ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.167
Committed: Thu Feb 28 00:59:31 2013 UTC (11 years, 3 months ago) by dl
Branch: MAIN
Changes since 1.166: +20 -45 lines
Log Message:
Prepare for @Contended support

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.58 * http://creativecommons.org/publicdomain/zero/1.0/
5 jsr166 1.1 */
6    
7     package java.util.concurrent;
8    
9 jsr166 1.156 import java.lang.Thread.UncaughtExceptionHandler;
10 jsr166 1.1 import java.util.ArrayList;
11     import java.util.Arrays;
12     import java.util.Collection;
13     import java.util.Collections;
14     import java.util.List;
15 dl 1.36 import java.util.concurrent.AbstractExecutorService;
16     import java.util.concurrent.Callable;
17     import java.util.concurrent.ExecutorService;
18     import java.util.concurrent.Future;
19     import java.util.concurrent.RejectedExecutionException;
20     import java.util.concurrent.RunnableFuture;
21     import java.util.concurrent.TimeUnit;
22 jsr166 1.1
23     /**
24 jsr166 1.4 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
25 jsr166 1.8 * A {@code ForkJoinPool} provides the entry point for submissions
26 dl 1.18 * from non-{@code ForkJoinTask} clients, as well as management and
27 jsr166 1.11 * monitoring operations.
28 jsr166 1.1 *
29 jsr166 1.9 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
30     * ExecutorService} mainly by virtue of employing
31     * <em>work-stealing</em>: all threads in the pool attempt to find and
32 dl 1.78 * execute tasks submitted to the pool and/or created by other active
33     * tasks (eventually blocking waiting for work if none exist). This
34     * enables efficient processing when most tasks spawn other subtasks
35     * (as do most {@code ForkJoinTask}s), as well as when many small
36     * tasks are submitted to the pool from external clients. Especially
37     * when setting <em>asyncMode</em> to true in constructors, {@code
38     * ForkJoinPool}s may also be appropriate for use with event-style
39     * tasks that are never joined.
40 jsr166 1.1 *
41 dl 1.112 * <p>A static {@link #commonPool()} is available and appropriate for
42 dl 1.101 * most applications. The common pool is used by any ForkJoinTask that
43     * is not explicitly submitted to a specified pool. Using the common
44     * pool normally reduces resource usage (its threads are slowly
45     * reclaimed during periods of non-use, and reinstated upon subsequent
46 dl 1.105 * use).
47 dl 1.100 *
48     * <p>For applications that require separate or custom pools, a {@code
49     * ForkJoinPool} may be constructed with a given target parallelism
50     * level; by default, equal to the number of available processors. The
51     * pool attempts to maintain enough active (or available) threads by
52     * dynamically adding, suspending, or resuming internal worker
53     * threads, even if some tasks are stalled waiting to join
54     * others. However, no such adjustments are guaranteed in the face of
55 jsr166 1.119 * blocked I/O or other unmanaged synchronization. The nested {@link
56 dl 1.100 * ManagedBlocker} interface enables extension of the kinds of
57 dl 1.18 * synchronization accommodated.
58 jsr166 1.1 *
59     * <p>In addition to execution and lifecycle control methods, this
60     * class provides status check methods (for example
61 jsr166 1.4 * {@link #getStealCount}) that are intended to aid in developing,
62 jsr166 1.1 * tuning, and monitoring fork/join applications. Also, method
63 jsr166 1.4 * {@link #toString} returns indications of pool state in a
64 jsr166 1.1 * convenient form for informal monitoring.
65     *
66 jsr166 1.109 * <p>As is the case with other ExecutorServices, there are three
67 jsr166 1.84 * main task execution methods summarized in the following table.
68     * These are designed to be used primarily by clients not already
69     * engaged in fork/join computations in the current pool. The main
70     * forms of these methods accept instances of {@code ForkJoinTask},
71     * but overloaded forms also allow mixed execution of plain {@code
72     * Runnable}- or {@code Callable}- based activities as well. However,
73     * tasks that are already executing in a pool should normally instead
74     * use the within-computation forms listed in the table unless using
75     * async event-style tasks that are not usually joined, in which case
76     * there is little difference among choice of methods.
77 dl 1.18 *
78     * <table BORDER CELLPADDING=3 CELLSPACING=1>
79 jsr166 1.159 * <caption>Summary of task execution methods</caption>
80 dl 1.18 * <tr>
81     * <td></td>
82     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
83     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
84     * </tr>
85     * <tr>
86 jsr166 1.153 * <td> <b>Arrange async execution</b></td>
87 dl 1.18 * <td> {@link #execute(ForkJoinTask)}</td>
88     * <td> {@link ForkJoinTask#fork}</td>
89     * </tr>
90     * <tr>
91 jsr166 1.153 * <td> <b>Await and obtain result</b></td>
92 dl 1.18 * <td> {@link #invoke(ForkJoinTask)}</td>
93     * <td> {@link ForkJoinTask#invoke}</td>
94     * </tr>
95     * <tr>
96 jsr166 1.153 * <td> <b>Arrange exec and obtain Future</b></td>
97 dl 1.18 * <td> {@link #submit(ForkJoinTask)}</td>
98     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
99     * </tr>
100     * </table>
101 dl 1.19 *
102 dl 1.105 * <p>The common pool is by default constructed with default
103 jsr166 1.155 * parameters, but these may be controlled by setting three
104 jsr166 1.162 * {@linkplain System#getProperty system properties}:
105     * <ul>
106     * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
107     * - the parallelism level, a non-negative integer
108     * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
109     * - the class name of a {@link ForkJoinWorkerThreadFactory}
110     * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
111     * - the class name of a {@link UncaughtExceptionHandler}
112     * </ul>
113 jsr166 1.165 * The system class loader is used to load these classes.
114 jsr166 1.156 * Upon any error in establishing these settings, default parameters
115 dl 1.160 * are used. It is possible to disable or limit the use of threads in
116     * the common pool by setting the parallelism property to zero, and/or
117     * using a factory that may return {@code null}.
118 dl 1.105 *
119 jsr166 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
120     * maximum number of running threads to 32767. Attempts to create
121 jsr166 1.11 * pools with greater than the maximum number result in
122 jsr166 1.8 * {@code IllegalArgumentException}.
123 jsr166 1.1 *
124 jsr166 1.11 * <p>This implementation rejects submitted tasks (that is, by throwing
125 dl 1.19 * {@link RejectedExecutionException}) only when the pool is shut down
126 dl 1.20 * or internal resources have been exhausted.
127 jsr166 1.11 *
128 jsr166 1.1 * @since 1.7
129     * @author Doug Lea
130     */
131 dl 1.167 //@sun.misc.Contended // enable when @Contended is stable
132 jsr166 1.1 public class ForkJoinPool extends AbstractExecutorService {
133    
134     /*
135 dl 1.14 * Implementation Overview
136     *
137 dl 1.78 * This class and its nested classes provide the main
138     * functionality and control for a set of worker threads:
139 jsr166 1.84 * Submissions from non-FJ threads enter into submission queues.
140     * Workers take these tasks and typically split them into subtasks
141     * that may be stolen by other workers. Preference rules give
142     * first priority to processing tasks from their own queues (LIFO
143     * or FIFO, depending on mode), then to randomized FIFO steals of
144     * tasks in other queues.
145 dl 1.78 *
146 jsr166 1.84 * WorkQueues
147 dl 1.78 * ==========
148     *
149     * Most operations occur within work-stealing queues (in nested
150     * class WorkQueue). These are special forms of Deques that
151     * support only three of the four possible end-operations -- push,
152     * pop, and poll (aka steal), under the further constraints that
153     * push and pop are called only from the owning thread (or, as
154     * extended here, under a lock), while poll may be called from
155     * other threads. (If you are unfamiliar with them, you probably
156     * want to read Herlihy and Shavit's book "The Art of
157     * Multiprocessor programming", chapter 16 describing these in
158     * more detail before proceeding.) The main work-stealing queue
159     * design is roughly similar to those in the papers "Dynamic
160     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
161     * (http://research.sun.com/scalable/pubs/index.html) and
162     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
163     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
164 jsr166 1.84 * The main differences ultimately stem from GC requirements that
165 dl 1.78 * we null out taken slots as soon as we can, to maintain as small
166     * a footprint as possible even in programs generating huge
167     * numbers of tasks. To accomplish this, we shift the CAS
168     * arbitrating pop vs poll (steal) from being on the indices
169     * ("base" and "top") to the slots themselves. So, both a
170     * successful pop and poll mainly entail a CAS of a slot from
171     * non-null to null. Because we rely on CASes of references, we
172     * do not need tag bits on base or top. They are simple ints as
173     * used in any circular array-based queue (see for example
174     * ArrayDeque). Updates to the indices must still be ordered in a
175     * way that guarantees that top == base means the queue is empty,
176     * but otherwise may err on the side of possibly making the queue
177     * appear nonempty when a push, pop, or poll have not fully
178     * committed. Note that this means that the poll operation,
179     * considered individually, is not wait-free. One thief cannot
180     * successfully continue until another in-progress one (or, if
181     * previously empty, a push) completes. However, in the
182     * aggregate, we ensure at least probabilistic non-blockingness.
183     * If an attempted steal fails, a thief always chooses a different
184     * random victim target to try next. So, in order for one thief to
185     * progress, it suffices for any in-progress poll or new push on
186 dl 1.90 * any empty queue to complete. (This is why we normally use
187     * method pollAt and its variants that try once at the apparent
188     * base index, else consider alternative actions, rather than
189     * method poll.)
190 dl 1.78 *
191 dl 1.79 * This approach also enables support of a user mode in which local
192 dl 1.78 * task processing is in FIFO, not LIFO order, simply by using
193     * poll rather than pop. This can be useful in message-passing
194     * frameworks in which tasks are never joined. However neither
195     * mode considers affinities, loads, cache localities, etc, so
196     * rarely provide the best possible performance on a given
197     * machine, but portably provide good throughput by averaging over
198     * these factors. (Further, even if we did try to use such
199 jsr166 1.84 * information, we do not usually have a basis for exploiting it.
200     * For example, some sets of tasks profit from cache affinities,
201     * but others are harmed by cache pollution effects.)
202 dl 1.78 *
203     * WorkQueues are also used in a similar way for tasks submitted
204     * to the pool. We cannot mix these tasks in the same queues used
205     * for work-stealing (this would contaminate lifo/fifo
206 dl 1.105 * processing). Instead, we randomly associate submission queues
207 dl 1.83 * with submitting threads, using a form of hashing. The
208 dl 1.139 * ThreadLocalRandom probe value serves as a hash code for
209     * choosing existing queues, and may be randomly repositioned upon
210     * contention with other submitters. In essence, submitters act
211     * like workers except that they are restricted to executing local
212     * tasks that they submitted (or in the case of CountedCompleters,
213     * others with the same root task). However, because most
214     * shared/external queue operations are more expensive than
215     * internal, and because, at steady state, external submitters
216     * will compete for CPU with workers, ForkJoinTask.join and
217     * related methods disable them from repeatedly helping to process
218     * tasks if all workers are active. Insertion of tasks in shared
219     * mode requires a lock (mainly to protect in the case of
220 dl 1.105 * resizing) but we use only a simple spinlock (using bits in
221     * field qlock), because submitters encountering a busy queue move
222     * on to try or create other queues -- they block only when
223     * creating and registering new queues.
224 dl 1.78 *
225 jsr166 1.84 * Management
226 dl 1.78 * ==========
227 dl 1.52 *
228     * The main throughput advantages of work-stealing stem from
229     * decentralized control -- workers mostly take tasks from
230     * themselves or each other. We cannot negate this in the
231     * implementation of other management responsibilities. The main
232     * tactic for avoiding bottlenecks is packing nearly all
233 dl 1.78 * essentially atomic control state into two volatile variables
234     * that are by far most often read (not written) as status and
235 jsr166 1.84 * consistency checks.
236 dl 1.78 *
237     * Field "ctl" contains 64 bits holding all the information needed
238     * to atomically decide to add, inactivate, enqueue (on an event
239     * queue), dequeue, and/or re-activate workers. To enable this
240     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
241     * far in excess of normal operating range) to allow ids, counts,
242     * and their negations (used for thresholding) to fit into 16bit
243     * fields.
244     *
245 dl 1.105 * Field "plock" is a form of sequence lock with a saturating
246     * shutdown bit (similarly for per-queue "qlocks"), mainly
247     * protecting updates to the workQueues array, as well as to
248     * enable shutdown. When used as a lock, it is normally only very
249     * briefly held, so is nearly always available after at most a
250     * brief spin, but we use a monitor-based backup strategy to
251 dl 1.112 * block when needed.
252 dl 1.78 *
253     * Recording WorkQueues. WorkQueues are recorded in the
254 dl 1.101 * "workQueues" array that is created upon first use and expanded
255     * if necessary. Updates to the array while recording new workers
256     * and unrecording terminated ones are protected from each other
257     * by a lock but the array is otherwise concurrently readable, and
258     * accessed directly. To simplify index-based operations, the
259     * array size is always a power of two, and all readers must
260 dl 1.112 * tolerate null slots. Worker queues are at odd indices. Shared
261 dl 1.105 * (submission) queues are at even indices, up to a maximum of 64
262     * slots, to limit growth even if array needs to expand to add
263     * more workers. Grouping them together in this way simplifies and
264     * speeds up task scanning.
265 dl 1.86 *
266     * All worker thread creation is on-demand, triggered by task
267     * submissions, replacement of terminated workers, and/or
268 dl 1.78 * compensation for blocked workers. However, all other support
269     * code is set up to work with other policies. To ensure that we
270     * do not hold on to worker references that would prevent GC, ALL
271     * accesses to workQueues are via indices into the workQueues
272     * array (which is one source of some of the messy code
273     * constructions here). In essence, the workQueues array serves as
274     * a weak reference mechanism. Thus for example the wait queue
275     * field of ctl stores indices, not references. Access to the
276     * workQueues in associated methods (for example signalWork) must
277     * both index-check and null-check the IDs. All such accesses
278     * ignore bad IDs by returning out early from what they are doing,
279     * since this can only be associated with termination, in which
280 dl 1.86 * case it is OK to give up. All uses of the workQueues array
281     * also check that it is non-null (even if previously
282     * non-null). This allows nulling during termination, which is
283     * currently not necessary, but remains an option for
284     * resource-revocation-based shutdown schemes. It also helps
285     * reduce JIT issuance of uncommon-trap code, which tends to
286 dl 1.78 * unnecessarily complicate control flow in some methods.
287 dl 1.52 *
288 dl 1.78 * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
289 dl 1.56 * let workers spin indefinitely scanning for tasks when none can
290     * be found immediately, and we cannot start/resume workers unless
291     * there appear to be tasks available. On the other hand, we must
292     * quickly prod them into action when new tasks are submitted or
293 dl 1.78 * generated. In many usages, ramp-up time to activate workers is
294     * the main limiting factor in overall performance (this is
295     * compounded at program start-up by JIT compilation and
296     * allocation). So we try to streamline this as much as possible.
297     * We park/unpark workers after placing in an event wait queue
298     * when they cannot find work. This "queue" is actually a simple
299     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
300     * counter value (that reflects the number of times a worker has
301     * been inactivated) to avoid ABA effects (we need only as many
302     * version numbers as worker threads). Successors are held in
303     * field WorkQueue.nextWait. Queuing deals with several intrinsic
304     * races, mainly that a task-producing thread can miss seeing (and
305 dl 1.56 * signalling) another thread that gave up looking for work but
306     * has not yet entered the wait queue. We solve this by requiring
307 dl 1.78 * a full sweep of all workers (via repeated calls to method
308     * scan()) both before and after a newly waiting worker is added
309     * to the wait queue. During a rescan, the worker might release
310     * some other queued worker rather than itself, which has the same
311     * net effect. Because enqueued workers may actually be rescanning
312     * rather than waiting, we set and clear the "parker" field of
313 jsr166 1.84 * WorkQueues to reduce unnecessary calls to unpark. (This
314 dl 1.78 * requires a secondary recheck to avoid missed signals.) Note
315     * the unusual conventions about Thread.interrupts surrounding
316     * parking and other blocking: Because interrupts are used solely
317     * to alert threads to check termination, which is checked anyway
318     * upon blocking, we clear status (using Thread.interrupted)
319     * before any call to park, so that park does not immediately
320     * return due to status being set via some other unrelated call to
321     * interrupt in user code.
322 dl 1.52 *
323     * Signalling. We create or wake up workers only when there
324     * appears to be at least one task they might be able to find and
325 dl 1.105 * execute. However, many other threads may notice the same task
326     * and each signal to wake up a thread that might take it. So in
327     * general, pools will be over-signalled. When a submission is
328 dl 1.115 * added or another worker adds a task to a queue that has fewer
329     * than two tasks, they signal waiting workers (or trigger
330     * creation of new ones if fewer than the given parallelism level
331     * -- signalWork), and may leave a hint to the unparked worker to
332     * help signal others upon wakeup). These primary signals are
333     * buttressed by others (see method helpSignal) whenever other
334     * threads scan for work or do not have a task to process. On
335     * most platforms, signalling (unpark) overhead time is noticeably
336     * long, and the time between signalling a thread and it actually
337     * making progress can be very noticeably long, so it is worth
338     * offloading these delays from critical paths as much as
339     * possible.
340 dl 1.52 *
341     * Trimming workers. To release resources after periods of lack of
342     * use, a worker starting to wait when the pool is quiescent will
343 dl 1.100 * time out and terminate if the pool has remained quiescent for a
344     * given period -- a short period if there are more threads than
345     * parallelism, longer as the number of threads decreases. This
346     * will slowly propagate, eventually terminating all workers after
347     * periods of non-use.
348 dl 1.52 *
349 dl 1.78 * Shutdown and Termination. A call to shutdownNow atomically sets
350 dl 1.105 * a plock bit and then (non-atomically) sets each worker's
351     * qlock status, cancels all unprocessed tasks, and wakes up
352 dl 1.78 * all waiting workers. Detecting whether termination should
353     * commence after a non-abrupt shutdown() call requires more work
354     * and bookkeeping. We need consensus about quiescence (i.e., that
355     * there is no more work). The active count provides a primary
356     * indication but non-abrupt shutdown still requires a rechecking
357     * scan for any workers that are inactive but not queued.
