJoinWorkerThread wt = null;
1954     try {
1955     if ((fac = factory) != null &&
1956     (wt = fac.newThread(this)) != null) {
1957     wt.start();
1958     return true;
1959     }
1960     } catch (Throwable rex) {
1961     ex = rex;
1962     }
1963     deregisterWorker(wt, ex); // clean up and return false
1964 dl 1.90 }
1965     }
1966     }
1967     return false;
1968     }
1969    
1970     /**
1971 jsr166 1.93 * Helps and/or blocks until the given task is done.
1972 dl 1.90 *
1973     * @param joiner the joining worker
1974     * @param task the task
1975     * @return task status on exit
1976     */
1977     final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1978 dl 1.105 int s = 0;
1979     if (joiner != null && task != null && (s = task.status) >= 0) {
1980 dl 1.95 ForkJoinTask<?> prevJoin = joiner.currentJoin;
1981 dl 1.94 joiner.currentJoin = task;
1982 dl 1.115 do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
1983 dl 1.105 joiner.tryRemoveAndExec(task)); // process local tasks
1984 dl 1.115 if (s >= 0 && (s = task.status) >= 0) {
1985 dl 1.120 helpSignal(task, joiner.poolIndex);
1986 dl 1.115 if ((s = task.status) >= 0 &&
1987     (task instanceof CountedCompleter))
1988     s = helpComplete(task, LIFO_QUEUE);
1989     }
1990 dl 1.105 while (s >= 0 && (s = task.status) >= 0) {
1991 dl 1.115 if ((!joiner.isEmpty() || // try helping
1992 dl 1.105 (s = tryHelpStealer(joiner, task)) == 0) &&
1993 dl 1.112 (s = task.status) >= 0) {
1994 dl 1.120 helpSignal(task, joiner.poolIndex);
1995 dl 1.115 if ((s = task.status) >= 0 && tryCompensate()) {
1996 dl 1.112 if (task.trySetSignal() && (s = task.status) >= 0) {
1997     synchronized (task) {
1998     if (task.status >= 0) {
1999     try { // see ForkJoinTask
2000     task.wait(); // for explanation
2001     } catch (InterruptedException ie) {
2002     }
2003 dl 1.90 }
2004 dl 1.112 else
2005     task.notifyAll();
2006 dl 1.90 }
2007     }
2008 dl 1.112 long c; // re-activate
2009     do {} while (!U.compareAndSwapLong
2010     (this, CTL, c = ctl, c + AC_UNIT));
2011 dl 1.90 }
2012     }
2013     }
2014 dl 1.105 joiner.currentJoin = prevJoin;
2015 dl 1.90 }
2016 dl 1.94 return s;
2017 dl 1.90 }
2018    
2019     /**
2020     * Stripped-down variant of awaitJoin used by timed joins. Tries
2021     * to help join only while there is continuous progress. (Caller
2022     * will then enter a timed wait.)
2023     *
2024     * @param joiner the joining worker
2025     * @param task the task
2026     */
2027 dl 1.105 final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2028 dl 1.90 int s;
2029 dl 1.105 if (joiner != null && task != null && (s = task.status) >= 0) {
2030     ForkJoinTask<?> prevJoin = joiner.currentJoin;
2031     joiner.currentJoin = task;
2032 dl 1.115 do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
2033 dl 1.105 joiner.tryRemoveAndExec(task));
2034 dl 1.115 if (s >= 0 && (s = task.status) >= 0) {
2035 dl 1.120 helpSignal(task, joiner.poolIndex);
2036 dl 1.115 if ((s = task.status) >= 0 &&
2037     (task instanceof CountedCompleter))
2038     s = helpComplete(task, LIFO_QUEUE);
2039     }
2040     if (s >= 0 && joiner.isEmpty()) {
2041 dl 1.105 do {} while (task.status >= 0 &&
2042     tryHelpStealer(joiner, task) > 0);
2043     }
2044     joiner.currentJoin = prevJoin;
2045     }
2046 dl 1.90 }
2047    
2048     /**
2049     * Returns a (probably) non-empty steal queue, if one is found
2050 dl 1.131 * during a scan, else null. This method must be retried by
2051     * caller if, by the time it tries to use the queue, it is empty.
2052 dl 1.105 * @param r a (random) seed for scanning
2053 dl 1.78 */
2054 dl 1.105 private WorkQueue findNonEmptyStealQueue(int r) {
2055 dl 1.131 for (;;) {
2056     int ps = plock, m; WorkQueue[] ws; WorkQueue q;
2057     if ((ws = workQueues) != null && (m = ws.length - 1) >= 0) {
2058     for (int j = (m + 1) << 2; j >= 0; --j) {
2059     if ((q = ws[(((r + j) << 1) | 1) & m]) != null &&
2060     q.base - q.top < 0)
2061     return q;
2062 dl 1.52 }
2063     }
2064 dl 1.131 if (plock == ps)
2065     return null;
2066 dl 1.22 }
2067     }
2068    
2069     /**
2070 dl 1.78 * Runs tasks until {@code isQuiescent()}. We piggyback on
2071     * active count ctl maintenance, but rather than blocking
2072     * when tasks cannot be found, we rescan until all others cannot
2073     * find tasks either.
2074     */
2075     final void helpQuiescePool(WorkQueue w) {
2076     for (boolean active = true;;) {
2077 dl 1.131 long c; WorkQueue q; ForkJoinTask<?> t; int b;
2078     while ((t = w.nextLocalTask()) != null) {
2079     if (w.base - w.top < 0)
2080     signalWork(w);
2081     t.doExec();
2082     }
2083     if ((q = findNonEmptyStealQueue(w.nextSeed())) != null) {
2084 dl 1.78 if (!active) { // re-establish active count
2085     active = true;
2086     do {} while (!U.compareAndSwapLong
2087     (this, CTL, c = ctl, c + AC_UNIT));
2088     }
2089 dl 1.130 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2090     if (q.base - q.top < 0)
2091     signalWork(q);
2092 dl 1.78 w.runSubtask(t);
2093 dl 1.130 }
2094 dl 1.78 }
2095 dl 1.131 else if (active) { // decrement active count without queuing
2096     long nc = (c = ctl) - AC_UNIT;
2097     if ((int)(nc >> AC_SHIFT) + (config & SMASK) == 0)
2098     return; // bypass decrement-then-increment
2099     if (U.compareAndSwapLong(this, CTL, c, nc))
2100 dl 1.78 active = false;
2101 dl 1.22 }
2102 dl 1.131 else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) == 0 &&
2103     U.compareAndSwapLong(this, CTL, c, c + AC_UNIT))
2104     return;
2105 dl 1.22 }
2106     }
2107    
2108     /**
2109 jsr166 1.84 * Gets and removes a local or stolen task for the given worker.
2110 dl 1.78 *
2111     * @return a task, if available
2112 dl 1.22 */
2113 dl 1.78 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2114     for (ForkJoinTask<?> t;;) {
2115 dl 1.90 WorkQueue q; int b;
2116 dl 1.78 if ((t = w.nextLocalTask()) != null)
2117     return t;
2118 dl 1.105 if ((q = findNonEmptyStealQueue(w.nextSeed())) == null)
2119 dl 1.78 return null;
2120 dl 1.130 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2121     if (q.base - q.top < 0)
2122     signalWork(q);
2123 dl 1.78 return t;
2124 dl 1.130 }
2125 dl 1.52 }
2126 dl 1.14 }
2127    
2128     /**
2129 dl 1.105 * Returns a cheap heuristic guide for task partitioning when
2130     * programmers, frameworks, tools, or languages have little or no
2131     * idea about task granularity. In essence by offering this
2132     * method, we ask users only about tradeoffs in overhead vs
2133     * expected throughput and its variance, rather than how finely to
2134     * partition tasks.
