ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.170
Committed: Mon Mar 18 12:34:33 2013 UTC (11 years, 2 months ago) by dl
Branch: MAIN
Changes since 1.169: +53 -41 lines
Log Message:
Cite PPoPP13 and clearer conformance

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.58 * http://creativecommons.org/publicdomain/zero/1.0/
5 jsr166 1.1 */
6    
7     package java.util.concurrent;
8    
9 jsr166 1.156 import java.lang.Thread.UncaughtExceptionHandler;
10 jsr166 1.1 import java.util.ArrayList;
11     import java.util.Arrays;
12     import java.util.Collection;
13     import java.util.Collections;
14     import java.util.List;
15 dl 1.36 import java.util.concurrent.AbstractExecutorService;
16     import java.util.concurrent.Callable;
17     import java.util.concurrent.ExecutorService;
18     import java.util.concurrent.Future;
19     import java.util.concurrent.RejectedExecutionException;
20     import java.util.concurrent.RunnableFuture;
21     import java.util.concurrent.TimeUnit;
22 jsr166 1.1
23     /**
24 jsr166 1.4 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
25 jsr166 1.8 * A {@code ForkJoinPool} provides the entry point for submissions
26 dl 1.18 * from non-{@code ForkJoinTask} clients, as well as management and
27 jsr166 1.11 * monitoring operations.
28 jsr166 1.1 *
29 jsr166 1.9 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
30     * ExecutorService} mainly by virtue of employing
31     * <em>work-stealing</em>: all threads in the pool attempt to find and
32 dl 1.78 * execute tasks submitted to the pool and/or created by other active
33     * tasks (eventually blocking waiting for work if none exist). This
34     * enables efficient processing when most tasks spawn other subtasks
35     * (as do most {@code ForkJoinTask}s), as well as when many small
36     * tasks are submitted to the pool from external clients. Especially
37     * when setting <em>asyncMode</em> to true in constructors, {@code
38     * ForkJoinPool}s may also be appropriate for use with event-style
39     * tasks that are never joined.
40 jsr166 1.1 *
41 dl 1.112 * <p>A static {@link #commonPool()} is available and appropriate for
42 dl 1.101 * most applications. The common pool is used by any ForkJoinTask that
43     * is not explicitly submitted to a specified pool. Using the common
44     * pool normally reduces resource usage (its threads are slowly
45     * reclaimed during periods of non-use, and reinstated upon subsequent
46 dl 1.105 * use).
47 dl 1.100 *
48     * <p>For applications that require separate or custom pools, a {@code
49     * ForkJoinPool} may be constructed with a given target parallelism
50     * level; by default, equal to the number of available processors. The
51     * pool attempts to maintain enough active (or available) threads by
52     * dynamically adding, suspending, or resuming internal worker
53     * threads, even if some tasks are stalled waiting to join
54     * others. However, no such adjustments are guaranteed in the face of
55 jsr166 1.119 * blocked I/O or other unmanaged synchronization. The nested {@link
56 dl 1.100 * ManagedBlocker} interface enables extension of the kinds of
57 dl 1.18 * synchronization accommodated.
58 jsr166 1.1 *
59     * <p>In addition to execution and lifecycle control methods, this
60     * class provides status check methods (for example
61 jsr166 1.4 * {@link #getStealCount}) that are intended to aid in developing,
62 jsr166 1.1 * tuning, and monitoring fork/join applications. Also, method
63 jsr166 1.4 * {@link #toString} returns indications of pool state in a
64 jsr166 1.1 * convenient form for informal monitoring.
65     *
66 jsr166 1.109 * <p>As is the case with other ExecutorServices, there are three
67 jsr166 1.84 * main task execution methods summarized in the following table.
68     * These are designed to be used primarily by clients not already
69     * engaged in fork/join computations in the current pool. The main
70     * forms of these methods accept instances of {@code ForkJoinTask},
71     * but overloaded forms also allow mixed execution of plain {@code
72     * Runnable}- or {@code Callable}- based activities as well. However,
73     * tasks that are already executing in a pool should normally instead
74     * use the within-computation forms listed in the table unless using
75     * async event-style tasks that are not usually joined, in which case
76     * there is little difference among choice of methods.
77 dl 1.18 *
78     * <table BORDER CELLPADDING=3 CELLSPACING=1>
79 jsr166 1.159 * <caption>Summary of task execution methods</caption>
80 dl 1.18 * <tr>
81     * <td></td>
82     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
83     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
84     * </tr>
85     * <tr>
86 jsr166 1.153 * <td> <b>Arrange async execution</b></td>
87 dl 1.18 * <td> {@link #execute(ForkJoinTask)}</td>
88     * <td> {@link ForkJoinTask#fork}</td>
89     * </tr>
90     * <tr>
91 jsr166 1.153 * <td> <b>Await and obtain result</b></td>
92 dl 1.18 * <td> {@link #invoke(ForkJoinTask)}</td>
93     * <td> {@link ForkJoinTask#invoke}</td>
94     * </tr>
95     * <tr>
96 jsr166 1.153 * <td> <b>Arrange exec and obtain Future</b></td>
97 dl 1.18 * <td> {@link #submit(ForkJoinTask)}</td>
98     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
99     * </tr>
100     * </table>
101 dl 1.19 *
102 dl 1.105 * <p>The common pool is by default constructed with default
103 jsr166 1.155 * parameters, but these may be controlled by setting three
104 jsr166 1.162 * {@linkplain System#getProperty system properties}:
105     * <ul>
106     * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
107     * - the parallelism level, a non-negative integer
108     * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
109     * - the class name of a {@link ForkJoinWorkerThreadFactory}
110     * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
111     * - the class name of a {@link UncaughtExceptionHandler}
112     * </ul>
113 jsr166 1.165 * The system class loader is used to load these classes.
114 jsr166 1.156 * Upon any error in establishing these settings, default parameters
115 dl 1.160 * are used. It is possible to disable or limit the use of threads in
116     * the common pool by setting the parallelism property to zero, and/or
117     * using a factory that may return {@code null}.
118 dl 1.105 *
119 jsr166 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
120     * maximum number of running threads to 32767. Attempts to create
121 jsr166 1.11 * pools with greater than the maximum number result in
122 jsr166 1.8 * {@code IllegalArgumentException}.
123 jsr166 1.1 *
124 jsr166 1.11 * <p>This implementation rejects submitted tasks (that is, by throwing
125 dl 1.19 * {@link RejectedExecutionException}) only when the pool is shut down
126 dl 1.20 * or internal resources have been exhausted.
127 jsr166 1.11 *
128 jsr166 1.1 * @since 1.7
129     * @author Doug Lea
130     */
131 dl 1.169 @sun.misc.Contended // enable when @Contended is stable
132 jsr166 1.1 public class ForkJoinPool extends AbstractExecutorService {
133    
134     /*
135 dl 1.14 * Implementation Overview
136     *
137 dl 1.78 * This class and its nested classes provide the main
138     * functionality and control for a set of worker threads:
139 jsr166 1.84 * Submissions from non-FJ threads enter into submission queues.
140     * Workers take these tasks and typically split them into subtasks
141     * that may be stolen by other workers. Preference rules give
142     * first priority to processing tasks from their own queues (LIFO
143     * or FIFO, depending on mode), then to randomized FIFO steals of
144     * tasks in other queues.
145 dl 1.78 *
146 jsr166 1.84 * WorkQueues
147 dl 1.78 * ==========
148     *
149     * Most operations occur within work-stealing queues (in nested
150     * class WorkQueue). These are special forms of Deques that
151     * support only three of the four possible end-operations -- push,
152     * pop, and poll (aka steal), under the further constraints that
153     * push and pop are called only from the owning thread (or, as
154     * extended here, under a lock), while poll may be called from
155     * other threads. (If you are unfamiliar with them, you probably
156     * want to read Herlihy and Shavit's book "The Art of
157     * Multiprocessor programming", chapter 16 describing these in
158     * more detail before proceeding.) The main work-stealing queue
159     * design is roughly similar to those in the papers "Dynamic
160     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
161     * (http://research.sun.com/scalable/pubs/index.html) and
162     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
163     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
164 dl 1.170 * See also "Correct and Efficient Work-Stealing for Weak Memory
165     * Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
166     * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
167     * analysis of memory ordering (atomic, volatile etc) issues. The
168     * main differences ultimately stem from GC requirements that we
169     * null out taken slots as soon as we can, to maintain as small a
170     * footprint as possible even in programs generating huge numbers
171     * of tasks. To accomplish this, we shift the CAS arbitrating pop
172     * vs poll (steal) from being on the indices ("base" and "top") to
173     * the slots themselves. So, both a successful pop and poll
174     * mainly entail a CAS of a slot from non-null to null. Because
175     * we rely on CASes of references, we do not need tag bits on base
176     * or top. They are simple ints as used in any circular
177     * array-based queue (see for example ArrayDeque). Updates to the
178     * indices must still be ordered in a way that guarantees that top
179     * == base means the queue is empty, but otherwise may err on the
180     * side of possibly making the queue appear nonempty when a push,
181     * pop, or poll have not fully committed. Note that this means
182     * that the poll operation, considered individually, is not
183     * wait-free. One thief cannot successfully continue until another
184     * in-progress one (or, if previously empty, a push) completes.
185     * However, in the aggregate, we ensure at least probabilistic
186     * non-blockingness. If an attempted steal fails, a thief always
187     * chooses a different random victim target to try next. So, in
188     * order for one thief to progress, it suffices for any
189     * in-progress poll or new push on any empty queue to
190     * complete. (This is why we normally use method pollAt and its
191     * variants that try once at the apparent base index, else
192     * consider alternative actions, rather than method poll.)
193 dl 1.78 *
194 dl 1.79 * This approach also enables support of a user mode in which local
195 dl 1.78 * task processing is in FIFO, not LIFO order, simply by using
196     * poll rather than pop. This can be useful in message-passing
197     * frameworks in which tasks are never joined. However neither
198     * mode considers affinities, loads, cache localities, etc, so
199     * rarely provide the best possible performance on a given
200     * machine, but portably provide good throughput by averaging over
201     * these factors. (Further, even if we did try to use such
202 jsr166 1.84 * information, we do not usually have a basis for exploiting it.
203     * For example, some sets of tasks profit from cache affinities,
204     * but others are harmed by cache pollution effects.)
205 dl 1.78 *
206     * WorkQueues are also used in a similar way for tasks submitted
207     * to the pool. We cannot mix these tasks in the same queues used
208     * for work-stealing (this would contaminate lifo/fifo
209 dl 1.105 * processing). Instead, we randomly associate submission queues
210 dl 1.83 * with submitting threads, using a form of hashing. The
211 dl 1.139 * ThreadLocalRandom probe value serves as a hash code for
212     * choosing existing queues, and may be randomly repositioned upon
213     * contention with other submitters. In essence, submitters act
214     * like workers except that they are restricted to executing local
215     * tasks that they submitted (or in the case of CountedCompleters,
216     * others with the same root task). However, because most
217     * shared/external queue operations are more expensive than
218     * internal, and because, at steady state, external submitters
219     * will compete for CPU with workers, ForkJoinTask.join and
220     * related methods disable them from repeatedly helping to process
221     * tasks if all workers are active. Insertion of tasks in shared
222     * mode requires a lock (mainly to protect in the case of
223 dl 1.105 * resizing) but we use only a simple spinlock (using bits in
224     * field qlock), because submitters encountering a busy queue move
225     * on to try or create other queues -- they block only when
226     * creating and registering new queues.
227 dl 1.78 *
228 jsr166 1.84 * Management
229 dl 1.78 * ==========
230 dl 1.52 *
231     * The main throughput advantages of work-stealing stem from
232     * decentralized control -- workers mostly take tasks from
233     * themselves or each other. We cannot negate this in the
234     * implementation of other management responsibilities. The main
235     * tactic for avoiding bottlenecks is packing nearly all
236 dl 1.78 * essentially atomic control state into two volatile variables
237     * that are by far most often read (not written) as status and
238 jsr166 1.84 * consistency checks.
239 dl 1.78 *
240     * Field "ctl" contains 64 bits holding all the information needed
241     * to atomically decide to add, inactivate, enqueue (on an event
242     * queue), dequeue, and/or re-activate workers. To enable this
243     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
244     * far in excess of normal operating range) to allow ids, counts,
245     * and their negations (used for thresholding) to fit into 16bit
246     * fields.
247     *
248 dl 1.105 * Field "plock" is a form of sequence lock with a saturating
249     * shutdown bit (similarly for per-queue "qlocks"), mainly
250     * protecting updates to the workQueues array, as well as to
251     * enable shutdown. When used as a lock, it is normally only very
252     * briefly held, so is nearly always available after at most a
253     * brief spin, but we use a monitor-based backup strategy to
254 dl 1.112 * block when needed.
255 dl 1.78 *
256     * Recording WorkQueues. WorkQueues are recorded in the
257 dl 1.101 * "workQueues" array that is created upon first use and expanded
258     * if necessary. Updates to the array while recording new workers
259     * and unrecording terminated ones are protected from each other
260     * by a lock but the array is otherwise concurrently readable, and
261     * accessed directly. To simplify index-based operations, the
262     * array size is always a power of two, and all readers must
263 dl 1.112 * tolerate null slots. Worker queues are at odd indices. Shared
264 dl 1.105 * (submission) queues are at even indices, up to a maximum of 64
265     * slots, to limit growth even if array needs to expand to add
266     * more workers. Grouping them together in this way simplifies and
267     * speeds up task scanning.
268 dl 1.86 *
269     * All worker thread creation is on-demand, triggered by task
270     * submissions, replacement of terminated workers, and/or
271 dl 1.78 * compensation for blocked workers. However, all other support
272     * code is set up to work with other policies. To ensure that we
273     * do not hold on to worker references that would prevent GC, ALL
274     * accesses to workQueues are via indices into the workQueues
275     * array (which is one source of some of the messy code
276     * constructions here). In essence, the workQueues array serves as
277     * a weak reference mechanism. Thus for example the wait queue
278     * field of ctl stores indices, not references. Access to the
279     * workQueues in associated methods (for example signalWork) must
280     * both index-check and null-check the IDs. All such accesses
281     * ignore bad IDs by returning out early from what they are doing,
282     * since this can only be associated with termination, in which
283 dl 1.86 * case it is OK to give up. All uses of the workQueues array
284     * also check that it is non-null (even if previously
285     * non-null). This allows nulling during termination, which is
286     * currently not necessary, but remains an option for
287     * resource-revocation-based shutdown schemes. It also helps
288     * reduce JIT issuance of uncommon-trap code, which tends to
289 dl 1.78 * unnecessarily complicate control flow in some methods.
290 dl 1.52 *
291 dl 1.78 * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
292 dl 1.56 * let workers spin indefinitely scanning for tasks when none can
293     * be found immediately, and we cannot start/resume workers unless
294     * there appear to be tasks available. On the other hand, we must
295     * quickly prod them into action when new tasks are submitted or
296 dl 1.78 * generated. In many usages, ramp-up time to activate workers is
297     * the main limiting factor in overall performance (this is
298     * compounded at program start-up by JIT compilation and
299     * allocation). So we try to streamline this as much as possible.
300     * We park/unpark workers after placing in an event wait queue
301     * when they cannot find work. This "queue" is actually a simple
302     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
303     * counter value (that reflects the number of times a worker has
304     * been inactivated) to avoid ABA effects (we need only as many
305     * version numbers as worker threads). Successors are held in
306     * field WorkQueue.nextWait. Queuing deals with several intrinsic
307     * races, mainly that a task-producing thread can miss seeing (and
308 dl 1.56 * signalling) another thread that gave up looking for work but
309     * has not yet entered the wait queue. We solve this by requiring
310 dl 1.78 * a full sweep of all workers (via repeated calls to method
311     * scan()) both before and after a newly waiting worker is added
312     * to the wait queue. During a rescan, the worker might release
313     * some other queued worker rather than itself, which has the same
314     * net effect. Because enqueued workers may actually be rescanning
315     * rather than waiting, we set and clear the "parker" field of
316 jsr166 1.84 * WorkQueues to reduce unnecessary calls to unpark. (This
317 dl 1.78 * requires a secondary recheck to avoid missed signals.) Note
318     * the unusual conventions about Thread.interrupts surrounding
319     * parking and other blocking: Because interrupts are used solely
320     * to alert threads to check termination, which is checked anyway
321     * upon blocking, we clear status (using Thread.interrupted)
322     * before any call to park, so that park does not immediately
323     * return due to status being set via some other unrelated call to
324     * interrupt in user code.
325 dl 1.52 *
326     * Signalling. We create or wake up workers only when there
327     * appears to be at least one task they might be able to find and
328 dl 1.105 * execute. However, many other threads may notice the same task
329     * and each signal to wake up a thread that might take it. So in
330     * general, pools will be over-signalled. When a submission is
331 dl 1.115 * added or another worker adds a task to a queue that has fewer
332     * than two tasks, they signal waiting workers (or trigger
333     * creation of new ones if fewer than the given parallelism level
334     * -- signalWork), and may leave a hint to the unparked worker to
335     * help signal others upon wakeup). These primary signals are
336     * buttressed by others (see method helpSignal) whenever other
337     * threads scan for work or do not have a task to process. On
338     * most platforms, signalling (unpark) overhead time is noticeably
339     * long, and the time between signalling a thread and it actually
340     * making progress can be very noticeably long, so it is worth
341     * offloading these delays from critical paths as much as
342     * possible.
343 dl 1.52 *
344     * Trimming workers. To release resources after periods of lack of
345     * use, a worker starting to wait when the pool is quiescent will
346 dl 1.100 * time out and terminate if the pool has remained quiescent for a
347     * given period -- a short period if there are more threads than
348     * parallelism, longer as the number of threads decreases. This
349     * will slowly propagate, eventually terminating all workers after
350     * periods of non-use.
351 dl 1.52 *
352 dl 1.78 * Shutdown and Termination. A call to shutdownNow atomically sets
353 dl 1.105 * a plock bit and then (non-atomically) sets each worker's
354     * qlock status, cancels all unprocessed tasks, and wakes up
355 dl 1.78 * all waiting workers. Detecting whether termination should
356     * commence after a non-abrupt shutdown() call requires more work
357     * and bookkeeping. We need consensus about quiescence (i.e., that
358     * there is no more work). The active count provides a primary
359     * indication but non-abrupt shutdown still requires a rechecking
360     * scan for any workers that are inactive but not queued.