358     *
359 jsr166 1.84 * Joining Tasks
360     * =============
361 dl 1.78 *
362     * Any of several actions may be taken when one worker is waiting
363 jsr166 1.84 * to join a task stolen (or always held) by another. Because we
364 dl 1.78 * are multiplexing many tasks on to a pool of workers, we can't
365     * just let them block (as in Thread.join). We also cannot just
366     * reassign the joiner's run-time stack with another and replace
367     * it later, which would be a form of "continuation", that even if
368     * possible is not necessarily a good idea since we sometimes need
369 jsr166 1.84 * both an unblocked task and its continuation to progress.
370     * Instead we combine two tactics:
371 dl 1.19 *
372     * Helping: Arranging for the joiner to execute some task that it
373 dl 1.78 * would be running if the steal had not occurred.
374 dl 1.19 *
375     * Compensating: Unless there are already enough live threads,
376 dl 1.78 * method tryCompensate() may create or re-activate a spare
377     * thread to compensate for blocked joiners until they unblock.
378     *
379 dl 1.105 * A third form (implemented in tryRemoveAndExec) amounts to
380     * helping a hypothetical compensator: If we can readily tell that
381     * a possible action of a compensator is to steal and execute the
382     * task being joined, the joining thread can do so directly,
383     * without the need for a compensation thread (although at the
384     * expense of larger run-time stacks, but the tradeoff is
385     * typically worthwhile).
386 dl 1.52 *
387     * The ManagedBlocker extension API can't use helping so relies
388     * only on compensation in method awaitBlocker.
389 dl 1.19 *
390 dl 1.78 * The algorithm in tryHelpStealer entails a form of "linear"
391     * helping: Each worker records (in field currentSteal) the most
392     * recent task it stole from some other worker. Plus, it records
393     * (in field currentJoin) the task it is currently actively
394     * joining. Method tryHelpStealer uses these markers to try to
395     * find a worker to help (i.e., steal back a task from and execute
396     * it) that could hasten completion of the actively joined task.
397     * In essence, the joiner executes a task that would be on its own
398     * local deque had the to-be-joined task not been stolen. This may
399     * be seen as a conservative variant of the approach in Wagner &
400     * Calder "Leapfrogging: a portable technique for implementing
401     * efficient futures" SIGPLAN Notices, 1993
402     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
403     * that: (1) We only maintain dependency links across workers upon
404     * steals, rather than use per-task bookkeeping. This sometimes
405 dl 1.90 * requires a linear scan of workQueues array to locate stealers,
406     * but often doesn't because stealers leave hints (that may become
407 dl 1.112 * stale/wrong) of where to locate them. It is only a hint
408     * because a worker might have had multiple steals and the hint
409     * records only one of them (usually the most current). Hinting
410     * isolates cost to when it is needed, rather than adding to
411     * per-task overhead. (2) It is "shallow", ignoring nesting and
412     * potentially cyclic mutual steals. (3) It is intentionally
413 dl 1.78 * racy: field currentJoin is updated only while actively joining,
414     * which means that we miss links in the chain during long-lived
415     * tasks, GC stalls etc (which is OK since blocking in such cases
416     * is usually a good idea). (4) We bound the number of attempts
417 dl 1.90 * to find work (see MAX_HELP) and fall back to suspending the
418     * worker and if necessary replacing it with another.
419 dl 1.78 *
420 dl 1.105 * Helping actions for CountedCompleters are much simpler: Method
421     * helpComplete can take and execute any task with the same root
422     * as the task being waited on. However, this still entails some
423     * traversal of completer chains, so is less efficient than using
424     * CountedCompleters without explicit joins.
425     *
426 dl 1.52 * It is impossible to keep exactly the target parallelism number
427     * of threads running at any given time. Determining the
428 dl 1.24 * existence of conservatively safe helping targets, the
429     * availability of already-created spares, and the apparent need
430 dl 1.78 * to create new spares are all racy, so we rely on multiple
431 dl 1.90 * retries of each. Compensation in the apparent absence of
432     * helping opportunities is challenging to control on JVMs, where
433     * GC and other activities can stall progress of tasks that in
434     * turn stall out many other dependent tasks, without us being
435     * able to determine whether they will ever require compensation.
436     * Even though work-stealing otherwise encounters little
437     * degradation in the presence of more threads than cores,
438     * aggressively adding new threads in such cases entails risk of
439     * unwanted positive feedback control loops in which more threads
440     * cause more dependent stalls (as well as delayed progress of
441     * unblocked threads to the point that we know they are available)
442     * leading to more situations requiring more threads, and so
443     * on. This aspect of control can be seen as an (analytically
444 jsr166 1.92 * intractable) game with an opponent that may choose the worst
445 dl 1.90 * (for us) active thread to stall at any time. We take several
446     * precautions to bound losses (and thus bound gains), mainly in
447 dl 1.105 * methods tryCompensate and awaitJoin.
448     *
449     * Common Pool
450     * ===========
451     *
452 dl 1.134 * The static common Pool always exists after static
453 dl 1.105 * initialization. Since it (or any other created pool) need
454     * never be used, we minimize initial construction overhead and
455     * footprint to the setup of about a dozen fields, with no nested
456     * allocation. Most bootstrapping occurs within method
457     * fullExternalPush during the first submission to the pool.
458     *
459     * When external threads submit to the common pool, they can
460 dl 1.167 * perform subtask processing (see externalHelpJoin and related
461     * methods). This caller-helps policymakes it sensible to set
462     * common pool parallelism level to one (or more) less than the
463     * total number of available cores, or even zero for pure
464     * caller-runs. We do not need to record whether external
465 dl 1.105 * submissions are to the common pool -- if not, externalHelpJoin
466 jsr166 1.107 * returns quickly (at the most helping to signal some common pool
467 dl 1.105 * workers). These submitters would otherwise be blocked waiting
468     * for completion, so the extra effort (with liberally sprinkled
469     * task status checks) in inapplicable cases amounts to an odd
470     * form of limited spin-wait before blocking in ForkJoinTask.join.
471     *
472     * Style notes
473     * ===========
474     *
475     * There is a lot of representation-level coupling among classes
476     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
477     * fields of WorkQueue maintain data structures managed by
478     * ForkJoinPool, so are directly accessed. There is little point
479     * trying to reduce this, since any associated future changes in
480     * representations will need to be accompanied by algorithmic
481     * changes anyway. Several methods intrinsically sprawl because
482     * they must accumulate sets of consistent reads of volatiles held
483     * in local variables. Methods signalWork() and scan() are the
484     * main bottlenecks, so are especially heavily
485 dl 1.86 * micro-optimized/mangled. There are lots of inline assignments
486     * (of form "while ((local = field) != 0)") which are usually the
487     * simplest way to ensure the required read orderings (which are
488     * sometimes critical). This leads to a "C"-like style of listing
489     * declarations of these locals at the heads of methods or blocks.
490     * There are several occurrences of the unusual "do {} while
491     * (!cas...)" which is the simplest way to force an update of a
492 dl 1.105 * CAS'ed variable. There are also other coding oddities (including
493     * several unnecessary-looking hoisted null checks) that help
494 dl 1.86 * some methods perform reasonably even when interpreted (not
495     * compiled).
496 dl 1.52 *
497 jsr166 1.84 * The order of declarations in this file is:
498 dl 1.86 * (1) Static utility functions
499     * (2) Nested (static) classes
500     * (3) Static fields
501     * (4) Fields, along with constants used when unpacking some of them
502     * (5) Internal control methods
503     * (6) Callbacks and other support for ForkJoinTask methods
504     * (7) Exported methods
505     * (8) Static block initializing statics in minimally dependent order
506     */
507    
508     // Static utilities
509    
510     /**
511     * If there is a security manager, makes sure caller has
512     * permission to modify threads.
513 jsr166 1.1 */
514 dl 1.86 private static void checkPermission() {
515     SecurityManager security = System.getSecurityManager();
516     if (security != null)
517     security.checkPermission(modifyThreadPermission);
518     }
519    
520     // Nested classes
521 jsr166 1.1
522     /**
523 jsr166 1.8 * Factory for creating new {@link ForkJoinWorkerThread}s.
524     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
525     * for {@code ForkJoinWorkerThread} subclasses that extend base
526     * functionality or initialize threads with different contexts.
527 jsr166 1.1 */
528     public static interface ForkJoinWorkerThreadFactory {
529     /**
530     * Returns a new worker thread operating in the given pool.
531     *
532     * @param pool the pool this thread works in
533 jsr166 1.11 * @throws NullPointerException if the pool is null
534 jsr166 1.154 * @return the new worker thread
535 jsr166 1.1 */
536     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
537     }
538    
539     /**
540     * Default ForkJoinWorkerThreadFactory implementation; creates a
541     * new ForkJoinWorkerThread.
542     */
543 dl 1.112 static final class DefaultForkJoinWorkerThreadFactory
544 jsr166 1.1 implements ForkJoinWorkerThreadFactory {
545 dl 1.112 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
546 dl 1.14 return new ForkJoinWorkerThread(pool);
547 jsr166 1.1 }
548     }
549    
550     /**
551 dl 1.86 * Class for artificial tasks that are used to replace the target
552     * of local joins if they are removed from an interior queue slot
553     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
554     * actually do anything beyond having a unique identity.
555 jsr166 1.1 */
556 dl 1.86 static final class EmptyTask extends ForkJoinTask<Void> {
557 dl 1.105 private static final long serialVersionUID = -7721805057305804111L;
558 dl 1.86 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
559     public final Void getRawResult() { return null; }
560     public final void setRawResult(Void x) {}
561     public final boolean exec() { return true; }
562 jsr166 1.1 }
563    
564     /**
565 dl 1.78 * Queues supporting work-stealing as well as external task
566     * submission. See above for main rationale and algorithms.
567     * Implementation relies heavily on "Unsafe" intrinsics
568     * and selective use of "volatile":
569     *
570     * Field "base" is the index (mod array.length) of the least valid
571     * queue slot, which is always the next position to steal (poll)
572     * from if nonempty. Reads and writes require volatile orderings
573     * but not CAS, because updates are only performed after slot
574     * CASes.
575     *
576     * Field "top" is the index (mod array.length) of the next queue
577     * slot to push to or pop from. It is written only by owner thread
578 dl 1.105 * for push, or under lock for external/shared push, and accessed
579     * by other threads only after reading (volatile) base. Both top
580     * and base are allowed to wrap around on overflow, but (top -
581     * base) (or more commonly -(base - top) to force volatile read of
582     * base before top) still estimates size. The lock ("qlock") is
583     * forced to -1 on termination, causing all further lock attempts
584     * to fail. (Note: we don't need CAS for termination state because
585     * upon pool shutdown, all shared-queues will stop being used
586     * anyway.) Nearly all lock bodies are set up so that exceptions
587     * within lock bodies are "impossible" (modulo JVM errors that
588     * would cause failure anyway.)
589 dl 1.78 *
590     * The array slots are read and written using the emulation of
591     * volatiles/atomics provided by Unsafe. Insertions must in
592     * general use putOrderedObject as a form of releasing store to
593     * ensure that all writes to the task object are ordered before
594 dl 1.105 * its publication in the queue. All removals entail a CAS to
595     * null. The array is always a power of two. To ensure safety of
596     * Unsafe array operations, all accesses perform explicit null
597     * checks and implicit bounds checks via power-of-two masking.
598 dl 1.78 *
599     * In addition to basic queuing support, this class contains
600     * fields described elsewhere to control execution. It turns out
601 dl 1.105 * to work better memory-layout-wise to include them in this class
602     * rather than a separate class.
603 dl 1.78 *
604     * Performance on most platforms is very sensitive to placement of
605     * instances of both WorkQueues and their arrays -- we absolutely
606     * do not want multiple WorkQueue instances or multiple queue
607     * arrays sharing cache lines. (It would be best for queue objects
608     * and their arrays to share, but there is nothing available to
609 dl 1.167 * help arrange that). The @Contended annotation alerts JVMs to
610     * try to keep instances apart.
611 dl 1.78 */
612 dl 1.167 //@sun.misc.Contended // enable when @Contended is stable
613 dl 1.78 static final class WorkQueue {
614     /**
615     * Capacity of work-stealing queue array upon initialization.
616 dl 1.90 * Must be a power of two; at least 4, but should be larger to
617     * reduce or eliminate cacheline sharing among queues.
618     * Currently, it is much larger, as a partial workaround for
619     * the fact that JVMs often place arrays in locations that
620     * share GC bookkeeping (especially cardmarks) such that
621     * per-write accesses encounter serious memory contention.
622 dl 1.78 */
623 dl 1.90 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
624 dl 1.78
625     /**
626     * Maximum size for queue arrays. Must be a power of two less
627     * than or equal to 1 << (31 - width of array entry) to ensure
628     * lack of wraparound of index calculations, but defined to a
629     * value a bit less than this to help users trap runaway
630     * programs before saturating systems.
631     */
632     static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
633    
634     int seed; // for random scanning; initialize nonzero
635     volatile int eventCount; // encoded inactivation count; < 0 if inactive
636     int nextWait; // encoded record of next event waiter
637 dl 1.112 int hint; // steal or signal hint (index)
638 dl 1.78 int poolIndex; // index of this queue in pool (or 0)
639 dl 1.112 final int mode; // 0: lifo, > 0: fifo, < 0: shared
640     int nsteals; // number of steals
641 dl 1.105 volatile int qlock; // 1: locked, -1: terminate; else 0
642 dl 1.78 volatile int base; // index of next slot for poll
643     int top; // index of next slot for push
644     ForkJoinTask<?>[] array; // the elements (initially unallocated)
645 dl 1.90 final ForkJoinPool pool; // the containing pool (may be null)
646 dl 1.78 final ForkJoinWorkerThread owner; // owning thread or null if shared
647     volatile Thread parker; // == owner during call to park; else null
648 dl 1.95 volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
649 dl 1.78 ForkJoinTask<?> currentSteal; // current non-local task being executed
650 dl 1.112
651     WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
652     int seed) {
653 dl 1.90 this.pool = pool;
654 dl 1.78 this.owner = owner;
655 dl 1.112 this.mode = mode;
656     this.seed = seed;
657 dl 1.115 // Place indices in the center of array (that is not yet allocated)
658 dl 1.78 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
659     }
660    
661     /**
662 dl 1.115 * Returns the approximate number of tasks in the queue.
663     */
664     final int queueSize() {
665     int n = base - top; // non-owner callers must read base first
666     return (n >= 0) ? 0 : -n; // ignore transient negative
667     }
668    
669     /**
670     * Provides a more accurate estimate of whether this queue has
671     * any tasks than does queueSize, by checking whether a
672     * near-empty queue has at least one unclaimed task.
673     */
674     final boolean isEmpty() {
675     ForkJoinTask<?>[] a; int m, s;
676     int n = base - (s = top);
677     return (n >= 0 ||
678     (n == -1 &&
679     ((a = array) == null ||
680     (m = a.length - 1) < 0 ||
681     U.getObject
682     (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
683     }
684    
685     /**
686     * Pushes a task. Call only by owner in unshared queues. (The
687     * shared-queue version is embedded in method externalPush.)
688 dl 1.78 *
689     * @param task the task. Caller must ensure non-null.
690 jsr166 1.146 * @throws RejectedExecutionException if array cannot be resized
691 dl 1.78 */
692 dl 1.90 final void push(ForkJoinTask<?> task) {
693 dl 1.112 ForkJoinTask<?>[] a; ForkJoinPool p;
694     int s = top, m, n;
695     if ((a = array) != null) { // ignore if queue removed
696 dl 1.115 int j = (((m = a.length - 1) & s) << ASHIFT) + ABASE;
697     U.putOrderedObject(a, j, task);
698     if ((n = (top = s + 1) - base) <= 2) {
699 dl 1.112 if ((p = pool) != null)
700 dl 1.115 p.signalWork(this);
701 dl 1.112 }
702     else if (n >= m)
703     growArray();
704 dl 1.78 }
705     }
706    
707 dl 1.112 /**
708     * Initializes or doubles the capacity of array. Call either
709     * by owner or with lock held -- it is OK for base, but not
710     * top, to move while resizings are in progress.
711     */
712     final ForkJoinTask<?>[] growArray() {
713     ForkJoinTask<?>[] oldA = array;
714     int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
715     if (size > MAXIMUM_QUEUE_CAPACITY)
716     throw new RejectedExecutionException("Queue capacity exceeded");
717     int oldMask, t, b;
718     ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
719     if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
720     (t = top) - (b = base) > 0) {
721     int mask = size - 1;
722     do {
723     ForkJoinTask<?> x;
724     int oldj = ((b & oldMask) << ASHIFT) + ABASE;
725     int j = ((b & mask) << ASHIFT) + ABASE;
726     x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
727     if (x != null &&
728     U.compareAndSwapObject(oldA, oldj, x, null))
729     U.putObjectVolatile(a, j, x);
730     } while (++b != t);
731 dl 1.78 }
732 dl 1.112 return a;
733 dl 1.78 }
734    
735     /**
736 dl 1.90 * Takes next task, if one exists, in LIFO order. Call only
737 dl 1.102 * by owner in unshared queues.
738 dl 1.90 */
739     final ForkJoinTask<?> pop() {
740 dl 1.94 ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
741     if ((a = array) != null && (m = a.length - 1) >= 0) {
742 dl 1.90 for (int s; (s = top - 1) - base >= 0;) {
743 dl 1.94 long j = ((m & s) << ASHIFT) + ABASE;
744     if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
745 dl 1.90 break;
746     if (U.compareAndSwapObject(a, j, t, null)) {
747     top = s;
748     return t;
749     }
750     }
751     }
752     return null;
753     }
754    
755     /**
756     * Takes a task in FIFO order if b is base of queue and a task
757     * can be claimed without contention. Specialized versions
758     * appear in ForkJoinPool methods scan and tryHelpStealer.