2135     *
2136     * In a steady state strict (tree-structured) computation, each
2137     * thread makes available for stealing enough tasks for other
2138     * threads to remain active. Inductively, if all threads play by
2139     * the same rules, each thread should make available only a
2140     * constant number of tasks.
2141     *
2142     * The minimum useful constant is just 1. But using a value of 1
2143     * would require immediate replenishment upon each steal to
2144     * maintain enough tasks, which is infeasible. Further,
2145     * partitionings/granularities of offered tasks should minimize
2146     * steal rates, which in general means that threads nearer the top
2147     * of computation tree should generate more than those nearer the
2148     * bottom. In perfect steady state, each thread is at
2149     * approximately the same level of computation tree. However,
2150     * producing extra tasks amortizes the uncertainty of progress and
2151     * diffusion assumptions.
2152     *
2153 jsr166 1.161 * So, users will want to use values larger (but not much larger)
2154 dl 1.105 * than 1 to both smooth over transient shortages and hedge
2155     * against uneven progress; as traded off against the cost of
2156     * extra task overhead. We leave the user to pick a threshold
2157     * value to compare with the results of this call to guide
2158     * decisions, but recommend values such as 3.
2159     *
2160     * When all threads are active, it is on average OK to estimate
2161     * surplus strictly locally. In steady-state, if one thread is
2162     * maintaining say 2 surplus tasks, then so are others. So we can
2163     * just use estimated queue length. However, this strategy alone
2164     * leads to serious mis-estimates in some non-steady-state
2165     * conditions (ramp-up, ramp-down, other stalls). We can detect
2166     * many of these by further considering the number of "idle"
2167     * threads, that are known to have zero queued tasks, so
2168     * compensate by a factor of (#idle/#active) threads.
2169     *
2170     * Note: The approximation of #busy workers as #active workers is
2171     * not very good under current signalling scheme, and should be
2172     * improved.
2173     */
2174     static int getSurplusQueuedTaskCount() {
2175     Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2176     if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2177 dl 1.112 int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2178     int n = (q = wt.workQueue).top - q.base;
2179 dl 1.105 int a = (int)(pool.ctl >> AC_SHIFT) + p;
2180 dl 1.112 return n - (a > (p >>>= 1) ? 0 :
2181     a > (p >>>= 1) ? 1 :
2182     a > (p >>>= 1) ? 2 :
2183     a > (p >>>= 1) ? 4 :
2184     8);
2185 dl 1.105 }
2186     return 0;
2187 dl 1.100 }
2188    
2189 dl 1.86 // Termination
2190 dl 1.14
2191     /**
2192 dl 1.86 * Possibly initiates and/or completes termination. The caller
2193     * triggering termination runs three passes through workQueues:
2194     * (0) Setting termination status, followed by wakeups of queued
2195     * workers; (1) cancelling all tasks; (2) interrupting lagging
2196     * threads (likely in external tasks, but possibly also blocked in
2197     * joins). Each pass repeats previous steps because of potential
2198     * lagging thread creation.
2199 dl 1.14 *
2200     * @param now if true, unconditionally terminate, else only
2201 dl 1.78 * if no work and no active workers
2202 jsr166 1.87 * @param enable if true, enable shutdown when next possible
2203 dl 1.14 * @return true if now terminating or terminated
2204 jsr166 1.1 */
2205 dl 1.86 private boolean tryTerminate(boolean now, boolean enable) {
2206 dl 1.131 int ps;
2207 dl 1.134 if (this == common) // cannot shut down
2208 dl 1.105 return false;
2209 dl 1.131 if ((ps = plock) >= 0) { // enable by setting plock
2210     if (!enable)
2211     return false;
2212     if ((ps & PL_LOCK) != 0 ||
2213     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2214     ps = acquirePlock();
2215     int nps = ((ps + PL_LOCK) & ~SHUTDOWN) | SHUTDOWN;
2216     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2217     releasePlock(nps);
2218     }
2219 dl 1.78 for (long c;;) {
2220 dl 1.131 if (((c = ctl) & STOP_BIT) != 0) { // already terminating
2221 dl 1.112 if ((short)(c >>> TC_SHIFT) == -(config & SMASK)) {
2222 jsr166 1.103 synchronized (this) {
2223 dl 1.131 notifyAll(); // signal when 0 workers
2224 dl 1.101 }
2225 dl 1.78 }
2226     return true;
2227     }
2228 dl 1.131 if (!now) { // check if idle & no tasks
2229     WorkQueue[] ws; WorkQueue w;
2230     if ((int)(c >> AC_SHIFT) != -(config & SMASK))
2231 dl 1.86 return false;
2232 dl 1.131 if ((ws = workQueues) != null) {
2233     for (int i = 0; i < ws.length; ++i) {
2234     if ((w = ws[i]) != null) {
2235     if (!w.isEmpty()) { // signal unprocessed tasks
2236     signalWork(w);
2237     return false;
2238     }
2239     if ((i & 1) != 0 && w.eventCount >= 0)
2240     return false; // unqueued inactive worker
2241     }
2242 dl 1.78 }
2243 dl 1.52 }
2244     }
2245 dl 1.86 if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2246     for (int pass = 0; pass < 3; ++pass) {
2247 dl 1.131 WorkQueue[] ws; WorkQueue w; Thread wt;
2248     if ((ws = workQueues) != null) {
2249 dl 1.86 int n = ws.length;
2250     for (int i = 0; i < n; ++i) {
2251     if ((w = ws[i]) != null) {
2252 dl 1.105 w.qlock = -1;
2253 dl 1.86 if (pass > 0) {
2254     w.cancelAll();
2255 dl 1.126 if (pass > 1 && (wt = w.owner) != null) {
2256     if (!wt.isInterrupted()) {
2257     try {
2258     wt.interrupt();
2259 dl 1.131 } catch (Throwable ignore) {
2260 dl 1.126 }
2261     }
2262     U.unpark(wt);
2263     }
2264 dl 1.52 }
2265 dl 1.19 }
2266     }
2267 dl 1.86 // Wake up workers parked on event queue
2268     int i, e; long cc; Thread p;
2269     while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2270 dl 1.131 (i = e & SMASK) < n && i >= 0 &&
2271 dl 1.86 (w = ws[i]) != null) {
2272     long nc = ((long)(w.nextWait & E_MASK) |
2273     ((cc + AC_UNIT) & AC_MASK) |
2274     (cc & (TC_MASK|STOP_BIT)));
2275     if (w.eventCount == (e | INT_SIGN) &&
2276     U.compareAndSwapLong(this, CTL, cc, nc)) {
2277     w.eventCount = (e + E_SEQ) & E_MASK;
2278 dl 1.105 w.qlock = -1;
2279 dl 1.86 if ((p = w.parker) != null)
2280     U.unpark(p);
2281     }
2282     }
2283 dl 1.78 }
2284 dl 1.52 }
2285     }
2286     }
2287     }
2288    
2289 dl 1.105 // external operations on common pool
2290    
2291     /**
2292     * Returns common pool queue for a thread that has submitted at
2293     * least one task.
