ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.172
Committed: Mon Apr 8 15:26:54 2013 UTC (11 years, 2 months ago) by dl
Branch: MAIN
Changes since 1.171: +143 -221 lines
Log Message:
Committed to allow VM bug check

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.58 * http://creativecommons.org/publicdomain/zero/1.0/
5 jsr166 1.1 */
6    
7     package java.util.concurrent;
8    
9 jsr166 1.156 import java.lang.Thread.UncaughtExceptionHandler;
10 jsr166 1.1 import java.util.ArrayList;
11     import java.util.Arrays;
12     import java.util.Collection;
13     import java.util.Collections;
14     import java.util.List;
15 dl 1.36 import java.util.concurrent.AbstractExecutorService;
16     import java.util.concurrent.Callable;
17     import java.util.concurrent.ExecutorService;
18     import java.util.concurrent.Future;
19     import java.util.concurrent.RejectedExecutionException;
20     import java.util.concurrent.RunnableFuture;
21     import java.util.concurrent.TimeUnit;
22 jsr166 1.1
23     /**
24 jsr166 1.4 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
25 jsr166 1.8 * A {@code ForkJoinPool} provides the entry point for submissions
26 dl 1.18 * from non-{@code ForkJoinTask} clients, as well as management and
27 jsr166 1.11 * monitoring operations.
28 jsr166 1.1 *
29 jsr166 1.9 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
30     * ExecutorService} mainly by virtue of employing
31     * <em>work-stealing</em>: all threads in the pool attempt to find and
32 dl 1.78 * execute tasks submitted to the pool and/or created by other active
33     * tasks (eventually blocking waiting for work if none exist). This
34     * enables efficient processing when most tasks spawn other subtasks
35     * (as do most {@code ForkJoinTask}s), as well as when many small
36     * tasks are submitted to the pool from external clients. Especially
37     * when setting <em>asyncMode</em> to true in constructors, {@code
38     * ForkJoinPool}s may also be appropriate for use with event-style
39     * tasks that are never joined.
40 jsr166 1.1 *
41 dl 1.112 * <p>A static {@link #commonPool()} is available and appropriate for
42 dl 1.101 * most applications. The common pool is used by any ForkJoinTask that
43     * is not explicitly submitted to a specified pool. Using the common
44     * pool normally reduces resource usage (its threads are slowly
45     * reclaimed during periods of non-use, and reinstated upon subsequent
46 dl 1.105 * use).
47 dl 1.100 *
48     * <p>For applications that require separate or custom pools, a {@code
49     * ForkJoinPool} may be constructed with a given target parallelism
50     * level; by default, equal to the number of available processors. The
51     * pool attempts to maintain enough active (or available) threads by
52     * dynamically adding, suspending, or resuming internal worker
53     * threads, even if some tasks are stalled waiting to join
54     * others. However, no such adjustments are guaranteed in the face of
55 jsr166 1.119 * blocked I/O or other unmanaged synchronization. The nested {@link
56 dl 1.100 * ManagedBlocker} interface enables extension of the kinds of
57 dl 1.18 * synchronization accommodated.
58 jsr166 1.1 *
59     * <p>In addition to execution and lifecycle control methods, this
60     * class provides status check methods (for example
61 jsr166 1.4 * {@link #getStealCount}) that are intended to aid in developing,
62 jsr166 1.1 * tuning, and monitoring fork/join applications. Also, method
63 jsr166 1.4 * {@link #toString} returns indications of pool state in a
64 jsr166 1.1 * convenient form for informal monitoring.
65     *
66 jsr166 1.109 * <p>As is the case with other ExecutorServices, there are three
67 jsr166 1.84 * main task execution methods summarized in the following table.
68     * These are designed to be used primarily by clients not already
69     * engaged in fork/join computations in the current pool. The main
70     * forms of these methods accept instances of {@code ForkJoinTask},
71     * but overloaded forms also allow mixed execution of plain {@code
72     * Runnable}- or {@code Callable}- based activities as well. However,
73     * tasks that are already executing in a pool should normally instead
74     * use the within-computation forms listed in the table unless using
75     * async event-style tasks that are not usually joined, in which case
76     * there is little difference among choice of methods.
77 dl 1.18 *
78     * <table BORDER CELLPADDING=3 CELLSPACING=1>
79 jsr166 1.159 * <caption>Summary of task execution methods</caption>
80 dl 1.18 * <tr>
81     * <td></td>
82     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
83     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
84     * </tr>
85     * <tr>
86 jsr166 1.153 * <td> <b>Arrange async execution</b></td>
87 dl 1.18 * <td> {@link #execute(ForkJoinTask)}</td>
88     * <td> {@link ForkJoinTask#fork}</td>
89     * </tr>
90     * <tr>
91 jsr166 1.153 * <td> <b>Await and obtain result</b></td>
92 dl 1.18 * <td> {@link #invoke(ForkJoinTask)}</td>
93     * <td> {@link ForkJoinTask#invoke}</td>
94     * </tr>
95     * <tr>
96 jsr166 1.153 * <td> <b>Arrange exec and obtain Future</b></td>
97 dl 1.18 * <td> {@link #submit(ForkJoinTask)}</td>
98     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
99     * </tr>
100     * </table>
101 dl 1.19 *
102 dl 1.105 * <p>The common pool is by default constructed with default
103 jsr166 1.155 * parameters, but these may be controlled by setting three
104 jsr166 1.162 * {@linkplain System#getProperty system properties}:
105     * <ul>
106     * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
107     * - the parallelism level, a non-negative integer
108     * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
109     * - the class name of a {@link ForkJoinWorkerThreadFactory}
110     * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
111     * - the class name of a {@link UncaughtExceptionHandler}
112     * </ul>
113 jsr166 1.165 * The system class loader is used to load these classes.
114 jsr166 1.156 * Upon any error in establishing these settings, default parameters
115 dl 1.160 * are used. It is possible to disable or limit the use of threads in
116     * the common pool by setting the parallelism property to zero, and/or
117     * using a factory that may return {@code null}.
118 dl 1.105 *
119 jsr166 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
120     * maximum number of running threads to 32767. Attempts to create
121 jsr166 1.11 * pools with greater than the maximum number result in
122 jsr166 1.8 * {@code IllegalArgumentException}.
123 jsr166 1.1 *
124 jsr166 1.11 * <p>This implementation rejects submitted tasks (that is, by throwing
125 dl 1.19 * {@link RejectedExecutionException}) only when the pool is shut down
126 dl 1.20 * or internal resources have been exhausted.
127 jsr166 1.11 *
128 jsr166 1.1 * @since 1.7
129     * @author Doug Lea
130     */
131 jsr166 1.171 @sun.misc.Contended
132 jsr166 1.1 public class ForkJoinPool extends AbstractExecutorService {
133    
134     /*
135 dl 1.14 * Implementation Overview
136     *
137 dl 1.78 * This class and its nested classes provide the main
138     * functionality and control for a set of worker threads:
139 jsr166 1.84 * Submissions from non-FJ threads enter into submission queues.
140     * Workers take these tasks and typically split them into subtasks
141     * that may be stolen by other workers. Preference rules give
142     * first priority to processing tasks from their own queues (LIFO
143     * or FIFO, depending on mode), then to randomized FIFO steals of
144     * tasks in other queues.
145 dl 1.78 *
146 jsr166 1.84 * WorkQueues
147 dl 1.78 * ==========
148     *
149     * Most operations occur within work-stealing queues (in nested
150     * class WorkQueue). These are special forms of Deques that
151     * support only three of the four possible end-operations -- push,
152     * pop, and poll (aka steal), under the further constraints that
153     * push and pop are called only from the owning thread (or, as
154     * extended here, under a lock), while poll may be called from
155     * other threads. (If you are unfamiliar with them, you probably
156     * want to read Herlihy and Shavit's book "The Art of
157     * Multiprocessor programming", chapter 16 describing these in
158     * more detail before proceeding.) The main work-stealing queue
159     * design is roughly similar to those in the papers "Dynamic
160     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
161     * (http://research.sun.com/scalable/pubs/index.html) and
162     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
163     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
164 dl 1.170 * See also "Correct and Efficient Work-Stealing for Weak Memory
165     * Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
166     * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
167     * analysis of memory ordering (atomic, volatile etc) issues. The
168     * main differences ultimately stem from GC requirements that we
169     * null out taken slots as soon as we can, to maintain as small a
170     * footprint as possible even in programs generating huge numbers
171     * of tasks. To accomplish this, we shift the CAS arbitrating pop
172     * vs poll (steal) from being on the indices ("base" and "top") to
173     * the slots themselves. So, both a successful pop and poll
174     * mainly entail a CAS of a slot from non-null to null. Because
175     * we rely on CASes of references, we do not need tag bits on base
176     * or top. They are simple ints as used in any circular
177     * array-based queue (see for example ArrayDeque). Updates to the
178     * indices must still be ordered in a way that guarantees that top
179     * == base means the queue is empty, but otherwise may err on the
180     * side of possibly making the queue appear nonempty when a push,
181     * pop, or poll have not fully committed. Note that this means
182     * that the poll operation, considered individually, is not
183     * wait-free. One thief cannot successfully continue until another
184     * in-progress one (or, if previously empty, a push) completes.
185     * However, in the aggregate, we ensure at least probabilistic
186     * non-blockingness. If an attempted steal fails, a thief always
187     * chooses a different random victim target to try next. So, in
188     * order for one thief to progress, it suffices for any
189     * in-progress poll or new push on any empty queue to
190     * complete. (This is why we normally use method pollAt and its
191     * variants that try once at the apparent base index, else
192     * consider alternative actions, rather than method poll.)
193 dl 1.78 *
194 dl 1.79 * This approach also enables support of a user mode in which local
195 dl 1.78 * task processing is in FIFO, not LIFO order, simply by using
196     * poll rather than pop. This can be useful in message-passing
197     * frameworks in which tasks are never joined. However neither
198     * mode considers affinities, loads, cache localities, etc, so
199     * rarely provide the best possible performance on a given
200     * machine, but portably provide good throughput by averaging over
201     * these factors. (Further, even if we did try to use such
202 jsr166 1.84 * information, we do not usually have a basis for exploiting it.
203     * For example, some sets of tasks profit from cache affinities,
204     * but others are harmed by cache pollution effects.)
205 dl 1.78 *
206     * WorkQueues are also used in a similar way for tasks submitted
207     * to the pool. We cannot mix these tasks in the same queues used
208     * for work-stealing (this would contaminate lifo/fifo
209 dl 1.105 * processing). Instead, we randomly associate submission queues
210 dl 1.83 * with submitting threads, using a form of hashing. The
211 dl 1.139 * ThreadLocalRandom probe value serves as a hash code for
212     * choosing existing queues, and may be randomly repositioned upon
213     * contention with other submitters. In essence, submitters act
214     * like workers except that they are restricted to executing local
215     * tasks that they submitted (or in the case of CountedCompleters,
216     * others with the same root task). However, because most
217     * shared/external queue operations are more expensive than
218     * internal, and because, at steady state, external submitters
219     * will compete for CPU with workers, ForkJoinTask.join and
220     * related methods disable them from repeatedly helping to process
221     * tasks if all workers are active. Insertion of tasks in shared
222     * mode requires a lock (mainly to protect in the case of
223 dl 1.105 * resizing) but we use only a simple spinlock (using bits in
224     * field qlock), because submitters encountering a busy queue move
225     * on to try or create other queues -- they block only when
226     * creating and registering new queues.
227 dl 1.78 *
228 jsr166 1.84 * Management
229 dl 1.78 * ==========
230 dl 1.52 *
231     * The main throughput advantages of work-stealing stem from
232     * decentralized control -- workers mostly take tasks from
233     * themselves or each other. We cannot negate this in the
234     * implementation of other management responsibilities. The main
235     * tactic for avoiding bottlenecks is packing nearly all
236 dl 1.78 * essentially atomic control state into two volatile variables
237     * that are by far most often read (not written) as status and
238 jsr166 1.84 * consistency checks.
239 dl 1.78 *
240     * Field "ctl" contains 64 bits holding all the information needed
241     * to atomically decide to add, inactivate, enqueue (on an event
242     * queue), dequeue, and/or re-activate workers. To enable this
243     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
244     * far in excess of normal operating range) to allow ids, counts,
245     * and their negations (used for thresholding) to fit into 16bit
246     * fields.
247     *
248 dl 1.105 * Field "plock" is a form of sequence lock with a saturating
249     * shutdown bit (similarly for per-queue "qlocks"), mainly
250     * protecting updates to the workQueues array, as well as to
251     * enable shutdown. When used as a lock, it is normally only very
252     * briefly held, so is nearly always available after at most a
253     * brief spin, but we use a monitor-based backup strategy to
254 dl 1.112 * block when needed.
255 dl 1.78 *
256     * Recording WorkQueues. WorkQueues are recorded in the
257 dl 1.101 * "workQueues" array that is created upon first use and expanded
258     * if necessary. Updates to the array while recording new workers
259     * and unrecording terminated ones are protected from each other
260     * by a lock but the array is otherwise concurrently readable, and
261     * accessed directly. To simplify index-based operations, the
262     * array size is always a power of two, and all readers must
263 dl 1.112 * tolerate null slots. Worker queues are at odd indices. Shared
264 dl 1.105 * (submission) queues are at even indices, up to a maximum of 64
265     * slots, to limit growth even if array needs to expand to add
266     * more workers. Grouping them together in this way simplifies and
267     * speeds up task scanning.
268 dl 1.86 *
269     * All worker thread creation is on-demand, triggered by task
270     * submissions, replacement of terminated workers, and/or
271 dl 1.78 * compensation for blocked workers. However, all other support
272     * code is set up to work with other policies. To ensure that we
273     * do not hold on to worker references that would prevent GC, ALL
274     * accesses to workQueues are via indices into the workQueues
275     * array (which is one source of some of the messy code
276     * constructions here). In essence, the workQueues array serves as
277     * a weak reference mechanism. Thus for example the wait queue
278     * field of ctl stores indices, not references. Access to the
279     * workQueues in associated methods (for example signalWork) must
280     * both index-check and null-check the IDs. All such accesses
281     * ignore bad IDs by returning out early from what they are doing,
282     * since this can only be associated with termination, in which
283 dl 1.86 * case it is OK to give up. All uses of the workQueues array
284     * also check that it is non-null (even if previously
285     * non-null). This allows nulling during termination, which is
286     * currently not necessary, but remains an option for
287     * resource-revocation-based shutdown schemes. It also helps
288     * reduce JIT issuance of uncommon-trap code, which tends to
289 dl 1.78 * unnecessarily complicate control flow in some methods.
290 dl 1.52 *
291 dl 1.78 * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
292 dl 1.56 * let workers spin indefinitely scanning for tasks when none can
293     * be found immediately, and we cannot start/resume workers unless
294     * there appear to be tasks available. On the other hand, we must
295     * quickly prod them into action when new tasks are submitted or
296 dl 1.78 * generated. In many usages, ramp-up time to activate workers is
297     * the main limiting factor in overall performance (this is
298     * compounded at program start-up by JIT compilation and
299     * allocation). So we try to streamline this as much as possible.
300     * We park/unpark workers after placing in an event wait queue
301     * when they cannot find work. This "queue" is actually a simple
302     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
303     * counter value (that reflects the number of times a worker has
304     * been inactivated) to avoid ABA effects (we need only as many
305     * version numbers as worker threads). Successors are held in
306     * field WorkQueue.nextWait. Queuing deals with several intrinsic
307     * races, mainly that a task-producing thread can miss seeing (and
308 dl 1.56 * signalling) another thread that gave up looking for work but
309     * has not yet entered the wait queue. We solve this by requiring
310 dl 1.78 * a full sweep of all workers (via repeated calls to method
311     * scan()) both before and after a newly waiting worker is added
312     * to the wait queue. During a rescan, the worker might release
313     * some other queued worker rather than itself, which has the same
314     * net effect. Because enqueued workers may actually be rescanning
315     * rather than waiting, we set and clear the "parker" field of
316 jsr166 1.84 * WorkQueues to reduce unnecessary calls to unpark. (This
317 dl 1.78 * requires a secondary recheck to avoid missed signals.) Note
318     * the unusual conventions about Thread.interrupts surrounding
319     * parking and other blocking: Because interrupts are used solely
320     * to alert threads to check termination, which is checked anyway
321     * upon blocking, we clear status (using Thread.interrupted)
322     * before any call to park, so that park does not immediately
323     * return due to status being set via some other unrelated call to
324     * interrupt in user code.
325 dl 1.52 *
326     * Signalling. We create or wake up workers only when there
327     * appears to be at least one task they might be able to find and
328 dl 1.172 * execute.
329 dl 1.52 *
330     * Trimming workers. To release resources after periods of lack of
331     * use, a worker starting to wait when the pool is quiescent will
332 dl 1.100 * time out and terminate if the pool has remained quiescent for a
333     * given period -- a short period if there are more threads than
334     * parallelism, longer as the number of threads decreases. This
335     * will slowly propagate, eventually terminating all workers after
336     * periods of non-use.
337 dl 1.52 *
338 dl 1.78 * Shutdown and Termination. A call to shutdownNow atomically sets
339 dl 1.105 * a plock bit and then (non-atomically) sets each worker's
340     * qlock status, cancels all unprocessed tasks, and wakes up
341 dl 1.78 * all waiting workers. Detecting whether termination should
342     * commence after a non-abrupt shutdown() call requires more work
343     * and bookkeeping. We need consensus about quiescence (i.e., that
344     * there is no more work). The active count provides a primary
345     * indication but non-abrupt shutdown still requires a rechecking
346     * scan for any workers that are inactive but not queued.
