ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.166
Committed: Mon Feb 25 17:59:40 2013 UTC (11 years, 3 months ago) by dl
Branch: MAIN
Changes since 1.165: +46 -33 lines
Log Message:
lambda syncs and improvements

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.58 * http://creativecommons.org/publicdomain/zero/1.0/
5 jsr166 1.1 */
6    
7     package java.util.concurrent;
8    
9 jsr166 1.156 import java.lang.Thread.UncaughtExceptionHandler;
10 jsr166 1.1 import java.util.ArrayList;
11     import java.util.Arrays;
12     import java.util.Collection;
13     import java.util.Collections;
14     import java.util.List;
15 dl 1.36 import java.util.concurrent.AbstractExecutorService;
16     import java.util.concurrent.Callable;
17     import java.util.concurrent.ExecutorService;
18     import java.util.concurrent.Future;
19     import java.util.concurrent.RejectedExecutionException;
20     import java.util.concurrent.RunnableFuture;
21     import java.util.concurrent.TimeUnit;
22 jsr166 1.1
23     /**
24 jsr166 1.4 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
25 jsr166 1.8 * A {@code ForkJoinPool} provides the entry point for submissions
26 dl 1.18 * from non-{@code ForkJoinTask} clients, as well as management and
27 jsr166 1.11 * monitoring operations.
28 jsr166 1.1 *
29 jsr166 1.9 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
30     * ExecutorService} mainly by virtue of employing
31     * <em>work-stealing</em>: all threads in the pool attempt to find and
32 dl 1.78 * execute tasks submitted to the pool and/or created by other active
33     * tasks (eventually blocking waiting for work if none exist). This
34     * enables efficient processing when most tasks spawn other subtasks
35     * (as do most {@code ForkJoinTask}s), as well as when many small
36     * tasks are submitted to the pool from external clients. Especially
37     * when setting <em>asyncMode</em> to true in constructors, {@code
38     * ForkJoinPool}s may also be appropriate for use with event-style
39     * tasks that are never joined.
40 jsr166 1.1 *
41 dl 1.112 * <p>A static {@link #commonPool()} is available and appropriate for
42 dl 1.101 * most applications. The common pool is used by any ForkJoinTask that
43     * is not explicitly submitted to a specified pool. Using the common
44     * pool normally reduces resource usage (its threads are slowly
45     * reclaimed during periods of non-use, and reinstated upon subsequent
46 dl 1.105 * use).
47 dl 1.100 *
48     * <p>For applications that require separate or custom pools, a {@code
49     * ForkJoinPool} may be constructed with a given target parallelism
50     * level; by default, equal to the number of available processors. The
51     * pool attempts to maintain enough active (or available) threads by
52     * dynamically adding, suspending, or resuming internal worker
53     * threads, even if some tasks are stalled waiting to join
54     * others. However, no such adjustments are guaranteed in the face of
55 jsr166 1.119 * blocked I/O or other unmanaged synchronization. The nested {@link
56 dl 1.100 * ManagedBlocker} interface enables extension of the kinds of
57 dl 1.18 * synchronization accommodated.
58 jsr166 1.1 *
59     * <p>In addition to execution and lifecycle control methods, this
60     * class provides status check methods (for example
61 jsr166 1.4 * {@link #getStealCount}) that are intended to aid in developing,
62 jsr166 1.1 * tuning, and monitoring fork/join applications. Also, method
63 jsr166 1.4 * {@link #toString} returns indications of pool state in a
64 jsr166 1.1 * convenient form for informal monitoring.
65     *
66 jsr166 1.109 * <p>As is the case with other ExecutorServices, there are three
67 jsr166 1.84 * main task execution methods summarized in the following table.
68     * These are designed to be used primarily by clients not already
69     * engaged in fork/join computations in the current pool. The main
70     * forms of these methods accept instances of {@code ForkJoinTask},
71     * but overloaded forms also allow mixed execution of plain {@code
72     * Runnable}- or {@code Callable}- based activities as well. However,
73     * tasks that are already executing in a pool should normally instead
74     * use the within-computation forms listed in the table unless using
75     * async event-style tasks that are not usually joined, in which case
76     * there is little difference among choice of methods.
77 dl 1.18 *
78     * <table BORDER CELLPADDING=3 CELLSPACING=1>
79 jsr166 1.159 * <caption>Summary of task execution methods</caption>
80 dl 1.18 * <tr>
81     * <td></td>
82     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
83     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
84     * </tr>
85     * <tr>
86 jsr166 1.153 * <td> <b>Arrange async execution</b></td>
87 dl 1.18 * <td> {@link #execute(ForkJoinTask)}</td>
88     * <td> {@link ForkJoinTask#fork}</td>
89     * </tr>
90     * <tr>
91 jsr166 1.153 * <td> <b>Await and obtain result</b></td>
92 dl 1.18 * <td> {@link #invoke(ForkJoinTask)}</td>
93     * <td> {@link ForkJoinTask#invoke}</td>
94     * </tr>
95     * <tr>
96 jsr166 1.153 * <td> <b>Arrange exec and obtain Future</b></td>
97 dl 1.18 * <td> {@link #submit(ForkJoinTask)}</td>
98     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
99     * </tr>
100     * </table>
101 dl 1.19 *
102 dl 1.105 * <p>The common pool is by default constructed with default
103 jsr166 1.155 * parameters, but these may be controlled by setting three
104 jsr166 1.162 * {@linkplain System#getProperty system properties}:
105     * <ul>
106     * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
107     * - the parallelism level, a non-negative integer
108     * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
109     * - the class name of a {@link ForkJoinWorkerThreadFactory}
110     * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
111     * - the class name of a {@link UncaughtExceptionHandler}
112     * </ul>
113 jsr166 1.165 * The system class loader is used to load these classes.
114 jsr166 1.156 * Upon any error in establishing these settings, default parameters
115 dl 1.160 * are used. It is possible to disable or limit the use of threads in
116     * the common pool by setting the parallelism property to zero, and/or
117     * using a factory that may return {@code null}.
118 dl 1.105 *
119 jsr166 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
120     * maximum number of running threads to 32767. Attempts to create
121 jsr166 1.11 * pools with greater than the maximum number result in
122 jsr166 1.8 * {@code IllegalArgumentException}.
123 jsr166 1.1 *
124 jsr166 1.11 * <p>This implementation rejects submitted tasks (that is, by throwing
125 dl 1.19 * {@link RejectedExecutionException}) only when the pool is shut down
126 dl 1.20 * or internal resources have been exhausted.
127 jsr166 1.11 *
128 jsr166 1.1 * @since 1.7
129     * @author Doug Lea
130     */
131 dl 1.166 //@sun.misc.Contended
132 jsr166 1.1 public class ForkJoinPool extends AbstractExecutorService {
133    
134     /*
135 dl 1.14 * Implementation Overview
136     *
137 dl 1.78 * This class and its nested classes provide the main
138     * functionality and control for a set of worker threads:
139 jsr166 1.84 * Submissions from non-FJ threads enter into submission queues.
140     * Workers take these tasks and typically split them into subtasks
141     * that may be stolen by other workers. Preference rules give
142     * first priority to processing tasks from their own queues (LIFO
143     * or FIFO, depending on mode), then to randomized FIFO steals of
144     * tasks in other queues.
145 dl 1.78 *
146 jsr166 1.84 * WorkQueues
147 dl 1.78 * ==========
148     *
149     * Most operations occur within work-stealing queues (in nested
150     * class WorkQueue). These are special forms of Deques that
151     * support only three of the four possible end-operations -- push,
152     * pop, and poll (aka steal), under the further constraints that
153     * push and pop are called only from the owning thread (or, as
154     * extended here, under a lock), while poll may be called from
155     * other threads. (If you are unfamiliar with them, you probably
156     * want to read Herlihy and Shavit's book "The Art of
157     * Multiprocessor programming", chapter 16 describing these in
158     * more detail before proceeding.) The main work-stealing queue
159     * design is roughly similar to those in the papers "Dynamic
160     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
161     * (http://research.sun.com/scalable/pubs/index.html) and
162     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
163     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
164 jsr166 1.84 * The main differences ultimately stem from GC requirements that
165 dl 1.78 * we null out taken slots as soon as we can, to maintain as small
166     * a footprint as possible even in programs generating huge
167     * numbers of tasks. To accomplish this, we shift the CAS
168     * arbitrating pop vs poll (steal) from being on the indices
169     * ("base" and "top") to the slots themselves. So, both a
170     * successful pop and poll mainly entail a CAS of a slot from
171     * non-null to null. Because we rely on CASes of references, we
172     * do not need tag bits on base or top. They are simple ints as
173     * used in any circular array-based queue (see for example
174     * ArrayDeque). Updates to the indices must still be ordered in a
175     * way that guarantees that top == base means the queue is empty,
176     * but otherwise may err on the side of possibly making the queue
177     * appear nonempty when a push, pop, or poll have not fully
178     * committed. Note that this means that the poll operation,
179     * considered individually, is not wait-free. One thief cannot
180     * successfully continue until another in-progress one (or, if
181     * previously empty, a push) completes. However, in the
182     * aggregate, we ensure at least probabilistic non-blockingness.
183     * If an attempted steal fails, a thief always chooses a different
184     * random victim target to try next. So, in order for one thief to
185     * progress, it suffices for any in-progress poll or new push on
186 dl 1.90 * any empty queue to complete. (This is why we normally use
187     * method pollAt and its variants that try once at the apparent
188     * base index, else consider alternative actions, rather than
189     * method poll.)
190 dl 1.78 *
191 dl 1.79 * This approach also enables support of a user mode in which local
192 dl 1.78 * task processing is in FIFO, not LIFO order, simply by using
193     * poll rather than pop. This can be useful in message-passing
194     * frameworks in which tasks are never joined. However neither
195     * mode considers affinities, loads, cache localities, etc, so
196     * rarely provide the best possible performance on a given
197     * machine, but portably provide good throughput by averaging over
198     * these factors. (Further, even if we did try to use such
199 jsr166 1.84 * information, we do not usually have a basis for exploiting it.
200     * For example, some sets of tasks profit from cache affinities,
201     * but others are harmed by cache pollution effects.)
202 dl 1.78 *
203     * WorkQueues are also used in a similar way for tasks submitted
204     * to the pool. We cannot mix these tasks in the same queues used
205     * for work-stealing (this would contaminate lifo/fifo
206 dl 1.105 * processing). Instead, we randomly associate submission queues
207 dl 1.83 * with submitting threads, using a form of hashing. The
208 dl 1.139 * ThreadLocalRandom probe value serves as a hash code for
209     * choosing existing queues, and may be randomly repositioned upon
210     * contention with other submitters. In essence, submitters act
211     * like workers except that they are restricted to executing local
212     * tasks that they submitted (or in the case of CountedCompleters,
213     * others with the same root task). However, because most
214     * shared/external queue operations are more expensive than
215     * internal, and because, at steady state, external submitters
216     * will compete for CPU with workers, ForkJoinTask.join and
217     * related methods disable them from repeatedly helping to process
218     * tasks if all workers are active. Insertion of tasks in shared
219     * mode requires a lock (mainly to protect in the case of
220 dl 1.105 * resizing) but we use only a simple spinlock (using bits in
221     * field qlock), because submitters encountering a busy queue move
222     * on to try or create other queues -- they block only when
223     * creating and registering new queues.
224 dl 1.78 *
225 jsr166 1.84 * Management
226 dl 1.78 * ==========
227 dl 1.52 *
228     * The main throughput advantages of work-stealing stem from
229     * decentralized control -- workers mostly take tasks from
230     * themselves or each other. We cannot negate this in the
231     * implementation of other management responsibilities. The main
232     * tactic for avoiding bottlenecks is packing nearly all
233 dl 1.78 * essentially atomic control state into two volatile variables
234     * that are by far most often read (not written) as status and
235 jsr166 1.84 * consistency checks.
236 dl 1.78 *
237     * Field "ctl" contains 64 bits holding all the information needed
238     * to atomically decide to add, inactivate, enqueue (on an event
239     * queue), dequeue, and/or re-activate workers. To enable this
240     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
241     * far in excess of normal operating range) to allow ids, counts,
242     * and their negations (used for thresholding) to fit into 16bit
243     * fields.
244     *
245 dl 1.105 * Field "plock" is a form of sequence lock with a saturating
246     * shutdown bit (similarly for per-queue "qlocks"), mainly
247     * protecting updates to the workQueues array, as well as to
248     * enable shutdown. When used as a lock, it is normally only very
249     * briefly held, so is nearly always available after at most a
250     * brief spin, but we use a monitor-based backup strategy to
251 dl 1.112 * block when needed.
252 dl 1.78 *
253     * Recording WorkQueues. WorkQueues are recorded in the
254 dl 1.101 * "workQueues" array that is created upon first use and expanded
255     * if necessary. Updates to the array while recording new workers
256     * and unrecording terminated ones are protected from each other
257     * by a lock but the array is otherwise concurrently readable, and
258     * accessed directly. To simplify index-based operations, the
259     * array size is always a power of two, and all readers must
260 dl 1.112 * tolerate null slots. Worker queues are at odd indices. Shared
261 dl 1.105 * (submission) queues are at even indices, up to a maximum of 64
262     * slots, to limit growth even if array needs to expand to add
263     * more workers. Grouping them together in this way simplifies and
264     * speeds up task scanning.
265 dl 1.86 *
266     * All worker thread creation is on-demand, triggered by task
267     * submissions, replacement of terminated workers, and/or
268 dl 1.78 * compensation for blocked workers. However, all other support
269     * code is set up to work with other policies. To ensure that we
270     * do not hold on to worker references that would prevent GC, ALL
271     * accesses to workQueues are via indices into the workQueues
272     * array (which is one source of some of the messy code
273     * constructions here). In essence, the workQueues array serves as
274     * a weak reference mechanism. Thus for example the wait queue
275     * field of ctl stores indices, not references. Access to the
276     * workQueues in associated methods (for example signalWork) must
277     * both index-check and null-check the IDs. All such accesses
278     * ignore bad IDs by returning out early from what they are doing,
279     * since this can only be associated with termination, in which
280 dl 1.86 * case it is OK to give up. All uses of the workQueues array
281     * also check that it is non-null (even if previously
282     * non-null). This allows nulling during termination, which is
283     * currently not necessary, but remains an option for
284     * resource-revocation-based shutdown schemes. It also helps
285     * reduce JIT issuance of uncommon-trap code, which tends to
286 dl 1.78 * unnecessarily complicate control flow in some methods.
287 dl 1.52 *
288 dl 1.78 * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
289 dl 1.56 * let workers spin indefinitely scanning for tasks when none can
290     * be found immediately, and we cannot start/resume workers unless
291     * there appear to be tasks available. On the other hand, we must
292     * quickly prod them into action when new tasks are submitted or
293 dl 1.78 * generated. In many usages, ramp-up time to activate workers is
294     * the main limiting factor in overall performance (this is
295     * compounded at program start-up by JIT compilation and
296     * allocation). So we try to streamline this as much as possible.
297     * We park/unpark workers after placing in an event wait queue
298     * when they cannot find work. This "queue" is actually a simple
299     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
300     * counter value (that reflects the number of times a worker has
301     * been inactivated) to avoid ABA effects (we need only as many
302     * version numbers as worker threads). Successors are held in
303     * field WorkQueue.nextWait. Queuing deals with several intrinsic
304     * races, mainly that a task-producing thread can miss seeing (and
305 dl 1.56 * signalling) another thread that gave up looking for work but
306     * has not yet entered the wait queue. We solve this by requiring
307 dl 1.78 * a full sweep of all workers (via repeated calls to method
308     * scan()) both before and after a newly waiting worker is added
309     * to the wait queue. During a rescan, the worker might release
310     * some other queued worker rather than itself, which has the same
311     * net effect. Because enqueued workers may actually be rescanning
312     * rather than waiting, we set and clear the "parker" field of
313 jsr166 1.84 * WorkQueues to reduce unnecessary calls to unpark. (This
314 dl 1.78 * requires a secondary recheck to avoid missed signals.) Note
315     * the unusual conventions about Thread.interrupts surrounding
316     * parking and other blocking: Because interrupts are used solely
317     * to alert threads to check termination, which is checked anyway
318     * upon blocking, we clear status (using Thread.interrupted)
319     * before any call to park, so that park does not immediately
320     * return due to status being set via some other unrelated call to
321     * interrupt in user code.
322 dl 1.52 *
323     * Signalling. We create or wake up workers only when there
324     * appears to be at least one task they might be able to find and
325 dl 1.105 * execute. However, many other threads may notice the same task
326     * and each signal to wake up a thread that might take it. So in
327     * general, pools will be over-signalled. When a submission is
328 dl 1.115 * added or another worker adds a task to a queue that has fewer
329     * than two tasks, they signal waiting workers (or trigger
330     * creation of new ones if fewer than the given parallelism level
331     * -- signalWork), and may leave a hint to the unparked worker to
332     * help signal others upon wakeup). These primary signals are
333     * buttressed by others (see method helpSignal) whenever other
334     * threads scan for work or do not have a task to process. On
335     * most platforms, signalling (unpark) overhead time is noticeably
336     * long, and the time between signalling a thread and it actually
337     * making progress can be very noticeably long, so it is worth
338     * offloading these delays from critical paths as much as
339     * possible.
340 dl 1.52 *
341     * Trimming workers. To release resources after periods of lack of
342     * use, a worker starting to wait when the pool is quiescent will
343 dl 1.100 * time out and terminate if the pool has remained quiescent for a
344     * given period -- a short period if there are more threads than
345     * parallelism, longer as the number of threads decreases. This
346     * will slowly propagate, eventually terminating all workers after
347     * periods of non-use.
348 dl 1.52 *
349 dl 1.78 * Shutdown and Termination. A call to shutdownNow atomically sets
350 dl 1.105 * a plock bit and then (non-atomically) sets each worker's
351     * qlock status, cancels all unprocessed tasks, and wakes up
352 dl 1.78 * all waiting workers. Detecting whether termination should
353     * commence after a non-abrupt shutdown() call requires more work
354     * and bookkeeping. We need consensus about quiescence (i.e., that
355     * there is no more work). The active count provides a primary
356     * indication but non-abrupt shutdown still requires a rechecking
357     * scan for any workers that are inactive but not queued.
