ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.177
Committed: Thu Apr 18 15:29:15 2013 UTC (11 years, 1 month ago) by dl
Branch: MAIN
Changes since 1.176: +39 -42 lines
Log Message:
Simplify some code

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.58 * http://creativecommons.org/publicdomain/zero/1.0/
5 jsr166 1.1 */
6    
7     package java.util.concurrent;
8    
9 jsr166 1.156 import java.lang.Thread.UncaughtExceptionHandler;
10 jsr166 1.1 import java.util.ArrayList;
11     import java.util.Arrays;
12     import java.util.Collection;
13     import java.util.Collections;
14     import java.util.List;
15 dl 1.36 import java.util.concurrent.AbstractExecutorService;
16     import java.util.concurrent.Callable;
17     import java.util.concurrent.ExecutorService;
18     import java.util.concurrent.Future;
19     import java.util.concurrent.RejectedExecutionException;
20     import java.util.concurrent.RunnableFuture;
21     import java.util.concurrent.TimeUnit;
22 jsr166 1.1
23     /**
24 jsr166 1.4 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
25 jsr166 1.8 * A {@code ForkJoinPool} provides the entry point for submissions
26 dl 1.18 * from non-{@code ForkJoinTask} clients, as well as management and
27 jsr166 1.11 * monitoring operations.
28 jsr166 1.1 *
29 jsr166 1.9 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
30     * ExecutorService} mainly by virtue of employing
31     * <em>work-stealing</em>: all threads in the pool attempt to find and
32 dl 1.78 * execute tasks submitted to the pool and/or created by other active
33     * tasks (eventually blocking waiting for work if none exist). This
34     * enables efficient processing when most tasks spawn other subtasks
35     * (as do most {@code ForkJoinTask}s), as well as when many small
36     * tasks are submitted to the pool from external clients. Especially
37     * when setting <em>asyncMode</em> to true in constructors, {@code
38     * ForkJoinPool}s may also be appropriate for use with event-style
39     * tasks that are never joined.
40 jsr166 1.1 *
41 dl 1.112 * <p>A static {@link #commonPool()} is available and appropriate for
42 dl 1.101 * most applications. The common pool is used by any ForkJoinTask that
43     * is not explicitly submitted to a specified pool. Using the common
44     * pool normally reduces resource usage (its threads are slowly
45     * reclaimed during periods of non-use, and reinstated upon subsequent
46 dl 1.105 * use).
47 dl 1.100 *
48     * <p>For applications that require separate or custom pools, a {@code
49     * ForkJoinPool} may be constructed with a given target parallelism
50     * level; by default, equal to the number of available processors. The
51     * pool attempts to maintain enough active (or available) threads by
52     * dynamically adding, suspending, or resuming internal worker
53     * threads, even if some tasks are stalled waiting to join
54     * others. However, no such adjustments are guaranteed in the face of
55 jsr166 1.119 * blocked I/O or other unmanaged synchronization. The nested {@link
56 dl 1.100 * ManagedBlocker} interface enables extension of the kinds of
57 dl 1.18 * synchronization accommodated.
58 jsr166 1.1 *
59     * <p>In addition to execution and lifecycle control methods, this
60     * class provides status check methods (for example
61 jsr166 1.4 * {@link #getStealCount}) that are intended to aid in developing,
62 jsr166 1.1 * tuning, and monitoring fork/join applications. Also, method
63 jsr166 1.4 * {@link #toString} returns indications of pool state in a
64 jsr166 1.1 * convenient form for informal monitoring.
65     *
66 jsr166 1.109 * <p>As is the case with other ExecutorServices, there are three
67 jsr166 1.84 * main task execution methods summarized in the following table.
68     * These are designed to be used primarily by clients not already
69     * engaged in fork/join computations in the current pool. The main
70     * forms of these methods accept instances of {@code ForkJoinTask},
71     * but overloaded forms also allow mixed execution of plain {@code
72     * Runnable}- or {@code Callable}- based activities as well. However,
73     * tasks that are already executing in a pool should normally instead
74     * use the within-computation forms listed in the table unless using
75     * async event-style tasks that are not usually joined, in which case
76     * there is little difference among choice of methods.
77 dl 1.18 *
78     * <table BORDER CELLPADDING=3 CELLSPACING=1>
79 jsr166 1.159 * <caption>Summary of task execution methods</caption>
80 dl 1.18 * <tr>
81     * <td></td>
82     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
83     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
84     * </tr>
85     * <tr>
86 jsr166 1.153 * <td> <b>Arrange async execution</b></td>
87 dl 1.18 * <td> {@link #execute(ForkJoinTask)}</td>
88     * <td> {@link ForkJoinTask#fork}</td>
89     * </tr>
90     * <tr>
91 jsr166 1.153 * <td> <b>Await and obtain result</b></td>
92 dl 1.18 * <td> {@link #invoke(ForkJoinTask)}</td>
93     * <td> {@link ForkJoinTask#invoke}</td>
94     * </tr>
95     * <tr>
96 jsr166 1.153 * <td> <b>Arrange exec and obtain Future</b></td>
97 dl 1.18 * <td> {@link #submit(ForkJoinTask)}</td>
98     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
99     * </tr>
100     * </table>
101 dl 1.19 *
102 dl 1.105 * <p>The common pool is by default constructed with default
103 jsr166 1.155 * parameters, but these may be controlled by setting three
104 jsr166 1.162 * {@linkplain System#getProperty system properties}:
105     * <ul>
106     * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
107     * - the parallelism level, a non-negative integer
108     * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
109     * - the class name of a {@link ForkJoinWorkerThreadFactory}
110     * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
111     * - the class name of a {@link UncaughtExceptionHandler}
112     * </ul>
113 jsr166 1.165 * The system class loader is used to load these classes.
114 jsr166 1.156 * Upon any error in establishing these settings, default parameters
115 dl 1.160 * are used. It is possible to disable or limit the use of threads in
116     * the common pool by setting the parallelism property to zero, and/or
117     * using a factory that may return {@code null}.
118 dl 1.105 *
119 jsr166 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
120     * maximum number of running threads to 32767. Attempts to create
121 jsr166 1.11 * pools with greater than the maximum number result in
122 jsr166 1.8 * {@code IllegalArgumentException}.
123 jsr166 1.1 *
124 jsr166 1.11 * <p>This implementation rejects submitted tasks (that is, by throwing
125 dl 1.19 * {@link RejectedExecutionException}) only when the pool is shut down
126 dl 1.20 * or internal resources have been exhausted.
127 jsr166 1.11 *
128 jsr166 1.1 * @since 1.7
129     * @author Doug Lea
130     */
131 jsr166 1.171 @sun.misc.Contended
132 jsr166 1.1 public class ForkJoinPool extends AbstractExecutorService {
133    
134     /*
135 dl 1.14 * Implementation Overview
136     *
137 dl 1.78 * This class and its nested classes provide the main
138     * functionality and control for a set of worker threads:
139 jsr166 1.84 * Submissions from non-FJ threads enter into submission queues.
140     * Workers take these tasks and typically split them into subtasks
141     * that may be stolen by other workers. Preference rules give
142     * first priority to processing tasks from their own queues (LIFO
143     * or FIFO, depending on mode), then to randomized FIFO steals of
144     * tasks in other queues.
145 dl 1.78 *
146 jsr166 1.84 * WorkQueues
147 dl 1.78 * ==========
148     *
149     * Most operations occur within work-stealing queues (in nested
150     * class WorkQueue). These are special forms of Deques that
151     * support only three of the four possible end-operations -- push,
152     * pop, and poll (aka steal), under the further constraints that
153     * push and pop are called only from the owning thread (or, as
154     * extended here, under a lock), while poll may be called from
155     * other threads. (If you are unfamiliar with them, you probably
156     * want to read Herlihy and Shavit's book "The Art of
157     * Multiprocessor programming", chapter 16 describing these in
158     * more detail before proceeding.) The main work-stealing queue
159     * design is roughly similar to those in the papers "Dynamic
160     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
161     * (http://research.sun.com/scalable/pubs/index.html) and
162     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
163     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
164 dl 1.170 * See also "Correct and Efficient Work-Stealing for Weak Memory
165     * Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
166     * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
167     * analysis of memory ordering (atomic, volatile etc) issues. The
168     * main differences ultimately stem from GC requirements that we
169     * null out taken slots as soon as we can, to maintain as small a
170     * footprint as possible even in programs generating huge numbers
171     * of tasks. To accomplish this, we shift the CAS arbitrating pop
172     * vs poll (steal) from being on the indices ("base" and "top") to
173     * the slots themselves. So, both a successful pop and poll
174     * mainly entail a CAS of a slot from non-null to null. Because
175     * we rely on CASes of references, we do not need tag bits on base
176     * or top. They are simple ints as used in any circular
177     * array-based queue (see for example ArrayDeque). Updates to the
178     * indices must still be ordered in a way that guarantees that top
179     * == base means the queue is empty, but otherwise may err on the
180     * side of possibly making the queue appear nonempty when a push,
181     * pop, or poll have not fully committed. Note that this means
182     * that the poll operation, considered individually, is not
183     * wait-free. One thief cannot successfully continue until another
184     * in-progress one (or, if previously empty, a push) completes.
185     * However, in the aggregate, we ensure at least probabilistic
186     * non-blockingness. If an attempted steal fails, a thief always
187     * chooses a different random victim target to try next. So, in
188     * order for one thief to progress, it suffices for any
189     * in-progress poll or new push on any empty queue to
190     * complete. (This is why we normally use method pollAt and its
191     * variants that try once at the apparent base index, else
192     * consider alternative actions, rather than method poll.)
193 dl 1.78 *
194 dl 1.79 * This approach also enables support of a user mode in which local
195 dl 1.78 * task processing is in FIFO, not LIFO order, simply by using
196     * poll rather than pop. This can be useful in message-passing
197     * frameworks in which tasks are never joined. However neither
198     * mode considers affinities, loads, cache localities, etc, so
199     * rarely provide the best possible performance on a given
200     * machine, but portably provide good throughput by averaging over
201     * these factors. (Further, even if we did try to use such
202 jsr166 1.84 * information, we do not usually have a basis for exploiting it.
203     * For example, some sets of tasks profit from cache affinities,
204     * but others are harmed by cache pollution effects.)
205 dl 1.78 *
206     * WorkQueues are also used in a similar way for tasks submitted
207     * to the pool. We cannot mix these tasks in the same queues used
208     * for work-stealing (this would contaminate lifo/fifo
209 dl 1.105 * processing). Instead, we randomly associate submission queues
210 dl 1.83 * with submitting threads, using a form of hashing. The
211 dl 1.139 * ThreadLocalRandom probe value serves as a hash code for
212     * choosing existing queues, and may be randomly repositioned upon
213     * contention with other submitters. In essence, submitters act
214     * like workers except that they are restricted to executing local
215     * tasks that they submitted (or in the case of CountedCompleters,
216     * others with the same root task). However, because most
217     * shared/external queue operations are more expensive than
218     * internal, and because, at steady state, external submitters
219     * will compete for CPU with workers, ForkJoinTask.join and
220     * related methods disable them from repeatedly helping to process
221     * tasks if all workers are active. Insertion of tasks in shared
222     * mode requires a lock (mainly to protect in the case of
223 dl 1.105 * resizing) but we use only a simple spinlock (using bits in
224     * field qlock), because submitters encountering a busy queue move
225     * on to try or create other queues -- they block only when
226     * creating and registering new queues.
227 dl 1.78 *
228 jsr166 1.84 * Management
229 dl 1.78 * ==========
230 dl 1.52 *
231     * The main throughput advantages of work-stealing stem from
232     * decentralized control -- workers mostly take tasks from
233     * themselves or each other. We cannot negate this in the
234     * implementation of other management responsibilities. The main
235     * tactic for avoiding bottlenecks is packing nearly all
236 dl 1.78 * essentially atomic control state into two volatile variables
237     * that are by far most often read (not written) as status and
238 jsr166 1.84 * consistency checks.
239 dl 1.78 *
240     * Field "ctl" contains 64 bits holding all the information needed
241     * to atomically decide to add, inactivate, enqueue (on an event
242     * queue), dequeue, and/or re-activate workers. To enable this
243     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
244     * far in excess of normal operating range) to allow ids, counts,
245     * and their negations (used for thresholding) to fit into 16bit
246     * fields.
247     *
248 dl 1.105 * Field "plock" is a form of sequence lock with a saturating
249     * shutdown bit (similarly for per-queue "qlocks"), mainly
250     * protecting updates to the workQueues array, as well as to
251     * enable shutdown. When used as a lock, it is normally only very
252     * briefly held, so is nearly always available after at most a
253     * brief spin, but we use a monitor-based backup strategy to
254 dl 1.112 * block when needed.
