ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.162
Committed: Sat Feb 16 16:24:46 2013 UTC (11 years, 3 months ago) by jsr166
Branch: MAIN
Changes since 1.161: +9 -7 lines
Log Message:
improve common pool system property doc formatting

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.58 * http://creativecommons.org/publicdomain/zero/1.0/
5 jsr166 1.1 */
6    
7     package java.util.concurrent;
8    
9 jsr166 1.156 import java.lang.Thread.UncaughtExceptionHandler;
10 jsr166 1.1 import java.util.ArrayList;
11     import java.util.Arrays;
12     import java.util.Collection;
13     import java.util.Collections;
14     import java.util.List;
15 dl 1.36 import java.util.concurrent.AbstractExecutorService;
16     import java.util.concurrent.Callable;
17     import java.util.concurrent.ExecutorService;
18     import java.util.concurrent.Future;
19     import java.util.concurrent.RejectedExecutionException;
20     import java.util.concurrent.RunnableFuture;
21     import java.util.concurrent.TimeUnit;
22 jsr166 1.1
23     /**
24 jsr166 1.4 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
25 jsr166 1.8 * A {@code ForkJoinPool} provides the entry point for submissions
26 dl 1.18 * from non-{@code ForkJoinTask} clients, as well as management and
27 jsr166 1.11 * monitoring operations.
28 jsr166 1.1 *
29 jsr166 1.9 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
30     * ExecutorService} mainly by virtue of employing
31     * <em>work-stealing</em>: all threads in the pool attempt to find and
32 dl 1.78 * execute tasks submitted to the pool and/or created by other active
33     * tasks (eventually blocking waiting for work if none exist). This
34     * enables efficient processing when most tasks spawn other subtasks
35     * (as do most {@code ForkJoinTask}s), as well as when many small
36     * tasks are submitted to the pool from external clients. Especially
37     * when setting <em>asyncMode</em> to true in constructors, {@code
38     * ForkJoinPool}s may also be appropriate for use with event-style
39     * tasks that are never joined.
40 jsr166 1.1 *
41 dl 1.112 * <p>A static {@link #commonPool()} is available and appropriate for
42 dl 1.101 * most applications. The common pool is used by any ForkJoinTask that
43     * is not explicitly submitted to a specified pool. Using the common
44     * pool normally reduces resource usage (its threads are slowly
45     * reclaimed during periods of non-use, and reinstated upon subsequent
46 dl 1.105 * use).
47 dl 1.100 *
48     * <p>For applications that require separate or custom pools, a {@code
49     * ForkJoinPool} may be constructed with a given target parallelism
50     * level; by default, equal to the number of available processors. The
51     * pool attempts to maintain enough active (or available) threads by
52     * dynamically adding, suspending, or resuming internal worker
53     * threads, even if some tasks are stalled waiting to join
54     * others. However, no such adjustments are guaranteed in the face of
55 jsr166 1.119 * blocked I/O or other unmanaged synchronization. The nested {@link
56 dl 1.100 * ManagedBlocker} interface enables extension of the kinds of
57 dl 1.18 * synchronization accommodated.
58 jsr166 1.1 *
59     * <p>In addition to execution and lifecycle control methods, this
60     * class provides status check methods (for example
61 jsr166 1.4 * {@link #getStealCount}) that are intended to aid in developing,
62 jsr166 1.1 * tuning, and monitoring fork/join applications. Also, method
63 jsr166 1.4 * {@link #toString} returns indications of pool state in a
64 jsr166 1.1 * convenient form for informal monitoring.
65     *
66 jsr166 1.109 * <p>As is the case with other ExecutorServices, there are three
67 jsr166 1.84 * main task execution methods summarized in the following table.
68     * These are designed to be used primarily by clients not already
69     * engaged in fork/join computations in the current pool. The main
70     * forms of these methods accept instances of {@code ForkJoinTask},
71     * but overloaded forms also allow mixed execution of plain {@code
72     * Runnable}- or {@code Callable}- based activities as well. However,
73     * tasks that are already executing in a pool should normally instead
74     * use the within-computation forms listed in the table unless using
75     * async event-style tasks that are not usually joined, in which case
76     * there is little difference among choice of methods.
77 dl 1.18 *
78     * <table BORDER CELLPADDING=3 CELLSPACING=1>
79 jsr166 1.159 * <caption>Summary of task execution methods</caption>
80 dl 1.18 * <tr>
81     * <td></td>
82     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
83     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
84     * </tr>
85     * <tr>
86 jsr166 1.153 * <td> <b>Arrange async execution</b></td>
87 dl 1.18 * <td> {@link #execute(ForkJoinTask)}</td>
88     * <td> {@link ForkJoinTask#fork}</td>
89     * </tr>
90     * <tr>
91 jsr166 1.153 * <td> <b>Await and obtain result</b></td>
92 dl 1.18 * <td> {@link #invoke(ForkJoinTask)}</td>
93     * <td> {@link ForkJoinTask#invoke}</td>
94     * </tr>
95     * <tr>
96 jsr166 1.153 * <td> <b>Arrange exec and obtain Future</b></td>
97 dl 1.18 * <td> {@link #submit(ForkJoinTask)}</td>
98     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
99     * </tr>
100     * </table>
101 dl 1.19 *
102 dl 1.105 * <p>The common pool is by default constructed with default
103 jsr166 1.155 * parameters, but these may be controlled by setting three
104 jsr166 1.162 * {@linkplain System#getProperty system properties}:
105     * <ul>
106     * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
107     * - the parallelism level, a non-negative integer
108     * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
109     * - the class name of a {@link ForkJoinWorkerThreadFactory}
110     * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
111     * - the class name of a {@link UncaughtExceptionHandler}
112     * </ul>
113 jsr166 1.156 * Upon any error in establishing these settings, default parameters
114 dl 1.160 * are used. It is possible to disable or limit the use of threads in
115     * the common pool by setting the parallelism property to zero, and/or
116     * using a factory that may return {@code null}.
117 dl 1.105 *
118 jsr166 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
119     * maximum number of running threads to 32767. Attempts to create
120 jsr166 1.11 * pools with greater than the maximum number result in
121 jsr166 1.8 * {@code IllegalArgumentException}.
122 jsr166 1.1 *
123 jsr166 1.11 * <p>This implementation rejects submitted tasks (that is, by throwing
124 dl 1.19 * {@link RejectedExecutionException}) only when the pool is shut down
125 dl 1.20 * or internal resources have been exhausted.
126 jsr166 1.11 *
127 jsr166 1.1 * @since 1.7
128     * @author Doug Lea
129     */
130     public class ForkJoinPool extends AbstractExecutorService {
131    
132     /*
133 dl 1.14 * Implementation Overview
134     *
135 dl 1.78 * This class and its nested classes provide the main
136     * functionality and control for a set of worker threads:
137 jsr166 1.84 * Submissions from non-FJ threads enter into submission queues.
138     * Workers take these tasks and typically split them into subtasks
139     * that may be stolen by other workers. Preference rules give
140     * first priority to processing tasks from their own queues (LIFO
141     * or FIFO, depending on mode), then to randomized FIFO steals of
142     * tasks in other queues.
143 dl 1.78 *
144 jsr166 1.84 * WorkQueues
145 dl 1.78 * ==========
146     *
147     * Most operations occur within work-stealing queues (in nested
148     * class WorkQueue). These are special forms of Deques that
149     * support only three of the four possible end-operations -- push,
150     * pop, and poll (aka steal), under the further constraints that
151     * push and pop are called only from the owning thread (or, as
152     * extended here, under a lock), while poll may be called from
153     * other threads. (If you are unfamiliar with them, you probably
154     * want to read Herlihy and Shavit's book "The Art of
155     * Multiprocessor programming", chapter 16 describing these in
156     * more detail before proceeding.) The main work-stealing queue
157     * design is roughly similar to those in the papers "Dynamic
158     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
159     * (http://research.sun.com/scalable/pubs/index.html) and
160     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
161     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
162 jsr166 1.84 * The main differences ultimately stem from GC requirements that
163 dl 1.78 * we null out taken slots as soon as we can, to maintain as small
164     * a footprint as possible even in programs generating huge
165     * numbers of tasks. To accomplish this, we shift the CAS
166     * arbitrating pop vs poll (steal) from being on the indices
167     * ("base" and "top") to the slots themselves. So, both a
168     * successful pop and poll mainly entail a CAS of a slot from
169     * non-null to null. Because we rely on CASes of references, we
170     * do not need tag bits on base or top. They are simple ints as
171     * used in any circular array-based queue (see for example
172     * ArrayDeque). Updates to the indices must still be ordered in a
173     * way that guarantees that top == base means the queue is empty,
174     * but otherwise may err on the side of possibly making the queue
175     * appear nonempty when a push, pop, or poll have not fully
176     * committed. Note that this means that the poll operation,
177     * considered individually, is not wait-free. One thief cannot
178     * successfully continue until another in-progress one (or, if
179     * previously empty, a push) completes. However, in the
180     * aggregate, we ensure at least probabilistic non-blockingness.
181     * If an attempted steal fails, a thief always chooses a different
182     * random victim target to try next. So, in order for one thief to
183     * progress, it suffices for any in-progress poll or new push on
184 dl 1.90 * any empty queue to complete. (This is why we normally use
185     * method pollAt and its variants that try once at the apparent
186     * base index, else consider alternative actions, rather than
187     * method poll.)
188 dl 1.78 *
189 dl 1.79 * This approach also enables support of a user mode in which local
190 dl 1.78 * task processing is in FIFO, not LIFO order, simply by using
191     * poll rather than pop. This can be useful in message-passing
192     * frameworks in which tasks are never joined. However neither
193     * mode considers affinities, loads, cache localities, etc, so
194     * rarely provide the best possible performance on a given
195     * machine, but portably provide good throughput by averaging over
196     * these factors. (Further, even if we did try to use such
197 jsr166 1.84 * information, we do not usually have a basis for exploiting it.
198     * For example, some sets of tasks profit from cache affinities,
199     * but others are harmed by cache pollution effects.)
200 dl 1.78 *
201     * WorkQueues are also used in a similar way for tasks submitted
202     * to the pool. We cannot mix these tasks in the same queues used
203     * for work-stealing (this would contaminate lifo/fifo
204 dl 1.105 * processing). Instead, we randomly associate submission queues
205 dl 1.83 * with submitting threads, using a form of hashing. The
206 dl 1.139 * ThreadLocalRandom probe value serves as a hash code for
207     * choosing existing queues, and may be randomly repositioned upon
208     * contention with other submitters. In essence, submitters act
209     * like workers except that they are restricted to executing local
210     * tasks that they submitted (or in the case of CountedCompleters,
211     * others with the same root task). However, because most
212     * shared/external queue operations are more expensive than
213     * internal, and because, at steady state, external submitters
214     * will compete for CPU with workers, ForkJoinTask.join and
215     * related methods disable them from repeatedly helping to process
216     * tasks if all workers are active. Insertion of tasks in shared
217     * mode requires a lock (mainly to protect in the case of
218 dl 1.105 * resizing) but we use only a simple spinlock (using bits in
219     * field qlock), because submitters encountering a busy queue move
220     * on to try or create other queues -- they block only when
221     * creating and registering new queues.
222 dl 1.78 *
223 jsr166 1.84 * Management
224 dl 1.78 * ==========
225 dl 1.52 *
226     * The main throughput advantages of work-stealing stem from
227     * decentralized control -- workers mostly take tasks from
228     * themselves or each other. We cannot negate this in the
229     * implementation of other management responsibilities. The main
230     * tactic for avoiding bottlenecks is packing nearly all
231 dl 1.78 * essentially atomic control state into two volatile variables
232     * that are by far most often read (not written) as status and
233 jsr166 1.84 * consistency checks.
234 dl 1.78 *
235     * Field "ctl" contains 64 bits holding all the information needed
236     * to atomically decide to add, inactivate, enqueue (on an event
237     * queue), dequeue, and/or re-activate workers. To enable this
238     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
239     * far in excess of normal operating range) to allow ids, counts,
240     * and their negations (used for thresholding) to fit into 16bit
241     * fields.
242     *
243 dl 1.105 * Field "plock" is a form of sequence lock with a saturating
244     * shutdown bit (similarly for per-queue "qlocks"), mainly
245     * protecting updates to the workQueues array, as well as to
246     * enable shutdown. When used as a lock, it is normally only very
247     * briefly held, so is nearly always available after at most a
248     * brief spin, but we use a monitor-based backup strategy to
249 dl 1.112 * block when needed.
250 dl 1.78 *
251     * Recording WorkQueues. WorkQueues are recorded in the
252 dl 1.101 * "workQueues" array that is created upon first use and expanded
253     * if necessary. Updates to the array while recording new workers
254     * and unrecording terminated ones are protected from each other
255     * by a lock but the array is otherwise concurrently readable, and
256     * accessed directly. To simplify index-based operations, the
257     * array size is always a power of two, and all readers must
258 dl 1.112 * tolerate null slots. Worker queues are at odd indices. Shared
259 dl 1.105 * (submission) queues are at even indices, up to a maximum of 64
260     * slots, to limit growth even if array needs to expand to add
261     * more workers. Grouping them together in this way simplifies and
262     * speeds up task scanning.
263 dl 1.86 *
264     * All worker thread creation is on-demand, triggered by task
265     * submissions, replacement of terminated workers, and/or
266 dl 1.78 * compensation for blocked workers. However, all other support
267     * code is set up to work with other policies. To ensure that we
268     * do not hold on to worker references that would prevent GC, ALL
269     * accesses to workQueues are via indices into the workQueues
270     * array (which is one source of some of the messy code
271     * constructions here). In essence, the workQueues array serves as
272     * a weak reference mechanism. Thus for example the wait queue
273     * field of ctl stores indices, not references. Access to the
274     * workQueues in associated methods (for example signalWork) must
275     * both index-check and null-check the IDs. All such accesses
276     * ignore bad IDs by returning out early from what they are doing,
277     * since this can only be associated with termination, in which
278 dl 1.86 * case it is OK to give up. All uses of the workQueues array
279     * also check that it is non-null (even if previously
280     * non-null). This allows nulling during termination, which is
281     * currently not necessary, but remains an option for
282     * resource-revocation-based shutdown schemes. It also helps
283     * reduce JIT issuance of uncommon-trap code, which tends to
284 dl 1.78 * unnecessarily complicate control flow in some methods.
285 dl 1.52 *
286 dl 1.78 * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
287 dl 1.56 * let workers spin indefinitely scanning for tasks when none can
288     * be found immediately, and we cannot start/resume workers unless
289     * there appear to be tasks available. On the other hand, we must
290     * quickly prod them into action when new tasks are submitted or
291 dl 1.78 * generated. In many usages, ramp-up time to activate workers is
292     * the main limiting factor in overall performance (this is
293     * compounded at program start-up by JIT compilation and
294     * allocation). So we try to streamline this as much as possible.
295     * We park/unpark workers after placing in an event wait queue
296     * when they cannot find work. This "queue" is actually a simple
297     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
298     * counter value (that reflects the number of times a worker has
299     * been inactivated) to avoid ABA effects (we need only as many
300     * version numbers as worker threads). Successors are held in
301     * field WorkQueue.nextWait. Queuing deals with several intrinsic
302     * races, mainly that a task-producing thread can miss seeing (and
303 dl 1.56 * signalling) another thread that gave up looking for work but
304     * has not yet entered the wait queue. We solve this by requiring
305 dl 1.78 * a full sweep of all workers (via repeated calls to method
306     * scan()) both before and after a newly waiting worker is added
307     * to the wait queue. During a rescan, the worker might release
308     * some other queued worker rather than itself, which has the same
309     * net effect. Because enqueued workers may actually be rescanning
310     * rather than waiting, we set and clear the "parker" field of
311 jsr166 1.84 * WorkQueues to reduce unnecessary calls to unpark. (This
312 dl 1.78 * requires a secondary recheck to avoid missed signals.) Note
313     * the unusual conventions about Thread.interrupts surrounding
314     * parking and other blocking: Because interrupts are used solely
315     * to alert threads to check termination, which is checked anyway
316     * upon blocking, we clear status (using Thread.interrupted)
317     * before any call to park, so that park does not immediately
318     * return due to status being set via some other unrelated call to
319     * interrupt in user code.
320 dl 1.52 *
321     * Signalling. We create or wake up workers only when there
322     * appears to be at least one task they might be able to find and
323 dl 1.105 * execute. However, many other threads may notice the same task
324     * and each signal to wake up a thread that might take it. So in
325     * general, pools will be over-signalled. When a submission is
326 dl 1.115 * added or another worker adds a task to a queue that has fewer
327     * than two tasks, they signal waiting workers (or trigger
328     * creation of new ones if fewer than the given parallelism level
329     * -- signalWork), and may leave a hint to the unparked worker to
330     * help signal others upon wakeup). These primary signals are
331     * buttressed by others (see method helpSignal) whenever other
332     * threads scan for work or do not have a task to process. On
333     * most platforms, signalling (unpark) overhead time is noticeably
334     * long, and the time between signalling a thread and it actually
335     * making progress can be very noticeably long, so it is worth
336     * offloading these delays from critical paths as much as
337     * possible.
338 dl 1.52 *
339     * Trimming workers. To release resources after periods of lack of
340     * use, a worker starting to wait when the pool is quiescent will
341 dl 1.100 * time out and terminate if the pool has remained quiescent for a
342     * given period -- a short period if there are more threads than
343     * parallelism, longer as the number of threads decreases. This
344     * will slowly propagate, eventually terminating all workers after
345     * periods of non-use.
346 dl 1.52 *
347 dl 1.78 * Shutdown and Termination. A call to shutdownNow atomically sets
348 dl 1.105 * a plock bit and then (non-atomically) sets each worker's
349     * qlock status, cancels all unprocessed tasks, and wakes up
350 dl 1.78 * all waiting workers. Detecting whether termination should
351     * commence after a non-abrupt shutdown() call requires more work
352     * and bookkeeping. We need consensus about quiescence (i.e., that
353     * there is no more work). The active count provides a primary
354     * indication but non-abrupt shutdown still requires a rechecking
355     * scan for any workers that are inactive but not queued.