2294     */
2295     static WorkQueue commonSubmitterQueue() {
2296 dl 1.139 ForkJoinPool p; WorkQueue[] ws; int m, z;
2297     return ((z = ThreadLocalRandom.getProbe()) != 0 &&
2298 dl 1.134 (p = common) != null &&
2299 dl 1.105 (ws = p.workQueues) != null &&
2300     (m = ws.length - 1) >= 0) ?
2301 dl 1.139 ws[m & z & SQMASK] : null;
2302 dl 1.105 }
2303    
2304     /**
2305     * Tries to pop the given task from submitter's queue in common pool.
2306     */
2307     static boolean tryExternalUnpush(ForkJoinTask<?> t) {
2308 dl 1.139 ForkJoinPool p; WorkQueue[] ws; WorkQueue q;
2309     ForkJoinTask<?>[] a; int m, s, z;
2310 dl 1.115 if (t != null &&
2311 dl 1.139 (z = ThreadLocalRandom.getProbe()) != 0 &&
2312 dl 1.134 (p = common) != null &&
2313 dl 1.105 (ws = p.workQueues) != null &&
2314     (m = ws.length - 1) >= 0 &&
2315 dl 1.139 (q = ws[m & z & SQMASK]) != null &&
2316 dl 1.105 (s = q.top) != q.base &&
2317 dl 1.115 (a = q.array) != null) {
2318     long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
2319     if (U.getObject(a, j) == t &&
2320     U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2321     if (q.array == a && q.top == s && // recheck
2322     U.compareAndSwapObject(a, j, t, null)) {
2323     q.top = s - 1;
2324     q.qlock = 0;
2325     return true;
2326     }
2327 dl 1.105 q.qlock = 0;
2328     }
2329     }
2330     return false;
2331     }
2332    
2333     /**
2334     * Tries to pop and run local tasks within the same computation
2335     * as the given root. On failure, tries to help complete from
2336     * other queues via helpComplete.
2337     */
2338     private void externalHelpComplete(WorkQueue q, ForkJoinTask<?> root) {
2339     ForkJoinTask<?>[] a; int m;
2340     if (q != null && (a = q.array) != null && (m = (a.length - 1)) >= 0 &&
2341     root != null && root.status >= 0) {
2342     for (;;) {
2343 dl 1.112 int s, u; Object o; CountedCompleter<?> task = null;
2344 dl 1.105 if ((s = q.top) - q.base > 0) {
2345     long j = ((m & (s - 1)) << ASHIFT) + ABASE;
2346     if ((o = U.getObject(a, j)) != null &&
2347     (o instanceof CountedCompleter)) {
2348     CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2349     do {
2350     if (r == root) {
2351     if (U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2352     if (q.array == a && q.top == s &&
2353     U.compareAndSwapObject(a, j, t, null)) {
2354     q.top = s - 1;
2355     task = t;
2356     }
2357     q.qlock = 0;
2358     }
2359     break;
2360     }
2361 jsr166 1.106 } while ((r = r.completer) != null);
2362 dl 1.105 }
2363     }
2364     if (task != null)
2365     task.doExec();
2366 dl 1.112 if (root.status < 0 ||
2367 dl 1.160 (config != 0 &&
2368     ((u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0)))
2369 dl 1.105 break;
2370 dl 1.160 if (task == null) {
2371 dl 1.120 helpSignal(root, q.poolIndex);
2372 dl 1.115 if (root.status >= 0)
2373 dl 1.105 helpComplete(root, SHARED_QUEUE);
2374     break;
2375     }
2376     }
2377     }
2378     }
2379    
2380     /**
2381     * Tries to help execute or signal availability of the given task
2382     * from submitter's queue in common pool.
2383     */
2384     static void externalHelpJoin(ForkJoinTask<?> t) {
2385     // Some hard-to-avoid overlap with tryExternalUnpush
2386 dl 1.139 ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w;
2387     ForkJoinTask<?>[] a; int m, s, n, z;
2388 dl 1.112 if (t != null &&
2389 dl 1.139 (z = ThreadLocalRandom.getProbe()) != 0 &&
2390 dl 1.134 (p = common) != null &&
2391 dl 1.105 (ws = p.workQueues) != null &&
2392     (m = ws.length - 1) >= 0 &&
2393 dl 1.139 (q = ws[m & z & SQMASK]) != null &&
2394 dl 1.115 (a = q.array) != null) {
2395     int am = a.length - 1;
2396     if ((s = q.top) != q.base) {
2397     long j = ((am & (s - 1)) << ASHIFT) + ABASE;
2398     if (U.getObject(a, j) == t &&
2399     U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2400     if (q.array == a && q.top == s &&
2401     U.compareAndSwapObject(a, j, t, null)) {
2402     q.top = s - 1;
2403     q.qlock = 0;
2404     t.doExec();
2405     }
2406     else
2407     q.qlock = 0;
2408 dl 1.105 }
2409     }
2410     if (t.status >= 0) {
2411     if (t instanceof CountedCompleter)
2412     p.externalHelpComplete(q, t);
2413     else
2414 dl 1.120 p.helpSignal(t, q.poolIndex);
2415 dl 1.105 }
2416     }
2417     }
2418    
2419 dl 1.52 // Exported methods
2420 jsr166 1.1
2421     // Constructors
2422    
2423     /**
2424 jsr166 1.9 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2425 dl 1.18 * java.lang.Runtime#availableProcessors}, using the {@linkplain
2426     * #defaultForkJoinWorkerThreadFactory default thread factory},
2427     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2428 jsr166 1.1 *
2429     * @throws SecurityException if a security manager exists and
2430     * the caller is not permitted to modify threads
2431     * because it does not hold {@link
2432     * java.lang.RuntimePermission}{@code ("modifyThread")}
2433     */
2434     public ForkJoinPool() {
2435 jsr166 1.148 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2436     defaultForkJoinWorkerThreadFactory, null, false);
2437 jsr166 1.1 }
2438    
2439     /**
2440 jsr166 1.9 * Creates a {@code ForkJoinPool} with the indicated parallelism
2441 dl 1.18 * level, the {@linkplain
2442     * #defaultForkJoinWorkerThreadFactory default thread factory},
2443     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2444 jsr166 1.1 *
2445 jsr166 1.9 * @param parallelism the parallelism level
2446 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
2447 jsr166 1.11 * equal to zero, or greater than implementation limit
2448 jsr166 1.1 * @throws SecurityException if a security manager exists and
2449     * the caller is not permitted to modify threads
2450     * because it does not hold {@link
2451     * java.lang.RuntimePermission}{@code ("modifyThread")}
2452     */
2453     public ForkJoinPool(int parallelism) {
2454 dl 1.18 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2455 jsr166 1.1 }
2456    
2457     /**
2458 dl 1.18 * Creates a {@code ForkJoinPool} with the given parameters.
2459 jsr166 1.1 *
2460 dl 1.18 * @param parallelism the parallelism level. For default value,
2461     * use {@link java.lang.Runtime#availableProcessors}.
2462     * @param factory the factory for creating new threads. For default value,
2463     * use {@link #defaultForkJoinWorkerThreadFactory}.
2464 dl 1.19 * @param handler the handler for internal worker threads that
2465     * terminate due to unrecoverable errors encountered while executing
2466 jsr166 1.31 * tasks. For default value, use {@code null}.
2467 dl 1.19 * @param asyncMode if true,
2468 dl 1.18 * establishes local first-in-first-out scheduling mode for forked
2469     * tasks that are never joined. This mode may be more appropriate
2470     * than default locally stack-based mode in applications in which
2471     * worker threads only process event-style asynchronous tasks.
2472 jsr166 1.31 * For default value, use {@code false}.