361     *
362 jsr166 1.84 * Joining Tasks
363     * =============
364 dl 1.78 *
365     * Any of several actions may be taken when one worker is waiting
366 jsr166 1.84 * to join a task stolen (or always held) by another. Because we
367 dl 1.78 * are multiplexing many tasks on to a pool of workers, we can't
368     * just let them block (as in Thread.join). We also cannot just
369     * reassign the joiner's run-time stack with another and replace
370     * it later, which would be a form of "continuation", that even if
371     * possible is not necessarily a good idea since we sometimes need
372 jsr166 1.84 * both an unblocked task and its continuation to progress.
373     * Instead we combine two tactics:
374 dl 1.19 *
375     * Helping: Arranging for the joiner to execute some task that it
376 dl 1.78 * would be running if the steal had not occurred.
377 dl 1.19 *
378     * Compensating: Unless there are already enough live threads,
379 dl 1.78 * method tryCompensate() may create or re-activate a spare
380     * thread to compensate for blocked joiners until they unblock.
381     *
382 dl 1.105 * A third form (implemented in tryRemoveAndExec) amounts to
383     * helping a hypothetical compensator: If we can readily tell that
384     * a possible action of a compensator is to steal and execute the
385     * task being joined, the joining thread can do so directly,
386     * without the need for a compensation thread (although at the
387     * expense of larger run-time stacks, but the tradeoff is
388     * typically worthwhile).
389 dl 1.52 *
390     * The ManagedBlocker extension API can't use helping so relies
391     * only on compensation in method awaitBlocker.
392 dl 1.19 *
393 dl 1.78 * The algorithm in tryHelpStealer entails a form of "linear"
394     * helping: Each worker records (in field currentSteal) the most
395     * recent task it stole from some other worker. Plus, it records
396     * (in field currentJoin) the task it is currently actively
397     * joining. Method tryHelpStealer uses these markers to try to
398     * find a worker to help (i.e., steal back a task from and execute
399     * it) that could hasten completion of the actively joined task.
400     * In essence, the joiner executes a task that would be on its own
401     * local deque had the to-be-joined task not been stolen. This may
402     * be seen as a conservative variant of the approach in Wagner &
403     * Calder "Leapfrogging: a portable technique for implementing
404     * efficient futures" SIGPLAN Notices, 1993
405     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
406     * that: (1) We only maintain dependency links across workers upon
407     * steals, rather than use per-task bookkeeping. This sometimes
408 dl 1.90 * requires a linear scan of workQueues array to locate stealers,
409     * but often doesn't because stealers leave hints (that may become
410 dl 1.112 * stale/wrong) of where to locate them. It is only a hint
411     * because a worker might have had multiple steals and the hint
412     * records only one of them (usually the most current). Hinting
413     * isolates cost to when it is needed, rather than adding to
414     * per-task overhead. (2) It is "shallow", ignoring nesting and
415     * potentially cyclic mutual steals. (3) It is intentionally
416 dl 1.78 * racy: field currentJoin is updated only while actively joining,
417     * which means that we miss links in the chain during long-lived
418     * tasks, GC stalls etc (which is OK since blocking in such cases
419     * is usually a good idea). (4) We bound the number of attempts
420 dl 1.90 * to find work (see MAX_HELP) and fall back to suspending the
421     * worker and if necessary replacing it with another.
422 dl 1.78 *
423 dl 1.105 * Helping actions for CountedCompleters are much simpler: Method
424     * helpComplete can take and execute any task with the same root
425     * as the task being waited on. However, this still entails some
426     * traversal of completer chains, so is less efficient than using
427     * CountedCompleters without explicit joins.
428     *
429 dl 1.52 * It is impossible to keep exactly the target parallelism number
430     * of threads running at any given time. Determining the
431 dl 1.24 * existence of conservatively safe helping targets, the
432     * availability of already-created spares, and the apparent need
433 dl 1.78 * to create new spares are all racy, so we rely on multiple
434 dl 1.90 * retries of each. Compensation in the apparent absence of
435     * helping opportunities is challenging to control on JVMs, where
436     * GC and other activities can stall progress of tasks that in
437     * turn stall out many other dependent tasks, without us being
438     * able to determine whether they will ever require compensation.
439     * Even though work-stealing otherwise encounters little
440     * degradation in the presence of more threads than cores,
441     * aggressively adding new threads in such cases entails risk of
442     * unwanted positive feedback control loops in which more threads
443     * cause more dependent stalls (as well as delayed progress of
444     * unblocked threads to the point that we know they are available)
445     * leading to more situations requiring more threads, and so
446     * on. This aspect of control can be seen as an (analytically
447 jsr166 1.92 * intractable) game with an opponent that may choose the worst
448 dl 1.90 * (for us) active thread to stall at any time. We take several
449     * precautions to bound losses (and thus bound gains), mainly in
450 dl 1.105 * methods tryCompensate and awaitJoin.
451     *
452     * Common Pool
453     * ===========
454     *
455 dl 1.134 * The static common Pool always exists after static
456 dl 1.105 * initialization. Since it (or any other created pool) need
457     * never be used, we minimize initial construction overhead and
458     * footprint to the setup of about a dozen fields, with no nested
459     * allocation. Most bootstrapping occurs within method
460     * fullExternalPush during the first submission to the pool.
461     *
462     * When external threads submit to the common pool, they can
463 dl 1.167 * perform subtask processing (see externalHelpJoin and related
464     * methods). This caller-helps policymakes it sensible to set
465     * common pool parallelism level to one (or more) less than the
466     * total number of available cores, or even zero for pure
467     * caller-runs. We do not need to record whether external
468 dl 1.105 * submissions are to the common pool -- if not, externalHelpJoin
469 jsr166 1.107 * returns quickly (at the most helping to signal some common pool
470 dl 1.105 * workers). These submitters would otherwise be blocked waiting
471     * for completion, so the extra effort (with liberally sprinkled
472     * task status checks) in inapplicable cases amounts to an odd
473     * form of limited spin-wait before blocking in ForkJoinTask.join.
474     *
475     * Style notes
476     * ===========
477     *
478     * There is a lot of representation-level coupling among classes
479     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
480     * fields of WorkQueue maintain data structures managed by
481     * ForkJoinPool, so are directly accessed. There is little point
482     * trying to reduce this, since any associated future changes in
483     * representations will need to be accompanied by algorithmic
484     * changes anyway. Several methods intrinsically sprawl because
485     * they must accumulate sets of consistent reads of volatiles held
486     * in local variables. Methods signalWork() and scan() are the
487     * main bottlenecks, so are especially heavily
488 dl 1.86 * micro-optimized/mangled. There are lots of inline assignments
489     * (of form "while ((local = field) != 0)") which are usually the
490     * simplest way to ensure the required read orderings (which are
491     * sometimes critical). This leads to a "C"-like style of listing
492     * declarations of these locals at the heads of methods or blocks.
493     * There are several occurrences of the unusual "do {} while
494     * (!cas...)" which is the simplest way to force an update of a
495 dl 1.105 * CAS'ed variable. There are also other coding oddities (including
496     * several unnecessary-looking hoisted null checks) that help
497 dl 1.86 * some methods perform reasonably even when interpreted (not
498     * compiled).
499 dl 1.52 *
500 jsr166 1.84 * The order of declarations in this file is:
501 dl 1.86 * (1) Static utility functions
502     * (2) Nested (static) classes
503     * (3) Static fields
504     * (4) Fields, along with constants used when unpacking some of them
505     * (5) Internal control methods
506     * (6) Callbacks and other support for ForkJoinTask methods
507     * (7) Exported methods
508     * (8) Static block initializing statics in minimally dependent order
509     */
510    
511     // Static utilities
512    
513     /**
514     * If there is a security manager, makes sure caller has
515     * permission to modify threads.
516 jsr166 1.1 */
517 dl 1.86 private static void checkPermission() {
518     SecurityManager security = System.getSecurityManager();
519     if (security != null)
520     security.checkPermission(modifyThreadPermission);
521     }
522    
523     // Nested classes
524 jsr166 1.1
525     /**
526 jsr166 1.8 * Factory for creating new {@link ForkJoinWorkerThread}s.
527     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
528     * for {@code ForkJoinWorkerThread} subclasses that extend base
529     * functionality or initialize threads with different contexts.
530 jsr166 1.1 */
531     public static interface ForkJoinWorkerThreadFactory {
532     /**
533     * Returns a new worker thread operating in the given pool.
534     *
535     * @param pool the pool this thread works in
536 jsr166 1.11 * @throws NullPointerException if the pool is null
537 jsr166 1.154 * @return the new worker thread
538 jsr166 1.1 */
539     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
540     }
541    
542     /**
543     * Default ForkJoinWorkerThreadFactory implementation; creates a
544     * new ForkJoinWorkerThread.
545     */
546 dl 1.112 static final class DefaultForkJoinWorkerThreadFactory
547 jsr166 1.1 implements ForkJoinWorkerThreadFactory {
548 dl 1.112 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
549 dl 1.14 return new ForkJoinWorkerThread(pool);
550 jsr166 1.1 }
551     }
552    
553     /**
554 dl 1.86 * Class for artificial tasks that are used to replace the target
555     * of local joins if they are removed from an interior queue slot
556     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
557     * actually do anything beyond having a unique identity.
558 jsr166 1.1 */
559 dl 1.86 static final class EmptyTask extends ForkJoinTask<Void> {
560 dl 1.105 private static final long serialVersionUID = -7721805057305804111L;
561 dl 1.86 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
562     public final Void getRawResult() { return null; }
563     public final void setRawResult(Void x) {}
564     public final boolean exec() { return true; }
565 jsr166 1.1 }
566    
567     /**
568 dl 1.78 * Queues supporting work-stealing as well as external task
569     * submission. See above for main rationale and algorithms.
570     * Implementation relies heavily on "Unsafe" intrinsics
571     * and selective use of "volatile":
572     *
573     * Field "base" is the index (mod array.length) of the least valid
574     * queue slot, which is always the next position to steal (poll)
575     * from if nonempty. Reads and writes require volatile orderings
576     * but not CAS, because updates are only performed after slot
577     * CASes.
578     *
579     * Field "top" is the index (mod array.length) of the next queue
580     * slot to push to or pop from. It is written only by owner thread
581 dl 1.105 * for push, or under lock for external/shared push, and accessed
582     * by other threads only after reading (volatile) base. Both top
583     * and base are allowed to wrap around on overflow, but (top -
584     * base) (or more commonly -(base - top) to force volatile read of
585     * base before top) still estimates size. The lock ("qlock") is
586     * forced to -1 on termination, causing all further lock attempts
587     * to fail. (Note: we don't need CAS for termination state because
588     * upon pool shutdown, all shared-queues will stop being used
589     * anyway.) Nearly all lock bodies are set up so that exceptions
590     * within lock bodies are "impossible" (modulo JVM errors that
591     * would cause failure anyway.)
592 dl 1.78 *
593     * The array slots are read and written using the emulation of
594     * volatiles/atomics provided by Unsafe. Insertions must in
595     * general use putOrderedObject as a form of releasing store to
596     * ensure that all writes to the task object are ordered before
597 dl 1.105 * its publication in the queue. All removals entail a CAS to
598     * null. The array is always a power of two. To ensure safety of
599     * Unsafe array operations, all accesses perform explicit null
600     * checks and implicit bounds checks via power-of-two masking.
601 dl 1.78 *
602     * In addition to basic queuing support, this class contains
603     * fields described elsewhere to control execution. It turns out
604 dl 1.105 * to work better memory-layout-wise to include them in this class
605     * rather than a separate class.
606 dl 1.78 *
607     * Performance on most platforms is very sensitive to placement of
608     * instances of both WorkQueues and their arrays -- we absolutely
609     * do not want multiple WorkQueue instances or multiple queue
610     * arrays sharing cache lines. (It would be best for queue objects
611     * and their arrays to share, but there is nothing available to
612 dl 1.167 * help arrange that). The @Contended annotation alerts JVMs to
613     * try to keep instances apart.
614 dl 1.78 */
615 dl 1.169 @sun.misc.Contended // enable when @Contended is stable
616 dl 1.78 static final class WorkQueue {
617     /**
618     * Capacity of work-stealing queue array upon initialization.
619 dl 1.90 * Must be a power of two; at least 4, but should be larger to
620     * reduce or eliminate cacheline sharing among queues.
621     * Currently, it is much larger, as a partial workaround for
622     * the fact that JVMs often place arrays in locations that
623     * share GC bookkeeping (especially cardmarks) such that
624     * per-write accesses encounter serious memory contention.
625 dl 1.78 */
626 dl 1.90 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
627 dl 1.78
628     /**
629     * Maximum size for queue arrays. Must be a power of two less
630     * than or equal to 1 << (31 - width of array entry) to ensure
631     * lack of wraparound of index calculations, but defined to a
632     * value a bit less than this to help users trap runaway
633     * programs before saturating systems.
634     */
635     static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
636    
637     int seed; // for random scanning; initialize nonzero
638     volatile int eventCount; // encoded inactivation count; < 0 if inactive
639     int nextWait; // encoded record of next event waiter
640 dl 1.112 int hint; // steal or signal hint (index)
641 dl 1.78 int poolIndex; // index of this queue in pool (or 0)
642 dl 1.112 final int mode; // 0: lifo, > 0: fifo, < 0: shared
643     int nsteals; // number of steals
644 dl 1.105 volatile int qlock; // 1: locked, -1: terminate; else 0
645 dl 1.78 volatile int base; // index of next slot for poll
646     int top; // index of next slot for push
647     ForkJoinTask<?>[] array; // the elements (initially unallocated)
648 dl 1.90 final ForkJoinPool pool; // the containing pool (may be null)
649 dl 1.78 final ForkJoinWorkerThread owner; // owning thread or null if shared
650     volatile Thread parker; // == owner during call to park; else null
651 dl 1.95 volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
652 dl 1.78 ForkJoinTask<?> currentSteal; // current non-local task being executed
653 dl 1.112
654     WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
655     int seed) {
656 dl 1.90 this.pool = pool;
657 dl 1.78 this.owner = owner;
658 dl 1.112 this.mode = mode;
659     this.seed = seed;
660 dl 1.115 // Place indices in the center of array (that is not yet allocated)
661 dl 1.78 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
662     }
663    
664     /**
665 dl 1.115 * Returns the approximate number of tasks in the queue.
666     */
667     final int queueSize() {
668     int n = base - top; // non-owner callers must read base first
669     return (n >= 0) ? 0 : -n; // ignore transient negative
670     }
671    
672     /**
673     * Provides a more accurate estimate of whether this queue has
674     * any tasks than does queueSize, by checking whether a
675     * near-empty queue has at least one unclaimed task.
676     */
677     final boolean isEmpty() {
678     ForkJoinTask<?>[] a; int m, s;
679     int n = base - (s = top);
680     return (n >= 0 ||
681     (n == -1 &&
682     ((a = array) == null ||
683     (m = a.length - 1) < 0 ||
684     U.getObject
685     (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
686     }
687    
688     /**
689     * Pushes a task. Call only by owner in unshared queues. (The
690     * shared-queue version is embedded in method externalPush.)
691 dl 1.78 *
692     * @param task the task. Caller must ensure non-null.
693 jsr166 1.146 * @throws RejectedExecutionException if array cannot be resized
694 dl 1.78 */
695 dl 1.90 final void push(ForkJoinTask<?> task) {
696 dl 1.112 ForkJoinTask<?>[] a; ForkJoinPool p;
697     int s = top, m, n;
698     if ((a = array) != null) { // ignore if queue removed
699 dl 1.115 int j = (((m = a.length - 1) & s) << ASHIFT) + ABASE;
700     U.putOrderedObject(a, j, task);
701     if ((n = (top = s + 1) - base) <= 2) {
702 dl 1.112 if ((p = pool) != null)
703 dl 1.115 p.signalWork(this);
704 dl 1.112 }
705     else if (n >= m)
706     growArray();
707 dl 1.78 }
708     }
709    
710 dl 1.112 /**
711     * Initializes or doubles the capacity of array. Call either
712     * by owner or with lock held -- it is OK for base, but not
713     * top, to move while resizings are in progress.
714     */
715     final ForkJoinTask<?>[] growArray() {
716     ForkJoinTask<?>[] oldA = array;
717     int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
718     if (size > MAXIMUM_QUEUE_CAPACITY)
719     throw new RejectedExecutionException("Queue capacity exceeded");
720     int oldMask, t, b;
721     ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
722     if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
723     (t = top) - (b = base) > 0) {
724     int mask = size - 1;
725     do {
726     ForkJoinTask<?> x;
727     int oldj = ((b & oldMask) << ASHIFT) + ABASE;
728     int j = ((b & mask) << ASHIFT) + ABASE;
729     x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
730     if (x != null &&
731     U.compareAndSwapObject(oldA, oldj, x, null))
732     U.putObjectVolatile(a, j, x);
733     } while (++b != t);
734 dl 1.78 }
735 dl 1.112 return a;
736 dl 1.78 }
737    
738     /**
739 dl 1.90 * Takes next task, if one exists, in LIFO order. Call only
740 dl 1.102 * by owner in unshared queues.
741 dl 1.90 */
742     final ForkJoinTask<?> pop() {
743 dl 1.94 ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
744     if ((a = array) != null && (m = a.length - 1) >= 0) {
745 dl 1.90 for (int s; (s = top - 1) - base >= 0;) {
746 dl 1.94 long j = ((m & s) << ASHIFT) + ABASE;
747     if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
748 dl 1.90 break;
749     if (U.compareAndSwapObject(a, j, t, null)) {
750     top = s;
751     return t;
752     }
753     }
754     }
755     return null;
756     }
757    
758     /**
759     * Takes a task in FIFO order if b is base of queue and a task
760     * can be claimed without contention. Specialized versions
761     * appear in ForkJoinPool methods scan and tryHelpStealer.