759 dl 1.78 */
760 dl 1.90 final ForkJoinTask<?> pollAt(int b) {
761     ForkJoinTask<?> t; ForkJoinTask<?>[] a;
762     if ((a = array) != null) {
763 dl 1.86 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
764     if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
765     base == b &&
766 dl 1.78 U.compareAndSwapObject(a, j, t, null)) {
767     base = b + 1;
768     return t;
769     }
770     }
771     return null;
772     }
773    
774     /**
775 dl 1.90 * Takes next task, if one exists, in FIFO order.
776 dl 1.78 */
777 dl 1.90 final ForkJoinTask<?> poll() {
778     ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
779     while ((b = base) - top < 0 && (a = array) != null) {
780     int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
781     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
782     if (t != null) {
783     if (base == b &&
784     U.compareAndSwapObject(a, j, t, null)) {
785     base = b + 1;
786 dl 1.78 return t;
787     }
788     }
789 dl 1.90 else if (base == b) {
790     if (b + 1 == top)
791     break;
792 dl 1.105 Thread.yield(); // wait for lagging update (very rare)
793 dl 1.90 }
794 dl 1.78 }
795     return null;
796     }
797    
798     /**
799     * Takes next task, if one exists, in order specified by mode.
800     */
801     final ForkJoinTask<?> nextLocalTask() {
802     return mode == 0 ? pop() : poll();
803     }
804    
805     /**
806     * Returns next task, if one exists, in order specified by mode.
807     */
808     final ForkJoinTask<?> peek() {
809     ForkJoinTask<?>[] a = array; int m;
810     if (a == null || (m = a.length - 1) < 0)
811     return null;
812     int i = mode == 0 ? top - 1 : base;
813     int j = ((i & m) << ASHIFT) + ABASE;
814     return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
815     }
816    
817     /**
818     * Pops the given task only if it is at the current top.
819 dl 1.105 * (A shared version is available only via FJP.tryExternalUnpush)
820 dl 1.78 */
821     final boolean tryUnpush(ForkJoinTask<?> t) {
822     ForkJoinTask<?>[] a; int s;
823     if ((a = array) != null && (s = top) != base &&
824     U.compareAndSwapObject
825     (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
826     top = s;
827     return true;
828     }
829     return false;
830     }
831    
832     /**
833 jsr166 1.84 * Removes and cancels all known tasks, ignoring any exceptions.
834 dl 1.78 */
835     final void cancelAll() {
836     ForkJoinTask.cancelIgnoringExceptions(currentJoin);
837     ForkJoinTask.cancelIgnoringExceptions(currentSteal);
838     for (ForkJoinTask<?> t; (t = poll()) != null; )
839     ForkJoinTask.cancelIgnoringExceptions(t);
840     }
841    
842 dl 1.86 /**
843     * Computes next value for random probes. Scans don't require
844     * a very high quality generator, but also not a crummy one.
845     * Marsaglia xor-shift is cheap and works well enough. Note:
846 dl 1.90 * This is manually inlined in its usages in ForkJoinPool to
847     * avoid writes inside busy scan loops.
848 dl 1.86 */
849     final int nextSeed() {
850     int r = seed;
851     r ^= r << 13;
852     r ^= r >>> 17;
853     return seed = r ^= r << 5;
854     }
855    
856 dl 1.104 // Specialized execution methods
857 dl 1.78
858     /**
859 dl 1.94 * Pops and runs tasks until empty.
860 dl 1.78 */
861 dl 1.94 private void popAndExecAll() {
862     // A bit faster than repeated pop calls
863     ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
864     while ((a = array) != null && (m = a.length - 1) >= 0 &&
865     (s = top - 1) - base >= 0 &&
866     (t = ((ForkJoinTask<?>)
867     U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
868     != null) {
869     if (U.compareAndSwapObject(a, j, t, null)) {
870     top = s;
871     t.doExec();
872 dl 1.90 }
873 dl 1.94 }
874     }
875    
876     /**
877     * Polls and runs tasks until empty.
878     */
879     private void pollAndExecAll() {
880     for (ForkJoinTask<?> t; (t = poll()) != null;)
881     t.doExec();
882     }
883    
884     /**
885 dl 1.105 * If present, removes from queue and executes the given task,
886     * or any other cancelled task. Returns (true) on any CAS
887 dl 1.94 * or consistency check failure so caller can retry.
888     *
889 jsr166 1.150 * @return false if no progress can be made, else true
890 dl 1.94 */
891 dl 1.105 final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
892     boolean stat = true, removed = false, empty = true;
893 dl 1.94 ForkJoinTask<?>[] a; int m, s, b, n;
894     if ((a = array) != null && (m = a.length - 1) >= 0 &&
895     (n = (s = top) - (b = base)) > 0) {
896     for (ForkJoinTask<?> t;;) { // traverse from s to b
897     int j = ((--s & m) << ASHIFT) + ABASE;
898     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
899     if (t == null) // inconsistent length
900     break;
901     else if (t == task) {
902     if (s + 1 == top) { // pop
903     if (!U.compareAndSwapObject(a, j, task, null))
904 dl 1.90 break;
905 dl 1.94 top = s;
906     removed = true;
907 dl 1.90 }
908 dl 1.94 else if (base == b) // replace with proxy
909     removed = U.compareAndSwapObject(a, j, task,
910     new EmptyTask());
911     break;
912     }
913     else if (t.status >= 0)
914     empty = false;
915     else if (s + 1 == top) { // pop and throw away
916     if (U.compareAndSwapObject(a, j, t, null))
917     top = s;
918     break;
919     }
920     if (--n == 0) {
921     if (!empty && base == b)
922 dl 1.105 stat = false;
923 dl 1.94 break;
924 dl 1.90 }
925     }
926 dl 1.78 }
927 dl 1.94 if (removed)
928     task.doExec();
929 dl 1.95 return stat;
930 dl 1.78 }
931    
932     /**
933 dl 1.105 * Polls for and executes the given task or any other task in
934 jsr166 1.149 * its CountedCompleter computation.
935 dl 1.104 */
936 dl 1.105 final boolean pollAndExecCC(ForkJoinTask<?> root) {
937     ForkJoinTask<?>[] a; int b; Object o;
938 dl 1.166 outer: while (root.status >= 0 && (b = base) - top < 0 &&
939     (a = array) != null) {
940 dl 1.105 long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
941     if ((o = U.getObject(a, j)) == null ||
942     !(o instanceof CountedCompleter))
943     break;
944     for (CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;;) {
945     if (r == root) {
946     if (base == b &&
947     U.compareAndSwapObject(a, j, t, null)) {
948     base = b + 1;
949     t.doExec();
950     return true;
951 dl 1.104 }
952 dl 1.105 else
953     break; // restart
954 dl 1.104 }
955 dl 1.105 if ((r = r.completer) == null)
956     break outer; // not part of root computation
957 dl 1.104 }
958     }
959 dl 1.105 return false;
960 dl 1.104 }
961    
962     /**
963 dl 1.78 * Executes a top-level task and any local tasks remaining
964     * after execution.
965     */
966 dl 1.94 final void runTask(ForkJoinTask<?> t) {
967 dl 1.78 if (t != null) {
968 dl 1.105 (currentSteal = t).doExec();
969     currentSteal = null;
970 dl 1.126 ++nsteals;
971 dl 1.115 if (base - top < 0) { // process remaining local tasks
972 dl 1.94 if (mode == 0)
973     popAndExecAll();
974     else
975     pollAndExecAll();
976     }
977 dl 1.78 }
978     }
979    
980     /**
981 jsr166 1.84 * Executes a non-top-level (stolen) task.
982 dl 1.78 */
983     final void runSubtask(ForkJoinTask<?> t) {
984     if (t != null) {
985     ForkJoinTask<?> ps = currentSteal;
986 dl 1.105 (currentSteal = t).doExec();
987 dl 1.78 currentSteal = ps;
988     }
989     }
990    
991     /**
992 dl 1.86 * Returns true if owned and not known to be blocked.
993     */
994     final boolean isApparentlyUnblocked() {
995     Thread wt; Thread.State s;
996     return (eventCount >= 0 &&
997     (wt = owner) != null &&
998     (s = wt.getState()) != Thread.State.BLOCKED &&
999     s != Thread.State.WAITING &&
1000     s != Thread.State.TIMED_WAITING);
1001     }
1002    
1003 dl 1.78 // Unsafe mechanics
1004     private static final sun.misc.Unsafe U;
1005 dl 1.105 private static final long QLOCK;
1006 dl 1.78 private static final int ABASE;
1007     private static final int ASHIFT;
1008     static {
1009     try {
1010     U = sun.misc.Unsafe.getUnsafe();
1011     Class<?> k = WorkQueue.class;
1012     Class<?> ak = ForkJoinTask[].class;
1013 dl 1.105 QLOCK = U.objectFieldOffset
1014     (k.getDeclaredField("qlock"));
1015 dl 1.78 ABASE = U.arrayBaseOffset(ak);
1016 jsr166 1.142 int scale = U.arrayIndexScale(ak);
1017     if ((scale & (scale - 1)) != 0)
1018     throw new Error("data type scale not a power of two");
1019     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1020 dl 1.78 } catch (Exception e) {
1021     throw new Error(e);
1022     }
1023     }
1024     }
1025 dl 1.14
1026 dl 1.112 // static fields (initialized in static initializer below)
1027    
1028     /**
1029     * Creates a new ForkJoinWorkerThread. This factory is used unless
1030     * overridden in ForkJoinPool constructors.
1031     */
1032     public static final ForkJoinWorkerThreadFactory
1033     defaultForkJoinWorkerThreadFactory;
1034    
1035 jsr166 1.1 /**
1036 dl 1.115 * Permission required for callers of methods that may start or
1037     * kill threads.
1038     */
1039     private static final RuntimePermission modifyThreadPermission;
1040    
1041     /**
1042 dl 1.101 * Common (static) pool. Non-null for public use unless a static
1043 dl 1.105 * construction exception, but internal usages null-check on use
1044     * to paranoically avoid potential initialization circularities
1045     * as well as to simplify generated code.
1046 dl 1.101 */
1047 dl 1.134 static final ForkJoinPool common;
1048 dl 1.101
1049     /**
1050 dl 1.160 * Common pool parallelism. To allow simpler use and management
1051     * when common pool threads are disabled, we allow the underlying
1052     * common.config field to be zero, but in that case still report
1053     * parallelism as 1 to reflect resulting caller-runs mechanics.
1054 dl 1.90 */
1055 dl 1.134 static final int commonParallelism;
1056 dl 1.90
1057     /**
1058 dl 1.105 * Sequence number for creating workerNamePrefix.
1059 dl 1.86 */
1060 dl 1.105 private static int poolNumberSequence;
1061 dl 1.86
1062 jsr166 1.1 /**
1063 jsr166 1.132 * Returns the next sequence number. We don't expect this to
1064     * ever contend, so use simple builtin sync.
1065 dl 1.83 */
1066 dl 1.105 private static final synchronized int nextPoolId() {
1067     return ++poolNumberSequence;
1068     }
1069 dl 1.86
1070     // static constants
1071    
1072     /**
1073 dl 1.105 * Initial timeout value (in nanoseconds) for the thread
1074     * triggering quiescence to park waiting for new work. On timeout,
1075     * the thread will instead try to shrink the number of
1076     * workers. The value should be large enough to avoid overly
1077     * aggressive shrinkage during most transient stalls (long GCs
1078     * etc).
1079 dl 1.86 */
1080 dl 1.105 private static final long IDLE_TIMEOUT = 2000L * 1000L * 1000L; // 2sec
1081 dl 1.86
1082     /**
1083 dl 1.100 * Timeout value when there are more threads than parallelism level
1084 dl 1.86 */
1085 dl 1.105 private static final long FAST_IDLE_TIMEOUT = 200L * 1000L * 1000L;
1086 dl 1.86
1087     /**
1088 dl 1.120 * Tolerance for idle timeouts, to cope with timer undershoots
1089     */
1090 dl 1.127 private static final long TIMEOUT_SLOP = 2000000L;
1091 dl 1.120
1092     /**
1093 dl 1.90 * The maximum stolen->joining link depth allowed in method
1094 dl 1.105 * tryHelpStealer. Must be a power of two. Depths for legitimate
1095 dl 1.90 * chains are unbounded, but we use a fixed constant to avoid
1096     * (otherwise unchecked) cycles and to bound staleness of
1097     * traversal parameters at the expense of sometimes blocking when
1098     * we could be helping.
1099     */
1100 dl 1.95 private static final int MAX_HELP = 64;
1101 dl 1.90
1102     /**
1103     * Increment for seed generators. See class ThreadLocal for
1104     * explanation.
1105     */
1106     private static final int SEED_INCREMENT = 0x61c88647;
1107 dl 1.83
1108 jsr166 1.163 /*
1109 dl 1.86 * Bits and masks for control variables
1110     *
1111     * Field ctl is a long packed with:
1112     * AC: Number of active running workers minus target parallelism (16 bits)
1113     * TC: Number of total workers minus target parallelism (16 bits)
1114     * ST: true if pool is terminating (1 bit)
1115     * EC: the wait count of top waiting thread (15 bits)
1116     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1117     *
1118     * When convenient, we can extract the upper 32 bits of counts and
1119     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1120     * (int)ctl. The ec field is never accessed alone, but always
1121     * together with id and st. The offsets of counts by the target
1122     * parallelism and the positionings of fields makes it possible to
1123     * perform the most common checks via sign tests of fields: When
1124     * ac is negative, there are not enough active workers, when tc is
1125     * negative, there are not enough total workers, and when e is
1126     * negative, the pool is terminating. To deal with these possibly
1127     * negative fields, we use casts in and out of "short" and/or
1128     * signed shifts to maintain signedness.
1129     *
1130     * When a thread is queued (inactivated), its eventCount field is
1131     * set negative, which is the only way to tell if a worker is
1132     * prevented from executing tasks, even though it must continue to
1133     * scan for them to avoid queuing races. Note however that
1134     * eventCount updates lag releases so usage requires care.
1135     *
1136 dl 1.105 * Field plock is an int packed with:
1137 dl 1.86 * SHUTDOWN: true if shutdown is enabled (1 bit)
1138 dl 1.105 * SEQ: a sequence lock, with PL_LOCK bit set if locked (30 bits)
1139     * SIGNAL: set when threads may be waiting on the lock (1 bit)
1140 dl 1.86 *
1141 dl 1.90 * The sequence number enables simple consistency checks:
1142     * Staleness of read-only operations on the workQueues array can
1143 dl 1.105 * be checked by comparing plock before vs after the reads.
1144 dl 1.86 */
1145    
1146     // bit positions/shifts for fields
1147     private static final int AC_SHIFT = 48;
1148     private static final int TC_SHIFT = 32;
1149     private static final int ST_SHIFT = 31;
1150     private static final int EC_SHIFT = 16;
1151    
1152     // bounds
1153     private static final int SMASK = 0xffff; // short bits
1154 dl 1.90 private static final int MAX_CAP = 0x7fff; // max #workers - 1
1155 dl 1.105 private static final int EVENMASK = 0xfffe; // even short bits
1156     private static final int SQMASK = 0x007e; // max 64 (even) slots
1157 dl 1.86 private static final int SHORT_SIGN = 1 << 15;
1158     private static final int INT_SIGN = 1 << 31;
1159    
1160     // masks
1161     private static final long STOP_BIT = 0x0001L << ST_SHIFT;
1162     private static final long AC_MASK = ((long)SMASK) << AC_SHIFT;
1163     private static final long TC_MASK = ((long)SMASK) << TC_SHIFT;
1164    
1165     // units for incrementing and decrementing
1166     private static final long TC_UNIT = 1L << TC_SHIFT;
1167     private static final long AC_UNIT = 1L << AC_SHIFT;
1168    
1169     // masks and units for dealing with u = (int)(ctl >>> 32)
1170     private static final int UAC_SHIFT = AC_SHIFT - 32;
1171     private static final int UTC_SHIFT = TC_SHIFT - 32;
1172     private static final int UAC_MASK = SMASK << UAC_SHIFT;
1173     private static final int UTC_MASK = SMASK << UTC_SHIFT;
1174     private static final int UAC_UNIT = 1 << UAC_SHIFT;
1175     private static final int UTC_UNIT = 1 << UTC_SHIFT;
1176    
1177     // masks and units for dealing with e = (int)ctl
1178     private static final int E_MASK = 0x7fffffff; // no STOP_BIT
1179     private static final int E_SEQ = 1 << EC_SHIFT;
1180    
1181 dl 1.105 // plock bits
1182 dl 1.86 private static final int SHUTDOWN = 1 << 31;
1183 dl 1.105 private static final int PL_LOCK = 2;
1184     private static final int PL_SIGNAL = 1;
1185     private static final int PL_SPINS = 1 << 8;
1186 dl 1.86
1187     // access mode for WorkQueue
1188     static final int LIFO_QUEUE = 0;
1189     static final int FIFO_QUEUE = 1;
1190     static final int SHARED_QUEUE = -1;
1191    
1192 dl 1.112 // bounds for #steps in scan loop -- must be power 2 minus 1
1193 dl 1.167 private static final int MIN_SCAN = 0x3ff; // cover estimation slop
1194 dl 1.112 private static final int MAX_SCAN = 0x1ffff; // 4 * max workers
1195    
1196 dl 1.86 // Instance fields
1197 dl 1.101 volatile long stealCount; // collects worker counts
1198 dl 1.86 volatile long ctl; // main pool control
1199 dl 1.112 volatile int plock; // shutdown status and seqLock
1200 dl 1.105 volatile int indexSeed; // worker/submitter index seed
1201 dl 1.112 final int config; // mode and parallelism level
1202 dl 1.86 WorkQueue[] workQueues; // main registry
1203 dl 1.112 final ForkJoinWorkerThreadFactory factory;
1204 jsr166 1.156 final UncaughtExceptionHandler ueh; // per-worker UEH
1205 dl 1.101 final String workerNamePrefix; // to create worker name string
1206    
1207 jsr166 1.145 /**
1208 dl 1.105 * Acquires the plock lock to protect worker array and related
1209     * updates. This method is called only if an initial CAS on plock
1210 jsr166 1.140 * fails. This acts as a spinlock for normal cases, but falls back
1211 dl 1.105 * to builtin monitor to block when (rarely) needed. This would be
1212     * a terrible idea for a highly contended lock, but works fine as
1213 dl 1.126 * a more conservative alternative to a pure spinlock.