2473 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
2474 jsr166 1.11 * equal to zero, or greater than implementation limit
2475     * @throws NullPointerException if the factory is null
2476 jsr166 1.1 * @throws SecurityException if a security manager exists and
2477     * the caller is not permitted to modify threads
2478     * because it does not hold {@link
2479     * java.lang.RuntimePermission}{@code ("modifyThread")}
2480     */
2481 dl 1.19 public ForkJoinPool(int parallelism,
2482 dl 1.18 ForkJoinWorkerThreadFactory factory,
2483 jsr166 1.156 UncaughtExceptionHandler handler,
2484 dl 1.18 boolean asyncMode) {
2485 dl 1.152 this(checkParallelism(parallelism),
2486     checkFactory(factory),
2487     handler,
2488     asyncMode,
2489     "ForkJoinPool-" + nextPoolId() + "-worker-");
2490 dl 1.14 checkPermission();
2491 dl 1.152 }
2492    
2493     private static int checkParallelism(int parallelism) {
2494     if (parallelism <= 0 || parallelism > MAX_CAP)
2495     throw new IllegalArgumentException();
2496     return parallelism;
2497     }
2498    
2499     private static ForkJoinWorkerThreadFactory checkFactory
2500     (ForkJoinWorkerThreadFactory factory) {
2501 dl 1.14 if (factory == null)
2502     throw new NullPointerException();
2503 dl 1.152 return factory;
2504     }
2505    
2506     /**
2507     * Creates a {@code ForkJoinPool} with the given parameters, without
2508     * any security checks or parameter validation. Invoked directly by
2509     * makeCommonPool.
2510     */
2511     private ForkJoinPool(int parallelism,
2512     ForkJoinWorkerThreadFactory factory,
2513 jsr166 1.156 UncaughtExceptionHandler handler,
2514 dl 1.152 boolean asyncMode,
2515     String workerNamePrefix) {
2516     this.workerNamePrefix = workerNamePrefix;
2517 jsr166 1.1 this.factory = factory;
2518 dl 1.18 this.ueh = handler;
2519 jsr166 1.113 this.config = parallelism | (asyncMode ? (FIFO_QUEUE << 16) : 0);
2520 dl 1.52 long np = (long)(-parallelism); // offset ctl counts
2521     this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2522 dl 1.101 }
2523    
2524     /**
2525 dl 1.128 * Returns the common pool instance. This pool is statically
2526 dl 1.134 * constructed; its run state is unaffected by attempts to {@link
2527     * #shutdown} or {@link #shutdownNow}. However this pool and any
2528     * ongoing processing are automatically terminated upon program
2529     * {@link System#exit}. Any program that relies on asynchronous
2530     * task processing to complete before program termination should
2531 jsr166 1.158 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2532     * before exit.
2533 dl 1.100 *
2534     * @return the common pool instance
2535 jsr166 1.138 * @since 1.8
2536 dl 1.100 */
2537     public static ForkJoinPool commonPool() {
2538 dl 1.134 // assert common != null : "static init error";
2539     return common;
2540 dl 1.100 }
2541    
2542 jsr166 1.1 // Execution methods
2543    
2544     /**
2545     * Performs the given task, returning its result upon completion.
2546 dl 1.52 * If the computation encounters an unchecked Exception or Error,
2547     * it is rethrown as the outcome of this invocation. Rethrown
2548     * exceptions behave in the same way as regular exceptions, but,
2549     * when possible, contain stack traces (as displayed for example
2550     * using {@code ex.printStackTrace()}) of both the current thread
2551     * as well as the thread actually encountering the exception;
2552     * minimally only the latter.
2553 jsr166 1.1 *
2554     * @param task the task
2555     * @return the task's result
2556 jsr166 1.11 * @throws NullPointerException if the task is null
2557     * @throws RejectedExecutionException if the task cannot be
2558     * scheduled for execution
2559 jsr166 1.1 */
2560     public <T> T invoke(ForkJoinTask<T> task) {
2561 dl 1.90 if (task == null)
2562     throw new NullPointerException();
2563 dl 1.105 externalPush(task);
2564 dl 1.78 return task.join();
2565 jsr166 1.1 }
2566    
2567     /**
2568     * Arranges for (asynchronous) execution of the given task.
2569     *
2570     * @param task the task
2571 jsr166 1.11 * @throws NullPointerException if the task is null
2572     * @throws RejectedExecutionException if the task cannot be
2573     * scheduled for execution
2574 jsr166 1.1 */
2575 jsr166 1.8 public void execute(ForkJoinTask<?> task) {
2576 dl 1.90 if (task == null)
2577     throw new NullPointerException();
2578 dl 1.105 externalPush(task);
2579 jsr166 1.1 }
2580    
2581     // AbstractExecutorService methods
2582    
2583 jsr166 1.11 /**
2584     * @throws NullPointerException if the task is null
2585     * @throws RejectedExecutionException if the task cannot be
2586     * scheduled for execution
2587     */
2588 jsr166 1.1 public void execute(Runnable task) {
2589 dl 1.41 if (task == null)
2590     throw new NullPointerException();
2591 jsr166 1.2 ForkJoinTask<?> job;
2592 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2593     job = (ForkJoinTask<?>) task;
2594 jsr166 1.2 else
2595 dl 1.152 job = new ForkJoinTask.RunnableExecuteAction(task);
2596 dl 1.105 externalPush(job);
2597 jsr166 1.1 }
2598    
2599 jsr166 1.11 /**
2600 dl 1.18 * Submits a ForkJoinTask for execution.
2601     *
2602     * @param task the task to submit
2603     * @return the task
2604     * @throws NullPointerException if the task is null
2605     * @throws RejectedExecutionException if the task cannot be
2606     * scheduled for execution
2607     */
2608     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2609 dl 1.90 if (task == null)
2610     throw new NullPointerException();
2611 dl 1.105 externalPush(task);
2612 dl 1.18 return task;
2613     }
2614    
2615     /**
2616 jsr166 1.11 * @throws NullPointerException if the task is null
2617     * @throws RejectedExecutionException if the task cannot be
2618     * scheduled for execution
2619     */
2620 jsr166 1.1 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2621 dl 1.90 ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2622 dl 1.105 externalPush(job);
2623 jsr166 1.1 return job;
2624     }
2625    
2626 jsr166 1.11 /**
2627     * @throws NullPointerException if the task is null
2628     * @throws RejectedExecutionException if the task cannot be
2629     * scheduled for execution
2630     */
2631 jsr166 1.1 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2632 dl 1.90 ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2633 dl 1.105 externalPush(job);
2634 jsr166 1.1 return job;
2635     }
2636    
2637 jsr166 1.11 /**
2638     * @throws NullPointerException if the task is null
2639     * @throws RejectedExecutionException if the task cannot be
2640     * scheduled for execution
2641     */
2642 jsr166 1.1 public ForkJoinTask<?> submit(Runnable task) {
2643 dl 1.41 if (task == null)
2644     throw new NullPointerException();
2645 jsr166 1.2 ForkJoinTask<?> job;
2646 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2647     job = (ForkJoinTask<?>) task;
2648 jsr166 1.2 else
2649 dl 1.90 job = new ForkJoinTask.AdaptedRunnableAction(task);
2650 dl 1.105 externalPush(job);
2651 jsr166 1.1 return job;
2652     }
2653    
2654     /**
2655 jsr166 1.11 * @throws NullPointerException {@inheritDoc}
2656     * @throws RejectedExecutionException {@inheritDoc}
2657     */
2658 jsr166 1.1 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2659 dl 1.86 // In previous versions of this class, this method constructed
2660     // a task to run ForkJoinTask.invokeAll, but now external
2661     // invocation of multiple tasks is at least as efficient.