762 dl 1.78 */
763 dl 1.90 final ForkJoinTask<?> pollAt(int b) {
764     ForkJoinTask<?> t; ForkJoinTask<?>[] a;
765     if ((a = array) != null) {
766 dl 1.86 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
767     if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
768     base == b &&
769 dl 1.78 U.compareAndSwapObject(a, j, t, null)) {
770 dl 1.170 U.putOrderedInt(this, QBASE, b + 1);
771 dl 1.78 return t;
772     }
773     }
774     return null;
775     }
776    
777     /**
778 dl 1.90 * Takes next task, if one exists, in FIFO order.
779 dl 1.78 */
780 dl 1.90 final ForkJoinTask<?> poll() {
781     ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
782     while ((b = base) - top < 0 && (a = array) != null) {
783     int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
784     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
785     if (t != null) {
786     if (base == b &&
787     U.compareAndSwapObject(a, j, t, null)) {
788 dl 1.170 U.putOrderedInt(this, QBASE, b + 1);
789 dl 1.78 return t;
790     }
791     }
792 dl 1.90 else if (base == b) {
793     if (b + 1 == top)
794     break;
795 dl 1.105 Thread.yield(); // wait for lagging update (very rare)
796 dl 1.90 }
797 dl 1.78 }
798     return null;
799     }
800    
801     /**
802     * Takes next task, if one exists, in order specified by mode.
803     */
804     final ForkJoinTask<?> nextLocalTask() {
805     return mode == 0 ? pop() : poll();
806     }
807    
808     /**
809     * Returns next task, if one exists, in order specified by mode.
810     */
811     final ForkJoinTask<?> peek() {
812     ForkJoinTask<?>[] a = array; int m;
813     if (a == null || (m = a.length - 1) < 0)
814     return null;
815     int i = mode == 0 ? top - 1 : base;
816     int j = ((i & m) << ASHIFT) + ABASE;
817     return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
818     }
819    
820     /**
821     * Pops the given task only if it is at the current top.
822 dl 1.105 * (A shared version is available only via FJP.tryExternalUnpush)
823 dl 1.78 */
824     final boolean tryUnpush(ForkJoinTask<?> t) {
825     ForkJoinTask<?>[] a; int s;
826     if ((a = array) != null && (s = top) != base &&
827     U.compareAndSwapObject
828     (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
829     top = s;
830     return true;
831     }
832     return false;
833     }
834    
835     /**
836 jsr166 1.84 * Removes and cancels all known tasks, ignoring any exceptions.
837 dl 1.78 */
838     final void cancelAll() {
839     ForkJoinTask.cancelIgnoringExceptions(currentJoin);
840     ForkJoinTask.cancelIgnoringExceptions(currentSteal);
841     for (ForkJoinTask<?> t; (t = poll()) != null; )
842     ForkJoinTask.cancelIgnoringExceptions(t);
843     }
844    
845 dl 1.86 /**
846     * Computes next value for random probes. Scans don't require
847     * a very high quality generator, but also not a crummy one.
848     * Marsaglia xor-shift is cheap and works well enough. Note:
849 dl 1.90 * This is manually inlined in its usages in ForkJoinPool to
850     * avoid writes inside busy scan loops.
851 dl 1.86 */
852     final int nextSeed() {
853     int r = seed;
854     r ^= r << 13;
855     r ^= r >>> 17;
856     return seed = r ^= r << 5;
857     }
858    
859 dl 1.104 // Specialized execution methods
860 dl 1.78
861     /**
862 dl 1.94 * Pops and runs tasks until empty.
863 dl 1.78 */
864 dl 1.94 private void popAndExecAll() {
865     // A bit faster than repeated pop calls
866     ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
867     while ((a = array) != null && (m = a.length - 1) >= 0 &&
868     (s = top - 1) - base >= 0 &&
869     (t = ((ForkJoinTask<?>)
870     U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
871     != null) {
872     if (U.compareAndSwapObject(a, j, t, null)) {
873     top = s;
874     t.doExec();
875 dl 1.90 }
876 dl 1.94 }
877     }
878    
879     /**
880     * Polls and runs tasks until empty.
881     */
882     private void pollAndExecAll() {
883     for (ForkJoinTask<?> t; (t = poll()) != null;)
884     t.doExec();
885     }
886    
887     /**
888 dl 1.105 * If present, removes from queue and executes the given task,
889     * or any other cancelled task. Returns (true) on any CAS
890 dl 1.94 * or consistency check failure so caller can retry.
891     *
892 jsr166 1.150 * @return false if no progress can be made, else true
893 dl 1.94 */
894 dl 1.105 final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
895     boolean stat = true, removed = false, empty = true;
896 dl 1.94 ForkJoinTask<?>[] a; int m, s, b, n;
897     if ((a = array) != null && (m = a.length - 1) >= 0 &&
898     (n = (s = top) - (b = base)) > 0) {
899     for (ForkJoinTask<?> t;;) { // traverse from s to b
900     int j = ((--s & m) << ASHIFT) + ABASE;
901     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
902     if (t == null) // inconsistent length
903     break;
904     else if (t == task) {
905     if (s + 1 == top) { // pop
906     if (!U.compareAndSwapObject(a, j, task, null))
907 dl 1.90 break;
908 dl 1.94 top = s;
909     removed = true;
910 dl 1.90 }
911 dl 1.94 else if (base == b) // replace with proxy
912     removed = U.compareAndSwapObject(a, j, task,
913     new EmptyTask());
914     break;
915     }
916     else if (t.status >= 0)
917     empty = false;
918     else if (s + 1 == top) { // pop and throw away
919     if (U.compareAndSwapObject(a, j, t, null))
920     top = s;
921     break;
922     }
923     if (--n == 0) {
924     if (!empty && base == b)
925 dl 1.105 stat = false;
926 dl 1.94 break;
927 dl 1.90 }
928     }
929 dl 1.78 }
930 dl 1.94 if (removed)
931     task.doExec();
932 dl 1.95 return stat;
933 dl 1.78 }
934    
935     /**
936 dl 1.105 * Polls for and executes the given task or any other task in
937 jsr166 1.149 * its CountedCompleter computation.
938 dl 1.104 */
939 dl 1.105 final boolean pollAndExecCC(ForkJoinTask<?> root) {
940     ForkJoinTask<?>[] a; int b; Object o;
941 dl 1.166 outer: while (root.status >= 0 && (b = base) - top < 0 &&
942     (a = array) != null) {
943 dl 1.105 long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
944     if ((o = U.getObject(a, j)) == null ||
945     !(o instanceof CountedCompleter))
946     break;
947     for (CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;;) {
948     if (r == root) {
949     if (base == b &&
950     U.compareAndSwapObject(a, j, t, null)) {
951 dl 1.170 U.putOrderedInt(this, QBASE, b + 1);
952 dl 1.105 t.doExec();
953     return true;
954 dl 1.104 }
955 dl 1.105 else
956     break; // restart
957 dl 1.104 }
958 dl 1.105 if ((r = r.completer) == null)
959     break outer; // not part of root computation
960 dl 1.104 }
961     }
962 dl 1.105 return false;
963 dl 1.104 }
964    
965     /**
966 dl 1.78 * Executes a top-level task and any local tasks remaining
967     * after execution.
968     */
969 dl 1.94 final void runTask(ForkJoinTask<?> t) {
970 dl 1.78 if (t != null) {
971 dl 1.105 (currentSteal = t).doExec();
972     currentSteal = null;
973 dl 1.126 ++nsteals;
974 dl 1.115 if (base - top < 0) { // process remaining local tasks
975 dl 1.94 if (mode == 0)
976     popAndExecAll();
977     else
978     pollAndExecAll();
979     }
980 dl 1.78 }
981     }
982    
983     /**
984 jsr166 1.84 * Executes a non-top-level (stolen) task.
985 dl 1.78 */
986     final void runSubtask(ForkJoinTask<?> t) {
987     if (t != null) {
988     ForkJoinTask<?> ps = currentSteal;
989 dl 1.105 (currentSteal = t).doExec();
990 dl 1.78 currentSteal = ps;
991     }
992     }
993    
994     /**
995 dl 1.86 * Returns true if owned and not known to be blocked.
996     */
997     final boolean isApparentlyUnblocked() {
998     Thread wt; Thread.State s;
999     return (eventCount >= 0 &&
1000     (wt = owner) != null &&
1001     (s = wt.getState()) != Thread.State.BLOCKED &&
1002     s != Thread.State.WAITING &&
1003     s != Thread.State.TIMED_WAITING);
1004     }
1005    
1006 dl 1.78 // Unsafe mechanics
1007     private static final sun.misc.Unsafe U;
1008 dl 1.170 private static final long QBASE;
1009 dl 1.105 private static final long QLOCK;
1010 dl 1.78 private static final int ABASE;
1011     private static final int ASHIFT;
1012     static {
1013     try {
1014     U = sun.misc.Unsafe.getUnsafe();
1015     Class<?> k = WorkQueue.class;
1016     Class<?> ak = ForkJoinTask[].class;
1017 dl 1.170 QBASE = U.objectFieldOffset
1018     (k.getDeclaredField("base"));
1019 dl 1.105 QLOCK = U.objectFieldOffset
1020     (k.getDeclaredField("qlock"));
1021 dl 1.78 ABASE = U.arrayBaseOffset(ak);
1022 jsr166 1.142 int scale = U.arrayIndexScale(ak);
1023     if ((scale & (scale - 1)) != 0)
1024     throw new Error("data type scale not a power of two");
1025     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1026 dl 1.78 } catch (Exception e) {
1027     throw new Error(e);
1028     }
1029     }
1030     }
1031 dl 1.14
1032 dl 1.112 // static fields (initialized in static initializer below)
1033    
1034     /**
1035     * Creates a new ForkJoinWorkerThread. This factory is used unless
1036     * overridden in ForkJoinPool constructors.
1037     */
1038     public static final ForkJoinWorkerThreadFactory
1039     defaultForkJoinWorkerThreadFactory;
1040    
1041 jsr166 1.1 /**
1042 dl 1.115 * Permission required for callers of methods that may start or
1043     * kill threads.
1044     */
1045     private static final RuntimePermission modifyThreadPermission;
1046    
1047     /**
1048 dl 1.101 * Common (static) pool. Non-null for public use unless a static
1049 dl 1.105 * construction exception, but internal usages null-check on use
1050     * to paranoically avoid potential initialization circularities
1051     * as well as to simplify generated code.
1052 dl 1.101 */
1053 dl 1.134 static final ForkJoinPool common;
1054 dl 1.101
1055     /**
1056 dl 1.160 * Common pool parallelism. To allow simpler use and management
1057     * when common pool threads are disabled, we allow the underlying
1058     * common.config field to be zero, but in that case still report
1059     * parallelism as 1 to reflect resulting caller-runs mechanics.
1060 dl 1.90 */
1061 dl 1.134 static final int commonParallelism;
1062 dl 1.90
1063     /**
1064 dl 1.105 * Sequence number for creating workerNamePrefix.
1065 dl 1.86 */
1066 dl 1.105 private static int poolNumberSequence;
1067 dl 1.86
1068 jsr166 1.1 /**
1069 jsr166 1.132 * Returns the next sequence number. We don't expect this to
1070     * ever contend, so use simple builtin sync.
1071 dl 1.83 */
1072 dl 1.105 private static final synchronized int nextPoolId() {
1073     return ++poolNumberSequence;
1074     }
1075 dl 1.86
1076     // static constants
1077    
1078     /**
1079 dl 1.105 * Initial timeout value (in nanoseconds) for the thread
1080     * triggering quiescence to park waiting for new work. On timeout,
1081     * the thread will instead try to shrink the number of
1082     * workers. The value should be large enough to avoid overly
1083     * aggressive shrinkage during most transient stalls (long GCs
1084     * etc).
1085 dl 1.86 */
1086 dl 1.105 private static final long IDLE_TIMEOUT = 2000L * 1000L * 1000L; // 2sec
1087 dl 1.86
1088     /**
1089 dl 1.100 * Timeout value when there are more threads than parallelism level
1090 dl 1.86 */
1091 dl 1.105 private static final long FAST_IDLE_TIMEOUT = 200L * 1000L * 1000L;
1092 dl 1.86
1093     /**
1094 dl 1.120 * Tolerance for idle timeouts, to cope with timer undershoots
1095     */
1096 dl 1.127 private static final long TIMEOUT_SLOP = 2000000L;
1097 dl 1.120
1098     /**
1099 dl 1.90 * The maximum stolen->joining link depth allowed in method
1100 dl 1.105 * tryHelpStealer. Must be a power of two. Depths for legitimate
1101 dl 1.90 * chains are unbounded, but we use a fixed constant to avoid
1102     * (otherwise unchecked) cycles and to bound staleness of
1103     * traversal parameters at the expense of sometimes blocking when
1104     * we could be helping.
1105     */
1106 dl 1.95 private static final int MAX_HELP = 64;
1107 dl 1.90
1108     /**
1109     * Increment for seed generators. See class ThreadLocal for
1110     * explanation.
1111     */
1112     private static final int SEED_INCREMENT = 0x61c88647;
1113 dl 1.83
1114 jsr166 1.163 /*
1115 dl 1.86 * Bits and masks for control variables
1116     *
1117     * Field ctl is a long packed with:
1118     * AC: Number of active running workers minus target parallelism (16 bits)
1119     * TC: Number of total workers minus target parallelism (16 bits)
1120     * ST: true if pool is terminating (1 bit)
1121     * EC: the wait count of top waiting thread (15 bits)
1122     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1123     *
1124     * When convenient, we can extract the upper 32 bits of counts and
1125     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1126     * (int)ctl. The ec field is never accessed alone, but always
1127     * together with id and st. The offsets of counts by the target
1128     * parallelism and the positionings of fields makes it possible to
1129     * perform the most common checks via sign tests of fields: When
1130     * ac is negative, there are not enough active workers, when tc is
1131     * negative, there are not enough total workers, and when e is
1132     * negative, the pool is terminating. To deal with these possibly
1133     * negative fields, we use casts in and out of "short" and/or
1134     * signed shifts to maintain signedness.
1135     *
1136     * When a thread is queued (inactivated), its eventCount field is
1137     * set negative, which is the only way to tell if a worker is
1138     * prevented from executing tasks, even though it must continue to
1139     * scan for them to avoid queuing races. Note however that
1140     * eventCount updates lag releases so usage requires care.
1141     *
1142 dl 1.105 * Field plock is an int packed with:
1143 dl 1.86 * SHUTDOWN: true if shutdown is enabled (1 bit)
1144 dl 1.105 * SEQ: a sequence lock, with PL_LOCK bit set if locked (30 bits)
1145     * SIGNAL: set when threads may be waiting on the lock (1 bit)
1146 dl 1.86 *
1147 dl 1.90 * The sequence number enables simple consistency checks:
1148     * Staleness of read-only operations on the workQueues array can
1149 dl 1.105 * be checked by comparing plock before vs after the reads.
1150 dl 1.86 */
1151    
1152     // bit positions/shifts for fields
1153     private static final int AC_SHIFT = 48;
1154     private static final int TC_SHIFT = 32;
1155     private static final int ST_SHIFT = 31;
1156     private static final int EC_SHIFT = 16;
1157    
1158     // bounds
1159     private static final int SMASK = 0xffff; // short bits
1160 dl 1.90 private static final int MAX_CAP = 0x7fff; // max #workers - 1
1161 dl 1.105 private static final int EVENMASK = 0xfffe; // even short bits
1162     private static final int SQMASK = 0x007e; // max 64 (even) slots
1163 dl 1.86 private static final int SHORT_SIGN = 1 << 15;
1164     private static final int INT_SIGN = 1 << 31;
1165    
1166     // masks
1167     private static final long STOP_BIT = 0x0001L << ST_SHIFT;
1168     private static final long AC_MASK = ((long)SMASK) << AC_SHIFT;
1169     private static final long TC_MASK = ((long)SMASK) << TC_SHIFT;
1170    
1171     // units for incrementing and decrementing
1172     private static final long TC_UNIT = 1L << TC_SHIFT;
1173     private static final long AC_UNIT = 1L << AC_SHIFT;
1174    
1175     // masks and units for dealing with u = (int)(ctl >>> 32)
1176     private static final int UAC_SHIFT = AC_SHIFT - 32;
1177     private static final int UTC_SHIFT = TC_SHIFT - 32;
1178     private static final int UAC_MASK = SMASK << UAC_SHIFT;
1179     private static final int UTC_MASK = SMASK << UTC_SHIFT;
1180     private static final int UAC_UNIT = 1 << UAC_SHIFT;
1181     private static final int UTC_UNIT = 1 << UTC_SHIFT;
1182    
1183     // masks and units for dealing with e = (int)ctl
1184     private static final int E_MASK = 0x7fffffff; // no STOP_BIT
1185     private static final int E_SEQ = 1 << EC_SHIFT;
1186    
1187 dl 1.105 // plock bits
1188 dl 1.86 private static final int SHUTDOWN = 1 << 31;
1189 dl 1.105 private static final int PL_LOCK = 2;
1190     private static final int PL_SIGNAL = 1;
1191     private static final int PL_SPINS = 1 << 8;
1192 dl 1.86
1193     // access mode for WorkQueue
1194     static final int LIFO_QUEUE = 0;
1195     static final int FIFO_QUEUE = 1;
1196     static final int SHARED_QUEUE = -1;
1197    
1198 dl 1.112 // bounds for #steps in scan loop -- must be power 2 minus 1
1199 dl 1.170 private static final int MIN_SCAN = 0x7ff; // cover estimation slop
1200 dl 1.112 private static final int MAX_SCAN = 0x1ffff; // 4 * max workers
1201    
1202 dl 1.86 // Instance fields
1203 dl 1.101 volatile long stealCount; // collects worker counts
1204 dl 1.86 volatile long ctl; // main pool control
1205 dl 1.112 volatile int plock; // shutdown status and seqLock
1206 dl 1.105 volatile int indexSeed; // worker/submitter index seed
1207 dl 1.112 final int config; // mode and parallelism level
1208 dl 1.86 WorkQueue[] workQueues; // main registry
1209 dl 1.112 final ForkJoinWorkerThreadFactory factory;
1210 jsr166 1.156 final UncaughtExceptionHandler ueh; // per-worker UEH
1211 dl 1.101 final String workerNamePrefix; // to create worker name string
1212    
1213 jsr166 1.145 /**
1214 dl 1.105 * Acquires the plock lock to protect worker array and related
1215     * updates. This method is called only if an initial CAS on plock
1216 jsr166 1.140 * fails. This acts as a spinlock for normal cases, but falls back
1217 dl 1.105 * to builtin monitor to block when (rarely) needed. This would be
1218     * a terrible idea for a highly contended lock, but works fine as
1219 dl 1.126 * a more conservative alternative to a pure spinlock.