347     *
348 jsr166 1.84 * Joining Tasks
349     * =============
350 dl 1.78 *
351     * Any of several actions may be taken when one worker is waiting
352 jsr166 1.84 * to join a task stolen (or always held) by another. Because we
353 dl 1.78 * are multiplexing many tasks on to a pool of workers, we can't
354     * just let them block (as in Thread.join). We also cannot just
355     * reassign the joiner's run-time stack with another and replace
356     * it later, which would be a form of "continuation", that even if
357     * possible is not necessarily a good idea since we sometimes need
358 jsr166 1.84 * both an unblocked task and its continuation to progress.
359     * Instead we combine two tactics:
360 dl 1.19 *
361     * Helping: Arranging for the joiner to execute some task that it
362 dl 1.78 * would be running if the steal had not occurred.
363 dl 1.19 *
364     * Compensating: Unless there are already enough live threads,
365 dl 1.78 * method tryCompensate() may create or re-activate a spare
366     * thread to compensate for blocked joiners until they unblock.
367     *
368 dl 1.105 * A third form (implemented in tryRemoveAndExec) amounts to
369     * helping a hypothetical compensator: If we can readily tell that
370     * a possible action of a compensator is to steal and execute the
371     * task being joined, the joining thread can do so directly,
372     * without the need for a compensation thread (although at the
373     * expense of larger run-time stacks, but the tradeoff is
374     * typically worthwhile).
375 dl 1.52 *
376     * The ManagedBlocker extension API can't use helping so relies
377     * only on compensation in method awaitBlocker.
378 dl 1.19 *
379 dl 1.78 * The algorithm in tryHelpStealer entails a form of "linear"
380     * helping: Each worker records (in field currentSteal) the most
381     * recent task it stole from some other worker. Plus, it records
382     * (in field currentJoin) the task it is currently actively
383     * joining. Method tryHelpStealer uses these markers to try to
384     * find a worker to help (i.e., steal back a task from and execute
385     * it) that could hasten completion of the actively joined task.
386     * In essence, the joiner executes a task that would be on its own
387     * local deque had the to-be-joined task not been stolen. This may
388     * be seen as a conservative variant of the approach in Wagner &
389     * Calder "Leapfrogging: a portable technique for implementing
390     * efficient futures" SIGPLAN Notices, 1993
391     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
392     * that: (1) We only maintain dependency links across workers upon
393     * steals, rather than use per-task bookkeeping. This sometimes
394 dl 1.90 * requires a linear scan of workQueues array to locate stealers,
395     * but often doesn't because stealers leave hints (that may become
396 dl 1.112 * stale/wrong) of where to locate them. It is only a hint
397     * because a worker might have had multiple steals and the hint
398     * records only one of them (usually the most current). Hinting
399     * isolates cost to when it is needed, rather than adding to
400     * per-task overhead. (2) It is "shallow", ignoring nesting and
401     * potentially cyclic mutual steals. (3) It is intentionally
402 dl 1.78 * racy: field currentJoin is updated only while actively joining,
403     * which means that we miss links in the chain during long-lived
404     * tasks, GC stalls etc (which is OK since blocking in such cases
405     * is usually a good idea). (4) We bound the number of attempts
406 dl 1.90 * to find work (see MAX_HELP) and fall back to suspending the
407     * worker and if necessary replacing it with another.
408 dl 1.78 *
409 dl 1.105 * Helping actions for CountedCompleters are much simpler: Method
410     * helpComplete can take and execute any task with the same root
411     * as the task being waited on. However, this still entails some
412     * traversal of completer chains, so is less efficient than using
413     * CountedCompleters without explicit joins.
414     *
415 dl 1.52 * It is impossible to keep exactly the target parallelism number
416     * of threads running at any given time. Determining the
417 dl 1.24 * existence of conservatively safe helping targets, the
418     * availability of already-created spares, and the apparent need
419 dl 1.78 * to create new spares are all racy, so we rely on multiple
420 dl 1.90 * retries of each. Compensation in the apparent absence of
421     * helping opportunities is challenging to control on JVMs, where
422     * GC and other activities can stall progress of tasks that in
423     * turn stall out many other dependent tasks, without us being
424     * able to determine whether they will ever require compensation.
425     * Even though work-stealing otherwise encounters little
426     * degradation in the presence of more threads than cores,
427     * aggressively adding new threads in such cases entails risk of
428     * unwanted positive feedback control loops in which more threads
429     * cause more dependent stalls (as well as delayed progress of
430     * unblocked threads to the point that we know they are available)
431     * leading to more situations requiring more threads, and so
432     * on. This aspect of control can be seen as an (analytically
433 jsr166 1.92 * intractable) game with an opponent that may choose the worst
434 dl 1.90 * (for us) active thread to stall at any time. We take several
435     * precautions to bound losses (and thus bound gains), mainly in
436 dl 1.105 * methods tryCompensate and awaitJoin.
437     *
438     * Common Pool
439     * ===========
440     *
441 dl 1.134 * The static common Pool always exists after static
442 dl 1.105 * initialization. Since it (or any other created pool) need
443     * never be used, we minimize initial construction overhead and
444     * footprint to the setup of about a dozen fields, with no nested
445     * allocation. Most bootstrapping occurs within method
446     * fullExternalPush during the first submission to the pool.
447     *
448     * When external threads submit to the common pool, they can
449 dl 1.167 * perform subtask processing (see externalHelpJoin and related
450     * methods). This caller-helps policymakes it sensible to set
451     * common pool parallelism level to one (or more) less than the
452     * total number of available cores, or even zero for pure
453     * caller-runs. We do not need to record whether external
454 dl 1.105 * submissions are to the common pool -- if not, externalHelpJoin
455 jsr166 1.107 * returns quickly (at the most helping to signal some common pool
456 dl 1.105 * workers). These submitters would otherwise be blocked waiting
457     * for completion, so the extra effort (with liberally sprinkled
458     * task status checks) in inapplicable cases amounts to an odd
459     * form of limited spin-wait before blocking in ForkJoinTask.join.
460     *
461     * Style notes
462     * ===========
463     *
464     * There is a lot of representation-level coupling among classes
465     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
466     * fields of WorkQueue maintain data structures managed by
467     * ForkJoinPool, so are directly accessed. There is little point
468     * trying to reduce this, since any associated future changes in
469     * representations will need to be accompanied by algorithmic
470     * changes anyway. Several methods intrinsically sprawl because
471     * they must accumulate sets of consistent reads of volatiles held
472     * in local variables. Methods signalWork() and scan() are the
473     * main bottlenecks, so are especially heavily
474 dl 1.86 * micro-optimized/mangled. There are lots of inline assignments
475     * (of form "while ((local = field) != 0)") which are usually the
476     * simplest way to ensure the required read orderings (which are
477     * sometimes critical). This leads to a "C"-like style of listing
478     * declarations of these locals at the heads of methods or blocks.
479     * There are several occurrences of the unusual "do {} while
480     * (!cas...)" which is the simplest way to force an update of a
481 dl 1.105 * CAS'ed variable. There are also other coding oddities (including
482     * several unnecessary-looking hoisted null checks) that help
483 dl 1.86 * some methods perform reasonably even when interpreted (not
484     * compiled).
485 dl 1.52 *
486 jsr166 1.84 * The order of declarations in this file is:
487 dl 1.86 * (1) Static utility functions
488     * (2) Nested (static) classes
489     * (3) Static fields
490     * (4) Fields, along with constants used when unpacking some of them
491     * (5) Internal control methods
492     * (6) Callbacks and other support for ForkJoinTask methods
493     * (7) Exported methods
494     * (8) Static block initializing statics in minimally dependent order
495     */
496    
497     // Static utilities
498    
499     /**
500     * If there is a security manager, makes sure caller has
501     * permission to modify threads.
502 jsr166 1.1 */
503 dl 1.86 private static void checkPermission() {
504     SecurityManager security = System.getSecurityManager();
505     if (security != null)
506     security.checkPermission(modifyThreadPermission);
507     }
508    
509     // Nested classes
510 jsr166 1.1
511     /**
512 jsr166 1.8 * Factory for creating new {@link ForkJoinWorkerThread}s.
513     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
514     * for {@code ForkJoinWorkerThread} subclasses that extend base
515     * functionality or initialize threads with different contexts.
516 jsr166 1.1 */
517     public static interface ForkJoinWorkerThreadFactory {
518     /**
519     * Returns a new worker thread operating in the given pool.
520     *
521     * @param pool the pool this thread works in
522 jsr166 1.11 * @throws NullPointerException if the pool is null
523 jsr166 1.154 * @return the new worker thread
524 jsr166 1.1 */
525     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
526     }
527    
528     /**
529     * Default ForkJoinWorkerThreadFactory implementation; creates a
530     * new ForkJoinWorkerThread.
531     */
532 dl 1.112 static final class DefaultForkJoinWorkerThreadFactory
533 jsr166 1.1 implements ForkJoinWorkerThreadFactory {
534 dl 1.112 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
535 dl 1.14 return new ForkJoinWorkerThread(pool);
536 jsr166 1.1 }
537     }
538    
539     /**
540 dl 1.86 * Class for artificial tasks that are used to replace the target
541     * of local joins if they are removed from an interior queue slot
542     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
543     * actually do anything beyond having a unique identity.
544 jsr166 1.1 */
545 dl 1.86 static final class EmptyTask extends ForkJoinTask<Void> {
546 dl 1.105 private static final long serialVersionUID = -7721805057305804111L;
547 dl 1.86 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
548     public final Void getRawResult() { return null; }
549     public final void setRawResult(Void x) {}
550     public final boolean exec() { return true; }
551 jsr166 1.1 }
552    
553     /**
554 dl 1.78 * Queues supporting work-stealing as well as external task
555     * submission. See above for main rationale and algorithms.
556     * Implementation relies heavily on "Unsafe" intrinsics
557     * and selective use of "volatile":
558     *
559     * Field "base" is the index (mod array.length) of the least valid
560     * queue slot, which is always the next position to steal (poll)
561     * from if nonempty. Reads and writes require volatile orderings
562     * but not CAS, because updates are only performed after slot
563     * CASes.
564     *
565     * Field "top" is the index (mod array.length) of the next queue
566     * slot to push to or pop from. It is written only by owner thread
567 dl 1.105 * for push, or under lock for external/shared push, and accessed
568     * by other threads only after reading (volatile) base. Both top
569     * and base are allowed to wrap around on overflow, but (top -
570     * base) (or more commonly -(base - top) to force volatile read of
571     * base before top) still estimates size. The lock ("qlock") is
572     * forced to -1 on termination, causing all further lock attempts
573     * to fail. (Note: we don't need CAS for termination state because
574     * upon pool shutdown, all shared-queues will stop being used
575     * anyway.) Nearly all lock bodies are set up so that exceptions
576     * within lock bodies are "impossible" (modulo JVM errors that
577     * would cause failure anyway.)
578 dl 1.78 *
579     * The array slots are read and written using the emulation of
580     * volatiles/atomics provided by Unsafe. Insertions must in
581     * general use putOrderedObject as a form of releasing store to
582     * ensure that all writes to the task object are ordered before
583 dl 1.105 * its publication in the queue. All removals entail a CAS to
584     * null. The array is always a power of two. To ensure safety of
585     * Unsafe array operations, all accesses perform explicit null
586     * checks and implicit bounds checks via power-of-two masking.
587 dl 1.78 *
588     * In addition to basic queuing support, this class contains
589     * fields described elsewhere to control execution. It turns out
590 dl 1.105 * to work better memory-layout-wise to include them in this class
591     * rather than a separate class.
592 dl 1.78 *
593     * Performance on most platforms is very sensitive to placement of
594     * instances of both WorkQueues and their arrays -- we absolutely
595     * do not want multiple WorkQueue instances or multiple queue
596     * arrays sharing cache lines. (It would be best for queue objects
597     * and their arrays to share, but there is nothing available to
598 dl 1.167 * help arrange that). The @Contended annotation alerts JVMs to
599     * try to keep instances apart.
600 dl 1.78 */
601 jsr166 1.171 @sun.misc.Contended
602 dl 1.78 static final class WorkQueue {
603     /**
604     * Capacity of work-stealing queue array upon initialization.
605 dl 1.90 * Must be a power of two; at least 4, but should be larger to
606     * reduce or eliminate cacheline sharing among queues.
607     * Currently, it is much larger, as a partial workaround for
608     * the fact that JVMs often place arrays in locations that
609     * share GC bookkeeping (especially cardmarks) such that
610     * per-write accesses encounter serious memory contention.
611 dl 1.78 */
612 dl 1.90 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
613 dl 1.78
614     /**
615     * Maximum size for queue arrays. Must be a power of two less
616     * than or equal to 1 << (31 - width of array entry) to ensure
617     * lack of wraparound of index calculations, but defined to a
618     * value a bit less than this to help users trap runaway
619     * programs before saturating systems.
620     */
621     static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
622    
623     int seed; // for random scanning; initialize nonzero
624     volatile int eventCount; // encoded inactivation count; < 0 if inactive
625     int nextWait; // encoded record of next event waiter
626 dl 1.112 int hint; // steal or signal hint (index)
627 dl 1.78 int poolIndex; // index of this queue in pool (or 0)
628 dl 1.112 final int mode; // 0: lifo, > 0: fifo, < 0: shared
629     int nsteals; // number of steals
630 dl 1.105 volatile int qlock; // 1: locked, -1: terminate; else 0
631 dl 1.78 volatile int base; // index of next slot for poll
632     int top; // index of next slot for push
633     ForkJoinTask<?>[] array; // the elements (initially unallocated)
634 dl 1.90 final ForkJoinPool pool; // the containing pool (may be null)
635 dl 1.78 final ForkJoinWorkerThread owner; // owning thread or null if shared
636     volatile Thread parker; // == owner during call to park; else null
637 dl 1.95 volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
638 dl 1.78 ForkJoinTask<?> currentSteal; // current non-local task being executed
639 dl 1.112
640     WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
641     int seed) {
642 dl 1.90 this.pool = pool;
643 dl 1.78 this.owner = owner;
644 dl 1.112 this.mode = mode;
645     this.seed = seed;
646 dl 1.115 // Place indices in the center of array (that is not yet allocated)
647 dl 1.78 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
648     }
649    
650     /**
651 dl 1.115 * Returns the approximate number of tasks in the queue.
652     */
653     final int queueSize() {
654     int n = base - top; // non-owner callers must read base first
655     return (n >= 0) ? 0 : -n; // ignore transient negative
656     }
657    
658     /**
659     * Provides a more accurate estimate of whether this queue has
660     * any tasks than does queueSize, by checking whether a
661     * near-empty queue has at least one unclaimed task.
662     */
663     final boolean isEmpty() {
664     ForkJoinTask<?>[] a; int m, s;
665     int n = base - (s = top);
666     return (n >= 0 ||
667     (n == -1 &&
668     ((a = array) == null ||
669     (m = a.length - 1) < 0 ||
670     U.getObject
671     (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
672     }
673    
674     /**
675     * Pushes a task. Call only by owner in unshared queues. (The
676     * shared-queue version is embedded in method externalPush.)
677 dl 1.78 *
678     * @param task the task. Caller must ensure non-null.
679 jsr166 1.146 * @throws RejectedExecutionException if array cannot be resized
680 dl 1.78 */
681 dl 1.90 final void push(ForkJoinTask<?> task) {
682 dl 1.112 ForkJoinTask<?>[] a; ForkJoinPool p;
683 dl 1.172 int s = top, m;
684 dl 1.112 if ((a = array) != null) { // ignore if queue removed
685 dl 1.115 int j = (((m = a.length - 1) & s) << ASHIFT) + ABASE;
686     U.putOrderedObject(a, j, task);
687 dl 1.172 if ((top = s + 1) - base >= m)
688 dl 1.112 growArray();
689 dl 1.172 else if ((p = pool) != null)
690     p.signalWork(this);
691 dl 1.78 }
692     }
693    
694 dl 1.112 /**
695     * Initializes or doubles the capacity of array. Call either
696     * by owner or with lock held -- it is OK for base, but not
697     * top, to move while resizings are in progress.
698     */
699     final ForkJoinTask<?>[] growArray() {
700     ForkJoinTask<?>[] oldA = array;
701     int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
702     if (size > MAXIMUM_QUEUE_CAPACITY)
703     throw new RejectedExecutionException("Queue capacity exceeded");
704     int oldMask, t, b;
705     ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
706     if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
707     (t = top) - (b = base) > 0) {
708     int mask = size - 1;
709     do {
710     ForkJoinTask<?> x;
711     int oldj = ((b & oldMask) << ASHIFT) + ABASE;
712     int j = ((b & mask) << ASHIFT) + ABASE;
713     x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
714     if (x != null &&
715     U.compareAndSwapObject(oldA, oldj, x, null))
716     U.putObjectVolatile(a, j, x);
717     } while (++b != t);
718 dl 1.78 }
719 dl 1.112 return a;
720 dl 1.78 }
721    
722     /**
723 dl 1.90 * Takes next task, if one exists, in LIFO order. Call only
724 dl 1.102 * by owner in unshared queues.
725 dl 1.90 */
726     final ForkJoinTask<?> pop() {
727 dl 1.94 ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
728     if ((a = array) != null && (m = a.length - 1) >= 0) {
729 dl 1.90 for (int s; (s = top - 1) - base >= 0;) {
730 dl 1.94 long j = ((m & s) << ASHIFT) + ABASE;
731     if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
732 dl 1.90 break;
733     if (U.compareAndSwapObject(a, j, t, null)) {
734     top = s;
735     return t;
736     }
737     }
738     }
739     return null;
740     }
741    
742     /**
743     * Takes a task in FIFO order if b is base of queue and a task
744     * can be claimed without contention. Specialized versions
745     * appear in ForkJoinPool methods scan and tryHelpStealer.