2662 jsr166 1.143 ArrayList<Future<T>> futures = new ArrayList<Future<T>>(tasks.size());
2663 jsr166 1.1
2664 dl 1.86 boolean done = false;
2665     try {
2666     for (Callable<T> t : tasks) {
2667 dl 1.90 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2668 jsr166 1.144 futures.add(f);
2669 dl 1.105 externalPush(f);
2670 dl 1.86 }
2671 jsr166 1.143 for (int i = 0, size = futures.size(); i < size; i++)
2672     ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2673 dl 1.86 done = true;
2674     return futures;
2675     } finally {
2676     if (!done)
2677 jsr166 1.143 for (int i = 0, size = futures.size(); i < size; i++)
2678     futures.get(i).cancel(false);
2679 jsr166 1.1 }
2680     }
2681    
2682     /**
2683     * Returns the factory used for constructing new workers.
2684     *
2685     * @return the factory used for constructing new workers
2686     */
2687     public ForkJoinWorkerThreadFactory getFactory() {
2688     return factory;
2689     }
2690    
2691     /**
2692     * Returns the handler for internal worker threads that terminate
2693     * due to unrecoverable errors encountered while executing tasks.
2694     *
2695 jsr166 1.4 * @return the handler, or {@code null} if none
2696 jsr166 1.1 */
2697 jsr166 1.156 public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2698 dl 1.14 return ueh;
2699 jsr166 1.1 }
2700    
2701     /**
2702 jsr166 1.9 * Returns the targeted parallelism level of this pool.
2703 jsr166 1.1 *
2704 jsr166 1.9 * @return the targeted parallelism level of this pool
2705 jsr166 1.1 */
2706     public int getParallelism() {
2707 dl 1.160 int par = (config & SMASK);
2708     return (par > 0) ? par : 1;
2709 jsr166 1.1 }
2710    
2711     /**
2712 dl 1.100 * Returns the targeted parallelism level of the common pool.
2713     *
2714     * @return the targeted parallelism level of the common pool
2715 jsr166 1.138 * @since 1.8
2716 dl 1.100 */
2717     public static int getCommonPoolParallelism() {
2718 dl 1.134 return commonParallelism;
2719 dl 1.100 }
2720    
2721     /**
2722 jsr166 1.1 * Returns the number of worker threads that have started but not
2723 jsr166 1.34 * yet terminated. The result returned by this method may differ
2724 jsr166 1.4 * from {@link #getParallelism} when threads are created to
2725 jsr166 1.1 * maintain parallelism when others are cooperatively blocked.
2726     *
2727     * @return the number of worker threads
2728     */
2729     public int getPoolSize() {
2730 dl 1.112 return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2731 jsr166 1.1 }
2732    
2733     /**
2734 jsr166 1.4 * Returns {@code true} if this pool uses local first-in-first-out
2735 jsr166 1.1 * scheduling mode for forked tasks that are never joined.
2736     *
2737 jsr166 1.4 * @return {@code true} if this pool uses async mode
2738 jsr166 1.1 */
2739     public boolean getAsyncMode() {
2740 dl 1.112 return (config >>> 16) == FIFO_QUEUE;
2741 jsr166 1.1 }
2742    
2743     /**
2744     * Returns an estimate of the number of worker threads that are
2745     * not blocked waiting to join tasks or for other managed
2746 dl 1.14 * synchronization. This method may overestimate the
2747     * number of running threads.
2748 jsr166 1.1 *
2749     * @return the number of worker threads
2750     */
2751     public int getRunningThreadCount() {
2752 dl 1.78 int rc = 0;
2753     WorkQueue[] ws; WorkQueue w;
2754     if ((ws = workQueues) != null) {
2755 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2756     if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2757 dl 1.78 ++rc;
2758     }
2759     }
2760     return rc;
2761 jsr166 1.1 }
2762    
2763     /**
2764     * Returns an estimate of the number of threads that are currently
2765     * stealing or executing tasks. This method may overestimate the
2766     * number of active threads.
2767     *
2768     * @return the number of active threads
2769     */
2770     public int getActiveThreadCount() {
2771 dl 1.112 int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2772 jsr166 1.63 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2773 jsr166 1.1 }
2774    
2775     /**
2776 jsr166 1.4 * Returns {@code true} if all worker threads are currently idle.
2777     * An idle worker is one that cannot obtain a task to execute
2778     * because none are available to steal from other threads, and
2779     * there are no pending submissions to the pool. This method is
2780     * conservative; it might not return {@code true} immediately upon
2781     * idleness of all threads, but will eventually become true if
2782     * threads remain inactive.
2783 jsr166 1.1 *
2784 jsr166 1.4 * @return {@code true} if all threads are currently idle
2785 jsr166 1.1 */
2786     public boolean isQuiescent() {
2787 dl 1.112 return (int)(ctl >> AC_SHIFT) + (config & SMASK) == 0;
2788 jsr166 1.1 }
2789    
2790     /**
2791     * Returns an estimate of the total number of tasks stolen from
2792     * one thread's work queue by another. The reported value
2793     * underestimates the actual total number of steals when the pool
2794     * is not quiescent. This value may be useful for monitoring and
2795     * tuning fork/join programs: in general, steal counts should be
2796     * high enough to keep threads busy, but low enough to avoid
2797     * overhead and contention across threads.
2798     *
2799     * @return the number of steals
2800     */
2801     public long getStealCount() {
2802 dl 1.101 long count = stealCount;
2803 dl 1.78 WorkQueue[] ws; WorkQueue w;
2804     if ((ws = workQueues) != null) {
2805 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2806 dl 1.78 if ((w = ws[i]) != null)
2807 dl 1.105 count += w.nsteals;
2808 dl 1.78 }
2809     }
2810     return count;
2811 jsr166 1.1 }
2812    
2813     /**
2814     * Returns an estimate of the total number of tasks currently held
2815     * in queues by worker threads (but not including tasks submitted
2816     * to the pool that have not begun executing). This value is only
2817     * an approximation, obtained by iterating across all threads in
2818     * the pool. This method may be useful for tuning task
2819     * granularities.
2820     *
2821     * @return the number of queued tasks
2822     */
2823     public long getQueuedTaskCount() {
2824     long count = 0;
2825 dl 1.78 WorkQueue[] ws; WorkQueue w;
2826     if ((ws = workQueues) != null) {
2827 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2828 dl 1.78 if ((w = ws[i]) != null)
2829     count += w.queueSize();
2830     }
2831 dl 1.52 }
2832 jsr166 1.1 return count;
2833     }
2834    
2835     /**
2836 jsr166 1.8 * Returns an estimate of the number of tasks submitted to this
2837 dl 1.55 * pool that have not yet begun executing. This method may take
2838 dl 1.52 * time proportional to the number of submissions.
2839 jsr166 1.1 *
2840     * @return the number of queued submissions
2841     */
2842     public int getQueuedSubmissionCount() {
2843 dl 1.78 int count = 0;
2844     WorkQueue[] ws; WorkQueue w;
2845     if ((ws = workQueues) != null) {
2846 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2847 dl 1.78 if ((w = ws[i]) != null)
2848     count += w.queueSize();
2849     }
2850     }
2851     return count;
2852 jsr166 1.1 }
2853    
2854     /**
2855 jsr166 1.4 * Returns {@code true} if there are any tasks submitted to this
2856     * pool that have not yet begun executing.