1220 dl 1.105 */
1221     private int acquirePlock() {
1222 dl 1.139 int spins = PL_SPINS, ps, nps;
1223 dl 1.105 for (;;) {
1224     if (((ps = plock) & PL_LOCK) == 0 &&
1225     U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1226     return nps;
1227 dl 1.101 else if (spins >= 0) {
1228 dl 1.139 if (ThreadLocalRandom.nextSecondarySeed() >= 0)
1229 dl 1.101 --spins;
1230     }
1231 dl 1.105 else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1232 jsr166 1.106 synchronized (this) {
1233 dl 1.105 if ((plock & PL_SIGNAL) != 0) {
1234 dl 1.101 try {
1235     wait();
1236     } catch (InterruptedException ie) {
1237 dl 1.104 try {
1238     Thread.currentThread().interrupt();
1239     } catch (SecurityException ignore) {
1240     }
1241 dl 1.101 }
1242     }
1243     else
1244 dl 1.105 notifyAll();
1245 dl 1.101 }
1246     }
1247     }
1248     }
1249 dl 1.78
1250 jsr166 1.1 /**
1251 dl 1.105 * Unlocks and signals any thread waiting for plock. Called only
1252     * when CAS of seq value for unlock fails.
1253 jsr166 1.1 */
1254 dl 1.105 private void releasePlock(int ps) {
1255     plock = ps;
1256 jsr166 1.106 synchronized (this) { notifyAll(); }
1257 dl 1.78 }
1258 jsr166 1.1
1259 dl 1.112 /**
1260 dl 1.120 * Tries to create and start one worker if fewer than target
1261     * parallelism level exist. Adjusts counts etc on failure.
1262 dl 1.115 */
1263     private void tryAddWorker() {
1264 dl 1.112 long c; int u;
1265 dl 1.115 while ((u = (int)((c = ctl) >>> 32)) < 0 &&
1266     (u & SHORT_SIGN) != 0 && (int)c == 0) {
1267 dl 1.112 long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1268     ((u + UAC_UNIT) & UAC_MASK)) << 32;
1269 dl 1.115 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1270     ForkJoinWorkerThreadFactory fac;
1271     Throwable ex = null;
1272     ForkJoinWorkerThread wt = null;
1273     try {
1274     if ((fac = factory) != null &&
1275     (wt = fac.newThread(this)) != null) {
1276     wt.start();
1277     break;
1278     }
1279     } catch (Throwable e) {
1280     ex = e;
1281     }
1282     deregisterWorker(wt, ex);
1283     break;
1284     }
1285 dl 1.112 }
1286     }
1287    
1288     // Registering and deregistering workers
1289    
1290     /**
1291     * Callback from ForkJoinWorkerThread to establish and record its
1292     * WorkQueue. To avoid scanning bias due to packing entries in
1293     * front of the workQueues array, we treat the array as a simple
1294     * power-of-two hash table using per-thread seed as hash,
1295     * expanding as needed.
1296     *
1297     * @param wt the worker thread
1298 dl 1.115 * @return the worker's queue
1299 dl 1.112 */
1300 dl 1.115 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1301 jsr166 1.156 UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps;
1302 dl 1.115 wt.setDaemon(true);
1303     if ((handler = ueh) != null)
1304     wt.setUncaughtExceptionHandler(handler);
1305     do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
1306     s += SEED_INCREMENT) ||
1307     s == 0); // skip 0
1308     WorkQueue w = new WorkQueue(this, wt, config >>> 16, s);
1309     if (((ps = plock) & PL_LOCK) != 0 ||
1310     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1311     ps = acquirePlock();
1312     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1313     try {
1314     if ((ws = workQueues) != null) { // skip if shutting down
1315     int n = ws.length, m = n - 1;
1316     int r = (s << 1) | 1; // use odd-numbered indices
1317     if (ws[r &= m] != null) { // collision
1318     int probes = 0; // step by approx half size
1319     int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1320     while (ws[r = (r + step) & m] != null) {
1321     if (++probes >= n) {
1322     workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1323     m = n - 1;
1324     probes = 0;
1325 dl 1.94 }
1326     }
1327     }
1328 dl 1.115 w.eventCount = w.poolIndex = r; // volatile write orders
1329     ws[r] = w;
1330 dl 1.78 }
1331 dl 1.115 } finally {
1332     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1333     releasePlock(nps);
1334 dl 1.78 }
1335 dl 1.115 wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex)));
1336     return w;
1337 dl 1.78 }
1338 dl 1.19
1339 jsr166 1.1 /**
1340 dl 1.86 * Final callback from terminating worker, as well as upon failure
1341 dl 1.105 * to construct or start a worker. Removes record of worker from
1342     * array, and adjusts counts. If pool is shutting down, tries to
1343     * complete termination.
1344 dl 1.78 *
1345 jsr166 1.151 * @param wt the worker thread, or null if construction failed
1346 dl 1.78 * @param ex the exception causing failure, or null if none
1347 dl 1.45 */
1348 dl 1.78 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1349     WorkQueue w = null;
1350     if (wt != null && (w = wt.workQueue) != null) {
1351 dl 1.105 int ps;
1352     w.qlock = -1; // ensure set
1353 dl 1.112 long ns = w.nsteals, sc; // collect steal count
1354     do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1355     sc = stealCount, sc + ns));
1356 dl 1.105 if (((ps = plock) & PL_LOCK) != 0 ||
1357     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1358     ps = acquirePlock();
1359     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1360 dl 1.101 try {
1361 dl 1.105 int idx = w.poolIndex;
1362 dl 1.78 WorkQueue[] ws = workQueues;
1363 dl 1.90 if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1364 dl 1.86 ws[idx] = null;
1365 dl 1.78 } finally {
1366 dl 1.105 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1367     releasePlock(nps);
1368 dl 1.78 }
1369     }
1370    
1371 dl 1.126 long c; // adjust ctl counts
1372 dl 1.78 do {} while (!U.compareAndSwapLong
1373     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1374     ((c - TC_UNIT) & TC_MASK) |
1375     (c & ~(AC_MASK|TC_MASK)))));
1376    
1377 dl 1.120 if (!tryTerminate(false, false) && w != null && w.array != null) {
1378 dl 1.126 w.cancelAll(); // cancel remaining tasks
1379     WorkQueue[] ws; WorkQueue v; Thread p; int u, i, e;
1380     while ((u = (int)((c = ctl) >>> 32)) < 0 && (e = (int)c) >= 0) {
1381     if (e > 0) { // activate or create replacement
1382     if ((ws = workQueues) == null ||
1383     (i = e & SMASK) >= ws.length ||
1384 dl 1.130 (v = ws[i]) == null)
1385 dl 1.126 break;
1386     long nc = (((long)(v.nextWait & E_MASK)) |
1387     ((long)(u + UAC_UNIT) << 32));
1388     if (v.eventCount != (e | INT_SIGN))
1389     break;
1390     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1391     v.eventCount = (e + E_SEQ) & E_MASK;
1392     if ((p = v.parker) != null)
1393     U.unpark(p);
1394     break;
1395 dl 1.120 }
1396     }
1397     else {
1398     if ((short)u < 0)
1399     tryAddWorker();
1400     break;
1401     }
1402     }
1403 dl 1.78 }
1404 dl 1.120 if (ex == null) // help clean refs on way out
1405     ForkJoinTask.helpExpungeStaleExceptions();
1406     else // rethrow
1407 dl 1.104 ForkJoinTask.rethrow(ex);
1408 dl 1.78 }
1409 dl 1.52
1410 dl 1.86 // Submissions
1411    
1412     /**
1413     * Unless shutting down, adds the given task to a submission queue
1414     * at submitter's current queue index (modulo submission
1415 dl 1.105 * range). Only the most common path is directly handled in this
1416     * method. All others are relayed to fullExternalPush.
1417 dl 1.90 *
1418     * @param task the task. Caller must ensure non-null.
1419 dl 1.86 */
1420 dl 1.105 final void externalPush(ForkJoinTask<?> task) {
1421 dl 1.139 WorkQueue[] ws; WorkQueue q; int z, m; ForkJoinTask<?>[] a;
1422     if ((z = ThreadLocalRandom.getProbe()) != 0 && plock > 0 &&
1423 dl 1.105 (ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
1424 dl 1.139 (q = ws[m & z & SQMASK]) != null &&
1425 dl 1.105 U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1426 dl 1.112 int b = q.base, s = q.top, n, an;
1427     if ((a = q.array) != null && (an = a.length) > (n = s + 1 - b)) {
1428 dl 1.115 int j = (((an - 1) & s) << ASHIFT) + ABASE;
1429     U.putOrderedObject(a, j, task);
1430 dl 1.105 q.top = s + 1; // push on to deque
1431     q.qlock = 0;
1432 dl 1.112 if (n <= 2)
1433 dl 1.115 signalWork(q);
1434 dl 1.90 return;
1435     }
1436 dl 1.105 q.qlock = 0;
1437 dl 1.83 }
1438 dl 1.105 fullExternalPush(task);
1439 dl 1.83 }
1440 dl 1.45
1441 dl 1.100 /**
1442 dl 1.105 * Full version of externalPush. This method is called, among
1443     * other times, upon the first submission of the first task to the
1444 dl 1.131 * pool, so must perform secondary initialization. It also
1445     * detects first submission by an external thread by looking up
1446     * its ThreadLocal, and creates a new shared queue if the one at
1447     * index if empty or contended. The plock lock body must be
1448     * exception-free (so no try/finally) so we optimistically
1449     * allocate new queues outside the lock and throw them away if
1450     * (very rarely) not needed.
1451     *
1452     * Secondary initialization occurs when plock is zero, to create
1453     * workQueue array and set plock to a valid value. This lock body
1454     * must also be exception-free. Because the plock seq value can
1455     * eventually wrap around zero, this method harmlessly fails to
1456     * reinitialize if workQueues exists, while still advancing plock.
1457 dl 1.105 */
1458     private void fullExternalPush(ForkJoinTask<?> task) {
1459 dl 1.139 int r;
1460     if ((r = ThreadLocalRandom.getProbe()) == 0) {
1461     ThreadLocalRandom.localInit();
1462     r = ThreadLocalRandom.getProbe();
1463     }
1464     for (;;) {
1465 dl 1.112 WorkQueue[] ws; WorkQueue q; int ps, m, k;
1466 dl 1.139 boolean move = false;
1467     if ((ps = plock) < 0)
1468 dl 1.105 throw new RejectedExecutionException();
1469 dl 1.112 else if (ps == 0 || (ws = workQueues) == null ||
1470 dl 1.131 (m = ws.length - 1) < 0) { // initialize workQueues
1471     int p = config & SMASK; // find power of two table size
1472     int n = (p > 1) ? p - 1 : 1; // ensure at least 2 slots
1473     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4;
1474     n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1;
1475     WorkQueue[] nws = ((ws = workQueues) == null || ws.length == 0 ?
1476     new WorkQueue[n] : null);
1477     if (((ps = plock) & PL_LOCK) != 0 ||
1478     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1479     ps = acquirePlock();
1480     if (((ws = workQueues) == null || ws.length == 0) && nws != null)
1481     workQueues = nws;
1482     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1483     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1484     releasePlock(nps);
1485     }
1486 dl 1.112 else if ((q = ws[k = r & m & SQMASK]) != null) {
1487 dl 1.115 if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
1488     ForkJoinTask<?>[] a = q.array;
1489     int s = q.top;
1490     boolean submitted = false;
1491     try { // locked version of push
1492     if ((a != null && a.length > s + 1 - q.base) ||
1493     (a = q.growArray()) != null) { // must presize
1494     int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
1495     U.putOrderedObject(a, j, task);
1496     q.top = s + 1;
1497     submitted = true;
1498     }
1499     } finally {
1500     q.qlock = 0; // unlock
1501     }
1502     if (submitted) {
1503     signalWork(q);
1504     return;
1505     }
1506     }
1507 dl 1.139 move = true; // move on failure
1508 dl 1.112 }
1509     else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
1510     q = new WorkQueue(this, null, SHARED_QUEUE, r);
1511     if (((ps = plock) & PL_LOCK) != 0 ||
1512 dl 1.105 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1513     ps = acquirePlock();
1514 dl 1.112 if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
1515     ws[k] = q;
1516 dl 1.105 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1517     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1518     releasePlock(nps);
1519     }
1520 dl 1.112 else
1521 dl 1.139 move = true; // move if busy
1522     if (move)
1523     r = ThreadLocalRandom.advanceProbe(r);
1524 dl 1.104 }
1525 dl 1.102 }
1526    
1527 dl 1.78 // Maintaining ctl counts
1528 dl 1.17
1529     /**
1530 jsr166 1.84 * Increments active count; mainly called upon return from blocking.
1531 dl 1.19 */
1532 dl 1.78 final void incrementActiveCount() {
1533 dl 1.52 long c;
1534 dl 1.78 do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1535 dl 1.19 }
1536    
1537     /**
1538 dl 1.115 * Tries to create or activate a worker if too few are active.
1539     *
1540     * @param q the (non-null) queue holding tasks to be signalled
1541 dl 1.105 */
1542 dl 1.115 final void signalWork(WorkQueue q) {
1543     int hint = q.poolIndex;
1544     long c; int e, u, i, n; WorkQueue[] ws; WorkQueue w; Thread p;
1545 dl 1.105 while ((u = (int)((c = ctl) >>> 32)) < 0) {
1546     if ((e = (int)c) > 0) {
1547     if ((ws = workQueues) != null && ws.length > (i = e & SMASK) &&
1548 dl 1.86 (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1549     long nc = (((long)(w.nextWait & E_MASK)) |
1550     ((long)(u + UAC_UNIT) << 32));
1551     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1552 dl 1.115 w.hint = hint;
1553 dl 1.86 w.eventCount = (e + E_SEQ) & E_MASK;
1554 dl 1.115 if ((p = w.parker) != null)
1555 dl 1.105 U.unpark(p);
1556 dl 1.115 break;
1557 dl 1.105 }
1558 dl 1.115 if (q.top - q.base <= 0)
1559 dl 1.86 break;
1560     }
1561     else
1562 dl 1.52 break;
1563 dl 1.78 }
1564 dl 1.115 else {
1565     if ((short)u < 0)
1566     tryAddWorker();
1567     break;
1568 dl 1.52 }
1569     }
1570 dl 1.14 }
1571    
1572 dl 1.90 // Scanning for tasks
1573    
1574 dl 1.14 /**
1575 dl 1.90 * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1576 dl 1.14 */
1577 dl 1.90 final void runWorker(WorkQueue w) {
1578 dl 1.115 w.growArray(); // allocate queue
1579     do { w.runTask(scan(w)); } while (w.qlock >= 0);
1580 dl 1.14 }
1581    
1582     /**
1583 dl 1.78 * Scans for and, if found, returns one task, else possibly
1584     * inactivates the worker. This method operates on single reads of
1585 dl 1.90 * volatile state and is designed to be re-invoked continuously,
1586     * in part because it returns upon detecting inconsistencies,
1587 dl 1.78 * contention, or state changes that indicate possible success on
1588     * re-invocation.
1589     *
1590 dl 1.112 * The scan searches for tasks across queues (starting at a random
1591     * index, and relying on registerWorker to irregularly scatter
1592     * them within array to avoid bias), checking each at least twice.
1593     * The scan terminates upon either finding a non-empty queue, or
1594     * completing the sweep. If the worker is not inactivated, it
1595     * takes and returns a task from this queue. Otherwise, if not
1596     * activated, it signals workers (that may include itself) and
1597     * returns so caller can retry. Also returns for true if the
1598     * worker array may have changed during an empty scan. On failure
1599     * to find a task, we take one of the following actions, after
1600     * which the caller will retry calling this method unless
1601     * terminated.
1602 dl 1.78 *
1603 dl 1.86 * * If pool is terminating, terminate the worker.
1604     *
1605 dl 1.78 * * If not already enqueued, try to inactivate and enqueue the
1606 dl 1.90 * worker on wait queue. Or, if inactivating has caused the pool
1607 dl 1.126 * to be quiescent, relay to idleAwaitWork to possibly shrink
1608     * pool.
1609 dl 1.90 *
1610 dl 1.105 * * If already enqueued and none of the above apply, possibly
1611 dl 1.126 * park awaiting signal, else lingering to help scan and signal.
1612     *
1613     * * If a non-empty queue discovered or left as a hint,
1614 jsr166 1.133 * help wake up other workers before return.