356     *
357 jsr166 1.84 * Joining Tasks
358     * =============
359 dl 1.78 *
360     * Any of several actions may be taken when one worker is waiting
361 jsr166 1.84 * to join a task stolen (or always held) by another. Because we
362 dl 1.78 * are multiplexing many tasks on to a pool of workers, we can't
363     * just let them block (as in Thread.join). We also cannot just
364     * reassign the joiner's run-time stack with another and replace
365     * it later, which would be a form of "continuation", that even if
366     * possible is not necessarily a good idea since we sometimes need
367 jsr166 1.84 * both an unblocked task and its continuation to progress.
368     * Instead we combine two tactics:
369 dl 1.19 *
370     * Helping: Arranging for the joiner to execute some task that it
371 dl 1.78 * would be running if the steal had not occurred.
372 dl 1.19 *
373     * Compensating: Unless there are already enough live threads,
374 dl 1.78 * method tryCompensate() may create or re-activate a spare
375     * thread to compensate for blocked joiners until they unblock.
376     *
377 dl 1.105 * A third form (implemented in tryRemoveAndExec) amounts to
378     * helping a hypothetical compensator: If we can readily tell that
379     * a possible action of a compensator is to steal and execute the
380     * task being joined, the joining thread can do so directly,
381     * without the need for a compensation thread (although at the
382     * expense of larger run-time stacks, but the tradeoff is
383     * typically worthwhile).
384 dl 1.52 *
385     * The ManagedBlocker extension API can't use helping so relies
386     * only on compensation in method awaitBlocker.
387 dl 1.19 *
388 dl 1.78 * The algorithm in tryHelpStealer entails a form of "linear"
389     * helping: Each worker records (in field currentSteal) the most
390     * recent task it stole from some other worker. Plus, it records
391     * (in field currentJoin) the task it is currently actively
392     * joining. Method tryHelpStealer uses these markers to try to
393     * find a worker to help (i.e., steal back a task from and execute
394     * it) that could hasten completion of the actively joined task.
395     * In essence, the joiner executes a task that would be on its own
396     * local deque had the to-be-joined task not been stolen. This may
397     * be seen as a conservative variant of the approach in Wagner &
398     * Calder "Leapfrogging: a portable technique for implementing
399     * efficient futures" SIGPLAN Notices, 1993
400     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
401     * that: (1) We only maintain dependency links across workers upon
402     * steals, rather than use per-task bookkeeping. This sometimes
403 dl 1.90 * requires a linear scan of workQueues array to locate stealers,
404     * but often doesn't because stealers leave hints (that may become
405 dl 1.112 * stale/wrong) of where to locate them. It is only a hint
406     * because a worker might have had multiple steals and the hint
407     * records only one of them (usually the most current). Hinting
408     * isolates cost to when it is needed, rather than adding to
409     * per-task overhead. (2) It is "shallow", ignoring nesting and
410     * potentially cyclic mutual steals. (3) It is intentionally
411 dl 1.78 * racy: field currentJoin is updated only while actively joining,
412     * which means that we miss links in the chain during long-lived
413     * tasks, GC stalls etc (which is OK since blocking in such cases
414     * is usually a good idea). (4) We bound the number of attempts
415 dl 1.90 * to find work (see MAX_HELP) and fall back to suspending the
416     * worker and if necessary replacing it with another.
417 dl 1.78 *
418 dl 1.105 * Helping actions for CountedCompleters are much simpler: Method
419     * helpComplete can take and execute any task with the same root
420     * as the task being waited on. However, this still entails some
421     * traversal of completer chains, so is less efficient than using
422     * CountedCompleters without explicit joins.
423     *
424 dl 1.52 * It is impossible to keep exactly the target parallelism number
425     * of threads running at any given time. Determining the
426 dl 1.24 * existence of conservatively safe helping targets, the
427     * availability of already-created spares, and the apparent need
428 dl 1.78 * to create new spares are all racy, so we rely on multiple
429 dl 1.90 * retries of each. Compensation in the apparent absence of
430     * helping opportunities is challenging to control on JVMs, where
431     * GC and other activities can stall progress of tasks that in
432     * turn stall out many other dependent tasks, without us being
433     * able to determine whether they will ever require compensation.
434     * Even though work-stealing otherwise encounters little
435     * degradation in the presence of more threads than cores,
436     * aggressively adding new threads in such cases entails risk of
437     * unwanted positive feedback control loops in which more threads
438     * cause more dependent stalls (as well as delayed progress of
439     * unblocked threads to the point that we know they are available)
440     * leading to more situations requiring more threads, and so
441     * on. This aspect of control can be seen as an (analytically
442 jsr166 1.92 * intractable) game with an opponent that may choose the worst
443 dl 1.90 * (for us) active thread to stall at any time. We take several
444     * precautions to bound losses (and thus bound gains), mainly in
445 dl 1.105 * methods tryCompensate and awaitJoin.
446     *
447     * Common Pool
448     * ===========
449     *
450 dl 1.134 * The static common Pool always exists after static
451 dl 1.105 * initialization. Since it (or any other created pool) need
452     * never be used, we minimize initial construction overhead and
453     * footprint to the setup of about a dozen fields, with no nested
454     * allocation. Most bootstrapping occurs within method
455     * fullExternalPush during the first submission to the pool.
456     *
457     * When external threads submit to the common pool, they can
458     * perform some subtask processing (see externalHelpJoin and
459     * related methods). We do not need to record whether these
460     * submissions are to the common pool -- if not, externalHelpJoin
461 jsr166 1.107 * returns quickly (at the most helping to signal some common pool
462 dl 1.105 * workers). These submitters would otherwise be blocked waiting
463     * for completion, so the extra effort (with liberally sprinkled
464     * task status checks) in inapplicable cases amounts to an odd
465     * form of limited spin-wait before blocking in ForkJoinTask.join.
466     *
467     * Style notes
468     * ===========
469     *
470     * There is a lot of representation-level coupling among classes
471     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
472     * fields of WorkQueue maintain data structures managed by
473     * ForkJoinPool, so are directly accessed. There is little point
474     * trying to reduce this, since any associated future changes in
475     * representations will need to be accompanied by algorithmic
476     * changes anyway. Several methods intrinsically sprawl because
477     * they must accumulate sets of consistent reads of volatiles held
478     * in local variables. Methods signalWork() and scan() are the
479     * main bottlenecks, so are especially heavily
480 dl 1.86 * micro-optimized/mangled. There are lots of inline assignments
481     * (of form "while ((local = field) != 0)") which are usually the
482     * simplest way to ensure the required read orderings (which are
483     * sometimes critical). This leads to a "C"-like style of listing
484     * declarations of these locals at the heads of methods or blocks.
485     * There are several occurrences of the unusual "do {} while
486     * (!cas...)" which is the simplest way to force an update of a
487 dl 1.105 * CAS'ed variable. There are also other coding oddities (including
488     * several unnecessary-looking hoisted null checks) that help
489 dl 1.86 * some methods perform reasonably even when interpreted (not
490     * compiled).
491 dl 1.52 *
492 jsr166 1.84 * The order of declarations in this file is:
493 dl 1.86 * (1) Static utility functions
494     * (2) Nested (static) classes
495     * (3) Static fields
496     * (4) Fields, along with constants used when unpacking some of them
497     * (5) Internal control methods
498     * (6) Callbacks and other support for ForkJoinTask methods
499     * (7) Exported methods
500     * (8) Static block initializing statics in minimally dependent order
501     */
502    
503     // Static utilities
504    
505     /**
506     * If there is a security manager, makes sure caller has
507     * permission to modify threads.
508 jsr166 1.1 */
509 dl 1.86 private static void checkPermission() {
510     SecurityManager security = System.getSecurityManager();
511     if (security != null)
512     security.checkPermission(modifyThreadPermission);
513     }
514    
515     // Nested classes
516 jsr166 1.1
517     /**
518 jsr166 1.8 * Factory for creating new {@link ForkJoinWorkerThread}s.
519     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
520     * for {@code ForkJoinWorkerThread} subclasses that extend base
521     * functionality or initialize threads with different contexts.
522 jsr166 1.1 */
523     public static interface ForkJoinWorkerThreadFactory {
524     /**
525     * Returns a new worker thread operating in the given pool.
526     *
527     * @param pool the pool this thread works in
528 jsr166 1.11 * @throws NullPointerException if the pool is null
529 jsr166 1.154 * @return the new worker thread
530 jsr166 1.1 */
531     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
532     }
533    
534     /**
535     * Default ForkJoinWorkerThreadFactory implementation; creates a
536     * new ForkJoinWorkerThread.
537     */
538 dl 1.112 static final class DefaultForkJoinWorkerThreadFactory
539 jsr166 1.1 implements ForkJoinWorkerThreadFactory {
540 dl 1.112 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
541 dl 1.14 return new ForkJoinWorkerThread(pool);
542 jsr166 1.1 }
543     }
544    
545     /**
546 dl 1.86 * Class for artificial tasks that are used to replace the target
547     * of local joins if they are removed from an interior queue slot
548     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
549     * actually do anything beyond having a unique identity.
550 jsr166 1.1 */
551 dl 1.86 static final class EmptyTask extends ForkJoinTask<Void> {
552 dl 1.105 private static final long serialVersionUID = -7721805057305804111L;
553 dl 1.86 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
554     public final Void getRawResult() { return null; }
555     public final void setRawResult(Void x) {}
556     public final boolean exec() { return true; }
557 jsr166 1.1 }
558    
559     /**
560 dl 1.78 * Queues supporting work-stealing as well as external task
561     * submission. See above for main rationale and algorithms.
562     * Implementation relies heavily on "Unsafe" intrinsics
563     * and selective use of "volatile":
564     *
565     * Field "base" is the index (mod array.length) of the least valid
566     * queue slot, which is always the next position to steal (poll)
567     * from if nonempty. Reads and writes require volatile orderings
568     * but not CAS, because updates are only performed after slot
569     * CASes.
570     *
571     * Field "top" is the index (mod array.length) of the next queue
572     * slot to push to or pop from. It is written only by owner thread
573 dl 1.105 * for push, or under lock for external/shared push, and accessed
574     * by other threads only after reading (volatile) base. Both top
575     * and base are allowed to wrap around on overflow, but (top -
576     * base) (or more commonly -(base - top) to force volatile read of
577     * base before top) still estimates size. The lock ("qlock") is
578     * forced to -1 on termination, causing all further lock attempts
579     * to fail. (Note: we don't need CAS for termination state because
580     * upon pool shutdown, all shared-queues will stop being used
581     * anyway.) Nearly all lock bodies are set up so that exceptions
582     * within lock bodies are "impossible" (modulo JVM errors that
583     * would cause failure anyway.)
584 dl 1.78 *
585     * The array slots are read and written using the emulation of
586     * volatiles/atomics provided by Unsafe. Insertions must in
587     * general use putOrderedObject as a form of releasing store to
588     * ensure that all writes to the task object are ordered before
589 dl 1.105 * its publication in the queue. All removals entail a CAS to
590     * null. The array is always a power of two. To ensure safety of
591     * Unsafe array operations, all accesses perform explicit null
592     * checks and implicit bounds checks via power-of-two masking.
593 dl 1.78 *
594     * In addition to basic queuing support, this class contains
595     * fields described elsewhere to control execution. It turns out
596 dl 1.105 * to work better memory-layout-wise to include them in this class
597     * rather than a separate class.
598 dl 1.78 *
599     * Performance on most platforms is very sensitive to placement of
600     * instances of both WorkQueues and their arrays -- we absolutely
601     * do not want multiple WorkQueue instances or multiple queue
602     * arrays sharing cache lines. (It would be best for queue objects
603     * and their arrays to share, but there is nothing available to
604     * help arrange that). Unfortunately, because they are recorded
605     * in a common array, WorkQueue instances are often moved to be
606     * adjacent by garbage collectors. To reduce impact, we use field
607     * padding that works OK on common platforms; this effectively
608     * trades off slightly slower average field access for the sake of
609     * avoiding really bad worst-case access. (Until better JVM
610     * support is in place, this padding is dependent on transient
611 dl 1.115 * properties of JVM field layout rules.) We also take care in
612     * allocating, sizing and resizing the array. Non-shared queue
613     * arrays are initialized by workers before use. Others are
614     * allocated on first use.
615 dl 1.78 */
616     static final class WorkQueue {
617     /**
618     * Capacity of work-stealing queue array upon initialization.
619 dl 1.90 * Must be a power of two; at least 4, but should be larger to
620     * reduce or eliminate cacheline sharing among queues.
621     * Currently, it is much larger, as a partial workaround for
622     * the fact that JVMs often place arrays in locations that
623     * share GC bookkeeping (especially cardmarks) such that
624     * per-write accesses encounter serious memory contention.
625 dl 1.78 */
626 dl 1.90 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
627 dl 1.78
628     /**
629     * Maximum size for queue arrays. Must be a power of two less
630     * than or equal to 1 << (31 - width of array entry) to ensure
631     * lack of wraparound of index calculations, but defined to a
632     * value a bit less than this to help users trap runaway
633     * programs before saturating systems.
634     */
635     static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
636    
637 dl 1.115 // Heuristic padding to ameliorate unfortunate memory placements
638     volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
639    
640 dl 1.78 int seed; // for random scanning; initialize nonzero
641     volatile int eventCount; // encoded inactivation count; < 0 if inactive
642     int nextWait; // encoded record of next event waiter
643 dl 1.112 int hint; // steal or signal hint (index)
644 dl 1.78 int poolIndex; // index of this queue in pool (or 0)
645 dl 1.112 final int mode; // 0: lifo, > 0: fifo, < 0: shared
646     int nsteals; // number of steals
647 dl 1.105 volatile int qlock; // 1: locked, -1: terminate; else 0
648 dl 1.78 volatile int base; // index of next slot for poll
649     int top; // index of next slot for push
650     ForkJoinTask<?>[] array; // the elements (initially unallocated)
651 dl 1.90 final ForkJoinPool pool; // the containing pool (may be null)
652 dl 1.78 final ForkJoinWorkerThread owner; // owning thread or null if shared
653     volatile Thread parker; // == owner during call to park; else null
654 dl 1.95 volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
655 dl 1.78 ForkJoinTask<?> currentSteal; // current non-local task being executed
656 dl 1.112
657 dl 1.115 volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
658     volatile Object pad18, pad19, pad1a, pad1b, pad1c, pad1d;
659 dl 1.78
660 dl 1.112 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
661     int seed) {
662 dl 1.90 this.pool = pool;
663 dl 1.78 this.owner = owner;
664 dl 1.112 this.mode = mode;
665     this.seed = seed;
666 dl 1.115 // Place indices in the center of array (that is not yet allocated)
667 dl 1.78 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
668     }
669    
670     /**
671 dl 1.115 * Returns the approximate number of tasks in the queue.
672     */
673     final int queueSize() {
674     int n = base - top; // non-owner callers must read base first
675     return (n >= 0) ? 0 : -n; // ignore transient negative
676     }
677    
678     /**
679     * Provides a more accurate estimate of whether this queue has
680     * any tasks than does queueSize, by checking whether a
681     * near-empty queue has at least one unclaimed task.
682     */
683     final boolean isEmpty() {
684     ForkJoinTask<?>[] a; int m, s;
685     int n = base - (s = top);
686     return (n >= 0 ||
687     (n == -1 &&
688     ((a = array) == null ||
689     (m = a.length - 1) < 0 ||
690     U.getObject
691     (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
692     }
693    
694     /**
695     * Pushes a task. Call only by owner in unshared queues. (The
696     * shared-queue version is embedded in method externalPush.)
697 dl 1.78 *
698     * @param task the task. Caller must ensure non-null.
699 jsr166 1.146 * @throws RejectedExecutionException if array cannot be resized
700 dl 1.78 */
701 dl 1.90 final void push(ForkJoinTask<?> task) {
702 dl 1.112 ForkJoinTask<?>[] a; ForkJoinPool p;
703     int s = top, m, n;
704     if ((a = array) != null) { // ignore if queue removed
705 dl 1.115 int j = (((m = a.length - 1) & s) << ASHIFT) + ABASE;
706     U.putOrderedObject(a, j, task);
707     if ((n = (top = s + 1) - base) <= 2) {
708 dl 1.112 if ((p = pool) != null)
709 dl 1.115 p.signalWork(this);
710 dl 1.112 }
711     else if (n >= m)
712     growArray();
713 dl 1.78 }
714     }
715    
716 dl 1.112 /**
717     * Initializes or doubles the capacity of array. Call either
718     * by owner or with lock held -- it is OK for base, but not
719     * top, to move while resizings are in progress.
720     */
721     final ForkJoinTask<?>[] growArray() {
722     ForkJoinTask<?>[] oldA = array;
723     int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
724     if (size > MAXIMUM_QUEUE_CAPACITY)
725     throw new RejectedExecutionException("Queue capacity exceeded");
726     int oldMask, t, b;
727     ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
728     if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
729     (t = top) - (b = base) > 0) {
730     int mask = size - 1;
731     do {
732     ForkJoinTask<?> x;
733     int oldj = ((b & oldMask) << ASHIFT) + ABASE;
734     int j = ((b & mask) << ASHIFT) + ABASE;
735     x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
736     if (x != null &&
737     U.compareAndSwapObject(oldA, oldj, x, null))
738     U.putObjectVolatile(a, j, x);
739     } while (++b != t);
740 dl 1.78 }
741 dl 1.112 return a;
742 dl 1.78 }
743    
744     /**
745 dl 1.90 * Takes next task, if one exists, in LIFO order. Call only
746 dl 1.102 * by owner in unshared queues.
747 dl 1.90 */
748     final ForkJoinTask<?> pop() {
749 dl 1.94 ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
750     if ((a = array) != null && (m = a.length - 1) >= 0) {
751 dl 1.90 for (int s; (s = top - 1) - base >= 0;) {
752 dl 1.94 long j = ((m & s) << ASHIFT) + ABASE;
753     if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
754 dl 1.90 break;
755     if (U.compareAndSwapObject(a, j, t, null)) {
756     top = s;
757     return t;
758     }
759     }
760     }
761     return null;
762     }
763    
764     /**
765     * Takes a task in FIFO order if b is base of queue and a task
766     * can be claimed without contention. Specialized versions
767     * appear in ForkJoinPool methods scan and tryHelpStealer.