2857 jsr166 1.1 *
2858     * @return {@code true} if there are any queued submissions
2859     */
2860     public boolean hasQueuedSubmissions() {
2861 dl 1.78 WorkQueue[] ws; WorkQueue w;
2862     if ((ws = workQueues) != null) {
2863 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2864 dl 1.115 if ((w = ws[i]) != null && !w.isEmpty())
2865 dl 1.78 return true;
2866     }
2867     }
2868     return false;
2869 jsr166 1.1 }
2870    
2871     /**
2872     * Removes and returns the next unexecuted submission if one is
2873     * available. This method may be useful in extensions to this
2874     * class that re-assign work in systems with multiple pools.
2875     *
2876 jsr166 1.4 * @return the next submission, or {@code null} if none
2877 jsr166 1.1 */
2878     protected ForkJoinTask<?> pollSubmission() {
2879 dl 1.78 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2880     if ((ws = workQueues) != null) {
2881 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2882 dl 1.78 if ((w = ws[i]) != null && (t = w.poll()) != null)
2883     return t;
2884 dl 1.52 }
2885     }
2886     return null;
2887 jsr166 1.1 }
2888    
2889     /**
2890     * Removes all available unexecuted submitted and forked tasks
2891     * from scheduling queues and adds them to the given collection,
2892     * without altering their execution status. These may include
2893 jsr166 1.8 * artificially generated or wrapped tasks. This method is
2894     * designed to be invoked only when the pool is known to be
2895 jsr166 1.1 * quiescent. Invocations at other times may not remove all
2896     * tasks. A failure encountered while attempting to add elements
2897     * to collection {@code c} may result in elements being in
2898     * neither, either or both collections when the associated
2899     * exception is thrown. The behavior of this operation is
2900     * undefined if the specified collection is modified while the
2901     * operation is in progress.
2902     *
2903     * @param c the collection to transfer elements into
2904     * @return the number of elements transferred
2905     */
2906 jsr166 1.5 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2907 dl 1.52 int count = 0;
2908 dl 1.78 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2909     if ((ws = workQueues) != null) {
2910 dl 1.86 for (int i = 0; i < ws.length; ++i) {
2911 dl 1.78 if ((w = ws[i]) != null) {
2912     while ((t = w.poll()) != null) {
2913     c.add(t);
2914     ++count;
2915     }
2916     }
2917 dl 1.52 }
2918     }
2919 dl 1.18 return count;
2920     }
2921    
2922     /**
2923 jsr166 1.1 * Returns a string identifying this pool, as well as its state,
2924     * including indications of run state, parallelism level, and
2925     * worker and task counts.
2926     *
2927     * @return a string identifying this pool, as well as its state
2928     */
2929     public String toString() {
2930 dl 1.86 // Use a single pass through workQueues to collect counts
2931     long qt = 0L, qs = 0L; int rc = 0;
2932 dl 1.101 long st = stealCount;
2933 dl 1.86 long c = ctl;
2934     WorkQueue[] ws; WorkQueue w;
2935     if ((ws = workQueues) != null) {
2936     for (int i = 0; i < ws.length; ++i) {
2937     if ((w = ws[i]) != null) {
2938     int size = w.queueSize();
2939     if ((i & 1) == 0)
2940     qs += size;
2941     else {
2942     qt += size;
2943 dl 1.105 st += w.nsteals;
2944 dl 1.86 if (w.isApparentlyUnblocked())
2945     ++rc;
2946     }
2947     }
2948     }
2949     }
2950 dl 1.112 int pc = (config & SMASK);
2951 dl 1.52 int tc = pc + (short)(c >>> TC_SHIFT);
2952 dl 1.78 int ac = pc + (int)(c >> AC_SHIFT);
2953     if (ac < 0) // ignore transient negative
2954     ac = 0;
2955 dl 1.52 String level;
2956     if ((c & STOP_BIT) != 0)
2957 jsr166 1.63 level = (tc == 0) ? "Terminated" : "Terminating";
2958 dl 1.52 else
2959 dl 1.105 level = plock < 0 ? "Shutting down" : "Running";
2960 jsr166 1.1 return super.toString() +
2961 dl 1.52 "[" + level +
2962 dl 1.14 ", parallelism = " + pc +
2963     ", size = " + tc +
2964     ", active = " + ac +
2965     ", running = " + rc +
2966 jsr166 1.1 ", steals = " + st +
2967     ", tasks = " + qt +
2968     ", submissions = " + qs +
2969     "]";
2970     }
2971    
2972     /**
2973 dl 1.100 * Possibly initiates an orderly shutdown in which previously
2974     * submitted tasks are executed, but no new tasks will be
2975     * accepted. Invocation has no effect on execution state if this
2976 jsr166 1.137 * is the {@link #commonPool()}, and no additional effect if
2977 dl 1.100 * already shut down. Tasks that are in the process of being
2978     * submitted concurrently during the course of this method may or
2979     * may not be rejected.
2980 jsr166 1.1 *
2981     * @throws SecurityException if a security manager exists and
2982     * the caller is not permitted to modify threads
2983     * because it does not hold {@link
2984     * java.lang.RuntimePermission}{@code ("modifyThread")}
2985     */
2986     public void shutdown() {
2987     checkPermission();
2988 dl 1.105 tryTerminate(false, true);
2989 jsr166 1.1 }
2990    
2991     /**
2992 dl 1.100 * Possibly attempts to cancel and/or stop all tasks, and reject
2993     * all subsequently submitted tasks. Invocation has no effect on
2994 jsr166 1.137 * execution state if this is the {@link #commonPool()}, and no
2995 dl 1.100 * additional effect if already shut down. Otherwise, tasks that
2996     * are in the process of being submitted or executed concurrently
2997     * during the course of this method may or may not be
2998     * rejected. This method cancels both existing and unexecuted
2999     * tasks, in order to permit termination in the presence of task
3000     * dependencies. So the method always returns an empty list
3001     * (unlike the case for some other Executors).
3002 jsr166 1.1 *
3003     * @return an empty list
3004     * @throws SecurityException if a security manager exists and
3005     * the caller is not permitted to modify threads
3006     * because it does not hold {@link
3007     * java.lang.RuntimePermission}{@code ("modifyThread")}
3008     */
3009     public List<Runnable> shutdownNow() {
3010     checkPermission();
3011 dl 1.105 tryTerminate(true, true);
3012 jsr166 1.1 return Collections.emptyList();
3013     }
3014    
3015     /**
3016     * Returns {@code true} if all tasks have completed following shut down.
3017     *
3018     * @return {@code true} if all tasks have completed following shut down
3019     */
3020     public boolean isTerminated() {
3021 dl 1.52 long c = ctl;
3022     return ((c & STOP_BIT) != 0L &&
3023 dl 1.112 (short)(c >>> TC_SHIFT) == -(config & SMASK));
3024 jsr166 1.1 }
3025    
3026     /**
3027     * Returns {@code true} if the process of termination has
3028 jsr166 1.9 * commenced but not yet completed. This method may be useful for
3029     * debugging. A return of {@code true} reported a sufficient
3030     * period after shutdown may indicate that submitted tasks have
3031 jsr166 1.119 * ignored or suppressed interruption, or are waiting for I/O,
3032 dl 1.49 * causing this executor not to properly terminate. (See the
3033     * advisory notes for class {@link ForkJoinTask} stating that
3034     * tasks should not normally entail blocking operations. But if
3035     * they do, they must abort them on interrupt.)