1214 dl 1.105 */
1215     private int acquirePlock() {
1216 dl 1.139 int spins = PL_SPINS, ps, nps;
1217 dl 1.105 for (;;) {
1218     if (((ps = plock) & PL_LOCK) == 0 &&
1219     U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1220     return nps;
1221 dl 1.101 else if (spins >= 0) {
1222 dl 1.139 if (ThreadLocalRandom.nextSecondarySeed() >= 0)
1223 dl 1.101 --spins;
1224     }
1225 dl 1.105 else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1226 jsr166 1.106 synchronized (this) {
1227 dl 1.105 if ((plock & PL_SIGNAL) != 0) {
1228 dl 1.101 try {
1229     wait();
1230     } catch (InterruptedException ie) {
1231 dl 1.104 try {
1232     Thread.currentThread().interrupt();
1233     } catch (SecurityException ignore) {
1234     }
1235 dl 1.101 }
1236     }
1237     else
1238 dl 1.105 notifyAll();
1239 dl 1.101 }
1240     }
1241     }
1242     }
1243 dl 1.78
1244 jsr166 1.1 /**
1245 dl 1.105 * Unlocks and signals any thread waiting for plock. Called only
1246     * when CAS of seq value for unlock fails.
1247 jsr166 1.1 */
1248 dl 1.105 private void releasePlock(int ps) {
1249     plock = ps;
1250 jsr166 1.106 synchronized (this) { notifyAll(); }
1251 dl 1.78 }
1252 jsr166 1.1
1253 dl 1.112 /**
1254 dl 1.120 * Tries to create and start one worker if fewer than target
1255     * parallelism level exist. Adjusts counts etc on failure.
1256 dl 1.115 */
1257     private void tryAddWorker() {
1258 dl 1.112 long c; int u;
1259 dl 1.115 while ((u = (int)((c = ctl) >>> 32)) < 0 &&
1260     (u & SHORT_SIGN) != 0 && (int)c == 0) {
1261 dl 1.112 long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1262     ((u + UAC_UNIT) & UAC_MASK)) << 32;
1263 dl 1.115 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1264     ForkJoinWorkerThreadFactory fac;
1265     Throwable ex = null;
1266     ForkJoinWorkerThread wt = null;
1267     try {
1268     if ((fac = factory) != null &&
1269     (wt = fac.newThread(this)) != null) {
1270     wt.start();
1271     break;
1272     }
1273     } catch (Throwable e) {
1274     ex = e;
1275     }
1276     deregisterWorker(wt, ex);
1277     break;
1278     }
1279 dl 1.112 }
1280     }
1281    
1282     // Registering and deregistering workers
1283    
1284     /**
1285     * Callback from ForkJoinWorkerThread to establish and record its
1286     * WorkQueue. To avoid scanning bias due to packing entries in
1287     * front of the workQueues array, we treat the array as a simple
1288     * power-of-two hash table using per-thread seed as hash,
1289     * expanding as needed.
1290     *
1291     * @param wt the worker thread
1292 dl 1.115 * @return the worker's queue
1293 dl 1.112 */
1294 dl 1.115 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1295 jsr166 1.156 UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps;
1296 dl 1.115 wt.setDaemon(true);
1297     if ((handler = ueh) != null)
1298     wt.setUncaughtExceptionHandler(handler);
1299     do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
1300     s += SEED_INCREMENT) ||
1301     s == 0); // skip 0
1302     WorkQueue w = new WorkQueue(this, wt, config >>> 16, s);
1303     if (((ps = plock) & PL_LOCK) != 0 ||
1304     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1305     ps = acquirePlock();
1306     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1307     try {
1308     if ((ws = workQueues) != null) { // skip if shutting down
1309     int n = ws.length, m = n - 1;
1310     int r = (s << 1) | 1; // use odd-numbered indices
1311     if (ws[r &= m] != null) { // collision
1312     int probes = 0; // step by approx half size
1313     int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1314     while (ws[r = (r + step) & m] != null) {
1315     if (++probes >= n) {
1316     workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1317     m = n - 1;
1318     probes = 0;
1319 dl 1.94 }
1320     }
1321     }
1322 dl 1.115 w.eventCount = w.poolIndex = r; // volatile write orders
1323     ws[r] = w;
1324 dl 1.78 }
1325 dl 1.115 } finally {
1326     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1327     releasePlock(nps);
1328 dl 1.78 }
1329 dl 1.115 wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex)));
1330     return w;
1331 dl 1.78 }
1332 dl 1.19
1333 jsr166 1.1 /**
1334 dl 1.86 * Final callback from terminating worker, as well as upon failure
1335 dl 1.105 * to construct or start a worker. Removes record of worker from
1336     * array, and adjusts counts. If pool is shutting down, tries to
1337     * complete termination.
1338 dl 1.78 *
1339 jsr166 1.151 * @param wt the worker thread, or null if construction failed
1340 dl 1.78 * @param ex the exception causing failure, or null if none
1341 dl 1.45 */
1342 dl 1.78 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1343     WorkQueue w = null;
1344     if (wt != null && (w = wt.workQueue) != null) {
1345 dl 1.105 int ps;
1346     w.qlock = -1; // ensure set
1347 dl 1.112 long ns = w.nsteals, sc; // collect steal count
1348     do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1349     sc = stealCount, sc + ns));
1350 dl 1.105 if (((ps = plock) & PL_LOCK) != 0 ||
1351     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1352     ps = acquirePlock();
1353     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1354 dl 1.101 try {
1355 dl 1.105 int idx = w.poolIndex;
1356 dl 1.78 WorkQueue[] ws = workQueues;
1357 dl 1.90 if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1358 dl 1.86 ws[idx] = null;
1359 dl 1.78 } finally {
1360 dl 1.105 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1361     releasePlock(nps);
1362 dl 1.78 }
1363     }
1364    
1365 dl 1.126 long c; // adjust ctl counts
1366 dl 1.78 do {} while (!U.compareAndSwapLong
1367     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1368     ((c - TC_UNIT) & TC_MASK) |
1369     (c & ~(AC_MASK|TC_MASK)))));
1370    
1371 dl 1.120 if (!tryTerminate(false, false) && w != null && w.array != null) {
1372 dl 1.126 w.cancelAll(); // cancel remaining tasks
1373     WorkQueue[] ws; WorkQueue v; Thread p; int u, i, e;
1374     while ((u = (int)((c = ctl) >>> 32)) < 0 && (e = (int)c) >= 0) {
1375     if (e > 0) { // activate or create replacement
1376     if ((ws = workQueues) == null ||
1377     (i = e & SMASK) >= ws.length ||
1378 dl 1.130 (v = ws[i]) == null)
1379 dl 1.126 break;
1380     long nc = (((long)(v.nextWait & E_MASK)) |
1381     ((long)(u + UAC_UNIT) << 32));
1382     if (v.eventCount != (e | INT_SIGN))
1383     break;
1384     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1385     v.eventCount = (e + E_SEQ) & E_MASK;
1386     if ((p = v.parker) != null)
1387     U.unpark(p);
1388     break;
1389 dl 1.120 }
1390     }
1391     else {
1392     if ((short)u < 0)
1393     tryAddWorker();
1394     break;
1395     }
1396     }
1397 dl 1.78 }
1398 dl 1.120 if (ex == null) // help clean refs on way out
1399     ForkJoinTask.helpExpungeStaleExceptions();
1400     else // rethrow
1401 dl 1.104 ForkJoinTask.rethrow(ex);
1402 dl 1.78 }
1403 dl 1.52
1404 dl 1.86 // Submissions
1405    
1406     /**
1407     * Unless shutting down, adds the given task to a submission queue
1408     * at submitter's current queue index (modulo submission
1409 dl 1.105 * range). Only the most common path is directly handled in this
1410     * method. All others are relayed to fullExternalPush.
1411 dl 1.90 *
1412     * @param task the task. Caller must ensure non-null.
1413 dl 1.86 */
1414 dl 1.105 final void externalPush(ForkJoinTask<?> task) {
1415 dl 1.139 WorkQueue[] ws; WorkQueue q; int z, m; ForkJoinTask<?>[] a;
1416     if ((z = ThreadLocalRandom.getProbe()) != 0 && plock > 0 &&
1417 dl 1.105 (ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
1418 dl 1.139 (q = ws[m & z & SQMASK]) != null &&
1419 dl 1.105 U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1420 dl 1.112 int b = q.base, s = q.top, n, an;
1421     if ((a = q.array) != null && (an = a.length) > (n = s + 1 - b)) {
1422 dl 1.115 int j = (((an - 1) & s) << ASHIFT) + ABASE;
1423     U.putOrderedObject(a, j, task);
1424 dl 1.105 q.top = s + 1; // push on to deque
1425     q.qlock = 0;
1426 dl 1.112 if (n <= 2)
1427 dl 1.115 signalWork(q);
1428 dl 1.90 return;
1429     }
1430 dl 1.105 q.qlock = 0;
1431 dl 1.83 }
1432 dl 1.105 fullExternalPush(task);
1433 dl 1.83 }
1434 dl 1.45
1435 dl 1.100 /**
1436 dl 1.105 * Full version of externalPush. This method is called, among
1437     * other times, upon the first submission of the first task to the
1438 dl 1.131 * pool, so must perform secondary initialization. It also
1439     * detects first submission by an external thread by looking up
1440     * its ThreadLocal, and creates a new shared queue if the one at
1441     * index if empty or contended. The plock lock body must be
1442     * exception-free (so no try/finally) so we optimistically
1443     * allocate new queues outside the lock and throw them away if
1444     * (very rarely) not needed.
1445     *
1446     * Secondary initialization occurs when plock is zero, to create
1447     * workQueue array and set plock to a valid value. This lock body
1448     * must also be exception-free. Because the plock seq value can
1449     * eventually wrap around zero, this method harmlessly fails to
1450     * reinitialize if workQueues exists, while still advancing plock.
1451 dl 1.105 */
1452     private void fullExternalPush(ForkJoinTask<?> task) {
1453 dl 1.139 int r;
1454     if ((r = ThreadLocalRandom.getProbe()) == 0) {
1455     ThreadLocalRandom.localInit();
1456     r = ThreadLocalRandom.getProbe();
1457     }
1458     for (;;) {
1459 dl 1.112 WorkQueue[] ws; WorkQueue q; int ps, m, k;
1460 dl 1.139 boolean move = false;
1461     if ((ps = plock) < 0)
1462 dl 1.105 throw new RejectedExecutionException();
1463 dl 1.112 else if (ps == 0 || (ws = workQueues) == null ||
1464 dl 1.131 (m = ws.length - 1) < 0) { // initialize workQueues
1465     int p = config & SMASK; // find power of two table size
1466     int n = (p > 1) ? p - 1 : 1; // ensure at least 2 slots
1467     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4;
1468     n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1;
1469     WorkQueue[] nws = ((ws = workQueues) == null || ws.length == 0 ?
1470     new WorkQueue[n] : null);
1471     if (((ps = plock) & PL_LOCK) != 0 ||
1472     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1473     ps = acquirePlock();
1474     if (((ws = workQueues) == null || ws.length == 0) && nws != null)
1475     workQueues = nws;
1476     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1477     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1478     releasePlock(nps);
1479     }
1480 dl 1.112 else if ((q = ws[k = r & m & SQMASK]) != null) {
1481 dl 1.115 if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
1482     ForkJoinTask<?>[] a = q.array;
1483     int s = q.top;
1484     boolean submitted = false;
1485     try { // locked version of push
1486     if ((a != null && a.length > s + 1 - q.base) ||
1487     (a = q.growArray()) != null) { // must presize
1488     int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
1489     U.putOrderedObject(a, j, task);
1490     q.top = s + 1;
1491     submitted = true;
1492     }
1493     } finally {
1494     q.qlock = 0; // unlock
1495     }
1496     if (submitted) {
1497     signalWork(q);
1498     return;
1499     }
1500     }
1501 dl 1.139 move = true; // move on failure
1502 dl 1.112 }
1503     else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
1504     q = new WorkQueue(this, null, SHARED_QUEUE, r);
1505     if (((ps = plock) & PL_LOCK) != 0 ||
1506 dl 1.105 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1507     ps = acquirePlock();
1508 dl 1.112 if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
1509     ws[k] = q;
1510 dl 1.105 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1511     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1512     releasePlock(nps);
1513     }
1514 dl 1.112 else
1515 dl 1.139 move = true; // move if busy
1516     if (move)
1517     r = ThreadLocalRandom.advanceProbe(r);
1518 dl 1.104 }
1519 dl 1.102 }
1520    
1521 dl 1.78 // Maintaining ctl counts
1522 dl 1.17
1523     /**
1524 jsr166 1.84 * Increments active count; mainly called upon return from blocking.
1525 dl 1.19 */
1526 dl 1.78 final void incrementActiveCount() {
1527 dl 1.52 long c;
1528 dl 1.78 do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1529 dl 1.19 }
1530    
1531     /**
1532 dl 1.115 * Tries to create or activate a worker if too few are active.
1533     *
1534     * @param q the (non-null) queue holding tasks to be signalled
1535 dl 1.105 */
1536 dl 1.115 final void signalWork(WorkQueue q) {
1537     int hint = q.poolIndex;
1538     long c; int e, u, i, n; WorkQueue[] ws; WorkQueue w; Thread p;
1539 dl 1.105 while ((u = (int)((c = ctl) >>> 32)) < 0) {
1540     if ((e = (int)c) > 0) {
1541     if ((ws = workQueues) != null && ws.length > (i = e & SMASK) &&
1542 dl 1.86 (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1543     long nc = (((long)(w.nextWait & E_MASK)) |
1544     ((long)(u + UAC_UNIT) << 32));
1545     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1546 dl 1.115 w.hint = hint;
1547 dl 1.86 w.eventCount = (e + E_SEQ) & E_MASK;
1548 dl 1.115 if ((p = w.parker) != null)
1549 dl 1.105 U.unpark(p);
1550 dl 1.115 break;
1551 dl 1.105 }
1552 dl 1.115 if (q.top - q.base <= 0)
1553 dl 1.86 break;
1554     }
1555     else
1556 dl 1.52 break;
1557 dl 1.78 }
1558 dl 1.115 else {
1559     if ((short)u < 0)
1560     tryAddWorker();
1561     break;
1562 dl 1.52 }
1563     }
1564 dl 1.14 }
1565    
1566 dl 1.90 // Scanning for tasks
1567    
1568 dl 1.14 /**
1569 dl 1.90 * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1570 dl 1.14 */
1571 dl 1.90 final void runWorker(WorkQueue w) {
1572 dl 1.115 w.growArray(); // allocate queue
1573     do { w.runTask(scan(w)); } while (w.qlock >= 0);
1574 dl 1.14 }
1575    
1576     /**
1577 dl 1.78 * Scans for and, if found, returns one task, else possibly
1578     * inactivates the worker. This method operates on single reads of
1579 dl 1.90 * volatile state and is designed to be re-invoked continuously,
1580     * in part because it returns upon detecting inconsistencies,
1581 dl 1.78 * contention, or state changes that indicate possible success on
1582     * re-invocation.
1583     *
1584 dl 1.112 * The scan searches for tasks across queues (starting at a random
1585     * index, and relying on registerWorker to irregularly scatter
1586     * them within array to avoid bias), checking each at least twice.
1587     * The scan terminates upon either finding a non-empty queue, or
1588     * completing the sweep. If the worker is not inactivated, it
1589     * takes and returns a task from this queue. Otherwise, if not
1590     * activated, it signals workers (that may include itself) and
1591     * returns so caller can retry. Also returns for true if the
1592     * worker array may have changed during an empty scan. On failure
1593     * to find a task, we take one of the following actions, after
1594     * which the caller will retry calling this method unless
1595     * terminated.
1596 dl 1.78 *
1597 dl 1.86 * * If pool is terminating, terminate the worker.
1598     *
1599 dl 1.78 * * If not already enqueued, try to inactivate and enqueue the
1600 dl 1.90 * worker on wait queue. Or, if inactivating has caused the pool
1601 dl 1.126 * to be quiescent, relay to idleAwaitWork to possibly shrink
1602     * pool.
1603 dl 1.90 *
1604 dl 1.105 * * If already enqueued and none of the above apply, possibly
1605 dl 1.126 * park awaiting signal, else lingering to help scan and signal.
1606     *
1607     * * If a non-empty queue discovered or left as a hint,
1608 jsr166 1.133 * help wake up other workers before return.