746 dl 1.78 */
747 dl 1.90 final ForkJoinTask<?> pollAt(int b) {
748     ForkJoinTask<?> t; ForkJoinTask<?>[] a;
749     if ((a = array) != null) {
750 dl 1.86 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
751     if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
752     base == b &&
753 dl 1.78 U.compareAndSwapObject(a, j, t, null)) {
754 dl 1.170 U.putOrderedInt(this, QBASE, b + 1);
755 dl 1.78 return t;
756     }
757     }
758     return null;
759     }
760    
761     /**
762 dl 1.90 * Takes next task, if one exists, in FIFO order.
763 dl 1.78 */
764 dl 1.90 final ForkJoinTask<?> poll() {
765     ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
766     while ((b = base) - top < 0 && (a = array) != null) {
767     int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
768     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
769     if (t != null) {
770     if (base == b &&
771     U.compareAndSwapObject(a, j, t, null)) {
772 dl 1.170 U.putOrderedInt(this, QBASE, b + 1);
773 dl 1.78 return t;
774     }
775     }
776 dl 1.90 else if (base == b) {
777     if (b + 1 == top)
778     break;
779 dl 1.105 Thread.yield(); // wait for lagging update (very rare)
780 dl 1.90 }
781 dl 1.78 }
782     return null;
783     }
784    
785     /**
786     * Takes next task, if one exists, in order specified by mode.
787     */
788     final ForkJoinTask<?> nextLocalTask() {
789     return mode == 0 ? pop() : poll();
790     }
791    
792     /**
793     * Returns next task, if one exists, in order specified by mode.
794     */
795     final ForkJoinTask<?> peek() {
796     ForkJoinTask<?>[] a = array; int m;
797     if (a == null || (m = a.length - 1) < 0)
798     return null;
799     int i = mode == 0 ? top - 1 : base;
800     int j = ((i & m) << ASHIFT) + ABASE;
801     return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
802     }
803    
804     /**
805     * Pops the given task only if it is at the current top.
806 dl 1.105 * (A shared version is available only via FJP.tryExternalUnpush)
807 dl 1.78 */
808     final boolean tryUnpush(ForkJoinTask<?> t) {
809     ForkJoinTask<?>[] a; int s;
810     if ((a = array) != null && (s = top) != base &&
811     U.compareAndSwapObject
812     (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
813     top = s;
814     return true;
815     }
816     return false;
817     }
818    
819     /**
820 jsr166 1.84 * Removes and cancels all known tasks, ignoring any exceptions.
821 dl 1.78 */
822     final void cancelAll() {
823     ForkJoinTask.cancelIgnoringExceptions(currentJoin);
824     ForkJoinTask.cancelIgnoringExceptions(currentSteal);
825     for (ForkJoinTask<?> t; (t = poll()) != null; )
826     ForkJoinTask.cancelIgnoringExceptions(t);
827     }
828    
829 dl 1.86 /**
830     * Computes next value for random probes. Scans don't require
831     * a very high quality generator, but also not a crummy one.
832     * Marsaglia xor-shift is cheap and works well enough. Note:
833 dl 1.90 * This is manually inlined in its usages in ForkJoinPool to
834     * avoid writes inside busy scan loops.
835 dl 1.86 */
836     final int nextSeed() {
837     int r = seed;
838     r ^= r << 13;
839     r ^= r >>> 17;
840     return seed = r ^= r << 5;
841     }
842    
843 dl 1.104 // Specialized execution methods
844 dl 1.78
845     /**
846 dl 1.94 * Pops and runs tasks until empty.
847 dl 1.78 */
848 dl 1.94 private void popAndExecAll() {
849     // A bit faster than repeated pop calls
850     ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
851     while ((a = array) != null && (m = a.length - 1) >= 0 &&
852     (s = top - 1) - base >= 0 &&
853     (t = ((ForkJoinTask<?>)
854     U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
855     != null) {
856     if (U.compareAndSwapObject(a, j, t, null)) {
857     top = s;
858     t.doExec();
859 dl 1.90 }
860 dl 1.94 }
861     }
862    
863     /**
864     * Polls and runs tasks until empty.
865     */
866     private void pollAndExecAll() {
867     for (ForkJoinTask<?> t; (t = poll()) != null;)
868     t.doExec();
869     }
870    
871     /**
872 dl 1.105 * If present, removes from queue and executes the given task,
873     * or any other cancelled task. Returns (true) on any CAS
874 dl 1.94 * or consistency check failure so caller can retry.
875     *
876 jsr166 1.150 * @return false if no progress can be made, else true
877 dl 1.94 */
878 dl 1.105 final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
879     boolean stat = true, removed = false, empty = true;
880 dl 1.94 ForkJoinTask<?>[] a; int m, s, b, n;
881     if ((a = array) != null && (m = a.length - 1) >= 0 &&
882     (n = (s = top) - (b = base)) > 0) {
883     for (ForkJoinTask<?> t;;) { // traverse from s to b
884     int j = ((--s & m) << ASHIFT) + ABASE;
885     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
886     if (t == null) // inconsistent length
887     break;
888     else if (t == task) {
889     if (s + 1 == top) { // pop
890     if (!U.compareAndSwapObject(a, j, task, null))
891 dl 1.90 break;
892 dl 1.94 top = s;
893     removed = true;
894 dl 1.90 }
895 dl 1.94 else if (base == b) // replace with proxy
896     removed = U.compareAndSwapObject(a, j, task,
897     new EmptyTask());
898     break;
899     }
900     else if (t.status >= 0)
901     empty = false;
902     else if (s + 1 == top) { // pop and throw away
903     if (U.compareAndSwapObject(a, j, t, null))
904     top = s;
905     break;
906     }
907     if (--n == 0) {
908     if (!empty && base == b)
909 dl 1.105 stat = false;
910 dl 1.94 break;
911 dl 1.90 }
912     }
913 dl 1.78 }
914 dl 1.94 if (removed)
915     task.doExec();
916 dl 1.95 return stat;
917 dl 1.78 }
918    
919     /**
920 dl 1.105 * Polls for and executes the given task or any other task in
921 jsr166 1.149 * its CountedCompleter computation.
922 dl 1.104 */
923 dl 1.105 final boolean pollAndExecCC(ForkJoinTask<?> root) {
924     ForkJoinTask<?>[] a; int b; Object o;
925 dl 1.166 outer: while (root.status >= 0 && (b = base) - top < 0 &&
926     (a = array) != null) {
927 dl 1.105 long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
928     if ((o = U.getObject(a, j)) == null ||
929     !(o instanceof CountedCompleter))
930     break;
931     for (CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;;) {
932     if (r == root) {
933     if (base == b &&
934     U.compareAndSwapObject(a, j, t, null)) {
935 dl 1.170 U.putOrderedInt(this, QBASE, b + 1);
936 dl 1.105 t.doExec();
937     return true;
938 dl 1.104 }
939 dl 1.105 else
940     break; // restart
941 dl 1.104 }
942 dl 1.105 if ((r = r.completer) == null)
943     break outer; // not part of root computation
944 dl 1.104 }
945     }
946 dl 1.105 return false;
947 dl 1.104 }
948    
949     /**
950 dl 1.78 * Executes a top-level task and any local tasks remaining
951     * after execution.
952     */
953 dl 1.94 final void runTask(ForkJoinTask<?> t) {
954 dl 1.78 if (t != null) {
955 dl 1.105 (currentSteal = t).doExec();
956     currentSteal = null;
957 dl 1.126 ++nsteals;
958 dl 1.115 if (base - top < 0) { // process remaining local tasks
959 dl 1.94 if (mode == 0)
960     popAndExecAll();
961     else
962     pollAndExecAll();
963     }
964 dl 1.78 }
965     }
966    
967     /**
968 jsr166 1.84 * Executes a non-top-level (stolen) task.
969 dl 1.78 */
970     final void runSubtask(ForkJoinTask<?> t) {
971     if (t != null) {
972     ForkJoinTask<?> ps = currentSteal;
973 dl 1.105 (currentSteal = t).doExec();
974 dl 1.78 currentSteal = ps;
975     }
976     }
977    
978     /**
979 dl 1.86 * Returns true if owned and not known to be blocked.
980     */
981     final boolean isApparentlyUnblocked() {
982     Thread wt; Thread.State s;
983     return (eventCount >= 0 &&
984     (wt = owner) != null &&
985     (s = wt.getState()) != Thread.State.BLOCKED &&
986     s != Thread.State.WAITING &&
987     s != Thread.State.TIMED_WAITING);
988     }
989    
990 dl 1.78 // Unsafe mechanics
991     private static final sun.misc.Unsafe U;
992 dl 1.170 private static final long QBASE;
993 dl 1.105 private static final long QLOCK;
994 dl 1.78 private static final int ABASE;
995     private static final int ASHIFT;
996     static {
997     try {
998     U = sun.misc.Unsafe.getUnsafe();
999     Class<?> k = WorkQueue.class;
1000     Class<?> ak = ForkJoinTask[].class;
1001 dl 1.170 QBASE = U.objectFieldOffset
1002     (k.getDeclaredField("base"));
1003 dl 1.105 QLOCK = U.objectFieldOffset
1004     (k.getDeclaredField("qlock"));
1005 dl 1.78 ABASE = U.arrayBaseOffset(ak);
1006 jsr166 1.142 int scale = U.arrayIndexScale(ak);
1007     if ((scale & (scale - 1)) != 0)
1008     throw new Error("data type scale not a power of two");
1009     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1010 dl 1.78 } catch (Exception e) {
1011     throw new Error(e);
1012     }
1013     }
1014     }
1015 dl 1.14
1016 dl 1.112 // static fields (initialized in static initializer below)
1017    
1018     /**
1019     * Creates a new ForkJoinWorkerThread. This factory is used unless
1020     * overridden in ForkJoinPool constructors.
1021     */
1022     public static final ForkJoinWorkerThreadFactory
1023     defaultForkJoinWorkerThreadFactory;
1024    
1025 jsr166 1.1 /**
1026 dl 1.115 * Permission required for callers of methods that may start or
1027     * kill threads.
1028     */
1029     private static final RuntimePermission modifyThreadPermission;
1030    
1031     /**
1032 dl 1.101 * Common (static) pool. Non-null for public use unless a static
1033 dl 1.105 * construction exception, but internal usages null-check on use
1034     * to paranoically avoid potential initialization circularities
1035     * as well as to simplify generated code.
1036 dl 1.101 */
1037 dl 1.134 static final ForkJoinPool common;
1038 dl 1.101
1039     /**
1040 dl 1.160 * Common pool parallelism. To allow simpler use and management
1041     * when common pool threads are disabled, we allow the underlying
1042     * common.config field to be zero, but in that case still report
1043     * parallelism as 1 to reflect resulting caller-runs mechanics.
1044 dl 1.90 */
1045 dl 1.134 static final int commonParallelism;
1046 dl 1.90
1047     /**
1048 dl 1.105 * Sequence number for creating workerNamePrefix.
1049 dl 1.86 */
1050 dl 1.105 private static int poolNumberSequence;
1051 dl 1.86
1052 jsr166 1.1 /**
1053 jsr166 1.132 * Returns the next sequence number. We don't expect this to
1054     * ever contend, so use simple builtin sync.
1055 dl 1.83 */
1056 dl 1.105 private static final synchronized int nextPoolId() {
1057     return ++poolNumberSequence;
1058     }
1059 dl 1.86
1060     // static constants
1061    
1062     /**
1063 dl 1.105 * Initial timeout value (in nanoseconds) for the thread
1064     * triggering quiescence to park waiting for new work. On timeout,
1065     * the thread will instead try to shrink the number of
1066     * workers. The value should be large enough to avoid overly
1067     * aggressive shrinkage during most transient stalls (long GCs
1068     * etc).
1069 dl 1.86 */
1070 dl 1.105 private static final long IDLE_TIMEOUT = 2000L * 1000L * 1000L; // 2sec
1071 dl 1.86
1072     /**
1073 dl 1.100 * Timeout value when there are more threads than parallelism level
1074 dl 1.86 */
1075 dl 1.105 private static final long FAST_IDLE_TIMEOUT = 200L * 1000L * 1000L;
1076 dl 1.86
1077     /**
1078 dl 1.120 * Tolerance for idle timeouts, to cope with timer undershoots
1079     */
1080 dl 1.127 private static final long TIMEOUT_SLOP = 2000000L;
1081 dl 1.120
1082     /**
1083 dl 1.90 * The maximum stolen->joining link depth allowed in method
1084 dl 1.105 * tryHelpStealer. Must be a power of two. Depths for legitimate
1085 dl 1.90 * chains are unbounded, but we use a fixed constant to avoid
1086     * (otherwise unchecked) cycles and to bound staleness of
1087     * traversal parameters at the expense of sometimes blocking when
1088     * we could be helping.
1089     */
1090 dl 1.95 private static final int MAX_HELP = 64;
1091 dl 1.90
1092     /**
1093     * Increment for seed generators. See class ThreadLocal for
1094     * explanation.
1095     */
1096     private static final int SEED_INCREMENT = 0x61c88647;
1097 dl 1.83
1098 jsr166 1.163 /*
1099 dl 1.86 * Bits and masks for control variables
1100     *
1101     * Field ctl is a long packed with:
1102     * AC: Number of active running workers minus target parallelism (16 bits)
1103     * TC: Number of total workers minus target parallelism (16 bits)
1104     * ST: true if pool is terminating (1 bit)
1105     * EC: the wait count of top waiting thread (15 bits)
1106     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1107     *
1108     * When convenient, we can extract the upper 32 bits of counts and
1109     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1110     * (int)ctl. The ec field is never accessed alone, but always
1111     * together with id and st. The offsets of counts by the target
1112     * parallelism and the positionings of fields makes it possible to
1113     * perform the most common checks via sign tests of fields: When
1114     * ac is negative, there are not enough active workers, when tc is
1115     * negative, there are not enough total workers, and when e is
1116     * negative, the pool is terminating. To deal with these possibly
1117     * negative fields, we use casts in and out of "short" and/or
1118     * signed shifts to maintain signedness.
1119     *
1120     * When a thread is queued (inactivated), its eventCount field is
1121     * set negative, which is the only way to tell if a worker is
1122     * prevented from executing tasks, even though it must continue to
1123     * scan for them to avoid queuing races. Note however that
1124     * eventCount updates lag releases so usage requires care.
1125     *
1126 dl 1.105 * Field plock is an int packed with:
1127 dl 1.86 * SHUTDOWN: true if shutdown is enabled (1 bit)
1128 dl 1.105 * SEQ: a sequence lock, with PL_LOCK bit set if locked (30 bits)
1129     * SIGNAL: set when threads may be waiting on the lock (1 bit)
1130 dl 1.86 *
1131 dl 1.90 * The sequence number enables simple consistency checks:
1132     * Staleness of read-only operations on the workQueues array can
1133 dl 1.105 * be checked by comparing plock before vs after the reads.
1134 dl 1.86 */
1135    
1136     // bit positions/shifts for fields
1137     private static final int AC_SHIFT = 48;
1138     private static final int TC_SHIFT = 32;
1139     private static final int ST_SHIFT = 31;
1140     private static final int EC_SHIFT = 16;
1141    
1142     // bounds
1143     private static final int SMASK = 0xffff; // short bits
1144 dl 1.90 private static final int MAX_CAP = 0x7fff; // max #workers - 1
1145 dl 1.105 private static final int EVENMASK = 0xfffe; // even short bits
1146     private static final int SQMASK = 0x007e; // max 64 (even) slots
1147 dl 1.86 private static final int SHORT_SIGN = 1 << 15;
1148     private static final int INT_SIGN = 1 << 31;
1149    
1150     // masks
1151     private static final long STOP_BIT = 0x0001L << ST_SHIFT;
1152     private static final long AC_MASK = ((long)SMASK) << AC_SHIFT;
1153     private static final long TC_MASK = ((long)SMASK) << TC_SHIFT;
1154    
1155     // units for incrementing and decrementing
1156     private static final long TC_UNIT = 1L << TC_SHIFT;
1157     private static final long AC_UNIT = 1L << AC_SHIFT;
1158    
1159     // masks and units for dealing with u = (int)(ctl >>> 32)
1160     private static final int UAC_SHIFT = AC_SHIFT - 32;
1161     private static final int UTC_SHIFT = TC_SHIFT - 32;
1162     private static final int UAC_MASK = SMASK << UAC_SHIFT;
1163     private static final int UTC_MASK = SMASK << UTC_SHIFT;
1164     private static final int UAC_UNIT = 1 << UAC_SHIFT;
1165     private static final int UTC_UNIT = 1 << UTC_SHIFT;
1166    
1167     // masks and units for dealing with e = (int)ctl
1168     private static final int E_MASK = 0x7fffffff; // no STOP_BIT
1169     private static final int E_SEQ = 1 << EC_SHIFT;
1170    
1171 dl 1.105 // plock bits
1172 dl 1.86 private static final int SHUTDOWN = 1 << 31;
1173 dl 1.105 private static final int PL_LOCK = 2;
1174     private static final int PL_SIGNAL = 1;
1175     private static final int PL_SPINS = 1 << 8;
1176 dl 1.86
1177     // access mode for WorkQueue
1178     static final int LIFO_QUEUE = 0;
1179     static final int FIFO_QUEUE = 1;
1180     static final int SHARED_QUEUE = -1;
1181    
1182 dl 1.172 // Mininum number of scans before blocking in scan() and related methods
1183     private static final int MIN_RESCANS = 0x0fff;
1184 dl 1.112
1185 dl 1.86 // Instance fields
1186 dl 1.101 volatile long stealCount; // collects worker counts
1187 dl 1.86 volatile long ctl; // main pool control
1188 dl 1.112 volatile int plock; // shutdown status and seqLock
1189 dl 1.105 volatile int indexSeed; // worker/submitter index seed
1190 dl 1.112 final int config; // mode and parallelism level
1191 dl 1.86 WorkQueue[] workQueues; // main registry
1192 dl 1.112 final ForkJoinWorkerThreadFactory factory;
1193 jsr166 1.156 final UncaughtExceptionHandler ueh; // per-worker UEH
1194 dl 1.101 final String workerNamePrefix; // to create worker name string
1195    
1196 jsr166 1.145 /**
1197 dl 1.105 * Acquires the plock lock to protect worker array and related
1198     * updates. This method is called only if an initial CAS on plock
1199 jsr166 1.140 * fails. This acts as a spinlock for normal cases, but falls back
1200 dl 1.105 * to builtin monitor to block when (rarely) needed. This would be
1201     * a terrible idea for a highly contended lock, but works fine as
1202 dl 1.126 * a more conservative alternative to a pure spinlock.