255 dl 1.78 *
256     * Recording WorkQueues. WorkQueues are recorded in the
257 dl 1.101 * "workQueues" array that is created upon first use and expanded
258     * if necessary. Updates to the array while recording new workers
259     * and unrecording terminated ones are protected from each other
260     * by a lock but the array is otherwise concurrently readable, and
261     * accessed directly. To simplify index-based operations, the
262     * array size is always a power of two, and all readers must
263 dl 1.112 * tolerate null slots. Worker queues are at odd indices. Shared
264 dl 1.105 * (submission) queues are at even indices, up to a maximum of 64
265     * slots, to limit growth even if array needs to expand to add
266     * more workers. Grouping them together in this way simplifies and
267     * speeds up task scanning.
268 dl 1.86 *
269     * All worker thread creation is on-demand, triggered by task
270     * submissions, replacement of terminated workers, and/or
271 dl 1.78 * compensation for blocked workers. However, all other support
272     * code is set up to work with other policies. To ensure that we
273     * do not hold on to worker references that would prevent GC, ALL
274     * accesses to workQueues are via indices into the workQueues
275     * array (which is one source of some of the messy code
276     * constructions here). In essence, the workQueues array serves as
277     * a weak reference mechanism. Thus for example the wait queue
278     * field of ctl stores indices, not references. Access to the
279     * workQueues in associated methods (for example signalWork) must
280     * both index-check and null-check the IDs. All such accesses
281     * ignore bad IDs by returning out early from what they are doing,
282     * since this can only be associated with termination, in which
283 dl 1.86 * case it is OK to give up. All uses of the workQueues array
284     * also check that it is non-null (even if previously
285     * non-null). This allows nulling during termination, which is
286     * currently not necessary, but remains an option for
287     * resource-revocation-based shutdown schemes. It also helps
288     * reduce JIT issuance of uncommon-trap code, which tends to
289 dl 1.78 * unnecessarily complicate control flow in some methods.
290 dl 1.52 *
291 dl 1.78 * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
292 dl 1.56 * let workers spin indefinitely scanning for tasks when none can
293     * be found immediately, and we cannot start/resume workers unless
294     * there appear to be tasks available. On the other hand, we must
295     * quickly prod them into action when new tasks are submitted or
296 dl 1.78 * generated. In many usages, ramp-up time to activate workers is
297     * the main limiting factor in overall performance (this is
298     * compounded at program start-up by JIT compilation and
299     * allocation). So we try to streamline this as much as possible.
300     * We park/unpark workers after placing in an event wait queue
301     * when they cannot find work. This "queue" is actually a simple
302     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
303     * counter value (that reflects the number of times a worker has
304     * been inactivated) to avoid ABA effects (we need only as many
305     * version numbers as worker threads). Successors are held in
306     * field WorkQueue.nextWait. Queuing deals with several intrinsic
307     * races, mainly that a task-producing thread can miss seeing (and
308 dl 1.56 * signalling) another thread that gave up looking for work but
309     * has not yet entered the wait queue. We solve this by requiring
310 dl 1.78 * a full sweep of all workers (via repeated calls to method
311     * scan()) both before and after a newly waiting worker is added
312 dl 1.174 * to the wait queue. Because enqueued workers may actually be
313     * rescanning rather than waiting, we set and clear the "parker"
314     * field of WorkQueues to reduce unnecessary calls to unpark.
315     * (This requires a secondary recheck to avoid missed signals.)
316     * Note the unusual conventions about Thread.interrupts
317     * surrounding parking and other blocking: Because interrupts are
318     * used solely to alert threads to check termination, which is
319     * checked anyway upon blocking, we clear status (using
320     * Thread.interrupted) before any call to park, so that park does
321     * not immediately return due to status being set via some other
322     * unrelated call to interrupt in user code.
323 dl 1.52 *
324     * Signalling. We create or wake up workers only when there
325     * appears to be at least one task they might be able to find and
326 dl 1.174 * execute. When a submission is added or another worker adds a
327     * task to a queue that has fewer than two tasks, they signal
328     * waiting workers (or trigger creation of new ones if fewer than
329     * the given parallelism level -- signalWork). These primary
330     * signals are buttressed by others whenever other threads remove
331 jsr166 1.176 * a task from a queue and notice that there are other tasks there
332 dl 1.174 * as well. So in general, pools will be over-signalled. On most
333     * platforms, signalling (unpark) overhead time is noticeably
334     * long, and the time between signalling a thread and it actually
335     * making progress can be very noticeably long, so it is worth
336     * offloading these delays from critical paths as much as
337     * possible.
338 dl 1.52 *
339     * Trimming workers. To release resources after periods of lack of
340     * use, a worker starting to wait when the pool is quiescent will
341 dl 1.100 * time out and terminate if the pool has remained quiescent for a
342     * given period -- a short period if there are more threads than
343     * parallelism, longer as the number of threads decreases. This
344     * will slowly propagate, eventually terminating all workers after
345     * periods of non-use.
346 dl 1.52 *
347 dl 1.78 * Shutdown and Termination. A call to shutdownNow atomically sets
348 dl 1.105 * a plock bit and then (non-atomically) sets each worker's
349     * qlock status, cancels all unprocessed tasks, and wakes up
350 dl 1.78 * all waiting workers. Detecting whether termination should
351     * commence after a non-abrupt shutdown() call requires more work
352     * and bookkeeping. We need consensus about quiescence (i.e., that
353     * there is no more work). The active count provides a primary
354     * indication but non-abrupt shutdown still requires a rechecking
355     * scan for any workers that are inactive but not queued.
356     *
357 jsr166 1.84 * Joining Tasks
358     * =============
359 dl 1.78 *
360     * Any of several actions may be taken when one worker is waiting
361 jsr166 1.84 * to join a task stolen (or always held) by another. Because we
362 dl 1.78 * are multiplexing many tasks on to a pool of workers, we can't
363     * just let them block (as in Thread.join). We also cannot just
364     * reassign the joiner's run-time stack with another and replace
365     * it later, which would be a form of "continuation", that even if
366     * possible is not necessarily a good idea since we sometimes need
367 jsr166 1.84 * both an unblocked task and its continuation to progress.
368     * Instead we combine two tactics:
369 dl 1.19 *
370     * Helping: Arranging for the joiner to execute some task that it
371 dl 1.78 * would be running if the steal had not occurred.
372 dl 1.19 *
373     * Compensating: Unless there are already enough live threads,
374 dl 1.78 * method tryCompensate() may create or re-activate a spare
375     * thread to compensate for blocked joiners until they unblock.
376     *
377 dl 1.105 * A third form (implemented in tryRemoveAndExec) amounts to
378     * helping a hypothetical compensator: If we can readily tell that
379     * a possible action of a compensator is to steal and execute the
380     * task being joined, the joining thread can do so directly,
381     * without the need for a compensation thread (although at the
382     * expense of larger run-time stacks, but the tradeoff is
383     * typically worthwhile).
384 dl 1.52 *
385     * The ManagedBlocker extension API can't use helping so relies
386     * only on compensation in method awaitBlocker.
387 dl 1.19 *
388 dl 1.78 * The algorithm in tryHelpStealer entails a form of "linear"
389     * helping: Each worker records (in field currentSteal) the most
390     * recent task it stole from some other worker. Plus, it records
391     * (in field currentJoin) the task it is currently actively
392     * joining. Method tryHelpStealer uses these markers to try to
393     * find a worker to help (i.e., steal back a task from and execute
394     * it) that could hasten completion of the actively joined task.
395     * In essence, the joiner executes a task that would be on its own
396     * local deque had the to-be-joined task not been stolen. This may
397     * be seen as a conservative variant of the approach in Wagner &
398     * Calder "Leapfrogging: a portable technique for implementing
399     * efficient futures" SIGPLAN Notices, 1993
400     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
401     * that: (1) We only maintain dependency links across workers upon
402     * steals, rather than use per-task bookkeeping. This sometimes
403 dl 1.90 * requires a linear scan of workQueues array to locate stealers,
404     * but often doesn't because stealers leave hints (that may become
405 dl 1.112 * stale/wrong) of where to locate them. It is only a hint
406     * because a worker might have had multiple steals and the hint
407     * records only one of them (usually the most current). Hinting
408     * isolates cost to when it is needed, rather than adding to
409     * per-task overhead. (2) It is "shallow", ignoring nesting and
410     * potentially cyclic mutual steals. (3) It is intentionally
411 dl 1.78 * racy: field currentJoin is updated only while actively joining,
412     * which means that we miss links in the chain during long-lived
413     * tasks, GC stalls etc (which is OK since blocking in such cases
414     * is usually a good idea). (4) We bound the number of attempts
415 dl 1.90 * to find work (see MAX_HELP) and fall back to suspending the
416     * worker and if necessary replacing it with another.
417 dl 1.78 *
418 dl 1.105 * Helping actions for CountedCompleters are much simpler: Method
419     * helpComplete can take and execute any task with the same root
420     * as the task being waited on. However, this still entails some
421     * traversal of completer chains, so is less efficient than using
422     * CountedCompleters without explicit joins.
423     *
424 dl 1.52 * It is impossible to keep exactly the target parallelism number
425     * of threads running at any given time. Determining the
426 dl 1.24 * existence of conservatively safe helping targets, the
427     * availability of already-created spares, and the apparent need
428 dl 1.78 * to create new spares are all racy, so we rely on multiple
429 dl 1.90 * retries of each. Compensation in the apparent absence of
430     * helping opportunities is challenging to control on JVMs, where
431     * GC and other activities can stall progress of tasks that in
432     * turn stall out many other dependent tasks, without us being
433     * able to determine whether they will ever require compensation.
434     * Even though work-stealing otherwise encounters little
435     * degradation in the presence of more threads than cores,
436     * aggressively adding new threads in such cases entails risk of
437     * unwanted positive feedback control loops in which more threads
438     * cause more dependent stalls (as well as delayed progress of
439     * unblocked threads to the point that we know they are available)
440     * leading to more situations requiring more threads, and so
441     * on. This aspect of control can be seen as an (analytically
442 jsr166 1.92 * intractable) game with an opponent that may choose the worst
443 dl 1.90 * (for us) active thread to stall at any time. We take several
444     * precautions to bound losses (and thus bound gains), mainly in
445 dl 1.105 * methods tryCompensate and awaitJoin.
446     *
447     * Common Pool
448     * ===========
449     *
450 jsr166 1.175 * The static common pool always exists after static
451 dl 1.105 * initialization. Since it (or any other created pool) need
452     * never be used, we minimize initial construction overhead and
453     * footprint to the setup of about a dozen fields, with no nested
454     * allocation. Most bootstrapping occurs within method
455     * fullExternalPush during the first submission to the pool.
456     *
457     * When external threads submit to the common pool, they can
458 dl 1.167 * perform subtask processing (see externalHelpJoin and related
459 jsr166 1.175 * methods). This caller-helps policy makes it sensible to set
460 dl 1.167 * common pool parallelism level to one (or more) less than the
461     * total number of available cores, or even zero for pure
462     * caller-runs. We do not need to record whether external
463 dl 1.105 * submissions are to the common pool -- if not, externalHelpJoin
464 jsr166 1.107 * returns quickly (at the most helping to signal some common pool
465 dl 1.105 * workers). These submitters would otherwise be blocked waiting
466     * for completion, so the extra effort (with liberally sprinkled
467     * task status checks) in inapplicable cases amounts to an odd
468     * form of limited spin-wait before blocking in ForkJoinTask.join.
469     *
470     * Style notes
471     * ===========
472     *
473     * There is a lot of representation-level coupling among classes
474     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
475     * fields of WorkQueue maintain data structures managed by
476     * ForkJoinPool, so are directly accessed. There is little point
477     * trying to reduce this, since any associated future changes in
478     * representations will need to be accompanied by algorithmic
479     * changes anyway. Several methods intrinsically sprawl because
480     * they must accumulate sets of consistent reads of volatiles held
481     * in local variables. Methods signalWork() and scan() are the
482     * main bottlenecks, so are especially heavily
483 dl 1.86 * micro-optimized/mangled. There are lots of inline assignments
484     * (of form "while ((local = field) != 0)") which are usually the
485     * simplest way to ensure the required read orderings (which are
486     * sometimes critical). This leads to a "C"-like style of listing
487     * declarations of these locals at the heads of methods or blocks.