768 dl 1.78 */
769 dl 1.90 final ForkJoinTask<?> pollAt(int b) {
770     ForkJoinTask<?> t; ForkJoinTask<?>[] a;
771     if ((a = array) != null) {
772 dl 1.86 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
773     if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
774     base == b &&
775 dl 1.78 U.compareAndSwapObject(a, j, t, null)) {
776     base = b + 1;
777     return t;
778     }
779     }
780     return null;
781     }
782    
783     /**
784 dl 1.90 * Takes next task, if one exists, in FIFO order.
785 dl 1.78 */
786 dl 1.90 final ForkJoinTask<?> poll() {
787     ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
788     while ((b = base) - top < 0 && (a = array) != null) {
789     int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
790     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
791     if (t != null) {
792     if (base == b &&
793     U.compareAndSwapObject(a, j, t, null)) {
794     base = b + 1;
795 dl 1.78 return t;
796     }
797     }
798 dl 1.90 else if (base == b) {
799     if (b + 1 == top)
800     break;
801 dl 1.105 Thread.yield(); // wait for lagging update (very rare)
802 dl 1.90 }
803 dl 1.78 }
804     return null;
805     }
806    
807     /**
808     * Takes next task, if one exists, in order specified by mode.
809     */
810     final ForkJoinTask<?> nextLocalTask() {
811     return mode == 0 ? pop() : poll();
812     }
813    
814     /**
815     * Returns next task, if one exists, in order specified by mode.
816     */
817     final ForkJoinTask<?> peek() {
818     ForkJoinTask<?>[] a = array; int m;
819     if (a == null || (m = a.length - 1) < 0)
820     return null;
821     int i = mode == 0 ? top - 1 : base;
822     int j = ((i & m) << ASHIFT) + ABASE;
823     return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
824     }
825    
826     /**
827     * Pops the given task only if it is at the current top.
828 dl 1.105 * (A shared version is available only via FJP.tryExternalUnpush)
829 dl 1.78 */
830     final boolean tryUnpush(ForkJoinTask<?> t) {
831     ForkJoinTask<?>[] a; int s;
832     if ((a = array) != null && (s = top) != base &&
833     U.compareAndSwapObject
834     (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
835     top = s;
836     return true;
837     }
838     return false;
839     }
840    
841     /**
842 jsr166 1.84 * Removes and cancels all known tasks, ignoring any exceptions.
843 dl 1.78 */
844     final void cancelAll() {
845     ForkJoinTask.cancelIgnoringExceptions(currentJoin);
846     ForkJoinTask.cancelIgnoringExceptions(currentSteal);
847     for (ForkJoinTask<?> t; (t = poll()) != null; )
848     ForkJoinTask.cancelIgnoringExceptions(t);
849     }
850    
851 dl 1.86 /**
852     * Computes next value for random probes. Scans don't require
853     * a very high quality generator, but also not a crummy one.
854     * Marsaglia xor-shift is cheap and works well enough. Note:
855 dl 1.90 * This is manually inlined in its usages in ForkJoinPool to
856     * avoid writes inside busy scan loops.
857 dl 1.86 */
858     final int nextSeed() {
859     int r = seed;
860     r ^= r << 13;
861     r ^= r >>> 17;
862     return seed = r ^= r << 5;
863     }
864    
865 dl 1.104 // Specialized execution methods
866 dl 1.78
867     /**
868 dl 1.94 * Pops and runs tasks until empty.
869 dl 1.78 */
870 dl 1.94 private void popAndExecAll() {
871     // A bit faster than repeated pop calls
872     ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
873     while ((a = array) != null && (m = a.length - 1) >= 0 &&
874     (s = top - 1) - base >= 0 &&
875     (t = ((ForkJoinTask<?>)
876     U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
877     != null) {
878     if (U.compareAndSwapObject(a, j, t, null)) {
879     top = s;
880     t.doExec();
881 dl 1.90 }
882 dl 1.94 }
883     }
884    
885     /**
886     * Polls and runs tasks until empty.
887     */
888     private void pollAndExecAll() {
889     for (ForkJoinTask<?> t; (t = poll()) != null;)
890     t.doExec();
891     }
892    
893     /**
894 dl 1.105 * If present, removes from queue and executes the given task,
895     * or any other cancelled task. Returns (true) on any CAS
896 dl 1.94 * or consistency check failure so caller can retry.
897     *
898 jsr166 1.150 * @return false if no progress can be made, else true
899 dl 1.94 */
900 dl 1.105 final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
901     boolean stat = true, removed = false, empty = true;
902 dl 1.94 ForkJoinTask<?>[] a; int m, s, b, n;
903     if ((a = array) != null && (m = a.length - 1) >= 0 &&
904     (n = (s = top) - (b = base)) > 0) {
905     for (ForkJoinTask<?> t;;) { // traverse from s to b
906     int j = ((--s & m) << ASHIFT) + ABASE;
907     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
908     if (t == null) // inconsistent length
909     break;
910     else if (t == task) {
911     if (s + 1 == top) { // pop
912     if (!U.compareAndSwapObject(a, j, task, null))
913 dl 1.90 break;
914 dl 1.94 top = s;
915     removed = true;
916 dl 1.90 }
917 dl 1.94 else if (base == b) // replace with proxy
918     removed = U.compareAndSwapObject(a, j, task,
919     new EmptyTask());
920     break;
921     }
922     else if (t.status >= 0)
923     empty = false;
924     else if (s + 1 == top) { // pop and throw away
925     if (U.compareAndSwapObject(a, j, t, null))
926     top = s;
927     break;
928     }
929     if (--n == 0) {
930     if (!empty && base == b)
931 dl 1.105 stat = false;
932 dl 1.94 break;
933 dl 1.90 }
934     }
935 dl 1.78 }
936 dl 1.94 if (removed)
937     task.doExec();
938 dl 1.95 return stat;
939 dl 1.78 }
940    
941     /**
942 dl 1.105 * Polls for and executes the given task or any other task in
943 jsr166 1.149 * its CountedCompleter computation.
944 dl 1.104 */
945 dl 1.105 final boolean pollAndExecCC(ForkJoinTask<?> root) {
946     ForkJoinTask<?>[] a; int b; Object o;
947     outer: while ((b = base) - top < 0 && (a = array) != null) {
948     long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
949     if ((o = U.getObject(a, j)) == null ||
950     !(o instanceof CountedCompleter))
951     break;
952     for (CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;;) {
953     if (r == root) {
954     if (base == b &&
955     U.compareAndSwapObject(a, j, t, null)) {
956     base = b + 1;
957     t.doExec();
958     return true;
959 dl 1.104 }
960 dl 1.105 else
961     break; // restart
962 dl 1.104 }
963 dl 1.105 if ((r = r.completer) == null)
964     break outer; // not part of root computation
965 dl 1.104 }
966     }
967 dl 1.105 return false;
968 dl 1.104 }
969    
970     /**
971 dl 1.78 * Executes a top-level task and any local tasks remaining
972     * after execution.
973     */
974 dl 1.94 final void runTask(ForkJoinTask<?> t) {
975 dl 1.78 if (t != null) {
976 dl 1.105 (currentSteal = t).doExec();
977     currentSteal = null;
978 dl 1.126 ++nsteals;
979 dl 1.115 if (base - top < 0) { // process remaining local tasks
980 dl 1.94 if (mode == 0)
981     popAndExecAll();
982     else
983     pollAndExecAll();
984     }
985 dl 1.78 }
986     }
987    
988     /**
989 jsr166 1.84 * Executes a non-top-level (stolen) task.
990 dl 1.78 */
991     final void runSubtask(ForkJoinTask<?> t) {
992     if (t != null) {
993     ForkJoinTask<?> ps = currentSteal;
994 dl 1.105 (currentSteal = t).doExec();
995 dl 1.78 currentSteal = ps;
996     }
997     }
998    
999     /**
1000 dl 1.86 * Returns true if owned and not known to be blocked.
1001     */
1002     final boolean isApparentlyUnblocked() {
1003     Thread wt; Thread.State s;
1004     return (eventCount >= 0 &&
1005     (wt = owner) != null &&
1006     (s = wt.getState()) != Thread.State.BLOCKED &&
1007     s != Thread.State.WAITING &&
1008     s != Thread.State.TIMED_WAITING);
1009     }
1010    
1011 dl 1.78 // Unsafe mechanics
1012     private static final sun.misc.Unsafe U;
1013 dl 1.105 private static final long QLOCK;
1014 dl 1.78 private static final int ABASE;
1015     private static final int ASHIFT;
1016     static {
1017     try {
1018     U = sun.misc.Unsafe.getUnsafe();
1019     Class<?> k = WorkQueue.class;
1020     Class<?> ak = ForkJoinTask[].class;
1021 dl 1.105 QLOCK = U.objectFieldOffset
1022     (k.getDeclaredField("qlock"));
1023 dl 1.78 ABASE = U.arrayBaseOffset(ak);
1024 jsr166 1.142 int scale = U.arrayIndexScale(ak);
1025     if ((scale & (scale - 1)) != 0)
1026     throw new Error("data type scale not a power of two");
1027     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1028 dl 1.78 } catch (Exception e) {
1029     throw new Error(e);
1030     }
1031     }
1032     }
1033 dl 1.14
1034 dl 1.112 // static fields (initialized in static initializer below)
1035    
1036     /**
1037     * Creates a new ForkJoinWorkerThread. This factory is used unless
1038     * overridden in ForkJoinPool constructors.
1039     */
1040     public static final ForkJoinWorkerThreadFactory
1041     defaultForkJoinWorkerThreadFactory;
1042    
1043 jsr166 1.1 /**
1044 dl 1.115 * Permission required for callers of methods that may start or
1045     * kill threads.
1046     */
1047     private static final RuntimePermission modifyThreadPermission;
1048    
1049     /**
1050 dl 1.101 * Common (static) pool. Non-null for public use unless a static
1051 dl 1.105 * construction exception, but internal usages null-check on use
1052     * to paranoically avoid potential initialization circularities
1053     * as well as to simplify generated code.
1054 dl 1.101 */
1055 dl 1.134 static final ForkJoinPool common;
1056 dl 1.101
1057     /**
1058 dl 1.160 * Common pool parallelism. To allow simpler use and management
1059     * when common pool threads are disabled, we allow the underlying
1060     * common.config field to be zero, but in that case still report
1061     * parallelism as 1 to reflect resulting caller-runs mechanics.
1062 dl 1.90 */
1063 dl 1.134 static final int commonParallelism;
1064 dl 1.90
1065     /**
1066 dl 1.105 * Sequence number for creating workerNamePrefix.
1067 dl 1.86 */
1068 dl 1.105 private static int poolNumberSequence;
1069 dl 1.86
1070 jsr166 1.1 /**
1071 jsr166 1.132 * Returns the next sequence number. We don't expect this to
1072     * ever contend, so use simple builtin sync.
1073 dl 1.83 */
1074 dl 1.105 private static final synchronized int nextPoolId() {
1075     return ++poolNumberSequence;
1076     }
1077 dl 1.86
1078     // static constants
1079    
1080     /**
1081 dl 1.105 * Initial timeout value (in nanoseconds) for the thread
1082     * triggering quiescence to park waiting for new work. On timeout,
1083     * the thread will instead try to shrink the number of
1084     * workers. The value should be large enough to avoid overly
1085     * aggressive shrinkage during most transient stalls (long GCs
1086     * etc).
1087 dl 1.86 */
1088 dl 1.105 private static final long IDLE_TIMEOUT = 2000L * 1000L * 1000L; // 2sec
1089 dl 1.86
1090     /**
1091 dl 1.100 * Timeout value when there are more threads than parallelism level
1092 dl 1.86 */
1093 dl 1.105 private static final long FAST_IDLE_TIMEOUT = 200L * 1000L * 1000L;
1094 dl 1.86
1095     /**
1096 dl 1.120 * Tolerance for idle timeouts, to cope with timer undershoots
1097     */
1098 dl 1.127 private static final long TIMEOUT_SLOP = 2000000L;
1099 dl 1.120
1100     /**
1101 dl 1.90 * The maximum stolen->joining link depth allowed in method
1102 dl 1.105 * tryHelpStealer. Must be a power of two. Depths for legitimate
1103 dl 1.90 * chains are unbounded, but we use a fixed constant to avoid
1104     * (otherwise unchecked) cycles and to bound staleness of
1105     * traversal parameters at the expense of sometimes blocking when
1106     * we could be helping.
1107     */
1108 dl 1.95 private static final int MAX_HELP = 64;
1109 dl 1.90
1110     /**
1111     * Increment for seed generators. See class ThreadLocal for
1112     * explanation.
1113     */
1114     private static final int SEED_INCREMENT = 0x61c88647;
1115 dl 1.83
1116     /**
1117 dl 1.86 * Bits and masks for control variables
1118     *
1119     * Field ctl is a long packed with:
1120     * AC: Number of active running workers minus target parallelism (16 bits)
1121     * TC: Number of total workers minus target parallelism (16 bits)
1122     * ST: true if pool is terminating (1 bit)
1123     * EC: the wait count of top waiting thread (15 bits)
1124     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1125     *
1126     * When convenient, we can extract the upper 32 bits of counts and
1127     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1128     * (int)ctl. The ec field is never accessed alone, but always
1129     * together with id and st. The offsets of counts by the target
1130     * parallelism and the positionings of fields makes it possible to
1131     * perform the most common checks via sign tests of fields: When
1132     * ac is negative, there are not enough active workers, when tc is
1133     * negative, there are not enough total workers, and when e is
1134     * negative, the pool is terminating. To deal with these possibly
1135     * negative fields, we use casts in and out of "short" and/or
1136     * signed shifts to maintain signedness.
1137     *
1138     * When a thread is queued (inactivated), its eventCount field is
1139     * set negative, which is the only way to tell if a worker is
1140     * prevented from executing tasks, even though it must continue to
1141     * scan for them to avoid queuing races. Note however that
1142     * eventCount updates lag releases so usage requires care.
1143     *
1144 dl 1.105 * Field plock is an int packed with:
1145 dl 1.86 * SHUTDOWN: true if shutdown is enabled (1 bit)
1146 dl 1.105 * SEQ: a sequence lock, with PL_LOCK bit set if locked (30 bits)
1147     * SIGNAL: set when threads may be waiting on the lock (1 bit)
1148 dl 1.86 *
1149 dl 1.90 * The sequence number enables simple consistency checks:
1150     * Staleness of read-only operations on the workQueues array can
1151 dl 1.105 * be checked by comparing plock before vs after the reads.
1152 dl 1.86 */
1153    
1154     // bit positions/shifts for fields
1155     private static final int AC_SHIFT = 48;
1156     private static final int TC_SHIFT = 32;
1157     private static final int ST_SHIFT = 31;
1158     private static final int EC_SHIFT = 16;
1159    
1160     // bounds
1161     private static final int SMASK = 0xffff; // short bits
1162 dl 1.90 private static final int MAX_CAP = 0x7fff; // max #workers - 1
1163 dl 1.105 private static final int EVENMASK = 0xfffe; // even short bits
1164     private static final int SQMASK = 0x007e; // max 64 (even) slots
1165 dl 1.86 private static final int SHORT_SIGN = 1 << 15;
1166     private static final int INT_SIGN = 1 << 31;
1167    
1168     // masks
1169     private static final long STOP_BIT = 0x0001L << ST_SHIFT;
1170     private static final long AC_MASK = ((long)SMASK) << AC_SHIFT;
1171     private static final long TC_MASK = ((long)SMASK) << TC_SHIFT;
1172    
1173     // units for incrementing and decrementing
1174     private static final long TC_UNIT = 1L << TC_SHIFT;
1175     private static final long AC_UNIT = 1L << AC_SHIFT;
1176    
1177     // masks and units for dealing with u = (int)(ctl >>> 32)
1178     private static final int UAC_SHIFT = AC_SHIFT - 32;
1179     private static final int UTC_SHIFT = TC_SHIFT - 32;
1180     private static final int UAC_MASK = SMASK << UAC_SHIFT;
1181     private static final int UTC_MASK = SMASK << UTC_SHIFT;
1182     private static final int UAC_UNIT = 1 << UAC_SHIFT;
1183     private static final int UTC_UNIT = 1 << UTC_SHIFT;
1184    
1185     // masks and units for dealing with e = (int)ctl
1186     private static final int E_MASK = 0x7fffffff; // no STOP_BIT
1187     private static final int E_SEQ = 1 << EC_SHIFT;
1188    
1189 dl 1.105 // plock bits
1190 dl 1.86 private static final int SHUTDOWN = 1 << 31;
1191 dl 1.105 private static final int PL_LOCK = 2;
1192     private static final int PL_SIGNAL = 1;
1193     private static final int PL_SPINS = 1 << 8;
1194 dl 1.86
1195     // access mode for WorkQueue
1196     static final int LIFO_QUEUE = 0;
1197     static final int FIFO_QUEUE = 1;
1198     static final int SHARED_QUEUE = -1;
1199    
1200 dl 1.112 // bounds for #steps in scan loop -- must be power 2 minus 1
1201     private static final int MIN_SCAN = 0x1ff; // cover estimation slop
1202     private static final int MAX_SCAN = 0x1ffff; // 4 * max workers
1203    
1204 dl 1.86 // Instance fields
1205    
1206     /*
1207 dl 1.112 * Field layout of this class tends to matter more than one would
1208     * like. Runtime layout order is only loosely related to
1209 dl 1.86 * declaration order and may differ across JVMs, but the following
1210     * empirically works OK on current JVMs.