1203 dl 1.105 */
1204     private int acquirePlock() {
1205 dl 1.139 int spins = PL_SPINS, ps, nps;
1206 dl 1.105 for (;;) {
1207     if (((ps = plock) & PL_LOCK) == 0 &&
1208     U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1209     return nps;
1210 dl 1.101 else if (spins >= 0) {
1211 dl 1.139 if (ThreadLocalRandom.nextSecondarySeed() >= 0)
1212 dl 1.101 --spins;
1213     }
1214 dl 1.105 else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1215 jsr166 1.106 synchronized (this) {
1216 dl 1.105 if ((plock & PL_SIGNAL) != 0) {
1217 dl 1.101 try {
1218     wait();
1219     } catch (InterruptedException ie) {
1220 dl 1.104 try {
1221     Thread.currentThread().interrupt();
1222     } catch (SecurityException ignore) {
1223     }
1224 dl 1.101 }
1225     }
1226     else
1227 dl 1.105 notifyAll();
1228 dl 1.101 }
1229     }
1230     }
1231     }
1232 dl 1.78
1233 jsr166 1.1 /**
1234 dl 1.105 * Unlocks and signals any thread waiting for plock. Called only
1235     * when CAS of seq value for unlock fails.
1236 jsr166 1.1 */
1237 dl 1.105 private void releasePlock(int ps) {
1238     plock = ps;
1239 jsr166 1.106 synchronized (this) { notifyAll(); }
1240 dl 1.78 }
1241 jsr166 1.1
1242 dl 1.112 /**
1243 dl 1.120 * Tries to create and start one worker if fewer than target
1244     * parallelism level exist. Adjusts counts etc on failure.
1245 dl 1.115 */
1246     private void tryAddWorker() {
1247 dl 1.112 long c; int u;
1248 dl 1.115 while ((u = (int)((c = ctl) >>> 32)) < 0 &&
1249     (u & SHORT_SIGN) != 0 && (int)c == 0) {
1250 dl 1.112 long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1251     ((u + UAC_UNIT) & UAC_MASK)) << 32;
1252 dl 1.115 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1253     ForkJoinWorkerThreadFactory fac;
1254     Throwable ex = null;
1255     ForkJoinWorkerThread wt = null;
1256     try {
1257     if ((fac = factory) != null &&
1258     (wt = fac.newThread(this)) != null) {
1259     wt.start();
1260     break;
1261     }
1262     } catch (Throwable e) {
1263     ex = e;
1264     }
1265     deregisterWorker(wt, ex);
1266     break;
1267     }
1268 dl 1.112 }
1269     }
1270    
1271     // Registering and deregistering workers
1272    
1273     /**
1274     * Callback from ForkJoinWorkerThread to establish and record its
1275     * WorkQueue. To avoid scanning bias due to packing entries in
1276     * front of the workQueues array, we treat the array as a simple
1277     * power-of-two hash table using per-thread seed as hash,
1278     * expanding as needed.
1279     *
1280     * @param wt the worker thread
1281 dl 1.115 * @return the worker's queue
1282 dl 1.112 */
1283 dl 1.115 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1284 jsr166 1.156 UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps;
1285 dl 1.115 wt.setDaemon(true);
1286     if ((handler = ueh) != null)
1287     wt.setUncaughtExceptionHandler(handler);
1288     do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
1289     s += SEED_INCREMENT) ||
1290     s == 0); // skip 0
1291     WorkQueue w = new WorkQueue(this, wt, config >>> 16, s);
1292     if (((ps = plock) & PL_LOCK) != 0 ||
1293     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1294     ps = acquirePlock();
1295     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1296     try {
1297     if ((ws = workQueues) != null) { // skip if shutting down
1298     int n = ws.length, m = n - 1;
1299     int r = (s << 1) | 1; // use odd-numbered indices
1300     if (ws[r &= m] != null) { // collision
1301     int probes = 0; // step by approx half size
1302     int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1303     while (ws[r = (r + step) & m] != null) {
1304     if (++probes >= n) {
1305     workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1306     m = n - 1;
1307     probes = 0;
1308 dl 1.94 }
1309     }
1310     }
1311 dl 1.115 w.eventCount = w.poolIndex = r; // volatile write orders
1312     ws[r] = w;
1313 dl 1.78 }
1314 dl 1.115 } finally {
1315     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1316     releasePlock(nps);
1317 dl 1.78 }
1318 dl 1.115 wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex)));
1319     return w;
1320 dl 1.78 }
1321 dl 1.19
1322 jsr166 1.1 /**
1323 dl 1.86 * Final callback from terminating worker, as well as upon failure
1324 dl 1.105 * to construct or start a worker. Removes record of worker from
1325     * array, and adjusts counts. If pool is shutting down, tries to
1326     * complete termination.
1327 dl 1.78 *
1328 jsr166 1.151 * @param wt the worker thread, or null if construction failed
1329 dl 1.78 * @param ex the exception causing failure, or null if none
1330 dl 1.45 */
1331 dl 1.78 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1332     WorkQueue w = null;
1333     if (wt != null && (w = wt.workQueue) != null) {
1334 dl 1.105 int ps;
1335     w.qlock = -1; // ensure set
1336 dl 1.112 long ns = w.nsteals, sc; // collect steal count
1337     do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1338     sc = stealCount, sc + ns));
1339 dl 1.105 if (((ps = plock) & PL_LOCK) != 0 ||
1340     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1341     ps = acquirePlock();
1342     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1343 dl 1.101 try {
1344 dl 1.105 int idx = w.poolIndex;
1345 dl 1.78 WorkQueue[] ws = workQueues;
1346 dl 1.90 if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1347 dl 1.86 ws[idx] = null;
1348 dl 1.78 } finally {
1349 dl 1.105 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1350     releasePlock(nps);
1351 dl 1.78 }
1352     }
1353    
1354 dl 1.126 long c; // adjust ctl counts
1355 dl 1.78 do {} while (!U.compareAndSwapLong
1356     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1357     ((c - TC_UNIT) & TC_MASK) |
1358     (c & ~(AC_MASK|TC_MASK)))));
1359    
1360 dl 1.120 if (!tryTerminate(false, false) && w != null && w.array != null) {
1361 dl 1.126 w.cancelAll(); // cancel remaining tasks
1362     WorkQueue[] ws; WorkQueue v; Thread p; int u, i, e;
1363     while ((u = (int)((c = ctl) >>> 32)) < 0 && (e = (int)c) >= 0) {
1364     if (e > 0) { // activate or create replacement
1365     if ((ws = workQueues) == null ||
1366     (i = e & SMASK) >= ws.length ||
1367 dl 1.130 (v = ws[i]) == null)
1368 dl 1.126 break;
1369     long nc = (((long)(v.nextWait & E_MASK)) |
1370     ((long)(u + UAC_UNIT) << 32));
1371     if (v.eventCount != (e | INT_SIGN))
1372     break;
1373     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1374     v.eventCount = (e + E_SEQ) & E_MASK;
1375     if ((p = v.parker) != null)
1376     U.unpark(p);
1377     break;
1378 dl 1.120 }
1379     }
1380     else {
1381     if ((short)u < 0)
1382     tryAddWorker();
1383     break;
1384     }
1385     }
1386 dl 1.78 }
1387 dl 1.120 if (ex == null) // help clean refs on way out
1388     ForkJoinTask.helpExpungeStaleExceptions();
1389     else // rethrow
1390 dl 1.104 ForkJoinTask.rethrow(ex);
1391 dl 1.78 }
1392 dl 1.52
1393 dl 1.86 // Submissions
1394    
1395     /**
1396     * Unless shutting down, adds the given task to a submission queue
1397     * at submitter's current queue index (modulo submission
1398 dl 1.105 * range). Only the most common path is directly handled in this
1399     * method. All others are relayed to fullExternalPush.
1400 dl 1.90 *
1401     * @param task the task. Caller must ensure non-null.
1402 dl 1.86 */
1403 dl 1.105 final void externalPush(ForkJoinTask<?> task) {
1404 dl 1.139 WorkQueue[] ws; WorkQueue q; int z, m; ForkJoinTask<?>[] a;
1405     if ((z = ThreadLocalRandom.getProbe()) != 0 && plock > 0 &&
1406 dl 1.105 (ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
1407 dl 1.139 (q = ws[m & z & SQMASK]) != null &&
1408 dl 1.105 U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1409 dl 1.172 int s = q.top, am;
1410     if ((a = q.array) != null && (am = a.length - 1) > s - q.base) {
1411     int j = ((am & s) << ASHIFT) + ABASE;
1412 dl 1.115 U.putOrderedObject(a, j, task);
1413 dl 1.105 q.top = s + 1; // push on to deque
1414     q.qlock = 0;
1415 dl 1.172 signalWork(q);
1416 dl 1.90 return;
1417     }
1418 dl 1.105 q.qlock = 0;
1419 dl 1.83 }
1420 dl 1.105 fullExternalPush(task);
1421 dl 1.83 }
1422 dl 1.45
1423 dl 1.100 /**
1424 dl 1.105 * Full version of externalPush. This method is called, among
1425     * other times, upon the first submission of the first task to the
1426 dl 1.131 * pool, so must perform secondary initialization. It also
1427     * detects first submission by an external thread by looking up
1428     * its ThreadLocal, and creates a new shared queue if the one at
1429     * index if empty or contended. The plock lock body must be
1430     * exception-free (so no try/finally) so we optimistically
1431     * allocate new queues outside the lock and throw them away if
1432     * (very rarely) not needed.
1433     *
1434     * Secondary initialization occurs when plock is zero, to create
1435     * workQueue array and set plock to a valid value. This lock body
1436     * must also be exception-free. Because the plock seq value can
1437     * eventually wrap around zero, this method harmlessly fails to
1438     * reinitialize if workQueues exists, while still advancing plock.
1439 dl 1.105 */
1440     private void fullExternalPush(ForkJoinTask<?> task) {
1441 dl 1.139 int r;
1442     if ((r = ThreadLocalRandom.getProbe()) == 0) {
1443     ThreadLocalRandom.localInit();
1444     r = ThreadLocalRandom.getProbe();
1445     }
1446     for (;;) {
1447 dl 1.112 WorkQueue[] ws; WorkQueue q; int ps, m, k;
1448 dl 1.139 boolean move = false;
1449     if ((ps = plock) < 0)
1450 dl 1.105 throw new RejectedExecutionException();
1451 dl 1.112 else if (ps == 0 || (ws = workQueues) == null ||
1452 dl 1.131 (m = ws.length - 1) < 0) { // initialize workQueues
1453     int p = config & SMASK; // find power of two table size
1454     int n = (p > 1) ? p - 1 : 1; // ensure at least 2 slots
1455     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4;
1456     n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1;
1457     WorkQueue[] nws = ((ws = workQueues) == null || ws.length == 0 ?
1458     new WorkQueue[n] : null);
1459     if (((ps = plock) & PL_LOCK) != 0 ||
1460     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1461     ps = acquirePlock();
1462     if (((ws = workQueues) == null || ws.length == 0) && nws != null)
1463     workQueues = nws;
1464     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1465     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1466     releasePlock(nps);
1467     }
1468 dl 1.112 else if ((q = ws[k = r & m & SQMASK]) != null) {
1469 dl 1.115 if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
1470     ForkJoinTask<?>[] a = q.array;
1471     int s = q.top;
1472     boolean submitted = false;
1473     try { // locked version of push
1474     if ((a != null && a.length > s + 1 - q.base) ||
1475     (a = q.growArray()) != null) { // must presize
1476     int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
1477     U.putOrderedObject(a, j, task);
1478     q.top = s + 1;
1479     submitted = true;
1480     }
1481     } finally {
1482     q.qlock = 0; // unlock
1483     }
1484     if (submitted) {
1485     signalWork(q);
1486     return;
1487     }
1488     }
1489 dl 1.139 move = true; // move on failure
1490 dl 1.112 }
1491     else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
1492     q = new WorkQueue(this, null, SHARED_QUEUE, r);
1493     if (((ps = plock) & PL_LOCK) != 0 ||
1494 dl 1.105 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1495     ps = acquirePlock();
1496 dl 1.112 if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
1497     ws[k] = q;
1498 dl 1.105 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1499     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1500     releasePlock(nps);
1501     }
1502 dl 1.112 else
1503 dl 1.139 move = true; // move if busy
1504     if (move)
1505     r = ThreadLocalRandom.advanceProbe(r);
1506 dl 1.104 }
1507 dl 1.102 }
1508    
1509 dl 1.78 // Maintaining ctl counts
1510 dl 1.17
1511     /**
1512 jsr166 1.84 * Increments active count; mainly called upon return from blocking.
1513 dl 1.19 */
1514 dl 1.78 final void incrementActiveCount() {
1515 dl 1.52 long c;
1516 dl 1.78 do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1517 dl 1.19 }
1518    
1519     /**
1520 dl 1.115 * Tries to create or activate a worker if too few are active.
1521     *
1522 dl 1.172 * @param q if non-null, the queue holding tasks to be processed
1523 dl 1.105 */
1524 dl 1.115 final void signalWork(WorkQueue q) {
1525 dl 1.172 long c; int e, u, i, n; WorkQueue[] ws; WorkQueue w; Thread p;
1526     if ((u = (int)((c = ctl) >>> 32)) < 0) {
1527     if ((e = (int)c) > 0) {
1528     if ((ws = workQueues) != null && ws.length > (i = e & SMASK) &&
1529     (w = ws[i]) != null) {
1530     long nc = (((long)(w.nextWait & E_MASK)) |
1531     ((long)(u + UAC_UNIT) << 32));
1532     if (w.eventCount == (e | INT_SIGN) &&
1533     U.compareAndSwapLong(this, CTL, c, nc)) {
1534     w.eventCount = (e + E_SEQ) & E_MASK;
1535     if ((p = w.parker) != null)
1536     U.unpark(p);
1537     }
1538     else
1539     retrySignalWork(q);
1540     }
1541     }
1542     else if ((short)u < 0)
1543     tryAddWorker();
1544     }
1545     }
1546    
1547     /**
1548     * Fallback version of signalWork, triggered if release fails
1549     * and the calling queue is non-empty;
1550     */
1551     final void retrySignalWork(WorkQueue q) {
1552 dl 1.115 long c; int e, u, i, n; WorkQueue[] ws; WorkQueue w; Thread p;
1553 dl 1.172 while ((q != null && !q.isEmpty()) &&
1554     (u = (int)((c = ctl) >>> 32)) < 0) {
1555 dl 1.105 if ((e = (int)c) > 0) {
1556     if ((ws = workQueues) != null && ws.length > (i = e & SMASK) &&
1557 dl 1.172 (w = ws[i]) != null) {
1558 dl 1.86 long nc = (((long)(w.nextWait & E_MASK)) |
1559     ((long)(u + UAC_UNIT) << 32));
1560 dl 1.172 if (w.eventCount == (e | INT_SIGN) &&
1561     U.compareAndSwapLong(this, CTL, c, nc)) {
1562 dl 1.86 w.eventCount = (e + E_SEQ) & E_MASK;
1563 dl 1.115 if ((p = w.parker) != null)
1564 dl 1.105 U.unpark(p);
1565 dl 1.115 break;
1566 dl 1.105 }
1567 dl 1.86 }
1568     else
1569 dl 1.52 break;
1570 dl 1.78 }
1571 dl 1.115 else {
1572     if ((short)u < 0)
1573     tryAddWorker();
1574     break;
1575 dl 1.52 }
1576     }
1577 dl 1.14 }
1578    
1579 dl 1.90 // Scanning for tasks
1580    
1581 dl 1.14 /**
1582 dl 1.90 * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1583 dl 1.14 */
1584 dl 1.90 final void runWorker(WorkQueue w) {
1585 dl 1.115 w.growArray(); // allocate queue
1586     do { w.runTask(scan(w)); } while (w.qlock >= 0);
1587 dl 1.14 }
1588    
1589     /**
1590 dl 1.78 * Scans for and, if found, returns one task, else possibly
1591     * inactivates the worker. This method operates on single reads of
1592 dl 1.90 * volatile state and is designed to be re-invoked continuously,
1593     * in part because it returns upon detecting inconsistencies,
1594 dl 1.78 * contention, or state changes that indicate possible success on
1595     * re-invocation.
1596     *
1597 dl 1.112 * The scan searches for tasks across queues (starting at a random
1598     * index, and relying on registerWorker to irregularly scatter
1599     * them within array to avoid bias), checking each at least twice.
1600     * The scan terminates upon either finding a non-empty queue, or
1601     * completing the sweep. If the worker is not inactivated, it
1602     * takes and returns a task from this queue. Otherwise, if not
1603     * activated, it signals workers (that may include itself) and
1604     * returns so caller can retry. Also returns for true if the
1605     * worker array may have changed during an empty scan. On failure
1606     * to find a task, we take one of the following actions, after
1607     * which the caller will retry calling this method unless
1608     * terminated.