488     * There are several occurrences of the unusual "do {} while
489     * (!cas...)" which is the simplest way to force an update of a
490 dl 1.105 * CAS'ed variable. There are also other coding oddities (including
491     * several unnecessary-looking hoisted null checks) that help
492 dl 1.86 * some methods perform reasonably even when interpreted (not
493     * compiled).
494 dl 1.52 *
495 jsr166 1.84 * The order of declarations in this file is:
496 dl 1.86 * (1) Static utility functions
497     * (2) Nested (static) classes
498     * (3) Static fields
499     * (4) Fields, along with constants used when unpacking some of them
500     * (5) Internal control methods
501     * (6) Callbacks and other support for ForkJoinTask methods
502     * (7) Exported methods
503     * (8) Static block initializing statics in minimally dependent order
504     */
505    
506     // Static utilities
507    
508     /**
509     * If there is a security manager, makes sure caller has
510     * permission to modify threads.
511 jsr166 1.1 */
512 dl 1.86 private static void checkPermission() {
513     SecurityManager security = System.getSecurityManager();
514     if (security != null)
515     security.checkPermission(modifyThreadPermission);
516     }
517    
518     // Nested classes
519 jsr166 1.1
520     /**
521 jsr166 1.8 * Factory for creating new {@link ForkJoinWorkerThread}s.
522     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
523     * for {@code ForkJoinWorkerThread} subclasses that extend base
524     * functionality or initialize threads with different contexts.
525 jsr166 1.1 */
526     public static interface ForkJoinWorkerThreadFactory {
527     /**
528     * Returns a new worker thread operating in the given pool.
529     *
530     * @param pool the pool this thread works in
531 jsr166 1.11 * @throws NullPointerException if the pool is null
532 jsr166 1.154 * @return the new worker thread
533 jsr166 1.1 */
534     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
535     }
536    
537     /**
538     * Default ForkJoinWorkerThreadFactory implementation; creates a
539     * new ForkJoinWorkerThread.
540     */
541 dl 1.112 static final class DefaultForkJoinWorkerThreadFactory
542 jsr166 1.1 implements ForkJoinWorkerThreadFactory {
543 dl 1.112 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
544 dl 1.14 return new ForkJoinWorkerThread(pool);
545 jsr166 1.1 }
546     }
547    
548     /**
549 dl 1.86 * Class for artificial tasks that are used to replace the target
550     * of local joins if they are removed from an interior queue slot
551     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
552     * actually do anything beyond having a unique identity.
553 jsr166 1.1 */
554 dl 1.86 static final class EmptyTask extends ForkJoinTask<Void> {
555 dl 1.105 private static final long serialVersionUID = -7721805057305804111L;
556 dl 1.86 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
557     public final Void getRawResult() { return null; }
558     public final void setRawResult(Void x) {}
559     public final boolean exec() { return true; }
560 jsr166 1.1 }
561    
562     /**
563 dl 1.78 * Queues supporting work-stealing as well as external task
564     * submission. See above for main rationale and algorithms.
565     * Implementation relies heavily on "Unsafe" intrinsics
566     * and selective use of "volatile":
567     *
568     * Field "base" is the index (mod array.length) of the least valid
569     * queue slot, which is always the next position to steal (poll)
570     * from if nonempty. Reads and writes require volatile orderings
571     * but not CAS, because updates are only performed after slot
572     * CASes.
573     *
574     * Field "top" is the index (mod array.length) of the next queue
575     * slot to push to or pop from. It is written only by owner thread
576 dl 1.105 * for push, or under lock for external/shared push, and accessed
577     * by other threads only after reading (volatile) base. Both top
578     * and base are allowed to wrap around on overflow, but (top -
579     * base) (or more commonly -(base - top) to force volatile read of
580     * base before top) still estimates size. The lock ("qlock") is
581     * forced to -1 on termination, causing all further lock attempts
582     * to fail. (Note: we don't need CAS for termination state because
583     * upon pool shutdown, all shared-queues will stop being used
584     * anyway.) Nearly all lock bodies are set up so that exceptions
585     * within lock bodies are "impossible" (modulo JVM errors that
586     * would cause failure anyway.)
587 dl 1.78 *
588     * The array slots are read and written using the emulation of
589     * volatiles/atomics provided by Unsafe. Insertions must in
590     * general use putOrderedObject as a form of releasing store to
591     * ensure that all writes to the task object are ordered before
592 dl 1.105 * its publication in the queue. All removals entail a CAS to
593     * null. The array is always a power of two. To ensure safety of
594     * Unsafe array operations, all accesses perform explicit null
595     * checks and implicit bounds checks via power-of-two masking.
596 dl 1.78 *
597     * In addition to basic queuing support, this class contains
598     * fields described elsewhere to control execution. It turns out
599 dl 1.105 * to work better memory-layout-wise to include them in this class
600     * rather than a separate class.
601 dl 1.78 *
602     * Performance on most platforms is very sensitive to placement of
603     * instances of both WorkQueues and their arrays -- we absolutely
604     * do not want multiple WorkQueue instances or multiple queue
605     * arrays sharing cache lines. (It would be best for queue objects
606     * and their arrays to share, but there is nothing available to
607 dl 1.167 * help arrange that). The @Contended annotation alerts JVMs to
608     * try to keep instances apart.
609 dl 1.78 */
610 jsr166 1.171 @sun.misc.Contended
611 dl 1.78 static final class WorkQueue {
612     /**
613     * Capacity of work-stealing queue array upon initialization.
614 dl 1.90 * Must be a power of two; at least 4, but should be larger to
615     * reduce or eliminate cacheline sharing among queues.
616     * Currently, it is much larger, as a partial workaround for
617     * the fact that JVMs often place arrays in locations that
618     * share GC bookkeeping (especially cardmarks) such that
619     * per-write accesses encounter serious memory contention.
620 dl 1.78 */
621 dl 1.90 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
622 dl 1.78
623     /**
624     * Maximum size for queue arrays. Must be a power of two less
625     * than or equal to 1 << (31 - width of array entry) to ensure
626     * lack of wraparound of index calculations, but defined to a
627     * value a bit less than this to help users trap runaway
628     * programs before saturating systems.
629     */
630     static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
631    
632     int seed; // for random scanning; initialize nonzero
633     volatile int eventCount; // encoded inactivation count; < 0 if inactive
634     int nextWait; // encoded record of next event waiter
635 dl 1.112 int hint; // steal or signal hint (index)
636 dl 1.78 int poolIndex; // index of this queue in pool (or 0)
637 dl 1.112 final int mode; // 0: lifo, > 0: fifo, < 0: shared
638     int nsteals; // number of steals
639 dl 1.105 volatile int qlock; // 1: locked, -1: terminate; else 0
640 dl 1.78 volatile int base; // index of next slot for poll
641     int top; // index of next slot for push
642     ForkJoinTask<?>[] array; // the elements (initially unallocated)
643 dl 1.90 final ForkJoinPool pool; // the containing pool (may be null)
644 dl 1.78 final ForkJoinWorkerThread owner; // owning thread or null if shared
645     volatile Thread parker; // == owner during call to park; else null
646 dl 1.95 volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
647 dl 1.78 ForkJoinTask<?> currentSteal; // current non-local task being executed
648 dl 1.112
649     WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
650     int seed) {
651 dl 1.90 this.pool = pool;
652 dl 1.78 this.owner = owner;
653 dl 1.112 this.mode = mode;
654     this.seed = seed;
655 dl 1.115 // Place indices in the center of array (that is not yet allocated)
656 dl 1.78 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
657     }
658    
659     /**
660 dl 1.115 * Returns the approximate number of tasks in the queue.
661     */
662     final int queueSize() {
663     int n = base - top; // non-owner callers must read base first
664     return (n >= 0) ? 0 : -n; // ignore transient negative
665     }
666    
667     /**
668     * Provides a more accurate estimate of whether this queue has
669     * any tasks than does queueSize, by checking whether a
670     * near-empty queue has at least one unclaimed task.
671     */
672     final boolean isEmpty() {
673     ForkJoinTask<?>[] a; int m, s;
674     int n = base - (s = top);
675     return (n >= 0 ||
676     (n == -1 &&
677     ((a = array) == null ||
678     (m = a.length - 1) < 0 ||
679     U.getObject
680     (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
681     }
682    
683     /**
684     * Pushes a task. Call only by owner in unshared queues. (The
685     * shared-queue version is embedded in method externalPush.)
686 dl 1.78 *
687     * @param task the task. Caller must ensure non-null.
688 jsr166 1.146 * @throws RejectedExecutionException if array cannot be resized
689 dl 1.78 */
690 dl 1.90 final void push(ForkJoinTask<?> task) {
691 dl 1.112 ForkJoinTask<?>[] a; ForkJoinPool p;
692 dl 1.174 int s = top, m, n;
693 dl 1.112 if ((a = array) != null) { // ignore if queue removed
694 dl 1.174 long j = (((m = a.length - 1) & s) << ASHIFT) + ABASE;
695 dl 1.115 U.putOrderedObject(a, j, task);
696 dl 1.174 if ((n = (top = s + 1) - base) <= 2) {
697     if ((p = pool) != null)
698     p.signalWork(this);
699     }
700     else if (n >= m)
701 dl 1.112 growArray();
702 dl 1.78 }
703     }
704    
705 dl 1.112 /**
706     * Initializes or doubles the capacity of array. Call either
707     * by owner or with lock held -- it is OK for base, but not
708     * top, to move while resizings are in progress.
709     */
710     final ForkJoinTask<?>[] growArray() {
711     ForkJoinTask<?>[] oldA = array;
712     int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
713     if (size > MAXIMUM_QUEUE_CAPACITY)
714     throw new RejectedExecutionException("Queue capacity exceeded");
715     int oldMask, t, b;
716     ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
717     if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
718     (t = top) - (b = base) > 0) {
719     int mask = size - 1;
720     do {
721     ForkJoinTask<?> x;
722     int oldj = ((b & oldMask) << ASHIFT) + ABASE;
723     int j = ((b & mask) << ASHIFT) + ABASE;
724     x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
725     if (x != null &&
726     U.compareAndSwapObject(oldA, oldj, x, null))
727     U.putObjectVolatile(a, j, x);
728     } while (++b != t);
729 dl 1.78 }
730 dl 1.112 return a;
731 dl 1.78 }
732    
733     /**
734 dl 1.90 * Takes next task, if one exists, in LIFO order. Call only
735 dl 1.102 * by owner in unshared queues.
736 dl 1.90 */
737     final ForkJoinTask<?> pop() {
738 dl 1.94 ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
739     if ((a = array) != null && (m = a.length - 1) >= 0) {
740 dl 1.90 for (int s; (s = top - 1) - base >= 0;) {
741 dl 1.94 long j = ((m & s) << ASHIFT) + ABASE;
742     if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
743 dl 1.90 break;
744     if (U.compareAndSwapObject(a, j, t, null)) {
745     top = s;
746     return t;
747     }
748     }
749     }
750     return null;
751     }
752    
753     /**
754     * Takes a task in FIFO order if b is base of queue and a task
755     * can be claimed without contention. Specialized versions
756     * appear in ForkJoinPool methods scan and tryHelpStealer.
757 dl 1.78 */
758 dl 1.90 final ForkJoinTask<?> pollAt(int b) {
759 dl 1.174 ForkJoinTask<?> t; ForkJoinTask<?>[] a; ForkJoinPool p;
760 dl 1.90 if ((a = array) != null) {
761 dl 1.86 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
762     if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
763     base == b &&
764 dl 1.78 U.compareAndSwapObject(a, j, t, null)) {
765 dl 1.170 U.putOrderedInt(this, QBASE, b + 1);
766 dl 1.174 if (top - b > 1 && (p = pool) != null)
767     p.signalWork(this);
768 dl 1.78 return t;
769     }
770     }
771     return null;
772     }
773    
774     /**
775 dl 1.90 * Takes next task, if one exists, in FIFO order.
776 dl 1.78 */
777 dl 1.90 final ForkJoinTask<?> poll() {
778 dl 1.174 ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t; ForkJoinPool p;
779 dl 1.90 while ((b = base) - top < 0 && (a = array) != null) {
780     int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
781     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
782     if (t != null) {
783     if (base == b &&
784     U.compareAndSwapObject(a, j, t, null)) {
785 dl 1.170 U.putOrderedInt(this, QBASE, b + 1);
786 dl 1.174 if (top - b > 1 && (p = pool) != null)
787     p.signalWork(this);
788 dl 1.78 return t;
789     }
790     }
791 dl 1.90 else if (base == b) {
792     if (b + 1 == top)
793     break;
794 dl 1.105 Thread.yield(); // wait for lagging update (very rare)
795 dl 1.90 }
796 dl 1.78 }
797     return null;
798     }
799    
800     /**
801     * Takes next task, if one exists, in order specified by mode.