1211 jsr166 1.1 */
1212 dl 1.115
1213     // Heuristic padding to ameliorate unfortunate memory placements
1214     volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
1215    
1216 dl 1.101 volatile long stealCount; // collects worker counts
1217 dl 1.86 volatile long ctl; // main pool control
1218 dl 1.112 volatile int plock; // shutdown status and seqLock
1219 dl 1.105 volatile int indexSeed; // worker/submitter index seed
1220 dl 1.112 final int config; // mode and parallelism level
1221 dl 1.86 WorkQueue[] workQueues; // main registry
1222 dl 1.112 final ForkJoinWorkerThreadFactory factory;
1223 jsr166 1.156 final UncaughtExceptionHandler ueh; // per-worker UEH
1224 dl 1.101 final String workerNamePrefix; // to create worker name string
1225    
1226 dl 1.115 volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
1227     volatile Object pad18, pad19, pad1a, pad1b;
1228    
1229 jsr166 1.145 /**
1230 dl 1.105 * Acquires the plock lock to protect worker array and related
1231     * updates. This method is called only if an initial CAS on plock
1232 jsr166 1.140 * fails. This acts as a spinlock for normal cases, but falls back
1233 dl 1.105 * to builtin monitor to block when (rarely) needed. This would be
1234     * a terrible idea for a highly contended lock, but works fine as
1235 dl 1.126 * a more conservative alternative to a pure spinlock.
1236 dl 1.105 */
1237     private int acquirePlock() {
1238 dl 1.139 int spins = PL_SPINS, ps, nps;
1239 dl 1.105 for (;;) {
1240     if (((ps = plock) & PL_LOCK) == 0 &&
1241     U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1242     return nps;
1243 dl 1.101 else if (spins >= 0) {
1244 dl 1.139 if (ThreadLocalRandom.nextSecondarySeed() >= 0)
1245 dl 1.101 --spins;
1246     }
1247 dl 1.105 else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1248 jsr166 1.106 synchronized (this) {
1249 dl 1.105 if ((plock & PL_SIGNAL) != 0) {
1250 dl 1.101 try {
1251     wait();
1252     } catch (InterruptedException ie) {
1253 dl 1.104 try {
1254     Thread.currentThread().interrupt();
1255     } catch (SecurityException ignore) {
1256     }
1257 dl 1.101 }
1258     }
1259     else
1260 dl 1.105 notifyAll();
1261 dl 1.101 }
1262     }
1263     }
1264     }
1265 dl 1.78
1266 jsr166 1.1 /**
1267 dl 1.105 * Unlocks and signals any thread waiting for plock. Called only
1268     * when CAS of seq value for unlock fails.
1269 jsr166 1.1 */
1270 dl 1.105 private void releasePlock(int ps) {
1271     plock = ps;
1272 jsr166 1.106 synchronized (this) { notifyAll(); }
1273 dl 1.78 }
1274 jsr166 1.1
1275 dl 1.112 /**
1276 dl 1.120 * Tries to create and start one worker if fewer than target
1277     * parallelism level exist. Adjusts counts etc on failure.
1278 dl 1.115 */
1279     private void tryAddWorker() {
1280 dl 1.112 long c; int u;
1281 dl 1.115 while ((u = (int)((c = ctl) >>> 32)) < 0 &&
1282     (u & SHORT_SIGN) != 0 && (int)c == 0) {
1283 dl 1.112 long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1284     ((u + UAC_UNIT) & UAC_MASK)) << 32;
1285 dl 1.115 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1286     ForkJoinWorkerThreadFactory fac;
1287     Throwable ex = null;
1288     ForkJoinWorkerThread wt = null;
1289     try {
1290     if ((fac = factory) != null &&
1291     (wt = fac.newThread(this)) != null) {
1292     wt.start();
1293     break;
1294     }
1295     } catch (Throwable e) {
1296     ex = e;
1297     }
1298     deregisterWorker(wt, ex);
1299     break;
1300     }
1301 dl 1.112 }
1302     }
1303    
1304     // Registering and deregistering workers
1305    
1306     /**
1307     * Callback from ForkJoinWorkerThread to establish and record its
1308     * WorkQueue. To avoid scanning bias due to packing entries in
1309     * front of the workQueues array, we treat the array as a simple
1310     * power-of-two hash table using per-thread seed as hash,
1311     * expanding as needed.
1312     *
1313     * @param wt the worker thread
1314 dl 1.115 * @return the worker's queue
1315 dl 1.112 */
1316 dl 1.115 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1317 jsr166 1.156 UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps;
1318 dl 1.115 wt.setDaemon(true);
1319     if ((handler = ueh) != null)
1320     wt.setUncaughtExceptionHandler(handler);
1321     do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
1322     s += SEED_INCREMENT) ||
1323     s == 0); // skip 0
1324     WorkQueue w = new WorkQueue(this, wt, config >>> 16, s);
1325     if (((ps = plock) & PL_LOCK) != 0 ||
1326     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1327     ps = acquirePlock();
1328     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1329     try {
1330     if ((ws = workQueues) != null) { // skip if shutting down
1331     int n = ws.length, m = n - 1;
1332     int r = (s << 1) | 1; // use odd-numbered indices
1333     if (ws[r &= m] != null) { // collision
1334     int probes = 0; // step by approx half size
1335     int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1336     while (ws[r = (r + step) & m] != null) {
1337     if (++probes >= n) {
1338     workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1339     m = n - 1;
1340     probes = 0;
1341 dl 1.94 }
1342     }
1343     }
1344 dl 1.115 w.eventCount = w.poolIndex = r; // volatile write orders
1345     ws[r] = w;
1346 dl 1.78 }
1347 dl 1.115 } finally {
1348     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1349     releasePlock(nps);
1350 dl 1.78 }
1351 dl 1.115 wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex)));
1352     return w;
1353 dl 1.78 }
1354 dl 1.19
1355 jsr166 1.1 /**
1356 dl 1.86 * Final callback from terminating worker, as well as upon failure
1357 dl 1.105 * to construct or start a worker. Removes record of worker from
1358     * array, and adjusts counts. If pool is shutting down, tries to
1359     * complete termination.
1360 dl 1.78 *
1361 jsr166 1.151 * @param wt the worker thread, or null if construction failed
1362 dl 1.78 * @param ex the exception causing failure, or null if none
1363 dl 1.45 */
1364 dl 1.78 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1365     WorkQueue w = null;
1366     if (wt != null && (w = wt.workQueue) != null) {
1367 dl 1.105 int ps;
1368     w.qlock = -1; // ensure set
1369 dl 1.112 long ns = w.nsteals, sc; // collect steal count
1370     do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1371     sc = stealCount, sc + ns));
1372 dl 1.105 if (((ps = plock) & PL_LOCK) != 0 ||
1373     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1374     ps = acquirePlock();
1375     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1376 dl 1.101 try {
1377 dl 1.105 int idx = w.poolIndex;
1378 dl 1.78 WorkQueue[] ws = workQueues;
1379 dl 1.90 if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1380 dl 1.86 ws[idx] = null;
1381 dl 1.78 } finally {
1382 dl 1.105 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1383     releasePlock(nps);
1384 dl 1.78 }
1385     }
1386    
1387 dl 1.126 long c; // adjust ctl counts
1388 dl 1.78 do {} while (!U.compareAndSwapLong
1389     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1390     ((c - TC_UNIT) & TC_MASK) |
1391     (c & ~(AC_MASK|TC_MASK)))));
1392    
1393 dl 1.120 if (!tryTerminate(false, false) && w != null && w.array != null) {
1394 dl 1.126 w.cancelAll(); // cancel remaining tasks
1395     WorkQueue[] ws; WorkQueue v; Thread p; int u, i, e;
1396     while ((u = (int)((c = ctl) >>> 32)) < 0 && (e = (int)c) >= 0) {
1397     if (e > 0) { // activate or create replacement
1398     if ((ws = workQueues) == null ||
1399     (i = e & SMASK) >= ws.length ||
1400 dl 1.130 (v = ws[i]) == null)
1401 dl 1.126 break;
1402     long nc = (((long)(v.nextWait & E_MASK)) |
1403     ((long)(u + UAC_UNIT) << 32));
1404     if (v.eventCount != (e | INT_SIGN))
1405     break;
1406     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1407     v.eventCount = (e + E_SEQ) & E_MASK;
1408     if ((p = v.parker) != null)
1409     U.unpark(p);
1410     break;
1411 dl 1.120 }
1412     }
1413     else {
1414     if ((short)u < 0)
1415     tryAddWorker();
1416     break;
1417     }
1418     }
1419 dl 1.78 }
1420 dl 1.120 if (ex == null) // help clean refs on way out
1421     ForkJoinTask.helpExpungeStaleExceptions();
1422     else // rethrow
1423 dl 1.104 ForkJoinTask.rethrow(ex);
1424 dl 1.78 }
1425 dl 1.52
1426 dl 1.86 // Submissions
1427    
1428     /**
1429     * Unless shutting down, adds the given task to a submission queue
1430     * at submitter's current queue index (modulo submission
1431 dl 1.105 * range). Only the most common path is directly handled in this
1432     * method. All others are relayed to fullExternalPush.
1433 dl 1.90 *
1434     * @param task the task. Caller must ensure non-null.
1435 dl 1.86 */
1436 dl 1.105 final void externalPush(ForkJoinTask<?> task) {
1437 dl 1.139 WorkQueue[] ws; WorkQueue q; int z, m; ForkJoinTask<?>[] a;
1438     if ((z = ThreadLocalRandom.getProbe()) != 0 && plock > 0 &&
1439 dl 1.105 (ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
1440 dl 1.139 (q = ws[m & z & SQMASK]) != null &&
1441 dl 1.105 U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1442 dl 1.112 int b = q.base, s = q.top, n, an;
1443     if ((a = q.array) != null && (an = a.length) > (n = s + 1 - b)) {
1444 dl 1.115 int j = (((an - 1) & s) << ASHIFT) + ABASE;
1445     U.putOrderedObject(a, j, task);
1446 dl 1.105 q.top = s + 1; // push on to deque
1447     q.qlock = 0;
1448 dl 1.112 if (n <= 2)
1449 dl 1.115 signalWork(q);
1450 dl 1.90 return;
1451     }
1452 dl 1.105 q.qlock = 0;
1453 dl 1.83 }
1454 dl 1.105 fullExternalPush(task);
1455 dl 1.83 }
1456 dl 1.45
1457 dl 1.100 /**
1458 dl 1.105 * Full version of externalPush. This method is called, among
1459     * other times, upon the first submission of the first task to the
1460 dl 1.131 * pool, so must perform secondary initialization. It also
1461     * detects first submission by an external thread by looking up
1462     * its ThreadLocal, and creates a new shared queue if the one at
1463     * index if empty or contended. The plock lock body must be
1464     * exception-free (so no try/finally) so we optimistically
1465     * allocate new queues outside the lock and throw them away if
1466     * (very rarely) not needed.
1467     *
1468     * Secondary initialization occurs when plock is zero, to create
1469     * workQueue array and set plock to a valid value. This lock body
1470     * must also be exception-free. Because the plock seq value can
1471     * eventually wrap around zero, this method harmlessly fails to
1472     * reinitialize if workQueues exists, while still advancing plock.
1473 dl 1.105 */
1474     private void fullExternalPush(ForkJoinTask<?> task) {
1475 dl 1.139 int r;
1476     if ((r = ThreadLocalRandom.getProbe()) == 0) {
1477     ThreadLocalRandom.localInit();
1478     r = ThreadLocalRandom.getProbe();
1479     }
1480     for (;;) {
1481 dl 1.112 WorkQueue[] ws; WorkQueue q; int ps, m, k;
1482 dl 1.139 boolean move = false;
1483     if ((ps = plock) < 0)
1484 dl 1.105 throw new RejectedExecutionException();
1485 dl 1.112 else if (ps == 0 || (ws = workQueues) == null ||
1486 dl 1.131 (m = ws.length - 1) < 0) { // initialize workQueues
1487     int p = config & SMASK; // find power of two table size
1488     int n = (p > 1) ? p - 1 : 1; // ensure at least 2 slots
1489     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4;
1490     n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1;
1491     WorkQueue[] nws = ((ws = workQueues) == null || ws.length == 0 ?
1492     new WorkQueue[n] : null);
1493     if (((ps = plock) & PL_LOCK) != 0 ||
1494     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1495     ps = acquirePlock();
1496     if (((ws = workQueues) == null || ws.length == 0) && nws != null)
1497     workQueues = nws;
1498     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1499     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1500     releasePlock(nps);
1501     }
1502 dl 1.112 else if ((q = ws[k = r & m & SQMASK]) != null) {
1503 dl 1.115 if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
1504     ForkJoinTask<?>[] a = q.array;
1505     int s = q.top;
1506     boolean submitted = false;
1507     try { // locked version of push
1508     if ((a != null && a.length > s + 1 - q.base) ||
1509     (a = q.growArray()) != null) { // must presize
1510     int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
1511     U.putOrderedObject(a, j, task);
1512     q.top = s + 1;
1513     submitted = true;
1514     }
1515     } finally {
1516     q.qlock = 0; // unlock
1517     }
1518     if (submitted) {
1519     signalWork(q);
1520     return;
1521     }
1522     }
1523 dl 1.139 move = true; // move on failure
1524 dl 1.112 }
1525     else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
1526     q = new WorkQueue(this, null, SHARED_QUEUE, r);
1527     if (((ps = plock) & PL_LOCK) != 0 ||
1528 dl 1.105 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1529     ps = acquirePlock();
1530 dl 1.112 if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
1531     ws[k] = q;
1532 dl 1.105 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1533     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1534     releasePlock(nps);
1535     }
1536 dl 1.112 else
1537 dl 1.139 move = true; // move if busy
1538     if (move)
1539     r = ThreadLocalRandom.advanceProbe(r);
1540 dl 1.104 }
1541 dl 1.102 }
1542    
1543 dl 1.78 // Maintaining ctl counts
1544 dl 1.17
1545     /**
1546 jsr166 1.84 * Increments active count; mainly called upon return from blocking.
1547 dl 1.19 */
1548 dl 1.78 final void incrementActiveCount() {
1549 dl 1.52 long c;
1550 dl 1.78 do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1551 dl 1.19 }
1552    
1553     /**
1554 dl 1.115 * Tries to create or activate a worker if too few are active.
1555     *
1556     * @param q the (non-null) queue holding tasks to be signalled
1557 dl 1.105 */
1558 dl 1.115 final void signalWork(WorkQueue q) {
1559     int hint = q.poolIndex;
1560     long c; int e, u, i, n; WorkQueue[] ws; WorkQueue w; Thread p;
1561 dl 1.105 while ((u = (int)((c = ctl) >>> 32)) < 0) {
1562     if ((e = (int)c) > 0) {
1563     if ((ws = workQueues) != null && ws.length > (i = e & SMASK) &&
1564 dl 1.86 (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1565     long nc = (((long)(w.nextWait & E_MASK)) |
1566     ((long)(u + UAC_UNIT) << 32));
1567     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1568 dl 1.115 w.hint = hint;
1569 dl 1.86 w.eventCount = (e + E_SEQ) & E_MASK;
1570 dl 1.115 if ((p = w.parker) != null)
1571 dl 1.105 U.unpark(p);
1572 dl 1.115 break;
1573 dl 1.105 }
1574 dl 1.115 if (q.top - q.base <= 0)
1575 dl 1.86 break;
1576     }
1577     else
1578 dl 1.52 break;
1579 dl 1.78 }
1580 dl 1.115 else {
1581     if ((short)u < 0)
1582     tryAddWorker();
1583     break;
1584 dl 1.52 }
1585     }
1586 dl 1.14 }
1587    
1588 dl 1.90 // Scanning for tasks
1589    
1590 dl 1.14 /**
1591 dl 1.90 * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1592 dl 1.14 */
1593 dl 1.90 final void runWorker(WorkQueue w) {
1594 dl 1.115 w.growArray(); // allocate queue
1595     do { w.runTask(scan(w)); } while (w.qlock >= 0);
1596 dl 1.14 }
1597    
1598     /**
1599 dl 1.78 * Scans for and, if found, returns one task, else possibly
1600     * inactivates the worker. This method operates on single reads of
1601 dl 1.90 * volatile state and is designed to be re-invoked continuously,
1602     * in part because it returns upon detecting inconsistencies,
1603 dl 1.78 * contention, or state changes that indicate possible success on
1604     * re-invocation.
1605     *
1606 dl 1.112 * The scan searches for tasks across queues (starting at a random
1607     * index, and relying on registerWorker to irregularly scatter
1608     * them within array to avoid bias), checking each at least twice.
1609     * The scan terminates upon either finding a non-empty queue, or
1610     * completing the sweep. If the worker is not inactivated, it
1611     * takes and returns a task from this queue. Otherwise, if not
1612     * activated, it signals workers (that may include itself) and
1613     * returns so caller can retry. Also returns for true if the
1614     * worker array may have changed during an empty scan. On failure
1615     * to find a task, we take one of the following actions, after
1616     * which the caller will retry calling this method unless
1617     * terminated.
1618 dl 1.78 *
1619 dl 1.86 * * If pool is terminating, terminate the worker.
1620     *
1621 dl 1.78 * * If not already enqueued, try to inactivate and enqueue the
1622 dl 1.90 * worker on wait queue. Or, if inactivating has caused the pool
1623 dl 1.126 * to be quiescent, relay to idleAwaitWork to possibly shrink
1624     * pool.
1625 dl 1.90 *
1626 dl 1.105 * * If already enqueued and none of the above apply, possibly
1627 dl 1.126 * park awaiting signal, else lingering to help scan and signal.
1628     *
1629     * * If a non-empty queue discovered or left as a hint,
1630 jsr166 1.133 * help wake up other workers before return.