3036 jsr166 1.1 *
3037 jsr166 1.9 * @return {@code true} if terminating but not yet terminated
3038 jsr166 1.1 */
3039     public boolean isTerminating() {
3040 dl 1.52 long c = ctl;
3041     return ((c & STOP_BIT) != 0L &&
3042 dl 1.112 (short)(c >>> TC_SHIFT) != -(config & SMASK));
3043 jsr166 1.1 }
3044    
3045     /**
3046     * Returns {@code true} if this pool has been shut down.
3047     *
3048     * @return {@code true} if this pool has been shut down
3049     */
3050     public boolean isShutdown() {
3051 dl 1.105 return plock < 0;
3052 jsr166 1.9 }
3053    
3054     /**
3055 dl 1.105 * Blocks until all tasks have completed execution after a
3056     * shutdown request, or the timeout occurs, or the current thread
3057 dl 1.134 * is interrupted, whichever happens first. Because the {@link
3058     * #commonPool()} never terminates until program shutdown, when
3059     * applied to the common pool, this method is equivalent to {@link
3060 jsr166 1.158 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
3061 jsr166 1.1 *
3062     * @param timeout the maximum time to wait
3063     * @param unit the time unit of the timeout argument
3064     * @return {@code true} if this executor terminated and
3065     * {@code false} if the timeout elapsed before termination
3066     * @throws InterruptedException if interrupted while waiting
3067     */
3068     public boolean awaitTermination(long timeout, TimeUnit unit)
3069     throws InterruptedException {
3070 dl 1.134 if (Thread.interrupted())
3071     throw new InterruptedException();
3072     if (this == common) {
3073     awaitQuiescence(timeout, unit);
3074     return false;
3075     }
3076 dl 1.52 long nanos = unit.toNanos(timeout);
3077 dl 1.101 if (isTerminated())
3078     return true;
3079     long startTime = System.nanoTime();
3080     boolean terminated = false;
3081 jsr166 1.103 synchronized (this) {
3082 dl 1.101 for (long waitTime = nanos, millis = 0L;;) {
3083     if (terminated = isTerminated() ||
3084     waitTime <= 0L ||
3085     (millis = unit.toMillis(waitTime)) <= 0L)
3086     break;
3087     wait(millis);
3088     waitTime = nanos - (System.nanoTime() - startTime);
3089 dl 1.52 }
3090 dl 1.18 }
3091 dl 1.101 return terminated;
3092 jsr166 1.1 }
3093    
3094     /**
3095 dl 1.134 * If called by a ForkJoinTask operating in this pool, equivalent
3096     * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3097     * waits and/or attempts to assist performing tasks until this
3098     * pool {@link #isQuiescent} or the indicated timeout elapses.
3099     *
3100     * @param timeout the maximum time to wait
3101     * @param unit the time unit of the timeout argument
3102     * @return {@code true} if quiescent; {@code false} if the
3103     * timeout elapsed.
3104     */
3105     public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3106     long nanos = unit.toNanos(timeout);
3107     ForkJoinWorkerThread wt;
3108     Thread thread = Thread.currentThread();
3109     if ((thread instanceof ForkJoinWorkerThread) &&
3110     (wt = (ForkJoinWorkerThread)thread).pool == this) {
3111     helpQuiescePool(wt.workQueue);
3112     return true;
3113     }
3114     long startTime = System.nanoTime();
3115     WorkQueue[] ws;
3116     int r = 0, m;
3117     boolean found = true;
3118     while (!isQuiescent() && (ws = workQueues) != null &&
3119     (m = ws.length - 1) >= 0) {
3120     if (!found) {
3121     if ((System.nanoTime() - startTime) > nanos)
3122     return false;
3123     Thread.yield(); // cannot block
3124     }
3125     found = false;
3126     for (int j = (m + 1) << 2; j >= 0; --j) {
3127     ForkJoinTask<?> t; WorkQueue q; int b;
3128     if ((q = ws[r++ & m]) != null && (b = q.base) - q.top < 0) {
3129     found = true;
3130     if ((t = q.pollAt(b)) != null) {
3131     if (q.base - q.top < 0)
3132     signalWork(q);
3133     t.doExec();
3134     }
3135     break;
3136     }
3137     }
3138     }
3139     return true;
3140     }
3141    
3142     /**
3143     * Waits and/or attempts to assist performing tasks indefinitely
3144 jsr166 1.141 * until the {@link #commonPool()} {@link #isQuiescent}.
3145 dl 1.134 */
3146 dl 1.136 static void quiesceCommonPool() {
3147 dl 1.134 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3148     }
3149    
3150     /**
3151 jsr166 1.1 * Interface for extending managed parallelism for tasks running
3152 jsr166 1.8 * in {@link ForkJoinPool}s.
3153     *
3154 dl 1.19 * <p>A {@code ManagedBlocker} provides two methods. Method
3155     * {@code isReleasable} must return {@code true} if blocking is
3156     * not necessary. Method {@code block} blocks the current thread
3157     * if necessary (perhaps internally invoking {@code isReleasable}
3158 dl 1.54 * before actually blocking). These actions are performed by any
3159 jsr166 1.157 * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
3160     * The unusual methods in this API accommodate synchronizers that
3161     * may, but don't usually, block for long periods. Similarly, they
3162 dl 1.54 * allow more efficient internal handling of cases in which
3163     * additional workers may be, but usually are not, needed to
3164     * ensure sufficient parallelism. Toward this end,
3165     * implementations of method {@code isReleasable} must be amenable
3166     * to repeated invocation.
3167 jsr166 1.1 *
3168     * <p>For example, here is a ManagedBlocker based on a
3169     * ReentrantLock:
3170     * <pre> {@code
3171     * class ManagedLocker implements ManagedBlocker {
3172     * final ReentrantLock lock;
3173     * boolean hasLock = false;
3174     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3175     * public boolean block() {
3176     * if (!hasLock)
3177     * lock.lock();
3178     * return true;
3179     * }
3180     * public boolean isReleasable() {
3181     * return hasLock || (hasLock = lock.tryLock());
3182     * }
3183     * }}</pre>
3184 dl 1.19 *
3185     * <p>Here is a class that possibly blocks waiting for an
3186     * item on a given queue:
3187     * <pre> {@code
3188     * class QueueTaker<E> implements ManagedBlocker {
3189     * final BlockingQueue<E> queue;
3190     * volatile E item = null;
3191     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3192     * public boolean block() throws InterruptedException {
3193     * if (item == null)
3194 dl 1.23 * item = queue.take();
3195 dl 1.19 * return true;
3196     * }
3197     * public boolean isReleasable() {
3198 dl 1.23 * return item != null || (item = queue.poll()) != null;
3199 dl 1.19 * }
3200     * public E getItem() { // call after pool.managedBlock completes
3201     * return item;
3202     * }
3203     * }}</pre>
3204 jsr166 1.1 */
3205     public static interface ManagedBlocker {
3206     /**
3207     * Possibly blocks the current thread, for example waiting for
3208     * a lock or condition.
3209     *
3210 jsr166 1.4 * @return {@code true} if no additional blocking is necessary
3211     * (i.e., if isReleasable would return true)
3212 jsr166 1.1 * @throws InterruptedException if interrupted while waiting
3213     * (the method is not required to do so, but is allowed to)
3214     */
3215     boolean block() throws InterruptedException;
3216    
3217     /**
3218 jsr166 1.4 * Returns {@code true} if blocking is unnecessary.