802     */
803     final ForkJoinTask<?> nextLocalTask() {
804     return mode == 0 ? pop() : poll();
805     }
806    
807     /**
808     * Returns next task, if one exists, in order specified by mode.
809     */
810     final ForkJoinTask<?> peek() {
811     ForkJoinTask<?>[] a = array; int m;
812     if (a == null || (m = a.length - 1) < 0)
813     return null;
814     int i = mode == 0 ? top - 1 : base;
815     int j = ((i & m) << ASHIFT) + ABASE;
816     return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
817     }
818    
819     /**
820     * Pops the given task only if it is at the current top.
821 dl 1.105 * (A shared version is available only via FJP.tryExternalUnpush)
822 dl 1.78 */
823     final boolean tryUnpush(ForkJoinTask<?> t) {
824     ForkJoinTask<?>[] a; int s;
825     if ((a = array) != null && (s = top) != base &&
826     U.compareAndSwapObject
827     (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
828     top = s;
829     return true;
830     }
831     return false;
832     }
833    
834     /**
835 jsr166 1.84 * Removes and cancels all known tasks, ignoring any exceptions.
836 dl 1.78 */
837     final void cancelAll() {
838     ForkJoinTask.cancelIgnoringExceptions(currentJoin);
839     ForkJoinTask.cancelIgnoringExceptions(currentSteal);
840     for (ForkJoinTask<?> t; (t = poll()) != null; )
841     ForkJoinTask.cancelIgnoringExceptions(t);
842     }
843    
844 dl 1.86 /**
845     * Computes next value for random probes. Scans don't require
846     * a very high quality generator, but also not a crummy one.
847     * Marsaglia xor-shift is cheap and works well enough. Note:
848 dl 1.90 * This is manually inlined in its usages in ForkJoinPool to
849     * avoid writes inside busy scan loops.
850 dl 1.86 */
851     final int nextSeed() {
852     int r = seed;
853     r ^= r << 13;
854     r ^= r >>> 17;
855     return seed = r ^= r << 5;
856     }
857    
858 dl 1.104 // Specialized execution methods
859 dl 1.78
860     /**
861 dl 1.94 * Pops and runs tasks until empty.
862 dl 1.78 */
863 dl 1.94 private void popAndExecAll() {
864     // A bit faster than repeated pop calls
865     ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
866     while ((a = array) != null && (m = a.length - 1) >= 0 &&
867     (s = top - 1) - base >= 0 &&
868     (t = ((ForkJoinTask<?>)
869     U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
870     != null) {
871     if (U.compareAndSwapObject(a, j, t, null)) {
872     top = s;
873     t.doExec();
874 dl 1.90 }
875 dl 1.94 }
876     }
877    
878     /**
879     * Polls and runs tasks until empty.
880     */
881     private void pollAndExecAll() {
882     for (ForkJoinTask<?> t; (t = poll()) != null;)
883     t.doExec();
884     }
885    
886     /**
887 dl 1.105 * If present, removes from queue and executes the given task,
888     * or any other cancelled task. Returns (true) on any CAS
889 dl 1.94 * or consistency check failure so caller can retry.
890     *
891 jsr166 1.150 * @return false if no progress can be made, else true
892 dl 1.94 */
893 dl 1.105 final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
894     boolean stat = true, removed = false, empty = true;
895 dl 1.94 ForkJoinTask<?>[] a; int m, s, b, n;
896     if ((a = array) != null && (m = a.length - 1) >= 0 &&
897     (n = (s = top) - (b = base)) > 0) {
898     for (ForkJoinTask<?> t;;) { // traverse from s to b
899     int j = ((--s & m) << ASHIFT) + ABASE;
900     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
901     if (t == null) // inconsistent length
902     break;
903     else if (t == task) {
904     if (s + 1 == top) { // pop
905     if (!U.compareAndSwapObject(a, j, task, null))
906 dl 1.90 break;
907 dl 1.94 top = s;
908     removed = true;
909 dl 1.90 }
910 dl 1.94 else if (base == b) // replace with proxy
911     removed = U.compareAndSwapObject(a, j, task,
912     new EmptyTask());
913     break;
914     }
915     else if (t.status >= 0)
916     empty = false;
917     else if (s + 1 == top) { // pop and throw away
918     if (U.compareAndSwapObject(a, j, t, null))
919     top = s;
920     break;
921     }
922     if (--n == 0) {
923     if (!empty && base == b)
924 dl 1.105 stat = false;
925 dl 1.94 break;
926 dl 1.90 }
927     }
928 dl 1.78 }
929 dl 1.94 if (removed)
930     task.doExec();
931 dl 1.95 return stat;
932 dl 1.78 }
933    
934     /**
935 dl 1.105 * Polls for and executes the given task or any other task in
936 jsr166 1.149 * its CountedCompleter computation.
937 dl 1.104 */
938 dl 1.174 final boolean pollAndExecCC(ForkJoinTask<?> root, ForkJoinPool spool) {
939 dl 1.105 ForkJoinTask<?>[] a; int b; Object o;
940 dl 1.166 outer: while (root.status >= 0 && (b = base) - top < 0 &&
941     (a = array) != null) {
942 dl 1.105 long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
943     if ((o = U.getObject(a, j)) == null ||
944     !(o instanceof CountedCompleter))
945     break;
946     for (CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;;) {
947     if (r == root) {
948     if (base == b &&
949     U.compareAndSwapObject(a, j, t, null)) {
950 dl 1.170 U.putOrderedInt(this, QBASE, b + 1);
951 dl 1.174 if (spool != null && top - b > 1)
952     spool.signalWork(this);
953 dl 1.105 t.doExec();
954     return true;
955 dl 1.104 }
956 dl 1.105 else
957     break; // restart
958 dl 1.104 }
959 dl 1.105 if ((r = r.completer) == null)
960     break outer; // not part of root computation
961 dl 1.104 }
962     }
963 dl 1.105 return false;
964 dl 1.104 }
965    
966     /**
967 dl 1.78 * Executes a top-level task and any local tasks remaining
968     * after execution.
969     */
970 dl 1.94 final void runTask(ForkJoinTask<?> t) {
971 dl 1.78 if (t != null) {
972 dl 1.105 (currentSteal = t).doExec();
973     currentSteal = null;
974 dl 1.126 ++nsteals;
975 dl 1.115 if (base - top < 0) { // process remaining local tasks
976 dl 1.94 if (mode == 0)
977     popAndExecAll();
978     else
979     pollAndExecAll();
980     }
981 dl 1.78 }
982     }
983    
984     /**
985 jsr166 1.84 * Executes a non-top-level (stolen) task.
986 dl 1.78 */
987     final void runSubtask(ForkJoinTask<?> t) {
988     if (t != null) {
989     ForkJoinTask<?> ps = currentSteal;
990 dl 1.105 (currentSteal = t).doExec();
991 dl 1.78 currentSteal = ps;
992     }
993     }
994    
995     /**
996 dl 1.86 * Returns true if owned and not known to be blocked.
997     */
998     final boolean isApparentlyUnblocked() {
999     Thread wt; Thread.State s;
1000     return (eventCount >= 0 &&
1001     (wt = owner) != null &&
1002     (s = wt.getState()) != Thread.State.BLOCKED &&
1003     s != Thread.State.WAITING &&
1004     s != Thread.State.TIMED_WAITING);
1005     }
1006    
1007 dl 1.78 // Unsafe mechanics
1008     private static final sun.misc.Unsafe U;
1009 dl 1.170 private static final long QBASE;
1010 dl 1.105 private static final long QLOCK;
1011 dl 1.78 private static final int ABASE;
1012     private static final int ASHIFT;
1013     static {
1014     try {
1015     U = sun.misc.Unsafe.getUnsafe();
1016     Class<?> k = WorkQueue.class;
1017     Class<?> ak = ForkJoinTask[].class;
1018 dl 1.170 QBASE = U.objectFieldOffset
1019     (k.getDeclaredField("base"));
1020 dl 1.105 QLOCK = U.objectFieldOffset
1021     (k.getDeclaredField("qlock"));
1022 dl 1.78 ABASE = U.arrayBaseOffset(ak);
1023 jsr166 1.142 int scale = U.arrayIndexScale(ak);
1024     if ((scale & (scale - 1)) != 0)
1025     throw new Error("data type scale not a power of two");
1026     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1027 dl 1.78 } catch (Exception e) {
1028     throw new Error(e);
1029     }
1030     }
1031     }
1032 dl 1.14
1033 dl 1.112 // static fields (initialized in static initializer below)
1034    
1035     /**
1036     * Creates a new ForkJoinWorkerThread. This factory is used unless
1037     * overridden in ForkJoinPool constructors.
1038     */
1039     public static final ForkJoinWorkerThreadFactory
1040     defaultForkJoinWorkerThreadFactory;
1041    
1042 jsr166 1.1 /**
1043 dl 1.115 * Permission required for callers of methods that may start or
1044     * kill threads.
1045     */
1046     private static final RuntimePermission modifyThreadPermission;
1047    
1048     /**
1049 dl 1.101 * Common (static) pool. Non-null for public use unless a static
1050 dl 1.105 * construction exception, but internal usages null-check on use
1051     * to paranoically avoid potential initialization circularities
1052     * as well as to simplify generated code.
1053 dl 1.101 */
1054 dl 1.134 static final ForkJoinPool common;
1055 dl 1.101
1056     /**
1057 dl 1.160 * Common pool parallelism. To allow simpler use and management
1058     * when common pool threads are disabled, we allow the underlying
1059     * common.config field to be zero, but in that case still report
1060     * parallelism as 1 to reflect resulting caller-runs mechanics.
1061 dl 1.90 */
1062 dl 1.134 static final int commonParallelism;
1063 dl 1.90
1064     /**
1065 dl 1.105 * Sequence number for creating workerNamePrefix.
1066 dl 1.86 */
1067 dl 1.105 private static int poolNumberSequence;
1068 dl 1.86
1069 jsr166 1.1 /**
1070 jsr166 1.132 * Returns the next sequence number. We don't expect this to
1071     * ever contend, so use simple builtin sync.
1072 dl 1.83 */
1073 dl 1.105 private static final synchronized int nextPoolId() {
1074     return ++poolNumberSequence;
1075     }
1076 dl 1.86
1077     // static constants
1078    
1079     /**
1080 dl 1.105 * Initial timeout value (in nanoseconds) for the thread
1081     * triggering quiescence to park waiting for new work. On timeout,
1082     * the thread will instead try to shrink the number of
1083     * workers. The value should be large enough to avoid overly
1084     * aggressive shrinkage during most transient stalls (long GCs
1085     * etc).
1086 dl 1.86 */
1087 dl 1.105 private static final long IDLE_TIMEOUT = 2000L * 1000L * 1000L; // 2sec
1088 dl 1.86
1089     /**
1090 dl 1.100 * Timeout value when there are more threads than parallelism level
1091 dl 1.86 */
1092 dl 1.105 private static final long FAST_IDLE_TIMEOUT = 200L * 1000L * 1000L;
1093 dl 1.86
1094     /**
1095 dl 1.120 * Tolerance for idle timeouts, to cope with timer undershoots
1096     */
1097 dl 1.127 private static final long TIMEOUT_SLOP = 2000000L;
1098 dl 1.120
1099     /**
1100 dl 1.90 * The maximum stolen->joining link depth allowed in method
1101 dl 1.105 * tryHelpStealer. Must be a power of two. Depths for legitimate
1102 dl 1.90 * chains are unbounded, but we use a fixed constant to avoid
1103     * (otherwise unchecked) cycles and to bound staleness of
1104     * traversal parameters at the expense of sometimes blocking when
1105     * we could be helping.
1106     */
1107 dl 1.95 private static final int MAX_HELP = 64;
1108 dl 1.90
1109     /**
1110     * Increment for seed generators. See class ThreadLocal for
1111     * explanation.