1631 dl 1.78 *
1632     * @param w the worker (via its WorkQueue)
1633 jsr166 1.98 * @return a task or null if none found
1634 dl 1.78 */
1635     private final ForkJoinTask<?> scan(WorkQueue w) {
1636 dl 1.115 WorkQueue[] ws; int m;
1637 dl 1.112 int ps = plock; // read plock before ws
1638     if (w != null && (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1639     int ec = w.eventCount; // ec is negative if inactive
1640     int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1641 dl 1.126 w.hint = -1; // update seed and clear hint
1642 dl 1.115 int j = ((m + m + 1) | MIN_SCAN) & MAX_SCAN;
1643     do {
1644 dl 1.112 WorkQueue q; ForkJoinTask<?>[] a; int b;
1645     if ((q = ws[(r + j) & m]) != null && (b = q.base) - q.top < 0 &&
1646     (a = q.array) != null) { // probably nonempty
1647 dl 1.90 int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1648 dl 1.112 ForkJoinTask<?> t = (ForkJoinTask<?>)
1649     U.getObjectVolatile(a, i);
1650 dl 1.90 if (q.base == b && ec >= 0 && t != null &&
1651     U.compareAndSwapObject(a, i, t, null)) {
1652 dl 1.112 if ((q.base = b + 1) - q.top < 0)
1653 dl 1.115 signalWork(q);
1654 dl 1.112 return t; // taken
1655     }
1656 dl 1.115 else if ((ec < 0 || j < m) && (int)(ctl >> AC_SHIFT) <= 0) {
1657     w.hint = (r + j) & m; // help signal below
1658     break; // cannot take
1659     }
1660     }
1661     } while (--j >= 0);
1662    
1663 dl 1.126 int h, e, ns; long c, sc; WorkQueue q;
1664     if ((ns = w.nsteals) != 0) {
1665     if (U.compareAndSwapLong(this, STEALCOUNT,
1666     sc = stealCount, sc + ns))
1667     w.nsteals = 0; // collect steals and rescan
1668     }
1669     else if (plock != ps) // consistency check
1670     ; // skip
1671     else if ((e = (int)(c = ctl)) < 0)
1672     w.qlock = -1; // pool is terminating
1673     else {
1674     if ((h = w.hint) < 0) {
1675     if (ec >= 0) { // try to enqueue/inactivate
1676     long nc = (((long)ec |
1677     ((c - AC_UNIT) & (AC_MASK|TC_MASK))));
1678     w.nextWait = e; // link and mark inactive
1679     w.eventCount = ec | INT_SIGN;
1680     if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1681     w.eventCount = ec; // unmark on CAS failure
1682     else if ((int)(c >> AC_SHIFT) == 1 - (config & SMASK))
1683     idleAwaitWork(w, nc, c);
1684     }
1685 dl 1.131 else if (w.eventCount < 0 && ctl == c) {
1686 dl 1.126 Thread wt = Thread.currentThread();
1687     Thread.interrupted(); // clear status
1688     U.putObject(wt, PARKBLOCKER, this);
1689     w.parker = wt; // emulate LockSupport.park
1690     if (w.eventCount < 0) // recheck
1691 dl 1.131 U.park(false, 0L); // block
1692 dl 1.126 w.parker = null;
1693     U.putObject(wt, PARKBLOCKER, null);
1694     }
1695     }
1696     if ((h >= 0 || (h = w.hint) >= 0) &&
1697     (ws = workQueues) != null && h < ws.length &&
1698     (q = ws[h]) != null) { // signal others before retry
1699     WorkQueue v; Thread p; int u, i, s;
1700 dl 1.131 for (int n = (config & SMASK) - 1;;) {
1701 dl 1.126 int idleCount = (w.eventCount < 0) ? 0 : -1;
1702     if (((s = idleCount - q.base + q.top) <= n &&
1703     (n = s) <= 0) ||
1704     (u = (int)((c = ctl) >>> 32)) >= 0 ||
1705     (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1706     (v = ws[i]) == null)
1707     break;
1708     long nc = (((long)(v.nextWait & E_MASK)) |
1709     ((long)(u + UAC_UNIT) << 32));
1710     if (v.eventCount != (e | INT_SIGN) ||
1711     !U.compareAndSwapLong(this, CTL, c, nc))
1712     break;
1713     v.hint = h;
1714     v.eventCount = (e + E_SEQ) & E_MASK;
1715     if ((p = v.parker) != null)
1716     U.unpark(p);
1717     if (--n <= 0)
1718     break;
1719     }
1720 dl 1.115 }
1721     }
1722 dl 1.52 }
1723 dl 1.78 return null;
1724 dl 1.14 }
1725    
1726     /**
1727 dl 1.90 * If inactivating worker w has caused the pool to become
1728     * quiescent, checks for pool termination, and, so long as this is
1729 dl 1.100 * not the only worker, waits for event for up to a given
1730     * duration. On timeout, if ctl has not changed, terminates the
1731 dl 1.90 * worker, which will in turn wake up another worker to possibly
1732     * repeat this process.
1733 dl 1.52 *
1734 dl 1.78 * @param w the calling worker
1735 dl 1.90 * @param currentCtl the ctl value triggering possible quiescence
1736     * @param prevCtl the ctl value to restore if thread is terminated
1737 dl 1.14 */
1738 dl 1.90 private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1739 dl 1.112 if (w != null && w.eventCount < 0 &&
1740 dl 1.131 !tryTerminate(false, false) && (int)prevCtl != 0 &&
1741     ctl == currentCtl) {
1742 dl 1.100 int dc = -(short)(currentCtl >>> TC_SHIFT);
1743     long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1744 dl 1.120 long deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
1745 dl 1.90 Thread wt = Thread.currentThread();
1746     while (ctl == currentCtl) {
1747 dl 1.78 Thread.interrupted(); // timed variant of version in scan()
1748     U.putObject(wt, PARKBLOCKER, this);
1749     w.parker = wt;
1750 dl 1.90 if (ctl == currentCtl)
1751 dl 1.100 U.park(false, parkTime);
1752 dl 1.78 w.parker = null;
1753     U.putObject(wt, PARKBLOCKER, null);
1754 dl 1.90 if (ctl != currentCtl)
1755 dl 1.78 break;
1756 dl 1.100 if (deadline - System.nanoTime() <= 0L &&
1757 dl 1.90 U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1758     w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1759 dl 1.131 w.hint = -1;
1760 dl 1.105 w.qlock = -1; // shrink
1761 dl 1.78 break;
1762     }
1763 dl 1.24 }
1764 dl 1.14 }
1765     }
1766    
1767     /**
1768 dl 1.120 * Scans through queues looking for work while joining a task; if
1769     * any present, signals. May return early if more signalling is
1770     * detectably unneeded.
1771 dl 1.105 *
1772 dl 1.120 * @param task return early if done
1773 dl 1.105 * @param origin an index to start scan
1774     */
1775 dl 1.120 private void helpSignal(ForkJoinTask<?> task, int origin) {
1776 dl 1.115 WorkQueue[] ws; WorkQueue w; Thread p; long c; int m, u, e, i, s;
1777 dl 1.120 if (task != null && task.status >= 0 &&
1778     (u = (int)(ctl >>> 32)) < 0 && (u >> UAC_SHIFT) < 0 &&
1779 dl 1.115 (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1780 dl 1.120 outer: for (int k = origin, j = m; j >= 0; --j) {
1781 dl 1.115 WorkQueue q = ws[k++ & m];
1782     for (int n = m;;) { // limit to at most m signals
1783 dl 1.120 if (task.status < 0)
1784 dl 1.115 break outer;
1785     if (q == null ||
1786 dl 1.120 ((s = -q.base + q.top) <= n && (n = s) <= 0))
1787 dl 1.105 break;
1788 dl 1.115 if ((u = (int)((c = ctl) >>> 32)) >= 0 ||
1789     (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1790     (w = ws[i]) == null)
1791     break outer;
1792     long nc = (((long)(w.nextWait & E_MASK)) |
1793     ((long)(u + UAC_UNIT) << 32));
1794 dl 1.126 if (w.eventCount != (e | INT_SIGN))
1795     break outer;
1796     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1797 dl 1.122 w.eventCount = (e + E_SEQ) & E_MASK;
1798     if ((p = w.parker) != null)
1799     U.unpark(p);
1800     if (--n <= 0)
1801     break;
1802     }
1803 dl 1.120 }
1804     }
1805     }
1806     }
1807    
1808     /**
1809 dl 1.78 * Tries to locate and execute tasks for a stealer of the given
1810     * task, or in turn one of its stealers, Traces currentSteal ->
1811     * currentJoin links looking for a thread working on a descendant
1812     * of the given task and with a non-empty queue to steal back and
1813     * execute tasks from. The first call to this method upon a
1814     * waiting join will often entail scanning/search, (which is OK
1815     * because the joiner has nothing better to do), but this method
1816     * leaves hints in workers to speed up subsequent calls. The
1817     * implementation is very branchy to cope with potential
1818     * inconsistencies or loops encountering chains that are stale,
1819 dl 1.95 * unknown, or so long that they are likely cyclic.
1820 dl 1.78 *
1821     * @param joiner the joining worker
1822     * @param task the task to join
1823 dl 1.95 * @return 0 if no progress can be made, negative if task
1824     * known complete, else positive
1825 dl 1.78 */
1826 dl 1.95 private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1827     int stat = 0, steps = 0; // bound to avoid cycles
1828     if (joiner != null && task != null) { // hoist null checks
1829     restart: for (;;) {
1830     ForkJoinTask<?> subtask = task; // current target
1831     for (WorkQueue j = joiner, v;;) { // v is stealer of subtask
1832     WorkQueue[] ws; int m, s, h;
1833     if ((s = task.status) < 0) {
1834     stat = s;
1835     break restart;
1836     }
1837     if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1838     break restart; // shutting down
1839 dl 1.112 if ((v = ws[h = (j.hint | 1) & m]) == null ||
1840 dl 1.95 v.currentSteal != subtask) {
1841     for (int origin = h;;) { // find stealer
1842     if (((h = (h + 2) & m) & 15) == 1 &&
1843     (subtask.status < 0 || j.currentJoin != subtask))
1844     continue restart; // occasional staleness check
1845     if ((v = ws[h]) != null &&
1846     v.currentSteal == subtask) {
1847 dl 1.112 j.hint = h; // save hint
1848 dl 1.95 break;
1849     }
1850     if (h == origin)
1851     break restart; // cannot find stealer
1852 dl 1.78 }
1853     }
1854 dl 1.95 for (;;) { // help stealer or descend to its stealer
1855     ForkJoinTask[] a; int b;
1856     if (subtask.status < 0) // surround probes with
1857     continue restart; // consistency checks
1858     if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1859     int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1860     ForkJoinTask<?> t =
1861     (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1862     if (subtask.status < 0 || j.currentJoin != subtask ||
1863     v.currentSteal != subtask)
1864     continue restart; // stale
1865     stat = 1; // apparent progress
1866     if (t != null && v.base == b &&
1867     U.compareAndSwapObject(a, i, t, null)) {
1868     v.base = b + 1; // help stealer
1869     joiner.runSubtask(t);
1870     }
1871     else if (v.base == b && ++steps == MAX_HELP)
1872     break restart; // v apparently stalled
1873     }
1874     else { // empty -- try to descend
1875     ForkJoinTask<?> next = v.currentJoin;
1876     if (subtask.status < 0 || j.currentJoin != subtask ||
1877     v.currentSteal != subtask)
1878     continue restart; // stale
1879     else if (next == null || ++steps == MAX_HELP)
1880     break restart; // dead-end or maybe cyclic
1881     else {
1882     subtask = next;
1883     j = v;
1884     break;
1885     }
1886 dl 1.78 }
1887 dl 1.52 }
1888 dl 1.19 }
1889 dl 1.78 }
1890 dl 1.14 }
1891 dl 1.95 return stat;
1892 dl 1.22 }
1893    
1894 dl 1.52 /**
1895 dl 1.105 * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1896 jsr166 1.111 * and run tasks within the target's computation.
1897 dl 1.105 *
1898     * @param task the task to join
1899     * @param mode if shared, exit upon completing any task
1900     * if all workers are active
1901 dl 1.19 */
1902 dl 1.105 private int helpComplete(ForkJoinTask<?> task, int mode) {
1903 dl 1.112 WorkQueue[] ws; WorkQueue q; int m, n, s, u;
1904 dl 1.105 if (task != null && (ws = workQueues) != null &&
1905     (m = ws.length - 1) >= 0) {
1906     for (int j = 1, origin = j;;) {
1907     if ((s = task.status) < 0)
1908     return s;
1909     if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) {
1910     origin = j;
1911 dl 1.112 if (mode == SHARED_QUEUE &&
1912     ((u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0))
1913 dl 1.105 break;
1914     }
1915     else if ((j = (j + 2) & m) == origin)
1916 dl 1.78 break;
1917 dl 1.52 }
1918     }
1919 dl 1.105 return 0;
1920 dl 1.14 }
1921    
1922     /**
1923 dl 1.90 * Tries to decrement active count (sometimes implicitly) and
1924     * possibly release or create a compensating worker in preparation
1925     * for blocking. Fails on contention or termination. Otherwise,
1926 dl 1.105 * adds a new thread if no idle workers are available and pool
1927     * may become starved.
1928 dl 1.90 */
1929 dl 1.105 final boolean tryCompensate() {
1930 dl 1.112 int pc = config & SMASK, e, i, tc; long c;
1931 dl 1.105 WorkQueue[] ws; WorkQueue w; Thread p;
1932 dl 1.112 if ((ws = workQueues) != null && (e = (int)(c = ctl)) >= 0) {
1933 dl 1.105 if (e != 0 && (i = e & SMASK) < ws.length &&
1934     (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1935     long nc = ((long)(w.nextWait & E_MASK) |
1936     (c & (AC_MASK|TC_MASK)));
1937     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1938     w.eventCount = (e + E_SEQ) & E_MASK;
1939     if ((p = w.parker) != null)
1940     U.unpark(p);
1941     return true; // replace with idle worker
1942 dl 1.90 }
1943     }
1944 dl 1.112 else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
1945     (int)(c >> AC_SHIFT) + pc > 1) {
1946 dl 1.105 long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1947     if (U.compareAndSwapLong(this, CTL, c, nc))
1948 dl 1.112 return true; // no compensation
1949 dl 1.105 }
1950 dl 1.112 else if (tc + pc < MAX_CAP) {
1951 dl 1.105 long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1952     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1953 dl 1.115 ForkJoinWorkerThreadFactory fac;
1954     Throwable ex = null;
1955     ForkJoinWorkerThread wt = null;
1956     try {
1957     if ((fac = factory) != null &&
1958     (wt = fac.newThread(this)) != null) {
1959     wt.start();
1960     return true;
1961     }
1962     } catch (Throwable rex) {
1963     ex = rex;
1964     }
1965     deregisterWorker(wt, ex); // clean up and return false
1966 dl 1.90 }
1967     }
1968     }
1969     return false;
1970     }
1971    
1972     /**
1973 jsr166 1.93 * Helps and/or blocks until the given task is done.
1974 dl 1.90 *
1975     * @param joiner the joining worker
1976     * @param task the task
1977     * @return task status on exit
1978     */
1979     final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1980 dl 1.105 int s = 0;
1981     if (joiner != null && task != null && (s = task.status) >= 0) {
1982 dl 1.95 ForkJoinTask<?> prevJoin = joiner.currentJoin;
1983 dl 1.94 joiner.currentJoin = task;
1984 dl 1.115 do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
1985 dl 1.105 joiner.tryRemoveAndExec(task)); // process local tasks
1986 dl 1.115 if (s >= 0 && (s = task.status) >= 0) {
1987 dl 1.120 helpSignal(task, joiner.poolIndex);
1988 dl 1.115 if ((s = task.status) >= 0 &&
1989     (task instanceof CountedCompleter))
1990     s = helpComplete(task, LIFO_QUEUE);
1991     }
1992 dl 1.105 while (s >= 0 && (s = task.status) >= 0) {
1993 dl 1.115 if ((!joiner.isEmpty() || // try helping
1994 dl 1.105 (s = tryHelpStealer(joiner, task)) == 0) &&
1995 dl 1.112 (s = task.status) >= 0) {
1996 dl 1.120 helpSignal(task, joiner.poolIndex);
1997 dl 1.115 if ((s = task.status) >= 0 && tryCompensate()) {
1998 dl 1.112 if (task.trySetSignal() && (s = task.status) >= 0) {
1999     synchronized (task) {
2000     if (task.status >= 0) {
2001     try { // see ForkJoinTask
2002     task.wait(); // for explanation
2003     } catch (InterruptedException ie) {
2004     }
2005 dl 1.90 }
2006 dl 1.112 else
2007     task.notifyAll();
2008 dl 1.90 }
2009     }
2010 dl 1.112 long c; // re-activate
2011     do {} while (!U.compareAndSwapLong
2012     (this, CTL, c = ctl, c + AC_UNIT));
2013 dl 1.90 }
2014     }
2015     }
2016 dl 1.105 joiner.currentJoin = prevJoin;
2017 dl 1.90 }
2018 dl 1.94 return s;
2019 dl 1.90 }
2020    
2021     /**
2022     * Stripped-down variant of awaitJoin used by timed joins. Tries
2023     * to help join only while there is continuous progress. (Caller
2024     * will then enter a timed wait.)
2025     *
2026     * @param joiner the joining worker
2027     * @param task the task
2028     */
2029 dl 1.105 final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2030 dl 1.90 int s;
2031 dl 1.105 if (joiner != null && task != null && (s = task.status) >= 0) {
2032     ForkJoinTask<?> prevJoin = joiner.currentJoin;
2033     joiner.currentJoin = task;
2034 dl 1.115 do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
2035 dl 1.105 joiner.tryRemoveAndExec(task));
2036 dl 1.115 if (s >= 0 && (s = task.status) >= 0) {
2037 dl 1.120 helpSignal(task, joiner.poolIndex);
2038 dl 1.115 if ((s = task.status) >= 0 &&
2039     (task instanceof CountedCompleter))
2040     s = helpComplete(task, LIFO_QUEUE);
2041     }
2042     if (s >= 0 && joiner.isEmpty()) {
2043 dl 1.105 do {} while (task.status >= 0 &&
2044     tryHelpStealer(joiner, task) > 0);
2045     }
2046     joiner.currentJoin = prevJoin;
2047     }
2048 dl 1.90 }
2049    
2050     /**
2051     * Returns a (probably) non-empty steal queue, if one is found
2052 dl 1.131 * during a scan, else null. This method must be retried by
2053     * caller if, by the time it tries to use the queue, it is empty.