3219 jsr166 1.154 * @return {@code true} if blocking is unnecessary
3220 jsr166 1.1 */
3221     boolean isReleasable();
3222     }
3223    
3224     /**
3225     * Blocks in accord with the given blocker. If the current thread
3226 jsr166 1.8 * is a {@link ForkJoinWorkerThread}, this method possibly
3227     * arranges for a spare thread to be activated if necessary to
3228 dl 1.18 * ensure sufficient parallelism while the current thread is blocked.
3229 jsr166 1.1 *
3230 jsr166 1.8 * <p>If the caller is not a {@link ForkJoinTask}, this method is
3231     * behaviorally equivalent to
3232 jsr166 1.82 * <pre> {@code
3233 jsr166 1.1 * while (!blocker.isReleasable())
3234     * if (blocker.block())
3235     * return;
3236     * }</pre>
3237 jsr166 1.8 *
3238     * If the caller is a {@code ForkJoinTask}, then the pool may
3239     * first be expanded to ensure parallelism, and later adjusted.
3240 jsr166 1.1 *
3241     * @param blocker the blocker
3242     * @throws InterruptedException if blocker.block did so
3243     */
3244 dl 1.18 public static void managedBlock(ManagedBlocker blocker)
3245 jsr166 1.1 throws InterruptedException {
3246     Thread t = Thread.currentThread();
3247 dl 1.105 if (t instanceof ForkJoinWorkerThread) {
3248     ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3249     while (!blocker.isReleasable()) { // variant of helpSignal
3250 dl 1.115 WorkQueue[] ws; WorkQueue q; int m, u;
3251 dl 1.105 if ((ws = p.workQueues) != null && (m = ws.length - 1) >= 0) {
3252     for (int i = 0; i <= m; ++i) {
3253     if (blocker.isReleasable())
3254     return;
3255 dl 1.115 if ((q = ws[i]) != null && q.base - q.top < 0) {
3256     p.signalWork(q);
3257 dl 1.112 if ((u = (int)(p.ctl >>> 32)) >= 0 ||
3258     (u >> UAC_SHIFT) >= 0)
3259 dl 1.105 break;
3260     }
3261     }
3262     }
3263     if (p.tryCompensate()) {
3264     try {
3265     do {} while (!blocker.isReleasable() &&
3266     !blocker.block());
3267     } finally {
3268 dl 1.78 p.incrementActiveCount();
3269 dl 1.105 }
3270     break;
3271 dl 1.78 }
3272     }
3273 dl 1.18 }
3274 dl 1.105 else {
3275     do {} while (!blocker.isReleasable() &&
3276     !blocker.block());
3277     }
3278 jsr166 1.1 }
3279    
3280 jsr166 1.7 // AbstractExecutorService overrides. These rely on undocumented
3281     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3282     // implement RunnableFuture.
3283 jsr166 1.1
3284     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3285 dl 1.90 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3286 jsr166 1.1 }
3287    
3288     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3289 dl 1.90 return new ForkJoinTask.AdaptedCallable<T>(callable);
3290 jsr166 1.1 }
3291    
3292     // Unsafe mechanics
3293 dl 1.78 private static final sun.misc.Unsafe U;
3294     private static final long CTL;
3295     private static final long PARKBLOCKER;
3296 dl 1.90 private static final int ABASE;
3297     private static final int ASHIFT;
3298 dl 1.101 private static final long STEALCOUNT;
3299 dl 1.105 private static final long PLOCK;
3300     private static final long INDEXSEED;
3301     private static final long QLOCK;
3302 dl 1.52
3303     static {
3304 jsr166 1.142 // initialize field offsets for CAS etc
3305 jsr166 1.3 try {
3306 dl 1.78 U = sun.misc.Unsafe.getUnsafe();
3307 jsr166 1.64 Class<?> k = ForkJoinPool.class;
3308 dl 1.78 CTL = U.objectFieldOffset
3309 dl 1.52 (k.getDeclaredField("ctl"));
3310 dl 1.101 STEALCOUNT = U.objectFieldOffset
3311     (k.getDeclaredField("stealCount"));
3312 dl 1.105 PLOCK = U.objectFieldOffset
3313     (k.getDeclaredField("plock"));
3314     INDEXSEED = U.objectFieldOffset
3315     (k.getDeclaredField("indexSeed"));
3316 dl 1.86 Class<?> tk = Thread.class;
3317 dl 1.78 PARKBLOCKER = U.objectFieldOffset
3318     (tk.getDeclaredField("parkBlocker"));
3319 dl 1.105 Class<?> wk = WorkQueue.class;
3320     QLOCK = U.objectFieldOffset
3321     (wk.getDeclaredField("qlock"));
3322     Class<?> ak = ForkJoinTask[].class;
3323 dl 1.90 ABASE = U.arrayBaseOffset(ak);
3324 jsr166 1.142 int scale = U.arrayIndexScale(ak);
3325     if ((scale & (scale - 1)) != 0)
3326     throw new Error("data type scale not a power of two");
3327     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3328 dl 1.52 } catch (Exception e) {
3329     throw new Error(e);
3330     }
3331 dl 1.105
3332 dl 1.152 defaultForkJoinWorkerThreadFactory =
3333 dl 1.112 new DefaultForkJoinWorkerThreadFactory();
3334 dl 1.115 modifyThreadPermission = new RuntimePermission("modifyThread");
3335    
3336 dl 1.152 common = java.security.AccessController.doPrivileged
3337     (new java.security.PrivilegedAction<ForkJoinPool>() {
3338     public ForkJoinPool run() { return makeCommonPool(); }});
3339 dl 1.160 int par = common.config; // report 1 even if threads disabled
3340     commonParallelism = par > 0 ? par : 1;
3341 dl 1.152 }
3342 dl 1.112
3343 dl 1.152 /**
3344     * Creates and returns the common pool, respecting user settings
3345     * specified via system properties.
3346     */
3347     private static ForkJoinPool makeCommonPool() {
3348 dl 1.160 int parallelism = -1;
3349 dl 1.152 ForkJoinWorkerThreadFactory factory
3350     = defaultForkJoinWorkerThreadFactory;
3351 jsr166 1.156 UncaughtExceptionHandler handler = null;
3352 dl 1.152 try { // ignore exceptions in accesing/parsing properties
3353 dl 1.112 String pp = System.getProperty
3354     ("java.util.concurrent.ForkJoinPool.common.parallelism");
3355 dl 1.152 String fp = System.getProperty
3356     ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3357 dl 1.112 String hp = System.getProperty
3358     ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3359 dl 1.152 if (pp != null)
3360     parallelism = Integer.parseInt(pp);
3361 dl 1.112 if (fp != null)
3362 dl 1.152 factory = ((ForkJoinWorkerThreadFactory)ClassLoader.
3363     getSystemClassLoader().loadClass(fp).newInstance());
3364 dl 1.112 if (hp != null)
3365 jsr166 1.156 handler = ((UncaughtExceptionHandler)ClassLoader.
3366 dl 1.112 getSystemClassLoader().loadClass(hp).newInstance());
3367     } catch (Exception ignore) {
3368     }
3369    
3370 dl 1.160 if (parallelism < 0)
3371 dl 1.152 parallelism = Runtime.getRuntime().availableProcessors();
3372     if (parallelism > MAX_CAP)
3373     parallelism = MAX_CAP;
3374     return new ForkJoinPool(parallelism, factory, handler, false,
3375     "ForkJoinPool.commonPool-worker-");
3376 jsr166 1.3 }
3377 dl 1.52
3378 jsr166 1.1 }