358     *
359 jsr166 1.84 * Joining Tasks
360     * =============
361 dl 1.78 *
362     * Any of several actions may be taken when one worker is waiting
363 jsr166 1.84 * to join a task stolen (or always held) by another. Because we
364 dl 1.78 * are multiplexing many tasks on to a pool of workers, we can't
365     * just let them block (as in Thread.join). We also cannot just
366     * reassign the joiner's run-time stack with another and replace
367     * it later, which would be a form of "continuation", that even if
368     * possible is not necessarily a good idea since we sometimes need
369 jsr166 1.84 * both an unblocked task and its continuation to progress.
370     * Instead we combine two tactics:
371 dl 1.19 *
372     * Helping: Arranging for the joiner to execute some task that it
373 dl 1.78 * would be running if the steal had not occurred.
374 dl 1.19 *
375     * Compensating: Unless there are already enough live threads,
376 dl 1.78 * method tryCompensate() may create or re-activate a spare
377     * thread to compensate for blocked joiners until they unblock.
378     *
379 dl 1.105 * A third form (implemented in tryRemoveAndExec) amounts to
380     * helping a hypothetical compensator: If we can readily tell that
381     * a possible action of a compensator is to steal and execute the
382     * task being joined, the joining thread can do so directly,
383     * without the need for a compensation thread (although at the
384     * expense of larger run-time stacks, but the tradeoff is
385     * typically worthwhile).
386 dl 1.52 *
387     * The ManagedBlocker extension API can't use helping so relies
388     * only on compensation in method awaitBlocker.
389 dl 1.19 *
390 dl 1.78 * The algorithm in tryHelpStealer entails a form of "linear"
391     * helping: Each worker records (in field currentSteal) the most
392     * recent task it stole from some other worker. Plus, it records
393     * (in field currentJoin) the task it is currently actively
394     * joining. Method tryHelpStealer uses these markers to try to
395     * find a worker to help (i.e., steal back a task from and execute
396     * it) that could hasten completion of the actively joined task.
397     * In essence, the joiner executes a task that would be on its own
398     * local deque had the to-be-joined task not been stolen. This may
399     * be seen as a conservative variant of the approach in Wagner &
400     * Calder "Leapfrogging: a portable technique for implementing
401     * efficient futures" SIGPLAN Notices, 1993
402     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
403     * that: (1) We only maintain dependency links across workers upon
404     * steals, rather than use per-task bookkeeping. This sometimes
405 dl 1.90 * requires a linear scan of workQueues array to locate stealers,
406     * but often doesn't because stealers leave hints (that may become
407 dl 1.112 * stale/wrong) of where to locate them. It is only a hint
408     * because a worker might have had multiple steals and the hint
409     * records only one of them (usually the most current). Hinting
410     * isolates cost to when it is needed, rather than adding to
411     * per-task overhead. (2) It is "shallow", ignoring nesting and
412     * potentially cyclic mutual steals. (3) It is intentionally
413 dl 1.78 * racy: field currentJoin is updated only while actively joining,
414     * which means that we miss links in the chain during long-lived
415     * tasks, GC stalls etc (which is OK since blocking in such cases
416     * is usually a good idea). (4) We bound the number of attempts
417 dl 1.90 * to find work (see MAX_HELP) and fall back to suspending the
418     * worker and if necessary replacing it with another.
419 dl 1.78 *
420 dl 1.105 * Helping actions for CountedCompleters are much simpler: Method
421     * helpComplete can take and execute any task with the same root
422     * as the task being waited on. However, this still entails some
423     * traversal of completer chains, so is less efficient than using
424     * CountedCompleters without explicit joins.
425     *
426 dl 1.52 * It is impossible to keep exactly the target parallelism number
427     * of threads running at any given time. Determining the
428 dl 1.24 * existence of conservatively safe helping targets, the
429     * availability of already-created spares, and the apparent need
430 dl 1.78 * to create new spares are all racy, so we rely on multiple
431 dl 1.90 * retries of each. Compensation in the apparent absence of
432     * helping opportunities is challenging to control on JVMs, where
433     * GC and other activities can stall progress of tasks that in
434     * turn stall out many other dependent tasks, without us being
435     * able to determine whether they will ever require compensation.
436     * Even though work-stealing otherwise encounters little
437     * degradation in the presence of more threads than cores,
438     * aggressively adding new threads in such cases entails risk of
439     * unwanted positive feedback control loops in which more threads
440     * cause more dependent stalls (as well as delayed progress of
441     * unblocked threads to the point that we know they are available)
442     * leading to more situations requiring more threads, and so
443     * on. This aspect of control can be seen as an (analytically
444 jsr166 1.92 * intractable) game with an opponent that may choose the worst
445 dl 1.90 * (for us) active thread to stall at any time. We take several
446     * precautions to bound losses (and thus bound gains), mainly in
447 dl 1.105 * methods tryCompensate and awaitJoin.
448     *
449     * Common Pool
450     * ===========
451     *
452 dl 1.134 * The static common Pool always exists after static
453 dl 1.105 * initialization. Since it (or any other created pool) need
454     * never be used, we minimize initial construction overhead and
455     * footprint to the setup of about a dozen fields, with no nested
456     * allocation. Most bootstrapping occurs within method
457     * fullExternalPush during the first submission to the pool.
458     *
459     * When external threads submit to the common pool, they can
460     * perform some subtask processing (see externalHelpJoin and
461     * related methods). We do not need to record whether these
462     * submissions are to the common pool -- if not, externalHelpJoin
463 jsr166 1.107 * returns quickly (at the most helping to signal some common pool
464 dl 1.105 * workers). These submitters would otherwise be blocked waiting
465     * for completion, so the extra effort (with liberally sprinkled
466     * task status checks) in inapplicable cases amounts to an odd
467     * form of limited spin-wait before blocking in ForkJoinTask.join.
468     *
469     * Style notes
470     * ===========
471     *
472     * There is a lot of representation-level coupling among classes
473     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
474     * fields of WorkQueue maintain data structures managed by
475     * ForkJoinPool, so are directly accessed. There is little point
476     * trying to reduce this, since any associated future changes in
477     * representations will need to be accompanied by algorithmic
478     * changes anyway. Several methods intrinsically sprawl because
479     * they must accumulate sets of consistent reads of volatiles held
480     * in local variables. Methods signalWork() and scan() are the
481     * main bottlenecks, so are especially heavily
482 dl 1.86 * micro-optimized/mangled. There are lots of inline assignments
483     * (of form "while ((local = field) != 0)") which are usually the
484     * simplest way to ensure the required read orderings (which are
485     * sometimes critical). This leads to a "C"-like style of listing
486     * declarations of these locals at the heads of methods or blocks.
487     * There are several occurrences of the unusual "do {} while
488     * (!cas...)" which is the simplest way to force an update of a
489 dl 1.105 * CAS'ed variable. There are also other coding oddities (including
490     * several unnecessary-looking hoisted null checks) that help
491 dl 1.86 * some methods perform reasonably even when interpreted (not
492     * compiled).
493 dl 1.52 *
494 jsr166 1.84 * The order of declarations in this file is:
495 dl 1.86 * (1) Static utility functions
496     * (2) Nested (static) classes
497     * (3) Static fields
498     * (4) Fields, along with constants used when unpacking some of them
499     * (5) Internal control methods
500     * (6) Callbacks and other support for ForkJoinTask methods
501     * (7) Exported methods
502     * (8) Static block initializing statics in minimally dependent order
503     */
504    
505     // Static utilities
506    
507     /**
508     * If there is a security manager, makes sure caller has
509     * permission to modify threads.
510 jsr166 1.1 */
511 dl 1.86 private static void checkPermission() {
512     SecurityManager security = System.getSecurityManager();
513     if (security != null)
514     security.checkPermission(modifyThreadPermission);
515     }
516    
517     // Nested classes
518 jsr166 1.1
519     /**
520 jsr166 1.8 * Factory for creating new {@link ForkJoinWorkerThread}s.
521     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
522     * for {@code ForkJoinWorkerThread} subclasses that extend base
523     * functionality or initialize threads with different contexts.
524 jsr166 1.1 */
525     public static interface ForkJoinWorkerThreadFactory {
526     /**
527     * Returns a new worker thread operating in the given pool.
528     *
529     * @param pool the pool this thread works in
530 jsr166 1.11 * @throws NullPointerException if the pool is null
531 jsr166 1.154 * @return the new worker thread
532 jsr166 1.1 */
533     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
534     }
535    
536     /**
537     * Default ForkJoinWorkerThreadFactory implementation; creates a
538     * new ForkJoinWorkerThread.
539     */
540 dl 1.112 static final class DefaultForkJoinWorkerThreadFactory
541 jsr166 1.1 implements ForkJoinWorkerThreadFactory {
542 dl 1.112 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
543 dl 1.14 return new ForkJoinWorkerThread(pool);
544 jsr166 1.1 }
545     }
546    
547     /**
548 dl 1.86 * Class for artificial tasks that are used to replace the target
549     * of local joins if they are removed from an interior queue slot
550     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
551     * actually do anything beyond having a unique identity.
552 jsr166 1.1 */
553 dl 1.86 static final class EmptyTask extends ForkJoinTask<Void> {
554 dl 1.105 private static final long serialVersionUID = -7721805057305804111L;
555 dl 1.86 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
556     public final Void getRawResult() { return null; }
557     public final void setRawResult(Void x) {}
558     public final boolean exec() { return true; }
559 jsr166 1.1 }
560    
561     /**
562 dl 1.78 * Queues supporting work-stealing as well as external task
563     * submission. See above for main rationale and algorithms.
564     * Implementation relies heavily on "Unsafe" intrinsics
565     * and selective use of "volatile":
566     *
567     * Field "base" is the index (mod array.length) of the least valid
568     * queue slot, which is always the next position to steal (poll)
569     * from if nonempty. Reads and writes require volatile orderings
570     * but not CAS, because updates are only performed after slot
571     * CASes.
572     *
573     * Field "top" is the index (mod array.length) of the next queue
574     * slot to push to or pop from. It is written only by owner thread
575 dl 1.105 * for push, or under lock for external/shared push, and accessed
576     * by other threads only after reading (volatile) base. Both top
577     * and base are allowed to wrap around on overflow, but (top -
578     * base) (or more commonly -(base - top) to force volatile read of
579     * base before top) still estimates size. The lock ("qlock") is
580     * forced to -1 on termination, causing all further lock attempts
581     * to fail. (Note: we don't need CAS for termination state because
582     * upon pool shutdown, all shared-queues will stop being used
583     * anyway.) Nearly all lock bodies are set up so that exceptions
584     * within lock bodies are "impossible" (modulo JVM errors that
585     * would cause failure anyway.)
586 dl 1.78 *
587     * The array slots are read and written using the emulation of
588     * volatiles/atomics provided by Unsafe. Insertions must in
589     * general use putOrderedObject as a form of releasing store to
590     * ensure that all writes to the task object are ordered before
591 dl 1.105 * its publication in the queue. All removals entail a CAS to
592     * null. The array is always a power of two. To ensure safety of
593     * Unsafe array operations, all accesses perform explicit null
594     * checks and implicit bounds checks via power-of-two masking.
595 dl 1.78 *
596     * In addition to basic queuing support, this class contains
597     * fields described elsewhere to control execution. It turns out
598 dl 1.105 * to work better memory-layout-wise to include them in this class
599     * rather than a separate class.
600 dl 1.78 *
601     * Performance on most platforms is very sensitive to placement of
602     * instances of both WorkQueues and their arrays -- we absolutely
603     * do not want multiple WorkQueue instances or multiple queue
604     * arrays sharing cache lines. (It would be best for queue objects
605     * and their arrays to share, but there is nothing available to
606     * help arrange that). Unfortunately, because they are recorded
607     * in a common array, WorkQueue instances are often moved to be
608     * adjacent by garbage collectors. To reduce impact, we use field
609     * padding that works OK on common platforms; this effectively
610     * trades off slightly slower average field access for the sake of
611     * avoiding really bad worst-case access. (Until better JVM
612     * support is in place, this padding is dependent on transient
613 dl 1.115 * properties of JVM field layout rules.) We also take care in
614     * allocating, sizing and resizing the array. Non-shared queue
615     * arrays are initialized by workers before use. Others are
616     * allocated on first use.
617 dl 1.78 */
618 dl 1.166 // disabled until compatible builds @sun.misc.Contended
619 dl 1.78 static final class WorkQueue {
620     /**
621     * Capacity of work-stealing queue array upon initialization.
622 dl 1.90 * Must be a power of two; at least 4, but should be larger to
623     * reduce or eliminate cacheline sharing among queues.
624     * Currently, it is much larger, as a partial workaround for
625     * the fact that JVMs often place arrays in locations that
626     * share GC bookkeeping (especially cardmarks) such that
627     * per-write accesses encounter serious memory contention.
628 dl 1.78 */
629 dl 1.90 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
630 dl 1.78
631     /**
632     * Maximum size for queue arrays. Must be a power of two less
633     * than or equal to 1 << (31 - width of array entry) to ensure
634     * lack of wraparound of index calculations, but defined to a
635     * value a bit less than this to help users trap runaway
636     * programs before saturating systems.
637     */
638     static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
639    
640 dl 1.115 // Heuristic padding to ameliorate unfortunate memory placements
641     volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
642    
643 dl 1.78 int seed; // for random scanning; initialize nonzero
644     volatile int eventCount; // encoded inactivation count; < 0 if inactive
645     int nextWait; // encoded record of next event waiter
646 dl 1.112 int hint; // steal or signal hint (index)
647 dl 1.78 int poolIndex; // index of this queue in pool (or 0)
648 dl 1.112 final int mode; // 0: lifo, > 0: fifo, < 0: shared
649     int nsteals; // number of steals
650 dl 1.105 volatile int qlock; // 1: locked, -1: terminate; else 0
651 dl 1.78 volatile int base; // index of next slot for poll
652     int top; // index of next slot for push
653     ForkJoinTask<?>[] array; // the elements (initially unallocated)
654 dl 1.90 final ForkJoinPool pool; // the containing pool (may be null)
655 dl 1.78 final ForkJoinWorkerThread owner; // owning thread or null if shared
656     volatile Thread parker; // == owner during call to park; else null
657 dl 1.95 volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
658 dl 1.78 ForkJoinTask<?> currentSteal; // current non-local task being executed
659 dl 1.112
660 dl 1.115 volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
661     volatile Object pad18, pad19, pad1a, pad1b, pad1c, pad1d;
662 dl 1.78
663 dl 1.112 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
664     int seed) {
665 dl 1.90 this.pool = pool;
666 dl 1.78 this.owner = owner;
667 dl 1.112 this.mode = mode;
668     this.seed = seed;
669 dl 1.115 // Place indices in the center of array (that is not yet allocated)
670 dl 1.78 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
671     }
672    
673     /**
674 dl 1.115 * Returns the approximate number of tasks in the queue.
675     */
676     final int queueSize() {
677     int n = base - top; // non-owner callers must read base first
678     return (n >= 0) ? 0 : -n; // ignore transient negative
679     }
680    
681     /**
682     * Provides a more accurate estimate of whether this queue has
683     * any tasks than does queueSize, by checking whether a
684     * near-empty queue has at least one unclaimed task.
685     */
686     final boolean isEmpty() {
687     ForkJoinTask<?>[] a; int m, s;
688     int n = base - (s = top);
689     return (n >= 0 ||
690     (n == -1 &&
691     ((a = array) == null ||
692     (m = a.length - 1) < 0 ||
693     U.getObject
694     (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
695     }
696    
697     /**
698     * Pushes a task. Call only by owner in unshared queues. (The
699     * shared-queue version is embedded in method externalPush.)
700 dl 1.78 *
701     * @param task the task. Caller must ensure non-null.
702 jsr166 1.146 * @throws RejectedExecutionException if array cannot be resized
703 dl 1.78 */
704 dl 1.90 final void push(ForkJoinTask<?> task) {
705 dl 1.112 ForkJoinTask<?>[] a; ForkJoinPool p;
706     int s = top, m, n;
707     if ((a = array) != null) { // ignore if queue removed
708 dl 1.115 int j = (((m = a.length - 1) & s) << ASHIFT) + ABASE;
709     U.putOrderedObject(a, j, task);
710     if ((n = (top = s + 1) - base) <= 2) {
711 dl 1.112 if ((p = pool) != null)
712 dl 1.115 p.signalWork(this);
713 dl 1.112 }
714     else if (n >= m)
715     growArray();
716 dl 1.78 }
717     }
718    
719 dl 1.112 /**
720     * Initializes or doubles the capacity of array. Call either
721     * by owner or with lock held -- it is OK for base, but not
722     * top, to move while resizings are in progress.
723     */
724     final ForkJoinTask<?>[] growArray() {
725     ForkJoinTask<?>[] oldA = array;
726     int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
727     if (size > MAXIMUM_QUEUE_CAPACITY)
728     throw new RejectedExecutionException("Queue capacity exceeded");
729     int oldMask, t, b;
730     ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
731     if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
732     (t = top) - (b = base) > 0) {
733     int mask = size - 1;
734     do {
735     ForkJoinTask<?> x;
736     int oldj = ((b & oldMask) << ASHIFT) + ABASE;
737     int j = ((b & mask) << ASHIFT) + ABASE;
738     x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
739     if (x != null &&
740     U.compareAndSwapObject(oldA, oldj, x, null))
741     U.putObjectVolatile(a, j, x);
742     } while (++b != t);
743 dl 1.78 }
744 dl 1.112 return a;
745 dl 1.78 }
746    
747     /**
748 dl 1.90 * Takes next task, if one exists, in LIFO order. Call only
749 dl 1.102 * by owner in unshared queues.
750 dl 1.90 */
751     final ForkJoinTask<?> pop() {
752 dl 1.94 ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
753     if ((a = array) != null && (m = a.length - 1) >= 0) {
754 dl 1.90 for (int s; (s = top - 1) - base >= 0;) {
755 dl 1.94 long j = ((m & s) << ASHIFT) + ABASE;
756     if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
757 dl 1.90 break;
758     if (U.compareAndSwapObject(a, j, t, null)) {
759     top = s;
760     return t;
761     }
762     }
763     }
764     return null;
765     }
766    
767     /**
768     * Takes a task in FIFO order if b is base of queue and a task
769     * can be claimed without contention. Specialized versions
770     * appear in ForkJoinPool methods scan and tryHelpStealer.