2054 dl 1.105 * @param r a (random) seed for scanning
2055 dl 1.78 */
2056 dl 1.105 private WorkQueue findNonEmptyStealQueue(int r) {
2057 dl 1.131 for (;;) {
2058     int ps = plock, m; WorkQueue[] ws; WorkQueue q;
2059     if ((ws = workQueues) != null && (m = ws.length - 1) >= 0) {
2060     for (int j = (m + 1) << 2; j >= 0; --j) {
2061     if ((q = ws[(((r + j) << 1) | 1) & m]) != null &&
2062     q.base - q.top < 0)
2063     return q;
2064 dl 1.52 }
2065     }
2066 dl 1.131 if (plock == ps)
2067     return null;
2068 dl 1.22 }
2069     }
2070    
2071     /**
2072 dl 1.78 * Runs tasks until {@code isQuiescent()}. We piggyback on
2073     * active count ctl maintenance, but rather than blocking
2074     * when tasks cannot be found, we rescan until all others cannot
2075     * find tasks either.
2076     */
2077     final void helpQuiescePool(WorkQueue w) {
2078     for (boolean active = true;;) {
2079 dl 1.131 long c; WorkQueue q; ForkJoinTask<?> t; int b;
2080     while ((t = w.nextLocalTask()) != null) {
2081     if (w.base - w.top < 0)
2082     signalWork(w);
2083     t.doExec();
2084     }
2085     if ((q = findNonEmptyStealQueue(w.nextSeed())) != null) {
2086 dl 1.78 if (!active) { // re-establish active count
2087     active = true;
2088     do {} while (!U.compareAndSwapLong
2089     (this, CTL, c = ctl, c + AC_UNIT));
2090     }
2091 dl 1.130 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2092     if (q.base - q.top < 0)
2093     signalWork(q);
2094 dl 1.78 w.runSubtask(t);
2095 dl 1.130 }
2096 dl 1.78 }
2097 dl 1.131 else if (active) { // decrement active count without queuing
2098     long nc = (c = ctl) - AC_UNIT;
2099     if ((int)(nc >> AC_SHIFT) + (config & SMASK) == 0)
2100     return; // bypass decrement-then-increment
2101     if (U.compareAndSwapLong(this, CTL, c, nc))
2102 dl 1.78 active = false;
2103 dl 1.22 }
2104 dl 1.131 else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) == 0 &&
2105     U.compareAndSwapLong(this, CTL, c, c + AC_UNIT))
2106     return;
2107 dl 1.22 }
2108     }
2109    
2110     /**
2111 jsr166 1.84 * Gets and removes a local or stolen task for the given worker.
2112 dl 1.78 *
2113     * @return a task, if available
2114 dl 1.22 */
2115 dl 1.78 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2116     for (ForkJoinTask<?> t;;) {
2117 dl 1.90 WorkQueue q; int b;
2118 dl 1.78 if ((t = w.nextLocalTask()) != null)
2119     return t;
2120 dl 1.105 if ((q = findNonEmptyStealQueue(w.nextSeed())) == null)
2121 dl 1.78 return null;
2122 dl 1.130 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2123     if (q.base - q.top < 0)
2124     signalWork(q);
2125 dl 1.78 return t;
2126 dl 1.130 }
2127 dl 1.52 }
2128 dl 1.14 }
2129    
2130     /**
2131 dl 1.105 * Returns a cheap heuristic guide for task partitioning when
2132     * programmers, frameworks, tools, or languages have little or no
2133     * idea about task granularity. In essence by offering this
2134     * method, we ask users only about tradeoffs in overhead vs
2135     * expected throughput and its variance, rather than how finely to
2136     * partition tasks.
2137     *
2138     * In a steady state strict (tree-structured) computation, each
2139     * thread makes available for stealing enough tasks for other
2140     * threads to remain active. Inductively, if all threads play by
2141     * the same rules, each thread should make available only a
2142     * constant number of tasks.
2143     *
2144     * The minimum useful constant is just 1. But using a value of 1
2145     * would require immediate replenishment upon each steal to
2146     * maintain enough tasks, which is infeasible. Further,
2147     * partitionings/granularities of offered tasks should minimize
2148     * steal rates, which in general means that threads nearer the top
2149     * of computation tree should generate more than those nearer the
2150     * bottom. In perfect steady state, each thread is at
2151     * approximately the same level of computation tree. However,
2152     * producing extra tasks amortizes the uncertainty of progress and
2153     * diffusion assumptions.
2154     *
2155 jsr166 1.161 * So, users will want to use values larger (but not much larger)
2156 dl 1.105 * than 1 to both smooth over transient shortages and hedge
2157     * against uneven progress; as traded off against the cost of
2158     * extra task overhead. We leave the user to pick a threshold
2159     * value to compare with the results of this call to guide
2160     * decisions, but recommend values such as 3.
2161     *
2162     * When all threads are active, it is on average OK to estimate
2163     * surplus strictly locally. In steady-state, if one thread is
2164     * maintaining say 2 surplus tasks, then so are others. So we can
2165     * just use estimated queue length. However, this strategy alone
2166     * leads to serious mis-estimates in some non-steady-state
2167     * conditions (ramp-up, ramp-down, other stalls). We can detect
2168     * many of these by further considering the number of "idle"
2169     * threads, that are known to have zero queued tasks, so
2170     * compensate by a factor of (#idle/#active) threads.
2171     *
2172     * Note: The approximation of #busy workers as #active workers is
2173     * not very good under current signalling scheme, and should be
2174     * improved.
2175     */
2176     static int getSurplusQueuedTaskCount() {
2177     Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2178     if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2179 dl 1.112 int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2180     int n = (q = wt.workQueue).top - q.base;
2181 dl 1.105 int a = (int)(pool.ctl >> AC_SHIFT) + p;
2182 dl 1.112 return n - (a > (p >>>= 1) ? 0 :
2183     a > (p >>>= 1) ? 1 :
2184     a > (p >>>= 1) ? 2 :
2185     a > (p >>>= 1) ? 4 :
2186     8);
2187 dl 1.105 }
2188     return 0;
2189 dl 1.100 }
2190    
2191 dl 1.86 // Termination
2192 dl 1.14
2193     /**
2194 dl 1.86 * Possibly initiates and/or completes termination. The caller
2195     * triggering termination runs three passes through workQueues:
2196     * (0) Setting termination status, followed by wakeups of queued
2197     * workers; (1) cancelling all tasks; (2) interrupting lagging
2198     * threads (likely in external tasks, but possibly also blocked in
2199     * joins). Each pass repeats previous steps because of potential
2200     * lagging thread creation.
2201 dl 1.14 *
2202     * @param now if true, unconditionally terminate, else only
2203 dl 1.78 * if no work and no active workers
2204 jsr166 1.87 * @param enable if true, enable shutdown when next possible
2205 dl 1.14 * @return true if now terminating or terminated
2206 jsr166 1.1 */
2207 dl 1.86 private boolean tryTerminate(boolean now, boolean enable) {
2208 dl 1.131 int ps;
2209 dl 1.134 if (this == common) // cannot shut down
2210 dl 1.105 return false;
2211 dl 1.131 if ((ps = plock) >= 0) { // enable by setting plock
2212     if (!enable)
2213     return false;
2214     if ((ps & PL_LOCK) != 0 ||
2215     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2216     ps = acquirePlock();
2217     int nps = ((ps + PL_LOCK) & ~SHUTDOWN) | SHUTDOWN;
2218     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2219     releasePlock(nps);
2220     }
2221 dl 1.78 for (long c;;) {
2222 dl 1.131 if (((c = ctl) & STOP_BIT) != 0) { // already terminating
2223 dl 1.112 if ((short)(c >>> TC_SHIFT) == -(config & SMASK)) {
2224 jsr166 1.103 synchronized (this) {
2225 dl 1.131 notifyAll(); // signal when 0 workers
2226 dl 1.101 }
2227 dl 1.78 }
2228     return true;
2229     }
2230 dl 1.131 if (!now) { // check if idle & no tasks
2231     WorkQueue[] ws; WorkQueue w;
2232     if ((int)(c >> AC_SHIFT) != -(config & SMASK))
2233 dl 1.86 return false;
2234 dl 1.131 if ((ws = workQueues) != null) {
2235     for (int i = 0; i < ws.length; ++i) {
2236     if ((w = ws[i]) != null) {
2237     if (!w.isEmpty()) { // signal unprocessed tasks
2238     signalWork(w);
2239     return false;
2240     }
2241     if ((i & 1) != 0 && w.eventCount >= 0)
2242     return false; // unqueued inactive worker
2243     }
2244 dl 1.78 }
2245 dl 1.52 }
2246     }
2247 dl 1.86 if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2248     for (int pass = 0; pass < 3; ++pass) {
2249 dl 1.131 WorkQueue[] ws; WorkQueue w; Thread wt;
2250     if ((ws = workQueues) != null) {
2251 dl 1.86 int n = ws.length;
2252     for (int i = 0; i < n; ++i) {
2253     if ((w = ws[i]) != null) {
2254 dl 1.105 w.qlock = -1;
2255 dl 1.86 if (pass > 0) {
2256     w.cancelAll();
2257 dl 1.126 if (pass > 1 && (wt = w.owner) != null) {
2258     if (!wt.isInterrupted()) {
2259     try {
2260     wt.interrupt();
2261 dl 1.131 } catch (Throwable ignore) {
2262 dl 1.126 }
2263     }
2264     U.unpark(wt);
2265     }
2266 dl 1.52 }
2267 dl 1.19 }
2268     }
2269 dl 1.86 // Wake up workers parked on event queue
2270     int i, e; long cc; Thread p;
2271     while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2272 dl 1.131 (i = e & SMASK) < n && i >= 0 &&
2273 dl 1.86 (w = ws[i]) != null) {
2274     long nc = ((long)(w.nextWait & E_MASK) |
2275     ((cc + AC_UNIT) & AC_MASK) |
2276     (cc & (TC_MASK|STOP_BIT)));
2277     if (w.eventCount == (e | INT_SIGN) &&
2278     U.compareAndSwapLong(this, CTL, cc, nc)) {
2279     w.eventCount = (e + E_SEQ) & E_MASK;
2280 dl 1.105 w.qlock = -1;
2281 dl 1.86 if ((p = w.parker) != null)
2282     U.unpark(p);
2283     }
2284     }
2285 dl 1.78 }
2286 dl 1.52 }
2287     }
2288     }
2289     }
2290    
2291 dl 1.105 // external operations on common pool
2292    
2293     /**
2294     * Returns common pool queue for a thread that has submitted at
2295     * least one task.
2296     */
2297     static WorkQueue commonSubmitterQueue() {
2298 dl 1.139 ForkJoinPool p; WorkQueue[] ws; int m, z;
2299     return ((z = ThreadLocalRandom.getProbe()) != 0 &&
2300 dl 1.134 (p = common) != null &&
2301 dl 1.105 (ws = p.workQueues) != null &&
2302     (m = ws.length - 1) >= 0) ?
2303 dl 1.139 ws[m & z & SQMASK] : null;
2304 dl 1.105 }
2305    
2306     /**
2307     * Tries to pop the given task from submitter's queue in common pool.
2308     */
2309     static boolean tryExternalUnpush(ForkJoinTask<?> t) {
2310 dl 1.139 ForkJoinPool p; WorkQueue[] ws; WorkQueue q;
2311     ForkJoinTask<?>[] a; int m, s, z;
2312 dl 1.115 if (t != null &&
2313 dl 1.139 (z = ThreadLocalRandom.getProbe()) != 0 &&
2314 dl 1.134 (p = common) != null &&
2315 dl 1.105 (ws = p.workQueues) != null &&
2316     (m = ws.length - 1) >= 0 &&
2317 dl 1.139 (q = ws[m & z & SQMASK]) != null &&
2318 dl 1.105 (s = q.top) != q.base &&
2319 dl 1.115 (a = q.array) != null) {
2320     long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
2321     if (U.getObject(a, j) == t &&
2322     U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2323     if (q.array == a && q.top == s && // recheck
2324     U.compareAndSwapObject(a, j, t, null)) {
2325     q.top = s - 1;
2326     q.qlock = 0;
2327     return true;
2328     }
2329 dl 1.105 q.qlock = 0;
2330     }
2331     }
2332     return false;
2333     }
2334    
2335     /**
2336     * Tries to pop and run local tasks within the same computation
2337     * as the given root. On failure, tries to help complete from
2338     * other queues via helpComplete.
2339     */
2340     private void externalHelpComplete(WorkQueue q, ForkJoinTask<?> root) {
2341     ForkJoinTask<?>[] a; int m;
2342     if (q != null && (a = q.array) != null && (m = (a.length - 1)) >= 0 &&
2343     root != null && root.status >= 0) {
2344     for (;;) {
2345 dl 1.112 int s, u; Object o; CountedCompleter<?> task = null;
2346 dl 1.105 if ((s = q.top) - q.base > 0) {
2347     long j = ((m & (s - 1)) << ASHIFT) + ABASE;
2348     if ((o = U.getObject(a, j)) != null &&
2349     (o instanceof CountedCompleter)) {
2350     CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2351     do {
2352     if (r == root) {
2353     if (U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2354     if (q.array == a && q.top == s &&
2355     U.compareAndSwapObject(a, j, t, null)) {
2356     q.top = s - 1;
2357     task = t;
2358     }
2359     q.qlock = 0;
2360     }
2361     break;
2362     }
2363 jsr166 1.106 } while ((r = r.completer) != null);
2364 dl 1.105 }
2365     }
2366     if (task != null)
2367     task.doExec();
2368 dl 1.112 if (root.status < 0 ||
2369 dl 1.160 (config != 0 &&
2370     ((u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0)))
2371 dl 1.105 break;
2372 dl 1.160 if (task == null) {
2373 dl 1.120 helpSignal(root, q.poolIndex);
2374 dl 1.115 if (root.status >= 0)
2375 dl 1.105 helpComplete(root, SHARED_QUEUE);
2376     break;
2377     }
2378     }
2379     }
2380     }
2381    
2382     /**
2383     * Tries to help execute or signal availability of the given task
2384     * from submitter's queue in common pool.
2385     */
2386     static void externalHelpJoin(ForkJoinTask<?> t) {
2387     // Some hard-to-avoid overlap with tryExternalUnpush
2388 dl 1.139 ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w;
2389     ForkJoinTask<?>[] a; int m, s, n, z;
2390 dl 1.112 if (t != null &&
2391 dl 1.139 (z = ThreadLocalRandom.getProbe()) != 0 &&
2392 dl 1.134 (p = common) != null &&
2393 dl 1.105 (ws = p.workQueues) != null &&
2394     (m = ws.length - 1) >= 0 &&
2395 dl 1.139 (q = ws[m & z & SQMASK]) != null &&
2396 dl 1.115 (a = q.array) != null) {
2397     int am = a.length - 1;
2398     if ((s = q.top) != q.base) {
2399     long j = ((am & (s - 1)) << ASHIFT) + ABASE;
2400     if (U.getObject(a, j) == t &&
2401     U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2402     if (q.array == a && q.top == s &&
2403     U.compareAndSwapObject(a, j, t, null)) {
2404     q.top = s - 1;
2405     q.qlock = 0;
2406     t.doExec();
2407     }
2408     else
2409     q.qlock = 0;
2410 dl 1.105 }
2411     }
2412     if (t.status >= 0) {
2413     if (t instanceof CountedCompleter)
2414     p.externalHelpComplete(q, t);
2415     else
2416 dl 1.120 p.helpSignal(t, q.poolIndex);
2417 dl 1.105 }
2418     }
2419     }
2420    
2421 dl 1.52 // Exported methods
2422 jsr166 1.1
2423     // Constructors
2424    
2425     /**
2426 jsr166 1.9 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2427 dl 1.18 * java.lang.Runtime#availableProcessors}, using the {@linkplain
2428     * #defaultForkJoinWorkerThreadFactory default thread factory},
2429     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2430 jsr166 1.1 *
2431     * @throws SecurityException if a security manager exists and
2432     * the caller is not permitted to modify threads
2433     * because it does not hold {@link
2434     * java.lang.RuntimePermission}{@code ("modifyThread")}
2435     */
2436     public ForkJoinPool() {
2437 jsr166 1.148 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2438     defaultForkJoinWorkerThreadFactory, null, false);
2439 jsr166 1.1 }
2440    
2441     /**
2442 jsr166 1.9 * Creates a {@code ForkJoinPool} with the indicated parallelism
2443 dl 1.18 * level, the {@linkplain
2444     * #defaultForkJoinWorkerThreadFactory default thread factory},
2445     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2446 jsr166 1.1 *
2447 jsr166 1.9 * @param parallelism the parallelism level
2448 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
2449 jsr166 1.11 * equal to zero, or greater than implementation limit
2450 jsr166 1.1 * @throws SecurityException if a security manager exists and
2451     * the caller is not permitted to modify threads
2452     * because it does not hold {@link
2453     * java.lang.RuntimePermission}{@code ("modifyThread")}
2454     */
2455     public ForkJoinPool(int parallelism) {
2456 dl 1.18 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2457 jsr166 1.1 }
2458    
2459     /**
2460 dl 1.18 * Creates a {@code ForkJoinPool} with the given parameters.
2461 jsr166 1.1 *
2462 dl 1.18 * @param parallelism the parallelism level. For default value,
2463     * use {@link java.lang.Runtime#availableProcessors}.
2464     * @param factory the factory for creating new threads. For default value,
2465     * use {@link #defaultForkJoinWorkerThreadFactory}.
2466 dl 1.19 * @param handler the handler for internal worker threads that
2467     * terminate due to unrecoverable errors encountered while executing
2468 jsr166 1.31 * tasks. For default value, use {@code null}.
2469 dl 1.19 * @param asyncMode if true,
2470 dl 1.18 * establishes local first-in-first-out scheduling mode for forked
2471     * tasks that are never joined. This mode may be more appropriate
2472     * than default locally stack-based mode in applications in which
2473     * worker threads only process event-style asynchronous tasks.
2474 jsr166 1.31 * For default value, use {@code false}.