1609 dl 1.78 *
1610 dl 1.86 * * If pool is terminating, terminate the worker.
1611     *
1612 dl 1.78 * * If not already enqueued, try to inactivate and enqueue the
1613 dl 1.90 * worker on wait queue. Or, if inactivating has caused the pool
1614 dl 1.126 * to be quiescent, relay to idleAwaitWork to possibly shrink
1615     * pool.
1616 dl 1.90 *
1617 dl 1.105 * * If already enqueued and none of the above apply, possibly
1618 dl 1.126 * park awaiting signal, else lingering to help scan and signal.
1619     *
1620     * * If a non-empty queue discovered or left as a hint,
1621 jsr166 1.133 * help wake up other workers before return.
1622 dl 1.78 *
1623     * @param w the worker (via its WorkQueue)
1624 jsr166 1.98 * @return a task or null if none found
1625 dl 1.78 */
1626     private final ForkJoinTask<?> scan(WorkQueue w) {
1627 dl 1.115 WorkQueue[] ws; int m;
1628 dl 1.112 int ps = plock; // read plock before ws
1629     if (w != null && (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1630     int ec = w.eventCount; // ec is negative if inactive
1631     int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1632 dl 1.172 int j = (m << 1) | (ec < 0 ? MIN_RESCANS : 1);
1633 dl 1.115 do {
1634 dl 1.172 WorkQueue q; int b;
1635     if ((q = ws[(r - j) & m]) != null &&
1636     (b = q.base) - q.top < 0) { // probably nonempty
1637     ForkJoinTask<?>[] a = q.array;
1638     if ((ec >= 0 || (ec = w.eventCount) >= 0) && a != null) {
1639     long i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1640     ForkJoinTask<?> t =
1641     (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1642 dl 1.170 if (q.base == b && t != null &&
1643     U.compareAndSwapObject(a, i, t, null)) {
1644 dl 1.172 U.putOrderedInt(q, QBASE, b + 1);
1645 dl 1.170 return t; // taken
1646     }
1647 dl 1.112 }
1648 dl 1.172 if (j < m) // must restart to revisit
1649     break;
1650 dl 1.115 }
1651     } while (--j >= 0);
1652    
1653 dl 1.172 int e, ns; long c, sc;
1654     if (j >= 0 || plock != ps) { // incomplete scan
1655     if (w.eventCount < 0) // help activate for next time
1656     signalWork(null);
1657     }
1658     else if ((e = (int)(c = ctl)) < 0)
1659     w.qlock = -1; // pool is terminating
1660     else if (ec >= 0) { // try to enqueue/inactivate
1661     long nc = (((long)ec |
1662     ((c - AC_UNIT) & (AC_MASK|TC_MASK))));
1663     w.nextWait = e; // link and mark inactive
1664     w.eventCount = ec | INT_SIGN;
1665     if (!U.compareAndSwapLong(this, CTL, c, nc))
1666     w.eventCount = ec; // unmark on CAS failure
1667     else if ((int)(c >> AC_SHIFT) == 1 - (config & SMASK))
1668     idleAwaitWork(w, nc, c);
1669     }
1670     else if ((ns = w.nsteals) != 0) {
1671 dl 1.126 if (U.compareAndSwapLong(this, STEALCOUNT,
1672     sc = stealCount, sc + ns))
1673     w.nsteals = 0; // collect steals and rescan
1674     }
1675 dl 1.172 else if (w.eventCount < 0 && ctl == c) {
1676     Thread wt = Thread.currentThread();
1677     Thread.interrupted(); // clear status
1678     U.putObject(wt, PARKBLOCKER, this);
1679     w.parker = wt; // emulate LockSupport.park
1680     if (w.eventCount < 0 && ctl == c)// recheck
1681     U.park(false, 0L); // block
1682     w.parker = null;
1683     U.putObject(wt, PARKBLOCKER, null);
1684 dl 1.115 }
1685 dl 1.52 }
1686 dl 1.78 return null;
1687 dl 1.14 }
1688    
1689     /**
1690 dl 1.90 * If inactivating worker w has caused the pool to become
1691     * quiescent, checks for pool termination, and, so long as this is
1692 dl 1.100 * not the only worker, waits for event for up to a given
1693     * duration. On timeout, if ctl has not changed, terminates the
1694 dl 1.90 * worker, which will in turn wake up another worker to possibly
1695     * repeat this process.
1696 dl 1.52 *
1697 dl 1.78 * @param w the calling worker
1698 dl 1.90 * @param currentCtl the ctl value triggering possible quiescence
1699     * @param prevCtl the ctl value to restore if thread is terminated
1700 dl 1.14 */
1701 dl 1.90 private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1702 dl 1.172 if (w != null && w.eventCount < 0 && !tryTerminate(false, false) &&
1703     (int)prevCtl != 0 && ctl == currentCtl) {
1704     int ns = w.nsteals;
1705     if (ns != 0) {
1706     w.nsteals = 0;
1707     long sc;
1708     do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1709     sc = stealCount, sc + ns));
1710     }
1711 dl 1.100 int dc = -(short)(currentCtl >>> TC_SHIFT);
1712     long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1713 dl 1.120 long deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
1714 dl 1.90 Thread wt = Thread.currentThread();
1715 dl 1.172 int spins = MIN_RESCANS; // poll before blocking
1716 dl 1.90 while (ctl == currentCtl) {
1717 dl 1.172 if (spins >= 0) {
1718     if (w.nextSeed() < 0)
1719     --spins;
1720 dl 1.78 }
1721 dl 1.172 else {
1722     Thread.interrupted(); // timed variant of version in scan()
1723     U.putObject(wt, PARKBLOCKER, this);
1724     w.parker = wt;
1725     if (ctl == currentCtl)
1726     U.park(false, parkTime);
1727     w.parker = null;
1728     U.putObject(wt, PARKBLOCKER, null);
1729     if (ctl != currentCtl)
1730     break;
1731     if (deadline - System.nanoTime() <= 0L &&
1732     U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1733     w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1734     w.qlock = -1; // shrink
1735 dl 1.105 break;
1736 dl 1.122 }
1737 dl 1.120 }
1738     }
1739     }
1740     }
1741    
1742     /**
1743 dl 1.78 * Tries to locate and execute tasks for a stealer of the given
1744     * task, or in turn one of its stealers, Traces currentSteal ->
1745     * currentJoin links looking for a thread working on a descendant
1746     * of the given task and with a non-empty queue to steal back and
1747     * execute tasks from. The first call to this method upon a
1748     * waiting join will often entail scanning/search, (which is OK
1749     * because the joiner has nothing better to do), but this method
1750     * leaves hints in workers to speed up subsequent calls. The
1751     * implementation is very branchy to cope with potential
1752     * inconsistencies or loops encountering chains that are stale,
1753 dl 1.95 * unknown, or so long that they are likely cyclic.
1754 dl 1.78 *
1755     * @param joiner the joining worker
1756     * @param task the task to join
1757 dl 1.95 * @return 0 if no progress can be made, negative if task
1758     * known complete, else positive
1759 dl 1.78 */
1760 dl 1.95 private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1761     int stat = 0, steps = 0; // bound to avoid cycles
1762     if (joiner != null && task != null) { // hoist null checks
1763     restart: for (;;) {
1764     ForkJoinTask<?> subtask = task; // current target
1765     for (WorkQueue j = joiner, v;;) { // v is stealer of subtask
1766     WorkQueue[] ws; int m, s, h;
1767     if ((s = task.status) < 0) {
1768     stat = s;
1769     break restart;
1770     }
1771     if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1772     break restart; // shutting down
1773 dl 1.112 if ((v = ws[h = (j.hint | 1) & m]) == null ||
1774 dl 1.95 v.currentSteal != subtask) {
1775     for (int origin = h;;) { // find stealer
1776     if (((h = (h + 2) & m) & 15) == 1 &&
1777     (subtask.status < 0 || j.currentJoin != subtask))
1778     continue restart; // occasional staleness check
1779     if ((v = ws[h]) != null &&
1780     v.currentSteal == subtask) {
1781 dl 1.112 j.hint = h; // save hint
1782 dl 1.95 break;
1783     }
1784     if (h == origin)
1785     break restart; // cannot find stealer
1786 dl 1.78 }
1787     }
1788 dl 1.95 for (;;) { // help stealer or descend to its stealer
1789     ForkJoinTask[] a; int b;
1790     if (subtask.status < 0) // surround probes with
1791     continue restart; // consistency checks
1792     if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1793     int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1794     ForkJoinTask<?> t =
1795     (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1796     if (subtask.status < 0 || j.currentJoin != subtask ||
1797     v.currentSteal != subtask)
1798     continue restart; // stale
1799     stat = 1; // apparent progress
1800     if (t != null && v.base == b &&
1801     U.compareAndSwapObject(a, i, t, null)) {
1802 dl 1.170 U.putOrderedInt(v, QBASE, b + 1);
1803 dl 1.95 joiner.runSubtask(t);
1804     }
1805     else if (v.base == b && ++steps == MAX_HELP)
1806     break restart; // v apparently stalled
1807     }
1808     else { // empty -- try to descend
1809     ForkJoinTask<?> next = v.currentJoin;
1810     if (subtask.status < 0 || j.currentJoin != subtask ||
1811     v.currentSteal != subtask)
1812     continue restart; // stale
1813     else if (next == null || ++steps == MAX_HELP)
1814     break restart; // dead-end or maybe cyclic
1815     else {
1816     subtask = next;
1817     j = v;
1818     break;
1819     }
1820 dl 1.78 }
1821 dl 1.52 }
1822 dl 1.19 }
1823 dl 1.78 }
1824 dl 1.14 }
1825 dl 1.95 return stat;
1826 dl 1.22 }
1827    
1828 dl 1.52 /**
1829 dl 1.105 * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1830 jsr166 1.111 * and run tasks within the target's computation.
1831 dl 1.105 *
1832     * @param task the task to join
1833 dl 1.19 */
1834 dl 1.166 private int helpComplete(ForkJoinTask<?> task) {
1835 dl 1.167 WorkQueue[] ws; int m;
1836     if (task != null && (ws = workQueues) != null &&
1837 dl 1.105 (m = ws.length - 1) >= 0) {
1838 dl 1.172 int scans = m | MIN_RESCANS;
1839     for (int j = 1, k = scans;;) {
1840 dl 1.167 WorkQueue q; int s;
1841 dl 1.105 if ((s = task.status) < 0)
1842     return s;
1843 dl 1.172 if ((q = ws[j & m]) != null && q.pollAndExecCC(task))
1844     k = scans;
1845     else if (--k >= 0)
1846     j += 2;
1847     else
1848 dl 1.78 break;
1849 dl 1.52 }
1850     }
1851 dl 1.105 return 0;
1852 dl 1.14 }
1853    
1854     /**
1855 dl 1.90 * Tries to decrement active count (sometimes implicitly) and
1856     * possibly release or create a compensating worker in preparation
1857     * for blocking. Fails on contention or termination. Otherwise,
1858 dl 1.105 * adds a new thread if no idle workers are available and pool
1859     * may become starved.
1860 dl 1.90 */
1861 dl 1.105 final boolean tryCompensate() {
1862 dl 1.112 int pc = config & SMASK, e, i, tc; long c;
1863 dl 1.105 WorkQueue[] ws; WorkQueue w; Thread p;
1864 dl 1.112 if ((ws = workQueues) != null && (e = (int)(c = ctl)) >= 0) {
1865 dl 1.105 if (e != 0 && (i = e & SMASK) < ws.length &&
1866     (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1867     long nc = ((long)(w.nextWait & E_MASK) |
1868     (c & (AC_MASK|TC_MASK)));
1869     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1870     w.eventCount = (e + E_SEQ) & E_MASK;
1871     if ((p = w.parker) != null)
1872     U.unpark(p);
1873     return true; // replace with idle worker
1874 dl 1.90 }
1875     }
1876 dl 1.112 else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
1877     (int)(c >> AC_SHIFT) + pc > 1) {
1878 dl 1.105 long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1879     if (U.compareAndSwapLong(this, CTL, c, nc))
1880 dl 1.112 return true; // no compensation
1881 dl 1.105 }
1882 dl 1.112 else if (tc + pc < MAX_CAP) {
1883 dl 1.105 long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1884     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1885 dl 1.115 ForkJoinWorkerThreadFactory fac;
1886     Throwable ex = null;
1887     ForkJoinWorkerThread wt = null;
1888     try {
1889     if ((fac = factory) != null &&
1890     (wt = fac.newThread(this)) != null) {
1891     wt.start();
1892     return true;
1893     }
1894     } catch (Throwable rex) {
1895     ex = rex;
1896     }
1897     deregisterWorker(wt, ex); // clean up and return false
1898 dl 1.90 }
1899     }
1900     }
1901     return false;
1902     }
1903    
1904     /**
1905 jsr166 1.93 * Helps and/or blocks until the given task is done.
1906 dl 1.90 *
1907     * @param joiner the joining worker
1908     * @param task the task
1909     * @return task status on exit
1910     */
1911     final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1912 dl 1.105 int s = 0;
1913     if (joiner != null && task != null && (s = task.status) >= 0) {
1914 dl 1.95 ForkJoinTask<?> prevJoin = joiner.currentJoin;
1915 dl 1.94 joiner.currentJoin = task;
1916 dl 1.115 do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
1917 dl 1.105 joiner.tryRemoveAndExec(task)); // process local tasks
1918 dl 1.172 if (s >= 0 && (s = task.status) >= 0 &&
1919     (task instanceof CountedCompleter))
1920     s = helpComplete(task);
1921 dl 1.105 while (s >= 0 && (s = task.status) >= 0) {
1922 dl 1.115 if ((!joiner.isEmpty() || // try helping
1923 dl 1.105 (s = tryHelpStealer(joiner, task)) == 0) &&
1924 dl 1.112 (s = task.status) >= 0) {
1925 dl 1.172 if (tryCompensate()) {
1926 dl 1.112 if (task.trySetSignal() && (s = task.status) >= 0) {
1927     synchronized (task) {
1928     if (task.status >= 0) {
1929     try { // see ForkJoinTask
1930     task.wait(); // for explanation
1931     } catch (InterruptedException ie) {
1932     }
1933 dl 1.90 }
1934 dl 1.112 else
1935     task.notifyAll();
1936 dl 1.90 }
1937     }
1938 dl 1.172 // reactivate
1939     if (false) { // possible hotspot bug?
1940     U.getAndAddLong(this, CTL, AC_UNIT);
1941     }
1942     else {
1943     long c;
1944     do {} while (!U.compareAndSwapLong
1945     (this, CTL, c = ctl, c + AC_UNIT));
1946     }
1947 dl 1.90 }
1948     }
1949     }
1950 dl 1.105 joiner.currentJoin = prevJoin;
1951 dl 1.90 }
1952 dl 1.94 return s;
1953 dl 1.90 }
1954    
1955     /**
1956     * Stripped-down variant of awaitJoin used by timed joins. Tries
1957     * to help join only while there is continuous progress. (Caller
1958     * will then enter a timed wait.)
1959     *
1960     * @param joiner the joining worker
1961     * @param task the task
1962     */
1963 dl 1.105 final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
1964 dl 1.90 int s;
1965 dl 1.105 if (joiner != null && task != null && (s = task.status) >= 0) {
1966     ForkJoinTask<?> prevJoin = joiner.currentJoin;
1967     joiner.currentJoin = task;
1968 dl 1.115 do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
1969 dl 1.105 joiner.tryRemoveAndExec(task));
1970 dl 1.172 if (s >= 0 && (s = task.status) >= 0 &&
1971     (task instanceof CountedCompleter))
1972     s = helpComplete(task);
1973 dl 1.115 if (s >= 0 && joiner.isEmpty()) {
1974 dl 1.105 do {} while (task.status >= 0 &&
1975     tryHelpStealer(joiner, task) > 0);
1976     }
1977     joiner.currentJoin = prevJoin;
1978     }
1979 dl 1.90 }
1980    
1981     /**
1982     * Returns a (probably) non-empty steal queue, if one is found
1983 dl 1.131 * during a scan, else null. This method must be retried by
1984     * caller if, by the time it tries to use the queue, it is empty.
1985 dl 1.105 * @param r a (random) seed for scanning
1986 dl 1.78 */
1987 dl 1.105 private WorkQueue findNonEmptyStealQueue(int r) {
1988 dl 1.131 for (;;) {
1989     int ps = plock, m; WorkQueue[] ws; WorkQueue q;
1990     if ((ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1991     for (int j = (m + 1) << 2; j >= 0; --j) {
1992     if ((q = ws[(((r + j) << 1) | 1) & m]) != null &&
1993     q.base - q.top < 0)
1994     return q;
1995 dl 1.52 }
1996     }
1997 dl 1.131 if (plock == ps)
1998     return null;
1999 dl 1.22 }
2000     }
2001    
2002     /**
2003 dl 1.78 * Runs tasks until {@code isQuiescent()}. We piggyback on
2004     * active count ctl maintenance, but rather than blocking
2005     * when tasks cannot be found, we rescan until all others cannot
2006     * find tasks either.