1615 dl 1.78 *
1616     * @param w the worker (via its WorkQueue)
1617 jsr166 1.98 * @return a task or null if none found
1618 dl 1.78 */
1619     private final ForkJoinTask<?> scan(WorkQueue w) {
1620 dl 1.115 WorkQueue[] ws; int m;
1621 dl 1.112 int ps = plock; // read plock before ws
1622     if (w != null && (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1623     int ec = w.eventCount; // ec is negative if inactive
1624     int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1625 dl 1.126 w.hint = -1; // update seed and clear hint
1626 dl 1.115 int j = ((m + m + 1) | MIN_SCAN) & MAX_SCAN;
1627     do {
1628 dl 1.112 WorkQueue q; ForkJoinTask<?>[] a; int b;
1629     if ((q = ws[(r + j) & m]) != null && (b = q.base) - q.top < 0 &&
1630     (a = q.array) != null) { // probably nonempty
1631 dl 1.170 long i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1632     if (ec >= 0) {
1633     ForkJoinTask<?> t = (ForkJoinTask<?>)
1634     U.getObjectVolatile(a, i);
1635     if (q.base == b && t != null &&
1636     U.compareAndSwapObject(a, i, t, null)) {
1637     U.putOrderedInt(q, QBASE, ++b);
1638     if (b - q.top < 0)
1639     signalWork(q);
1640     return t; // taken
1641     }
1642 dl 1.112 }
1643 dl 1.170 if ((ec < 0 || j < m) && (int)(ctl >> AC_SHIFT) <= 0) {
1644 dl 1.115 w.hint = (r + j) & m; // help signal below
1645     break; // cannot take
1646     }
1647     }
1648     } while (--j >= 0);
1649    
1650 dl 1.126 int h, e, ns; long c, sc; WorkQueue q;
1651     if ((ns = w.nsteals) != 0) {
1652     if (U.compareAndSwapLong(this, STEALCOUNT,
1653     sc = stealCount, sc + ns))
1654     w.nsteals = 0; // collect steals and rescan
1655     }
1656     else if (plock != ps) // consistency check
1657     ; // skip
1658     else if ((e = (int)(c = ctl)) < 0)
1659     w.qlock = -1; // pool is terminating
1660     else {
1661     if ((h = w.hint) < 0) {
1662     if (ec >= 0) { // try to enqueue/inactivate
1663     long nc = (((long)ec |
1664     ((c - AC_UNIT) & (AC_MASK|TC_MASK))));
1665     w.nextWait = e; // link and mark inactive
1666     w.eventCount = ec | INT_SIGN;
1667     if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1668     w.eventCount = ec; // unmark on CAS failure
1669     else if ((int)(c >> AC_SHIFT) == 1 - (config & SMASK))
1670     idleAwaitWork(w, nc, c);
1671     }
1672 dl 1.131 else if (w.eventCount < 0 && ctl == c) {
1673 dl 1.126 Thread wt = Thread.currentThread();
1674     Thread.interrupted(); // clear status
1675     U.putObject(wt, PARKBLOCKER, this);
1676     w.parker = wt; // emulate LockSupport.park
1677     if (w.eventCount < 0) // recheck
1678 dl 1.131 U.park(false, 0L); // block
1679 dl 1.126 w.parker = null;
1680     U.putObject(wt, PARKBLOCKER, null);
1681     }
1682     }
1683     if ((h >= 0 || (h = w.hint) >= 0) &&
1684     (ws = workQueues) != null && h < ws.length &&
1685     (q = ws[h]) != null) { // signal others before retry
1686     WorkQueue v; Thread p; int u, i, s;
1687 dl 1.131 for (int n = (config & SMASK) - 1;;) {
1688 dl 1.126 int idleCount = (w.eventCount < 0) ? 0 : -1;
1689     if (((s = idleCount - q.base + q.top) <= n &&
1690     (n = s) <= 0) ||
1691     (u = (int)((c = ctl) >>> 32)) >= 0 ||
1692     (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1693     (v = ws[i]) == null)
1694     break;
1695     long nc = (((long)(v.nextWait & E_MASK)) |
1696     ((long)(u + UAC_UNIT) << 32));
1697     if (v.eventCount != (e | INT_SIGN) ||
1698     !U.compareAndSwapLong(this, CTL, c, nc))
1699     break;
1700     v.hint = h;
1701     v.eventCount = (e + E_SEQ) & E_MASK;
1702     if ((p = v.parker) != null)
1703     U.unpark(p);
1704     if (--n <= 0)
1705     break;
1706     }
1707 dl 1.115 }
1708     }
1709 dl 1.52 }
1710 dl 1.78 return null;
1711 dl 1.14 }
1712    
1713     /**
1714 dl 1.90 * If inactivating worker w has caused the pool to become
1715     * quiescent, checks for pool termination, and, so long as this is
1716 dl 1.100 * not the only worker, waits for event for up to a given
1717     * duration. On timeout, if ctl has not changed, terminates the
1718 dl 1.90 * worker, which will in turn wake up another worker to possibly
1719     * repeat this process.
1720 dl 1.52 *
1721 dl 1.78 * @param w the calling worker
1722 dl 1.90 * @param currentCtl the ctl value triggering possible quiescence
1723     * @param prevCtl the ctl value to restore if thread is terminated
1724 dl 1.14 */
1725 dl 1.90 private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1726 dl 1.112 if (w != null && w.eventCount < 0 &&
1727 dl 1.131 !tryTerminate(false, false) && (int)prevCtl != 0 &&
1728     ctl == currentCtl) {
1729 dl 1.100 int dc = -(short)(currentCtl >>> TC_SHIFT);
1730     long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1731 dl 1.120 long deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
1732 dl 1.90 Thread wt = Thread.currentThread();
1733     while (ctl == currentCtl) {
1734 dl 1.78 Thread.interrupted(); // timed variant of version in scan()
1735     U.putObject(wt, PARKBLOCKER, this);
1736     w.parker = wt;
1737 dl 1.90 if (ctl == currentCtl)
1738 dl 1.100 U.park(false, parkTime);
1739 dl 1.78 w.parker = null;
1740     U.putObject(wt, PARKBLOCKER, null);
1741 dl 1.90 if (ctl != currentCtl)
1742 dl 1.78 break;
1743 dl 1.100 if (deadline - System.nanoTime() <= 0L &&
1744 dl 1.90 U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1745     w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1746 dl 1.131 w.hint = -1;
1747 dl 1.105 w.qlock = -1; // shrink
1748 dl 1.78 break;
1749     }
1750 dl 1.24 }
1751 dl 1.14 }
1752     }
1753    
1754     /**
1755 dl 1.120 * Scans through queues looking for work while joining a task; if
1756     * any present, signals. May return early if more signalling is
1757     * detectably unneeded.
1758 dl 1.105 *
1759 dl 1.120 * @param task return early if done
1760 dl 1.105 * @param origin an index to start scan
1761     */
1762 dl 1.120 private void helpSignal(ForkJoinTask<?> task, int origin) {
1763 dl 1.115 WorkQueue[] ws; WorkQueue w; Thread p; long c; int m, u, e, i, s;
1764 dl 1.120 if (task != null && task.status >= 0 &&
1765     (u = (int)(ctl >>> 32)) < 0 && (u >> UAC_SHIFT) < 0 &&
1766 dl 1.115 (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1767 dl 1.120 outer: for (int k = origin, j = m; j >= 0; --j) {
1768 dl 1.115 WorkQueue q = ws[k++ & m];
1769     for (int n = m;;) { // limit to at most m signals
1770 dl 1.120 if (task.status < 0)
1771 dl 1.115 break outer;
1772     if (q == null ||
1773 dl 1.120 ((s = -q.base + q.top) <= n && (n = s) <= 0))
1774 dl 1.105 break;
1775 dl 1.115 if ((u = (int)((c = ctl) >>> 32)) >= 0 ||
1776     (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1777     (w = ws[i]) == null)
1778     break outer;
1779     long nc = (((long)(w.nextWait & E_MASK)) |
1780     ((long)(u + UAC_UNIT) << 32));
1781 dl 1.126 if (w.eventCount != (e | INT_SIGN))
1782     break outer;
1783     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1784 dl 1.122 w.eventCount = (e + E_SEQ) & E_MASK;
1785     if ((p = w.parker) != null)
1786     U.unpark(p);
1787     if (--n <= 0)
1788     break;
1789     }
1790 dl 1.120 }
1791     }
1792     }
1793     }
1794    
1795     /**
1796 dl 1.78 * Tries to locate and execute tasks for a stealer of the given
1797     * task, or in turn one of its stealers, Traces currentSteal ->
1798     * currentJoin links looking for a thread working on a descendant
1799     * of the given task and with a non-empty queue to steal back and
1800     * execute tasks from. The first call to this method upon a
1801     * waiting join will often entail scanning/search, (which is OK
1802     * because the joiner has nothing better to do), but this method
1803     * leaves hints in workers to speed up subsequent calls. The
1804     * implementation is very branchy to cope with potential
1805     * inconsistencies or loops encountering chains that are stale,
1806 dl 1.95 * unknown, or so long that they are likely cyclic.
1807 dl 1.78 *
1808     * @param joiner the joining worker
1809     * @param task the task to join
1810 dl 1.95 * @return 0 if no progress can be made, negative if task
1811     * known complete, else positive
1812 dl 1.78 */
1813 dl 1.95 private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1814     int stat = 0, steps = 0; // bound to avoid cycles
1815     if (joiner != null && task != null) { // hoist null checks
1816     restart: for (;;) {
1817     ForkJoinTask<?> subtask = task; // current target
1818     for (WorkQueue j = joiner, v;;) { // v is stealer of subtask
1819     WorkQueue[] ws; int m, s, h;
1820     if ((s = task.status) < 0) {
1821     stat = s;
1822     break restart;
1823     }
1824     if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1825     break restart; // shutting down
1826 dl 1.112 if ((v = ws[h = (j.hint | 1) & m]) == null ||
1827 dl 1.95 v.currentSteal != subtask) {
1828     for (int origin = h;;) { // find stealer
1829     if (((h = (h + 2) & m) & 15) == 1 &&
1830     (subtask.status < 0 || j.currentJoin != subtask))
1831     continue restart; // occasional staleness check
1832     if ((v = ws[h]) != null &&
1833     v.currentSteal == subtask) {
1834 dl 1.112 j.hint = h; // save hint
1835 dl 1.95 break;
1836     }
1837     if (h == origin)
1838     break restart; // cannot find stealer
1839 dl 1.78 }
1840     }
1841 dl 1.95 for (;;) { // help stealer or descend to its stealer
1842     ForkJoinTask[] a; int b;
1843     if (subtask.status < 0) // surround probes with
1844     continue restart; // consistency checks
1845     if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1846     int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1847     ForkJoinTask<?> t =
1848     (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1849     if (subtask.status < 0 || j.currentJoin != subtask ||
1850     v.currentSteal != subtask)
1851     continue restart; // stale
1852     stat = 1; // apparent progress
1853     if (t != null && v.base == b &&
1854     U.compareAndSwapObject(a, i, t, null)) {
1855 dl 1.170 U.putOrderedInt(v, QBASE, b + 1);
1856 dl 1.95 joiner.runSubtask(t);
1857     }
1858     else if (v.base == b && ++steps == MAX_HELP)
1859     break restart; // v apparently stalled
1860     }
1861     else { // empty -- try to descend
1862     ForkJoinTask<?> next = v.currentJoin;
1863     if (subtask.status < 0 || j.currentJoin != subtask ||
1864     v.currentSteal != subtask)
1865     continue restart; // stale
1866     else if (next == null || ++steps == MAX_HELP)
1867     break restart; // dead-end or maybe cyclic
1868     else {
1869     subtask = next;
1870     j = v;
1871     break;
1872     }
1873 dl 1.78 }
1874 dl 1.52 }
1875 dl 1.19 }
1876 dl 1.78 }
1877 dl 1.14 }
1878 dl 1.95 return stat;
1879 dl 1.22 }
1880    
1881 dl 1.52 /**
1882 dl 1.105 * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1883 jsr166 1.111 * and run tasks within the target's computation.
1884 dl 1.105 *
1885     * @param task the task to join
1886 dl 1.19 */
1887 dl 1.166 private int helpComplete(ForkJoinTask<?> task) {
1888 dl 1.167 WorkQueue[] ws; int m;
1889     if (task != null && (ws = workQueues) != null &&
1890 dl 1.105 (m = ws.length - 1) >= 0) {
1891 dl 1.167 for (int j = ((m + m + 1) | MIN_SCAN) & MAX_SCAN;;) {
1892     WorkQueue q; int s;
1893 dl 1.105 if ((s = task.status) < 0)
1894     return s;
1895 dl 1.167 if (((q = ws[j & m]) == null || !q.pollAndExecCC(task)) &&
1896     (j -= 2) <= 0)
1897 dl 1.78 break;
1898 dl 1.52 }
1899     }
1900 dl 1.105 return 0;
1901 dl 1.14 }
1902    
1903     /**
1904 dl 1.90 * Tries to decrement active count (sometimes implicitly) and
1905     * possibly release or create a compensating worker in preparation
1906     * for blocking. Fails on contention or termination. Otherwise,
1907 dl 1.105 * adds a new thread if no idle workers are available and pool
1908     * may become starved.
1909 dl 1.90 */
1910 dl 1.105 final boolean tryCompensate() {
1911 dl 1.112 int pc = config & SMASK, e, i, tc; long c;
1912 dl 1.105 WorkQueue[] ws; WorkQueue w; Thread p;
1913 dl 1.112 if ((ws = workQueues) != null && (e = (int)(c = ctl)) >= 0) {
1914 dl 1.105 if (e != 0 && (i = e & SMASK) < ws.length &&
1915     (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1916     long nc = ((long)(w.nextWait & E_MASK) |
1917     (c & (AC_MASK|TC_MASK)));
1918     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1919     w.eventCount = (e + E_SEQ) & E_MASK;
1920     if ((p = w.parker) != null)
1921     U.unpark(p);
1922     return true; // replace with idle worker
1923 dl 1.90 }
1924     }
1925 dl 1.112 else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
1926     (int)(c >> AC_SHIFT) + pc > 1) {
1927 dl 1.105 long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1928     if (U.compareAndSwapLong(this, CTL, c, nc))
1929 dl 1.112 return true; // no compensation
1930 dl 1.105 }
1931 dl 1.112 else if (tc + pc < MAX_CAP) {
1932 dl 1.105 long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1933     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1934 dl 1.115 ForkJoinWorkerThreadFactory fac;
1935     Throwable ex = null;
1936     ForkJoinWorkerThread wt = null;
1937     try {
1938     if ((fac = factory) != null &&
1939     (wt = fac.newThread(this)) != null) {
1940     wt.start();
1941     return true;
1942     }
1943     } catch (Throwable rex) {
1944     ex = rex;
1945     }
1946     deregisterWorker(wt, ex); // clean up and return false
1947 dl 1.90 }
1948     }
1949     }
1950     return false;
1951     }
1952    
1953     /**
1954 jsr166 1.93 * Helps and/or blocks until the given task is done.
1955 dl 1.90 *
1956     * @param joiner the joining worker
1957     * @param task the task
1958     * @return task status on exit
1959     */
1960     final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1961 dl 1.105 int s = 0;
1962     if (joiner != null && task != null && (s = task.status) >= 0) {
1963 dl 1.95 ForkJoinTask<?> prevJoin = joiner.currentJoin;
1964 dl 1.94 joiner.currentJoin = task;
1965 dl 1.115 do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
1966 dl 1.105 joiner.tryRemoveAndExec(task)); // process local tasks
1967 dl 1.115 if (s >= 0 && (s = task.status) >= 0) {
1968 dl 1.120 helpSignal(task, joiner.poolIndex);
1969 dl 1.115 if ((s = task.status) >= 0 &&
1970     (task instanceof CountedCompleter))
1971 dl 1.166 s = helpComplete(task);
1972 dl 1.115 }
1973 dl 1.105 while (s >= 0 && (s = task.status) >= 0) {
1974 dl 1.115 if ((!joiner.isEmpty() || // try helping
1975 dl 1.105 (s = tryHelpStealer(joiner, task)) == 0) &&
1976 dl 1.112 (s = task.status) >= 0) {
1977 dl 1.120 helpSignal(task, joiner.poolIndex);
1978 dl 1.115 if ((s = task.status) >= 0 && tryCompensate()) {
1979 dl 1.112 if (task.trySetSignal() && (s = task.status) >= 0) {
1980     synchronized (task) {
1981     if (task.status >= 0) {
1982     try { // see ForkJoinTask
1983     task.wait(); // for explanation
1984     } catch (InterruptedException ie) {
1985     }
1986 dl 1.90 }
1987 dl 1.112 else
1988     task.notifyAll();
1989 dl 1.90 }
1990     }
1991 dl 1.112 long c; // re-activate
1992     do {} while (!U.compareAndSwapLong
1993     (this, CTL, c = ctl, c + AC_UNIT));
1994 dl 1.90 }
1995     }
1996     }
1997 dl 1.105 joiner.currentJoin = prevJoin;
1998 dl 1.90 }
1999 dl 1.94 return s;
2000 dl 1.90 }
2001    
2002     /**
2003     * Stripped-down variant of awaitJoin used by timed joins. Tries
2004     * to help join only while there is continuous progress. (Caller
2005     * will then enter a timed wait.)
2006     *
2007     * @param joiner the joining worker
2008     * @param task the task
2009     */
2010 dl 1.105 final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2011 dl 1.90 int s;
2012 dl 1.105 if (joiner != null && task != null && (s = task.status) >= 0) {
2013     ForkJoinTask<?> prevJoin = joiner.currentJoin;
2014     joiner.currentJoin = task;
2015 dl 1.115 do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
2016 dl 1.105 joiner.tryRemoveAndExec(task));
2017 dl 1.115 if (s >= 0 && (s = task.status) >= 0) {
2018 dl 1.120 helpSignal(task, joiner.poolIndex);
2019 dl 1.115 if ((s = task.status) >= 0 &&
2020     (task instanceof CountedCompleter))
2021 dl 1.166 s = helpComplete(task);
2022 dl 1.115 }
2023     if (s >= 0 && joiner.isEmpty()) {
2024 dl 1.105 do {} while (task.status >= 0 &&
2025     tryHelpStealer(joiner, task) > 0);
2026     }
2027     joiner.currentJoin = prevJoin;
2028     }
2029 dl 1.90 }
2030    
2031     /**
2032     * Returns a (probably) non-empty steal queue, if one is found
2033 dl 1.131 * during a scan, else null. This method must be retried by
2034     * caller if, by the time it tries to use the queue, it is empty.
2035 dl 1.105 * @param r a (random) seed for scanning
2036 dl 1.78 */
2037 dl 1.105 private WorkQueue findNonEmptyStealQueue(int r) {
2038 dl 1.131 for (;;) {
2039     int ps = plock, m; WorkQueue[] ws; WorkQueue q;
2040     if ((ws = workQueues) != null && (m = ws.length - 1) >= 0) {
2041     for (int j = (m + 1) << 2; j >= 0; --j) {
2042     if ((q = ws[(((r + j) << 1) | 1) & m]) != null &&
2043     q.base - q.top < 0)
2044     return q;
2045 dl 1.52 }
2046     }
2047 dl 1.131 if (plock == ps)
2048     return null;
2049 dl 1.22 }
2050     }
2051    
2052     /**
2053 dl 1.78 * Runs tasks until {@code isQuiescent()}. We piggyback on
2054     * active count ctl maintenance, but rather than blocking
2055     * when tasks cannot be found, we rescan until all others cannot
2056     * find tasks either.