2475 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
2476 jsr166 1.11 * equal to zero, or greater than implementation limit
2477     * @throws NullPointerException if the factory is null
2478 jsr166 1.1 * @throws SecurityException if a security manager exists and
2479     * the caller is not permitted to modify threads
2480     * because it does not hold {@link
2481     * java.lang.RuntimePermission}{@code ("modifyThread")}
2482     */
2483 dl 1.19 public ForkJoinPool(int parallelism,
2484 dl 1.18 ForkJoinWorkerThreadFactory factory,
2485 jsr166 1.156 UncaughtExceptionHandler handler,
2486 dl 1.18 boolean asyncMode) {
2487 dl 1.152 this(checkParallelism(parallelism),
2488     checkFactory(factory),
2489     handler,
2490     asyncMode,
2491     "ForkJoinPool-" + nextPoolId() + "-worker-");
2492 dl 1.14 checkPermission();
2493 dl 1.152 }
2494    
2495     private static int checkParallelism(int parallelism) {
2496     if (parallelism <= 0 || parallelism > MAX_CAP)
2497     throw new IllegalArgumentException();
2498     return parallelism;
2499     }
2500    
2501     private static ForkJoinWorkerThreadFactory checkFactory
2502     (ForkJoinWorkerThreadFactory factory) {
2503 dl 1.14 if (factory == null)
2504     throw new NullPointerException();
2505 dl 1.152 return factory;
2506     }
2507    
2508     /**
2509     * Creates a {@code ForkJoinPool} with the given parameters, without
2510     * any security checks or parameter validation. Invoked directly by
2511     * makeCommonPool.
2512     */
2513     private ForkJoinPool(int parallelism,
2514     ForkJoinWorkerThreadFactory factory,
2515 jsr166 1.156 UncaughtExceptionHandler handler,
2516 dl 1.152 boolean asyncMode,
2517     String workerNamePrefix) {
2518     this.workerNamePrefix = workerNamePrefix;
2519 jsr166 1.1 this.factory = factory;
2520 dl 1.18 this.ueh = handler;
2521 jsr166 1.113 this.config = parallelism | (asyncMode ? (FIFO_QUEUE << 16) : 0);
2522 dl 1.52 long np = (long)(-parallelism); // offset ctl counts
2523     this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2524 dl 1.101 }
2525    
2526     /**
2527 dl 1.128 * Returns the common pool instance. This pool is statically
2528 dl 1.134 * constructed; its run state is unaffected by attempts to {@link
2529     * #shutdown} or {@link #shutdownNow}. However this pool and any
2530     * ongoing processing are automatically terminated upon program
2531     * {@link System#exit}. Any program that relies on asynchronous
2532     * task processing to complete before program termination should
2533 jsr166 1.158 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2534     * before exit.
2535 dl 1.100 *
2536     * @return the common pool instance
2537 jsr166 1.138 * @since 1.8
2538 dl 1.100 */
2539     public static ForkJoinPool commonPool() {
2540 dl 1.134 // assert common != null : "static init error";
2541     return common;
2542 dl 1.100 }
2543    
2544 jsr166 1.1 // Execution methods
2545    
2546     /**
2547     * Performs the given task, returning its result upon completion.
2548 dl 1.52 * If the computation encounters an unchecked Exception or Error,
2549     * it is rethrown as the outcome of this invocation. Rethrown
2550     * exceptions behave in the same way as regular exceptions, but,
2551     * when possible, contain stack traces (as displayed for example
2552     * using {@code ex.printStackTrace()}) of both the current thread
2553     * as well as the thread actually encountering the exception;
2554     * minimally only the latter.
2555 jsr166 1.1 *
2556     * @param task the task
2557     * @return the task's result
2558 jsr166 1.11 * @throws NullPointerException if the task is null
2559     * @throws RejectedExecutionException if the task cannot be
2560     * scheduled for execution
2561 jsr166 1.1 */
2562     public <T> T invoke(ForkJoinTask<T> task) {
2563 dl 1.90 if (task == null)
2564     throw new NullPointerException();
2565 dl 1.105 externalPush(task);
2566 dl 1.78 return task.join();
2567 jsr166 1.1 }
2568    
2569     /**
2570     * Arranges for (asynchronous) execution of the given task.
2571     *
2572     * @param task the task
2573 jsr166 1.11 * @throws NullPointerException if the task is null
2574     * @throws RejectedExecutionException if the task cannot be
2575     * scheduled for execution
2576 jsr166 1.1 */
2577 jsr166 1.8 public void execute(ForkJoinTask<?> task) {
2578 dl 1.90 if (task == null)
2579     throw new NullPointerException();
2580 dl 1.105 externalPush(task);
2581 jsr166 1.1 }
2582    
2583     // AbstractExecutorService methods
2584    
2585 jsr166 1.11 /**
2586     * @throws NullPointerException if the task is null
2587     * @throws RejectedExecutionException if the task cannot be
2588     * scheduled for execution
2589     */
2590 jsr166 1.1 public void execute(Runnable task) {
2591 dl 1.41 if (task == null)
2592     throw new NullPointerException();
2593 jsr166 1.2 ForkJoinTask<?> job;
2594 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2595     job = (ForkJoinTask<?>) task;
2596 jsr166 1.2 else
2597 dl 1.152 job = new ForkJoinTask.RunnableExecuteAction(task);
2598 dl 1.105 externalPush(job);
2599 jsr166 1.1 }
2600    
2601 jsr166 1.11 /**
2602 dl 1.18 * Submits a ForkJoinTask for execution.
2603     *
2604     * @param task the task to submit
2605     * @return the task
2606     * @throws NullPointerException if the task is null
2607     * @throws RejectedExecutionException if the task cannot be
2608     * scheduled for execution
2609     */
2610     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2611 dl 1.90 if (task == null)
2612     throw new NullPointerException();
2613 dl 1.105 externalPush(task);
2614 dl 1.18 return task;
2615     }
2616    
2617     /**
2618 jsr166 1.11 * @throws NullPointerException if the task is null
2619     * @throws RejectedExecutionException if the task cannot be
2620     * scheduled for execution
2621     */
2622 jsr166 1.1 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2623 dl 1.90 ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2624 dl 1.105 externalPush(job);
2625 jsr166 1.1 return job;
2626     }
2627    
2628 jsr166 1.11 /**
2629     * @throws NullPointerException if the task is null
2630     * @throws RejectedExecutionException if the task cannot be
2631     * scheduled for execution
2632     */
2633 jsr166 1.1 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2634 dl 1.90 ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2635 dl 1.105 externalPush(job);
2636 jsr166 1.1 return job;
2637     }
2638    
2639 jsr166 1.11 /**
2640     * @throws NullPointerException if the task is null
2641     * @throws RejectedExecutionException if the task cannot be
2642     * scheduled for execution
2643     */
2644 jsr166 1.1 public ForkJoinTask<?> submit(Runnable task) {
2645 dl 1.41 if (task == null)
2646     throw new NullPointerException();
2647 jsr166 1.2 ForkJoinTask<?> job;
2648 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2649     job = (ForkJoinTask<?>) task;
2650 jsr166 1.2 else
2651 dl 1.90 job = new ForkJoinTask.AdaptedRunnableAction(task);
2652 dl 1.105 externalPush(job);
2653 jsr166 1.1 return job;
2654     }
2655    
2656     /**
2657 jsr166 1.11 * @throws NullPointerException {@inheritDoc}
2658     * @throws RejectedExecutionException {@inheritDoc}
2659     */
2660 jsr166 1.1 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2661 dl 1.86 // In previous versions of this class, this method constructed
2662     // a task to run ForkJoinTask.invokeAll, but now external
2663     // invocation of multiple tasks is at least as efficient.
2664 jsr166 1.143 ArrayList<Future<T>> futures = new ArrayList<Future<T>>(tasks.size());
2665 jsr166 1.1
2666 dl 1.86 boolean done = false;
2667     try {
2668     for (Callable<T> t : tasks) {
2669 dl 1.90 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2670 jsr166 1.144 futures.add(f);
2671 dl 1.105 externalPush(f);
2672 dl 1.86 }
2673 jsr166 1.143 for (int i = 0, size = futures.size(); i < size; i++)
2674     ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2675 dl 1.86 done = true;
2676     return futures;
2677     } finally {
2678     if (!done)
2679 jsr166 1.143 for (int i = 0, size = futures.size(); i < size; i++)
2680     futures.get(i).cancel(false);
2681 jsr166 1.1 }
2682     }
2683    
2684     /**
2685     * Returns the factory used for constructing new workers.
2686     *
2687     * @return the factory used for constructing new workers
2688     */
2689     public ForkJoinWorkerThreadFactory getFactory() {
2690     return factory;
2691     }
2692    
2693     /**
2694     * Returns the handler for internal worker threads that terminate
2695     * due to unrecoverable errors encountered while executing tasks.
2696     *
2697 jsr166 1.4 * @return the handler, or {@code null} if none
2698 jsr166 1.1 */
2699 jsr166 1.156 public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2700 dl 1.14 return ueh;
2701 jsr166 1.1 }
2702    
2703     /**
2704 jsr166 1.9 * Returns the targeted parallelism level of this pool.
2705 jsr166 1.1 *
2706 jsr166 1.9 * @return the targeted parallelism level of this pool
2707 jsr166 1.1 */
2708     public int getParallelism() {
2709 dl 1.160 int par = (config & SMASK);
2710     return (par > 0) ? par : 1;
2711 jsr166 1.1 }
2712    
2713     /**
2714 dl 1.100 * Returns the targeted parallelism level of the common pool.
2715     *
2716     * @return the targeted parallelism level of the common pool
2717 jsr166 1.138 * @since 1.8
2718 dl 1.100 */
2719     public static int getCommonPoolParallelism() {
2720 dl 1.134 return commonParallelism;
2721 dl 1.100 }
2722    
2723     /**
2724 jsr166 1.1 * Returns the number of worker threads that have started but not
2725 jsr166 1.34 * yet terminated. The result returned by this method may differ
2726 jsr166 1.4 * from {@link #getParallelism} when threads are created to
2727 jsr166 1.1 * maintain parallelism when others are cooperatively blocked.
2728     *
2729     * @return the number of worker threads
2730     */
2731     public int getPoolSize() {
2732 dl 1.112 return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2733 jsr166 1.1 }
2734    
2735     /**
2736 jsr166 1.4 * Returns {@code true} if this pool uses local first-in-first-out
2737 jsr166 1.1 * scheduling mode for forked tasks that are never joined.
2738     *
2739 jsr166 1.4 * @return {@code true} if this pool uses async mode
2740 jsr166 1.1 */
2741     public boolean getAsyncMode() {
2742 dl 1.112 return (config >>> 16) == FIFO_QUEUE;
2743 jsr166 1.1 }
2744    
2745     /**
2746     * Returns an estimate of the number of worker threads that are
2747     * not blocked waiting to join tasks or for other managed
2748 dl 1.14 * synchronization. This method may overestimate the
2749     * number of running threads.
2750 jsr166 1.1 *
2751     * @return the number of worker threads
2752     */
2753     public int getRunningThreadCount() {
2754 dl 1.78 int rc = 0;
2755     WorkQueue[] ws; WorkQueue w;
2756     if ((ws = workQueues) != null) {
2757 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2758     if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2759 dl 1.78 ++rc;
2760     }
2761     }
2762     return rc;
2763 jsr166 1.1 }
2764    
2765     /**
2766     * Returns an estimate of the number of threads that are currently
2767     * stealing or executing tasks. This method may overestimate the
2768     * number of active threads.
2769     *
2770     * @return the number of active threads
2771     */
2772     public int getActiveThreadCount() {
2773 dl 1.112 int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2774 jsr166 1.63 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2775 jsr166 1.1 }
2776    
2777     /**
2778 jsr166 1.4 * Returns {@code true} if all worker threads are currently idle.
2779     * An idle worker is one that cannot obtain a task to execute
2780     * because none are available to steal from other threads, and
2781     * there are no pending submissions to the pool. This method is
2782     * conservative; it might not return {@code true} immediately upon
2783     * idleness of all threads, but will eventually become true if
2784     * threads remain inactive.
2785 jsr166 1.1 *
2786 jsr166 1.4 * @return {@code true} if all threads are currently idle
2787 jsr166 1.1 */
2788     public boolean isQuiescent() {
2789 dl 1.112 return (int)(ctl >> AC_SHIFT) + (config & SMASK) == 0;
2790 jsr166 1.1 }
2791    
2792     /**
2793     * Returns an estimate of the total number of tasks stolen from
2794     * one thread's work queue by another. The reported value
2795     * underestimates the actual total number of steals when the pool
2796     * is not quiescent. This value may be useful for monitoring and
2797     * tuning fork/join programs: in general, steal counts should be
2798     * high enough to keep threads busy, but low enough to avoid
2799     * overhead and contention across threads.
2800     *
2801     * @return the number of steals
2802     */
2803     public long getStealCount() {
2804 dl 1.101 long count = stealCount;
2805 dl 1.78 WorkQueue[] ws; WorkQueue w;
2806     if ((ws = workQueues) != null) {
2807 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2808 dl 1.78 if ((w = ws[i]) != null)
2809 dl 1.105 count += w.nsteals;
2810 dl 1.78 }
2811     }
2812     return count;
2813 jsr166 1.1 }
2814    
2815     /**
2816     * Returns an estimate of the total number of tasks currently held
2817     * in queues by worker threads (but not including tasks submitted
2818     * to the pool that have not begun executing). This value is only
2819     * an approximation, obtained by iterating across all threads in
2820     * the pool. This method may be useful for tuning task
2821     * granularities.
2822     *
2823     * @return the number of queued tasks
2824     */
2825     public long getQueuedTaskCount() {
2826     long count = 0;
2827 dl 1.78 WorkQueue[] ws; WorkQueue w;
2828     if ((ws = workQueues) != null) {
2829 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2830 dl 1.78 if ((w = ws[i]) != null)
2831     count += w.queueSize();
2832     }
2833 dl 1.52 }
2834 jsr166 1.1 return count;
2835     }
2836    
2837     /**
2838 jsr166 1.8 * Returns an estimate of the number of tasks submitted to this
2839 dl 1.55 * pool that have not yet begun executing. This method may take
2840 dl 1.52 * time proportional to the number of submissions.
2841 jsr166 1.1 *
2842     * @return the number of queued submissions
2843     */
2844     public int getQueuedSubmissionCount() {
2845 dl 1.78 int count = 0;
2846     WorkQueue[] ws; WorkQueue w;
2847     if ((ws = workQueues) != null) {
2848 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2849 dl 1.78 if ((w = ws[i]) != null)
2850     count += w.queueSize();
2851     }
2852     }
2853     return count;
2854 jsr166 1.1 }
2855    
2856     /**
2857 jsr166 1.4 * Returns {@code true} if there are any tasks submitted to this
2858     * pool that have not yet begun executing.
2859 jsr166 1.1 *
2860     * @return {@code true} if there are any queued submissions
2861     */
2862     public boolean hasQueuedSubmissions() {
2863 dl 1.78 WorkQueue[] ws; WorkQueue w;
2864     if ((ws = workQueues) != null) {
2865 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2866 dl 1.115 if ((w = ws[i]) != null && !w.isEmpty())
2867 dl 1.78 return true;
2868     }
2869     }
2870     return false;
2871 jsr166 1.1 }
2872    
2873     /**
2874     * Removes and returns the next unexecuted submission if one is
2875     * available. This method may be useful in extensions to this
2876     * class that re-assign work in systems with multiple pools.
2877     *
2878 jsr166 1.4 * @return the next submission, or {@code null} if none
2879 jsr166 1.1 */
2880     protected ForkJoinTask<?> pollSubmission() {
2881 dl 1.78 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2882     if ((ws = workQueues) != null) {
2883 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2884 dl 1.78 if ((w = ws[i]) != null && (t = w.poll()) != null)
2885     return t;
2886 dl 1.52 }
2887     }
2888     return null;
2889 jsr166 1.1 }
2890    
2891     /**
2892     * Removes all available unexecuted submitted and forked tasks
2893     * from scheduling queues and adds them to the given collection,
2894     * without altering their execution status. These may include
2895 jsr166 1.8 * artificially generated or wrapped tasks. This method is
2896     * designed to be invoked only when the pool is known to be
2897 jsr166 1.1 * quiescent. Invocations at other times may not remove all
2898     * tasks. A failure encountered while attempting to add elements
2899     * to collection {@code c} may result in elements being in
2900     * neither, either or both collections when the associated
2901     * exception is thrown. The behavior of this operation is
2902     * undefined if the specified collection is modified while the
2903     * operation is in progress.
2904     *
2905     * @param c the collection to transfer elements into
2906     * @return the number of elements transferred
2907     */
2908 jsr166 1.5 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2909 dl 1.52 int count = 0;
2910 dl 1.78 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2911     if ((ws = workQueues) != null) {
2912 dl 1.86 for (int i = 0; i < ws.length; ++i) {
2913 dl 1.78 if ((w = ws[i]) != null) {
2914     while ((t = w.poll()) != null) {
2915     c.add(t);
2916     ++count;
2917     }
2918     }
2919 dl 1.52 }
2920     }
2921 dl 1.18 return count;
2922     }
2923    
2924     /**
2925 jsr166 1.1 * Returns a string identifying this pool, as well as its state,
2926     * including indications of run state, parallelism level, and
2927     * worker and task counts.
2928     *
2929     * @return a string identifying this pool, as well as its state
2930     */
2931     public String toString() {
2932 dl 1.86 // Use a single pass through workQueues to collect counts
2933     long qt = 0L, qs = 0L; int rc = 0;
2934 dl 1.101 long st = stealCount;
2935 dl 1.86 long c = ctl;
2936     WorkQueue[] ws; WorkQueue w;
2937     if ((ws = workQueues) != null) {
2938     for (int i = 0; i < ws.length; ++i) {
2939     if ((w = ws[i]) != null) {
2940     int size = w.queueSize();
2941     if ((i & 1) == 0)
2942     qs += size;
2943     else {
2944     qt += size;
2945 dl 1.105 st += w.nsteals;
2946 dl 1.86 if (w.isApparentlyUnblocked())
2947     ++rc;
2948     }
2949     }
2950     }
2951     }
2952 dl 1.112 int pc = (config & SMASK);
2953 dl 1.52 int tc = pc + (short)(c >>> TC_SHIFT);
2954 dl 1.78 int ac = pc + (int)(c >> AC_SHIFT);
2955     if (ac < 0) // ignore transient negative
2956     ac = 0;
2957 dl 1.52 String level;
2958     if ((c & STOP_BIT) != 0)
2959 jsr166 1.63 level = (tc == 0) ? "Terminated" : "Terminating";
2960 dl 1.52 else
2961 dl 1.105 level = plock < 0 ? "Shutting down" : "Running";
2962 jsr166 1.1 return super.toString() +
2963 dl 1.52 "[" + level +
2964 dl 1.14 ", parallelism = " + pc +
2965     ", size = " + tc +
2966     ", active = " + ac +
2967     ", running = " + rc +
2968 jsr166 1.1 ", steals = " + st +
2969     ", tasks = " + qt +
2970     ", submissions = " + qs +
2971     "]";
2972     }
2973    
2974     /**
2975 dl 1.100 * Possibly initiates an orderly shutdown in which previously
2976     * submitted tasks are executed, but no new tasks will be
2977     * accepted. Invocation has no effect on execution state if this
2978 jsr166 1.137 * is the {@link #commonPool()}, and no additional effect if
2979 dl 1.100 * already shut down. Tasks that are in the process of being
2980     * submitted concurrently during the course of this method may or
2981     * may not be rejected.