1112     */
1113     private static final int SEED_INCREMENT = 0x61c88647;
1114 dl 1.83
1115 jsr166 1.163 /*
1116 dl 1.86 * Bits and masks for control variables
1117     *
1118     * Field ctl is a long packed with:
1119     * AC: Number of active running workers minus target parallelism (16 bits)
1120     * TC: Number of total workers minus target parallelism (16 bits)
1121     * ST: true if pool is terminating (1 bit)
1122     * EC: the wait count of top waiting thread (15 bits)
1123     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1124     *
1125     * When convenient, we can extract the upper 32 bits of counts and
1126     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1127     * (int)ctl. The ec field is never accessed alone, but always
1128     * together with id and st. The offsets of counts by the target
1129     * parallelism and the positionings of fields makes it possible to
1130     * perform the most common checks via sign tests of fields: When
1131     * ac is negative, there are not enough active workers, when tc is
1132     * negative, there are not enough total workers, and when e is
1133     * negative, the pool is terminating. To deal with these possibly
1134     * negative fields, we use casts in and out of "short" and/or
1135     * signed shifts to maintain signedness.
1136     *
1137     * When a thread is queued (inactivated), its eventCount field is
1138     * set negative, which is the only way to tell if a worker is
1139     * prevented from executing tasks, even though it must continue to
1140     * scan for them to avoid queuing races. Note however that
1141     * eventCount updates lag releases so usage requires care.
1142     *
1143 dl 1.105 * Field plock is an int packed with:
1144 dl 1.86 * SHUTDOWN: true if shutdown is enabled (1 bit)
1145 dl 1.105 * SEQ: a sequence lock, with PL_LOCK bit set if locked (30 bits)
1146     * SIGNAL: set when threads may be waiting on the lock (1 bit)
1147 dl 1.86 *
1148 dl 1.90 * The sequence number enables simple consistency checks:
1149     * Staleness of read-only operations on the workQueues array can
1150 dl 1.105 * be checked by comparing plock before vs after the reads.
1151 dl 1.86 */
1152    
1153     // bit positions/shifts for fields
1154     private static final int AC_SHIFT = 48;
1155     private static final int TC_SHIFT = 32;
1156     private static final int ST_SHIFT = 31;
1157     private static final int EC_SHIFT = 16;
1158    
1159     // bounds
1160     private static final int SMASK = 0xffff; // short bits
1161 dl 1.90 private static final int MAX_CAP = 0x7fff; // max #workers - 1
1162 dl 1.105 private static final int EVENMASK = 0xfffe; // even short bits
1163     private static final int SQMASK = 0x007e; // max 64 (even) slots
1164 dl 1.86 private static final int SHORT_SIGN = 1 << 15;
1165     private static final int INT_SIGN = 1 << 31;
1166    
1167     // masks
1168     private static final long STOP_BIT = 0x0001L << ST_SHIFT;
1169     private static final long AC_MASK = ((long)SMASK) << AC_SHIFT;
1170     private static final long TC_MASK = ((long)SMASK) << TC_SHIFT;
1171    
1172     // units for incrementing and decrementing
1173     private static final long TC_UNIT = 1L << TC_SHIFT;
1174     private static final long AC_UNIT = 1L << AC_SHIFT;
1175    
1176     // masks and units for dealing with u = (int)(ctl >>> 32)
1177     private static final int UAC_SHIFT = AC_SHIFT - 32;
1178     private static final int UTC_SHIFT = TC_SHIFT - 32;
1179     private static final int UAC_MASK = SMASK << UAC_SHIFT;
1180     private static final int UTC_MASK = SMASK << UTC_SHIFT;
1181     private static final int UAC_UNIT = 1 << UAC_SHIFT;
1182     private static final int UTC_UNIT = 1 << UTC_SHIFT;
1183    
1184     // masks and units for dealing with e = (int)ctl
1185     private static final int E_MASK = 0x7fffffff; // no STOP_BIT
1186     private static final int E_SEQ = 1 << EC_SHIFT;
1187    
1188 dl 1.105 // plock bits
1189 dl 1.86 private static final int SHUTDOWN = 1 << 31;
1190 dl 1.105 private static final int PL_LOCK = 2;
1191     private static final int PL_SIGNAL = 1;
1192     private static final int PL_SPINS = 1 << 8;
1193 dl 1.86
1194     // access mode for WorkQueue
1195     static final int LIFO_QUEUE = 0;
1196     static final int FIFO_QUEUE = 1;
1197     static final int SHARED_QUEUE = -1;
1198    
1199 dl 1.172 // Mininum number of scans before blocking in scan() and related methods
1200     private static final int MIN_RESCANS = 0x0fff;
1201 dl 1.112
1202 dl 1.86 // Instance fields
1203 dl 1.101 volatile long stealCount; // collects worker counts
1204 dl 1.86 volatile long ctl; // main pool control
1205 dl 1.112 volatile int plock; // shutdown status and seqLock
1206 dl 1.105 volatile int indexSeed; // worker/submitter index seed
1207 dl 1.112 final int config; // mode and parallelism level
1208 dl 1.86 WorkQueue[] workQueues; // main registry
1209 dl 1.112 final ForkJoinWorkerThreadFactory factory;
1210 jsr166 1.156 final UncaughtExceptionHandler ueh; // per-worker UEH
1211 dl 1.101 final String workerNamePrefix; // to create worker name string
1212    
1213 jsr166 1.145 /**
1214 dl 1.105 * Acquires the plock lock to protect worker array and related
1215     * updates. This method is called only if an initial CAS on plock
1216 jsr166 1.140 * fails. This acts as a spinlock for normal cases, but falls back
1217 dl 1.105 * to builtin monitor to block when (rarely) needed. This would be
1218     * a terrible idea for a highly contended lock, but works fine as
1219 dl 1.126 * a more conservative alternative to a pure spinlock.
1220 dl 1.105 */
1221     private int acquirePlock() {
1222 dl 1.139 int spins = PL_SPINS, ps, nps;
1223 dl 1.105 for (;;) {
1224     if (((ps = plock) & PL_LOCK) == 0 &&
1225     U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1226     return nps;
1227 dl 1.101 else if (spins >= 0) {
1228 dl 1.139 if (ThreadLocalRandom.nextSecondarySeed() >= 0)
1229 dl 1.101 --spins;
1230     }
1231 dl 1.105 else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1232 jsr166 1.106 synchronized (this) {
1233 dl 1.105 if ((plock & PL_SIGNAL) != 0) {
1234 dl 1.101 try {
1235     wait();
1236     } catch (InterruptedException ie) {
1237 dl 1.104 try {
1238     Thread.currentThread().interrupt();
1239     } catch (SecurityException ignore) {
1240     }
1241 dl 1.101 }
1242     }
1243     else
1244 dl 1.105 notifyAll();
1245 dl 1.101 }
1246     }
1247     }
1248     }
1249 dl 1.78
1250 jsr166 1.1 /**
1251 dl 1.105 * Unlocks and signals any thread waiting for plock. Called only
1252     * when CAS of seq value for unlock fails.
1253 jsr166 1.1 */
1254 dl 1.105 private void releasePlock(int ps) {
1255     plock = ps;
1256 jsr166 1.106 synchronized (this) { notifyAll(); }
1257 dl 1.78 }
1258 jsr166 1.1
1259 dl 1.112 /**
1260 dl 1.120 * Tries to create and start one worker if fewer than target
1261     * parallelism level exist. Adjusts counts etc on failure.
1262 dl 1.115 */
1263     private void tryAddWorker() {
1264 dl 1.112 long c; int u;
1265 dl 1.115 while ((u = (int)((c = ctl) >>> 32)) < 0 &&
1266     (u & SHORT_SIGN) != 0 && (int)c == 0) {
1267 dl 1.112 long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1268     ((u + UAC_UNIT) & UAC_MASK)) << 32;
1269 dl 1.115 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1270     ForkJoinWorkerThreadFactory fac;
1271     Throwable ex = null;
1272     ForkJoinWorkerThread wt = null;
1273     try {
1274     if ((fac = factory) != null &&
1275     (wt = fac.newThread(this)) != null) {
1276     wt.start();
1277     break;
1278     }
1279     } catch (Throwable e) {
1280     ex = e;
1281     }
1282     deregisterWorker(wt, ex);
1283     break;
1284     }
1285 dl 1.112 }
1286     }
1287    
1288     // Registering and deregistering workers
1289    
1290     /**
1291     * Callback from ForkJoinWorkerThread to establish and record its
1292     * WorkQueue. To avoid scanning bias due to packing entries in
1293     * front of the workQueues array, we treat the array as a simple
1294     * power-of-two hash table using per-thread seed as hash,
1295     * expanding as needed.
1296     *
1297     * @param wt the worker thread
1298 dl 1.115 * @return the worker's queue
1299 dl 1.112 */
1300 dl 1.115 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1301 jsr166 1.156 UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps;
1302 dl 1.115 wt.setDaemon(true);
1303     if ((handler = ueh) != null)
1304     wt.setUncaughtExceptionHandler(handler);
1305     do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
1306     s += SEED_INCREMENT) ||
1307     s == 0); // skip 0
1308     WorkQueue w = new WorkQueue(this, wt, config >>> 16, s);
1309     if (((ps = plock) & PL_LOCK) != 0 ||
1310     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1311     ps = acquirePlock();
1312     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1313     try {
1314     if ((ws = workQueues) != null) { // skip if shutting down
1315     int n = ws.length, m = n - 1;
1316     int r = (s << 1) | 1; // use odd-numbered indices
1317     if (ws[r &= m] != null) { // collision
1318     int probes = 0; // step by approx half size
1319     int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1320     while (ws[r = (r + step) & m] != null) {
1321     if (++probes >= n) {
1322     workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1323     m = n - 1;
1324     probes = 0;
1325 dl 1.94 }
1326     }
1327     }
1328 dl 1.115 w.eventCount = w.poolIndex = r; // volatile write orders
1329     ws[r] = w;
1330 dl 1.78 }
1331 dl 1.115 } finally {
1332     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1333     releasePlock(nps);
1334 dl 1.78 }
1335 dl 1.115 wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex)));
1336     return w;
1337 dl 1.78 }
1338 dl 1.19
1339 jsr166 1.1 /**
1340 dl 1.86 * Final callback from terminating worker, as well as upon failure
1341 dl 1.105 * to construct or start a worker. Removes record of worker from
1342     * array, and adjusts counts. If pool is shutting down, tries to
1343     * complete termination.
1344 dl 1.78 *
1345 jsr166 1.151 * @param wt the worker thread, or null if construction failed
1346 dl 1.78 * @param ex the exception causing failure, or null if none
1347 dl 1.45 */
1348 dl 1.78 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1349     WorkQueue w = null;
1350     if (wt != null && (w = wt.workQueue) != null) {
1351 dl 1.105 int ps;
1352     w.qlock = -1; // ensure set
1353 dl 1.112 long ns = w.nsteals, sc; // collect steal count
1354     do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1355     sc = stealCount, sc + ns));
1356 dl 1.105 if (((ps = plock) & PL_LOCK) != 0 ||
1357     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1358     ps = acquirePlock();
1359     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1360 dl 1.101 try {
1361 dl 1.105 int idx = w.poolIndex;
1362 dl 1.78 WorkQueue[] ws = workQueues;
1363 dl 1.90 if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1364 dl 1.86 ws[idx] = null;
1365 dl 1.78 } finally {
1366 dl 1.105 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1367     releasePlock(nps);
1368 dl 1.78 }
1369     }
1370    
1371 dl 1.126 long c; // adjust ctl counts
1372 dl 1.78 do {} while (!U.compareAndSwapLong
1373     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1374     ((c - TC_UNIT) & TC_MASK) |
1375     (c & ~(AC_MASK|TC_MASK)))));
1376    
1377 dl 1.120 if (!tryTerminate(false, false) && w != null && w.array != null) {
1378 dl 1.126 w.cancelAll(); // cancel remaining tasks
1379     WorkQueue[] ws; WorkQueue v; Thread p; int u, i, e;
1380     while ((u = (int)((c = ctl) >>> 32)) < 0 && (e = (int)c) >= 0) {
1381     if (e > 0) { // activate or create replacement
1382     if ((ws = workQueues) == null ||
1383     (i = e & SMASK) >= ws.length ||
1384 dl 1.130 (v = ws[i]) == null)
1385 dl 1.126 break;
1386     long nc = (((long)(v.nextWait & E_MASK)) |
1387     ((long)(u + UAC_UNIT) << 32));
1388     if (v.eventCount != (e | INT_SIGN))
1389     break;
1390     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1391     v.eventCount = (e + E_SEQ) & E_MASK;
1392     if ((p = v.parker) != null)
1393     U.unpark(p);
1394     break;
1395 dl 1.120 }
1396     }
1397     else {
1398     if ((short)u < 0)
1399     tryAddWorker();
1400     break;
1401     }
1402     }
1403 dl 1.78 }
1404 dl 1.120 if (ex == null) // help clean refs on way out
1405     ForkJoinTask.helpExpungeStaleExceptions();
1406     else // rethrow
1407 dl 1.104 ForkJoinTask.rethrow(ex);
1408 dl 1.78 }
1409 dl 1.52
1410 dl 1.86 // Submissions
1411    
1412     /**
1413     * Unless shutting down, adds the given task to a submission queue
1414     * at submitter's current queue index (modulo submission
1415 dl 1.105 * range). Only the most common path is directly handled in this
1416     * method. All others are relayed to fullExternalPush.