771 dl 1.78 */
772 dl 1.90 final ForkJoinTask<?> pollAt(int b) {
773     ForkJoinTask<?> t; ForkJoinTask<?>[] a;
774     if ((a = array) != null) {
775 dl 1.86 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
776     if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
777     base == b &&
778 dl 1.78 U.compareAndSwapObject(a, j, t, null)) {
779     base = b + 1;
780     return t;
781     }
782     }
783     return null;
784     }
785    
786     /**
787 dl 1.90 * Takes next task, if one exists, in FIFO order.
788 dl 1.78 */
789 dl 1.90 final ForkJoinTask<?> poll() {
790     ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
791     while ((b = base) - top < 0 && (a = array) != null) {
792     int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
793     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
794     if (t != null) {
795     if (base == b &&
796     U.compareAndSwapObject(a, j, t, null)) {
797     base = b + 1;
798 dl 1.78 return t;
799     }
800     }
801 dl 1.90 else if (base == b) {
802     if (b + 1 == top)
803     break;
804 dl 1.105 Thread.yield(); // wait for lagging update (very rare)
805 dl 1.90 }
806 dl 1.78 }
807     return null;
808     }
809    
810     /**
811     * Takes next task, if one exists, in order specified by mode.
812     */
813     final ForkJoinTask<?> nextLocalTask() {
814     return mode == 0 ? pop() : poll();
815     }
816    
817     /**
818     * Returns next task, if one exists, in order specified by mode.
819     */
820     final ForkJoinTask<?> peek() {
821     ForkJoinTask<?>[] a = array; int m;
822     if (a == null || (m = a.length - 1) < 0)
823     return null;
824     int i = mode == 0 ? top - 1 : base;
825     int j = ((i & m) << ASHIFT) + ABASE;
826     return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
827     }
828    
829     /**
830     * Pops the given task only if it is at the current top.
831 dl 1.105 * (A shared version is available only via FJP.tryExternalUnpush)
832 dl 1.78 */
833     final boolean tryUnpush(ForkJoinTask<?> t) {
834     ForkJoinTask<?>[] a; int s;
835     if ((a = array) != null && (s = top) != base &&
836     U.compareAndSwapObject
837     (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
838     top = s;
839     return true;
840     }
841     return false;
842     }
843    
844     /**
845 jsr166 1.84 * Removes and cancels all known tasks, ignoring any exceptions.
846 dl 1.78 */
847     final void cancelAll() {
848     ForkJoinTask.cancelIgnoringExceptions(currentJoin);
849     ForkJoinTask.cancelIgnoringExceptions(currentSteal);
850     for (ForkJoinTask<?> t; (t = poll()) != null; )
851     ForkJoinTask.cancelIgnoringExceptions(t);
852     }
853    
854 dl 1.86 /**
855     * Computes next value for random probes. Scans don't require
856     * a very high quality generator, but also not a crummy one.
857     * Marsaglia xor-shift is cheap and works well enough. Note:
858 dl 1.90 * This is manually inlined in its usages in ForkJoinPool to
859     * avoid writes inside busy scan loops.
860 dl 1.86 */
861     final int nextSeed() {
862     int r = seed;
863     r ^= r << 13;
864     r ^= r >>> 17;
865     return seed = r ^= r << 5;
866     }
867    
868 dl 1.104 // Specialized execution methods
869 dl 1.78
870     /**
871 dl 1.94 * Pops and runs tasks until empty.
872 dl 1.78 */
873 dl 1.94 private void popAndExecAll() {
874     // A bit faster than repeated pop calls
875     ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
876     while ((a = array) != null && (m = a.length - 1) >= 0 &&
877     (s = top - 1) - base >= 0 &&
878     (t = ((ForkJoinTask<?>)
879     U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
880     != null) {
881     if (U.compareAndSwapObject(a, j, t, null)) {
882     top = s;
883     t.doExec();
884 dl 1.90 }
885 dl 1.94 }
886     }
887    
888     /**
889     * Polls and runs tasks until empty.
890     */
891     private void pollAndExecAll() {
892     for (ForkJoinTask<?> t; (t = poll()) != null;)
893     t.doExec();
894     }
895    
896     /**
897 dl 1.105 * If present, removes from queue and executes the given task,
898     * or any other cancelled task. Returns (true) on any CAS
899 dl 1.94 * or consistency check failure so caller can retry.
900     *
901 jsr166 1.150 * @return false if no progress can be made, else true
902 dl 1.94 */
903 dl 1.105 final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
904     boolean stat = true, removed = false, empty = true;
905 dl 1.94 ForkJoinTask<?>[] a; int m, s, b, n;
906     if ((a = array) != null && (m = a.length - 1) >= 0 &&
907     (n = (s = top) - (b = base)) > 0) {
908     for (ForkJoinTask<?> t;;) { // traverse from s to b
909     int j = ((--s & m) << ASHIFT) + ABASE;
910     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
911     if (t == null) // inconsistent length
912     break;
913     else if (t == task) {
914     if (s + 1 == top) { // pop
915     if (!U.compareAndSwapObject(a, j, task, null))
916 dl 1.90 break;
917 dl 1.94 top = s;
918     removed = true;
919 dl 1.90 }
920 dl 1.94 else if (base == b) // replace with proxy
921     removed = U.compareAndSwapObject(a, j, task,
922     new EmptyTask());
923     break;
924     }
925     else if (t.status >= 0)
926     empty = false;
927     else if (s + 1 == top) { // pop and throw away
928     if (U.compareAndSwapObject(a, j, t, null))
929     top = s;
930     break;
931     }
932     if (--n == 0) {
933     if (!empty && base == b)
934 dl 1.105 stat = false;
935 dl 1.94 break;
936 dl 1.90 }
937     }
938 dl 1.78 }
939 dl 1.94 if (removed)
940     task.doExec();
941 dl 1.95 return stat;
942 dl 1.78 }
943    
944     /**
945 dl 1.105 * Polls for and executes the given task or any other task in
946 jsr166 1.149 * its CountedCompleter computation.
947 dl 1.104 */
948 dl 1.105 final boolean pollAndExecCC(ForkJoinTask<?> root) {
949     ForkJoinTask<?>[] a; int b; Object o;
950 dl 1.166 outer: while (root.status >= 0 && (b = base) - top < 0 &&
951     (a = array) != null) {
952 dl 1.105 long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
953     if ((o = U.getObject(a, j)) == null ||
954     !(o instanceof CountedCompleter))
955     break;
956     for (CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;;) {
957     if (r == root) {
958     if (base == b &&
959     U.compareAndSwapObject(a, j, t, null)) {
960     base = b + 1;
961     t.doExec();
962     return true;
963 dl 1.104 }
964 dl 1.105 else
965     break; // restart
966 dl 1.104 }
967 dl 1.105 if ((r = r.completer) == null)
968     break outer; // not part of root computation
969 dl 1.104 }
970     }
971 dl 1.105 return false;
972 dl 1.104 }
973    
974     /**
975 dl 1.78 * Executes a top-level task and any local tasks remaining
976     * after execution.
977     */
978 dl 1.94 final void runTask(ForkJoinTask<?> t) {
979 dl 1.78 if (t != null) {
980 dl 1.105 (currentSteal = t).doExec();
981     currentSteal = null;
982 dl 1.126 ++nsteals;
983 dl 1.115 if (base - top < 0) { // process remaining local tasks
984 dl 1.94 if (mode == 0)
985     popAndExecAll();
986     else
987     pollAndExecAll();
988     }
989 dl 1.78 }
990     }
991    
992     /**
993 jsr166 1.84 * Executes a non-top-level (stolen) task.
994 dl 1.78 */
995     final void runSubtask(ForkJoinTask<?> t) {
996     if (t != null) {
997     ForkJoinTask<?> ps = currentSteal;
998 dl 1.105 (currentSteal = t).doExec();
999 dl 1.78 currentSteal = ps;
1000     }
1001     }
1002    
1003     /**
1004 dl 1.86 * Returns true if owned and not known to be blocked.
1005     */
1006     final boolean isApparentlyUnblocked() {
1007     Thread wt; Thread.State s;
1008     return (eventCount >= 0 &&
1009     (wt = owner) != null &&
1010     (s = wt.getState()) != Thread.State.BLOCKED &&
1011     s != Thread.State.WAITING &&
1012     s != Thread.State.TIMED_WAITING);
1013     }
1014    
1015 dl 1.78 // Unsafe mechanics
1016     private static final sun.misc.Unsafe U;
1017 dl 1.105 private static final long QLOCK;
1018 dl 1.78 private static final int ABASE;
1019     private static final int ASHIFT;
1020     static {
1021     try {
1022     U = sun.misc.Unsafe.getUnsafe();
1023     Class<?> k = WorkQueue.class;
1024     Class<?> ak = ForkJoinTask[].class;
1025 dl 1.105 QLOCK = U.objectFieldOffset
1026     (k.getDeclaredField("qlock"));
1027 dl 1.78 ABASE = U.arrayBaseOffset(ak);
1028 jsr166 1.142 int scale = U.arrayIndexScale(ak);
1029     if ((scale & (scale - 1)) != 0)
1030     throw new Error("data type scale not a power of two");
1031     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1032 dl 1.78 } catch (Exception e) {
1033     throw new Error(e);
1034     }
1035     }
1036     }
1037 dl 1.14
1038 dl 1.112 // static fields (initialized in static initializer below)
1039    
1040     /**
1041     * Creates a new ForkJoinWorkerThread. This factory is used unless
1042     * overridden in ForkJoinPool constructors.
1043     */
1044     public static final ForkJoinWorkerThreadFactory
1045     defaultForkJoinWorkerThreadFactory;
1046    
1047 jsr166 1.1 /**
1048 dl 1.115 * Permission required for callers of methods that may start or
1049     * kill threads.
1050     */
1051     private static final RuntimePermission modifyThreadPermission;
1052    
1053     /**
1054 dl 1.101 * Common (static) pool. Non-null for public use unless a static
1055 dl 1.105 * construction exception, but internal usages null-check on use
1056     * to paranoically avoid potential initialization circularities
1057     * as well as to simplify generated code.
1058 dl 1.101 */
1059 dl 1.134 static final ForkJoinPool common;
1060 dl 1.101
1061     /**
1062 dl 1.160 * Common pool parallelism. To allow simpler use and management
1063     * when common pool threads are disabled, we allow the underlying
1064     * common.config field to be zero, but in that case still report
1065     * parallelism as 1 to reflect resulting caller-runs mechanics.
1066 dl 1.90 */
1067 dl 1.134 static final int commonParallelism;
1068 dl 1.90
1069     /**
1070 dl 1.105 * Sequence number for creating workerNamePrefix.
1071 dl 1.86 */
1072 dl 1.105 private static int poolNumberSequence;
1073 dl 1.86
1074 jsr166 1.1 /**
1075 jsr166 1.132 * Returns the next sequence number. We don't expect this to
1076     * ever contend, so use simple builtin sync.
1077 dl 1.83 */
1078 dl 1.105 private static final synchronized int nextPoolId() {
1079     return ++poolNumberSequence;
1080     }
1081 dl 1.86
1082     // static constants
1083    
1084     /**
1085 dl 1.105 * Initial timeout value (in nanoseconds) for the thread
1086     * triggering quiescence to park waiting for new work. On timeout,
1087     * the thread will instead try to shrink the number of
1088     * workers. The value should be large enough to avoid overly
1089     * aggressive shrinkage during most transient stalls (long GCs
1090     * etc).
1091 dl 1.86 */
1092 dl 1.105 private static final long IDLE_TIMEOUT = 2000L * 1000L * 1000L; // 2sec
1093 dl 1.86
1094     /**
1095 dl 1.100 * Timeout value when there are more threads than parallelism level
1096 dl 1.86 */
1097 dl 1.105 private static final long FAST_IDLE_TIMEOUT = 200L * 1000L * 1000L;
1098 dl 1.86
1099     /**
1100 dl 1.120 * Tolerance for idle timeouts, to cope with timer undershoots
1101     */
1102 dl 1.127 private static final long TIMEOUT_SLOP = 2000000L;
1103 dl 1.120
1104     /**
1105 dl 1.90 * The maximum stolen->joining link depth allowed in method
1106 dl 1.105 * tryHelpStealer. Must be a power of two. Depths for legitimate
1107 dl 1.90 * chains are unbounded, but we use a fixed constant to avoid
1108     * (otherwise unchecked) cycles and to bound staleness of
1109     * traversal parameters at the expense of sometimes blocking when
1110     * we could be helping.
1111     */
1112 dl 1.95 private static final int MAX_HELP = 64;
1113 dl 1.90
1114     /**
1115     * Increment for seed generators. See class ThreadLocal for
1116     * explanation.
1117     */
1118     private static final int SEED_INCREMENT = 0x61c88647;
1119 dl 1.83
1120 jsr166 1.163 /*
1121 dl 1.86 * Bits and masks for control variables
1122     *
1123     * Field ctl is a long packed with:
1124     * AC: Number of active running workers minus target parallelism (16 bits)
1125     * TC: Number of total workers minus target parallelism (16 bits)
1126     * ST: true if pool is terminating (1 bit)
1127     * EC: the wait count of top waiting thread (15 bits)
1128     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1129     *
1130     * When convenient, we can extract the upper 32 bits of counts and
1131     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1132     * (int)ctl. The ec field is never accessed alone, but always
1133     * together with id and st. The offsets of counts by the target
1134     * parallelism and the positionings of fields makes it possible to
1135     * perform the most common checks via sign tests of fields: When
1136     * ac is negative, there are not enough active workers, when tc is
1137     * negative, there are not enough total workers, and when e is
1138     * negative, the pool is terminating. To deal with these possibly
1139     * negative fields, we use casts in and out of "short" and/or
1140     * signed shifts to maintain signedness.
1141     *
1142     * When a thread is queued (inactivated), its eventCount field is
1143     * set negative, which is the only way to tell if a worker is
1144     * prevented from executing tasks, even though it must continue to
1145     * scan for them to avoid queuing races. Note however that
1146     * eventCount updates lag releases so usage requires care.
1147     *
1148 dl 1.105 * Field plock is an int packed with:
1149 dl 1.86 * SHUTDOWN: true if shutdown is enabled (1 bit)
1150 dl 1.105 * SEQ: a sequence lock, with PL_LOCK bit set if locked (30 bits)
1151     * SIGNAL: set when threads may be waiting on the lock (1 bit)
1152 dl 1.86 *
1153 dl 1.90 * The sequence number enables simple consistency checks:
1154     * Staleness of read-only operations on the workQueues array can
1155 dl 1.105 * be checked by comparing plock before vs after the reads.
1156 dl 1.86 */
1157    
1158     // bit positions/shifts for fields
1159     private static final int AC_SHIFT = 48;
1160     private static final int TC_SHIFT = 32;
1161     private static final int ST_SHIFT = 31;
1162     private static final int EC_SHIFT = 16;
1163    
1164     // bounds
1165     private static final int SMASK = 0xffff; // short bits
1166 dl 1.90 private static final int MAX_CAP = 0x7fff; // max #workers - 1
1167 dl 1.105 private static final int EVENMASK = 0xfffe; // even short bits
1168     private static final int SQMASK = 0x007e; // max 64 (even) slots
1169 dl 1.86 private static final int SHORT_SIGN = 1 << 15;
1170     private static final int INT_SIGN = 1 << 31;
1171    
1172     // masks
1173     private static final long STOP_BIT = 0x0001L << ST_SHIFT;
1174     private static final long AC_MASK = ((long)SMASK) << AC_SHIFT;
1175     private static final long TC_MASK = ((long)SMASK) << TC_SHIFT;
1176    
1177     // units for incrementing and decrementing
1178     private static final long TC_UNIT = 1L << TC_SHIFT;
1179     private static final long AC_UNIT = 1L << AC_SHIFT;
1180    
1181     // masks and units for dealing with u = (int)(ctl >>> 32)
1182     private static final int UAC_SHIFT = AC_SHIFT - 32;
1183     private static final int UTC_SHIFT = TC_SHIFT - 32;
1184     private static final int UAC_MASK = SMASK << UAC_SHIFT;
1185     private static final int UTC_MASK = SMASK << UTC_SHIFT;
1186     private static final int UAC_UNIT = 1 << UAC_SHIFT;
1187     private static final int UTC_UNIT = 1 << UTC_SHIFT;
1188    
1189     // masks and units for dealing with e = (int)ctl
1190     private static final int E_MASK = 0x7fffffff; // no STOP_BIT
1191     private static final int E_SEQ = 1 << EC_SHIFT;
1192    
1193 dl 1.105 // plock bits
1194 dl 1.86 private static final int SHUTDOWN = 1 << 31;
1195 dl 1.105 private static final int PL_LOCK = 2;
1196     private static final int PL_SIGNAL = 1;
1197     private static final int PL_SPINS = 1 << 8;
1198 dl 1.86
1199     // access mode for WorkQueue
1200     static final int LIFO_QUEUE = 0;
1201     static final int FIFO_QUEUE = 1;
1202     static final int SHARED_QUEUE = -1;
1203    
1204 dl 1.112 // bounds for #steps in scan loop -- must be power 2 minus 1
1205 dl 1.166 private static final int MIN_SCAN = 0x7ff; // cover estimation slop
1206 dl 1.112 private static final int MAX_SCAN = 0x1ffff; // 4 * max workers
1207    
1208 dl 1.86 // Instance fields
1209    
1210     /*
1211 dl 1.112 * Field layout of this class tends to matter more than one would
1212     * like. Runtime layout order is only loosely related to
1213 dl 1.86 * declaration order and may differ across JVMs, but the following
1214     * empirically works OK on current JVMs.