2982 jsr166 1.1 *
2983     * @throws SecurityException if a security manager exists and
2984     * the caller is not permitted to modify threads
2985     * because it does not hold {@link
2986     * java.lang.RuntimePermission}{@code ("modifyThread")}
2987     */
2988     public void shutdown() {
2989     checkPermission();
2990 dl 1.105 tryTerminate(false, true);
2991 jsr166 1.1 }
2992    
2993     /**
2994 dl 1.100 * Possibly attempts to cancel and/or stop all tasks, and reject
2995     * all subsequently submitted tasks. Invocation has no effect on
2996 jsr166 1.137 * execution state if this is the {@link #commonPool()}, and no
2997 dl 1.100 * additional effect if already shut down. Otherwise, tasks that
2998     * are in the process of being submitted or executed concurrently
2999     * during the course of this method may or may not be
3000     * rejected. This method cancels both existing and unexecuted
3001     * tasks, in order to permit termination in the presence of task
3002     * dependencies. So the method always returns an empty list
3003     * (unlike the case for some other Executors).
3004 jsr166 1.1 *
3005     * @return an empty list
3006     * @throws SecurityException if a security manager exists and
3007     * the caller is not permitted to modify threads
3008     * because it does not hold {@link
3009     * java.lang.RuntimePermission}{@code ("modifyThread")}
3010     */
3011     public List<Runnable> shutdownNow() {
3012     checkPermission();
3013 dl 1.105 tryTerminate(true, true);
3014 jsr166 1.1 return Collections.emptyList();
3015     }
3016    
3017     /**
3018     * Returns {@code true} if all tasks have completed following shut down.
3019     *
3020     * @return {@code true} if all tasks have completed following shut down
3021     */
3022     public boolean isTerminated() {
3023 dl 1.52 long c = ctl;
3024     return ((c & STOP_BIT) != 0L &&
3025 dl 1.112 (short)(c >>> TC_SHIFT) == -(config & SMASK));
3026 jsr166 1.1 }
3027    
3028     /**
3029     * Returns {@code true} if the process of termination has
3030 jsr166 1.9 * commenced but not yet completed. This method may be useful for
3031     * debugging. A return of {@code true} reported a sufficient
3032     * period after shutdown may indicate that submitted tasks have
3033 jsr166 1.119 * ignored or suppressed interruption, or are waiting for I/O,
3034 dl 1.49 * causing this executor not to properly terminate. (See the
3035     * advisory notes for class {@link ForkJoinTask} stating that
3036     * tasks should not normally entail blocking operations. But if
3037     * they do, they must abort them on interrupt.)
3038 jsr166 1.1 *
3039 jsr166 1.9 * @return {@code true} if terminating but not yet terminated
3040 jsr166 1.1 */
3041     public boolean isTerminating() {
3042 dl 1.52 long c = ctl;
3043     return ((c & STOP_BIT) != 0L &&
3044 dl 1.112 (short)(c >>> TC_SHIFT) != -(config & SMASK));
3045 jsr166 1.1 }
3046    
3047     /**
3048     * Returns {@code true} if this pool has been shut down.
3049     *
3050     * @return {@code true} if this pool has been shut down
3051     */
3052     public boolean isShutdown() {
3053 dl 1.105 return plock < 0;
3054 jsr166 1.9 }
3055    
3056     /**
3057 dl 1.105 * Blocks until all tasks have completed execution after a
3058     * shutdown request, or the timeout occurs, or the current thread
3059 dl 1.134 * is interrupted, whichever happens first. Because the {@link
3060     * #commonPool()} never terminates until program shutdown, when
3061     * applied to the common pool, this method is equivalent to {@link
3062 jsr166 1.158 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
3063 jsr166 1.1 *
3064     * @param timeout the maximum time to wait
3065     * @param unit the time unit of the timeout argument
3066     * @return {@code true} if this executor terminated and
3067     * {@code false} if the timeout elapsed before termination
3068     * @throws InterruptedException if interrupted while waiting
3069     */
3070     public boolean awaitTermination(long timeout, TimeUnit unit)
3071     throws InterruptedException {
3072 dl 1.134 if (Thread.interrupted())
3073     throw new InterruptedException();
3074     if (this == common) {
3075     awaitQuiescence(timeout, unit);
3076     return false;
3077     }
3078 dl 1.52 long nanos = unit.toNanos(timeout);
3079 dl 1.101 if (isTerminated())
3080     return true;
3081     long startTime = System.nanoTime();
3082     boolean terminated = false;
3083 jsr166 1.103 synchronized (this) {
3084 dl 1.101 for (long waitTime = nanos, millis = 0L;;) {
3085     if (terminated = isTerminated() ||
3086     waitTime <= 0L ||
3087     (millis = unit.toMillis(waitTime)) <= 0L)
3088     break;
3089     wait(millis);
3090     waitTime = nanos - (System.nanoTime() - startTime);
3091 dl 1.52 }
3092 dl 1.18 }
3093 dl 1.101 return terminated;
3094 jsr166 1.1 }
3095    
3096     /**
3097 dl 1.134 * If called by a ForkJoinTask operating in this pool, equivalent
3098     * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3099     * waits and/or attempts to assist performing tasks until this
3100     * pool {@link #isQuiescent} or the indicated timeout elapses.
3101     *
3102     * @param timeout the maximum time to wait
3103     * @param unit the time unit of the timeout argument
3104     * @return {@code true} if quiescent; {@code false} if the
3105     * timeout elapsed.
3106     */
3107     public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3108     long nanos = unit.toNanos(timeout);
3109     ForkJoinWorkerThread wt;
3110     Thread thread = Thread.currentThread();
3111     if ((thread instanceof ForkJoinWorkerThread) &&
3112     (wt = (ForkJoinWorkerThread)thread).pool == this) {
3113     helpQuiescePool(wt.workQueue);
3114     return true;
3115     }
3116     long startTime = System.nanoTime();
3117     WorkQueue[] ws;
3118     int r = 0, m;
3119     boolean found = true;
3120     while (!isQuiescent() && (ws = workQueues) != null &&
3121     (m = ws.length - 1) >= 0) {
3122     if (!found) {
3123     if ((System.nanoTime() - startTime) > nanos)
3124     return false;
3125     Thread.yield(); // cannot block
3126     }
3127     found = false;
3128     for (int j = (m + 1) << 2; j >= 0; --j) {
3129     ForkJoinTask<?> t; WorkQueue q; int b;
3130     if ((q = ws[r++ & m]) != null && (b = q.base) - q.top < 0) {
3131     found = true;
3132     if ((t = q.pollAt(b)) != null) {
3133     if (q.base - q.top < 0)
3134     signalWork(q);
3135     t.doExec();
3136     }
3137     break;
3138     }
3139     }
3140     }
3141     return true;
3142     }
3143    
3144     /**
3145     * Waits and/or attempts to assist performing tasks indefinitely
3146 jsr166 1.141 * until the {@link #commonPool()} {@link #isQuiescent}.
3147 dl 1.134 */
3148 dl 1.136 static void quiesceCommonPool() {
3149 dl 1.134 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3150     }
3151    
3152     /**
3153 jsr166 1.1 * Interface for extending managed parallelism for tasks running
3154 jsr166 1.8 * in {@link ForkJoinPool}s.
3155     *
3156 dl 1.19 * <p>A {@code ManagedBlocker} provides two methods. Method
3157     * {@code isReleasable} must return {@code true} if blocking is
3158     * not necessary. Method {@code block} blocks the current thread
3159     * if necessary (perhaps internally invoking {@code isReleasable}
3160 dl 1.54 * before actually blocking). These actions are performed by any
3161 jsr166 1.157 * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
3162     * The unusual methods in this API accommodate synchronizers that
3163     * may, but don't usually, block for long periods. Similarly, they
3164 dl 1.54 * allow more efficient internal handling of cases in which
3165     * additional workers may be, but usually are not, needed to
3166     * ensure sufficient parallelism. Toward this end,
3167     * implementations of method {@code isReleasable} must be amenable
3168     * to repeated invocation.
3169 jsr166 1.1 *
3170     * <p>For example, here is a ManagedBlocker based on a
3171     * ReentrantLock:
3172     * <pre> {@code
3173     * class ManagedLocker implements ManagedBlocker {
3174     * final ReentrantLock lock;
3175     * boolean hasLock = false;
3176     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3177     * public boolean block() {
3178     * if (!hasLock)
3179     * lock.lock();
3180     * return true;
3181     * }
3182     * public boolean isReleasable() {
3183     * return hasLock || (hasLock = lock.tryLock());
3184     * }
3185     * }}</pre>
3186 dl 1.19 *
3187     * <p>Here is a class that possibly blocks waiting for an
3188     * item on a given queue:
3189     * <pre> {@code
3190     * class QueueTaker<E> implements ManagedBlocker {
3191     * final BlockingQueue<E> queue;
3192     * volatile E item = null;
3193     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3194     * public boolean block() throws InterruptedException {
3195     * if (item == null)
3196 dl 1.23 * item = queue.take();
3197 dl 1.19 * return true;
3198     * }
3199     * public boolean isReleasable() {
3200 dl 1.23 * return item != null || (item = queue.poll()) != null;
3201 dl 1.19 * }
3202     * public E getItem() { // call after pool.managedBlock completes
3203     * return item;
3204     * }
3205     * }}</pre>
3206 jsr166 1.1 */
3207     public static interface ManagedBlocker {
3208     /**
3209     * Possibly blocks the current thread, for example waiting for
3210     * a lock or condition.
3211     *
3212 jsr166 1.4 * @return {@code true} if no additional blocking is necessary
3213     * (i.e., if isReleasable would return true)
3214 jsr166 1.1 * @throws InterruptedException if interrupted while waiting
3215     * (the method is not required to do so, but is allowed to)
3216     */
3217     boolean block() throws InterruptedException;
3218    
3219     /**
3220 jsr166 1.4 * Returns {@code true} if blocking is unnecessary.
3221 jsr166 1.154 * @return {@code true} if blocking is unnecessary
3222 jsr166 1.1 */
3223     boolean isReleasable();
3224     }
3225    
3226     /**
3227     * Blocks in accord with the given blocker. If the current thread
3228 jsr166 1.8 * is a {@link ForkJoinWorkerThread}, this method possibly
3229     * arranges for a spare thread to be activated if necessary to
3230 dl 1.18 * ensure sufficient parallelism while the current thread is blocked.
3231 jsr166 1.1 *
3232 jsr166 1.8 * <p>If the caller is not a {@link ForkJoinTask}, this method is
3233     * behaviorally equivalent to
3234 jsr166 1.82 * <pre> {@code
3235 jsr166 1.1 * while (!blocker.isReleasable())
3236     * if (blocker.block())
3237     * return;
3238     * }</pre>
3239 jsr166 1.8 *
3240     * If the caller is a {@code ForkJoinTask}, then the pool may
3241     * first be expanded to ensure parallelism, and later adjusted.
3242 jsr166 1.1 *
3243     * @param blocker the blocker
3244     * @throws InterruptedException if blocker.block did so
3245     */
3246 dl 1.18 public static void managedBlock(ManagedBlocker blocker)
3247 jsr166 1.1 throws InterruptedException {
3248     Thread t = Thread.currentThread();
3249 dl 1.105 if (t instanceof ForkJoinWorkerThread) {
3250     ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3251     while (!blocker.isReleasable()) { // variant of helpSignal
3252 dl 1.115 WorkQueue[] ws; WorkQueue q; int m, u;
3253 dl 1.105 if ((ws = p.workQueues) != null && (m = ws.length - 1) >= 0) {
3254     for (int i = 0; i <= m; ++i) {
3255     if (blocker.isReleasable())
3256     return;
3257 dl 1.115 if ((q = ws[i]) != null && q.base - q.top < 0) {
3258     p.signalWork(q);
3259 dl 1.112 if ((u = (int)(p.ctl >>> 32)) >= 0 ||
3260     (u >> UAC_SHIFT) >= 0)
3261 dl 1.105 break;
3262     }
3263     }
3264     }
3265     if (p.tryCompensate()) {
3266     try {
3267     do {} while (!blocker.isReleasable() &&
3268     !blocker.block());
3269     } finally {
3270 dl 1.78 p.incrementActiveCount();
3271 dl 1.105 }
3272     break;
3273 dl 1.78 }
3274     }
3275 dl 1.18 }
3276 dl 1.105 else {
3277     do {} while (!blocker.isReleasable() &&
3278     !blocker.block());
3279     }
3280 jsr166 1.1 }
3281    
3282 jsr166 1.7 // AbstractExecutorService overrides. These rely on undocumented
3283     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3284     // implement RunnableFuture.
3285 jsr166 1.1
3286     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3287 dl 1.90 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3288 jsr166 1.1 }
3289    
3290     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3291 dl 1.90 return new ForkJoinTask.AdaptedCallable<T>(callable);
3292 jsr166 1.1 }
3293    
3294     // Unsafe mechanics
3295 dl 1.78 private static final sun.misc.Unsafe U;
3296     private static final long CTL;
3297     private static final long PARKBLOCKER;
3298 dl 1.90 private static final int ABASE;
3299     private static final int ASHIFT;
3300 dl 1.101 private static final long STEALCOUNT;
3301 dl 1.105 private static final long PLOCK;
3302     private static final long INDEXSEED;
3303     private static final long QLOCK;
3304 dl 1.52
3305     static {
3306 jsr166 1.142 // initialize field offsets for CAS etc
3307 jsr166 1.3 try {
3308 dl 1.78 U = sun.misc.Unsafe.getUnsafe();
3309 jsr166 1.64 Class<?> k = ForkJoinPool.class;
3310 dl 1.78 CTL = U.objectFieldOffset
3311 dl 1.52 (k.getDeclaredField("ctl"));
3312 dl 1.101 STEALCOUNT = U.objectFieldOffset
3313     (k.getDeclaredField("stealCount"));
3314 dl 1.105 PLOCK = U.objectFieldOffset
3315     (k.getDeclaredField("plock"));
3316     INDEXSEED = U.objectFieldOffset
3317     (k.getDeclaredField("indexSeed"));
3318 dl 1.86 Class<?> tk = Thread.class;
3319 dl 1.78 PARKBLOCKER = U.objectFieldOffset
3320     (tk.getDeclaredField("parkBlocker"));
3321 dl 1.105 Class<?> wk = WorkQueue.class;
3322     QLOCK = U.objectFieldOffset
3323     (wk.getDeclaredField("qlock"));
3324     Class<?> ak = ForkJoinTask[].class;
3325 dl 1.90 ABASE = U.arrayBaseOffset(ak);
3326 jsr166 1.142 int scale = U.arrayIndexScale(ak);
3327     if ((scale & (scale - 1)) != 0)
3328     throw new Error("data type scale not a power of two");
3329     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3330 dl 1.52 } catch (Exception e) {
3331     throw new Error(e);
3332     }
3333 dl 1.105
3334 dl 1.152 defaultForkJoinWorkerThreadFactory =
3335 dl 1.112 new DefaultForkJoinWorkerThreadFactory();
3336 dl 1.115 modifyThreadPermission = new RuntimePermission("modifyThread");
3337    
3338 dl 1.152 common = java.security.AccessController.doPrivileged
3339     (new java.security.PrivilegedAction<ForkJoinPool>() {
3340     public ForkJoinPool run() { return makeCommonPool(); }});
3341 dl 1.160 int par = common.config; // report 1 even if threads disabled
3342     commonParallelism = par > 0 ? par : 1;
3343 dl 1.152 }
3344 dl 1.112
3345 dl 1.152 /**
3346     * Creates and returns the common pool, respecting user settings
3347     * specified via system properties.
3348     */
3349     private static ForkJoinPool makeCommonPool() {
3350 dl 1.160 int parallelism = -1;
3351 dl 1.152 ForkJoinWorkerThreadFactory factory
3352     = defaultForkJoinWorkerThreadFactory;
3353 jsr166 1.156 UncaughtExceptionHandler handler = null;
3354 dl 1.152 try { // ignore exceptions in accesing/parsing properties
3355 dl 1.112 String pp = System.getProperty
3356     ("java.util.concurrent.ForkJoinPool.common.parallelism");
3357 dl 1.152 String fp = System.getProperty
3358     ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3359 dl 1.112 String hp = System.getProperty
3360     ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3361 dl 1.152 if (pp != null)
3362     parallelism = Integer.parseInt(pp);
3363 dl 1.112 if (fp != null)
3364 dl 1.152 factory = ((ForkJoinWorkerThreadFactory)ClassLoader.
3365     getSystemClassLoader().loadClass(fp).newInstance());
3366 dl 1.112 if (hp != null)
3367 jsr166 1.156 handler = ((UncaughtExceptionHandler)ClassLoader.
3368 dl 1.112 getSystemClassLoader().loadClass(hp).newInstance());
3369     } catch (Exception ignore) {
3370     }
3371    
3372 dl 1.160 if (parallelism < 0)
3373 dl 1.152 parallelism = Runtime.getRuntime().availableProcessors();
3374     if (parallelism > MAX_CAP)
3375     parallelism = MAX_CAP;
3376     return new ForkJoinPool(parallelism, factory, handler, false,
3377     "ForkJoinPool.commonPool-worker-");
3378 jsr166 1.3 }
3379 dl 1.52
3380 jsr166 1.1 }