1609 dl 1.78 *
1610     * @param w the worker (via its WorkQueue)
1611 jsr166 1.98 * @return a task or null if none found
1612 dl 1.78 */
1613     private final ForkJoinTask<?> scan(WorkQueue w) {
1614 dl 1.115 WorkQueue[] ws; int m;
1615 dl 1.112 int ps = plock; // read plock before ws
1616     if (w != null && (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1617     int ec = w.eventCount; // ec is negative if inactive
1618     int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1619 dl 1.126 w.hint = -1; // update seed and clear hint
1620 dl 1.115 int j = ((m + m + 1) | MIN_SCAN) & MAX_SCAN;
1621     do {
1622 dl 1.112 WorkQueue q; ForkJoinTask<?>[] a; int b;
1623     if ((q = ws[(r + j) & m]) != null && (b = q.base) - q.top < 0 &&
1624     (a = q.array) != null) { // probably nonempty
1625 dl 1.90 int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1626 dl 1.112 ForkJoinTask<?> t = (ForkJoinTask<?>)
1627     U.getObjectVolatile(a, i);
1628 dl 1.90 if (q.base == b && ec >= 0 && t != null &&
1629     U.compareAndSwapObject(a, i, t, null)) {
1630 dl 1.112 if ((q.base = b + 1) - q.top < 0)
1631 dl 1.115 signalWork(q);
1632 dl 1.112 return t; // taken
1633     }
1634 dl 1.115 else if ((ec < 0 || j < m) && (int)(ctl >> AC_SHIFT) <= 0) {
1635     w.hint = (r + j) & m; // help signal below
1636     break; // cannot take
1637     }
1638     }
1639     } while (--j >= 0);
1640    
1641 dl 1.126 int h, e, ns; long c, sc; WorkQueue q;
1642     if ((ns = w.nsteals) != 0) {
1643     if (U.compareAndSwapLong(this, STEALCOUNT,
1644     sc = stealCount, sc + ns))
1645     w.nsteals = 0; // collect steals and rescan
1646     }
1647     else if (plock != ps) // consistency check
1648     ; // skip
1649     else if ((e = (int)(c = ctl)) < 0)
1650     w.qlock = -1; // pool is terminating
1651     else {
1652     if ((h = w.hint) < 0) {
1653     if (ec >= 0) { // try to enqueue/inactivate
1654     long nc = (((long)ec |
1655     ((c - AC_UNIT) & (AC_MASK|TC_MASK))));
1656     w.nextWait = e; // link and mark inactive
1657     w.eventCount = ec | INT_SIGN;
1658     if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1659     w.eventCount = ec; // unmark on CAS failure
1660     else if ((int)(c >> AC_SHIFT) == 1 - (config & SMASK))
1661     idleAwaitWork(w, nc, c);
1662     }
1663 dl 1.131 else if (w.eventCount < 0 && ctl == c) {
1664 dl 1.126 Thread wt = Thread.currentThread();
1665     Thread.interrupted(); // clear status
1666     U.putObject(wt, PARKBLOCKER, this);
1667     w.parker = wt; // emulate LockSupport.park
1668     if (w.eventCount < 0) // recheck
1669 dl 1.131 U.park(false, 0L); // block
1670 dl 1.126 w.parker = null;
1671     U.putObject(wt, PARKBLOCKER, null);
1672     }
1673     }
1674     if ((h >= 0 || (h = w.hint) >= 0) &&
1675     (ws = workQueues) != null && h < ws.length &&
1676     (q = ws[h]) != null) { // signal others before retry
1677     WorkQueue v; Thread p; int u, i, s;
1678 dl 1.131 for (int n = (config & SMASK) - 1;;) {
1679 dl 1.126 int idleCount = (w.eventCount < 0) ? 0 : -1;
1680     if (((s = idleCount - q.base + q.top) <= n &&
1681     (n = s) <= 0) ||
1682     (u = (int)((c = ctl) >>> 32)) >= 0 ||
1683     (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1684     (v = ws[i]) == null)
1685     break;
1686     long nc = (((long)(v.nextWait & E_MASK)) |
1687     ((long)(u + UAC_UNIT) << 32));
1688     if (v.eventCount != (e | INT_SIGN) ||
1689     !U.compareAndSwapLong(this, CTL, c, nc))
1690     break;
1691     v.hint = h;
1692     v.eventCount = (e + E_SEQ) & E_MASK;
1693     if ((p = v.parker) != null)
1694     U.unpark(p);
1695     if (--n <= 0)
1696     break;
1697     }
1698 dl 1.115 }
1699     }
1700 dl 1.52 }
1701 dl 1.78 return null;
1702 dl 1.14 }
1703    
1704     /**
1705 dl 1.90 * If inactivating worker w has caused the pool to become
1706     * quiescent, checks for pool termination, and, so long as this is
1707 dl 1.100 * not the only worker, waits for event for up to a given
1708     * duration. On timeout, if ctl has not changed, terminates the
1709 dl 1.90 * worker, which will in turn wake up another worker to possibly
1710     * repeat this process.
1711 dl 1.52 *
1712 dl 1.78 * @param w the calling worker
1713 dl 1.90 * @param currentCtl the ctl value triggering possible quiescence
1714     * @param prevCtl the ctl value to restore if thread is terminated
1715 dl 1.14 */
1716 dl 1.90 private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1717 dl 1.112 if (w != null && w.eventCount < 0 &&
1718 dl 1.131 !tryTerminate(false, false) && (int)prevCtl != 0 &&
1719     ctl == currentCtl) {
1720 dl 1.100 int dc = -(short)(currentCtl >>> TC_SHIFT);
1721     long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1722 dl 1.120 long deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
1723 dl 1.90 Thread wt = Thread.currentThread();
1724     while (ctl == currentCtl) {
1725 dl 1.78 Thread.interrupted(); // timed variant of version in scan()
1726     U.putObject(wt, PARKBLOCKER, this);
1727     w.parker = wt;
1728 dl 1.90 if (ctl == currentCtl)
1729 dl 1.100 U.park(false, parkTime);
1730 dl 1.78 w.parker = null;
1731     U.putObject(wt, PARKBLOCKER, null);
1732 dl 1.90 if (ctl != currentCtl)
1733 dl 1.78 break;
1734 dl 1.100 if (deadline - System.nanoTime() <= 0L &&
1735 dl 1.90 U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1736     w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1737 dl 1.131 w.hint = -1;
1738 dl 1.105 w.qlock = -1; // shrink
1739 dl 1.78 break;
1740     }
1741 dl 1.24 }
1742 dl 1.14 }
1743     }
1744    
1745     /**
1746 dl 1.120 * Scans through queues looking for work while joining a task; if
1747     * any present, signals. May return early if more signalling is
1748     * detectably unneeded.
1749 dl 1.105 *
1750 dl 1.120 * @param task return early if done
1751 dl 1.105 * @param origin an index to start scan
1752     */
1753 dl 1.120 private void helpSignal(ForkJoinTask<?> task, int origin) {
1754 dl 1.115 WorkQueue[] ws; WorkQueue w; Thread p; long c; int m, u, e, i, s;
1755 dl 1.120 if (task != null && task.status >= 0 &&
1756     (u = (int)(ctl >>> 32)) < 0 && (u >> UAC_SHIFT) < 0 &&
1757 dl 1.115 (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1758 dl 1.120 outer: for (int k = origin, j = m; j >= 0; --j) {
1759 dl 1.115 WorkQueue q = ws[k++ & m];
1760     for (int n = m;;) { // limit to at most m signals
1761 dl 1.120 if (task.status < 0)
1762 dl 1.115 break outer;
1763     if (q == null ||
1764 dl 1.120 ((s = -q.base + q.top) <= n && (n = s) <= 0))
1765 dl 1.105 break;
1766 dl 1.115 if ((u = (int)((c = ctl) >>> 32)) >= 0 ||
1767     (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1768     (w = ws[i]) == null)
1769     break outer;
1770     long nc = (((long)(w.nextWait & E_MASK)) |
1771     ((long)(u + UAC_UNIT) << 32));
1772 dl 1.126 if (w.eventCount != (e | INT_SIGN))
1773     break outer;
1774     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1775 dl 1.122 w.eventCount = (e + E_SEQ) & E_MASK;
1776     if ((p = w.parker) != null)
1777     U.unpark(p);
1778     if (--n <= 0)
1779     break;
1780     }
1781 dl 1.120 }
1782     }
1783     }
1784     }
1785    
1786     /**
1787 dl 1.78 * Tries to locate and execute tasks for a stealer of the given
1788     * task, or in turn one of its stealers, Traces currentSteal ->
1789     * currentJoin links looking for a thread working on a descendant
1790     * of the given task and with a non-empty queue to steal back and
1791     * execute tasks from. The first call to this method upon a
1792     * waiting join will often entail scanning/search, (which is OK
1793     * because the joiner has nothing better to do), but this method
1794     * leaves hints in workers to speed up subsequent calls. The
1795     * implementation is very branchy to cope with potential
1796     * inconsistencies or loops encountering chains that are stale,
1797 dl 1.95 * unknown, or so long that they are likely cyclic.
1798 dl 1.78 *
1799     * @param joiner the joining worker
1800     * @param task the task to join
1801 dl 1.95 * @return 0 if no progress can be made, negative if task
1802     * known complete, else positive
1803 dl 1.78 */
1804 dl 1.95 private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1805     int stat = 0, steps = 0; // bound to avoid cycles
1806     if (joiner != null && task != null) { // hoist null checks
1807     restart: for (;;) {
1808     ForkJoinTask<?> subtask = task; // current target
1809     for (WorkQueue j = joiner, v;;) { // v is stealer of subtask
1810     WorkQueue[] ws; int m, s, h;
1811     if ((s = task.status) < 0) {
1812     stat = s;
1813     break restart;
1814     }
1815     if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1816     break restart; // shutting down
1817 dl 1.112 if ((v = ws[h = (j.hint | 1) & m]) == null ||
1818 dl 1.95 v.currentSteal != subtask) {
1819     for (int origin = h;;) { // find stealer
1820     if (((h = (h + 2) & m) & 15) == 1 &&
1821     (subtask.status < 0 || j.currentJoin != subtask))
1822     continue restart; // occasional staleness check
1823     if ((v = ws[h]) != null &&
1824     v.currentSteal == subtask) {
1825 dl 1.112 j.hint = h; // save hint
1826 dl 1.95 break;
1827     }
1828     if (h == origin)
1829     break restart; // cannot find stealer
1830 dl 1.78 }
1831     }
1832 dl 1.95 for (;;) { // help stealer or descend to its stealer
1833     ForkJoinTask[] a; int b;
1834     if (subtask.status < 0) // surround probes with
1835     continue restart; // consistency checks
1836     if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1837     int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1838     ForkJoinTask<?> t =
1839     (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1840     if (subtask.status < 0 || j.currentJoin != subtask ||
1841     v.currentSteal != subtask)
1842     continue restart; // stale
1843     stat = 1; // apparent progress
1844     if (t != null && v.base == b &&
1845     U.compareAndSwapObject(a, i, t, null)) {
1846     v.base = b + 1; // help stealer
1847     joiner.runSubtask(t);
1848     }
1849     else if (v.base == b && ++steps == MAX_HELP)
1850     break restart; // v apparently stalled
1851     }
1852     else { // empty -- try to descend
1853     ForkJoinTask<?> next = v.currentJoin;
1854     if (subtask.status < 0 || j.currentJoin != subtask ||
1855     v.currentSteal != subtask)
1856     continue restart; // stale
1857     else if (next == null || ++steps == MAX_HELP)
1858     break restart; // dead-end or maybe cyclic
1859     else {
1860     subtask = next;
1861     j = v;
1862     break;
1863     }
1864 dl 1.78 }
1865 dl 1.52 }
1866 dl 1.19 }
1867 dl 1.78 }
1868 dl 1.14 }
1869 dl 1.95 return stat;
1870 dl 1.22 }
1871    
1872 dl 1.52 /**
1873 dl 1.105 * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1874 jsr166 1.111 * and run tasks within the target's computation.
1875 dl 1.105 *
1876     * @param task the task to join
1877 dl 1.19 */
1878 dl 1.166 private int helpComplete(ForkJoinTask<?> task) {
1879 dl 1.167 WorkQueue[] ws; int m;
1880     if (task != null && (ws = workQueues) != null &&
1881 dl 1.105 (m = ws.length - 1) >= 0) {
1882 dl 1.167 for (int j = ((m + m + 1) | MIN_SCAN) & MAX_SCAN;;) {
1883     WorkQueue q; int s;
1884 dl 1.105 if ((s = task.status) < 0)
1885     return s;
1886 dl 1.167 if (((q = ws[j & m]) == null || !q.pollAndExecCC(task)) &&
1887     (j -= 2) <= 0)
1888 dl 1.78 break;
1889 dl 1.52 }
1890     }
1891 dl 1.105 return 0;
1892 dl 1.14 }
1893    
1894     /**
1895 dl 1.90 * Tries to decrement active count (sometimes implicitly) and
1896     * possibly release or create a compensating worker in preparation
1897     * for blocking. Fails on contention or termination. Otherwise,
1898 dl 1.105 * adds a new thread if no idle workers are available and pool
1899     * may become starved.
1900 dl 1.90 */
1901 dl 1.105 final boolean tryCompensate() {
1902 dl 1.112 int pc = config & SMASK, e, i, tc; long c;
1903 dl 1.105 WorkQueue[] ws; WorkQueue w; Thread p;
1904 dl 1.112 if ((ws = workQueues) != null && (e = (int)(c = ctl)) >= 0) {
1905 dl 1.105 if (e != 0 && (i = e & SMASK) < ws.length &&
1906     (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1907     long nc = ((long)(w.nextWait & E_MASK) |
1908     (c & (AC_MASK|TC_MASK)));
1909     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1910     w.eventCount = (e + E_SEQ) & E_MASK;
1911     if ((p = w.parker) != null)
1912     U.unpark(p);
1913     return true; // replace with idle worker
1914 dl 1.90 }
1915     }
1916 dl 1.112 else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
1917     (int)(c >> AC_SHIFT) + pc > 1) {
1918 dl 1.105 long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1919     if (U.compareAndSwapLong(this, CTL, c, nc))
1920 dl 1.112 return true; // no compensation
1921 dl 1.105 }
1922 dl 1.112 else if (tc + pc < MAX_CAP) {
1923 dl 1.105 long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1924     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1925 dl 1.115 ForkJoinWorkerThreadFactory fac;
1926     Throwable ex = null;
1927     ForkJoinWorkerThread wt = null;
1928     try {
1929     if ((fac = factory) != null &&
1930     (wt = fac.newThread(this)) != null) {
1931     wt.start();
1932     return true;
1933     }
1934     } catch (Throwable rex) {
1935     ex = rex;
1936     }
1937     deregisterWorker(wt, ex); // clean up and return false
1938 dl 1.90 }
1939     }
1940     }
1941     return false;
1942     }
1943    
1944     /**
1945 jsr166 1.93 * Helps and/or blocks until the given task is done.
1946 dl 1.90 *
1947     * @param joiner the joining worker
1948     * @param task the task
1949     * @return task status on exit
1950     */
1951     final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1952 dl 1.105 int s = 0;
1953     if (joiner != null && task != null && (s = task.status) >= 0) {
1954 dl 1.95 ForkJoinTask<?> prevJoin = joiner.currentJoin;
1955 dl 1.94 joiner.currentJoin = task;
1956 dl 1.115 do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
1957 dl 1.105 joiner.tryRemoveAndExec(task)); // process local tasks
1958 dl 1.115 if (s >= 0 && (s = task.status) >= 0) {
1959 dl 1.120 helpSignal(task, joiner.poolIndex);
1960 dl 1.115 if ((s = task.status) >= 0 &&
1961     (task instanceof CountedCompleter))
1962 dl 1.166 s = helpComplete(task);
1963 dl 1.115 }
1964 dl 1.105 while (s >= 0 && (s = task.status) >= 0) {
1965 dl 1.115 if ((!joiner.isEmpty() || // try helping
1966 dl 1.105 (s = tryHelpStealer(joiner, task)) == 0) &&
1967 dl 1.112 (s = task.status) >= 0) {
1968 dl 1.120 helpSignal(task, joiner.poolIndex);
1969 dl 1.115 if ((s = task.status) >= 0 && tryCompensate()) {
1970 dl 1.112 if (task.trySetSignal() && (s = task.status) >= 0) {
1971     synchronized (task) {
1972     if (task.status >= 0) {
1973     try { // see ForkJoinTask
1974     task.wait(); // for explanation
1975     } catch (InterruptedException ie) {
1976     }
1977 dl 1.90 }
1978 dl 1.112 else
1979     task.notifyAll();
1980 dl 1.90 }
1981     }
1982 dl 1.112 long c; // re-activate
1983     do {} while (!U.compareAndSwapLong
1984     (this, CTL, c = ctl, c + AC_UNIT));
1985 dl 1.90 }
1986     }
1987     }
1988 dl 1.105 joiner.currentJoin = prevJoin;
1989 dl 1.90 }
1990 dl 1.94 return s;
1991 dl 1.90 }
1992    
1993     /**
1994     * Stripped-down variant of awaitJoin used by timed joins. Tries
1995     * to help join only while there is continuous progress. (Caller
1996     * will then enter a timed wait.)
1997     *
1998     * @param joiner the joining worker
1999     * @param task the task
2000     */
2001 dl 1.105 final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2002 dl 1.90 int s;
2003 dl 1.105 if (joiner != null && task != null && (s = task.status) >= 0) {
2004     ForkJoinTask<?> prevJoin = joiner.currentJoin;
2005     joiner.currentJoin = task;
2006 dl 1.115 do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
2007 dl 1.105 joiner.tryRemoveAndExec(task));
2008 dl 1.115 if (s >= 0 && (s = task.status) >= 0) {
2009 dl 1.120 helpSignal(task, joiner.poolIndex);
2010 dl 1.115 if ((s = task.status) >= 0 &&
2011     (task instanceof CountedCompleter))
2012 dl 1.166 s = helpComplete(task);
2013 dl 1.115 }
2014     if (s >= 0 && joiner.isEmpty()) {
2015 dl 1.105 do {} while (task.status >= 0 &&
2016     tryHelpStealer(joiner, task) > 0);
2017     }
2018     joiner.currentJoin = prevJoin;
2019     }
2020 dl 1.90 }
2021    
2022     /**
2023     * Returns a (probably) non-empty steal queue, if one is found
2024 dl 1.131 * during a scan, else null. This method must be retried by
2025     * caller if, by the time it tries to use the queue, it is empty.
2026 dl 1.105 * @param r a (random) seed for scanning
2027 dl 1.78 */
2028 dl 1.105 private WorkQueue findNonEmptyStealQueue(int r) {
2029 dl 1.131 for (;;) {
2030     int ps = plock, m; WorkQueue[] ws; WorkQueue q;
2031     if ((ws = workQueues) != null && (m = ws.length - 1) >= 0) {
2032     for (int j = (m + 1) << 2; j >= 0; --j) {
2033     if ((q = ws[(((r + j) << 1) | 1) & m]) != null &&
2034     q.base - q.top < 0)
2035     return q;
2036 dl 1.52 }
2037     }
2038 dl 1.131 if (plock == ps)
2039     return null;
2040 dl 1.22 }
2041     }
2042    
2043     /**
2044 dl 1.78 * Runs tasks until {@code isQuiescent()}. We piggyback on
2045     * active count ctl maintenance, but rather than blocking
2046     * when tasks cannot be found, we rescan until all others cannot
2047     * find tasks either.