2057     */
2058     final void helpQuiescePool(WorkQueue w) {
2059     for (boolean active = true;;) {
2060 dl 1.131 long c; WorkQueue q; ForkJoinTask<?> t; int b;
2061     while ((t = w.nextLocalTask()) != null) {
2062     if (w.base - w.top < 0)
2063     signalWork(w);
2064     t.doExec();
2065     }
2066     if ((q = findNonEmptyStealQueue(w.nextSeed())) != null) {
2067 dl 1.78 if (!active) { // re-establish active count
2068     active = true;
2069     do {} while (!U.compareAndSwapLong
2070     (this, CTL, c = ctl, c + AC_UNIT));
2071     }
2072 dl 1.130 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2073     if (q.base - q.top < 0)
2074     signalWork(q);
2075 dl 1.78 w.runSubtask(t);
2076 dl 1.130 }
2077 dl 1.78 }
2078 dl 1.131 else if (active) { // decrement active count without queuing
2079     long nc = (c = ctl) - AC_UNIT;
2080     if ((int)(nc >> AC_SHIFT) + (config & SMASK) == 0)
2081     return; // bypass decrement-then-increment
2082     if (U.compareAndSwapLong(this, CTL, c, nc))
2083 dl 1.78 active = false;
2084 dl 1.22 }
2085 dl 1.131 else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) == 0 &&
2086     U.compareAndSwapLong(this, CTL, c, c + AC_UNIT))
2087     return;
2088 dl 1.22 }
2089     }
2090    
2091     /**
2092 jsr166 1.84 * Gets and removes a local or stolen task for the given worker.
2093 dl 1.78 *
2094     * @return a task, if available
2095 dl 1.22 */
2096 dl 1.78 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2097     for (ForkJoinTask<?> t;;) {
2098 dl 1.90 WorkQueue q; int b;
2099 dl 1.78 if ((t = w.nextLocalTask()) != null)
2100     return t;
2101 dl 1.105 if ((q = findNonEmptyStealQueue(w.nextSeed())) == null)
2102 dl 1.78 return null;
2103 dl 1.130 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2104     if (q.base - q.top < 0)
2105     signalWork(q);
2106 dl 1.78 return t;
2107 dl 1.130 }
2108 dl 1.52 }
2109 dl 1.14 }
2110    
2111     /**
2112 dl 1.105 * Returns a cheap heuristic guide for task partitioning when
2113     * programmers, frameworks, tools, or languages have little or no
2114     * idea about task granularity. In essence by offering this
2115     * method, we ask users only about tradeoffs in overhead vs
2116     * expected throughput and its variance, rather than how finely to
2117     * partition tasks.
2118     *
2119     * In a steady state strict (tree-structured) computation, each
2120     * thread makes available for stealing enough tasks for other
2121     * threads to remain active. Inductively, if all threads play by
2122     * the same rules, each thread should make available only a
2123     * constant number of tasks.
2124     *
2125     * The minimum useful constant is just 1. But using a value of 1
2126     * would require immediate replenishment upon each steal to
2127     * maintain enough tasks, which is infeasible. Further,
2128     * partitionings/granularities of offered tasks should minimize
2129     * steal rates, which in general means that threads nearer the top
2130     * of computation tree should generate more than those nearer the
2131     * bottom. In perfect steady state, each thread is at
2132     * approximately the same level of computation tree. However,
2133     * producing extra tasks amortizes the uncertainty of progress and
2134     * diffusion assumptions.
2135     *
2136 jsr166 1.161 * So, users will want to use values larger (but not much larger)
2137 dl 1.105 * than 1 to both smooth over transient shortages and hedge
2138     * against uneven progress; as traded off against the cost of
2139     * extra task overhead. We leave the user to pick a threshold
2140     * value to compare with the results of this call to guide
2141     * decisions, but recommend values such as 3.
2142     *
2143     * When all threads are active, it is on average OK to estimate
2144     * surplus strictly locally. In steady-state, if one thread is
2145     * maintaining say 2 surplus tasks, then so are others. So we can
2146     * just use estimated queue length. However, this strategy alone
2147     * leads to serious mis-estimates in some non-steady-state
2148     * conditions (ramp-up, ramp-down, other stalls). We can detect
2149     * many of these by further considering the number of "idle"
2150     * threads, that are known to have zero queued tasks, so
2151     * compensate by a factor of (#idle/#active) threads.
2152     *
2153     * Note: The approximation of #busy workers as #active workers is
2154     * not very good under current signalling scheme, and should be
2155     * improved.
2156     */
2157     static int getSurplusQueuedTaskCount() {
2158     Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2159     if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2160 dl 1.112 int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2161     int n = (q = wt.workQueue).top - q.base;
2162 dl 1.105 int a = (int)(pool.ctl >> AC_SHIFT) + p;
2163 dl 1.112 return n - (a > (p >>>= 1) ? 0 :
2164     a > (p >>>= 1) ? 1 :
2165     a > (p >>>= 1) ? 2 :
2166     a > (p >>>= 1) ? 4 :
2167     8);
2168 dl 1.105 }
2169     return 0;
2170 dl 1.100 }
2171    
2172 dl 1.86 // Termination
2173 dl 1.14
2174     /**
2175 dl 1.86 * Possibly initiates and/or completes termination. The caller
2176     * triggering termination runs three passes through workQueues:
2177     * (0) Setting termination status, followed by wakeups of queued
2178     * workers; (1) cancelling all tasks; (2) interrupting lagging
2179     * threads (likely in external tasks, but possibly also blocked in
2180     * joins). Each pass repeats previous steps because of potential
2181     * lagging thread creation.
2182 dl 1.14 *
2183     * @param now if true, unconditionally terminate, else only
2184 dl 1.78 * if no work and no active workers
2185 jsr166 1.87 * @param enable if true, enable shutdown when next possible
2186 dl 1.14 * @return true if now terminating or terminated
2187 jsr166 1.1 */
2188 dl 1.86 private boolean tryTerminate(boolean now, boolean enable) {
2189 dl 1.131 int ps;
2190 dl 1.134 if (this == common) // cannot shut down
2191 dl 1.105 return false;
2192 dl 1.131 if ((ps = plock) >= 0) { // enable by setting plock
2193     if (!enable)
2194     return false;
2195     if ((ps & PL_LOCK) != 0 ||
2196     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2197     ps = acquirePlock();
2198     int nps = ((ps + PL_LOCK) & ~SHUTDOWN) | SHUTDOWN;
2199     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2200     releasePlock(nps);
2201     }
2202 dl 1.78 for (long c;;) {
2203 dl 1.131 if (((c = ctl) & STOP_BIT) != 0) { // already terminating
2204 dl 1.112 if ((short)(c >>> TC_SHIFT) == -(config & SMASK)) {
2205 jsr166 1.103 synchronized (this) {
2206 dl 1.131 notifyAll(); // signal when 0 workers
2207 dl 1.101 }
2208 dl 1.78 }
2209     return true;
2210     }
2211 dl 1.131 if (!now) { // check if idle & no tasks
2212     WorkQueue[] ws; WorkQueue w;
2213     if ((int)(c >> AC_SHIFT) != -(config & SMASK))
2214 dl 1.86 return false;
2215 dl 1.131 if ((ws = workQueues) != null) {
2216     for (int i = 0; i < ws.length; ++i) {
2217     if ((w = ws[i]) != null) {
2218     if (!w.isEmpty()) { // signal unprocessed tasks
2219     signalWork(w);
2220     return false;
2221     }
2222     if ((i & 1) != 0 && w.eventCount >= 0)
2223     return false; // unqueued inactive worker
2224     }
2225 dl 1.78 }
2226 dl 1.52 }
2227     }
2228 dl 1.86 if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2229     for (int pass = 0; pass < 3; ++pass) {
2230 dl 1.131 WorkQueue[] ws; WorkQueue w; Thread wt;
2231     if ((ws = workQueues) != null) {
2232 dl 1.86 int n = ws.length;
2233     for (int i = 0; i < n; ++i) {
2234     if ((w = ws[i]) != null) {
2235 dl 1.105 w.qlock = -1;
2236 dl 1.86 if (pass > 0) {
2237     w.cancelAll();
2238 dl 1.126 if (pass > 1 && (wt = w.owner) != null) {
2239     if (!wt.isInterrupted()) {
2240     try {
2241     wt.interrupt();
2242 dl 1.131 } catch (Throwable ignore) {
2243 dl 1.126 }
2244     }
2245     U.unpark(wt);
2246     }
2247 dl 1.52 }
2248 dl 1.19 }
2249     }
2250 dl 1.86 // Wake up workers parked on event queue
2251     int i, e; long cc; Thread p;
2252     while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2253 dl 1.131 (i = e & SMASK) < n && i >= 0 &&
2254 dl 1.86 (w = ws[i]) != null) {
2255     long nc = ((long)(w.nextWait & E_MASK) |
2256     ((cc + AC_UNIT) & AC_MASK) |
2257     (cc & (TC_MASK|STOP_BIT)));
2258     if (w.eventCount == (e | INT_SIGN) &&
2259     U.compareAndSwapLong(this, CTL, cc, nc)) {
2260     w.eventCount = (e + E_SEQ) & E_MASK;
2261 dl 1.105 w.qlock = -1;
2262 dl 1.86 if ((p = w.parker) != null)
2263     U.unpark(p);
2264     }
2265     }
2266 dl 1.78 }
2267 dl 1.52 }
2268     }
2269     }
2270     }
2271    
2272 dl 1.105 // external operations on common pool
2273    
2274     /**
2275     * Returns common pool queue for a thread that has submitted at
2276     * least one task.
2277     */
2278     static WorkQueue commonSubmitterQueue() {
2279 dl 1.139 ForkJoinPool p; WorkQueue[] ws; int m, z;
2280     return ((z = ThreadLocalRandom.getProbe()) != 0 &&
2281 dl 1.134 (p = common) != null &&
2282 dl 1.105 (ws = p.workQueues) != null &&
2283     (m = ws.length - 1) >= 0) ?
2284 dl 1.139 ws[m & z & SQMASK] : null;
2285 dl 1.105 }
2286    
2287     /**
2288     * Tries to pop the given task from submitter's queue in common pool.
2289     */
2290     static boolean tryExternalUnpush(ForkJoinTask<?> t) {
2291 dl 1.139 ForkJoinPool p; WorkQueue[] ws; WorkQueue q;
2292     ForkJoinTask<?>[] a; int m, s, z;
2293 dl 1.115 if (t != null &&
2294 dl 1.139 (z = ThreadLocalRandom.getProbe()) != 0 &&
2295 dl 1.134 (p = common) != null &&
2296 dl 1.105 (ws = p.workQueues) != null &&
2297     (m = ws.length - 1) >= 0 &&
2298 dl 1.139 (q = ws[m & z & SQMASK]) != null &&
2299 dl 1.105 (s = q.top) != q.base &&
2300 dl 1.115 (a = q.array) != null) {
2301     long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
2302     if (U.getObject(a, j) == t &&
2303     U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2304     if (q.array == a && q.top == s && // recheck
2305     U.compareAndSwapObject(a, j, t, null)) {
2306     q.top = s - 1;
2307     q.qlock = 0;
2308     return true;
2309     }
2310 dl 1.105 q.qlock = 0;
2311     }
2312     }
2313     return false;
2314     }
2315    
2316     /**
2317     * Tries to pop and run local tasks within the same computation
2318     * as the given root. On failure, tries to help complete from
2319     * other queues via helpComplete.
2320     */
2321     private void externalHelpComplete(WorkQueue q, ForkJoinTask<?> root) {
2322 jsr166 1.168 ForkJoinTask<?>[] a; int m; WorkQueue[] ws;
2323 dl 1.166 if (root != null && q != null && (a = q.array) != null &&
2324     (m = (a.length - 1)) >= 0) {
2325     outer: for (;;) {
2326     int s, b, u; Object o;
2327     if (root.status < 0)
2328     return;
2329     if ((s = q.top) - q.base > 0) { // try pop
2330 dl 1.105 long j = ((m & (s - 1)) << ASHIFT) + ABASE;
2331     if ((o = U.getObject(a, j)) != null &&
2332     (o instanceof CountedCompleter)) {
2333     CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2334     do {
2335     if (r == root) {
2336     if (U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2337     if (q.array == a && q.top == s &&
2338     U.compareAndSwapObject(a, j, t, null)) {
2339     q.top = s - 1;
2340 dl 1.166 q.qlock = 0;
2341     t.doExec();
2342 dl 1.105 }
2343 dl 1.166 else
2344     q.qlock = 0;
2345 dl 1.105 }
2346 dl 1.166 continue outer;
2347 dl 1.105 }
2348 jsr166 1.106 } while ((r = r.completer) != null);
2349 dl 1.105 }
2350     }
2351 dl 1.166 if ((b = q.base) - q.top < 0) { // try poll
2352     if (root.status < 0)
2353     return;
2354     long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
2355     if ((o = U.getObject(a, j)) == null ||
2356     !(o instanceof CountedCompleter))
2357     break;
2358     CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2359     for (;;) {
2360     if (r == root) {
2361     if (q.base == b &&
2362     U.compareAndSwapObject(a, j, t, null)) {
2363 dl 1.170 U.putOrderedInt(q, QBASE, b + 1);
2364 dl 1.166 t.doExec();
2365     }
2366     break;
2367     }
2368     if ((r = r.completer) == null)
2369     break outer;
2370     }
2371     }
2372     else
2373 dl 1.105 break;
2374     }
2375 dl 1.166 helpComplete(root);
2376 dl 1.105 }
2377     }
2378    
2379     /**
2380     * Tries to help execute or signal availability of the given task
2381     * from submitter's queue in common pool.
2382     */
2383     static void externalHelpJoin(ForkJoinTask<?> t) {
2384     // Some hard-to-avoid overlap with tryExternalUnpush
2385 dl 1.139 ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w;
2386     ForkJoinTask<?>[] a; int m, s, n, z;
2387 dl 1.112 if (t != null &&
2388 dl 1.139 (z = ThreadLocalRandom.getProbe()) != 0 &&
2389 dl 1.134 (p = common) != null &&
2390 dl 1.105 (ws = p.workQueues) != null &&
2391     (m = ws.length - 1) >= 0 &&
2392 dl 1.139 (q = ws[m & z & SQMASK]) != null &&
2393 dl 1.115 (a = q.array) != null) {
2394     int am = a.length - 1;
2395     if ((s = q.top) != q.base) {
2396     long j = ((am & (s - 1)) << ASHIFT) + ABASE;
2397     if (U.getObject(a, j) == t &&
2398     U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2399     if (q.array == a && q.top == s &&
2400     U.compareAndSwapObject(a, j, t, null)) {
2401     q.top = s - 1;
2402     q.qlock = 0;
2403     t.doExec();
2404     }
2405     else
2406     q.qlock = 0;
2407 dl 1.105 }
2408     }
2409     if (t.status >= 0) {
2410     if (t instanceof CountedCompleter)
2411     p.externalHelpComplete(q, t);
2412     else
2413 dl 1.120 p.helpSignal(t, q.poolIndex);
2414 dl 1.105 }
2415     }
2416     }
2417    
2418 dl 1.52 // Exported methods
2419 jsr166 1.1
2420     // Constructors
2421    
2422     /**
2423 jsr166 1.9 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2424 dl 1.18 * java.lang.Runtime#availableProcessors}, using the {@linkplain
2425     * #defaultForkJoinWorkerThreadFactory default thread factory},
2426     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2427 jsr166 1.1 *
2428     * @throws SecurityException if a security manager exists and
2429     * the caller is not permitted to modify threads
2430     * because it does not hold {@link
2431     * java.lang.RuntimePermission}{@code ("modifyThread")}
2432     */
2433     public ForkJoinPool() {
2434 jsr166 1.148 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2435     defaultForkJoinWorkerThreadFactory, null, false);
2436 jsr166 1.1 }
2437    
2438     /**
2439 jsr166 1.9 * Creates a {@code ForkJoinPool} with the indicated parallelism
2440 dl 1.18 * level, the {@linkplain
2441     * #defaultForkJoinWorkerThreadFactory default thread factory},
2442     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2443 jsr166 1.1 *
2444 jsr166 1.9 * @param parallelism the parallelism level
2445 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
2446 jsr166 1.11 * equal to zero, or greater than implementation limit
2447 jsr166 1.1 * @throws SecurityException if a security manager exists and
2448     * the caller is not permitted to modify threads
2449     * because it does not hold {@link
2450     * java.lang.RuntimePermission}{@code ("modifyThread")}
2451     */
2452     public ForkJoinPool(int parallelism) {
2453 dl 1.18 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2454 jsr166 1.1 }
2455    
2456     /**
2457 dl 1.18 * Creates a {@code ForkJoinPool} with the given parameters.
2458 jsr166 1.1 *
2459 dl 1.18 * @param parallelism the parallelism level. For default value,
2460     * use {@link java.lang.Runtime#availableProcessors}.
2461     * @param factory the factory for creating new threads. For default value,
2462     * use {@link #defaultForkJoinWorkerThreadFactory}.
2463 dl 1.19 * @param handler the handler for internal worker threads that
2464     * terminate due to unrecoverable errors encountered while executing
2465 jsr166 1.31 * tasks. For default value, use {@code null}.
2466 dl 1.19 * @param asyncMode if true,
2467 dl 1.18 * establishes local first-in-first-out scheduling mode for forked
2468     * tasks that are never joined. This mode may be more appropriate
2469     * than default locally stack-based mode in applications in which
2470     * worker threads only process event-style asynchronous tasks.
2471 jsr166 1.31 * For default value, use {@code false}.