1215 jsr166 1.1 */
1216 dl 1.115
1217     // Heuristic padding to ameliorate unfortunate memory placements
1218     volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
1219    
1220 dl 1.101 volatile long stealCount; // collects worker counts
1221 dl 1.86 volatile long ctl; // main pool control
1222 dl 1.112 volatile int plock; // shutdown status and seqLock
1223 dl 1.105 volatile int indexSeed; // worker/submitter index seed
1224 dl 1.112 final int config; // mode and parallelism level
1225 dl 1.86 WorkQueue[] workQueues; // main registry
1226 dl 1.112 final ForkJoinWorkerThreadFactory factory;
1227 jsr166 1.156 final UncaughtExceptionHandler ueh; // per-worker UEH
1228 dl 1.101 final String workerNamePrefix; // to create worker name string
1229    
1230 dl 1.115 volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
1231     volatile Object pad18, pad19, pad1a, pad1b;
1232    
1233 jsr166 1.145 /**
1234 dl 1.105 * Acquires the plock lock to protect worker array and related
1235     * updates. This method is called only if an initial CAS on plock
1236 jsr166 1.140 * fails. This acts as a spinlock for normal cases, but falls back
1237 dl 1.105 * to builtin monitor to block when (rarely) needed. This would be
1238     * a terrible idea for a highly contended lock, but works fine as
1239 dl 1.126 * a more conservative alternative to a pure spinlock.
1240 dl 1.105 */
1241     private int acquirePlock() {
1242 dl 1.139 int spins = PL_SPINS, ps, nps;
1243 dl 1.105 for (;;) {
1244     if (((ps = plock) & PL_LOCK) == 0 &&
1245     U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1246     return nps;
1247 dl 1.101 else if (spins >= 0) {
1248 dl 1.139 if (ThreadLocalRandom.nextSecondarySeed() >= 0)
1249 dl 1.101 --spins;
1250     }
1251 dl 1.105 else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1252 jsr166 1.106 synchronized (this) {
1253 dl 1.105 if ((plock & PL_SIGNAL) != 0) {
1254 dl 1.101 try {
1255     wait();
1256     } catch (InterruptedException ie) {
1257 dl 1.104 try {
1258     Thread.currentThread().interrupt();
1259     } catch (SecurityException ignore) {
1260     }
1261 dl 1.101 }
1262     }
1263     else
1264 dl 1.105 notifyAll();
1265 dl 1.101 }
1266     }
1267     }
1268     }
1269 dl 1.78
1270 jsr166 1.1 /**
1271 dl 1.105 * Unlocks and signals any thread waiting for plock. Called only
1272     * when CAS of seq value for unlock fails.
1273 jsr166 1.1 */
1274 dl 1.105 private void releasePlock(int ps) {
1275     plock = ps;
1276 jsr166 1.106 synchronized (this) { notifyAll(); }
1277 dl 1.78 }
1278 jsr166 1.1
1279 dl 1.112 /**
1280 dl 1.120 * Tries to create and start one worker if fewer than target
1281     * parallelism level exist. Adjusts counts etc on failure.
1282 dl 1.115 */
1283     private void tryAddWorker() {
1284 dl 1.112 long c; int u;
1285 dl 1.115 while ((u = (int)((c = ctl) >>> 32)) < 0 &&
1286     (u & SHORT_SIGN) != 0 && (int)c == 0) {
1287 dl 1.112 long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1288     ((u + UAC_UNIT) & UAC_MASK)) << 32;
1289 dl 1.115 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1290     ForkJoinWorkerThreadFactory fac;
1291     Throwable ex = null;
1292     ForkJoinWorkerThread wt = null;
1293     try {
1294     if ((fac = factory) != null &&
1295     (wt = fac.newThread(this)) != null) {
1296     wt.start();
1297     break;
1298     }
1299     } catch (Throwable e) {
1300     ex = e;
1301     }
1302     deregisterWorker(wt, ex);
1303     break;
1304     }
1305 dl 1.112 }
1306     }
1307    
1308     // Registering and deregistering workers
1309    
1310     /**
1311     * Callback from ForkJoinWorkerThread to establish and record its
1312     * WorkQueue. To avoid scanning bias due to packing entries in
1313     * front of the workQueues array, we treat the array as a simple
1314     * power-of-two hash table using per-thread seed as hash,
1315     * expanding as needed.
1316     *
1317     * @param wt the worker thread
1318 dl 1.115 * @return the worker's queue
1319 dl 1.112 */
1320 dl 1.115 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1321 jsr166 1.156 UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps;
1322 dl 1.115 wt.setDaemon(true);
1323     if ((handler = ueh) != null)
1324     wt.setUncaughtExceptionHandler(handler);
1325     do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
1326     s += SEED_INCREMENT) ||
1327     s == 0); // skip 0
1328     WorkQueue w = new WorkQueue(this, wt, config >>> 16, s);
1329     if (((ps = plock) & PL_LOCK) != 0 ||
1330     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1331     ps = acquirePlock();
1332     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1333     try {
1334     if ((ws = workQueues) != null) { // skip if shutting down
1335     int n = ws.length, m = n - 1;
1336     int r = (s << 1) | 1; // use odd-numbered indices
1337     if (ws[r &= m] != null) { // collision
1338     int probes = 0; // step by approx half size
1339     int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1340     while (ws[r = (r + step) & m] != null) {
1341     if (++probes >= n) {
1342     workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1343     m = n - 1;
1344     probes = 0;
1345 dl 1.94 }
1346     }
1347     }
1348 dl 1.115 w.eventCount = w.poolIndex = r; // volatile write orders
1349     ws[r] = w;
1350 dl 1.78 }
1351 dl 1.115 } finally {
1352     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1353     releasePlock(nps);
1354 dl 1.78 }
1355 dl 1.115 wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex)));
1356     return w;
1357 dl 1.78 }
1358 dl 1.19
1359 jsr166 1.1 /**
1360 dl 1.86 * Final callback from terminating worker, as well as upon failure
1361 dl 1.105 * to construct or start a worker. Removes record of worker from
1362     * array, and adjusts counts. If pool is shutting down, tries to
1363     * complete termination.
1364 dl 1.78 *
1365 jsr166 1.151 * @param wt the worker thread, or null if construction failed
1366 dl 1.78 * @param ex the exception causing failure, or null if none
1367 dl 1.45 */
1368 dl 1.78 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1369     WorkQueue w = null;
1370     if (wt != null && (w = wt.workQueue) != null) {
1371 dl 1.105 int ps;
1372     w.qlock = -1; // ensure set
1373 dl 1.112 long ns = w.nsteals, sc; // collect steal count
1374     do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1375     sc = stealCount, sc + ns));
1376 dl 1.105 if (((ps = plock) & PL_LOCK) != 0 ||
1377     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1378     ps = acquirePlock();
1379     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1380 dl 1.101 try {
1381 dl 1.105 int idx = w.poolIndex;
1382 dl 1.78 WorkQueue[] ws = workQueues;
1383 dl 1.90 if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1384 dl 1.86 ws[idx] = null;
1385 dl 1.78 } finally {
1386 dl 1.105 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1387     releasePlock(nps);
1388 dl 1.78 }
1389     }
1390    
1391 dl 1.126 long c; // adjust ctl counts
1392 dl 1.78 do {} while (!U.compareAndSwapLong
1393     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1394     ((c - TC_UNIT) & TC_MASK) |
1395     (c & ~(AC_MASK|TC_MASK)))));
1396    
1397 dl 1.120 if (!tryTerminate(false, false) && w != null && w.array != null) {
1398 dl 1.126 w.cancelAll(); // cancel remaining tasks
1399     WorkQueue[] ws; WorkQueue v; Thread p; int u, i, e;
1400     while ((u = (int)((c = ctl) >>> 32)) < 0 && (e = (int)c) >= 0) {
1401     if (e > 0) { // activate or create replacement
1402     if ((ws = workQueues) == null ||
1403     (i = e & SMASK) >= ws.length ||
1404 dl 1.130 (v = ws[i]) == null)
1405 dl 1.126 break;
1406     long nc = (((long)(v.nextWait & E_MASK)) |
1407     ((long)(u + UAC_UNIT) << 32));
1408     if (v.eventCount != (e | INT_SIGN))
1409     break;
1410     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1411     v.eventCount = (e + E_SEQ) & E_MASK;
1412     if ((p = v.parker) != null)
1413     U.unpark(p);
1414     break;
1415 dl 1.120 }
1416     }
1417     else {
1418     if ((short)u < 0)
1419     tryAddWorker();
1420     break;
1421     }
1422     }
1423 dl 1.78 }
1424 dl 1.120 if (ex == null) // help clean refs on way out
1425     ForkJoinTask.helpExpungeStaleExceptions();
1426     else // rethrow
1427 dl 1.104 ForkJoinTask.rethrow(ex);
1428 dl 1.78 }
1429 dl 1.52
1430 dl 1.86 // Submissions
1431    
1432     /**
1433     * Unless shutting down, adds the given task to a submission queue
1434     * at submitter's current queue index (modulo submission
1435 dl 1.105 * range). Only the most common path is directly handled in this
1436     * method. All others are relayed to fullExternalPush.
1437 dl 1.90 *
1438     * @param task the task. Caller must ensure non-null.
1439 dl 1.86 */
1440 dl 1.105 final void externalPush(ForkJoinTask<?> task) {
1441 dl 1.139 WorkQueue[] ws; WorkQueue q; int z, m; ForkJoinTask<?>[] a;
1442     if ((z = ThreadLocalRandom.getProbe()) != 0 && plock > 0 &&
1443 dl 1.105 (ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
1444 dl 1.139 (q = ws[m & z & SQMASK]) != null &&
1445 dl 1.105 U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1446 dl 1.112 int b = q.base, s = q.top, n, an;
1447     if ((a = q.array) != null && (an = a.length) > (n = s + 1 - b)) {
1448 dl 1.115 int j = (((an - 1) & s) << ASHIFT) + ABASE;
1449     U.putOrderedObject(a, j, task);
1450 dl 1.105 q.top = s + 1; // push on to deque
1451     q.qlock = 0;
1452 dl 1.112 if (n <= 2)
1453 dl 1.115 signalWork(q);
1454 dl 1.90 return;
1455     }
1456 dl 1.105 q.qlock = 0;
1457 dl 1.83 }
1458 dl 1.105 fullExternalPush(task);
1459 dl 1.83 }
1460 dl 1.45
1461 dl 1.100 /**
1462 dl 1.105 * Full version of externalPush. This method is called, among
1463     * other times, upon the first submission of the first task to the
1464 dl 1.131 * pool, so must perform secondary initialization. It also
1465     * detects first submission by an external thread by looking up
1466     * its ThreadLocal, and creates a new shared queue if the one at
1467     * index if empty or contended. The plock lock body must be
1468     * exception-free (so no try/finally) so we optimistically
1469     * allocate new queues outside the lock and throw them away if
1470     * (very rarely) not needed.
1471     *
1472     * Secondary initialization occurs when plock is zero, to create
1473     * workQueue array and set plock to a valid value. This lock body
1474     * must also be exception-free. Because the plock seq value can
1475     * eventually wrap around zero, this method harmlessly fails to
1476     * reinitialize if workQueues exists, while still advancing plock.
1477 dl 1.105 */
1478     private void fullExternalPush(ForkJoinTask<?> task) {
1479 dl 1.139 int r;
1480     if ((r = ThreadLocalRandom.getProbe()) == 0) {
1481     ThreadLocalRandom.localInit();
1482     r = ThreadLocalRandom.getProbe();
1483     }
1484     for (;;) {
1485 dl 1.112 WorkQueue[] ws; WorkQueue q; int ps, m, k;
1486 dl 1.139 boolean move = false;
1487     if ((ps = plock) < 0)
1488 dl 1.105 throw new RejectedExecutionException();
1489 dl 1.112 else if (ps == 0 || (ws = workQueues) == null ||
1490 dl 1.131 (m = ws.length - 1) < 0) { // initialize workQueues
1491     int p = config & SMASK; // find power of two table size
1492     int n = (p > 1) ? p - 1 : 1; // ensure at least 2 slots
1493     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4;
1494     n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1;
1495     WorkQueue[] nws = ((ws = workQueues) == null || ws.length == 0 ?
1496     new WorkQueue[n] : null);
1497     if (((ps = plock) & PL_LOCK) != 0 ||
1498     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1499     ps = acquirePlock();
1500     if (((ws = workQueues) == null || ws.length == 0) && nws != null)
1501     workQueues = nws;
1502     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1503     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1504     releasePlock(nps);
1505     }
1506 dl 1.112 else if ((q = ws[k = r & m & SQMASK]) != null) {
1507 dl 1.115 if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
1508     ForkJoinTask<?>[] a = q.array;
1509     int s = q.top;
1510     boolean submitted = false;
1511     try { // locked version of push
1512     if ((a != null && a.length > s + 1 - q.base) ||
1513     (a = q.growArray()) != null) { // must presize
1514     int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
1515     U.putOrderedObject(a, j, task);
1516     q.top = s + 1;
1517     submitted = true;
1518     }
1519     } finally {
1520     q.qlock = 0; // unlock
1521     }
1522     if (submitted) {
1523     signalWork(q);
1524     return;
1525     }
1526     }
1527 dl 1.139 move = true; // move on failure
1528 dl 1.112 }
1529     else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
1530     q = new WorkQueue(this, null, SHARED_QUEUE, r);
1531     if (((ps = plock) & PL_LOCK) != 0 ||
1532 dl 1.105 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1533     ps = acquirePlock();
1534 dl 1.112 if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
1535     ws[k] = q;
1536 dl 1.105 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1537     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1538     releasePlock(nps);
1539     }
1540 dl 1.112 else
1541 dl 1.139 move = true; // move if busy
1542     if (move)
1543     r = ThreadLocalRandom.advanceProbe(r);
1544 dl 1.104 }
1545 dl 1.102 }
1546    
1547 dl 1.78 // Maintaining ctl counts
1548 dl 1.17
1549     /**
1550 jsr166 1.84 * Increments active count; mainly called upon return from blocking.
1551 dl 1.19 */
1552 dl 1.78 final void incrementActiveCount() {
1553 dl 1.52 long c;
1554 dl 1.78 do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1555 dl 1.19 }
1556    
1557     /**
1558 dl 1.115 * Tries to create or activate a worker if too few are active.
1559     *
1560     * @param q the (non-null) queue holding tasks to be signalled
1561 dl 1.105 */
1562 dl 1.115 final void signalWork(WorkQueue q) {
1563     int hint = q.poolIndex;
1564     long c; int e, u, i, n; WorkQueue[] ws; WorkQueue w; Thread p;
1565 dl 1.105 while ((u = (int)((c = ctl) >>> 32)) < 0) {
1566     if ((e = (int)c) > 0) {
1567     if ((ws = workQueues) != null && ws.length > (i = e & SMASK) &&
1568 dl 1.86 (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1569     long nc = (((long)(w.nextWait & E_MASK)) |
1570     ((long)(u + UAC_UNIT) << 32));
1571     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1572 dl 1.115 w.hint = hint;
1573 dl 1.86 w.eventCount = (e + E_SEQ) & E_MASK;
1574 dl 1.115 if ((p = w.parker) != null)
1575 dl 1.105 U.unpark(p);
1576 dl 1.115 break;
1577 dl 1.105 }
1578 dl 1.115 if (q.top - q.base <= 0)
1579 dl 1.86 break;
1580     }
1581     else
1582 dl 1.52 break;
1583 dl 1.78 }
1584 dl 1.115 else {
1585     if ((short)u < 0)
1586     tryAddWorker();
1587     break;
1588 dl 1.52 }
1589     }
1590 dl 1.14 }
1591    
1592 dl 1.90 // Scanning for tasks
1593    
1594 dl 1.14 /**
1595 dl 1.90 * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1596 dl 1.14 */
1597 dl 1.90 final void runWorker(WorkQueue w) {
1598 dl 1.115 w.growArray(); // allocate queue
1599     do { w.runTask(scan(w)); } while (w.qlock >= 0);
1600 dl 1.14 }
1601    
1602     /**
1603 dl 1.78 * Scans for and, if found, returns one task, else possibly
1604     * inactivates the worker. This method operates on single reads of
1605 dl 1.90 * volatile state and is designed to be re-invoked continuously,
1606     * in part because it returns upon detecting inconsistencies,
1607 dl 1.78 * contention, or state changes that indicate possible success on
1608     * re-invocation.
1609     *
1610 dl 1.112 * The scan searches for tasks across queues (starting at a random
1611     * index, and relying on registerWorker to irregularly scatter
1612     * them within array to avoid bias), checking each at least twice.
1613     * The scan terminates upon either finding a non-empty queue, or
1614     * completing the sweep. If the worker is not inactivated, it
1615     * takes and returns a task from this queue. Otherwise, if not
1616     * activated, it signals workers (that may include itself) and
1617     * returns so caller can retry. Also returns for true if the
1618     * worker array may have changed during an empty scan. On failure
1619     * to find a task, we take one of the following actions, after
1620     * which the caller will retry calling this method unless
1621     * terminated.
1622 dl 1.78 *
1623 dl 1.86 * * If pool is terminating, terminate the worker.
1624     *
1625 dl 1.78 * * If not already enqueued, try to inactivate and enqueue the
1626 dl 1.90 * worker on wait queue. Or, if inactivating has caused the pool
1627 dl 1.126 * to be quiescent, relay to idleAwaitWork to possibly shrink
1628     * pool.
1629 dl 1.90 *
1630 dl 1.105 * * If already enqueued and none of the above apply, possibly
1631 dl 1.126 * park awaiting signal, else lingering to help scan and signal.
1632     *
1633     * * If a non-empty queue discovered or left as a hint,
1634 jsr166 1.133 * help wake up other workers before return.