2048     */
2049     final void helpQuiescePool(WorkQueue w) {
2050     for (boolean active = true;;) {
2051 dl 1.131 long c; WorkQueue q; ForkJoinTask<?> t; int b;
2052     while ((t = w.nextLocalTask()) != null) {
2053     if (w.base - w.top < 0)
2054     signalWork(w);
2055     t.doExec();
2056     }
2057     if ((q = findNonEmptyStealQueue(w.nextSeed())) != null) {
2058 dl 1.78 if (!active) { // re-establish active count
2059     active = true;
2060     do {} while (!U.compareAndSwapLong
2061     (this, CTL, c = ctl, c + AC_UNIT));
2062     }
2063 dl 1.130 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2064     if (q.base - q.top < 0)
2065     signalWork(q);
2066 dl 1.78 w.runSubtask(t);
2067 dl 1.130 }
2068 dl 1.78 }
2069 dl 1.131 else if (active) { // decrement active count without queuing
2070     long nc = (c = ctl) - AC_UNIT;
2071     if ((int)(nc >> AC_SHIFT) + (config & SMASK) == 0)
2072     return; // bypass decrement-then-increment
2073     if (U.compareAndSwapLong(this, CTL, c, nc))
2074 dl 1.78 active = false;
2075 dl 1.22 }
2076 dl 1.131 else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) == 0 &&
2077     U.compareAndSwapLong(this, CTL, c, c + AC_UNIT))
2078     return;
2079 dl 1.22 }
2080     }
2081    
2082     /**
2083 jsr166 1.84 * Gets and removes a local or stolen task for the given worker.
2084 dl 1.78 *
2085     * @return a task, if available
2086 dl 1.22 */
2087 dl 1.78 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2088     for (ForkJoinTask<?> t;;) {
2089 dl 1.90 WorkQueue q; int b;
2090 dl 1.78 if ((t = w.nextLocalTask()) != null)
2091     return t;
2092 dl 1.105 if ((q = findNonEmptyStealQueue(w.nextSeed())) == null)
2093 dl 1.78 return null;
2094 dl 1.130 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2095     if (q.base - q.top < 0)
2096     signalWork(q);
2097 dl 1.78 return t;
2098 dl 1.130 }
2099 dl 1.52 }
2100 dl 1.14 }
2101    
2102     /**
2103 dl 1.105 * Returns a cheap heuristic guide for task partitioning when
2104     * programmers, frameworks, tools, or languages have little or no
2105     * idea about task granularity. In essence by offering this
2106     * method, we ask users only about tradeoffs in overhead vs
2107     * expected throughput and its variance, rather than how finely to
2108     * partition tasks.
2109     *
2110     * In a steady state strict (tree-structured) computation, each
2111     * thread makes available for stealing enough tasks for other
2112     * threads to remain active. Inductively, if all threads play by
2113     * the same rules, each thread should make available only a
2114     * constant number of tasks.
2115     *
2116     * The minimum useful constant is just 1. But using a value of 1
2117     * would require immediate replenishment upon each steal to
2118     * maintain enough tasks, which is infeasible. Further,
2119     * partitionings/granularities of offered tasks should minimize
2120     * steal rates, which in general means that threads nearer the top
2121     * of computation tree should generate more than those nearer the
2122     * bottom. In perfect steady state, each thread is at
2123     * approximately the same level of computation tree. However,
2124     * producing extra tasks amortizes the uncertainty of progress and
2125     * diffusion assumptions.
2126     *
2127 jsr166 1.161 * So, users will want to use values larger (but not much larger)
2128 dl 1.105 * than 1 to both smooth over transient shortages and hedge
2129     * against uneven progress; as traded off against the cost of
2130     * extra task overhead. We leave the user to pick a threshold
2131     * value to compare with the results of this call to guide
2132     * decisions, but recommend values such as 3.
2133     *
2134     * When all threads are active, it is on average OK to estimate
2135     * surplus strictly locally. In steady-state, if one thread is
2136     * maintaining say 2 surplus tasks, then so are others. So we can
2137     * just use estimated queue length. However, this strategy alone
2138     * leads to serious mis-estimates in some non-steady-state
2139     * conditions (ramp-up, ramp-down, other stalls). We can detect
2140     * many of these by further considering the number of "idle"
2141     * threads, that are known to have zero queued tasks, so
2142     * compensate by a factor of (#idle/#active) threads.
2143     *
2144     * Note: The approximation of #busy workers as #active workers is
2145     * not very good under current signalling scheme, and should be
2146     * improved.
2147     */
2148     static int getSurplusQueuedTaskCount() {
2149     Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2150     if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2151 dl 1.112 int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2152     int n = (q = wt.workQueue).top - q.base;
2153 dl 1.105 int a = (int)(pool.ctl >> AC_SHIFT) + p;
2154 dl 1.112 return n - (a > (p >>>= 1) ? 0 :
2155     a > (p >>>= 1) ? 1 :
2156     a > (p >>>= 1) ? 2 :
2157     a > (p >>>= 1) ? 4 :
2158     8);
2159 dl 1.105 }
2160     return 0;
2161 dl 1.100 }
2162    
2163 dl 1.86 // Termination
2164 dl 1.14
2165     /**
2166 dl 1.86 * Possibly initiates and/or completes termination. The caller
2167     * triggering termination runs three passes through workQueues:
2168     * (0) Setting termination status, followed by wakeups of queued
2169     * workers; (1) cancelling all tasks; (2) interrupting lagging
2170     * threads (likely in external tasks, but possibly also blocked in
2171     * joins). Each pass repeats previous steps because of potential
2172     * lagging thread creation.
2173 dl 1.14 *
2174     * @param now if true, unconditionally terminate, else only
2175 dl 1.78 * if no work and no active workers
2176 jsr166 1.87 * @param enable if true, enable shutdown when next possible
2177 dl 1.14 * @return true if now terminating or terminated
2178 jsr166 1.1 */
2179 dl 1.86 private boolean tryTerminate(boolean now, boolean enable) {
2180 dl 1.131 int ps;
2181 dl 1.134 if (this == common) // cannot shut down
2182 dl 1.105 return false;
2183 dl 1.131 if ((ps = plock) >= 0) { // enable by setting plock
2184     if (!enable)
2185     return false;
2186     if ((ps & PL_LOCK) != 0 ||
2187     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2188     ps = acquirePlock();
2189     int nps = ((ps + PL_LOCK) & ~SHUTDOWN) | SHUTDOWN;
2190     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2191     releasePlock(nps);
2192     }
2193 dl 1.78 for (long c;;) {
2194 dl 1.131 if (((c = ctl) & STOP_BIT) != 0) { // already terminating
2195 dl 1.112 if ((short)(c >>> TC_SHIFT) == -(config & SMASK)) {
2196 jsr166 1.103 synchronized (this) {
2197 dl 1.131 notifyAll(); // signal when 0 workers
2198 dl 1.101 }
2199 dl 1.78 }
2200     return true;
2201     }
2202 dl 1.131 if (!now) { // check if idle & no tasks
2203     WorkQueue[] ws; WorkQueue w;
2204     if ((int)(c >> AC_SHIFT) != -(config & SMASK))
2205 dl 1.86 return false;
2206 dl 1.131 if ((ws = workQueues) != null) {
2207     for (int i = 0; i < ws.length; ++i) {
2208     if ((w = ws[i]) != null) {
2209     if (!w.isEmpty()) { // signal unprocessed tasks
2210     signalWork(w);
2211     return false;
2212     }
2213     if ((i & 1) != 0 && w.eventCount >= 0)
2214     return false; // unqueued inactive worker
2215     }
2216 dl 1.78 }
2217 dl 1.52 }
2218     }
2219 dl 1.86 if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2220     for (int pass = 0; pass < 3; ++pass) {
2221 dl 1.131 WorkQueue[] ws; WorkQueue w; Thread wt;
2222     if ((ws = workQueues) != null) {
2223 dl 1.86 int n = ws.length;
2224     for (int i = 0; i < n; ++i) {
2225     if ((w = ws[i]) != null) {
2226 dl 1.105 w.qlock = -1;
2227 dl 1.86 if (pass > 0) {
2228     w.cancelAll();
2229 dl 1.126 if (pass > 1 && (wt = w.owner) != null) {
2230     if (!wt.isInterrupted()) {
2231     try {
2232     wt.interrupt();
2233 dl 1.131 } catch (Throwable ignore) {
2234 dl 1.126 }
2235     }
2236     U.unpark(wt);
2237     }
2238 dl 1.52 }
2239 dl 1.19 }
2240     }
2241 dl 1.86 // Wake up workers parked on event queue
2242     int i, e; long cc; Thread p;
2243     while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2244 dl 1.131 (i = e & SMASK) < n && i >= 0 &&
2245 dl 1.86 (w = ws[i]) != null) {
2246     long nc = ((long)(w.nextWait & E_MASK) |
2247     ((cc + AC_UNIT) & AC_MASK) |
2248     (cc & (TC_MASK|STOP_BIT)));
2249     if (w.eventCount == (e | INT_SIGN) &&
2250     U.compareAndSwapLong(this, CTL, cc, nc)) {
2251     w.eventCount = (e + E_SEQ) & E_MASK;
2252 dl 1.105 w.qlock = -1;
2253 dl 1.86 if ((p = w.parker) != null)
2254     U.unpark(p);
2255     }
2256     }
2257 dl 1.78 }
2258 dl 1.52 }
2259     }
2260     }
2261     }
2262    
2263 dl 1.105 // external operations on common pool
2264    
2265     /**
2266     * Returns common pool queue for a thread that has submitted at
2267     * least one task.
2268     */
2269     static WorkQueue commonSubmitterQueue() {
2270 dl 1.139 ForkJoinPool p; WorkQueue[] ws; int m, z;
2271     return ((z = ThreadLocalRandom.getProbe()) != 0 &&
2272 dl 1.134 (p = common) != null &&
2273 dl 1.105 (ws = p.workQueues) != null &&
2274     (m = ws.length - 1) >= 0) ?
2275 dl 1.139 ws[m & z & SQMASK] : null;
2276 dl 1.105 }
2277    
2278     /**
2279     * Tries to pop the given task from submitter's queue in common pool.
2280     */
2281     static boolean tryExternalUnpush(ForkJoinTask<?> t) {
2282 dl 1.139 ForkJoinPool p; WorkQueue[] ws; WorkQueue q;
2283     ForkJoinTask<?>[] a; int m, s, z;
2284 dl 1.115 if (t != null &&
2285 dl 1.139 (z = ThreadLocalRandom.getProbe()) != 0 &&
2286 dl 1.134 (p = common) != null &&
2287 dl 1.105 (ws = p.workQueues) != null &&
2288     (m = ws.length - 1) >= 0 &&
2289 dl 1.139 (q = ws[m & z & SQMASK]) != null &&
2290 dl 1.105 (s = q.top) != q.base &&
2291 dl 1.115 (a = q.array) != null) {
2292     long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
2293     if (U.getObject(a, j) == t &&
2294     U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2295     if (q.array == a && q.top == s && // recheck
2296     U.compareAndSwapObject(a, j, t, null)) {
2297     q.top = s - 1;
2298     q.qlock = 0;
2299     return true;
2300     }
2301 dl 1.105 q.qlock = 0;
2302     }
2303     }
2304     return false;
2305     }
2306    
2307     /**
2308     * Tries to pop and run local tasks within the same computation
2309     * as the given root. On failure, tries to help complete from
2310     * other queues via helpComplete.
2311     */
2312     private void externalHelpComplete(WorkQueue q, ForkJoinTask<?> root) {
2313 dl 1.167 ForkJoinTask<?>[] a; int m; WorkQueue[] ws;
2314 dl 1.166 if (root != null && q != null && (a = q.array) != null &&
2315     (m = (a.length - 1)) >= 0) {
2316     outer: for (;;) {
2317     int s, b, u; Object o;
2318     if (root.status < 0)
2319     return;
2320     if ((s = q.top) - q.base > 0) { // try pop
2321 dl 1.105 long j = ((m & (s - 1)) << ASHIFT) + ABASE;
2322     if ((o = U.getObject(a, j)) != null &&
2323     (o instanceof CountedCompleter)) {
2324     CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2325     do {
2326     if (r == root) {
2327     if (U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2328     if (q.array == a && q.top == s &&
2329     U.compareAndSwapObject(a, j, t, null)) {
2330     q.top = s - 1;
2331 dl 1.166 q.qlock = 0;
2332     t.doExec();
2333 dl 1.105 }
2334 dl 1.166 else
2335     q.qlock = 0;
2336 dl 1.105 }
2337 dl 1.166 continue outer;
2338 dl 1.105 }
2339 jsr166 1.106 } while ((r = r.completer) != null);
2340 dl 1.105 }
2341     }
2342 dl 1.166 if ((b = q.base) - q.top < 0) { // try poll
2343     if (root.status < 0)
2344     return;
2345     long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
2346     if ((o = U.getObject(a, j)) == null ||
2347     !(o instanceof CountedCompleter))
2348     break;
2349     CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2350     for (;;) {
2351     if (r == root) {
2352     if (q.base == b &&
2353     U.compareAndSwapObject(a, j, t, null)) {
2354     q.base = b + 1;
2355     t.doExec();
2356     }
2357     break;
2358     }
2359     if ((r = r.completer) == null)
2360     break outer;
2361     }
2362     }
2363     else
2364 dl 1.105 break;
2365     }
2366 dl 1.166 helpComplete(root);
2367 dl 1.105 }
2368     }
2369    
2370     /**
2371     * Tries to help execute or signal availability of the given task
2372     * from submitter's queue in common pool.
2373     */
2374     static void externalHelpJoin(ForkJoinTask<?> t) {
2375     // Some hard-to-avoid overlap with tryExternalUnpush
2376 dl 1.139 ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w;
2377     ForkJoinTask<?>[] a; int m, s, n, z;
2378 dl 1.112 if (t != null &&
2379 dl 1.139 (z = ThreadLocalRandom.getProbe()) != 0 &&
2380 dl 1.134 (p = common) != null &&
2381 dl 1.105 (ws = p.workQueues) != null &&
2382     (m = ws.length - 1) >= 0 &&
2383 dl 1.139 (q = ws[m & z & SQMASK]) != null &&
2384 dl 1.115 (a = q.array) != null) {
2385     int am = a.length - 1;
2386     if ((s = q.top) != q.base) {
2387     long j = ((am & (s - 1)) << ASHIFT) + ABASE;
2388     if (U.getObject(a, j) == t &&
2389     U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2390     if (q.array == a && q.top == s &&
2391     U.compareAndSwapObject(a, j, t, null)) {
2392     q.top = s - 1;
2393     q.qlock = 0;
2394     t.doExec();
2395     }
2396     else
2397     q.qlock = 0;
2398 dl 1.105 }
2399     }
2400     if (t.status >= 0) {
2401     if (t instanceof CountedCompleter)
2402     p.externalHelpComplete(q, t);
2403     else
2404 dl 1.120 p.helpSignal(t, q.poolIndex);
2405 dl 1.105 }
2406     }
2407     }
2408    
2409 dl 1.52 // Exported methods
2410 jsr166 1.1
2411     // Constructors
2412    
2413     /**
2414 jsr166 1.9 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2415 dl 1.18 * java.lang.Runtime#availableProcessors}, using the {@linkplain
2416     * #defaultForkJoinWorkerThreadFactory default thread factory},
2417     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2418 jsr166 1.1 *
2419     * @throws SecurityException if a security manager exists and
2420     * the caller is not permitted to modify threads
2421     * because it does not hold {@link
2422     * java.lang.RuntimePermission}{@code ("modifyThread")}
2423     */
2424     public ForkJoinPool() {
2425 jsr166 1.148 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2426     defaultForkJoinWorkerThreadFactory, null, false);
2427 jsr166 1.1 }
2428    
2429     /**
2430 jsr166 1.9 * Creates a {@code ForkJoinPool} with the indicated parallelism
2431 dl 1.18 * level, the {@linkplain
2432     * #defaultForkJoinWorkerThreadFactory default thread factory},
2433     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2434 jsr166 1.1 *
2435 jsr166 1.9 * @param parallelism the parallelism level
2436 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
2437 jsr166 1.11 * equal to zero, or greater than implementation limit
2438 jsr166 1.1 * @throws SecurityException if a security manager exists and
2439     * the caller is not permitted to modify threads
2440     * because it does not hold {@link
2441     * java.lang.RuntimePermission}{@code ("modifyThread")}
2442     */
2443     public ForkJoinPool(int parallelism) {
2444 dl 1.18 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2445 jsr166 1.1 }
2446    
2447     /**
2448 dl 1.18 * Creates a {@code ForkJoinPool} with the given parameters.
2449 jsr166 1.1 *
2450 dl 1.18 * @param parallelism the parallelism level. For default value,
2451     * use {@link java.lang.Runtime#availableProcessors}.
2452     * @param factory the factory for creating new threads. For default value,
2453     * use {@link #defaultForkJoinWorkerThreadFactory}.
2454 dl 1.19 * @param handler the handler for internal worker threads that
2455     * terminate due to unrecoverable errors encountered while executing
2456 jsr166 1.31 * tasks. For default value, use {@code null}.
2457 dl 1.19 * @param asyncMode if true,
2458 dl 1.18 * establishes local first-in-first-out scheduling mode for forked
2459     * tasks that are never joined. This mode may be more appropriate
2460     * than default locally stack-based mode in applications in which
2461     * worker threads only process event-style asynchronous tasks.
2462 jsr166 1.31 * For default value, use {@code false}.