2472 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
2473 jsr166 1.11 * equal to zero, or greater than implementation limit
2474     * @throws NullPointerException if the factory is null
2475 jsr166 1.1 * @throws SecurityException if a security manager exists and
2476     * the caller is not permitted to modify threads
2477     * because it does not hold {@link
2478     * java.lang.RuntimePermission}{@code ("modifyThread")}
2479     */
2480 dl 1.19 public ForkJoinPool(int parallelism,
2481 dl 1.18 ForkJoinWorkerThreadFactory factory,
2482 jsr166 1.156 UncaughtExceptionHandler handler,
2483 dl 1.18 boolean asyncMode) {
2484 dl 1.152 this(checkParallelism(parallelism),
2485     checkFactory(factory),
2486     handler,
2487     asyncMode,
2488     "ForkJoinPool-" + nextPoolId() + "-worker-");
2489 dl 1.14 checkPermission();
2490 dl 1.152 }
2491    
2492     private static int checkParallelism(int parallelism) {
2493     if (parallelism <= 0 || parallelism > MAX_CAP)
2494     throw new IllegalArgumentException();
2495     return parallelism;
2496     }
2497    
2498     private static ForkJoinWorkerThreadFactory checkFactory
2499     (ForkJoinWorkerThreadFactory factory) {
2500 dl 1.14 if (factory == null)
2501     throw new NullPointerException();
2502 dl 1.152 return factory;
2503     }
2504    
2505     /**
2506     * Creates a {@code ForkJoinPool} with the given parameters, without
2507     * any security checks or parameter validation. Invoked directly by
2508     * makeCommonPool.
2509     */
2510     private ForkJoinPool(int parallelism,
2511     ForkJoinWorkerThreadFactory factory,
2512 jsr166 1.156 UncaughtExceptionHandler handler,
2513 dl 1.152 boolean asyncMode,
2514     String workerNamePrefix) {
2515     this.workerNamePrefix = workerNamePrefix;
2516 jsr166 1.1 this.factory = factory;
2517 dl 1.18 this.ueh = handler;
2518 jsr166 1.113 this.config = parallelism | (asyncMode ? (FIFO_QUEUE << 16) : 0);
2519 dl 1.52 long np = (long)(-parallelism); // offset ctl counts
2520     this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2521 dl 1.101 }
2522    
2523     /**
2524 dl 1.128 * Returns the common pool instance. This pool is statically
2525 dl 1.134 * constructed; its run state is unaffected by attempts to {@link
2526     * #shutdown} or {@link #shutdownNow}. However this pool and any
2527     * ongoing processing are automatically terminated upon program
2528     * {@link System#exit}. Any program that relies on asynchronous
2529     * task processing to complete before program termination should
2530 jsr166 1.158 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2531     * before exit.
2532 dl 1.100 *
2533     * @return the common pool instance
2534 jsr166 1.138 * @since 1.8
2535 dl 1.100 */
2536     public static ForkJoinPool commonPool() {
2537 dl 1.134 // assert common != null : "static init error";
2538     return common;
2539 dl 1.100 }
2540    
2541 jsr166 1.1 // Execution methods
2542    
2543     /**
2544     * Performs the given task, returning its result upon completion.
2545 dl 1.52 * If the computation encounters an unchecked Exception or Error,
2546     * it is rethrown as the outcome of this invocation. Rethrown
2547     * exceptions behave in the same way as regular exceptions, but,
2548     * when possible, contain stack traces (as displayed for example
2549     * using {@code ex.printStackTrace()}) of both the current thread
2550     * as well as the thread actually encountering the exception;
2551     * minimally only the latter.
2552 jsr166 1.1 *
2553     * @param task the task
2554     * @return the task's result
2555 jsr166 1.11 * @throws NullPointerException if the task is null
2556     * @throws RejectedExecutionException if the task cannot be
2557     * scheduled for execution
2558 jsr166 1.1 */
2559     public <T> T invoke(ForkJoinTask<T> task) {
2560 dl 1.90 if (task == null)
2561     throw new NullPointerException();
2562 dl 1.105 externalPush(task);
2563 dl 1.78 return task.join();
2564 jsr166 1.1 }
2565    
2566     /**
2567     * Arranges for (asynchronous) execution of the given task.
2568     *
2569     * @param task the task
2570 jsr166 1.11 * @throws NullPointerException if the task is null
2571     * @throws RejectedExecutionException if the task cannot be
2572     * scheduled for execution
2573 jsr166 1.1 */
2574 jsr166 1.8 public void execute(ForkJoinTask<?> task) {
2575 dl 1.90 if (task == null)
2576     throw new NullPointerException();
2577 dl 1.105 externalPush(task);
2578 jsr166 1.1 }
2579    
2580     // AbstractExecutorService methods
2581    
2582 jsr166 1.11 /**
2583     * @throws NullPointerException if the task is null
2584     * @throws RejectedExecutionException if the task cannot be
2585     * scheduled for execution
2586     */
2587 jsr166 1.1 public void execute(Runnable task) {
2588 dl 1.41 if (task == null)
2589     throw new NullPointerException();
2590 jsr166 1.2 ForkJoinTask<?> job;
2591 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2592     job = (ForkJoinTask<?>) task;
2593 jsr166 1.2 else
2594 dl 1.152 job = new ForkJoinTask.RunnableExecuteAction(task);
2595 dl 1.105 externalPush(job);
2596 jsr166 1.1 }
2597    
2598 jsr166 1.11 /**
2599 dl 1.18 * Submits a ForkJoinTask for execution.
2600     *
2601     * @param task the task to submit
2602     * @return the task
2603     * @throws NullPointerException if the task is null
2604     * @throws RejectedExecutionException if the task cannot be
2605     * scheduled for execution
2606     */
2607     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2608 dl 1.90 if (task == null)
2609     throw new NullPointerException();
2610 dl 1.105 externalPush(task);
2611 dl 1.18 return task;
2612     }
2613    
2614     /**
2615 jsr166 1.11 * @throws NullPointerException if the task is null
2616     * @throws RejectedExecutionException if the task cannot be
2617     * scheduled for execution
2618     */
2619 jsr166 1.1 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2620 dl 1.90 ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2621 dl 1.105 externalPush(job);
2622 jsr166 1.1 return job;
2623     }
2624    
2625 jsr166 1.11 /**
2626     * @throws NullPointerException if the task is null
2627     * @throws RejectedExecutionException if the task cannot be
2628     * scheduled for execution
2629     */
2630 jsr166 1.1 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2631 dl 1.90 ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2632 dl 1.105 externalPush(job);
2633 jsr166 1.1 return job;
2634     }
2635    
2636 jsr166 1.11 /**
2637     * @throws NullPointerException if the task is null
2638     * @throws RejectedExecutionException if the task cannot be
2639     * scheduled for execution
2640     */
2641 jsr166 1.1 public ForkJoinTask<?> submit(Runnable task) {
2642 dl 1.41 if (task == null)
2643     throw new NullPointerException();
2644 jsr166 1.2 ForkJoinTask<?> job;
2645 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2646     job = (ForkJoinTask<?>) task;
2647 jsr166 1.2 else
2648 dl 1.90 job = new ForkJoinTask.AdaptedRunnableAction(task);
2649 dl 1.105 externalPush(job);
2650 jsr166 1.1 return job;
2651     }
2652    
2653     /**
2654 jsr166 1.11 * @throws NullPointerException {@inheritDoc}
2655     * @throws RejectedExecutionException {@inheritDoc}
2656     */
2657 jsr166 1.1 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2658 dl 1.86 // In previous versions of this class, this method constructed
2659     // a task to run ForkJoinTask.invokeAll, but now external
2660     // invocation of multiple tasks is at least as efficient.
2661 jsr166 1.143 ArrayList<Future<T>> futures = new ArrayList<Future<T>>(tasks.size());
2662 jsr166 1.1
2663 dl 1.86 boolean done = false;
2664     try {
2665     for (Callable<T> t : tasks) {
2666 dl 1.90 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2667 jsr166 1.144 futures.add(f);
2668 dl 1.105 externalPush(f);
2669 dl 1.86 }
2670 jsr166 1.143 for (int i = 0, size = futures.size(); i < size; i++)
2671     ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2672 dl 1.86 done = true;
2673     return futures;
2674     } finally {
2675     if (!done)
2676 jsr166 1.143 for (int i = 0, size = futures.size(); i < size; i++)
2677     futures.get(i).cancel(false);
2678 jsr166 1.1 }
2679     }
2680    
2681     /**
2682     * Returns the factory used for constructing new workers.
2683     *
2684     * @return the factory used for constructing new workers
2685     */
2686     public ForkJoinWorkerThreadFactory getFactory() {
2687     return factory;
2688     }
2689    
2690     /**
2691     * Returns the handler for internal worker threads that terminate
2692     * due to unrecoverable errors encountered while executing tasks.
2693     *
2694 jsr166 1.4 * @return the handler, or {@code null} if none
2695 jsr166 1.1 */
2696 jsr166 1.156 public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2697 dl 1.14 return ueh;
2698 jsr166 1.1 }
2699    
2700     /**
2701 jsr166 1.9 * Returns the targeted parallelism level of this pool.
2702 jsr166 1.1 *
2703 jsr166 1.9 * @return the targeted parallelism level of this pool
2704 jsr166 1.1 */
2705     public int getParallelism() {
2706 dl 1.160 int par = (config & SMASK);
2707     return (par > 0) ? par : 1;
2708 jsr166 1.1 }
2709    
2710     /**
2711 dl 1.100 * Returns the targeted parallelism level of the common pool.
2712     *
2713     * @return the targeted parallelism level of the common pool
2714 jsr166 1.138 * @since 1.8
2715 dl 1.100 */
2716     public static int getCommonPoolParallelism() {
2717 dl 1.134 return commonParallelism;
2718 dl 1.100 }
2719    
2720     /**
2721 jsr166 1.1 * Returns the number of worker threads that have started but not
2722 jsr166 1.34 * yet terminated. The result returned by this method may differ
2723 jsr166 1.4 * from {@link #getParallelism} when threads are created to
2724 jsr166 1.1 * maintain parallelism when others are cooperatively blocked.
2725     *
2726     * @return the number of worker threads
2727     */
2728     public int getPoolSize() {
2729 dl 1.112 return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2730 jsr166 1.1 }
2731    
2732     /**
2733 jsr166 1.4 * Returns {@code true} if this pool uses local first-in-first-out
2734 jsr166 1.1 * scheduling mode for forked tasks that are never joined.
2735     *
2736 jsr166 1.4 * @return {@code true} if this pool uses async mode
2737 jsr166 1.1 */
2738     public boolean getAsyncMode() {
2739 dl 1.112 return (config >>> 16) == FIFO_QUEUE;
2740 jsr166 1.1 }
2741    
2742     /**
2743     * Returns an estimate of the number of worker threads that are
2744     * not blocked waiting to join tasks or for other managed
2745 dl 1.14 * synchronization. This method may overestimate the
2746     * number of running threads.
2747 jsr166 1.1 *
2748     * @return the number of worker threads
2749     */
2750     public int getRunningThreadCount() {
2751 dl 1.78 int rc = 0;
2752     WorkQueue[] ws; WorkQueue w;
2753     if ((ws = workQueues) != null) {
2754 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2755     if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2756 dl 1.78 ++rc;
2757     }
2758     }
2759     return rc;
2760 jsr166 1.1 }
2761    
2762     /**
2763     * Returns an estimate of the number of threads that are currently
2764     * stealing or executing tasks. This method may overestimate the
2765     * number of active threads.
2766     *
2767     * @return the number of active threads
2768     */
2769     public int getActiveThreadCount() {
2770 dl 1.112 int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2771 jsr166 1.63 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2772 jsr166 1.1 }
2773    
2774     /**
2775 jsr166 1.4 * Returns {@code true} if all worker threads are currently idle.
2776     * An idle worker is one that cannot obtain a task to execute
2777     * because none are available to steal from other threads, and
2778     * there are no pending submissions to the pool. This method is
2779     * conservative; it might not return {@code true} immediately upon
2780     * idleness of all threads, but will eventually become true if
2781     * threads remain inactive.
2782 jsr166 1.1 *
2783 jsr166 1.4 * @return {@code true} if all threads are currently idle
2784 jsr166 1.1 */
2785     public boolean isQuiescent() {
2786 dl 1.112 return (int)(ctl >> AC_SHIFT) + (config & SMASK) == 0;
2787 jsr166 1.1 }
2788    
2789     /**
2790     * Returns an estimate of the total number of tasks stolen from
2791     * one thread's work queue by another. The reported value
2792     * underestimates the actual total number of steals when the pool
2793     * is not quiescent. This value may be useful for monitoring and
2794     * tuning fork/join programs: in general, steal counts should be
2795     * high enough to keep threads busy, but low enough to avoid
2796     * overhead and contention across threads.
2797     *
2798     * @return the number of steals
2799     */
2800     public long getStealCount() {
2801 dl 1.101 long count = stealCount;
2802 dl 1.78 WorkQueue[] ws; WorkQueue w;
2803     if ((ws = workQueues) != null) {
2804 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2805 dl 1.78 if ((w = ws[i]) != null)
2806 dl 1.105 count += w.nsteals;
2807 dl 1.78 }
2808     }
2809     return count;
2810 jsr166 1.1 }
2811    
2812     /**
2813     * Returns an estimate of the total number of tasks currently held
2814     * in queues by worker threads (but not including tasks submitted
2815     * to the pool that have not begun executing). This value is only
2816     * an approximation, obtained by iterating across all threads in
2817     * the pool. This method may be useful for tuning task
2818     * granularities.
2819     *
2820     * @return the number of queued tasks
2821     */
2822     public long getQueuedTaskCount() {
2823     long count = 0;
2824 dl 1.78 WorkQueue[] ws; WorkQueue w;
2825     if ((ws = workQueues) != null) {
2826 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2827 dl 1.78 if ((w = ws[i]) != null)
2828     count += w.queueSize();
2829     }
2830 dl 1.52 }
2831 jsr166 1.1 return count;
2832     }
2833    
2834     /**
2835 jsr166 1.8 * Returns an estimate of the number of tasks submitted to this
2836 dl 1.55 * pool that have not yet begun executing. This method may take
2837 dl 1.52 * time proportional to the number of submissions.
2838 jsr166 1.1 *
2839     * @return the number of queued submissions
2840     */
2841     public int getQueuedSubmissionCount() {
2842 dl 1.78 int count = 0;
2843     WorkQueue[] ws; WorkQueue w;
2844     if ((ws = workQueues) != null) {
2845 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2846 dl 1.78 if ((w = ws[i]) != null)
2847     count += w.queueSize();
2848     }
2849     }
2850     return count;
2851 jsr166 1.1 }
2852    
2853     /**
2854 jsr166 1.4 * Returns {@code true} if there are any tasks submitted to this
2855     * pool that have not yet begun executing.
2856 jsr166 1.1 *
2857     * @return {@code true} if there are any queued submissions
2858     */
2859     public boolean hasQueuedSubmissions() {
2860 dl 1.78 WorkQueue[] ws; WorkQueue w;
2861     if ((ws = workQueues) != null) {
2862 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2863 dl 1.115 if ((w = ws[i]) != null && !w.isEmpty())
2864 dl 1.78 return true;
2865     }
2866     }
2867     return false;
2868 jsr166 1.1 }
2869    
2870     /**
2871     * Removes and returns the next unexecuted submission if one is
2872     * available. This method may be useful in extensions to this
2873     * class that re-assign work in systems with multiple pools.
2874     *
2875 jsr166 1.4 * @return the next submission, or {@code null} if none
2876 jsr166 1.1 */
2877     protected ForkJoinTask<?> pollSubmission() {
2878 dl 1.78 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2879     if ((ws = workQueues) != null) {
2880 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2881 dl 1.78 if ((w = ws[i]) != null && (t = w.poll()) != null)
2882     return t;
2883 dl 1.52 }
2884     }
2885     return null;
2886 jsr166 1.1 }
2887    
2888     /**
2889     * Removes all available unexecuted submitted and forked tasks
2890     * from scheduling queues and adds them to the given collection,
2891     * without altering their execution status. These may include
2892 jsr166 1.8 * artificially generated or wrapped tasks. This method is
2893     * designed to be invoked only when the pool is known to be
2894 jsr166 1.1 * quiescent. Invocations at other times may not remove all
2895     * tasks. A failure encountered while attempting to add elements
2896     * to collection {@code c} may result in elements being in
2897     * neither, either or both collections when the associated
2898     * exception is thrown. The behavior of this operation is
2899     * undefined if the specified collection is modified while the
2900     * operation is in progress.
2901     *
2902     * @param c the collection to transfer elements into
2903     * @return the number of elements transferred
2904     */
2905 jsr166 1.5 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2906 dl 1.52 int count = 0;
2907 dl 1.78 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2908     if ((ws = workQueues) != null) {
2909 dl 1.86 for (int i = 0; i < ws.length; ++i) {
2910 dl 1.78 if ((w = ws[i]) != null) {
2911     while ((t = w.poll()) != null) {
2912     c.add(t);
2913     ++count;
2914     }
2915     }
2916 dl 1.52 }
2917     }
2918 dl 1.18 return count;
2919     }
2920    
2921     /**
2922 jsr166 1.1 * Returns a string identifying this pool, as well as its state,
2923     * including indications of run state, parallelism level, and
2924     * worker and task counts.
2925     *
2926     * @return a string identifying this pool, as well as its state
2927     */
2928     public String toString() {
2929 dl 1.86 // Use a single pass through workQueues to collect counts
2930     long qt = 0L, qs = 0L; int rc = 0;
2931 dl 1.101 long st = stealCount;
2932 dl 1.86 long c = ctl;
2933     WorkQueue[] ws; WorkQueue w;
2934     if ((ws = workQueues) != null) {
2935     for (int i = 0; i < ws.length; ++i) {
2936     if ((w = ws[i]) != null) {
2937     int size = w.queueSize();
2938     if ((i & 1) == 0)
2939     qs += size;
2940     else {
2941     qt += size;
2942 dl 1.105 st += w.nsteals;
2943 dl 1.86 if (w.isApparentlyUnblocked())
2944     ++rc;
2945     }
2946     }
2947     }
2948     }
2949 dl 1.112 int pc = (config & SMASK);
2950 dl 1.52 int tc = pc + (short)(c >>> TC_SHIFT);
2951 dl 1.78 int ac = pc + (int)(c >> AC_SHIFT);
2952     if (ac < 0) // ignore transient negative
2953     ac = 0;
2954 dl 1.52 String level;
2955     if ((c & STOP_BIT) != 0)
2956 jsr166 1.63 level = (tc == 0) ? "Terminated" : "Terminating";
2957 dl 1.52 else
2958 dl 1.105 level = plock < 0 ? "Shutting down" : "Running";
2959 jsr166 1.1 return super.toString() +
2960 dl 1.52 "[" + level +
2961 dl 1.14 ", parallelism = " + pc +
2962     ", size = " + tc +
2963     ", active = " + ac +
2964     ", running = " + rc +
2965 jsr166 1.1 ", steals = " + st +
2966     ", tasks = " + qt +
2967     ", submissions = " + qs +
2968     "]";
2969     }
2970    
2971     /**
2972 dl 1.100 * Possibly initiates an orderly shutdown in which previously
2973     * submitted tasks are executed, but no new tasks will be
2974     * accepted. Invocation has no effect on execution state if this
2975 jsr166 1.137 * is the {@link #commonPool()}, and no additional effect if
2976 dl 1.100 * already shut down. Tasks that are in the process of being
2977     * submitted concurrently during the course of this method may or
2978     * may not be rejected.