1635 dl 1.78 *
1636     * @param w the worker (via its WorkQueue)
1637 jsr166 1.98 * @return a task or null if none found
1638 dl 1.78 */
1639     private final ForkJoinTask<?> scan(WorkQueue w) {
1640 dl 1.115 WorkQueue[] ws; int m;
1641 dl 1.112 int ps = plock; // read plock before ws
1642     if (w != null && (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1643     int ec = w.eventCount; // ec is negative if inactive
1644     int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1645 dl 1.126 w.hint = -1; // update seed and clear hint
1646 dl 1.115 int j = ((m + m + 1) | MIN_SCAN) & MAX_SCAN;
1647     do {
1648 dl 1.112 WorkQueue q; ForkJoinTask<?>[] a; int b;
1649     if ((q = ws[(r + j) & m]) != null && (b = q.base) - q.top < 0 &&
1650     (a = q.array) != null) { // probably nonempty
1651 dl 1.90 int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1652 dl 1.112 ForkJoinTask<?> t = (ForkJoinTask<?>)
1653     U.getObjectVolatile(a, i);
1654 dl 1.90 if (q.base == b && ec >= 0 && t != null &&
1655     U.compareAndSwapObject(a, i, t, null)) {
1656 dl 1.112 if ((q.base = b + 1) - q.top < 0)
1657 dl 1.115 signalWork(q);
1658 dl 1.112 return t; // taken
1659     }
1660 dl 1.115 else if ((ec < 0 || j < m) && (int)(ctl >> AC_SHIFT) <= 0) {
1661     w.hint = (r + j) & m; // help signal below
1662     break; // cannot take
1663     }
1664     }
1665     } while (--j >= 0);
1666    
1667 dl 1.126 int h, e, ns; long c, sc; WorkQueue q;
1668     if ((ns = w.nsteals) != 0) {
1669     if (U.compareAndSwapLong(this, STEALCOUNT,
1670     sc = stealCount, sc + ns))
1671     w.nsteals = 0; // collect steals and rescan
1672     }
1673     else if (plock != ps) // consistency check
1674     ; // skip
1675     else if ((e = (int)(c = ctl)) < 0)
1676     w.qlock = -1; // pool is terminating
1677     else {
1678     if ((h = w.hint) < 0) {
1679     if (ec >= 0) { // try to enqueue/inactivate
1680     long nc = (((long)ec |
1681     ((c - AC_UNIT) & (AC_MASK|TC_MASK))));
1682     w.nextWait = e; // link and mark inactive
1683     w.eventCount = ec | INT_SIGN;
1684     if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1685     w.eventCount = ec; // unmark on CAS failure
1686     else if ((int)(c >> AC_SHIFT) == 1 - (config & SMASK))
1687     idleAwaitWork(w, nc, c);
1688     }
1689 dl 1.131 else if (w.eventCount < 0 && ctl == c) {
1690 dl 1.126 Thread wt = Thread.currentThread();
1691     Thread.interrupted(); // clear status
1692     U.putObject(wt, PARKBLOCKER, this);
1693     w.parker = wt; // emulate LockSupport.park
1694     if (w.eventCount < 0) // recheck
1695 dl 1.131 U.park(false, 0L); // block
1696 dl 1.126 w.parker = null;
1697     U.putObject(wt, PARKBLOCKER, null);
1698     }
1699     }
1700     if ((h >= 0 || (h = w.hint) >= 0) &&
1701     (ws = workQueues) != null && h < ws.length &&
1702     (q = ws[h]) != null) { // signal others before retry
1703     WorkQueue v; Thread p; int u, i, s;
1704 dl 1.131 for (int n = (config & SMASK) - 1;;) {
1705 dl 1.126 int idleCount = (w.eventCount < 0) ? 0 : -1;
1706     if (((s = idleCount - q.base + q.top) <= n &&
1707     (n = s) <= 0) ||
1708     (u = (int)((c = ctl) >>> 32)) >= 0 ||
1709     (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1710     (v = ws[i]) == null)
1711     break;
1712     long nc = (((long)(v.nextWait & E_MASK)) |
1713     ((long)(u + UAC_UNIT) << 32));
1714     if (v.eventCount != (e | INT_SIGN) ||
1715     !U.compareAndSwapLong(this, CTL, c, nc))
1716     break;
1717     v.hint = h;
1718     v.eventCount = (e + E_SEQ) & E_MASK;
1719     if ((p = v.parker) != null)
1720     U.unpark(p);
1721     if (--n <= 0)
1722     break;
1723     }
1724 dl 1.115 }
1725     }
1726 dl 1.52 }
1727 dl 1.78 return null;
1728 dl 1.14 }
1729    
1730     /**
1731 dl 1.90 * If inactivating worker w has caused the pool to become
1732     * quiescent, checks for pool termination, and, so long as this is
1733 dl 1.100 * not the only worker, waits for event for up to a given
1734     * duration. On timeout, if ctl has not changed, terminates the
1735 dl 1.90 * worker, which will in turn wake up another worker to possibly
1736     * repeat this process.
1737 dl 1.52 *
1738 dl 1.78 * @param w the calling worker
1739 dl 1.90 * @param currentCtl the ctl value triggering possible quiescence
1740     * @param prevCtl the ctl value to restore if thread is terminated
1741 dl 1.14 */
1742 dl 1.90 private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1743 dl 1.112 if (w != null && w.eventCount < 0 &&
1744 dl 1.131 !tryTerminate(false, false) && (int)prevCtl != 0 &&
1745     ctl == currentCtl) {
1746 dl 1.100 int dc = -(short)(currentCtl >>> TC_SHIFT);
1747     long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1748 dl 1.120 long deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
1749 dl 1.90 Thread wt = Thread.currentThread();
1750     while (ctl == currentCtl) {
1751 dl 1.78 Thread.interrupted(); // timed variant of version in scan()
1752     U.putObject(wt, PARKBLOCKER, this);
1753     w.parker = wt;
1754 dl 1.90 if (ctl == currentCtl)
1755 dl 1.100 U.park(false, parkTime);
1756 dl 1.78 w.parker = null;
1757     U.putObject(wt, PARKBLOCKER, null);
1758 dl 1.90 if (ctl != currentCtl)
1759 dl 1.78 break;
1760 dl 1.100 if (deadline - System.nanoTime() <= 0L &&
1761 dl 1.90 U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1762     w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1763 dl 1.131 w.hint = -1;
1764 dl 1.105 w.qlock = -1; // shrink
1765 dl 1.78 break;
1766     }
1767 dl 1.24 }
1768 dl 1.14 }
1769     }
1770    
1771     /**
1772 dl 1.120 * Scans through queues looking for work while joining a task; if
1773     * any present, signals. May return early if more signalling is
1774     * detectably unneeded.
1775 dl 1.105 *
1776 dl 1.120 * @param task return early if done
1777 dl 1.105 * @param origin an index to start scan
1778     */
1779 dl 1.120 private void helpSignal(ForkJoinTask<?> task, int origin) {
1780 dl 1.115 WorkQueue[] ws; WorkQueue w; Thread p; long c; int m, u, e, i, s;
1781 dl 1.120 if (task != null && task.status >= 0 &&
1782     (u = (int)(ctl >>> 32)) < 0 && (u >> UAC_SHIFT) < 0 &&
1783 dl 1.115 (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1784 dl 1.120 outer: for (int k = origin, j = m; j >= 0; --j) {
1785 dl 1.115 WorkQueue q = ws[k++ & m];
1786     for (int n = m;;) { // limit to at most m signals
1787 dl 1.120 if (task.status < 0)
1788 dl 1.115 break outer;
1789     if (q == null ||
1790 dl 1.120 ((s = -q.base + q.top) <= n && (n = s) <= 0))
1791 dl 1.105 break;
1792 dl 1.115 if ((u = (int)((c = ctl) >>> 32)) >= 0 ||
1793     (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1794     (w = ws[i]) == null)
1795     break outer;
1796     long nc = (((long)(w.nextWait & E_MASK)) |
1797     ((long)(u + UAC_UNIT) << 32));
1798 dl 1.126 if (w.eventCount != (e | INT_SIGN))
1799     break outer;
1800     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1801 dl 1.122 w.eventCount = (e + E_SEQ) & E_MASK;
1802     if ((p = w.parker) != null)
1803     U.unpark(p);
1804     if (--n <= 0)
1805     break;
1806     }
1807 dl 1.120 }
1808     }
1809     }
1810     }
1811    
1812     /**
1813 dl 1.78 * Tries to locate and execute tasks for a stealer of the given
1814     * task, or in turn one of its stealers, Traces currentSteal ->
1815     * currentJoin links looking for a thread working on a descendant
1816     * of the given task and with a non-empty queue to steal back and
1817     * execute tasks from. The first call to this method upon a
1818     * waiting join will often entail scanning/search, (which is OK
1819     * because the joiner has nothing better to do), but this method
1820     * leaves hints in workers to speed up subsequent calls. The
1821     * implementation is very branchy to cope with potential
1822     * inconsistencies or loops encountering chains that are stale,
1823 dl 1.95 * unknown, or so long that they are likely cyclic.
1824 dl 1.78 *
1825     * @param joiner the joining worker
1826     * @param task the task to join
1827 dl 1.95 * @return 0 if no progress can be made, negative if task
1828     * known complete, else positive
1829 dl 1.78 */
1830 dl 1.95 private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1831     int stat = 0, steps = 0; // bound to avoid cycles
1832     if (joiner != null && task != null) { // hoist null checks
1833     restart: for (;;) {
1834     ForkJoinTask<?> subtask = task; // current target
1835     for (WorkQueue j = joiner, v;;) { // v is stealer of subtask
1836     WorkQueue[] ws; int m, s, h;
1837     if ((s = task.status) < 0) {
1838     stat = s;
1839     break restart;
1840     }
1841     if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1842     break restart; // shutting down
1843 dl 1.112 if ((v = ws[h = (j.hint | 1) & m]) == null ||
1844 dl 1.95 v.currentSteal != subtask) {
1845     for (int origin = h;;) { // find stealer
1846     if (((h = (h + 2) & m) & 15) == 1 &&
1847     (subtask.status < 0 || j.currentJoin != subtask))
1848     continue restart; // occasional staleness check
1849     if ((v = ws[h]) != null &&
1850     v.currentSteal == subtask) {
1851 dl 1.112 j.hint = h; // save hint
1852 dl 1.95 break;
1853     }
1854     if (h == origin)
1855     break restart; // cannot find stealer
1856 dl 1.78 }
1857     }
1858 dl 1.95 for (;;) { // help stealer or descend to its stealer
1859     ForkJoinTask[] a; int b;
1860     if (subtask.status < 0) // surround probes with
1861     continue restart; // consistency checks
1862     if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1863     int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1864     ForkJoinTask<?> t =
1865     (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1866     if (subtask.status < 0 || j.currentJoin != subtask ||
1867     v.currentSteal != subtask)
1868     continue restart; // stale
1869     stat = 1; // apparent progress
1870     if (t != null && v.base == b &&
1871     U.compareAndSwapObject(a, i, t, null)) {
1872     v.base = b + 1; // help stealer
1873     joiner.runSubtask(t);
1874     }
1875     else if (v.base == b && ++steps == MAX_HELP)
1876     break restart; // v apparently stalled
1877     }
1878     else { // empty -- try to descend
1879     ForkJoinTask<?> next = v.currentJoin;
1880     if (subtask.status < 0 || j.currentJoin != subtask ||
1881     v.currentSteal != subtask)
1882     continue restart; // stale
1883     else if (next == null || ++steps == MAX_HELP)
1884     break restart; // dead-end or maybe cyclic
1885     else {
1886     subtask = next;
1887     j = v;
1888     break;
1889     }
1890 dl 1.78 }
1891 dl 1.52 }
1892 dl 1.19 }
1893 dl 1.78 }
1894 dl 1.14 }
1895 dl 1.95 return stat;
1896 dl 1.22 }
1897    
1898 dl 1.52 /**
1899 dl 1.105 * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1900 jsr166 1.111 * and run tasks within the target's computation.
1901 dl 1.105 *
1902     * @param task the task to join
1903 dl 1.19 */
1904 dl 1.166 private int helpComplete(ForkJoinTask<?> task) {
1905 dl 1.112 WorkQueue[] ws; WorkQueue q; int m, n, s, u;
1906 dl 1.166 if (task != null && task.status >= 0 && (ws = workQueues) != null &&
1907 dl 1.105 (m = ws.length - 1) >= 0) {
1908     for (int j = 1, origin = j;;) {
1909     if ((s = task.status) < 0)
1910     return s;
1911 dl 1.166 if ((q = ws[j & m]) != null && q.pollAndExecCC(task))
1912 dl 1.105 origin = j;
1913     else if ((j = (j + 2) & m) == origin)
1914 dl 1.78 break;
1915 dl 1.52 }
1916     }
1917 dl 1.105 return 0;
1918 dl 1.14 }
1919    
1920     /**
1921 dl 1.90 * Tries to decrement active count (sometimes implicitly) and
1922     * possibly release or create a compensating worker in preparation
1923     * for blocking. Fails on contention or termination. Otherwise,
1924 dl 1.105 * adds a new thread if no idle workers are available and pool
1925     * may become starved.
1926 dl 1.90 */
1927 dl 1.105 final boolean tryCompensate() {
1928 dl 1.112 int pc = config & SMASK, e, i, tc; long c;
1929 dl 1.105 WorkQueue[] ws; WorkQueue w; Thread p;
1930 dl 1.112 if ((ws = workQueues) != null && (e = (int)(c = ctl)) >= 0) {
1931 dl 1.105 if (e != 0 && (i = e & SMASK) < ws.length &&
1932     (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1933     long nc = ((long)(w.nextWait & E_MASK) |
1934     (c & (AC_MASK|TC_MASK)));
1935     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1936     w.eventCount = (e + E_SEQ) & E_MASK;
1937     if ((p = w.parker) != null)
1938     U.unpark(p);
1939     return true; // replace with idle worker
1940 dl 1.90 }
1941     }
1942 dl 1.112 else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
1943     (int)(c >> AC_SHIFT) + pc > 1) {
1944 dl 1.105 long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1945     if (U.compareAndSwapLong(this, CTL, c, nc))
1946 dl 1.112 return true; // no compensation
1947 dl 1.105 }
1948 dl 1.112 else if (tc + pc < MAX_CAP) {
1949 dl 1.105 long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1950     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1951 dl 1.115 ForkJoinWorkerThreadFactory fac;
1952     Throwable ex = null;
1953     ForkJoinWorkerThread wt = null;
1954     try {
1955     if ((fac = factory) != null &&
1956     (wt = fac.newThread(this)) != null) {
1957     wt.start();
1958     return true;
1959     }
1960     } catch (Throwable rex) {
1961     ex = rex;
1962     }
1963     deregisterWorker(wt, ex); // clean up and return false
1964 dl 1.90 }
1965     }
1966     }
1967     return false;
1968     }
1969    
1970     /**
1971 jsr166 1.93 * Helps and/or blocks until the given task is done.
1972 dl 1.90 *
1973     * @param joiner the joining worker
1974     * @param task the task
1975     * @return task status on exit
1976     */
1977     final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1978 dl 1.105 int s = 0;
1979     if (joiner != null && task != null && (s = task.status) >= 0) {
1980 dl 1.95 ForkJoinTask<?> prevJoin = joiner.currentJoin;
1981 dl 1.94 joiner.currentJoin = task;
1982 dl 1.115 do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
1983 dl 1.105 joiner.tryRemoveAndExec(task)); // process local tasks
1984 dl 1.115 if (s >= 0 && (s = task.status) >= 0) {
1985 dl 1.120 helpSignal(task, joiner.poolIndex);
1986 dl 1.115 if ((s = task.status) >= 0 &&
1987     (task instanceof CountedCompleter))
1988 dl 1.166 s = helpComplete(task);
1989 dl 1.115 }
1990 dl 1.105 while (s >= 0 && (s = task.status) >= 0) {
1991 dl 1.115 if ((!joiner.isEmpty() || // try helping
1992 dl 1.105 (s = tryHelpStealer(joiner, task)) == 0) &&
1993 dl 1.112 (s = task.status) >= 0) {
1994 dl 1.120 helpSignal(task, joiner.poolIndex);
1995 dl 1.115 if ((s = task.status) >= 0 && tryCompensate()) {
1996 dl 1.112 if (task.trySetSignal() && (s = task.status) >= 0) {
1997     synchronized (task) {
1998     if (task.status >= 0) {
1999     try { // see ForkJoinTask
2000     task.wait(); // for explanation
2001     } catch (InterruptedException ie) {
2002     }
2003 dl 1.90 }
2004 dl 1.112 else
2005     task.notifyAll();
2006 dl 1.90 }
2007     }
2008 dl 1.112 long c; // re-activate
2009     do {} while (!U.compareAndSwapLong
2010     (this, CTL, c = ctl, c + AC_UNIT));
2011 dl 1.90 }
2012     }
2013     }
2014 dl 1.105 joiner.currentJoin = prevJoin;
2015 dl 1.90 }
2016 dl 1.94 return s;
2017 dl 1.90 }
2018    
2019     /**
2020     * Stripped-down variant of awaitJoin used by timed joins. Tries
2021     * to help join only while there is continuous progress. (Caller
2022     * will then enter a timed wait.)
2023     *
2024     * @param joiner the joining worker
2025     * @param task the task
2026     */
2027 dl 1.105 final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2028 dl 1.90 int s;
2029 dl 1.105 if (joiner != null && task != null && (s = task.status) >= 0) {
2030     ForkJoinTask<?> prevJoin = joiner.currentJoin;
2031     joiner.currentJoin = task;
2032 dl 1.115 do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
2033 dl 1.105 joiner.tryRemoveAndExec(task));
2034 dl 1.115 if (s >= 0 && (s = task.status) >= 0) {
2035 dl 1.120 helpSignal(task, joiner.poolIndex);
2036 dl 1.115 if ((s = task.status) >= 0 &&
2037     (task instanceof CountedCompleter))
2038 dl 1.166 s = helpComplete(task);
2039 dl 1.115 }
2040     if (s >= 0 && joiner.isEmpty()) {
2041 dl 1.105 do {} while (task.status >= 0 &&
2042     tryHelpStealer(joiner, task) > 0);
2043     }
2044     joiner.currentJoin = prevJoin;
2045     }
2046 dl 1.90 }
2047    
2048     /**
2049     * Returns a (probably) non-empty steal queue, if one is found
2050 dl 1.131 * during a scan, else null. This method must be retried by
2051     * caller if, by the time it tries to use the queue, it is empty.
2052 dl 1.105 * @param r a (random) seed for scanning
2053 dl 1.78 */
2054 dl 1.105 private WorkQueue findNonEmptyStealQueue(int r) {
2055 dl 1.131 for (;;) {
2056     int ps = plock, m; WorkQueue[] ws; WorkQueue q;
2057     if ((ws = workQueues) != null && (m = ws.length - 1) >= 0) {
2058     for (int j = (m + 1) << 2; j >= 0; --j) {
2059     if ((q = ws[(((r + j) << 1) | 1) & m]) != null &&
2060     q.base - q.top < 0)
2061     return q;
2062 dl 1.52 }
2063     }
2064 dl 1.131 if (plock == ps)
2065     return null;
2066 dl 1.22 }
2067     }
2068    
2069     /**
2070 dl 1.78 * Runs tasks until {@code isQuiescent()}. We piggyback on
2071     * active count ctl maintenance, but rather than blocking
2072     * when tasks cannot be found, we rescan until all others cannot
2073     * find tasks either.