2463 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
2464 jsr166 1.11 * equal to zero, or greater than implementation limit
2465     * @throws NullPointerException if the factory is null
2466 jsr166 1.1 * @throws SecurityException if a security manager exists and
2467     * the caller is not permitted to modify threads
2468     * because it does not hold {@link
2469     * java.lang.RuntimePermission}{@code ("modifyThread")}
2470     */
2471 dl 1.19 public ForkJoinPool(int parallelism,
2472 dl 1.18 ForkJoinWorkerThreadFactory factory,
2473 jsr166 1.156 UncaughtExceptionHandler handler,
2474 dl 1.18 boolean asyncMode) {
2475 dl 1.152 this(checkParallelism(parallelism),
2476     checkFactory(factory),
2477     handler,
2478     asyncMode,
2479     "ForkJoinPool-" + nextPoolId() + "-worker-");
2480 dl 1.14 checkPermission();
2481 dl 1.152 }
2482    
2483     private static int checkParallelism(int parallelism) {
2484     if (parallelism <= 0 || parallelism > MAX_CAP)
2485     throw new IllegalArgumentException();
2486     return parallelism;
2487     }
2488    
2489     private static ForkJoinWorkerThreadFactory checkFactory
2490     (ForkJoinWorkerThreadFactory factory) {
2491 dl 1.14 if (factory == null)
2492     throw new NullPointerException();
2493 dl 1.152 return factory;
2494     }
2495    
2496     /**
2497     * Creates a {@code ForkJoinPool} with the given parameters, without
2498     * any security checks or parameter validation. Invoked directly by
2499     * makeCommonPool.
2500     */
2501     private ForkJoinPool(int parallelism,
2502     ForkJoinWorkerThreadFactory factory,
2503 jsr166 1.156 UncaughtExceptionHandler handler,
2504 dl 1.152 boolean asyncMode,
2505     String workerNamePrefix) {
2506     this.workerNamePrefix = workerNamePrefix;
2507 jsr166 1.1 this.factory = factory;
2508 dl 1.18 this.ueh = handler;
2509 jsr166 1.113 this.config = parallelism | (asyncMode ? (FIFO_QUEUE << 16) : 0);
2510 dl 1.52 long np = (long)(-parallelism); // offset ctl counts
2511     this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2512 dl 1.101 }
2513    
2514     /**
2515 dl 1.128 * Returns the common pool instance. This pool is statically
2516 dl 1.134 * constructed; its run state is unaffected by attempts to {@link
2517     * #shutdown} or {@link #shutdownNow}. However this pool and any
2518     * ongoing processing are automatically terminated upon program
2519     * {@link System#exit}. Any program that relies on asynchronous
2520     * task processing to complete before program termination should
2521 jsr166 1.158 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2522     * before exit.
2523 dl 1.100 *
2524     * @return the common pool instance
2525 jsr166 1.138 * @since 1.8
2526 dl 1.100 */
2527     public static ForkJoinPool commonPool() {
2528 dl 1.134 // assert common != null : "static init error";
2529     return common;
2530 dl 1.100 }
2531    
2532 jsr166 1.1 // Execution methods
2533    
2534     /**
2535     * Performs the given task, returning its result upon completion.
2536 dl 1.52 * If the computation encounters an unchecked Exception or Error,
2537     * it is rethrown as the outcome of this invocation. Rethrown
2538     * exceptions behave in the same way as regular exceptions, but,
2539     * when possible, contain stack traces (as displayed for example
2540     * using {@code ex.printStackTrace()}) of both the current thread
2541     * as well as the thread actually encountering the exception;
2542     * minimally only the latter.
2543 jsr166 1.1 *
2544     * @param task the task
2545     * @return the task's result
2546 jsr166 1.11 * @throws NullPointerException if the task is null
2547     * @throws RejectedExecutionException if the task cannot be
2548     * scheduled for execution
2549 jsr166 1.1 */
2550     public <T> T invoke(ForkJoinTask<T> task) {
2551 dl 1.90 if (task == null)
2552     throw new NullPointerException();
2553 dl 1.105 externalPush(task);
2554 dl 1.78 return task.join();
2555 jsr166 1.1 }
2556    
2557     /**
2558     * Arranges for (asynchronous) execution of the given task.
2559     *
2560     * @param task the task
2561 jsr166 1.11 * @throws NullPointerException if the task is null
2562     * @throws RejectedExecutionException if the task cannot be
2563     * scheduled for execution
2564 jsr166 1.1 */
2565 jsr166 1.8 public void execute(ForkJoinTask<?> task) {
2566 dl 1.90 if (task == null)
2567     throw new NullPointerException();
2568 dl 1.105 externalPush(task);
2569 jsr166 1.1 }
2570    
2571     // AbstractExecutorService methods
2572    
2573 jsr166 1.11 /**
2574     * @throws NullPointerException if the task is null
2575     * @throws RejectedExecutionException if the task cannot be
2576     * scheduled for execution
2577     */
2578 jsr166 1.1 public void execute(Runnable task) {
2579 dl 1.41 if (task == null)
2580     throw new NullPointerException();
2581 jsr166 1.2 ForkJoinTask<?> job;
2582 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2583     job = (ForkJoinTask<?>) task;
2584 jsr166 1.2 else
2585 dl 1.152 job = new ForkJoinTask.RunnableExecuteAction(task);
2586 dl 1.105 externalPush(job);
2587 jsr166 1.1 }
2588    
2589 jsr166 1.11 /**
2590 dl 1.18 * Submits a ForkJoinTask for execution.
2591     *
2592     * @param task the task to submit
2593     * @return the task
2594     * @throws NullPointerException if the task is null
2595     * @throws RejectedExecutionException if the task cannot be
2596     * scheduled for execution
2597     */
2598     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2599 dl 1.90 if (task == null)
2600     throw new NullPointerException();
2601 dl 1.105 externalPush(task);
2602 dl 1.18 return task;
2603     }
2604    
2605     /**
2606 jsr166 1.11 * @throws NullPointerException if the task is null
2607     * @throws RejectedExecutionException if the task cannot be
2608     * scheduled for execution
2609     */
2610 jsr166 1.1 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2611 dl 1.90 ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2612 dl 1.105 externalPush(job);
2613 jsr166 1.1 return job;
2614     }
2615    
2616 jsr166 1.11 /**
2617     * @throws NullPointerException if the task is null
2618     * @throws RejectedExecutionException if the task cannot be
2619     * scheduled for execution
2620     */
2621 jsr166 1.1 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2622 dl 1.90 ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2623 dl 1.105 externalPush(job);
2624 jsr166 1.1 return job;
2625     }
2626    
2627 jsr166 1.11 /**
2628     * @throws NullPointerException if the task is null
2629     * @throws RejectedExecutionException if the task cannot be
2630     * scheduled for execution
2631     */
2632 jsr166 1.1 public ForkJoinTask<?> submit(Runnable task) {
2633 dl 1.41 if (task == null)
2634     throw new NullPointerException();
2635 jsr166 1.2 ForkJoinTask<?> job;
2636 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2637     job = (ForkJoinTask<?>) task;
2638 jsr166 1.2 else
2639 dl 1.90 job = new ForkJoinTask.AdaptedRunnableAction(task);
2640 dl 1.105 externalPush(job);
2641 jsr166 1.1 return job;
2642     }
2643    
2644     /**
2645 jsr166 1.11 * @throws NullPointerException {@inheritDoc}
2646     * @throws RejectedExecutionException {@inheritDoc}
2647     */
2648 jsr166 1.1 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2649 dl 1.86 // In previous versions of this class, this method constructed
2650     // a task to run ForkJoinTask.invokeAll, but now external
2651     // invocation of multiple tasks is at least as efficient.
2652 jsr166 1.143 ArrayList<Future<T>> futures = new ArrayList<Future<T>>(tasks.size());
2653 jsr166 1.1
2654 dl 1.86 boolean done = false;
2655     try {
2656     for (Callable<T> t : tasks) {
2657 dl 1.90 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2658 jsr166 1.144 futures.add(f);
2659 dl 1.105 externalPush(f);
2660 dl 1.86 }
2661 jsr166 1.143 for (int i = 0, size = futures.size(); i < size; i++)
2662     ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2663 dl 1.86 done = true;
2664     return futures;
2665     } finally {
2666     if (!done)
2667 jsr166 1.143 for (int i = 0, size = futures.size(); i < size; i++)
2668     futures.get(i).cancel(false);
2669 jsr166 1.1 }
2670     }
2671    
2672     /**
2673     * Returns the factory used for constructing new workers.
2674     *
2675     * @return the factory used for constructing new workers
2676     */
2677     public ForkJoinWorkerThreadFactory getFactory() {
2678     return factory;
2679     }
2680    
2681     /**
2682     * Returns the handler for internal worker threads that terminate
2683     * due to unrecoverable errors encountered while executing tasks.
2684     *
2685 jsr166 1.4 * @return the handler, or {@code null} if none
2686 jsr166 1.1 */
2687 jsr166 1.156 public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2688 dl 1.14 return ueh;
2689 jsr166 1.1 }
2690    
2691     /**
2692 jsr166 1.9 * Returns the targeted parallelism level of this pool.
2693 jsr166 1.1 *
2694 jsr166 1.9 * @return the targeted parallelism level of this pool
2695 jsr166 1.1 */
2696     public int getParallelism() {
2697 dl 1.160 int par = (config & SMASK);
2698     return (par > 0) ? par : 1;
2699 jsr166 1.1 }
2700    
2701     /**
2702 dl 1.100 * Returns the targeted parallelism level of the common pool.
2703     *
2704     * @return the targeted parallelism level of the common pool
2705 jsr166 1.138 * @since 1.8
2706 dl 1.100 */
2707     public static int getCommonPoolParallelism() {
2708 dl 1.134 return commonParallelism;
2709 dl 1.100 }
2710    
2711     /**
2712 jsr166 1.1 * Returns the number of worker threads that have started but not
2713 jsr166 1.34 * yet terminated. The result returned by this method may differ
2714 jsr166 1.4 * from {@link #getParallelism} when threads are created to
2715 jsr166 1.1 * maintain parallelism when others are cooperatively blocked.
2716     *
2717     * @return the number of worker threads
2718     */
2719     public int getPoolSize() {
2720 dl 1.112 return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2721 jsr166 1.1 }
2722    
2723     /**
2724 jsr166 1.4 * Returns {@code true} if this pool uses local first-in-first-out
2725 jsr166 1.1 * scheduling mode for forked tasks that are never joined.
2726     *
2727 jsr166 1.4 * @return {@code true} if this pool uses async mode
2728 jsr166 1.1 */
2729     public boolean getAsyncMode() {
2730 dl 1.112 return (config >>> 16) == FIFO_QUEUE;
2731 jsr166 1.1 }
2732    
2733     /**
2734     * Returns an estimate of the number of worker threads that are
2735     * not blocked waiting to join tasks or for other managed
2736 dl 1.14 * synchronization. This method may overestimate the
2737     * number of running threads.
2738 jsr166 1.1 *
2739     * @return the number of worker threads
2740     */
2741     public int getRunningThreadCount() {
2742 dl 1.78 int rc = 0;
2743     WorkQueue[] ws; WorkQueue w;
2744     if ((ws = workQueues) != null) {
2745 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2746     if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2747 dl 1.78 ++rc;
2748     }
2749     }
2750     return rc;
2751 jsr166 1.1 }
2752    
2753     /**
2754     * Returns an estimate of the number of threads that are currently
2755     * stealing or executing tasks. This method may overestimate the
2756     * number of active threads.
2757     *
2758     * @return the number of active threads
2759     */
2760     public int getActiveThreadCount() {
2761 dl 1.112 int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2762 jsr166 1.63 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2763 jsr166 1.1 }
2764    
2765     /**
2766 jsr166 1.4 * Returns {@code true} if all worker threads are currently idle.
2767     * An idle worker is one that cannot obtain a task to execute
2768     * because none are available to steal from other threads, and
2769     * there are no pending submissions to the pool. This method is
2770     * conservative; it might not return {@code true} immediately upon
2771     * idleness of all threads, but will eventually become true if
2772     * threads remain inactive.
2773 jsr166 1.1 *
2774 jsr166 1.4 * @return {@code true} if all threads are currently idle
2775 jsr166 1.1 */
2776     public boolean isQuiescent() {
2777 dl 1.112 return (int)(ctl >> AC_SHIFT) + (config & SMASK) == 0;
2778 jsr166 1.1 }
2779    
2780     /**
2781     * Returns an estimate of the total number of tasks stolen from
2782     * one thread's work queue by another. The reported value
2783     * underestimates the actual total number of steals when the pool
2784     * is not quiescent. This value may be useful for monitoring and
2785     * tuning fork/join programs: in general, steal counts should be
2786     * high enough to keep threads busy, but low enough to avoid
2787     * overhead and contention across threads.
2788     *
2789     * @return the number of steals
2790     */
2791     public long getStealCount() {
2792 dl 1.101 long count = stealCount;
2793 dl 1.78 WorkQueue[] ws; WorkQueue w;
2794     if ((ws = workQueues) != null) {
2795 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2796 dl 1.78 if ((w = ws[i]) != null)
2797 dl 1.105 count += w.nsteals;
2798 dl 1.78 }
2799     }
2800     return count;
2801 jsr166 1.1 }
2802    
2803     /**
2804     * Returns an estimate of the total number of tasks currently held
2805     * in queues by worker threads (but not including tasks submitted
2806     * to the pool that have not begun executing). This value is only
2807     * an approximation, obtained by iterating across all threads in
2808     * the pool. This method may be useful for tuning task
2809     * granularities.
2810     *
2811     * @return the number of queued tasks
2812     */
2813     public long getQueuedTaskCount() {
2814     long count = 0;
2815 dl 1.78 WorkQueue[] ws; WorkQueue w;
2816     if ((ws = workQueues) != null) {
2817 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2818 dl 1.78 if ((w = ws[i]) != null)
2819     count += w.queueSize();
2820     }
2821 dl 1.52 }
2822 jsr166 1.1 return count;
2823     }
2824    
2825     /**
2826 jsr166 1.8 * Returns an estimate of the number of tasks submitted to this
2827 dl 1.55 * pool that have not yet begun executing. This method may take
2828 dl 1.52 * time proportional to the number of submissions.
2829 jsr166 1.1 *
2830     * @return the number of queued submissions
2831     */
2832     public int getQueuedSubmissionCount() {
2833 dl 1.78 int count = 0;
2834     WorkQueue[] ws; WorkQueue w;
2835     if ((ws = workQueues) != null) {
2836 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2837 dl 1.78 if ((w = ws[i]) != null)
2838     count += w.queueSize();
2839     }
2840     }
2841     return count;
2842 jsr166 1.1 }
2843    
2844     /**
2845 jsr166 1.4 * Returns {@code true} if there are any tasks submitted to this
2846     * pool that have not yet begun executing.
2847 jsr166 1.1 *
2848     * @return {@code true} if there are any queued submissions
2849     */
2850     public boolean hasQueuedSubmissions() {
2851 dl 1.78 WorkQueue[] ws; WorkQueue w;
2852     if ((ws = workQueues) != null) {
2853 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2854 dl 1.115 if ((w = ws[i]) != null && !w.isEmpty())
2855 dl 1.78 return true;
2856     }
2857     }
2858     return false;
2859 jsr166 1.1 }
2860    
2861     /**
2862     * Removes and returns the next unexecuted submission if one is
2863     * available. This method may be useful in extensions to this
2864     * class that re-assign work in systems with multiple pools.
2865     *
2866 jsr166 1.4 * @return the next submission, or {@code null} if none
2867 jsr166 1.1 */
2868     protected ForkJoinTask<?> pollSubmission() {
2869 dl 1.78 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2870     if ((ws = workQueues) != null) {
2871 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2872 dl 1.78 if ((w = ws[i]) != null && (t = w.poll()) != null)
2873     return t;
2874 dl 1.52 }
2875     }
2876     return null;
2877 jsr166 1.1 }
2878    
2879     /**
2880     * Removes all available unexecuted submitted and forked tasks
2881     * from scheduling queues and adds them to the given collection,
2882     * without altering their execution status. These may include
2883 jsr166 1.8 * artificially generated or wrapped tasks. This method is
2884     * designed to be invoked only when the pool is known to be
2885 jsr166 1.1 * quiescent. Invocations at other times may not remove all
2886     * tasks. A failure encountered while attempting to add elements
2887     * to collection {@code c} may result in elements being in
2888     * neither, either or both collections when the associated
2889     * exception is thrown. The behavior of this operation is
2890     * undefined if the specified collection is modified while the
2891     * operation is in progress.
2892     *
2893     * @param c the collection to transfer elements into
2894     * @return the number of elements transferred
2895     */
2896 jsr166 1.5 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2897 dl 1.52 int count = 0;
2898 dl 1.78 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2899     if ((ws = workQueues) != null) {
2900 dl 1.86 for (int i = 0; i < ws.length; ++i) {
2901 dl 1.78 if ((w = ws[i]) != null) {
2902     while ((t = w.poll()) != null) {
2903     c.add(t);
2904     ++count;
2905     }
2906     }
2907 dl 1.52 }
2908     }
2909 dl 1.18 return count;
2910     }
2911    
2912     /**
2913 jsr166 1.1 * Returns a string identifying this pool, as well as its state,
2914     * including indications of run state, parallelism level, and
2915     * worker and task counts.
2916     *
2917     * @return a string identifying this pool, as well as its state
2918     */
2919     public String toString() {
2920 dl 1.86 // Use a single pass through workQueues to collect counts
2921     long qt = 0L, qs = 0L; int rc = 0;
2922 dl 1.101 long st = stealCount;
2923 dl 1.86 long c = ctl;
2924     WorkQueue[] ws; WorkQueue w;
2925     if ((ws = workQueues) != null) {
2926     for (int i = 0; i < ws.length; ++i) {
2927     if ((w = ws[i]) != null) {
2928     int size = w.queueSize();
2929     if ((i & 1) == 0)
2930     qs += size;
2931     else {
2932     qt += size;
2933 dl 1.105 st += w.nsteals;
2934 dl 1.86 if (w.isApparentlyUnblocked())
2935     ++rc;
2936     }
2937     }
2938     }
2939     }
2940 dl 1.112 int pc = (config & SMASK);
2941 dl 1.52 int tc = pc + (short)(c >>> TC_SHIFT);
2942 dl 1.78 int ac = pc + (int)(c >> AC_SHIFT);
2943     if (ac < 0) // ignore transient negative
2944     ac = 0;
2945 dl 1.52 String level;
2946     if ((c & STOP_BIT) != 0)
2947 jsr166 1.63 level = (tc == 0) ? "Terminated" : "Terminating";
2948 dl 1.52 else
2949 dl 1.105 level = plock < 0 ? "Shutting down" : "Running";
2950 jsr166 1.1 return super.toString() +
2951 dl 1.52 "[" + level +
2952 dl 1.14 ", parallelism = " + pc +
2953     ", size = " + tc +
2954     ", active = " + ac +
2955     ", running = " + rc +
2956 jsr166 1.1 ", steals = " + st +
2957     ", tasks = " + qt +
2958     ", submissions = " + qs +
2959     "]";
2960     }
2961    
2962     /**
2963 dl 1.100 * Possibly initiates an orderly shutdown in which previously
2964     * submitted tasks are executed, but no new tasks will be
2965     * accepted. Invocation has no effect on execution state if this
2966 jsr166 1.137 * is the {@link #commonPool()}, and no additional effect if
2967 dl 1.100 * already shut down. Tasks that are in the process of being
2968     * submitted concurrently during the course of this method may or
2969     * may not be rejected.