1417 dl 1.90 *
1418     * @param task the task. Caller must ensure non-null.
1419 dl 1.86 */
1420 dl 1.105 final void externalPush(ForkJoinTask<?> task) {
1421 dl 1.139 WorkQueue[] ws; WorkQueue q; int z, m; ForkJoinTask<?>[] a;
1422     if ((z = ThreadLocalRandom.getProbe()) != 0 && plock > 0 &&
1423 dl 1.105 (ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
1424 dl 1.139 (q = ws[m & z & SQMASK]) != null &&
1425 dl 1.105 U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1426 dl 1.174 int s, am, n;
1427     if ((a = q.array) != null &&
1428     (am = a.length - 1) > (n = (s = q.top) - q.base)) {
1429 dl 1.172 int j = ((am & s) << ASHIFT) + ABASE;
1430 dl 1.115 U.putOrderedObject(a, j, task);
1431 dl 1.105 q.top = s + 1; // push on to deque
1432     q.qlock = 0;
1433 dl 1.174 if (n <= 1)
1434     signalWork(q);
1435 dl 1.90 return;
1436     }
1437 dl 1.105 q.qlock = 0;
1438 dl 1.83 }
1439 dl 1.105 fullExternalPush(task);
1440 dl 1.83 }
1441 dl 1.45
1442 dl 1.100 /**
1443 dl 1.105 * Full version of externalPush. This method is called, among
1444     * other times, upon the first submission of the first task to the
1445 dl 1.131 * pool, so must perform secondary initialization. It also
1446     * detects first submission by an external thread by looking up
1447     * its ThreadLocal, and creates a new shared queue if the one at
1448     * index if empty or contended. The plock lock body must be
1449     * exception-free (so no try/finally) so we optimistically
1450     * allocate new queues outside the lock and throw them away if
1451     * (very rarely) not needed.
1452     *
1453     * Secondary initialization occurs when plock is zero, to create
1454     * workQueue array and set plock to a valid value. This lock body
1455     * must also be exception-free. Because the plock seq value can
1456     * eventually wrap around zero, this method harmlessly fails to
1457     * reinitialize if workQueues exists, while still advancing plock.
1458 dl 1.105 */
1459     private void fullExternalPush(ForkJoinTask<?> task) {
1460 dl 1.139 int r;
1461     if ((r = ThreadLocalRandom.getProbe()) == 0) {
1462     ThreadLocalRandom.localInit();
1463     r = ThreadLocalRandom.getProbe();
1464     }
1465     for (;;) {
1466 dl 1.112 WorkQueue[] ws; WorkQueue q; int ps, m, k;
1467 dl 1.139 boolean move = false;
1468     if ((ps = plock) < 0)
1469 dl 1.105 throw new RejectedExecutionException();
1470 dl 1.112 else if (ps == 0 || (ws = workQueues) == null ||
1471 dl 1.131 (m = ws.length - 1) < 0) { // initialize workQueues
1472     int p = config & SMASK; // find power of two table size
1473     int n = (p > 1) ? p - 1 : 1; // ensure at least 2 slots
1474     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4;
1475     n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1;
1476     WorkQueue[] nws = ((ws = workQueues) == null || ws.length == 0 ?
1477     new WorkQueue[n] : null);
1478     if (((ps = plock) & PL_LOCK) != 0 ||
1479     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1480     ps = acquirePlock();
1481     if (((ws = workQueues) == null || ws.length == 0) && nws != null)
1482     workQueues = nws;
1483     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1484     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1485     releasePlock(nps);
1486     }
1487 dl 1.112 else if ((q = ws[k = r & m & SQMASK]) != null) {
1488 dl 1.115 if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
1489     ForkJoinTask<?>[] a = q.array;
1490     int s = q.top;
1491     boolean submitted = false;
1492     try { // locked version of push
1493     if ((a != null && a.length > s + 1 - q.base) ||
1494     (a = q.growArray()) != null) { // must presize
1495 dl 1.174 long j = (((a.length - 1) & s) << ASHIFT) + ABASE;
1496 dl 1.115 U.putOrderedObject(a, j, task);
1497     q.top = s + 1;
1498     submitted = true;
1499     }
1500     } finally {
1501     q.qlock = 0; // unlock
1502     }
1503     if (submitted) {
1504     signalWork(q);
1505     return;
1506     }
1507     }
1508 dl 1.139 move = true; // move on failure
1509 dl 1.112 }
1510     else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
1511     q = new WorkQueue(this, null, SHARED_QUEUE, r);
1512     if (((ps = plock) & PL_LOCK) != 0 ||
1513 dl 1.105 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1514     ps = acquirePlock();
1515 dl 1.112 if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
1516     ws[k] = q;
1517 dl 1.105 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1518     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1519     releasePlock(nps);
1520     }
1521 dl 1.112 else
1522 dl 1.139 move = true; // move if busy
1523     if (move)
1524     r = ThreadLocalRandom.advanceProbe(r);
1525 dl 1.104 }
1526 dl 1.102 }
1527    
1528 dl 1.78 // Maintaining ctl counts
1529 dl 1.17
1530     /**
1531 jsr166 1.84 * Increments active count; mainly called upon return from blocking.
1532 dl 1.19 */
1533 dl 1.78 final void incrementActiveCount() {
1534 dl 1.52 long c;
1535 dl 1.78 do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1536 dl 1.19 }
1537    
1538     /**
1539 dl 1.115 * Tries to create or activate a worker if too few are active.
1540     *
1541 dl 1.172 * @param q if non-null, the queue holding tasks to be processed
1542 dl 1.105 */
1543 dl 1.115 final void signalWork(WorkQueue q) {
1544 dl 1.174 for (;;) {
1545     long c; int e, u, i; WorkQueue[] ws; WorkQueue w; Thread p;
1546     if ((u = (int)((c = ctl) >>> 32)) >= 0)
1547     break;
1548     if ((e = (int)c) <= 0) {
1549 dl 1.115 if ((short)u < 0)
1550     tryAddWorker();
1551     break;
1552 dl 1.52 }
1553 dl 1.174 if ((ws = workQueues) == null || ws.length <= (i = e & SMASK) ||
1554     (w = ws[i]) == null)
1555     break;
1556     int wec = w.eventCount;
1557     long nc = (((long)(w.nextWait & E_MASK)) |
1558     ((long)(u + UAC_UNIT) << 32));
1559     if (wec == (e | INT_SIGN) &&
1560     U.compareAndSwapLong(this, CTL, c, nc)) {
1561     w.eventCount = (e + E_SEQ) & E_MASK;
1562     if ((p = w.parker) != null)
1563     U.unpark(p);
1564     break;
1565     }
1566     if (q == null || q.base - q.top >= 0) // quit if empty
1567     break;
1568 dl 1.52 }
1569 dl 1.14 }
1570    
1571 dl 1.90 // Scanning for tasks
1572    
1573 dl 1.14 /**
1574 dl 1.90 * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1575 dl 1.14 */
1576 dl 1.90 final void runWorker(WorkQueue w) {
1577 dl 1.115 w.growArray(); // allocate queue
1578     do { w.runTask(scan(w)); } while (w.qlock >= 0);
1579 dl 1.14 }
1580    
1581     /**
1582 dl 1.78 * Scans for and, if found, returns one task, else possibly
1583     * inactivates the worker. This method operates on single reads of
1584 dl 1.90 * volatile state and is designed to be re-invoked continuously,
1585     * in part because it returns upon detecting inconsistencies,
1586 dl 1.78 * contention, or state changes that indicate possible success on
1587     * re-invocation.
1588     *
1589 dl 1.112 * The scan searches for tasks across queues (starting at a random
1590     * index, and relying on registerWorker to irregularly scatter
1591     * them within array to avoid bias), checking each at least twice.
1592     * The scan terminates upon either finding a non-empty queue, or
1593     * completing the sweep. If the worker is not inactivated, it
1594     * takes and returns a task from this queue. Otherwise, if not
1595 dl 1.174 * activated, it tries to activate itself or some other worker by
1596     * signalling. Also indicates retry if the worker array may have
1597     * changed during an empty scan. On failure to find a task, if
1598     * not already enqueued, tries to inactivate and enqueue the
1599     * worker on wait queue and then rescan. Otherwise relays to one
1600     * of the actions in onEmptyScan.
1601 dl 1.78 *
1602     * @param w the worker (via its WorkQueue)
1603 jsr166 1.98 * @return a task or null if none found
1604 dl 1.78 */
1605     private final ForkJoinTask<?> scan(WorkQueue w) {
1606 dl 1.115 WorkQueue[] ws; int m;
1607 dl 1.174 int ps = plock; // read plock before ws
1608 dl 1.112 if (w != null && (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1609 dl 1.174 int ec = w.eventCount; // ec negative if inactive
1610 dl 1.112 int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1611 dl 1.177 for (int j = (m << 1) | (ec < 0 ? MIN_RESCANS : 0xf);;) {
1612 dl 1.174 WorkQueue q; int b, s; ForkJoinTask<?>[] a;
1613     if ((q = ws[(r - j) & m]) != null && // probably nonempty
1614     (b = q.base) - (s = q.top) < 0 && (a = q.array) != null) {
1615     long i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1616     ForkJoinTask<?> t =
1617     (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1618     if ((ec >= 0 || (ec = w.eventCount) >= 0) &&
1619     q.base == b && t != null &&
1620     U.compareAndSwapObject(a, i, t, null)) {
1621     U.putOrderedInt(q, QBASE, b + 1);
1622     if (q.top - b > 1)
1623     signalWork(q);
1624     return t;
1625     }
1626 dl 1.177 if (--j < m) { // restart to revisit
1627     if (ec < 0) // help activate
1628 dl 1.174 signalWork(q);
1629     break;
1630     }
1631     }
1632     else if (--j < 0) {
1633 dl 1.177 long c = ctl; int e;
1634 dl 1.174 long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1635     if (plock == ps) {
1636 dl 1.177 if ((e = (int)c) < 0)
1637     w.qlock = -1; // pool is terminating
1638     else if (ec >= 0) {
1639 dl 1.174 w.nextWait = e; // try to enqueue/inactivate
1640     w.eventCount = ec | INT_SIGN;
1641     if (!U.compareAndSwapLong(this, CTL, c, nc))
1642     w.eventCount = ec; // unmark on CAS failure
1643 dl 1.170 }
1644 dl 1.174 else
1645     onEmptyScan(w, c);
1646 dl 1.112 }
1647 dl 1.174 break;
1648 dl 1.115 }
1649     }
1650 dl 1.52 }
1651 dl 1.78 return null;
1652 dl 1.14 }
1653    
1654     /**
1655 dl 1.174 * A continuation of scan(), possibly blocking or terminating
1656     * worker w. ALso, if inactivating w has caused the pool to become
1657 dl 1.90 * quiescent, checks for pool termination, and, so long as this is
1658 dl 1.100 * not the only worker, waits for event for up to a given
1659     * duration. On timeout, if ctl has not changed, terminates the
1660 dl 1.90 * worker, which will in turn wake up another worker to possibly
1661     * repeat this process.