2074     */
2075     final void helpQuiescePool(WorkQueue w) {
2076     for (boolean active = true;;) {
2077 dl 1.131 long c; WorkQueue q; ForkJoinTask<?> t; int b;
2078     while ((t = w.nextLocalTask()) != null) {
2079     if (w.base - w.top < 0)
2080     signalWork(w);
2081     t.doExec();
2082     }
2083     if ((q = findNonEmptyStealQueue(w.nextSeed())) != null) {
2084 dl 1.78 if (!active) { // re-establish active count
2085     active = true;
2086     do {} while (!U.compareAndSwapLong
2087     (this, CTL, c = ctl, c + AC_UNIT));
2088     }
2089 dl 1.130 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2090     if (q.base - q.top < 0)
2091     signalWork(q);
2092 dl 1.78 w.runSubtask(t);
2093 dl 1.130 }
2094 dl 1.78 }
2095 dl 1.131 else if (active) { // decrement active count without queuing
2096     long nc = (c = ctl) - AC_UNIT;
2097     if ((int)(nc >> AC_SHIFT) + (config & SMASK) == 0)
2098     return; // bypass decrement-then-increment
2099     if (U.compareAndSwapLong(this, CTL, c, nc))
2100 dl 1.78 active = false;
2101 dl 1.22 }
2102 dl 1.131 else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) == 0 &&
2103     U.compareAndSwapLong(this, CTL, c, c + AC_UNIT))
2104     return;
2105 dl 1.22 }
2106     }
2107    
2108     /**
2109 jsr166 1.84 * Gets and removes a local or stolen task for the given worker.
2110 dl 1.78 *
2111     * @return a task, if available
2112 dl 1.22 */
2113 dl 1.78 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2114     for (ForkJoinTask<?> t;;) {
2115 dl 1.90 WorkQueue q; int b;
2116 dl 1.78 if ((t = w.nextLocalTask()) != null)
2117     return t;
2118 dl 1.105 if ((q = findNonEmptyStealQueue(w.nextSeed())) == null)
2119 dl 1.78 return null;
2120 dl 1.130 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2121     if (q.base - q.top < 0)
2122     signalWork(q);
2123 dl 1.78 return t;
2124 dl 1.130 }
2125 dl 1.52 }
2126 dl 1.14 }
2127    
2128     /**
2129 dl 1.105 * Returns a cheap heuristic guide for task partitioning when
2130     * programmers, frameworks, tools, or languages have little or no
2131     * idea about task granularity. In essence by offering this
2132     * method, we ask users only about tradeoffs in overhead vs
2133     * expected throughput and its variance, rather than how finely to
2134     * partition tasks.
2135     *
2136     * In a steady state strict (tree-structured) computation, each
2137     * thread makes available for stealing enough tasks for other
2138     * threads to remain active. Inductively, if all threads play by
2139     * the same rules, each thread should make available only a
2140     * constant number of tasks.
2141     *
2142     * The minimum useful constant is just 1. But using a value of 1
2143     * would require immediate replenishment upon each steal to
2144     * maintain enough tasks, which is infeasible. Further,
2145     * partitionings/granularities of offered tasks should minimize
2146     * steal rates, which in general means that threads nearer the top
2147     * of computation tree should generate more than those nearer the
2148     * bottom. In perfect steady state, each thread is at
2149     * approximately the same level of computation tree. However,
2150     * producing extra tasks amortizes the uncertainty of progress and
2151     * diffusion assumptions.
2152     *
2153 jsr166 1.161 * So, users will want to use values larger (but not much larger)
2154 dl 1.105 * than 1 to both smooth over transient shortages and hedge
2155     * against uneven progress; as traded off against the cost of
2156     * extra task overhead. We leave the user to pick a threshold
2157     * value to compare with the results of this call to guide
2158     * decisions, but recommend values such as 3.
2159     *
2160     * When all threads are active, it is on average OK to estimate
2161     * surplus strictly locally. In steady-state, if one thread is
2162     * maintaining say 2 surplus tasks, then so are others. So we can
2163     * just use estimated queue length. However, this strategy alone
2164     * leads to serious mis-estimates in some non-steady-state
2165     * conditions (ramp-up, ramp-down, other stalls). We can detect
2166     * many of these by further considering the number of "idle"
2167     * threads, that are known to have zero queued tasks, so
2168     * compensate by a factor of (#idle/#active) threads.
2169     *
2170     * Note: The approximation of #busy workers as #active workers is
2171     * not very good under current signalling scheme, and should be
2172     * improved.
2173     */
2174     static int getSurplusQueuedTaskCount() {
2175     Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2176     if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2177 dl 1.112 int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2178     int n = (q = wt.workQueue).top - q.base;
2179 dl 1.105 int a = (int)(pool.ctl >> AC_SHIFT) + p;
2180 dl 1.112 return n - (a > (p >>>= 1) ? 0 :
2181     a > (p >>>= 1) ? 1 :
2182     a > (p >>>= 1) ? 2 :
2183     a > (p >>>= 1) ? 4 :
2184     8);
2185 dl 1.105 }
2186     return 0;
2187 dl 1.100 }
2188    
2189 dl 1.86 // Termination
2190 dl 1.14
2191     /**
2192 dl 1.86 * Possibly initiates and/or completes termination. The caller
2193     * triggering termination runs three passes through workQueues:
2194     * (0) Setting termination status, followed by wakeups of queued
2195     * workers; (1) cancelling all tasks; (2) interrupting lagging
2196     * threads (likely in external tasks, but possibly also blocked in
2197     * joins). Each pass repeats previous steps because of potential
2198     * lagging thread creation.
2199 dl 1.14 *
2200     * @param now if true, unconditionally terminate, else only
2201 dl 1.78 * if no work and no active workers
2202 jsr166 1.87 * @param enable if true, enable shutdown when next possible
2203 dl 1.14 * @return true if now terminating or terminated
2204 jsr166 1.1 */
2205 dl 1.86 private boolean tryTerminate(boolean now, boolean enable) {
2206 dl 1.131 int ps;
2207 dl 1.134 if (this == common) // cannot shut down
2208 dl 1.105 return false;
2209 dl 1.131 if ((ps = plock) >= 0) { // enable by setting plock
2210     if (!enable)
2211     return false;
2212     if ((ps & PL_LOCK) != 0 ||
2213     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2214     ps = acquirePlock();
2215     int nps = ((ps + PL_LOCK) & ~SHUTDOWN) | SHUTDOWN;
2216     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2217     releasePlock(nps);
2218     }
2219 dl 1.78 for (long c;;) {
2220 dl 1.131 if (((c = ctl) & STOP_BIT) != 0) { // already terminating
2221 dl 1.112 if ((short)(c >>> TC_SHIFT) == -(config & SMASK)) {
2222 jsr166 1.103 synchronized (this) {
2223 dl 1.131 notifyAll(); // signal when 0 workers
2224 dl 1.101 }
2225 dl 1.78 }
2226     return true;
2227     }
2228 dl 1.131 if (!now) { // check if idle & no tasks
2229     WorkQueue[] ws; WorkQueue w;
2230     if ((int)(c >> AC_SHIFT) != -(config & SMASK))
2231 dl 1.86 return false;
2232 dl 1.131 if ((ws = workQueues) != null) {
2233     for (int i = 0; i < ws.length; ++i) {
2234     if ((w = ws[i]) != null) {
2235     if (!w.isEmpty()) { // signal unprocessed tasks
2236     signalWork(w);
2237     return false;
2238     }
2239     if ((i & 1) != 0 && w.eventCount >= 0)
2240     return false; // unqueued inactive worker
2241     }
2242 dl 1.78 }
2243 dl 1.52 }
2244     }
2245 dl 1.86 if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2246     for (int pass = 0; pass < 3; ++pass) {
2247 dl 1.131 WorkQueue[] ws; WorkQueue w; Thread wt;
2248     if ((ws = workQueues) != null) {
2249 dl 1.86 int n = ws.length;
2250     for (int i = 0; i < n; ++i) {
2251     if ((w = ws[i]) != null) {
2252 dl 1.105 w.qlock = -1;
2253 dl 1.86 if (pass > 0) {
2254     w.cancelAll();
2255 dl 1.126 if (pass > 1 && (wt = w.owner) != null) {
2256     if (!wt.isInterrupted()) {
2257     try {
2258     wt.interrupt();
2259 dl 1.131 } catch (Throwable ignore) {
2260 dl 1.126 }
2261     }
2262     U.unpark(wt);
2263     }
2264 dl 1.52 }
2265 dl 1.19 }
2266     }
2267 dl 1.86 // Wake up workers parked on event queue
2268     int i, e; long cc; Thread p;
2269     while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2270 dl 1.131 (i = e & SMASK) < n && i >= 0 &&
2271 dl 1.86 (w = ws[i]) != null) {
2272     long nc = ((long)(w.nextWait & E_MASK) |
2273     ((cc + AC_UNIT) & AC_MASK) |
2274     (cc & (TC_MASK|STOP_BIT)));
2275     if (w.eventCount == (e | INT_SIGN) &&
2276     U.compareAndSwapLong(this, CTL, cc, nc)) {
2277     w.eventCount = (e + E_SEQ) & E_MASK;
2278 dl 1.105 w.qlock = -1;
2279 dl 1.86 if ((p = w.parker) != null)
2280     U.unpark(p);
2281     }
2282     }
2283 dl 1.78 }
2284 dl 1.52 }
2285     }
2286     }
2287     }
2288    
2289 dl 1.105 // external operations on common pool
2290    
2291     /**
2292     * Returns common pool queue for a thread that has submitted at
2293     * least one task.
2294     */
2295     static WorkQueue commonSubmitterQueue() {
2296 dl 1.139 ForkJoinPool p; WorkQueue[] ws; int m, z;
2297     return ((z = ThreadLocalRandom.getProbe()) != 0 &&
2298 dl 1.134 (p = common) != null &&
2299 dl 1.105 (ws = p.workQueues) != null &&
2300     (m = ws.length - 1) >= 0) ?
2301 dl 1.139 ws[m & z & SQMASK] : null;
2302 dl 1.105 }
2303    
2304     /**
2305     * Tries to pop the given task from submitter's queue in common pool.
2306     */
2307     static boolean tryExternalUnpush(ForkJoinTask<?> t) {
2308 dl 1.139 ForkJoinPool p; WorkQueue[] ws; WorkQueue q;
2309     ForkJoinTask<?>[] a; int m, s, z;
2310 dl 1.115 if (t != null &&
2311 dl 1.139 (z = ThreadLocalRandom.getProbe()) != 0 &&
2312 dl 1.134 (p = common) != null &&
2313 dl 1.105 (ws = p.workQueues) != null &&
2314     (m = ws.length - 1) >= 0 &&
2315 dl 1.139 (q = ws[m & z & SQMASK]) != null &&
2316 dl 1.105 (s = q.top) != q.base &&
2317 dl 1.115 (a = q.array) != null) {
2318     long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
2319     if (U.getObject(a, j) == t &&
2320     U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2321     if (q.array == a && q.top == s && // recheck
2322     U.compareAndSwapObject(a, j, t, null)) {
2323     q.top = s - 1;
2324     q.qlock = 0;
2325     return true;
2326     }
2327 dl 1.105 q.qlock = 0;
2328     }
2329     }
2330     return false;
2331     }
2332    
2333     /**
2334     * Tries to pop and run local tasks within the same computation
2335     * as the given root. On failure, tries to help complete from
2336     * other queues via helpComplete.
2337     */
2338     private void externalHelpComplete(WorkQueue q, ForkJoinTask<?> root) {
2339     ForkJoinTask<?>[] a; int m;
2340 dl 1.166 if (root != null && q != null && (a = q.array) != null &&
2341     (m = (a.length - 1)) >= 0) {
2342     outer: for (;;) {
2343     int s, b, u; Object o;
2344     if (root.status < 0)
2345     return;
2346     if ((s = q.top) - q.base > 0) { // try pop
2347 dl 1.105 long j = ((m & (s - 1)) << ASHIFT) + ABASE;
2348     if ((o = U.getObject(a, j)) != null &&
2349     (o instanceof CountedCompleter)) {
2350     CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2351     do {
2352     if (r == root) {
2353     if (U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2354     if (q.array == a && q.top == s &&
2355     U.compareAndSwapObject(a, j, t, null)) {
2356     q.top = s - 1;
2357 dl 1.166 q.qlock = 0;
2358     t.doExec();
2359 dl 1.105 }
2360 dl 1.166 else
2361     q.qlock = 0;
2362 dl 1.105 }
2363 dl 1.166 continue outer;
2364 dl 1.105 }
2365 jsr166 1.106 } while ((r = r.completer) != null);
2366 dl 1.105 }
2367     }
2368 dl 1.166 if ((b = q.base) - q.top < 0) { // try poll
2369     if (root.status < 0)
2370     return;
2371     long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
2372     if ((o = U.getObject(a, j)) == null ||
2373     !(o instanceof CountedCompleter))
2374     break;
2375     CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2376     for (;;) {
2377     if (r == root) {
2378     if (q.base == b &&
2379     U.compareAndSwapObject(a, j, t, null)) {
2380     q.base = b + 1;
2381     t.doExec();
2382     }
2383     break;
2384     }
2385     if ((r = r.completer) == null)
2386     break outer;
2387     }
2388     }
2389     else
2390 dl 1.105 break;
2391     }
2392 dl 1.166 helpComplete(root);
2393 dl 1.105 }
2394     }
2395    
2396     /**
2397     * Tries to help execute or signal availability of the given task
2398     * from submitter's queue in common pool.
2399     */
2400     static void externalHelpJoin(ForkJoinTask<?> t) {
2401     // Some hard-to-avoid overlap with tryExternalUnpush
2402 dl 1.139 ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w;
2403     ForkJoinTask<?>[] a; int m, s, n, z;
2404 dl 1.112 if (t != null &&
2405 dl 1.139 (z = ThreadLocalRandom.getProbe()) != 0 &&
2406 dl 1.134 (p = common) != null &&
2407 dl 1.105 (ws = p.workQueues) != null &&
2408     (m = ws.length - 1) >= 0 &&
2409 dl 1.139 (q = ws[m & z & SQMASK]) != null &&
2410 dl 1.115 (a = q.array) != null) {
2411     int am = a.length - 1;
2412     if ((s = q.top) != q.base) {
2413     long j = ((am & (s - 1)) << ASHIFT) + ABASE;
2414     if (U.getObject(a, j) == t &&
2415     U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2416     if (q.array == a && q.top == s &&
2417     U.compareAndSwapObject(a, j, t, null)) {
2418     q.top = s - 1;
2419     q.qlock = 0;
2420     t.doExec();
2421     }
2422     else
2423     q.qlock = 0;
2424 dl 1.105 }
2425     }
2426     if (t.status >= 0) {
2427     if (t instanceof CountedCompleter)
2428     p.externalHelpComplete(q, t);
2429     else
2430 dl 1.120 p.helpSignal(t, q.poolIndex);
2431 dl 1.105 }
2432     }
2433     }
2434    
2435 dl 1.52 // Exported methods
2436 jsr166 1.1
2437     // Constructors
2438    
2439     /**
2440 jsr166 1.9 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2441 dl 1.18 * java.lang.Runtime#availableProcessors}, using the {@linkplain
2442     * #defaultForkJoinWorkerThreadFactory default thread factory},
2443     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2444 jsr166 1.1 *
2445     * @throws SecurityException if a security manager exists and
2446     * the caller is not permitted to modify threads
2447     * because it does not hold {@link
2448     * java.lang.RuntimePermission}{@code ("modifyThread")}
2449     */
2450     public ForkJoinPool() {
2451 jsr166 1.148 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2452     defaultForkJoinWorkerThreadFactory, null, false);
2453 jsr166 1.1 }
2454    
2455     /**
2456 jsr166 1.9 * Creates a {@code ForkJoinPool} with the indicated parallelism
2457 dl 1.18 * level, the {@linkplain
2458     * #defaultForkJoinWorkerThreadFactory default thread factory},
2459     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2460 jsr166 1.1 *
2461 jsr166 1.9 * @param parallelism the parallelism level
2462 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
2463 jsr166 1.11 * equal to zero, or greater than implementation limit
2464 jsr166 1.1 * @throws SecurityException if a security manager exists and
2465     * the caller is not permitted to modify threads
2466     * because it does not hold {@link
2467     * java.lang.RuntimePermission}{@code ("modifyThread")}
2468     */
2469     public ForkJoinPool(int parallelism) {
2470 dl 1.18 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2471 jsr166 1.1 }
2472    
2473     /**
2474 dl 1.18 * Creates a {@code ForkJoinPool} with the given parameters.
2475 jsr166 1.1 *
2476 dl 1.18 * @param parallelism the parallelism level. For default value,
2477     * use {@link java.lang.Runtime#availableProcessors}.
2478     * @param factory the factory for creating new threads. For default value,
2479     * use {@link #defaultForkJoinWorkerThreadFactory}.
2480 dl 1.19 * @param handler the handler for internal worker threads that
2481     * terminate due to unrecoverable errors encountered while executing
2482 jsr166 1.31 * tasks. For default value, use {@code null}.
2483 dl 1.19 * @param asyncMode if true,
2484 dl 1.18 * establishes local first-in-first-out scheduling mode for forked
2485     * tasks that are never joined. This mode may be more appropriate
2486     * than default locally stack-based mode in applications in which
2487     * worker threads only process event-style asynchronous tasks.
2488 jsr166 1.31 * For default value, use {@code false}.