2970 jsr166 1.1 *
2971     * @throws SecurityException if a security manager exists and
2972     * the caller is not permitted to modify threads
2973     * because it does not hold {@link
2974     * java.lang.RuntimePermission}{@code ("modifyThread")}
2975     */
2976     public void shutdown() {
2977     checkPermission();
2978 dl 1.105 tryTerminate(false, true);
2979 jsr166 1.1 }
2980    
2981     /**
2982 dl 1.100 * Possibly attempts to cancel and/or stop all tasks, and reject
2983     * all subsequently submitted tasks. Invocation has no effect on
2984 jsr166 1.137 * execution state if this is the {@link #commonPool()}, and no
2985 dl 1.100 * additional effect if already shut down. Otherwise, tasks that
2986     * are in the process of being submitted or executed concurrently
2987     * during the course of this method may or may not be
2988     * rejected. This method cancels both existing and unexecuted
2989     * tasks, in order to permit termination in the presence of task
2990     * dependencies. So the method always returns an empty list
2991     * (unlike the case for some other Executors).
2992 jsr166 1.1 *
2993     * @return an empty list
2994     * @throws SecurityException if a security manager exists and
2995     * the caller is not permitted to modify threads
2996     * because it does not hold {@link
2997     * java.lang.RuntimePermission}{@code ("modifyThread")}
2998     */
2999     public List<Runnable> shutdownNow() {
3000     checkPermission();
3001 dl 1.105 tryTerminate(true, true);
3002 jsr166 1.1 return Collections.emptyList();
3003     }
3004    
3005     /**
3006     * Returns {@code true} if all tasks have completed following shut down.
3007     *
3008     * @return {@code true} if all tasks have completed following shut down
3009     */
3010     public boolean isTerminated() {
3011 dl 1.52 long c = ctl;
3012     return ((c & STOP_BIT) != 0L &&
3013 dl 1.112 (short)(c >>> TC_SHIFT) == -(config & SMASK));
3014 jsr166 1.1 }
3015    
3016     /**
3017     * Returns {@code true} if the process of termination has
3018 jsr166 1.9 * commenced but not yet completed. This method may be useful for
3019     * debugging. A return of {@code true} reported a sufficient
3020     * period after shutdown may indicate that submitted tasks have
3021 jsr166 1.119 * ignored or suppressed interruption, or are waiting for I/O,
3022 dl 1.49 * causing this executor not to properly terminate. (See the
3023     * advisory notes for class {@link ForkJoinTask} stating that
3024     * tasks should not normally entail blocking operations. But if
3025     * they do, they must abort them on interrupt.)
3026 jsr166 1.1 *
3027 jsr166 1.9 * @return {@code true} if terminating but not yet terminated
3028 jsr166 1.1 */
3029     public boolean isTerminating() {
3030 dl 1.52 long c = ctl;
3031     return ((c & STOP_BIT) != 0L &&
3032 dl 1.112 (short)(c >>> TC_SHIFT) != -(config & SMASK));
3033 jsr166 1.1 }
3034    
3035     /**
3036     * Returns {@code true} if this pool has been shut down.
3037     *
3038     * @return {@code true} if this pool has been shut down
3039     */
3040     public boolean isShutdown() {
3041 dl 1.105 return plock < 0;
3042 jsr166 1.9 }
3043    
3044     /**
3045 dl 1.105 * Blocks until all tasks have completed execution after a
3046     * shutdown request, or the timeout occurs, or the current thread
3047 dl 1.134 * is interrupted, whichever happens first. Because the {@link
3048     * #commonPool()} never terminates until program shutdown, when
3049     * applied to the common pool, this method is equivalent to {@link
3050 jsr166 1.158 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
3051 jsr166 1.1 *
3052     * @param timeout the maximum time to wait
3053     * @param unit the time unit of the timeout argument
3054     * @return {@code true} if this executor terminated and
3055     * {@code false} if the timeout elapsed before termination
3056     * @throws InterruptedException if interrupted while waiting
3057     */
3058     public boolean awaitTermination(long timeout, TimeUnit unit)
3059     throws InterruptedException {
3060 dl 1.134 if (Thread.interrupted())
3061     throw new InterruptedException();
3062     if (this == common) {
3063     awaitQuiescence(timeout, unit);
3064     return false;
3065     }
3066 dl 1.52 long nanos = unit.toNanos(timeout);
3067 dl 1.101 if (isTerminated())
3068     return true;
3069     long startTime = System.nanoTime();
3070     boolean terminated = false;
3071 jsr166 1.103 synchronized (this) {
3072 dl 1.101 for (long waitTime = nanos, millis = 0L;;) {
3073     if (terminated = isTerminated() ||
3074     waitTime <= 0L ||
3075     (millis = unit.toMillis(waitTime)) <= 0L)
3076     break;
3077     wait(millis);
3078     waitTime = nanos - (System.nanoTime() - startTime);
3079 dl 1.52 }
3080 dl 1.18 }
3081 dl 1.101 return terminated;
3082 jsr166 1.1 }
3083    
3084     /**
3085 dl 1.134 * If called by a ForkJoinTask operating in this pool, equivalent
3086     * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3087     * waits and/or attempts to assist performing tasks until this
3088     * pool {@link #isQuiescent} or the indicated timeout elapses.
3089     *
3090     * @param timeout the maximum time to wait
3091     * @param unit the time unit of the timeout argument
3092     * @return {@code true} if quiescent; {@code false} if the
3093     * timeout elapsed.
3094     */
3095     public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3096     long nanos = unit.toNanos(timeout);
3097     ForkJoinWorkerThread wt;
3098     Thread thread = Thread.currentThread();
3099     if ((thread instanceof ForkJoinWorkerThread) &&
3100     (wt = (ForkJoinWorkerThread)thread).pool == this) {
3101     helpQuiescePool(wt.workQueue);
3102     return true;
3103     }
3104     long startTime = System.nanoTime();
3105     WorkQueue[] ws;
3106     int r = 0, m;
3107     boolean found = true;
3108     while (!isQuiescent() && (ws = workQueues) != null &&
3109     (m = ws.length - 1) >= 0) {
3110     if (!found) {
3111     if ((System.nanoTime() - startTime) > nanos)
3112     return false;
3113     Thread.yield(); // cannot block
3114     }
3115     found = false;
3116     for (int j = (m + 1) << 2; j >= 0; --j) {
3117     ForkJoinTask<?> t; WorkQueue q; int b;
3118     if ((q = ws[r++ & m]) != null && (b = q.base) - q.top < 0) {
3119     found = true;
3120     if ((t = q.pollAt(b)) != null) {
3121     if (q.base - q.top < 0)
3122     signalWork(q);
3123     t.doExec();
3124     }
3125     break;
3126     }
3127     }
3128     }
3129     return true;
3130     }
3131    
3132     /**
3133     * Waits and/or attempts to assist performing tasks indefinitely
3134 jsr166 1.141 * until the {@link #commonPool()} {@link #isQuiescent}.
3135 dl 1.134 */
3136 dl 1.136 static void quiesceCommonPool() {
3137 dl 1.134 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3138     }
3139    
3140     /**
3141 jsr166 1.1 * Interface for extending managed parallelism for tasks running
3142 jsr166 1.8 * in {@link ForkJoinPool}s.
3143     *
3144 dl 1.19 * <p>A {@code ManagedBlocker} provides two methods. Method
3145     * {@code isReleasable} must return {@code true} if blocking is
3146     * not necessary. Method {@code block} blocks the current thread
3147     * if necessary (perhaps internally invoking {@code isReleasable}
3148 dl 1.54 * before actually blocking). These actions are performed by any
3149 jsr166 1.157 * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
3150     * The unusual methods in this API accommodate synchronizers that
3151     * may, but don't usually, block for long periods. Similarly, they
3152 dl 1.54 * allow more efficient internal handling of cases in which
3153     * additional workers may be, but usually are not, needed to
3154     * ensure sufficient parallelism. Toward this end,
3155     * implementations of method {@code isReleasable} must be amenable
3156     * to repeated invocation.
3157 jsr166 1.1 *
3158     * <p>For example, here is a ManagedBlocker based on a
3159     * ReentrantLock:
3160     * <pre> {@code
3161     * class ManagedLocker implements ManagedBlocker {
3162     * final ReentrantLock lock;
3163     * boolean hasLock = false;
3164     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3165     * public boolean block() {
3166     * if (!hasLock)
3167     * lock.lock();
3168     * return true;
3169     * }
3170     * public boolean isReleasable() {
3171     * return hasLock || (hasLock = lock.tryLock());
3172     * }
3173     * }}</pre>
3174 dl 1.19 *
3175     * <p>Here is a class that possibly blocks waiting for an
3176     * item on a given queue:
3177     * <pre> {@code
3178     * class QueueTaker<E> implements ManagedBlocker {
3179     * final BlockingQueue<E> queue;
3180     * volatile E item = null;
3181     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3182     * public boolean block() throws InterruptedException {
3183     * if (item == null)
3184 dl 1.23 * item = queue.take();
3185 dl 1.19 * return true;
3186     * }
3187     * public boolean isReleasable() {
3188 dl 1.23 * return item != null || (item = queue.poll()) != null;
3189 dl 1.19 * }
3190     * public E getItem() { // call after pool.managedBlock completes
3191     * return item;
3192     * }
3193     * }}</pre>
3194 jsr166 1.1 */
3195     public static interface ManagedBlocker {
3196     /**
3197     * Possibly blocks the current thread, for example waiting for
3198     * a lock or condition.
3199     *
3200 jsr166 1.4 * @return {@code true} if no additional blocking is necessary
3201     * (i.e., if isReleasable would return true)
3202 jsr166 1.1 * @throws InterruptedException if interrupted while waiting
3203     * (the method is not required to do so, but is allowed to)
3204     */
3205     boolean block() throws InterruptedException;
3206    
3207     /**
3208 jsr166 1.4 * Returns {@code true} if blocking is unnecessary.
3209 jsr166 1.154 * @return {@code true} if blocking is unnecessary
3210 jsr166 1.1 */
3211     boolean isReleasable();
3212     }
3213    
3214     /**
3215     * Blocks in accord with the given blocker. If the current thread
3216 jsr166 1.8 * is a {@link ForkJoinWorkerThread}, this method possibly
3217     * arranges for a spare thread to be activated if necessary to
3218 dl 1.18 * ensure sufficient parallelism while the current thread is blocked.
3219 jsr166 1.1 *
3220 jsr166 1.8 * <p>If the caller is not a {@link ForkJoinTask}, this method is
3221     * behaviorally equivalent to
3222 jsr166 1.82 * <pre> {@code
3223 jsr166 1.1 * while (!blocker.isReleasable())
3224     * if (blocker.block())
3225     * return;
3226     * }</pre>
3227 jsr166 1.8 *
3228     * If the caller is a {@code ForkJoinTask}, then the pool may
3229     * first be expanded to ensure parallelism, and later adjusted.
3230 jsr166 1.1 *
3231     * @param blocker the blocker
3232     * @throws InterruptedException if blocker.block did so
3233     */
3234 dl 1.18 public static void managedBlock(ManagedBlocker blocker)
3235 jsr166 1.1 throws InterruptedException {
3236     Thread t = Thread.currentThread();
3237 dl 1.105 if (t instanceof ForkJoinWorkerThread) {
3238     ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3239     while (!blocker.isReleasable()) { // variant of helpSignal
3240 dl 1.115 WorkQueue[] ws; WorkQueue q; int m, u;
3241 dl 1.105 if ((ws = p.workQueues) != null && (m = ws.length - 1) >= 0) {
3242     for (int i = 0; i <= m; ++i) {
3243     if (blocker.isReleasable())
3244     return;
3245 dl 1.115 if ((q = ws[i]) != null && q.base - q.top < 0) {
3246     p.signalWork(q);
3247 dl 1.112 if ((u = (int)(p.ctl >>> 32)) >= 0 ||
3248     (u >> UAC_SHIFT) >= 0)
3249 dl 1.105 break;
3250     }
3251     }
3252     }
3253     if (p.tryCompensate()) {
3254     try {
3255     do {} while (!blocker.isReleasable() &&
3256     !blocker.block());
3257     } finally {
3258 dl 1.78 p.incrementActiveCount();
3259 dl 1.105 }
3260     break;
3261 dl 1.78 }
3262     }
3263 dl 1.18 }
3264 dl 1.105 else {
3265     do {} while (!blocker.isReleasable() &&
3266     !blocker.block());
3267     }
3268 jsr166 1.1 }
3269    
3270 jsr166 1.7 // AbstractExecutorService overrides. These rely on undocumented
3271     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3272     // implement RunnableFuture.
3273 jsr166 1.1
3274     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3275 dl 1.90 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3276 jsr166 1.1 }
3277    
3278     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3279 dl 1.90 return new ForkJoinTask.AdaptedCallable<T>(callable);
3280 jsr166 1.1 }
3281    
3282     // Unsafe mechanics
3283 dl 1.78 private static final sun.misc.Unsafe U;
3284     private static final long CTL;
3285     private static final long PARKBLOCKER;
3286 dl 1.90 private static final int ABASE;
3287     private static final int ASHIFT;
3288 dl 1.101 private static final long STEALCOUNT;
3289 dl 1.105 private static final long PLOCK;
3290     private static final long INDEXSEED;
3291     private static final long QLOCK;
3292 dl 1.52
3293     static {
3294 jsr166 1.142 // initialize field offsets for CAS etc
3295 jsr166 1.3 try {
3296 dl 1.78 U = sun.misc.Unsafe.getUnsafe();
3297 jsr166 1.64 Class<?> k = ForkJoinPool.class;
3298 dl 1.78 CTL = U.objectFieldOffset
3299 dl 1.52 (k.getDeclaredField("ctl"));
3300 dl 1.101 STEALCOUNT = U.objectFieldOffset
3301     (k.getDeclaredField("stealCount"));
3302 dl 1.105 PLOCK = U.objectFieldOffset
3303     (k.getDeclaredField("plock"));
3304     INDEXSEED = U.objectFieldOffset
3305     (k.getDeclaredField("indexSeed"));
3306 dl 1.86 Class<?> tk = Thread.class;
3307 dl 1.78 PARKBLOCKER = U.objectFieldOffset
3308     (tk.getDeclaredField("parkBlocker"));
3309 dl 1.105 Class<?> wk = WorkQueue.class;
3310     QLOCK = U.objectFieldOffset
3311     (wk.getDeclaredField("qlock"));
3312     Class<?> ak = ForkJoinTask[].class;
3313 dl 1.90 ABASE = U.arrayBaseOffset(ak);
3314 jsr166 1.142 int scale = U.arrayIndexScale(ak);
3315     if ((scale & (scale - 1)) != 0)
3316     throw new Error("data type scale not a power of two");
3317     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3318 dl 1.52 } catch (Exception e) {
3319     throw new Error(e);
3320     }
3321 dl 1.105
3322 dl 1.152 defaultForkJoinWorkerThreadFactory =
3323 dl 1.112 new DefaultForkJoinWorkerThreadFactory();
3324 dl 1.115 modifyThreadPermission = new RuntimePermission("modifyThread");
3325    
3326 dl 1.152 common = java.security.AccessController.doPrivileged
3327     (new java.security.PrivilegedAction<ForkJoinPool>() {
3328     public ForkJoinPool run() { return makeCommonPool(); }});
3329 dl 1.160 int par = common.config; // report 1 even if threads disabled
3330     commonParallelism = par > 0 ? par : 1;
3331 dl 1.152 }
3332 dl 1.112
3333 dl 1.152 /**
3334     * Creates and returns the common pool, respecting user settings
3335     * specified via system properties.
3336     */
3337     private static ForkJoinPool makeCommonPool() {
3338 dl 1.160 int parallelism = -1;
3339 dl 1.152 ForkJoinWorkerThreadFactory factory
3340     = defaultForkJoinWorkerThreadFactory;
3341 jsr166 1.156 UncaughtExceptionHandler handler = null;
3342 dl 1.152 try { // ignore exceptions in accesing/parsing properties
3343 dl 1.112 String pp = System.getProperty
3344     ("java.util.concurrent.ForkJoinPool.common.parallelism");
3345 dl 1.152 String fp = System.getProperty
3346     ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3347 dl 1.112 String hp = System.getProperty
3348     ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3349 dl 1.152 if (pp != null)
3350     parallelism = Integer.parseInt(pp);
3351 dl 1.112 if (fp != null)
3352 dl 1.152 factory = ((ForkJoinWorkerThreadFactory)ClassLoader.
3353     getSystemClassLoader().loadClass(fp).newInstance());
3354 dl 1.112 if (hp != null)
3355 jsr166 1.156 handler = ((UncaughtExceptionHandler)ClassLoader.
3356 dl 1.112 getSystemClassLoader().loadClass(hp).newInstance());
3357     } catch (Exception ignore) {
3358     }
3359    
3360 dl 1.167 if (parallelism < 0 && // default 1 less than #cores
3361     (parallelism = Runtime.getRuntime().availableProcessors() - 1) < 0)
3362     parallelism = 0;
3363 dl 1.152 if (parallelism > MAX_CAP)
3364     parallelism = MAX_CAP;
3365     return new ForkJoinPool(parallelism, factory, handler, false,
3366     "ForkJoinPool.commonPool-worker-");
3367 jsr166 1.3 }
3368 dl 1.52
3369 jsr166 1.1 }