2007     */
2008     final void helpQuiescePool(WorkQueue w) {
2009     for (boolean active = true;;) {
2010 dl 1.131 long c; WorkQueue q; ForkJoinTask<?> t; int b;
2011 dl 1.172 while ((t = w.nextLocalTask()) != null)
2012 dl 1.131 t.doExec();
2013     if ((q = findNonEmptyStealQueue(w.nextSeed())) != null) {
2014 dl 1.78 if (!active) { // re-establish active count
2015     active = true;
2016     do {} while (!U.compareAndSwapLong
2017     (this, CTL, c = ctl, c + AC_UNIT));
2018     }
2019 dl 1.172 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2020 dl 1.78 w.runSubtask(t);
2021     }
2022 dl 1.131 else if (active) { // decrement active count without queuing
2023     long nc = (c = ctl) - AC_UNIT;
2024     if ((int)(nc >> AC_SHIFT) + (config & SMASK) == 0)
2025     return; // bypass decrement-then-increment
2026     if (U.compareAndSwapLong(this, CTL, c, nc))
2027 dl 1.78 active = false;
2028 dl 1.22 }
2029 dl 1.131 else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) == 0 &&
2030     U.compareAndSwapLong(this, CTL, c, c + AC_UNIT))
2031     return;
2032 dl 1.22 }
2033     }
2034    
2035     /**
2036 jsr166 1.84 * Gets and removes a local or stolen task for the given worker.
2037 dl 1.78 *
2038     * @return a task, if available
2039 dl 1.22 */
2040 dl 1.78 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2041     for (ForkJoinTask<?> t;;) {
2042 dl 1.90 WorkQueue q; int b;
2043 dl 1.78 if ((t = w.nextLocalTask()) != null)
2044     return t;
2045 dl 1.105 if ((q = findNonEmptyStealQueue(w.nextSeed())) == null)
2046 dl 1.78 return null;
2047 dl 1.172 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2048 dl 1.78 return t;
2049 dl 1.52 }
2050 dl 1.14 }
2051    
2052     /**
2053 dl 1.105 * Returns a cheap heuristic guide for task partitioning when
2054     * programmers, frameworks, tools, or languages have little or no
2055     * idea about task granularity. In essence by offering this
2056     * method, we ask users only about tradeoffs in overhead vs
2057     * expected throughput and its variance, rather than how finely to
2058     * partition tasks.
2059     *
2060     * In a steady state strict (tree-structured) computation, each
2061     * thread makes available for stealing enough tasks for other
2062     * threads to remain active. Inductively, if all threads play by
2063     * the same rules, each thread should make available only a
2064     * constant number of tasks.
2065     *
2066     * The minimum useful constant is just 1. But using a value of 1
2067     * would require immediate replenishment upon each steal to
2068     * maintain enough tasks, which is infeasible. Further,
2069     * partitionings/granularities of offered tasks should minimize
2070     * steal rates, which in general means that threads nearer the top
2071     * of computation tree should generate more than those nearer the
2072     * bottom. In perfect steady state, each thread is at
2073     * approximately the same level of computation tree. However,
2074     * producing extra tasks amortizes the uncertainty of progress and
2075     * diffusion assumptions.
2076     *
2077 jsr166 1.161 * So, users will want to use values larger (but not much larger)
2078 dl 1.105 * than 1 to both smooth over transient shortages and hedge
2079     * against uneven progress; as traded off against the cost of
2080     * extra task overhead. We leave the user to pick a threshold
2081     * value to compare with the results of this call to guide
2082     * decisions, but recommend values such as 3.
2083     *
2084     * When all threads are active, it is on average OK to estimate
2085     * surplus strictly locally. In steady-state, if one thread is
2086     * maintaining say 2 surplus tasks, then so are others. So we can
2087     * just use estimated queue length. However, this strategy alone
2088     * leads to serious mis-estimates in some non-steady-state
2089     * conditions (ramp-up, ramp-down, other stalls). We can detect
2090     * many of these by further considering the number of "idle"
2091     * threads, that are known to have zero queued tasks, so
2092     * compensate by a factor of (#idle/#active) threads.
2093     *
2094     * Note: The approximation of #busy workers as #active workers is
2095     * not very good under current signalling scheme, and should be
2096     * improved.
2097     */
2098     static int getSurplusQueuedTaskCount() {
2099     Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2100     if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2101 dl 1.112 int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2102     int n = (q = wt.workQueue).top - q.base;
2103 dl 1.105 int a = (int)(pool.ctl >> AC_SHIFT) + p;
2104 dl 1.112 return n - (a > (p >>>= 1) ? 0 :
2105     a > (p >>>= 1) ? 1 :
2106     a > (p >>>= 1) ? 2 :
2107     a > (p >>>= 1) ? 4 :
2108     8);
2109 dl 1.105 }
2110     return 0;
2111 dl 1.100 }
2112    
2113 dl 1.86 // Termination
2114 dl 1.14
2115     /**
2116 dl 1.86 * Possibly initiates and/or completes termination. The caller
2117     * triggering termination runs three passes through workQueues:
2118     * (0) Setting termination status, followed by wakeups of queued
2119     * workers; (1) cancelling all tasks; (2) interrupting lagging
2120     * threads (likely in external tasks, but possibly also blocked in
2121     * joins). Each pass repeats previous steps because of potential
2122     * lagging thread creation.
2123 dl 1.14 *
2124     * @param now if true, unconditionally terminate, else only
2125 dl 1.78 * if no work and no active workers
2126 jsr166 1.87 * @param enable if true, enable shutdown when next possible
2127 dl 1.14 * @return true if now terminating or terminated
2128 jsr166 1.1 */
2129 dl 1.86 private boolean tryTerminate(boolean now, boolean enable) {
2130 dl 1.131 int ps;
2131 dl 1.134 if (this == common) // cannot shut down
2132 dl 1.105 return false;
2133 dl 1.131 if ((ps = plock) >= 0) { // enable by setting plock
2134     if (!enable)
2135     return false;
2136     if ((ps & PL_LOCK) != 0 ||
2137     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2138     ps = acquirePlock();
2139     int nps = ((ps + PL_LOCK) & ~SHUTDOWN) | SHUTDOWN;
2140     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2141     releasePlock(nps);
2142     }
2143 dl 1.78 for (long c;;) {
2144 dl 1.131 if (((c = ctl) & STOP_BIT) != 0) { // already terminating
2145 dl 1.112 if ((short)(c >>> TC_SHIFT) == -(config & SMASK)) {
2146 jsr166 1.103 synchronized (this) {
2147 dl 1.131 notifyAll(); // signal when 0 workers
2148 dl 1.101 }
2149 dl 1.78 }
2150     return true;
2151     }
2152 dl 1.131 if (!now) { // check if idle & no tasks
2153     WorkQueue[] ws; WorkQueue w;
2154     if ((int)(c >> AC_SHIFT) != -(config & SMASK))
2155 dl 1.86 return false;
2156 dl 1.131 if ((ws = workQueues) != null) {
2157     for (int i = 0; i < ws.length; ++i) {
2158     if ((w = ws[i]) != null) {
2159     if (!w.isEmpty()) { // signal unprocessed tasks
2160 dl 1.172 signalWork(null);
2161 dl 1.131 return false;
2162     }
2163     if ((i & 1) != 0 && w.eventCount >= 0)
2164     return false; // unqueued inactive worker
2165     }
2166 dl 1.78 }
2167 dl 1.52 }
2168     }
2169 dl 1.86 if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2170     for (int pass = 0; pass < 3; ++pass) {
2171 dl 1.131 WorkQueue[] ws; WorkQueue w; Thread wt;
2172     if ((ws = workQueues) != null) {
2173 dl 1.86 int n = ws.length;
2174     for (int i = 0; i < n; ++i) {
2175     if ((w = ws[i]) != null) {
2176 dl 1.105 w.qlock = -1;
2177 dl 1.86 if (pass > 0) {
2178     w.cancelAll();
2179 dl 1.126 if (pass > 1 && (wt = w.owner) != null) {
2180     if (!wt.isInterrupted()) {
2181     try {
2182     wt.interrupt();
2183 dl 1.131 } catch (Throwable ignore) {
2184 dl 1.126 }
2185     }
2186     U.unpark(wt);
2187     }
2188 dl 1.52 }
2189 dl 1.19 }
2190     }
2191 dl 1.86 // Wake up workers parked on event queue
2192     int i, e; long cc; Thread p;
2193     while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2194 dl 1.131 (i = e & SMASK) < n && i >= 0 &&
2195 dl 1.86 (w = ws[i]) != null) {
2196     long nc = ((long)(w.nextWait & E_MASK) |
2197     ((cc + AC_UNIT) & AC_MASK) |
2198     (cc & (TC_MASK|STOP_BIT)));
2199     if (w.eventCount == (e | INT_SIGN) &&
2200     U.compareAndSwapLong(this, CTL, cc, nc)) {
2201     w.eventCount = (e + E_SEQ) & E_MASK;
2202 dl 1.105 w.qlock = -1;
2203 dl 1.86 if ((p = w.parker) != null)
2204     U.unpark(p);
2205     }
2206     }
2207 dl 1.78 }
2208 dl 1.52 }
2209     }
2210     }
2211     }
2212    
2213 dl 1.105 // external operations on common pool
2214    
2215     /**
2216     * Returns common pool queue for a thread that has submitted at
2217     * least one task.
2218     */
2219     static WorkQueue commonSubmitterQueue() {
2220 dl 1.139 ForkJoinPool p; WorkQueue[] ws; int m, z;
2221     return ((z = ThreadLocalRandom.getProbe()) != 0 &&
2222 dl 1.134 (p = common) != null &&
2223 dl 1.105 (ws = p.workQueues) != null &&
2224     (m = ws.length - 1) >= 0) ?
2225 dl 1.139 ws[m & z & SQMASK] : null;
2226 dl 1.105 }
2227    
2228     /**
2229     * Tries to pop the given task from submitter's queue in common pool.
2230     */
2231     static boolean tryExternalUnpush(ForkJoinTask<?> t) {
2232 dl 1.139 ForkJoinPool p; WorkQueue[] ws; WorkQueue q;
2233     ForkJoinTask<?>[] a; int m, s, z;
2234 dl 1.115 if (t != null &&
2235 dl 1.139 (z = ThreadLocalRandom.getProbe()) != 0 &&
2236 dl 1.134 (p = common) != null &&
2237 dl 1.105 (ws = p.workQueues) != null &&
2238     (m = ws.length - 1) >= 0 &&
2239 dl 1.139 (q = ws[m & z & SQMASK]) != null &&
2240 dl 1.105 (s = q.top) != q.base &&
2241 dl 1.115 (a = q.array) != null) {
2242     long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
2243     if (U.getObject(a, j) == t &&
2244     U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2245     if (q.array == a && q.top == s && // recheck
2246     U.compareAndSwapObject(a, j, t, null)) {
2247     q.top = s - 1;
2248     q.qlock = 0;
2249     return true;
2250     }
2251 dl 1.105 q.qlock = 0;
2252     }
2253     }
2254     return false;
2255     }
2256    
2257     /**
2258     * Tries to pop and run local tasks within the same computation
2259     * as the given root. On failure, tries to help complete from
2260     * other queues via helpComplete.
2261     */
2262     private void externalHelpComplete(WorkQueue q, ForkJoinTask<?> root) {
2263 jsr166 1.168 ForkJoinTask<?>[] a; int m; WorkQueue[] ws;
2264 dl 1.166 if (root != null && q != null && (a = q.array) != null &&
2265     (m = (a.length - 1)) >= 0) {
2266     outer: for (;;) {
2267     int s, b, u; Object o;
2268     if (root.status < 0)
2269     return;
2270     if ((s = q.top) - q.base > 0) { // try pop
2271 dl 1.105 long j = ((m & (s - 1)) << ASHIFT) + ABASE;
2272     if ((o = U.getObject(a, j)) != null &&
2273     (o instanceof CountedCompleter)) {
2274     CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2275     do {
2276     if (r == root) {
2277     if (U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2278     if (q.array == a && q.top == s &&
2279     U.compareAndSwapObject(a, j, t, null)) {
2280     q.top = s - 1;
2281 dl 1.166 q.qlock = 0;
2282     t.doExec();
2283 dl 1.105 }
2284 dl 1.166 else
2285     q.qlock = 0;
2286 dl 1.105 }
2287 dl 1.166 continue outer;
2288 dl 1.105 }
2289 jsr166 1.106 } while ((r = r.completer) != null);
2290 dl 1.105 }
2291     }
2292 dl 1.166 if ((b = q.base) - q.top < 0) { // try poll
2293     if (root.status < 0)
2294     return;
2295     long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
2296     if ((o = U.getObject(a, j)) == null ||
2297     !(o instanceof CountedCompleter))
2298     break;
2299     CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2300     for (;;) {
2301     if (r == root) {
2302     if (q.base == b &&
2303     U.compareAndSwapObject(a, j, t, null)) {
2304 dl 1.170 U.putOrderedInt(q, QBASE, b + 1);
2305 dl 1.166 t.doExec();
2306     }
2307     break;
2308     }
2309     if ((r = r.completer) == null)
2310     break outer;
2311     }
2312     }
2313     else
2314 dl 1.105 break;
2315     }
2316 dl 1.172 if (root.status >= 0)
2317     helpComplete(root);
2318 dl 1.105 }
2319     }
2320    
2321     /**
2322     * Tries to help execute or signal availability of the given task
2323     * from submitter's queue in common pool.
2324     */
2325     static void externalHelpJoin(ForkJoinTask<?> t) {
2326     // Some hard-to-avoid overlap with tryExternalUnpush
2327 dl 1.139 ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w;
2328     ForkJoinTask<?>[] a; int m, s, n, z;
2329 dl 1.112 if (t != null &&
2330 dl 1.139 (z = ThreadLocalRandom.getProbe()) != 0 &&
2331 dl 1.134 (p = common) != null &&
2332 dl 1.105 (ws = p.workQueues) != null &&
2333     (m = ws.length - 1) >= 0 &&
2334 dl 1.139 (q = ws[m & z & SQMASK]) != null &&
2335 dl 1.115 (a = q.array) != null) {
2336     int am = a.length - 1;
2337     if ((s = q.top) != q.base) {
2338     long j = ((am & (s - 1)) << ASHIFT) + ABASE;
2339     if (U.getObject(a, j) == t &&
2340     U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2341     if (q.array == a && q.top == s &&
2342     U.compareAndSwapObject(a, j, t, null)) {
2343     q.top = s - 1;
2344     q.qlock = 0;
2345     t.doExec();
2346     }
2347     else
2348     q.qlock = 0;
2349 dl 1.105 }
2350     }
2351 dl 1.172 if (t.status >= 0 && (t instanceof CountedCompleter))
2352     p.externalHelpComplete(q, t);
2353 dl 1.105 }
2354     }
2355    
2356 dl 1.52 // Exported methods
2357 jsr166 1.1
2358     // Constructors
2359    
2360     /**
2361 jsr166 1.9 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2362 dl 1.18 * java.lang.Runtime#availableProcessors}, using the {@linkplain
2363     * #defaultForkJoinWorkerThreadFactory default thread factory},
2364     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2365 jsr166 1.1 *
2366     * @throws SecurityException if a security manager exists and
2367     * the caller is not permitted to modify threads
2368     * because it does not hold {@link
2369     * java.lang.RuntimePermission}{@code ("modifyThread")}
2370     */
2371     public ForkJoinPool() {
2372 jsr166 1.148 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2373     defaultForkJoinWorkerThreadFactory, null, false);
2374 jsr166 1.1 }
2375    
2376     /**
2377 jsr166 1.9 * Creates a {@code ForkJoinPool} with the indicated parallelism
2378 dl 1.18 * level, the {@linkplain
2379     * #defaultForkJoinWorkerThreadFactory default thread factory},
2380     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2381 jsr166 1.1 *
2382 jsr166 1.9 * @param parallelism the parallelism level
2383 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
2384 jsr166 1.11 * equal to zero, or greater than implementation limit
2385 jsr166 1.1 * @throws SecurityException if a security manager exists and
2386     * the caller is not permitted to modify threads
2387     * because it does not hold {@link
2388     * java.lang.RuntimePermission}{@code ("modifyThread")}
2389     */
2390     public ForkJoinPool(int parallelism) {
2391 dl 1.18 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2392 jsr166 1.1 }
2393    
2394     /**
2395 dl 1.18 * Creates a {@code ForkJoinPool} with the given parameters.
2396 jsr166 1.1 *
2397 dl 1.18 * @param parallelism the parallelism level. For default value,
2398     * use {@link java.lang.Runtime#availableProcessors}.
2399     * @param factory the factory for creating new threads. For default value,
2400     * use {@link #defaultForkJoinWorkerThreadFactory}.
2401 dl 1.19 * @param handler the handler for internal worker threads that
2402     * terminate due to unrecoverable errors encountered while executing
2403 jsr166 1.31 * tasks. For default value, use {@code null}.
2404 dl 1.19 * @param asyncMode if true,
2405 dl 1.18 * establishes local first-in-first-out scheduling mode for forked
2406     * tasks that are never joined. This mode may be more appropriate
2407     * than default locally stack-based mode in applications in which
2408     * worker threads only process event-style asynchronous tasks.
2409 jsr166 1.31 * For default value, use {@code false}.
2410 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
2411 jsr166 1.11 * equal to zero, or greater than implementation limit
2412     * @throws NullPointerException if the factory is null
2413 jsr166 1.1 * @throws SecurityException if a security manager exists and
2414     * the caller is not permitted to modify threads
2415     * because it does not hold {@link
2416     * java.lang.RuntimePermission}{@code ("modifyThread")}
2417     */
2418 dl 1.19 public ForkJoinPool(int parallelism,
2419 dl 1.18 ForkJoinWorkerThreadFactory factory,
2420 jsr166 1.156 UncaughtExceptionHandler handler,
2421 dl 1.18 boolean asyncMode) {
2422 dl 1.152 this(checkParallelism(parallelism),
2423     checkFactory(factory),
2424     handler,
2425     asyncMode,
2426     "ForkJoinPool-" + nextPoolId() + "-worker-");
2427 dl 1.14 checkPermission();
2428 dl 1.152 }
2429    
2430     private static int checkParallelism(int parallelism) {
2431     if (parallelism <= 0 || parallelism > MAX_CAP)
2432     throw new IllegalArgumentException();
2433     return parallelism;
2434     }
2435    
2436     private static ForkJoinWorkerThreadFactory checkFactory
2437     (ForkJoinWorkerThreadFactory factory) {
2438 dl 1.14 if (factory == null)
2439     throw new NullPointerException();
2440 dl 1.152 return factory;
2441     }
2442    
2443     /**
2444     * Creates a {@code ForkJoinPool} with the given parameters, without
2445     * any security checks or parameter validation. Invoked directly by
2446     * makeCommonPool.