2489 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
2490 jsr166 1.11 * equal to zero, or greater than implementation limit
2491     * @throws NullPointerException if the factory is null
2492 jsr166 1.1 * @throws SecurityException if a security manager exists and
2493     * the caller is not permitted to modify threads
2494     * because it does not hold {@link
2495     * java.lang.RuntimePermission}{@code ("modifyThread")}
2496     */
2497 dl 1.19 public ForkJoinPool(int parallelism,
2498 dl 1.18 ForkJoinWorkerThreadFactory factory,
2499 jsr166 1.156 UncaughtExceptionHandler handler,
2500 dl 1.18 boolean asyncMode) {
2501 dl 1.152 this(checkParallelism(parallelism),
2502     checkFactory(factory),
2503     handler,
2504     asyncMode,
2505     "ForkJoinPool-" + nextPoolId() + "-worker-");
2506 dl 1.14 checkPermission();
2507 dl 1.152 }
2508    
2509     private static int checkParallelism(int parallelism) {
2510     if (parallelism <= 0 || parallelism > MAX_CAP)
2511     throw new IllegalArgumentException();
2512     return parallelism;
2513     }
2514    
2515     private static ForkJoinWorkerThreadFactory checkFactory
2516     (ForkJoinWorkerThreadFactory factory) {
2517 dl 1.14 if (factory == null)
2518     throw new NullPointerException();
2519 dl 1.152 return factory;
2520     }
2521    
2522     /**
2523     * Creates a {@code ForkJoinPool} with the given parameters, without
2524     * any security checks or parameter validation. Invoked directly by
2525     * makeCommonPool.
2526     */
2527     private ForkJoinPool(int parallelism,
2528     ForkJoinWorkerThreadFactory factory,
2529 jsr166 1.156 UncaughtExceptionHandler handler,
2530 dl 1.152 boolean asyncMode,
2531     String workerNamePrefix) {
2532     this.workerNamePrefix = workerNamePrefix;
2533 jsr166 1.1 this.factory = factory;
2534 dl 1.18 this.ueh = handler;
2535 jsr166 1.113 this.config = parallelism | (asyncMode ? (FIFO_QUEUE << 16) : 0);
2536 dl 1.52 long np = (long)(-parallelism); // offset ctl counts
2537     this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2538 dl 1.101 }
2539    
2540     /**
2541 dl 1.128 * Returns the common pool instance. This pool is statically
2542 dl 1.134 * constructed; its run state is unaffected by attempts to {@link
2543     * #shutdown} or {@link #shutdownNow}. However this pool and any
2544     * ongoing processing are automatically terminated upon program
2545     * {@link System#exit}. Any program that relies on asynchronous
2546     * task processing to complete before program termination should
2547 jsr166 1.158 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2548     * before exit.
2549 dl 1.100 *
2550     * @return the common pool instance
2551 jsr166 1.138 * @since 1.8
2552 dl 1.100 */
2553     public static ForkJoinPool commonPool() {
2554 dl 1.134 // assert common != null : "static init error";
2555     return common;
2556 dl 1.100 }
2557    
2558 jsr166 1.1 // Execution methods
2559    
2560     /**
2561     * Performs the given task, returning its result upon completion.
2562 dl 1.52 * If the computation encounters an unchecked Exception or Error,
2563     * it is rethrown as the outcome of this invocation. Rethrown
2564     * exceptions behave in the same way as regular exceptions, but,
2565     * when possible, contain stack traces (as displayed for example
2566     * using {@code ex.printStackTrace()}) of both the current thread
2567     * as well as the thread actually encountering the exception;
2568     * minimally only the latter.
2569 jsr166 1.1 *
2570     * @param task the task
2571     * @return the task's result
2572 jsr166 1.11 * @throws NullPointerException if the task is null
2573     * @throws RejectedExecutionException if the task cannot be
2574     * scheduled for execution
2575 jsr166 1.1 */
2576     public <T> T invoke(ForkJoinTask<T> task) {
2577 dl 1.90 if (task == null)
2578     throw new NullPointerException();
2579 dl 1.105 externalPush(task);
2580 dl 1.78 return task.join();
2581 jsr166 1.1 }
2582    
2583     /**
2584     * Arranges for (asynchronous) execution of the given task.
2585     *
2586     * @param task the task
2587 jsr166 1.11 * @throws NullPointerException if the task is null
2588     * @throws RejectedExecutionException if the task cannot be
2589     * scheduled for execution
2590 jsr166 1.1 */
2591 jsr166 1.8 public void execute(ForkJoinTask<?> task) {
2592 dl 1.90 if (task == null)
2593     throw new NullPointerException();
2594 dl 1.105 externalPush(task);
2595 jsr166 1.1 }
2596    
2597     // AbstractExecutorService methods
2598    
2599 jsr166 1.11 /**
2600     * @throws NullPointerException if the task is null
2601     * @throws RejectedExecutionException if the task cannot be
2602     * scheduled for execution
2603     */
2604 jsr166 1.1 public void execute(Runnable task) {
2605 dl 1.41 if (task == null)
2606     throw new NullPointerException();
2607 jsr166 1.2 ForkJoinTask<?> job;
2608 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2609     job = (ForkJoinTask<?>) task;
2610 jsr166 1.2 else
2611 dl 1.152 job = new ForkJoinTask.RunnableExecuteAction(task);
2612 dl 1.105 externalPush(job);
2613 jsr166 1.1 }
2614    
2615 jsr166 1.11 /**
2616 dl 1.18 * Submits a ForkJoinTask for execution.
2617     *
2618     * @param task the task to submit
2619     * @return the task
2620     * @throws NullPointerException if the task is null
2621     * @throws RejectedExecutionException if the task cannot be
2622     * scheduled for execution
2623     */
2624     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2625 dl 1.90 if (task == null)
2626     throw new NullPointerException();
2627 dl 1.105 externalPush(task);
2628 dl 1.18 return task;
2629     }
2630    
2631     /**
2632 jsr166 1.11 * @throws NullPointerException if the task is null
2633     * @throws RejectedExecutionException if the task cannot be
2634     * scheduled for execution
2635     */
2636 jsr166 1.1 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2637 dl 1.90 ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2638 dl 1.105 externalPush(job);
2639 jsr166 1.1 return job;
2640     }
2641    
2642 jsr166 1.11 /**
2643     * @throws NullPointerException if the task is null
2644     * @throws RejectedExecutionException if the task cannot be
2645     * scheduled for execution
2646     */
2647 jsr166 1.1 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2648 dl 1.90 ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2649 dl 1.105 externalPush(job);
2650 jsr166 1.1 return job;
2651     }
2652    
2653 jsr166 1.11 /**
2654     * @throws NullPointerException if the task is null
2655     * @throws RejectedExecutionException if the task cannot be
2656     * scheduled for execution
2657     */
2658 jsr166 1.1 public ForkJoinTask<?> submit(Runnable task) {
2659 dl 1.41 if (task == null)
2660     throw new NullPointerException();
2661 jsr166 1.2 ForkJoinTask<?> job;
2662 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2663     job = (ForkJoinTask<?>) task;
2664 jsr166 1.2 else
2665 dl 1.90 job = new ForkJoinTask.AdaptedRunnableAction(task);
2666 dl 1.105 externalPush(job);
2667 jsr166 1.1 return job;
2668     }
2669    
2670     /**
2671 jsr166 1.11 * @throws NullPointerException {@inheritDoc}
2672     * @throws RejectedExecutionException {@inheritDoc}
2673     */
2674 jsr166 1.1 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2675 dl 1.86 // In previous versions of this class, this method constructed
2676     // a task to run ForkJoinTask.invokeAll, but now external
2677     // invocation of multiple tasks is at least as efficient.
2678 jsr166 1.143 ArrayList<Future<T>> futures = new ArrayList<Future<T>>(tasks.size());
2679 jsr166 1.1
2680 dl 1.86 boolean done = false;
2681     try {
2682     for (Callable<T> t : tasks) {
2683 dl 1.90 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2684 jsr166 1.144 futures.add(f);
2685 dl 1.105 externalPush(f);
2686 dl 1.86 }
2687 jsr166 1.143 for (int i = 0, size = futures.size(); i < size; i++)
2688     ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2689 dl 1.86 done = true;
2690     return futures;
2691     } finally {
2692     if (!done)
2693 jsr166 1.143 for (int i = 0, size = futures.size(); i < size; i++)
2694     futures.get(i).cancel(false);
2695 jsr166 1.1 }
2696     }
2697    
2698     /**
2699     * Returns the factory used for constructing new workers.
2700     *
2701     * @return the factory used for constructing new workers
2702     */
2703     public ForkJoinWorkerThreadFactory getFactory() {
2704     return factory;
2705     }
2706    
2707     /**
2708     * Returns the handler for internal worker threads that terminate
2709     * due to unrecoverable errors encountered while executing tasks.
2710     *
2711 jsr166 1.4 * @return the handler, or {@code null} if none
2712 jsr166 1.1 */
2713 jsr166 1.156 public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2714 dl 1.14 return ueh;
2715 jsr166 1.1 }
2716    
2717     /**
2718 jsr166 1.9 * Returns the targeted parallelism level of this pool.
2719 jsr166 1.1 *
2720 jsr166 1.9 * @return the targeted parallelism level of this pool
2721 jsr166 1.1 */
2722     public int getParallelism() {
2723 dl 1.160 int par = (config & SMASK);
2724     return (par > 0) ? par : 1;
2725 jsr166 1.1 }
2726    
2727     /**
2728 dl 1.100 * Returns the targeted parallelism level of the common pool.
2729     *
2730     * @return the targeted parallelism level of the common pool
2731 jsr166 1.138 * @since 1.8
2732 dl 1.100 */
2733     public static int getCommonPoolParallelism() {
2734 dl 1.134 return commonParallelism;
2735 dl 1.100 }
2736    
2737     /**
2738 jsr166 1.1 * Returns the number of worker threads that have started but not
2739 jsr166 1.34 * yet terminated. The result returned by this method may differ
2740 jsr166 1.4 * from {@link #getParallelism} when threads are created to
2741 jsr166 1.1 * maintain parallelism when others are cooperatively blocked.
2742     *
2743     * @return the number of worker threads
2744     */
2745     public int getPoolSize() {
2746 dl 1.112 return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2747 jsr166 1.1 }
2748    
2749     /**
2750 jsr166 1.4 * Returns {@code true} if this pool uses local first-in-first-out
2751 jsr166 1.1 * scheduling mode for forked tasks that are never joined.
2752     *
2753 jsr166 1.4 * @return {@code true} if this pool uses async mode
2754 jsr166 1.1 */
2755     public boolean getAsyncMode() {
2756 dl 1.112 return (config >>> 16) == FIFO_QUEUE;
2757 jsr166 1.1 }
2758    
2759     /**
2760     * Returns an estimate of the number of worker threads that are
2761     * not blocked waiting to join tasks or for other managed
2762 dl 1.14 * synchronization. This method may overestimate the
2763     * number of running threads.
2764 jsr166 1.1 *
2765     * @return the number of worker threads
2766     */
2767     public int getRunningThreadCount() {
2768 dl 1.78 int rc = 0;
2769     WorkQueue[] ws; WorkQueue w;
2770     if ((ws = workQueues) != null) {
2771 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2772     if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2773 dl 1.78 ++rc;
2774     }
2775     }
2776     return rc;
2777 jsr166 1.1 }
2778    
2779     /**
2780     * Returns an estimate of the number of threads that are currently
2781     * stealing or executing tasks. This method may overestimate the
2782     * number of active threads.
2783     *
2784     * @return the number of active threads
2785     */
2786     public int getActiveThreadCount() {
2787 dl 1.112 int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2788 jsr166 1.63 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2789 jsr166 1.1 }
2790    
2791     /**
2792 jsr166 1.4 * Returns {@code true} if all worker threads are currently idle.
2793     * An idle worker is one that cannot obtain a task to execute
2794     * because none are available to steal from other threads, and
2795     * there are no pending submissions to the pool. This method is
2796     * conservative; it might not return {@code true} immediately upon
2797     * idleness of all threads, but will eventually become true if
2798     * threads remain inactive.
2799 jsr166 1.1 *
2800 jsr166 1.4 * @return {@code true} if all threads are currently idle
2801 jsr166 1.1 */
2802     public boolean isQuiescent() {
2803 dl 1.112 return (int)(ctl >> AC_SHIFT) + (config & SMASK) == 0;
2804 jsr166 1.1 }
2805    
2806     /**
2807     * Returns an estimate of the total number of tasks stolen from
2808     * one thread's work queue by another. The reported value
2809     * underestimates the actual total number of steals when the pool
2810     * is not quiescent. This value may be useful for monitoring and
2811     * tuning fork/join programs: in general, steal counts should be
2812     * high enough to keep threads busy, but low enough to avoid
2813     * overhead and contention across threads.
2814     *
2815     * @return the number of steals
2816     */
2817     public long getStealCount() {
2818 dl 1.101 long count = stealCount;
2819 dl 1.78 WorkQueue[] ws; WorkQueue w;
2820     if ((ws = workQueues) != null) {
2821 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2822 dl 1.78 if ((w = ws[i]) != null)
2823 dl 1.105 count += w.nsteals;
2824 dl 1.78 }
2825     }
2826     return count;
2827 jsr166 1.1 }
2828    
2829     /**
2830     * Returns an estimate of the total number of tasks currently held
2831     * in queues by worker threads (but not including tasks submitted
2832     * to the pool that have not begun executing). This value is only
2833     * an approximation, obtained by iterating across all threads in
2834     * the pool. This method may be useful for tuning task
2835     * granularities.
2836     *
2837     * @return the number of queued tasks
2838     */
2839     public long getQueuedTaskCount() {
2840     long count = 0;
2841 dl 1.78 WorkQueue[] ws; WorkQueue w;
2842     if ((ws = workQueues) != null) {
2843 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2844 dl 1.78 if ((w = ws[i]) != null)
2845     count += w.queueSize();
2846     }
2847 dl 1.52 }
2848 jsr166 1.1 return count;
2849     }
2850    
2851     /**
2852 jsr166 1.8 * Returns an estimate of the number of tasks submitted to this
2853 dl 1.55 * pool that have not yet begun executing. This method may take
2854 dl 1.52 * time proportional to the number of submissions.
2855 jsr166 1.1 *
2856     * @return the number of queued submissions
2857     */
2858     public int getQueuedSubmissionCount() {
2859 dl 1.78 int count = 0;
2860     WorkQueue[] ws; WorkQueue w;
2861     if ((ws = workQueues) != null) {
2862 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2863 dl 1.78 if ((w = ws[i]) != null)
2864     count += w.queueSize();
2865     }
2866     }
2867     return count;
2868 jsr166 1.1 }
2869    
2870     /**
2871 jsr166 1.4 * Returns {@code true} if there are any tasks submitted to this
2872     * pool that have not yet begun executing.
2873 jsr166 1.1 *
2874     * @return {@code true} if there are any queued submissions
2875     */
2876     public boolean hasQueuedSubmissions() {
2877 dl 1.78 WorkQueue[] ws; WorkQueue w;
2878     if ((ws = workQueues) != null) {
2879 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2880 dl 1.115 if ((w = ws[i]) != null && !w.isEmpty())
2881 dl 1.78 return true;
2882     }
2883     }
2884     return false;
2885 jsr166 1.1 }
2886    
2887     /**
2888     * Removes and returns the next unexecuted submission if one is
2889     * available. This method may be useful in extensions to this
2890     * class that re-assign work in systems with multiple pools.
2891     *
2892 jsr166 1.4 * @return the next submission, or {@code null} if none
2893 jsr166 1.1 */
2894     protected ForkJoinTask<?> pollSubmission() {
2895 dl 1.78 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2896     if ((ws = workQueues) != null) {
2897 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2898 dl 1.78 if ((w = ws[i]) != null && (t = w.poll()) != null)
2899     return t;
2900 dl 1.52 }
2901     }
2902     return null;
2903 jsr166 1.1 }
2904    
2905     /**
2906     * Removes all available unexecuted submitted and forked tasks
2907     * from scheduling queues and adds them to the given collection,
2908     * without altering their execution status. These may include
2909 jsr166 1.8 * artificially generated or wrapped tasks. This method is
2910     * designed to be invoked only when the pool is known to be
2911 jsr166 1.1 * quiescent. Invocations at other times may not remove all
2912     * tasks. A failure encountered while attempting to add elements
2913     * to collection {@code c} may result in elements being in
2914     * neither, either or both collections when the associated
2915     * exception is thrown. The behavior of this operation is
2916     * undefined if the specified collection is modified while the
2917     * operation is in progress.
2918     *
2919     * @param c the collection to transfer elements into
2920     * @return the number of elements transferred
2921     */
2922 jsr166 1.5 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2923 dl 1.52 int count = 0;
2924 dl 1.78 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2925     if ((ws = workQueues) != null) {
2926 dl 1.86 for (int i = 0; i < ws.length; ++i) {
2927 dl 1.78 if ((w = ws[i]) != null) {
2928     while ((t = w.poll()) != null) {
2929     c.add(t);
2930     ++count;
2931     }
2932     }
2933 dl 1.52 }
2934     }
2935 dl 1.18 return count;
2936     }
2937    
2938     /**
2939 jsr166 1.1 * Returns a string identifying this pool, as well as its state,
2940     * including indications of run state, parallelism level, and
2941     * worker and task counts.
2942     *
2943     * @return a string identifying this pool, as well as its state
2944     */
2945     public String toString() {
2946 dl 1.86 // Use a single pass through workQueues to collect counts
2947     long qt = 0L, qs = 0L; int rc = 0;
2948 dl 1.101 long st = stealCount;
2949 dl 1.86 long c = ctl;
2950     WorkQueue[] ws; WorkQueue w;
2951     if ((ws = workQueues) != null) {
2952     for (int i = 0; i < ws.length; ++i) {
2953     if ((w = ws[i]) != null) {
2954     int size = w.queueSize();
2955     if ((i & 1) == 0)
2956     qs += size;
2957     else {
2958     qt += size;
2959 dl 1.105 st += w.nsteals;
2960 dl 1.86 if (w.isApparentlyUnblocked())
2961     ++rc;
2962     }
2963     }
2964     }
2965     }
2966 dl 1.112 int pc = (config & SMASK);
2967 dl 1.52 int tc = pc + (short)(c >>> TC_SHIFT);
2968 dl 1.78 int ac = pc + (int)(c >> AC_SHIFT);
2969     if (ac < 0) // ignore transient negative
2970     ac = 0;
2971 dl 1.52 String level;
2972     if ((c & STOP_BIT) != 0)
2973 jsr166 1.63 level = (tc == 0) ? "Terminated" : "Terminating";
2974 dl 1.52 else
2975 dl 1.105 level = plock < 0 ? "Shutting down" : "Running";
2976 jsr166 1.1 return super.toString() +
2977 dl 1.52 "[" + level +
2978 dl 1.14 ", parallelism = " + pc +
2979     ", size = " + tc +
2980     ", active = " + ac +
2981     ", running = " + rc +
2982 jsr166 1.1 ", steals = " + st +
2983     ", tasks = " + qt +
2984     ", submissions = " + qs +
2985     "]";
2986     }
2987    
2988     /**
2989 dl 1.100 * Possibly initiates an orderly shutdown in which previously
2990     * submitted tasks are executed, but no new tasks will be
2991     * accepted. Invocation has no effect on execution state if this
2992 jsr166 1.137 * is the {@link #commonPool()}, and no additional effect if
2993 dl 1.100 * already shut down. Tasks that are in the process of being
2994     * submitted concurrently during the course of this method may or
2995     * may not be rejected.