2979 jsr166 1.1 *
2980     * @throws SecurityException if a security manager exists and
2981     * the caller is not permitted to modify threads
2982     * because it does not hold {@link
2983     * java.lang.RuntimePermission}{@code ("modifyThread")}
2984     */
2985     public void shutdown() {
2986     checkPermission();
2987 dl 1.105 tryTerminate(false, true);
2988 jsr166 1.1 }
2989    
2990     /**
2991 dl 1.100 * Possibly attempts to cancel and/or stop all tasks, and reject
2992     * all subsequently submitted tasks. Invocation has no effect on
2993 jsr166 1.137 * execution state if this is the {@link #commonPool()}, and no
2994 dl 1.100 * additional effect if already shut down. Otherwise, tasks that
2995     * are in the process of being submitted or executed concurrently
2996     * during the course of this method may or may not be
2997     * rejected. This method cancels both existing and unexecuted
2998     * tasks, in order to permit termination in the presence of task
2999     * dependencies. So the method always returns an empty list
3000     * (unlike the case for some other Executors).
3001 jsr166 1.1 *
3002     * @return an empty list
3003     * @throws SecurityException if a security manager exists and
3004     * the caller is not permitted to modify threads
3005     * because it does not hold {@link
3006     * java.lang.RuntimePermission}{@code ("modifyThread")}
3007     */
3008     public List<Runnable> shutdownNow() {
3009     checkPermission();
3010 dl 1.105 tryTerminate(true, true);
3011 jsr166 1.1 return Collections.emptyList();
3012     }
3013    
3014     /**
3015     * Returns {@code true} if all tasks have completed following shut down.
3016     *
3017     * @return {@code true} if all tasks have completed following shut down
3018     */
3019     public boolean isTerminated() {
3020 dl 1.52 long c = ctl;
3021     return ((c & STOP_BIT) != 0L &&
3022 dl 1.112 (short)(c >>> TC_SHIFT) == -(config & SMASK));
3023 jsr166 1.1 }
3024    
3025     /**
3026     * Returns {@code true} if the process of termination has
3027 jsr166 1.9 * commenced but not yet completed. This method may be useful for
3028     * debugging. A return of {@code true} reported a sufficient
3029     * period after shutdown may indicate that submitted tasks have
3030 jsr166 1.119 * ignored or suppressed interruption, or are waiting for I/O,
3031 dl 1.49 * causing this executor not to properly terminate. (See the
3032     * advisory notes for class {@link ForkJoinTask} stating that
3033     * tasks should not normally entail blocking operations. But if
3034     * they do, they must abort them on interrupt.)
3035 jsr166 1.1 *
3036 jsr166 1.9 * @return {@code true} if terminating but not yet terminated
3037 jsr166 1.1 */
3038     public boolean isTerminating() {
3039 dl 1.52 long c = ctl;
3040     return ((c & STOP_BIT) != 0L &&
3041 dl 1.112 (short)(c >>> TC_SHIFT) != -(config & SMASK));
3042 jsr166 1.1 }
3043    
3044     /**
3045     * Returns {@code true} if this pool has been shut down.
3046     *
3047     * @return {@code true} if this pool has been shut down
3048     */
3049     public boolean isShutdown() {
3050 dl 1.105 return plock < 0;
3051 jsr166 1.9 }
3052    
3053     /**
3054 dl 1.105 * Blocks until all tasks have completed execution after a
3055     * shutdown request, or the timeout occurs, or the current thread
3056 dl 1.134 * is interrupted, whichever happens first. Because the {@link
3057     * #commonPool()} never terminates until program shutdown, when
3058     * applied to the common pool, this method is equivalent to {@link
3059 jsr166 1.158 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
3060 jsr166 1.1 *
3061     * @param timeout the maximum time to wait
3062     * @param unit the time unit of the timeout argument
3063     * @return {@code true} if this executor terminated and
3064     * {@code false} if the timeout elapsed before termination
3065     * @throws InterruptedException if interrupted while waiting
3066     */
3067     public boolean awaitTermination(long timeout, TimeUnit unit)
3068     throws InterruptedException {
3069 dl 1.134 if (Thread.interrupted())
3070     throw new InterruptedException();
3071     if (this == common) {
3072     awaitQuiescence(timeout, unit);
3073     return false;
3074     }
3075 dl 1.52 long nanos = unit.toNanos(timeout);
3076 dl 1.101 if (isTerminated())
3077     return true;
3078     long startTime = System.nanoTime();
3079     boolean terminated = false;
3080 jsr166 1.103 synchronized (this) {
3081 dl 1.101 for (long waitTime = nanos, millis = 0L;;) {
3082     if (terminated = isTerminated() ||
3083     waitTime <= 0L ||
3084     (millis = unit.toMillis(waitTime)) <= 0L)
3085     break;
3086     wait(millis);
3087     waitTime = nanos - (System.nanoTime() - startTime);
3088 dl 1.52 }
3089 dl 1.18 }
3090 dl 1.101 return terminated;
3091 jsr166 1.1 }
3092    
3093     /**
3094 dl 1.134 * If called by a ForkJoinTask operating in this pool, equivalent
3095     * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3096     * waits and/or attempts to assist performing tasks until this
3097     * pool {@link #isQuiescent} or the indicated timeout elapses.
3098     *
3099     * @param timeout the maximum time to wait
3100     * @param unit the time unit of the timeout argument
3101     * @return {@code true} if quiescent; {@code false} if the
3102     * timeout elapsed.
3103     */
3104     public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3105     long nanos = unit.toNanos(timeout);
3106     ForkJoinWorkerThread wt;
3107     Thread thread = Thread.currentThread();
3108     if ((thread instanceof ForkJoinWorkerThread) &&
3109     (wt = (ForkJoinWorkerThread)thread).pool == this) {
3110     helpQuiescePool(wt.workQueue);
3111     return true;
3112     }
3113     long startTime = System.nanoTime();
3114     WorkQueue[] ws;
3115     int r = 0, m;
3116     boolean found = true;
3117     while (!isQuiescent() && (ws = workQueues) != null &&
3118     (m = ws.length - 1) >= 0) {
3119     if (!found) {
3120     if ((System.nanoTime() - startTime) > nanos)
3121     return false;
3122     Thread.yield(); // cannot block
3123     }
3124     found = false;
3125     for (int j = (m + 1) << 2; j >= 0; --j) {
3126     ForkJoinTask<?> t; WorkQueue q; int b;
3127     if ((q = ws[r++ & m]) != null && (b = q.base) - q.top < 0) {
3128     found = true;
3129     if ((t = q.pollAt(b)) != null) {
3130     if (q.base - q.top < 0)
3131     signalWork(q);
3132     t.doExec();
3133     }
3134     break;
3135     }
3136     }
3137     }
3138     return true;
3139     }
3140    
3141     /**
3142     * Waits and/or attempts to assist performing tasks indefinitely
3143 jsr166 1.141 * until the {@link #commonPool()} {@link #isQuiescent}.
3144 dl 1.134 */
3145 dl 1.136 static void quiesceCommonPool() {
3146 dl 1.134 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3147     }
3148    
3149     /**
3150 jsr166 1.1 * Interface for extending managed parallelism for tasks running
3151 jsr166 1.8 * in {@link ForkJoinPool}s.
3152     *
3153 dl 1.19 * <p>A {@code ManagedBlocker} provides two methods. Method
3154     * {@code isReleasable} must return {@code true} if blocking is
3155     * not necessary. Method {@code block} blocks the current thread
3156     * if necessary (perhaps internally invoking {@code isReleasable}
3157 dl 1.54 * before actually blocking). These actions are performed by any
3158 jsr166 1.157 * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
3159     * The unusual methods in this API accommodate synchronizers that
3160     * may, but don't usually, block for long periods. Similarly, they
3161 dl 1.54 * allow more efficient internal handling of cases in which
3162     * additional workers may be, but usually are not, needed to
3163     * ensure sufficient parallelism. Toward this end,
3164     * implementations of method {@code isReleasable} must be amenable
3165     * to repeated invocation.
3166 jsr166 1.1 *
3167     * <p>For example, here is a ManagedBlocker based on a
3168     * ReentrantLock:
3169     * <pre> {@code
3170     * class ManagedLocker implements ManagedBlocker {
3171     * final ReentrantLock lock;
3172     * boolean hasLock = false;
3173     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3174     * public boolean block() {
3175     * if (!hasLock)
3176     * lock.lock();
3177     * return true;
3178     * }
3179     * public boolean isReleasable() {
3180     * return hasLock || (hasLock = lock.tryLock());
3181     * }
3182     * }}</pre>
3183 dl 1.19 *
3184     * <p>Here is a class that possibly blocks waiting for an
3185     * item on a given queue:
3186     * <pre> {@code
3187     * class QueueTaker<E> implements ManagedBlocker {
3188     * final BlockingQueue<E> queue;
3189     * volatile E item = null;
3190     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3191     * public boolean block() throws InterruptedException {
3192     * if (item == null)
3193 dl 1.23 * item = queue.take();
3194 dl 1.19 * return true;
3195     * }
3196     * public boolean isReleasable() {
3197 dl 1.23 * return item != null || (item = queue.poll()) != null;
3198 dl 1.19 * }
3199     * public E getItem() { // call after pool.managedBlock completes
3200     * return item;
3201     * }
3202     * }}</pre>
3203 jsr166 1.1 */
3204     public static interface ManagedBlocker {
3205     /**
3206     * Possibly blocks the current thread, for example waiting for
3207     * a lock or condition.
3208     *
3209 jsr166 1.4 * @return {@code true} if no additional blocking is necessary
3210     * (i.e., if isReleasable would return true)
3211 jsr166 1.1 * @throws InterruptedException if interrupted while waiting
3212     * (the method is not required to do so, but is allowed to)
3213     */
3214     boolean block() throws InterruptedException;
3215    
3216     /**
3217 jsr166 1.4 * Returns {@code true} if blocking is unnecessary.
3218 jsr166 1.154 * @return {@code true} if blocking is unnecessary
3219 jsr166 1.1 */
3220     boolean isReleasable();
3221     }
3222    
3223     /**
3224     * Blocks in accord with the given blocker. If the current thread
3225 jsr166 1.8 * is a {@link ForkJoinWorkerThread}, this method possibly
3226     * arranges for a spare thread to be activated if necessary to
3227 dl 1.18 * ensure sufficient parallelism while the current thread is blocked.
3228 jsr166 1.1 *
3229 jsr166 1.8 * <p>If the caller is not a {@link ForkJoinTask}, this method is
3230     * behaviorally equivalent to
3231 jsr166 1.82 * <pre> {@code
3232 jsr166 1.1 * while (!blocker.isReleasable())
3233     * if (blocker.block())
3234     * return;
3235     * }</pre>
3236 jsr166 1.8 *
3237     * If the caller is a {@code ForkJoinTask}, then the pool may
3238     * first be expanded to ensure parallelism, and later adjusted.
3239 jsr166 1.1 *
3240     * @param blocker the blocker
3241     * @throws InterruptedException if blocker.block did so
3242     */
3243 dl 1.18 public static void managedBlock(ManagedBlocker blocker)
3244 jsr166 1.1 throws InterruptedException {
3245     Thread t = Thread.currentThread();
3246 dl 1.105 if (t instanceof ForkJoinWorkerThread) {
3247     ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3248     while (!blocker.isReleasable()) { // variant of helpSignal
3249 dl 1.115 WorkQueue[] ws; WorkQueue q; int m, u;
3250 dl 1.105 if ((ws = p.workQueues) != null && (m = ws.length - 1) >= 0) {
3251     for (int i = 0; i <= m; ++i) {
3252     if (blocker.isReleasable())
3253     return;
3254 dl 1.115 if ((q = ws[i]) != null && q.base - q.top < 0) {
3255     p.signalWork(q);
3256 dl 1.112 if ((u = (int)(p.ctl >>> 32)) >= 0 ||
3257     (u >> UAC_SHIFT) >= 0)
3258 dl 1.105 break;
3259     }
3260     }
3261     }
3262     if (p.tryCompensate()) {
3263     try {
3264     do {} while (!blocker.isReleasable() &&
3265     !blocker.block());
3266     } finally {
3267 dl 1.78 p.incrementActiveCount();
3268 dl 1.105 }
3269     break;
3270 dl 1.78 }
3271     }
3272 dl 1.18 }
3273 dl 1.105 else {
3274     do {} while (!blocker.isReleasable() &&
3275     !blocker.block());
3276     }
3277 jsr166 1.1 }
3278    
3279 jsr166 1.7 // AbstractExecutorService overrides. These rely on undocumented
3280     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3281     // implement RunnableFuture.
3282 jsr166 1.1
3283     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3284 dl 1.90 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3285 jsr166 1.1 }
3286    
3287     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3288 dl 1.90 return new ForkJoinTask.AdaptedCallable<T>(callable);
3289 jsr166 1.1 }
3290    
3291     // Unsafe mechanics
3292 dl 1.78 private static final sun.misc.Unsafe U;
3293     private static final long CTL;
3294     private static final long PARKBLOCKER;
3295 dl 1.90 private static final int ABASE;
3296     private static final int ASHIFT;
3297 dl 1.101 private static final long STEALCOUNT;
3298 dl 1.105 private static final long PLOCK;
3299     private static final long INDEXSEED;
3300 dl 1.170 private static final long QBASE;
3301 dl 1.105 private static final long QLOCK;
3302 dl 1.52
3303     static {
3304 jsr166 1.142 // initialize field offsets for CAS etc
3305 jsr166 1.3 try {
3306 dl 1.78 U = sun.misc.Unsafe.getUnsafe();
3307 jsr166 1.64 Class<?> k = ForkJoinPool.class;
3308 dl 1.78 CTL = U.objectFieldOffset
3309 dl 1.52 (k.getDeclaredField("ctl"));
3310 dl 1.101 STEALCOUNT = U.objectFieldOffset
3311     (k.getDeclaredField("stealCount"));
3312 dl 1.105 PLOCK = U.objectFieldOffset
3313     (k.getDeclaredField("plock"));
3314     INDEXSEED = U.objectFieldOffset
3315     (k.getDeclaredField("indexSeed"));
3316 dl 1.86 Class<?> tk = Thread.class;
3317 dl 1.78 PARKBLOCKER = U.objectFieldOffset
3318     (tk.getDeclaredField("parkBlocker"));
3319 dl 1.105 Class<?> wk = WorkQueue.class;
3320 dl 1.170 QBASE = U.objectFieldOffset
3321     (wk.getDeclaredField("base"));
3322 dl 1.105 QLOCK = U.objectFieldOffset
3323     (wk.getDeclaredField("qlock"));
3324     Class<?> ak = ForkJoinTask[].class;
3325 dl 1.90 ABASE = U.arrayBaseOffset(ak);
3326 jsr166 1.142 int scale = U.arrayIndexScale(ak);
3327     if ((scale & (scale - 1)) != 0)
3328     throw new Error("data type scale not a power of two");
3329     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3330 dl 1.52 } catch (Exception e) {
3331     throw new Error(e);
3332     }
3333 dl 1.105
3334 dl 1.152 defaultForkJoinWorkerThreadFactory =
3335 dl 1.112 new DefaultForkJoinWorkerThreadFactory();
3336 dl 1.115 modifyThreadPermission = new RuntimePermission("modifyThread");
3337    
3338 dl 1.152 common = java.security.AccessController.doPrivileged
3339     (new java.security.PrivilegedAction<ForkJoinPool>() {
3340     public ForkJoinPool run() { return makeCommonPool(); }});
3341 dl 1.160 int par = common.config; // report 1 even if threads disabled
3342     commonParallelism = par > 0 ? par : 1;
3343 dl 1.152 }
3344 dl 1.112
3345 dl 1.152 /**
3346     * Creates and returns the common pool, respecting user settings
3347     * specified via system properties.
3348     */
3349     private static ForkJoinPool makeCommonPool() {
3350 dl 1.160 int parallelism = -1;
3351 dl 1.152 ForkJoinWorkerThreadFactory factory
3352     = defaultForkJoinWorkerThreadFactory;
3353 jsr166 1.156 UncaughtExceptionHandler handler = null;
3354 dl 1.152 try { // ignore exceptions in accesing/parsing properties
3355 dl 1.112 String pp = System.getProperty
3356     ("java.util.concurrent.ForkJoinPool.common.parallelism");
3357 dl 1.152 String fp = System.getProperty
3358     ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3359 dl 1.112 String hp = System.getProperty
3360     ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3361 dl 1.152 if (pp != null)
3362     parallelism = Integer.parseInt(pp);
3363 dl 1.112 if (fp != null)
3364 dl 1.152 factory = ((ForkJoinWorkerThreadFactory)ClassLoader.
3365     getSystemClassLoader().loadClass(fp).newInstance());
3366 dl 1.112 if (hp != null)
3367 jsr166 1.156 handler = ((UncaughtExceptionHandler)ClassLoader.
3368 dl 1.112 getSystemClassLoader().loadClass(hp).newInstance());
3369     } catch (Exception ignore) {
3370     }
3371    
3372 dl 1.167 if (parallelism < 0 && // default 1 less than #cores
3373     (parallelism = Runtime.getRuntime().availableProcessors() - 1) < 0)
3374     parallelism = 0;
3375 dl 1.152 if (parallelism > MAX_CAP)
3376     parallelism = MAX_CAP;
3377     return new ForkJoinPool(parallelism, factory, handler, false,
3378     "ForkJoinPool.commonPool-worker-");
3379 jsr166 1.3 }
3380 dl 1.52
3381 jsr166 1.1 }