2447     */
2448     private ForkJoinPool(int parallelism,
2449     ForkJoinWorkerThreadFactory factory,
2450 jsr166 1.156 UncaughtExceptionHandler handler,
2451 dl 1.152 boolean asyncMode,
2452     String workerNamePrefix) {
2453     this.workerNamePrefix = workerNamePrefix;
2454 jsr166 1.1 this.factory = factory;
2455 dl 1.18 this.ueh = handler;
2456 jsr166 1.113 this.config = parallelism | (asyncMode ? (FIFO_QUEUE << 16) : 0);
2457 dl 1.52 long np = (long)(-parallelism); // offset ctl counts
2458     this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2459 dl 1.101 }
2460    
2461     /**
2462 dl 1.128 * Returns the common pool instance. This pool is statically
2463 dl 1.134 * constructed; its run state is unaffected by attempts to {@link
2464     * #shutdown} or {@link #shutdownNow}. However this pool and any
2465     * ongoing processing are automatically terminated upon program
2466     * {@link System#exit}. Any program that relies on asynchronous
2467     * task processing to complete before program termination should
2468 jsr166 1.158 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2469     * before exit.
2470 dl 1.100 *
2471     * @return the common pool instance
2472 jsr166 1.138 * @since 1.8
2473 dl 1.100 */
2474     public static ForkJoinPool commonPool() {
2475 dl 1.134 // assert common != null : "static init error";
2476     return common;
2477 dl 1.100 }
2478    
2479 jsr166 1.1 // Execution methods
2480    
2481     /**
2482     * Performs the given task, returning its result upon completion.
2483 dl 1.52 * If the computation encounters an unchecked Exception or Error,
2484     * it is rethrown as the outcome of this invocation. Rethrown
2485     * exceptions behave in the same way as regular exceptions, but,
2486     * when possible, contain stack traces (as displayed for example
2487     * using {@code ex.printStackTrace()}) of both the current thread
2488     * as well as the thread actually encountering the exception;
2489     * minimally only the latter.
2490 jsr166 1.1 *
2491     * @param task the task
2492     * @return the task's result
2493 jsr166 1.11 * @throws NullPointerException if the task is null
2494     * @throws RejectedExecutionException if the task cannot be
2495     * scheduled for execution
2496 jsr166 1.1 */
2497     public <T> T invoke(ForkJoinTask<T> task) {
2498 dl 1.90 if (task == null)
2499     throw new NullPointerException();
2500 dl 1.105 externalPush(task);
2501 dl 1.78 return task.join();
2502 jsr166 1.1 }
2503    
2504     /**
2505     * Arranges for (asynchronous) execution of the given task.
2506     *
2507     * @param task the task
2508 jsr166 1.11 * @throws NullPointerException if the task is null
2509     * @throws RejectedExecutionException if the task cannot be
2510     * scheduled for execution
2511 jsr166 1.1 */
2512 jsr166 1.8 public void execute(ForkJoinTask<?> task) {
2513 dl 1.90 if (task == null)
2514     throw new NullPointerException();
2515 dl 1.105 externalPush(task);
2516 jsr166 1.1 }
2517    
2518     // AbstractExecutorService methods
2519    
2520 jsr166 1.11 /**
2521     * @throws NullPointerException if the task is null
2522     * @throws RejectedExecutionException if the task cannot be
2523     * scheduled for execution
2524     */
2525 jsr166 1.1 public void execute(Runnable task) {
2526 dl 1.41 if (task == null)
2527     throw new NullPointerException();
2528 jsr166 1.2 ForkJoinTask<?> job;
2529 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2530     job = (ForkJoinTask<?>) task;
2531 jsr166 1.2 else
2532 dl 1.152 job = new ForkJoinTask.RunnableExecuteAction(task);
2533 dl 1.105 externalPush(job);
2534 jsr166 1.1 }
2535    
2536 jsr166 1.11 /**
2537 dl 1.18 * Submits a ForkJoinTask for execution.
2538     *
2539     * @param task the task to submit
2540     * @return the task
2541     * @throws NullPointerException if the task is null
2542     * @throws RejectedExecutionException if the task cannot be
2543     * scheduled for execution
2544     */
2545     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2546 dl 1.90 if (task == null)
2547     throw new NullPointerException();
2548 dl 1.105 externalPush(task);
2549 dl 1.18 return task;
2550     }
2551    
2552     /**
2553 jsr166 1.11 * @throws NullPointerException if the task is null
2554     * @throws RejectedExecutionException if the task cannot be
2555     * scheduled for execution
2556     */
2557 jsr166 1.1 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2558 dl 1.90 ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2559 dl 1.105 externalPush(job);
2560 jsr166 1.1 return job;
2561     }
2562    
2563 jsr166 1.11 /**
2564     * @throws NullPointerException if the task is null
2565     * @throws RejectedExecutionException if the task cannot be
2566     * scheduled for execution
2567     */
2568 jsr166 1.1 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2569 dl 1.90 ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2570 dl 1.105 externalPush(job);
2571 jsr166 1.1 return job;
2572     }
2573    
2574 jsr166 1.11 /**
2575     * @throws NullPointerException if the task is null
2576     * @throws RejectedExecutionException if the task cannot be
2577     * scheduled for execution
2578     */
2579 jsr166 1.1 public ForkJoinTask<?> submit(Runnable task) {
2580 dl 1.41 if (task == null)
2581     throw new NullPointerException();
2582 jsr166 1.2 ForkJoinTask<?> job;
2583 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2584     job = (ForkJoinTask<?>) task;
2585 jsr166 1.2 else
2586 dl 1.90 job = new ForkJoinTask.AdaptedRunnableAction(task);
2587 dl 1.105 externalPush(job);
2588 jsr166 1.1 return job;
2589     }
2590    
2591     /**
2592 jsr166 1.11 * @throws NullPointerException {@inheritDoc}
2593     * @throws RejectedExecutionException {@inheritDoc}
2594     */
2595 jsr166 1.1 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2596 dl 1.86 // In previous versions of this class, this method constructed
2597     // a task to run ForkJoinTask.invokeAll, but now external
2598     // invocation of multiple tasks is at least as efficient.
2599 jsr166 1.143 ArrayList<Future<T>> futures = new ArrayList<Future<T>>(tasks.size());
2600 jsr166 1.1
2601 dl 1.86 boolean done = false;
2602     try {
2603     for (Callable<T> t : tasks) {
2604 dl 1.90 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2605 jsr166 1.144 futures.add(f);
2606 dl 1.105 externalPush(f);
2607 dl 1.86 }
2608 jsr166 1.143 for (int i = 0, size = futures.size(); i < size; i++)
2609     ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2610 dl 1.86 done = true;
2611     return futures;
2612     } finally {
2613     if (!done)
2614 jsr166 1.143 for (int i = 0, size = futures.size(); i < size; i++)
2615     futures.get(i).cancel(false);
2616 jsr166 1.1 }
2617     }
2618    
2619     /**
2620     * Returns the factory used for constructing new workers.
2621     *
2622     * @return the factory used for constructing new workers
2623     */
2624     public ForkJoinWorkerThreadFactory getFactory() {
2625     return factory;
2626     }
2627    
2628     /**
2629     * Returns the handler for internal worker threads that terminate
2630     * due to unrecoverable errors encountered while executing tasks.
2631     *
2632 jsr166 1.4 * @return the handler, or {@code null} if none
2633 jsr166 1.1 */
2634 jsr166 1.156 public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2635 dl 1.14 return ueh;
2636 jsr166 1.1 }
2637    
2638     /**
2639 jsr166 1.9 * Returns the targeted parallelism level of this pool.
2640 jsr166 1.1 *
2641 jsr166 1.9 * @return the targeted parallelism level of this pool
2642 jsr166 1.1 */
2643     public int getParallelism() {
2644 dl 1.160 int par = (config & SMASK);
2645     return (par > 0) ? par : 1;
2646 jsr166 1.1 }
2647    
2648     /**
2649 dl 1.100 * Returns the targeted parallelism level of the common pool.
2650     *
2651     * @return the targeted parallelism level of the common pool
2652 jsr166 1.138 * @since 1.8
2653 dl 1.100 */
2654     public static int getCommonPoolParallelism() {
2655 dl 1.134 return commonParallelism;
2656 dl 1.100 }
2657    
2658     /**
2659 jsr166 1.1 * Returns the number of worker threads that have started but not
2660 jsr166 1.34 * yet terminated. The result returned by this method may differ
2661 jsr166 1.4 * from {@link #getParallelism} when threads are created to
2662 jsr166 1.1 * maintain parallelism when others are cooperatively blocked.
2663     *
2664     * @return the number of worker threads
2665     */
2666     public int getPoolSize() {
2667 dl 1.112 return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2668 jsr166 1.1 }
2669    
2670     /**
2671 jsr166 1.4 * Returns {@code true} if this pool uses local first-in-first-out
2672 jsr166 1.1 * scheduling mode for forked tasks that are never joined.
2673     *
2674 jsr166 1.4 * @return {@code true} if this pool uses async mode
2675 jsr166 1.1 */
2676     public boolean getAsyncMode() {
2677 dl 1.112 return (config >>> 16) == FIFO_QUEUE;
2678 jsr166 1.1 }
2679    
2680     /**
2681     * Returns an estimate of the number of worker threads that are
2682     * not blocked waiting to join tasks or for other managed
2683 dl 1.14 * synchronization. This method may overestimate the
2684     * number of running threads.
2685 jsr166 1.1 *
2686     * @return the number of worker threads
2687     */
2688     public int getRunningThreadCount() {
2689 dl 1.78 int rc = 0;
2690     WorkQueue[] ws; WorkQueue w;
2691     if ((ws = workQueues) != null) {
2692 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2693     if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2694 dl 1.78 ++rc;
2695     }
2696     }
2697     return rc;
2698 jsr166 1.1 }
2699    
2700     /**
2701     * Returns an estimate of the number of threads that are currently
2702     * stealing or executing tasks. This method may overestimate the
2703     * number of active threads.
2704     *
2705     * @return the number of active threads
2706     */
2707     public int getActiveThreadCount() {
2708 dl 1.112 int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2709 jsr166 1.63 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2710 jsr166 1.1 }
2711    
2712     /**
2713 jsr166 1.4 * Returns {@code true} if all worker threads are currently idle.
2714     * An idle worker is one that cannot obtain a task to execute
2715     * because none are available to steal from other threads, and
2716     * there are no pending submissions to the pool. This method is
2717     * conservative; it might not return {@code true} immediately upon
2718     * idleness of all threads, but will eventually become true if
2719     * threads remain inactive.
2720 jsr166 1.1 *
2721 jsr166 1.4 * @return {@code true} if all threads are currently idle
2722 jsr166 1.1 */
2723     public boolean isQuiescent() {
2724 dl 1.112 return (int)(ctl >> AC_SHIFT) + (config & SMASK) == 0;
2725 jsr166 1.1 }
2726    
2727     /**
2728     * Returns an estimate of the total number of tasks stolen from
2729     * one thread's work queue by another. The reported value
2730     * underestimates the actual total number of steals when the pool
2731     * is not quiescent. This value may be useful for monitoring and
2732     * tuning fork/join programs: in general, steal counts should be
2733     * high enough to keep threads busy, but low enough to avoid
2734     * overhead and contention across threads.
2735     *
2736     * @return the number of steals
2737     */
2738     public long getStealCount() {
2739 dl 1.101 long count = stealCount;
2740 dl 1.78 WorkQueue[] ws; WorkQueue w;
2741     if ((ws = workQueues) != null) {
2742 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2743 dl 1.78 if ((w = ws[i]) != null)
2744 dl 1.105 count += w.nsteals;
2745 dl 1.78 }
2746     }
2747     return count;
2748 jsr166 1.1 }
2749    
2750     /**
2751     * Returns an estimate of the total number of tasks currently held
2752     * in queues by worker threads (but not including tasks submitted
2753     * to the pool that have not begun executing). This value is only
2754     * an approximation, obtained by iterating across all threads in
2755     * the pool. This method may be useful for tuning task
2756     * granularities.
2757     *
2758     * @return the number of queued tasks
2759     */
2760     public long getQueuedTaskCount() {
2761     long count = 0;
2762 dl 1.78 WorkQueue[] ws; WorkQueue w;
2763     if ((ws = workQueues) != null) {
2764 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2765 dl 1.78 if ((w = ws[i]) != null)
2766     count += w.queueSize();
2767     }
2768 dl 1.52 }
2769 jsr166 1.1 return count;
2770     }
2771    
2772     /**
2773 jsr166 1.8 * Returns an estimate of the number of tasks submitted to this
2774 dl 1.55 * pool that have not yet begun executing. This method may take
2775 dl 1.52 * time proportional to the number of submissions.
2776 jsr166 1.1 *
2777     * @return the number of queued submissions
2778     */
2779     public int getQueuedSubmissionCount() {
2780 dl 1.78 int count = 0;
2781     WorkQueue[] ws; WorkQueue w;
2782     if ((ws = workQueues) != null) {
2783 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2784 dl 1.78 if ((w = ws[i]) != null)
2785     count += w.queueSize();
2786     }
2787     }
2788     return count;
2789 jsr166 1.1 }
2790    
2791     /**
2792 jsr166 1.4 * Returns {@code true} if there are any tasks submitted to this
2793     * pool that have not yet begun executing.
2794 jsr166 1.1 *
2795     * @return {@code true} if there are any queued submissions
2796     */
2797     public boolean hasQueuedSubmissions() {
2798 dl 1.78 WorkQueue[] ws; WorkQueue w;
2799     if ((ws = workQueues) != null) {
2800 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2801 dl 1.115 if ((w = ws[i]) != null && !w.isEmpty())
2802 dl 1.78 return true;
2803     }
2804     }
2805     return false;
2806 jsr166 1.1 }
2807    
2808     /**
2809     * Removes and returns the next unexecuted submission if one is
2810     * available. This method may be useful in extensions to this
2811     * class that re-assign work in systems with multiple pools.
2812     *
2813 jsr166 1.4 * @return the next submission, or {@code null} if none
2814 jsr166 1.1 */
2815     protected ForkJoinTask<?> pollSubmission() {
2816 dl 1.78 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2817     if ((ws = workQueues) != null) {
2818 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2819 dl 1.78 if ((w = ws[i]) != null && (t = w.poll()) != null)
2820     return t;
2821 dl 1.52 }
2822     }
2823     return null;
2824 jsr166 1.1 }
2825    
2826     /**
2827     * Removes all available unexecuted submitted and forked tasks
2828     * from scheduling queues and adds them to the given collection,
2829     * without altering their execution status. These may include
2830 jsr166 1.8 * artificially generated or wrapped tasks. This method is
2831     * designed to be invoked only when the pool is known to be
2832 jsr166 1.1 * quiescent. Invocations at other times may not remove all
2833     * tasks. A failure encountered while attempting to add elements
2834     * to collection {@code c} may result in elements being in
2835     * neither, either or both collections when the associated
2836     * exception is thrown. The behavior of this operation is
2837     * undefined if the specified collection is modified while the
2838     * operation is in progress.
2839     *
2840     * @param c the collection to transfer elements into
2841     * @return the number of elements transferred
2842     */
2843 jsr166 1.5 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2844 dl 1.52 int count = 0;
2845 dl 1.78 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2846     if ((ws = workQueues) != null) {
2847 dl 1.86 for (int i = 0; i < ws.length; ++i) {
2848 dl 1.78 if ((w = ws[i]) != null) {
2849     while ((t = w.poll()) != null) {
2850     c.add(t);
2851     ++count;
2852     }
2853     }
2854 dl 1.52 }
2855     }
2856 dl 1.18 return count;
2857     }
2858    
2859     /**
2860 jsr166 1.1 * Returns a string identifying this pool, as well as its state,
2861     * including indications of run state, parallelism level, and
2862     * worker and task counts.
2863     *
2864     * @return a string identifying this pool, as well as its state
2865     */
2866     public String toString() {
2867 dl 1.86 // Use a single pass through workQueues to collect counts
2868     long qt = 0L, qs = 0L; int rc = 0;
2869 dl 1.101 long st = stealCount;
2870 dl 1.86 long c = ctl;
2871     WorkQueue[] ws; WorkQueue w;
2872     if ((ws = workQueues) != null) {
2873     for (int i = 0; i < ws.length; ++i) {
2874     if ((w = ws[i]) != null) {
2875     int size = w.queueSize();
2876     if ((i & 1) == 0)
2877     qs += size;
2878     else {
2879     qt += size;
2880 dl 1.105 st += w.nsteals;
2881 dl 1.86 if (w.isApparentlyUnblocked())
2882     ++rc;
2883     }
2884     }
2885     }
2886     }
2887 dl 1.112 int pc = (config & SMASK);
2888 dl 1.52 int tc = pc + (short)(c >>> TC_SHIFT);
2889 dl 1.78 int ac = pc + (int)(c >> AC_SHIFT);
2890     if (ac < 0) // ignore transient negative
2891     ac = 0;
2892 dl 1.52 String level;
2893     if ((c & STOP_BIT) != 0)
2894 jsr166 1.63 level = (tc == 0) ? "Terminated" : "Terminating";
2895 dl 1.52 else
2896 dl 1.105 level = plock < 0 ? "Shutting down" : "Running";
2897 jsr166 1.1 return super.toString() +
2898 dl 1.52 "[" + level +
2899 dl 1.14 ", parallelism = " + pc +
2900     ", size = " + tc +
2901     ", active = " + ac +
2902     ", running = " + rc +
2903 jsr166 1.1 ", steals = " + st +
2904     ", tasks = " + qt +
2905     ", submissions = " + qs +
2906     "]";
2907     }
2908    
2909     /**
2910 dl 1.100 * Possibly initiates an orderly shutdown in which previously
2911     * submitted tasks are executed, but no new tasks will be
2912     * accepted. Invocation has no effect on execution state if this
2913 jsr166 1.137 * is the {@link #commonPool()}, and no additional effect if
2914 dl 1.100 * already shut down. Tasks that are in the process of being
2915     * submitted concurrently during the course of this method may or
2916     * may not be rejected.