2996 jsr166 1.1 *
2997     * @throws SecurityException if a security manager exists and
2998     * the caller is not permitted to modify threads
2999     * because it does not hold {@link
3000     * java.lang.RuntimePermission}{@code ("modifyThread")}
3001     */
3002     public void shutdown() {
3003     checkPermission();
3004 dl 1.105 tryTerminate(false, true);
3005 jsr166 1.1 }
3006    
3007     /**
3008 dl 1.100 * Possibly attempts to cancel and/or stop all tasks, and reject
3009     * all subsequently submitted tasks. Invocation has no effect on
3010 jsr166 1.137 * execution state if this is the {@link #commonPool()}, and no
3011 dl 1.100 * additional effect if already shut down. Otherwise, tasks that
3012     * are in the process of being submitted or executed concurrently
3013     * during the course of this method may or may not be
3014     * rejected. This method cancels both existing and unexecuted
3015     * tasks, in order to permit termination in the presence of task
3016     * dependencies. So the method always returns an empty list
3017     * (unlike the case for some other Executors).
3018 jsr166 1.1 *
3019     * @return an empty list
3020     * @throws SecurityException if a security manager exists and
3021     * the caller is not permitted to modify threads
3022     * because it does not hold {@link
3023     * java.lang.RuntimePermission}{@code ("modifyThread")}
3024     */
3025     public List<Runnable> shutdownNow() {
3026     checkPermission();
3027 dl 1.105 tryTerminate(true, true);
3028 jsr166 1.1 return Collections.emptyList();
3029     }
3030    
3031     /**
3032     * Returns {@code true} if all tasks have completed following shut down.
3033     *
3034     * @return {@code true} if all tasks have completed following shut down
3035     */
3036     public boolean isTerminated() {
3037 dl 1.52 long c = ctl;
3038     return ((c & STOP_BIT) != 0L &&
3039 dl 1.112 (short)(c >>> TC_SHIFT) == -(config & SMASK));
3040 jsr166 1.1 }
3041    
3042     /**
3043     * Returns {@code true} if the process of termination has
3044 jsr166 1.9 * commenced but not yet completed. This method may be useful for
3045     * debugging. A return of {@code true} reported a sufficient
3046     * period after shutdown may indicate that submitted tasks have
3047 jsr166 1.119 * ignored or suppressed interruption, or are waiting for I/O,
3048 dl 1.49 * causing this executor not to properly terminate. (See the
3049     * advisory notes for class {@link ForkJoinTask} stating that
3050     * tasks should not normally entail blocking operations. But if
3051     * they do, they must abort them on interrupt.)
3052 jsr166 1.1 *
3053 jsr166 1.9 * @return {@code true} if terminating but not yet terminated
3054 jsr166 1.1 */
3055     public boolean isTerminating() {
3056 dl 1.52 long c = ctl;
3057     return ((c & STOP_BIT) != 0L &&
3058 dl 1.112 (short)(c >>> TC_SHIFT) != -(config & SMASK));
3059 jsr166 1.1 }
3060    
3061     /**
3062     * Returns {@code true} if this pool has been shut down.
3063     *
3064     * @return {@code true} if this pool has been shut down
3065     */
3066     public boolean isShutdown() {
3067 dl 1.105 return plock < 0;
3068 jsr166 1.9 }
3069    
3070     /**
3071 dl 1.105 * Blocks until all tasks have completed execution after a
3072     * shutdown request, or the timeout occurs, or the current thread
3073 dl 1.134 * is interrupted, whichever happens first. Because the {@link
3074     * #commonPool()} never terminates until program shutdown, when
3075     * applied to the common pool, this method is equivalent to {@link
3076 jsr166 1.158 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
3077 jsr166 1.1 *
3078     * @param timeout the maximum time to wait
3079     * @param unit the time unit of the timeout argument
3080     * @return {@code true} if this executor terminated and
3081     * {@code false} if the timeout elapsed before termination
3082     * @throws InterruptedException if interrupted while waiting
3083     */
3084     public boolean awaitTermination(long timeout, TimeUnit unit)
3085     throws InterruptedException {
3086 dl 1.134 if (Thread.interrupted())
3087     throw new InterruptedException();
3088     if (this == common) {
3089     awaitQuiescence(timeout, unit);
3090     return false;
3091     }
3092 dl 1.52 long nanos = unit.toNanos(timeout);
3093 dl 1.101 if (isTerminated())
3094     return true;
3095     long startTime = System.nanoTime();
3096     boolean terminated = false;
3097 jsr166 1.103 synchronized (this) {
3098 dl 1.101 for (long waitTime = nanos, millis = 0L;;) {
3099     if (terminated = isTerminated() ||
3100     waitTime <= 0L ||
3101     (millis = unit.toMillis(waitTime)) <= 0L)
3102     break;
3103     wait(millis);
3104     waitTime = nanos - (System.nanoTime() - startTime);
3105 dl 1.52 }
3106 dl 1.18 }
3107 dl 1.101 return terminated;
3108 jsr166 1.1 }
3109    
3110     /**
3111 dl 1.134 * If called by a ForkJoinTask operating in this pool, equivalent
3112     * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3113     * waits and/or attempts to assist performing tasks until this
3114     * pool {@link #isQuiescent} or the indicated timeout elapses.
3115     *
3116     * @param timeout the maximum time to wait
3117     * @param unit the time unit of the timeout argument
3118     * @return {@code true} if quiescent; {@code false} if the
3119     * timeout elapsed.
3120     */
3121     public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3122     long nanos = unit.toNanos(timeout);
3123     ForkJoinWorkerThread wt;
3124     Thread thread = Thread.currentThread();
3125     if ((thread instanceof ForkJoinWorkerThread) &&
3126     (wt = (ForkJoinWorkerThread)thread).pool == this) {
3127     helpQuiescePool(wt.workQueue);
3128     return true;
3129     }
3130     long startTime = System.nanoTime();
3131     WorkQueue[] ws;
3132     int r = 0, m;
3133     boolean found = true;
3134     while (!isQuiescent() && (ws = workQueues) != null &&
3135     (m = ws.length - 1) >= 0) {
3136     if (!found) {
3137     if ((System.nanoTime() - startTime) > nanos)
3138     return false;
3139     Thread.yield(); // cannot block
3140     }
3141     found = false;
3142     for (int j = (m + 1) << 2; j >= 0; --j) {
3143     ForkJoinTask<?> t; WorkQueue q; int b;
3144     if ((q = ws[r++ & m]) != null && (b = q.base) - q.top < 0) {
3145     found = true;
3146     if ((t = q.pollAt(b)) != null) {
3147     if (q.base - q.top < 0)
3148     signalWork(q);
3149     t.doExec();
3150     }
3151     break;
3152     }
3153     }
3154     }
3155     return true;
3156     }
3157    
3158     /**
3159     * Waits and/or attempts to assist performing tasks indefinitely
3160 jsr166 1.141 * until the {@link #commonPool()} {@link #isQuiescent}.
3161 dl 1.134 */
3162 dl 1.136 static void quiesceCommonPool() {
3163 dl 1.134 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3164     }
3165    
3166     /**
3167 jsr166 1.1 * Interface for extending managed parallelism for tasks running
3168 jsr166 1.8 * in {@link ForkJoinPool}s.
3169     *
3170 dl 1.19 * <p>A {@code ManagedBlocker} provides two methods. Method
3171     * {@code isReleasable} must return {@code true} if blocking is
3172     * not necessary. Method {@code block} blocks the current thread
3173     * if necessary (perhaps internally invoking {@code isReleasable}
3174 dl 1.54 * before actually blocking). These actions are performed by any
3175 jsr166 1.157 * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
3176     * The unusual methods in this API accommodate synchronizers that
3177     * may, but don't usually, block for long periods. Similarly, they
3178 dl 1.54 * allow more efficient internal handling of cases in which
3179     * additional workers may be, but usually are not, needed to
3180     * ensure sufficient parallelism. Toward this end,
3181     * implementations of method {@code isReleasable} must be amenable
3182     * to repeated invocation.
3183 jsr166 1.1 *
3184     * <p>For example, here is a ManagedBlocker based on a
3185     * ReentrantLock:
3186     * <pre> {@code
3187     * class ManagedLocker implements ManagedBlocker {
3188     * final ReentrantLock lock;
3189     * boolean hasLock = false;
3190     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3191     * public boolean block() {
3192     * if (!hasLock)
3193     * lock.lock();
3194     * return true;
3195     * }
3196     * public boolean isReleasable() {
3197     * return hasLock || (hasLock = lock.tryLock());
3198     * }
3199     * }}</pre>
3200 dl 1.19 *
3201     * <p>Here is a class that possibly blocks waiting for an
3202     * item on a given queue:
3203     * <pre> {@code
3204     * class QueueTaker<E> implements ManagedBlocker {
3205     * final BlockingQueue<E> queue;
3206     * volatile E item = null;
3207     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3208     * public boolean block() throws InterruptedException {
3209     * if (item == null)
3210 dl 1.23 * item = queue.take();
3211 dl 1.19 * return true;
3212     * }
3213     * public boolean isReleasable() {
3214 dl 1.23 * return item != null || (item = queue.poll()) != null;
3215 dl 1.19 * }
3216     * public E getItem() { // call after pool.managedBlock completes
3217     * return item;
3218     * }
3219     * }}</pre>
3220 jsr166 1.1 */
3221     public static interface ManagedBlocker {
3222     /**
3223     * Possibly blocks the current thread, for example waiting for
3224     * a lock or condition.
3225     *
3226 jsr166 1.4 * @return {@code true} if no additional blocking is necessary
3227     * (i.e., if isReleasable would return true)
3228 jsr166 1.1 * @throws InterruptedException if interrupted while waiting
3229     * (the method is not required to do so, but is allowed to)
3230     */
3231     boolean block() throws InterruptedException;
3232    
3233     /**
3234 jsr166 1.4 * Returns {@code true} if blocking is unnecessary.
3235 jsr166 1.154 * @return {@code true} if blocking is unnecessary
3236 jsr166 1.1 */
3237     boolean isReleasable();
3238     }
3239    
3240     /**
3241     * Blocks in accord with the given blocker. If the current thread
3242 jsr166 1.8 * is a {@link ForkJoinWorkerThread}, this method possibly
3243     * arranges for a spare thread to be activated if necessary to
3244 dl 1.18 * ensure sufficient parallelism while the current thread is blocked.
3245 jsr166 1.1 *
3246 jsr166 1.8 * <p>If the caller is not a {@link ForkJoinTask}, this method is
3247     * behaviorally equivalent to
3248 jsr166 1.82 * <pre> {@code
3249 jsr166 1.1 * while (!blocker.isReleasable())
3250     * if (blocker.block())
3251     * return;
3252     * }</pre>
3253 jsr166 1.8 *
3254     * If the caller is a {@code ForkJoinTask}, then the pool may
3255     * first be expanded to ensure parallelism, and later adjusted.
3256 jsr166 1.1 *
3257     * @param blocker the blocker
3258     * @throws InterruptedException if blocker.block did so
3259     */
3260 dl 1.18 public static void managedBlock(ManagedBlocker blocker)
3261 jsr166 1.1 throws InterruptedException {
3262     Thread t = Thread.currentThread();
3263 dl 1.105 if (t instanceof ForkJoinWorkerThread) {
3264     ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3265     while (!blocker.isReleasable()) { // variant of helpSignal
3266 dl 1.115 WorkQueue[] ws; WorkQueue q; int m, u;
3267 dl 1.105 if ((ws = p.workQueues) != null && (m = ws.length - 1) >= 0) {
3268     for (int i = 0; i <= m; ++i) {
3269     if (blocker.isReleasable())
3270     return;
3271 dl 1.115 if ((q = ws[i]) != null && q.base - q.top < 0) {
3272     p.signalWork(q);
3273 dl 1.112 if ((u = (int)(p.ctl >>> 32)) >= 0 ||
3274     (u >> UAC_SHIFT) >= 0)
3275 dl 1.105 break;
3276     }
3277     }
3278     }
3279     if (p.tryCompensate()) {
3280     try {
3281     do {} while (!blocker.isReleasable() &&
3282     !blocker.block());
3283     } finally {
3284 dl 1.78 p.incrementActiveCount();
3285 dl 1.105 }
3286     break;
3287 dl 1.78 }
3288     }
3289 dl 1.18 }
3290 dl 1.105 else {
3291     do {} while (!blocker.isReleasable() &&
3292     !blocker.block());
3293     }
3294 jsr166 1.1 }
3295    
3296 jsr166 1.7 // AbstractExecutorService overrides. These rely on undocumented
3297     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3298     // implement RunnableFuture.
3299 jsr166 1.1
3300     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3301 dl 1.90 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3302 jsr166 1.1 }
3303    
3304     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3305 dl 1.90 return new ForkJoinTask.AdaptedCallable<T>(callable);
3306 jsr166 1.1 }
3307    
3308     // Unsafe mechanics
3309 dl 1.78 private static final sun.misc.Unsafe U;
3310     private static final long CTL;
3311     private static final long PARKBLOCKER;
3312 dl 1.90 private static final int ABASE;
3313     private static final int ASHIFT;
3314 dl 1.101 private static final long STEALCOUNT;
3315 dl 1.105 private static final long PLOCK;
3316     private static final long INDEXSEED;
3317     private static final long QLOCK;
3318 dl 1.52
3319     static {
3320 jsr166 1.142 // initialize field offsets for CAS etc
3321 jsr166 1.3 try {
3322 dl 1.78 U = sun.misc.Unsafe.getUnsafe();
3323 jsr166 1.64 Class<?> k = ForkJoinPool.class;
3324 dl 1.78 CTL = U.objectFieldOffset
3325 dl 1.52 (k.getDeclaredField("ctl"));
3326 dl 1.101 STEALCOUNT = U.objectFieldOffset
3327     (k.getDeclaredField("stealCount"));
3328 dl 1.105 PLOCK = U.objectFieldOffset
3329     (k.getDeclaredField("plock"));
3330     INDEXSEED = U.objectFieldOffset
3331     (k.getDeclaredField("indexSeed"));
3332 dl 1.86 Class<?> tk = Thread.class;
3333 dl 1.78 PARKBLOCKER = U.objectFieldOffset
3334     (tk.getDeclaredField("parkBlocker"));
3335 dl 1.105 Class<?> wk = WorkQueue.class;
3336     QLOCK = U.objectFieldOffset
3337     (wk.getDeclaredField("qlock"));
3338     Class<?> ak = ForkJoinTask[].class;
3339 dl 1.90 ABASE = U.arrayBaseOffset(ak);
3340 jsr166 1.142 int scale = U.arrayIndexScale(ak);
3341     if ((scale & (scale - 1)) != 0)
3342     throw new Error("data type scale not a power of two");
3343     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3344 dl 1.52 } catch (Exception e) {
3345     throw new Error(e);
3346     }
3347 dl 1.105
3348 dl 1.152 defaultForkJoinWorkerThreadFactory =
3349 dl 1.112 new DefaultForkJoinWorkerThreadFactory();
3350 dl 1.115 modifyThreadPermission = new RuntimePermission("modifyThread");
3351    
3352 dl 1.152 common = java.security.AccessController.doPrivileged
3353     (new java.security.PrivilegedAction<ForkJoinPool>() {
3354     public ForkJoinPool run() { return makeCommonPool(); }});
3355 dl 1.160 int par = common.config; // report 1 even if threads disabled
3356     commonParallelism = par > 0 ? par : 1;
3357 dl 1.152 }
3358 dl 1.112
3359 dl 1.152 /**
3360     * Creates and returns the common pool, respecting user settings
3361     * specified via system properties.
3362     */
3363     private static ForkJoinPool makeCommonPool() {
3364 dl 1.160 int parallelism = -1;
3365 dl 1.152 ForkJoinWorkerThreadFactory factory
3366     = defaultForkJoinWorkerThreadFactory;
3367 jsr166 1.156 UncaughtExceptionHandler handler = null;
3368 dl 1.152 try { // ignore exceptions in accesing/parsing properties
3369 dl 1.112 String pp = System.getProperty
3370     ("java.util.concurrent.ForkJoinPool.common.parallelism");
3371 dl 1.152 String fp = System.getProperty
3372     ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3373 dl 1.112 String hp = System.getProperty
3374     ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3375 dl 1.152 if (pp != null)
3376     parallelism = Integer.parseInt(pp);
3377 dl 1.112 if (fp != null)
3378 dl 1.152 factory = ((ForkJoinWorkerThreadFactory)ClassLoader.
3379     getSystemClassLoader().loadClass(fp).newInstance());
3380 dl 1.112 if (hp != null)
3381 jsr166 1.156 handler = ((UncaughtExceptionHandler)ClassLoader.
3382 dl 1.112 getSystemClassLoader().loadClass(hp).newInstance());
3383     } catch (Exception ignore) {
3384     }
3385    
3386 dl 1.160 if (parallelism < 0)
3387 dl 1.166 parallelism = Runtime.getRuntime().availableProcessors() - 1;
3388 dl 1.152 if (parallelism > MAX_CAP)
3389     parallelism = MAX_CAP;
3390     return new ForkJoinPool(parallelism, factory, handler, false,
3391     "ForkJoinPool.commonPool-worker-");
3392 jsr166 1.3 }
3393 dl 1.52
3394 jsr166 1.1 }