1662 dl 1.52 *
1663 dl 1.78 * @param w the calling worker
1664 dl 1.174 * @param c the ctl value triggering possible quiescence
1665 dl 1.14 */
1666 dl 1.174 private final void onEmptyScan(WorkQueue w, long c) {
1667 dl 1.177 int ec, ns;
1668     int d = (int)(c >> AC_SHIFT) + (config & SMASK); // 0 if quiescent
1669     if (w != null && (ec = w.eventCount) < 0 &&
1670     (d != 0 || !tryTerminate(false, false))) {
1671     long pc = 0L, parkTime = 0L, deadline = 0L;
1672     if (d == 0 && ec == (((int)c) | INT_SIGN) &&
1673     (pc = (((long)(w.nextWait & E_MASK)) |
1674     ((long)(((int)(c >>> 32)) + UAC_UNIT) << 32))) != 0) {
1675     int dc = -(short)(c >>> TC_SHIFT);
1676     parkTime = (dc < 0 ? FAST_IDLE_TIMEOUT:
1677     (dc + 1) * IDLE_TIMEOUT);
1678     deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
1679     }
1680     if ((ns = w.nsteals) != 0) {
1681     long sc = stealCount;
1682     if (U.compareAndSwapLong(this, STEALCOUNT, sc, sc + ns))
1683     w.nsteals = 0; // collect steals and rescan
1684     }
1685     else if (w.eventCount < 0) {
1686     Thread wt = Thread.currentThread();
1687     Thread.interrupted(); // clear status
1688     U.putObject(wt, PARKBLOCKER, this);
1689     w.parker = wt; // emulate LockSupport.park
1690     if (w.eventCount < 0) // recheck
1691     U.park(false, parkTime); // block
1692     w.parker = null;
1693     U.putObject(wt, PARKBLOCKER, null);
1694     if (parkTime != 0L && w.eventCount < 0 && ctl == c &&
1695     deadline - System.nanoTime() <= 0L &&
1696     U.compareAndSwapLong(this, CTL, c, pc)) {
1697     w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1698     w.qlock = -1; // shrink
1699 dl 1.120 }
1700     }
1701     }
1702     }
1703    
1704     /**
1705 dl 1.78 * Tries to locate and execute tasks for a stealer of the given
1706     * task, or in turn one of its stealers, Traces currentSteal ->
1707     * currentJoin links looking for a thread working on a descendant
1708     * of the given task and with a non-empty queue to steal back and
1709     * execute tasks from. The first call to this method upon a
1710     * waiting join will often entail scanning/search, (which is OK
1711     * because the joiner has nothing better to do), but this method
1712     * leaves hints in workers to speed up subsequent calls. The
1713     * implementation is very branchy to cope with potential
1714     * inconsistencies or loops encountering chains that are stale,
1715 dl 1.95 * unknown, or so long that they are likely cyclic.
1716 dl 1.78 *
1717     * @param joiner the joining worker
1718     * @param task the task to join
1719 dl 1.95 * @return 0 if no progress can be made, negative if task
1720     * known complete, else positive
1721 dl 1.78 */
1722 dl 1.95 private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1723     int stat = 0, steps = 0; // bound to avoid cycles
1724     if (joiner != null && task != null) { // hoist null checks
1725     restart: for (;;) {
1726     ForkJoinTask<?> subtask = task; // current target
1727     for (WorkQueue j = joiner, v;;) { // v is stealer of subtask
1728     WorkQueue[] ws; int m, s, h;
1729     if ((s = task.status) < 0) {
1730     stat = s;
1731     break restart;
1732     }
1733     if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1734     break restart; // shutting down
1735 dl 1.112 if ((v = ws[h = (j.hint | 1) & m]) == null ||
1736 dl 1.95 v.currentSteal != subtask) {
1737     for (int origin = h;;) { // find stealer
1738     if (((h = (h + 2) & m) & 15) == 1 &&
1739     (subtask.status < 0 || j.currentJoin != subtask))
1740     continue restart; // occasional staleness check
1741     if ((v = ws[h]) != null &&
1742     v.currentSteal == subtask) {
1743 dl 1.112 j.hint = h; // save hint
1744 dl 1.95 break;
1745     }
1746     if (h == origin)
1747     break restart; // cannot find stealer
1748 dl 1.78 }
1749     }
1750 dl 1.95 for (;;) { // help stealer or descend to its stealer
1751 jsr166 1.173 ForkJoinTask[] a; int b;
1752 dl 1.95 if (subtask.status < 0) // surround probes with
1753     continue restart; // consistency checks
1754     if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1755     int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1756     ForkJoinTask<?> t =
1757     (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1758     if (subtask.status < 0 || j.currentJoin != subtask ||
1759     v.currentSteal != subtask)
1760     continue restart; // stale
1761     stat = 1; // apparent progress
1762     if (t != null && v.base == b &&
1763     U.compareAndSwapObject(a, i, t, null)) {
1764 dl 1.170 U.putOrderedInt(v, QBASE, b + 1);
1765 dl 1.174 if (v.top - b > 1)
1766     signalWork(v);
1767 dl 1.95 joiner.runSubtask(t);
1768     }
1769     else if (v.base == b && ++steps == MAX_HELP)
1770     break restart; // v apparently stalled
1771     }
1772     else { // empty -- try to descend
1773     ForkJoinTask<?> next = v.currentJoin;
1774     if (subtask.status < 0 || j.currentJoin != subtask ||
1775     v.currentSteal != subtask)
1776     continue restart; // stale
1777     else if (next == null || ++steps == MAX_HELP)
1778     break restart; // dead-end or maybe cyclic
1779     else {
1780     subtask = next;
1781     j = v;
1782     break;
1783     }
1784 dl 1.78 }
1785 dl 1.52 }
1786 dl 1.19 }
1787 dl 1.78 }
1788 dl 1.14 }
1789 dl 1.95 return stat;
1790 dl 1.22 }
1791    
1792 dl 1.52 /**
1793 dl 1.105 * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1794 jsr166 1.111 * and run tasks within the target's computation.
1795 dl 1.105 *
1796     * @param task the task to join
1797 dl 1.19 */
1798 dl 1.174 private int helpComplete(ForkJoinTask<?> task, ForkJoinPool spool) {
1799 dl 1.167 WorkQueue[] ws; int m;
1800     if (task != null && (ws = workQueues) != null &&
1801 dl 1.105 (m = ws.length - 1) >= 0) {
1802 dl 1.174 for (int j = 1, k = m;;) {
1803 dl 1.167 WorkQueue q; int s;
1804 dl 1.105 if ((s = task.status) < 0)
1805     return s;
1806 dl 1.174 if ((q = ws[j & m]) != null && q.pollAndExecCC(task, spool))
1807     k = m;
1808 dl 1.172 else if (--k >= 0)
1809     j += 2;
1810     else
1811 dl 1.78 break;
1812 dl 1.52 }
1813     }
1814 dl 1.105 return 0;
1815 dl 1.14 }
1816    
1817     /**
1818 dl 1.90 * Tries to decrement active count (sometimes implicitly) and
1819     * possibly release or create a compensating worker in preparation
1820     * for blocking. Fails on contention or termination. Otherwise,
1821 dl 1.105 * adds a new thread if no idle workers are available and pool
1822     * may become starved.
1823 dl 1.90 */
1824 dl 1.105 final boolean tryCompensate() {
1825 dl 1.112 int pc = config & SMASK, e, i, tc; long c;
1826 dl 1.105 WorkQueue[] ws; WorkQueue w; Thread p;
1827 dl 1.112 if ((ws = workQueues) != null && (e = (int)(c = ctl)) >= 0) {
1828 dl 1.105 if (e != 0 && (i = e & SMASK) < ws.length &&
1829     (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1830     long nc = ((long)(w.nextWait & E_MASK) |
1831     (c & (AC_MASK|TC_MASK)));
1832     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1833     w.eventCount = (e + E_SEQ) & E_MASK;
1834     if ((p = w.parker) != null)
1835     U.unpark(p);
1836     return true; // replace with idle worker
1837 dl 1.90 }
1838     }
1839 dl 1.112 else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
1840     (int)(c >> AC_SHIFT) + pc > 1) {
1841 dl 1.105 long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1842     if (U.compareAndSwapLong(this, CTL, c, nc))
1843 dl 1.112 return true; // no compensation
1844 dl 1.105 }
1845 dl 1.112 else if (tc + pc < MAX_CAP) {
1846 dl 1.105 long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1847     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1848 dl 1.115 ForkJoinWorkerThreadFactory fac;
1849     Throwable ex = null;
1850     ForkJoinWorkerThread wt = null;
1851     try {
1852     if ((fac = factory) != null &&
1853     (wt = fac.newThread(this)) != null) {
1854     wt.start();
1855     return true;
1856     }
1857     } catch (Throwable rex) {
1858     ex = rex;
1859     }
1860     deregisterWorker(wt, ex); // clean up and return false
1861 dl 1.90 }
1862     }
1863     }
1864     return false;
1865     }
1866    
1867     /**
1868 jsr166 1.93 * Helps and/or blocks until the given task is done.
1869 dl 1.90 *
1870     * @param joiner the joining worker
1871     * @param task the task
1872     * @return task status on exit
1873     */
1874     final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1875 dl 1.105 int s = 0;
1876     if (joiner != null && task != null && (s = task.status) >= 0) {
1877 dl 1.95 ForkJoinTask<?> prevJoin = joiner.currentJoin;
1878 dl 1.94 joiner.currentJoin = task;
1879 dl 1.115 do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
1880 dl 1.105 joiner.tryRemoveAndExec(task)); // process local tasks
1881 dl 1.172 if (s >= 0 && (s = task.status) >= 0 &&
1882     (task instanceof CountedCompleter))
1883 dl 1.174 s = helpComplete(task, this);
1884 dl 1.105 while (s >= 0 && (s = task.status) >= 0) {
1885 dl 1.115 if ((!joiner.isEmpty() || // try helping
1886 dl 1.105 (s = tryHelpStealer(joiner, task)) == 0) &&
1887 dl 1.112 (s = task.status) >= 0) {
1888 dl 1.172 if (tryCompensate()) {
1889 dl 1.112 if (task.trySetSignal() && (s = task.status) >= 0) {
1890     synchronized (task) {
1891     if (task.status >= 0) {
1892     try { // see ForkJoinTask
1893     task.wait(); // for explanation
1894     } catch (InterruptedException ie) {
1895     }
1896 dl 1.90 }
1897 dl 1.112 else
1898     task.notifyAll();
1899 dl 1.90 }
1900     }
1901 dl 1.172 // reactivate
1902 dl 1.174 long c;
1903     do {} while (!U.compareAndSwapLong
1904     (this, CTL, c = ctl, c + AC_UNIT));
1905 dl 1.90 }
1906     }
1907     }
1908 dl 1.105 joiner.currentJoin = prevJoin;
1909 dl 1.90 }
1910 dl 1.94 return s;
1911 dl 1.90 }
1912    
1913     /**
1914     * Stripped-down variant of awaitJoin used by timed joins. Tries
1915     * to help join only while there is continuous progress. (Caller
1916     * will then enter a timed wait.)
1917     *
1918     * @param joiner the joining worker
1919     * @param task the task
1920     */
1921 dl 1.105 final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
1922 dl 1.90 int s;
1923 dl 1.105 if (joiner != null && task != null && (s = task.status) >= 0) {
1924     ForkJoinTask<?> prevJoin = joiner.currentJoin;
1925     joiner.currentJoin = task;
1926 dl 1.115 do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
1927 dl 1.105 joiner.tryRemoveAndExec(task));
1928 dl 1.172 if (s >= 0 && (s = task.status) >= 0 &&
1929     (task instanceof CountedCompleter))
1930 dl 1.174 s = helpComplete(task, this);
1931 dl 1.115 if (s >= 0 && joiner.isEmpty()) {
1932 dl 1.105 do {} while (task.status >= 0 &&
1933     tryHelpStealer(joiner, task) > 0);
1934     }
1935     joiner.currentJoin = prevJoin;
1936     }
1937 dl 1.90 }
1938    
1939     /**
1940     * Returns a (probably) non-empty steal queue, if one is found
1941 dl 1.131 * during a scan, else null. This method must be retried by
1942     * caller if, by the time it tries to use the queue, it is empty.
1943 dl 1.105 * @param r a (random) seed for scanning
1944 dl 1.78 */
1945 dl 1.105 private WorkQueue findNonEmptyStealQueue(int r) {
1946 dl 1.131 for (;;) {
1947     int ps = plock, m; WorkQueue[] ws; WorkQueue q;
1948     if ((ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1949     for (int j = (m + 1) << 2; j >= 0; --j) {
1950     if ((q = ws[(((r + j) << 1) | 1) & m]) != null &&
1951     q.base - q.top < 0)
1952     return q;
1953 dl 1.52 }
1954     }
1955 dl 1.131 if (plock == ps)
1956     return null;
1957 dl 1.22 }
1958     }
1959    
1960     /**
1961 dl 1.78 * Runs tasks until {@code isQuiescent()}. We piggyback on
1962     * active count ctl maintenance, but rather than blocking
1963     * when tasks cannot be found, we rescan until all others cannot
1964     * find tasks either.