2917 jsr166 1.1 *
2918     * @throws SecurityException if a security manager exists and
2919     * the caller is not permitted to modify threads
2920     * because it does not hold {@link
2921     * java.lang.RuntimePermission}{@code ("modifyThread")}
2922     */
2923     public void shutdown() {
2924     checkPermission();
2925 dl 1.105 tryTerminate(false, true);
2926 jsr166 1.1 }
2927    
2928     /**
2929 dl 1.100 * Possibly attempts to cancel and/or stop all tasks, and reject
2930     * all subsequently submitted tasks. Invocation has no effect on
2931 jsr166 1.137 * execution state if this is the {@link #commonPool()}, and no
2932 dl 1.100 * additional effect if already shut down. Otherwise, tasks that
2933     * are in the process of being submitted or executed concurrently
2934     * during the course of this method may or may not be
2935     * rejected. This method cancels both existing and unexecuted
2936     * tasks, in order to permit termination in the presence of task
2937     * dependencies. So the method always returns an empty list
2938     * (unlike the case for some other Executors).
2939 jsr166 1.1 *
2940     * @return an empty list
2941     * @throws SecurityException if a security manager exists and
2942     * the caller is not permitted to modify threads
2943     * because it does not hold {@link
2944     * java.lang.RuntimePermission}{@code ("modifyThread")}
2945     */
2946     public List<Runnable> shutdownNow() {
2947     checkPermission();
2948 dl 1.105 tryTerminate(true, true);
2949 jsr166 1.1 return Collections.emptyList();
2950     }
2951    
2952     /**
2953     * Returns {@code true} if all tasks have completed following shut down.
2954     *
2955     * @return {@code true} if all tasks have completed following shut down
2956     */
2957     public boolean isTerminated() {
2958 dl 1.52 long c = ctl;
2959     return ((c & STOP_BIT) != 0L &&
2960 dl 1.112 (short)(c >>> TC_SHIFT) == -(config & SMASK));
2961 jsr166 1.1 }
2962    
2963     /**
2964     * Returns {@code true} if the process of termination has
2965 jsr166 1.9 * commenced but not yet completed. This method may be useful for
2966     * debugging. A return of {@code true} reported a sufficient
2967     * period after shutdown may indicate that submitted tasks have
2968 jsr166 1.119 * ignored or suppressed interruption, or are waiting for I/O,
2969 dl 1.49 * causing this executor not to properly terminate. (See the
2970     * advisory notes for class {@link ForkJoinTask} stating that
2971     * tasks should not normally entail blocking operations. But if
2972     * they do, they must abort them on interrupt.)
2973 jsr166 1.1 *
2974 jsr166 1.9 * @return {@code true} if terminating but not yet terminated
2975 jsr166 1.1 */
2976     public boolean isTerminating() {
2977 dl 1.52 long c = ctl;
2978     return ((c & STOP_BIT) != 0L &&
2979 dl 1.112 (short)(c >>> TC_SHIFT) != -(config & SMASK));
2980 jsr166 1.1 }
2981    
2982     /**
2983     * Returns {@code true} if this pool has been shut down.
2984     *
2985     * @return {@code true} if this pool has been shut down
2986     */
2987     public boolean isShutdown() {
2988 dl 1.105 return plock < 0;
2989 jsr166 1.9 }
2990    
2991     /**
2992 dl 1.105 * Blocks until all tasks have completed execution after a
2993     * shutdown request, or the timeout occurs, or the current thread
2994 dl 1.134 * is interrupted, whichever happens first. Because the {@link
2995     * #commonPool()} never terminates until program shutdown, when
2996     * applied to the common pool, this method is equivalent to {@link
2997 jsr166 1.158 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
2998 jsr166 1.1 *
2999     * @param timeout the maximum time to wait
3000     * @param unit the time unit of the timeout argument
3001     * @return {@code true} if this executor terminated and
3002     * {@code false} if the timeout elapsed before termination
3003     * @throws InterruptedException if interrupted while waiting
3004     */
3005     public boolean awaitTermination(long timeout, TimeUnit unit)
3006     throws InterruptedException {
3007 dl 1.134 if (Thread.interrupted())
3008     throw new InterruptedException();
3009     if (this == common) {
3010     awaitQuiescence(timeout, unit);
3011     return false;
3012     }
3013 dl 1.52 long nanos = unit.toNanos(timeout);
3014 dl 1.101 if (isTerminated())
3015     return true;
3016     long startTime = System.nanoTime();
3017     boolean terminated = false;
3018 jsr166 1.103 synchronized (this) {
3019 dl 1.101 for (long waitTime = nanos, millis = 0L;;) {
3020     if (terminated = isTerminated() ||
3021     waitTime <= 0L ||
3022     (millis = unit.toMillis(waitTime)) <= 0L)
3023     break;
3024     wait(millis);
3025     waitTime = nanos - (System.nanoTime() - startTime);
3026 dl 1.52 }
3027 dl 1.18 }
3028 dl 1.101 return terminated;
3029 jsr166 1.1 }
3030    
3031     /**
3032 dl 1.134 * If called by a ForkJoinTask operating in this pool, equivalent
3033     * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3034     * waits and/or attempts to assist performing tasks until this
3035     * pool {@link #isQuiescent} or the indicated timeout elapses.
3036     *
3037     * @param timeout the maximum time to wait
3038     * @param unit the time unit of the timeout argument
3039     * @return {@code true} if quiescent; {@code false} if the
3040     * timeout elapsed.
3041     */
3042     public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3043     long nanos = unit.toNanos(timeout);
3044     ForkJoinWorkerThread wt;
3045     Thread thread = Thread.currentThread();
3046     if ((thread instanceof ForkJoinWorkerThread) &&
3047     (wt = (ForkJoinWorkerThread)thread).pool == this) {
3048     helpQuiescePool(wt.workQueue);
3049     return true;
3050     }
3051     long startTime = System.nanoTime();
3052     WorkQueue[] ws;
3053     int r = 0, m;
3054     boolean found = true;
3055     while (!isQuiescent() && (ws = workQueues) != null &&
3056     (m = ws.length - 1) >= 0) {
3057     if (!found) {
3058     if ((System.nanoTime() - startTime) > nanos)
3059     return false;
3060     Thread.yield(); // cannot block
3061     }
3062     found = false;
3063     for (int j = (m + 1) << 2; j >= 0; --j) {
3064     ForkJoinTask<?> t; WorkQueue q; int b;
3065     if ((q = ws[r++ & m]) != null && (b = q.base) - q.top < 0) {
3066     found = true;
3067 dl 1.172 if ((t = q.pollAt(b)) != null)
3068 dl 1.134 t.doExec();
3069     break;
3070     }
3071     }
3072     }
3073     return true;
3074     }
3075    
3076     /**
3077     * Waits and/or attempts to assist performing tasks indefinitely
3078 jsr166 1.141 * until the {@link #commonPool()} {@link #isQuiescent}.
3079 dl 1.134 */
3080 dl 1.136 static void quiesceCommonPool() {
3081 dl 1.134 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3082     }
3083    
3084     /**
3085 jsr166 1.1 * Interface for extending managed parallelism for tasks running
3086 jsr166 1.8 * in {@link ForkJoinPool}s.
3087     *
3088 dl 1.19 * <p>A {@code ManagedBlocker} provides two methods. Method
3089     * {@code isReleasable} must return {@code true} if blocking is
3090     * not necessary. Method {@code block} blocks the current thread
3091     * if necessary (perhaps internally invoking {@code isReleasable}
3092 dl 1.54 * before actually blocking). These actions are performed by any
3093 jsr166 1.157 * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
3094     * The unusual methods in this API accommodate synchronizers that
3095     * may, but don't usually, block for long periods. Similarly, they
3096 dl 1.54 * allow more efficient internal handling of cases in which
3097     * additional workers may be, but usually are not, needed to
3098     * ensure sufficient parallelism. Toward this end,
3099     * implementations of method {@code isReleasable} must be amenable
3100     * to repeated invocation.
3101 jsr166 1.1 *
3102     * <p>For example, here is a ManagedBlocker based on a
3103     * ReentrantLock:
3104     * <pre> {@code
3105     * class ManagedLocker implements ManagedBlocker {
3106     * final ReentrantLock lock;
3107     * boolean hasLock = false;
3108     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3109     * public boolean block() {
3110     * if (!hasLock)
3111     * lock.lock();
3112     * return true;
3113     * }
3114     * public boolean isReleasable() {
3115     * return hasLock || (hasLock = lock.tryLock());
3116     * }
3117     * }}</pre>
3118 dl 1.19 *
3119     * <p>Here is a class that possibly blocks waiting for an
3120     * item on a given queue:
3121     * <pre> {@code
3122     * class QueueTaker<E> implements ManagedBlocker {
3123     * final BlockingQueue<E> queue;
3124     * volatile E item = null;
3125     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3126     * public boolean block() throws InterruptedException {
3127     * if (item == null)
3128 dl 1.23 * item = queue.take();
3129 dl 1.19 * return true;
3130     * }
3131     * public boolean isReleasable() {
3132 dl 1.23 * return item != null || (item = queue.poll()) != null;
3133 dl 1.19 * }
3134     * public E getItem() { // call after pool.managedBlock completes
3135     * return item;
3136     * }
3137     * }}</pre>
3138 jsr166 1.1 */
3139     public static interface ManagedBlocker {
3140     /**
3141     * Possibly blocks the current thread, for example waiting for
3142     * a lock or condition.
3143     *
3144 jsr166 1.4 * @return {@code true} if no additional blocking is necessary
3145     * (i.e., if isReleasable would return true)
3146 jsr166 1.1 * @throws InterruptedException if interrupted while waiting
3147     * (the method is not required to do so, but is allowed to)
3148     */
3149     boolean block() throws InterruptedException;
3150    
3151     /**
3152 jsr166 1.4 * Returns {@code true} if blocking is unnecessary.
3153 jsr166 1.154 * @return {@code true} if blocking is unnecessary
3154 jsr166 1.1 */
3155     boolean isReleasable();
3156     }
3157    
3158     /**
3159     * Blocks in accord with the given blocker. If the current thread
3160 jsr166 1.8 * is a {@link ForkJoinWorkerThread}, this method possibly
3161     * arranges for a spare thread to be activated if necessary to
3162 dl 1.18 * ensure sufficient parallelism while the current thread is blocked.
3163 jsr166 1.1 *
3164 jsr166 1.8 * <p>If the caller is not a {@link ForkJoinTask}, this method is
3165     * behaviorally equivalent to
3166 jsr166 1.82 * <pre> {@code
3167 jsr166 1.1 * while (!blocker.isReleasable())
3168     * if (blocker.block())
3169     * return;
3170     * }</pre>
3171 jsr166 1.8 *
3172     * If the caller is a {@code ForkJoinTask}, then the pool may
3173     * first be expanded to ensure parallelism, and later adjusted.
3174 jsr166 1.1 *
3175     * @param blocker the blocker
3176     * @throws InterruptedException if blocker.block did so
3177     */
3178 dl 1.18 public static void managedBlock(ManagedBlocker blocker)
3179 jsr166 1.1 throws InterruptedException {
3180     Thread t = Thread.currentThread();
3181 dl 1.105 if (t instanceof ForkJoinWorkerThread) {
3182     ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3183 dl 1.172 while (!blocker.isReleasable()) {
3184 dl 1.105 if (p.tryCompensate()) {
3185     try {
3186     do {} while (!blocker.isReleasable() &&
3187     !blocker.block());
3188     } finally {
3189 dl 1.78 p.incrementActiveCount();
3190 dl 1.105 }
3191     break;
3192 dl 1.78 }
3193     }
3194 dl 1.18 }
3195 dl 1.105 else {
3196     do {} while (!blocker.isReleasable() &&
3197     !blocker.block());
3198     }
3199 jsr166 1.1 }
3200    
3201 jsr166 1.7 // AbstractExecutorService overrides. These rely on undocumented
3202     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3203     // implement RunnableFuture.
3204 jsr166 1.1
3205     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3206 dl 1.90 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3207 jsr166 1.1 }
3208    
3209     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3210 dl 1.90 return new ForkJoinTask.AdaptedCallable<T>(callable);
3211 jsr166 1.1 }
3212    
3213     // Unsafe mechanics
3214 dl 1.78 private static final sun.misc.Unsafe U;
3215     private static final long CTL;
3216     private static final long PARKBLOCKER;
3217 dl 1.90 private static final int ABASE;
3218     private static final int ASHIFT;
3219 dl 1.101 private static final long STEALCOUNT;
3220 dl 1.105 private static final long PLOCK;
3221     private static final long INDEXSEED;
3222 dl 1.170 private static final long QBASE;
3223 dl 1.105 private static final long QLOCK;
3224 dl 1.52
3225     static {
3226 jsr166 1.142 // initialize field offsets for CAS etc
3227 jsr166 1.3 try {
3228 dl 1.78 U = sun.misc.Unsafe.getUnsafe();
3229 jsr166 1.64 Class<?> k = ForkJoinPool.class;
3230 dl 1.78 CTL = U.objectFieldOffset
3231 dl 1.52 (k.getDeclaredField("ctl"));
3232 dl 1.101 STEALCOUNT = U.objectFieldOffset
3233     (k.getDeclaredField("stealCount"));
3234 dl 1.105 PLOCK = U.objectFieldOffset
3235     (k.getDeclaredField("plock"));
3236     INDEXSEED = U.objectFieldOffset
3237     (k.getDeclaredField("indexSeed"));
3238 dl 1.86 Class<?> tk = Thread.class;
3239 dl 1.78 PARKBLOCKER = U.objectFieldOffset
3240     (tk.getDeclaredField("parkBlocker"));
3241 dl 1.105 Class<?> wk = WorkQueue.class;
3242 dl 1.170 QBASE = U.objectFieldOffset
3243     (wk.getDeclaredField("base"));
3244 dl 1.105 QLOCK = U.objectFieldOffset
3245     (wk.getDeclaredField("qlock"));
3246     Class<?> ak = ForkJoinTask[].class;
3247 dl 1.90 ABASE = U.arrayBaseOffset(ak);
3248 jsr166 1.142 int scale = U.arrayIndexScale(ak);
3249     if ((scale & (scale - 1)) != 0)
3250     throw new Error("data type scale not a power of two");
3251     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3252 dl 1.52 } catch (Exception e) {
3253     throw new Error(e);
3254     }
3255 dl 1.105
3256 dl 1.152 defaultForkJoinWorkerThreadFactory =
3257 dl 1.112 new DefaultForkJoinWorkerThreadFactory();
3258 dl 1.115 modifyThreadPermission = new RuntimePermission("modifyThread");
3259    
3260 dl 1.152 common = java.security.AccessController.doPrivileged
3261     (new java.security.PrivilegedAction<ForkJoinPool>() {
3262     public ForkJoinPool run() { return makeCommonPool(); }});
3263 dl 1.160 int par = common.config; // report 1 even if threads disabled
3264     commonParallelism = par > 0 ? par : 1;
3265 dl 1.152 }
3266 dl 1.112
3267 dl 1.152 /**
3268     * Creates and returns the common pool, respecting user settings
3269     * specified via system properties.
3270     */
3271     private static ForkJoinPool makeCommonPool() {
3272 dl 1.160 int parallelism = -1;
3273 dl 1.152 ForkJoinWorkerThreadFactory factory
3274     = defaultForkJoinWorkerThreadFactory;
3275 jsr166 1.156 UncaughtExceptionHandler handler = null;
3276 dl 1.152 try { // ignore exceptions in accesing/parsing properties
3277 dl 1.112 String pp = System.getProperty
3278     ("java.util.concurrent.ForkJoinPool.common.parallelism");
3279 dl 1.152 String fp = System.getProperty
3280     ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3281 dl 1.112 String hp = System.getProperty
3282     ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3283 dl 1.152 if (pp != null)
3284     parallelism = Integer.parseInt(pp);
3285 dl 1.112 if (fp != null)
3286 dl 1.152 factory = ((ForkJoinWorkerThreadFactory)ClassLoader.
3287     getSystemClassLoader().loadClass(fp).newInstance());
3288 dl 1.112 if (hp != null)
3289 jsr166 1.156 handler = ((UncaughtExceptionHandler)ClassLoader.
3290 dl 1.112 getSystemClassLoader().loadClass(hp).newInstance());
3291     } catch (Exception ignore) {
3292     }
3293    
3294 dl 1.167 if (parallelism < 0 && // default 1 less than #cores
3295     (parallelism = Runtime.getRuntime().availableProcessors() - 1) < 0)
3296     parallelism = 0;
3297 dl 1.152 if (parallelism > MAX_CAP)
3298     parallelism = MAX_CAP;
3299     return new ForkJoinPool(parallelism, factory, handler, false,
3300     "ForkJoinPool.commonPool-worker-");
3301 jsr166 1.3 }
3302 dl 1.52
3303 jsr166 1.1 }