1965     */
1966     final void helpQuiescePool(WorkQueue w) {
1967     for (boolean active = true;;) {
1968 dl 1.131 long c; WorkQueue q; ForkJoinTask<?> t; int b;
1969 dl 1.172 while ((t = w.nextLocalTask()) != null)
1970 dl 1.131 t.doExec();
1971     if ((q = findNonEmptyStealQueue(w.nextSeed())) != null) {
1972 dl 1.78 if (!active) { // re-establish active count
1973     active = true;
1974     do {} while (!U.compareAndSwapLong
1975     (this, CTL, c = ctl, c + AC_UNIT));
1976     }
1977 dl 1.172 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
1978 dl 1.78 w.runSubtask(t);
1979     }
1980 dl 1.131 else if (active) { // decrement active count without queuing
1981     long nc = (c = ctl) - AC_UNIT;
1982     if ((int)(nc >> AC_SHIFT) + (config & SMASK) == 0)
1983     return; // bypass decrement-then-increment
1984     if (U.compareAndSwapLong(this, CTL, c, nc))
1985 dl 1.78 active = false;
1986 dl 1.22 }
1987 dl 1.131 else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) == 0 &&
1988     U.compareAndSwapLong(this, CTL, c, c + AC_UNIT))
1989     return;
1990 dl 1.22 }
1991     }
1992    
1993     /**
1994 jsr166 1.84 * Gets and removes a local or stolen task for the given worker.
1995 dl 1.78 *
1996     * @return a task, if available
1997 dl 1.22 */
1998 dl 1.78 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
1999     for (ForkJoinTask<?> t;;) {
2000 dl 1.90 WorkQueue q; int b;
2001 dl 1.78 if ((t = w.nextLocalTask()) != null)
2002     return t;
2003 dl 1.105 if ((q = findNonEmptyStealQueue(w.nextSeed())) == null)
2004 dl 1.78 return null;
2005 dl 1.172 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2006 dl 1.78 return t;
2007 dl 1.52 }
2008 dl 1.14 }
2009    
2010     /**
2011 dl 1.105 * Returns a cheap heuristic guide for task partitioning when
2012     * programmers, frameworks, tools, or languages have little or no
2013     * idea about task granularity. In essence by offering this
2014     * method, we ask users only about tradeoffs in overhead vs
2015     * expected throughput and its variance, rather than how finely to
2016     * partition tasks.
2017     *
2018     * In a steady state strict (tree-structured) computation, each
2019     * thread makes available for stealing enough tasks for other
2020     * threads to remain active. Inductively, if all threads play by
2021     * the same rules, each thread should make available only a
2022     * constant number of tasks.
2023     *
2024     * The minimum useful constant is just 1. But using a value of 1
2025     * would require immediate replenishment upon each steal to
2026     * maintain enough tasks, which is infeasible. Further,
2027     * partitionings/granularities of offered tasks should minimize
2028     * steal rates, which in general means that threads nearer the top
2029     * of computation tree should generate more than those nearer the
2030     * bottom. In perfect steady state, each thread is at
2031     * approximately the same level of computation tree. However,
2032     * producing extra tasks amortizes the uncertainty of progress and
2033     * diffusion assumptions.
2034     *
2035 jsr166 1.161 * So, users will want to use values larger (but not much larger)
2036 dl 1.105 * than 1 to both smooth over transient shortages and hedge
2037     * against uneven progress; as traded off against the cost of
2038     * extra task overhead. We leave the user to pick a threshold
2039     * value to compare with the results of this call to guide
2040     * decisions, but recommend values such as 3.
2041     *
2042     * When all threads are active, it is on average OK to estimate
2043     * surplus strictly locally. In steady-state, if one thread is
2044     * maintaining say 2 surplus tasks, then so are others. So we can
2045     * just use estimated queue length. However, this strategy alone
2046     * leads to serious mis-estimates in some non-steady-state
2047     * conditions (ramp-up, ramp-down, other stalls). We can detect
2048     * many of these by further considering the number of "idle"
2049     * threads, that are known to have zero queued tasks, so
2050     * compensate by a factor of (#idle/#active) threads.
2051     *
2052     * Note: The approximation of #busy workers as #active workers is
2053     * not very good under current signalling scheme, and should be
2054     * improved.
2055     */
2056     static int getSurplusQueuedTaskCount() {
2057     Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2058     if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2059 dl 1.112 int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2060     int n = (q = wt.workQueue).top - q.base;
2061 dl 1.105 int a = (int)(pool.ctl >> AC_SHIFT) + p;
2062 dl 1.112 return n - (a > (p >>>= 1) ? 0 :
2063     a > (p >>>= 1) ? 1 :
2064     a > (p >>>= 1) ? 2 :
2065     a > (p >>>= 1) ? 4 :
2066     8);
2067 dl 1.105 }
2068     return 0;
2069 dl 1.100 }
2070    
2071 dl 1.86 // Termination
2072 dl 1.14
2073     /**
2074 dl 1.86 * Possibly initiates and/or completes termination. The caller
2075     * triggering termination runs three passes through workQueues:
2076     * (0) Setting termination status, followed by wakeups of queued
2077     * workers; (1) cancelling all tasks; (2) interrupting lagging
2078     * threads (likely in external tasks, but possibly also blocked in
2079     * joins). Each pass repeats previous steps because of potential
2080     * lagging thread creation.
2081 dl 1.14 *
2082     * @param now if true, unconditionally terminate, else only
2083 dl 1.78 * if no work and no active workers
2084 jsr166 1.87 * @param enable if true, enable shutdown when next possible
2085 dl 1.14 * @return true if now terminating or terminated
2086 jsr166 1.1 */
2087 dl 1.86 private boolean tryTerminate(boolean now, boolean enable) {
2088 dl 1.131 int ps;
2089 dl 1.134 if (this == common) // cannot shut down
2090 dl 1.105 return false;
2091 dl 1.131 if ((ps = plock) >= 0) { // enable by setting plock
2092     if (!enable)
2093     return false;
2094     if ((ps & PL_LOCK) != 0 ||
2095     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2096     ps = acquirePlock();
2097     int nps = ((ps + PL_LOCK) & ~SHUTDOWN) | SHUTDOWN;
2098     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2099     releasePlock(nps);
2100     }
2101 dl 1.78 for (long c;;) {
2102 dl 1.131 if (((c = ctl) & STOP_BIT) != 0) { // already terminating
2103 dl 1.112 if ((short)(c >>> TC_SHIFT) == -(config & SMASK)) {
2104 jsr166 1.103 synchronized (this) {
2105 dl 1.131 notifyAll(); // signal when 0 workers
2106 dl 1.101 }
2107 dl 1.78 }
2108     return true;
2109     }
2110 dl 1.131 if (!now) { // check if idle & no tasks
2111     WorkQueue[] ws; WorkQueue w;
2112     if ((int)(c >> AC_SHIFT) != -(config & SMASK))
2113 dl 1.86 return false;
2114 dl 1.131 if ((ws = workQueues) != null) {
2115     for (int i = 0; i < ws.length; ++i) {
2116     if ((w = ws[i]) != null) {
2117     if (!w.isEmpty()) { // signal unprocessed tasks
2118 dl 1.174 signalWork(w);
2119 dl 1.131 return false;
2120     }
2121     if ((i & 1) != 0 && w.eventCount >= 0)
2122     return false; // unqueued inactive worker
2123     }
2124 dl 1.78 }
2125 dl 1.52 }
2126     }
2127 dl 1.86 if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2128     for (int pass = 0; pass < 3; ++pass) {
2129 dl 1.131 WorkQueue[] ws; WorkQueue w; Thread wt;
2130     if ((ws = workQueues) != null) {
2131 dl 1.86 int n = ws.length;
2132     for (int i = 0; i < n; ++i) {
2133     if ((w = ws[i]) != null) {
2134 dl 1.105 w.qlock = -1;
2135 dl 1.86 if (pass > 0) {
2136     w.cancelAll();
2137 dl 1.126 if (pass > 1 && (wt = w.owner) != null) {
2138     if (!wt.isInterrupted()) {
2139     try {
2140     wt.interrupt();
2141 dl 1.131 } catch (Throwable ignore) {
2142 dl 1.126 }
2143     }
2144     U.unpark(wt);
2145     }
2146 dl 1.52 }
2147 dl 1.19 }
2148     }
2149 dl 1.86 // Wake up workers parked on event queue
2150     int i, e; long cc; Thread p;
2151     while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2152 dl 1.131 (i = e & SMASK) < n && i >= 0 &&
2153 dl 1.86 (w = ws[i]) != null) {
2154     long nc = ((long)(w.nextWait & E_MASK) |
2155     ((cc + AC_UNIT) & AC_MASK) |
2156     (cc & (TC_MASK|STOP_BIT)));
2157     if (w.eventCount == (e | INT_SIGN) &&
2158     U.compareAndSwapLong(this, CTL, cc, nc)) {
2159     w.eventCount = (e + E_SEQ) & E_MASK;
2160 dl 1.105 w.qlock = -1;
2161 dl 1.86 if ((p = w.parker) != null)
2162     U.unpark(p);
2163     }
2164     }
2165 dl 1.78 }
2166 dl 1.52 }
2167     }
2168     }
2169     }
2170    
2171 dl 1.105 // external operations on common pool
2172    
2173     /**
2174     * Returns common pool queue for a thread that has submitted at
2175     * least one task.
2176     */
2177     static WorkQueue commonSubmitterQueue() {
2178 dl 1.139 ForkJoinPool p; WorkQueue[] ws; int m, z;
2179     return ((z = ThreadLocalRandom.getProbe()) != 0 &&
2180 dl 1.134 (p = common) != null &&
2181 dl 1.105 (ws = p.workQueues) != null &&
2182     (m = ws.length - 1) >= 0) ?
2183 dl 1.139 ws[m & z & SQMASK] : null;
2184 dl 1.105 }
2185    
2186     /**
2187     * Tries to pop the given task from submitter's queue in common pool.
2188     */
2189     static boolean tryExternalUnpush(ForkJoinTask<?> t) {
2190 dl 1.139 ForkJoinPool p; WorkQueue[] ws; WorkQueue q;
2191 jsr166 1.173 ForkJoinTask<?>[] a; int m, s, z;
2192 dl 1.115 if (t != null &&
2193 dl 1.139 (z = ThreadLocalRandom.getProbe()) != 0 &&
2194 dl 1.134 (p = common) != null &&
2195 dl 1.105 (ws = p.workQueues) != null &&
2196     (m = ws.length - 1) >= 0 &&
2197 dl 1.139 (q = ws[m & z & SQMASK]) != null &&
2198 dl 1.105 (s = q.top) != q.base &&
2199 dl 1.115 (a = q.array) != null) {
2200     long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
2201     if (U.getObject(a, j) == t &&
2202     U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2203     if (q.array == a && q.top == s && // recheck
2204     U.compareAndSwapObject(a, j, t, null)) {
2205     q.top = s - 1;
2206     q.qlock = 0;
2207     return true;
2208     }
2209 dl 1.105 q.qlock = 0;
2210     }
2211     }
2212     return false;
2213     }
2214    
2215     /**
2216     * Tries to pop and run local tasks within the same computation
2217     * as the given root. On failure, tries to help complete from
2218     * other queues via helpComplete.
2219     */
2220     private void externalHelpComplete(WorkQueue q, ForkJoinTask<?> root) {
2221 jsr166 1.168 ForkJoinTask<?>[] a; int m; WorkQueue[] ws;
2222 dl 1.166 if (root != null && q != null && (a = q.array) != null &&
2223     (m = (a.length - 1)) >= 0) {
2224     outer: for (;;) {
2225     int s, b, u; Object o;
2226     if (root.status < 0)
2227     return;
2228     if ((s = q.top) - q.base > 0) { // try pop
2229 dl 1.105 long j = ((m & (s - 1)) << ASHIFT) + ABASE;
2230     if ((o = U.getObject(a, j)) != null &&
2231     (o instanceof CountedCompleter)) {
2232     CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2233     do {
2234     if (r == root) {
2235     if (U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2236     if (q.array == a && q.top == s &&
2237     U.compareAndSwapObject(a, j, t, null)) {
2238     q.top = s - 1;
2239 dl 1.166 q.qlock = 0;
2240     t.doExec();
2241 dl 1.105 }
2242 dl 1.166 else
2243     q.qlock = 0;
2244 dl 1.105 }
2245 dl 1.166 continue outer;
2246 dl 1.105 }
2247 jsr166 1.106 } while ((r = r.completer) != null);
2248 dl 1.105 }
2249     }
2250 dl 1.166 if ((b = q.base) - q.top < 0) { // try poll
2251     if (root.status < 0)
2252     return;
2253     long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
2254     if ((o = U.getObject(a, j)) == null ||
2255     !(o instanceof CountedCompleter))
2256     break;
2257     CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2258     for (;;) {
2259     if (r == root) {
2260     if (q.base == b &&
2261     U.compareAndSwapObject(a, j, t, null)) {
2262 dl 1.170 U.putOrderedInt(q, QBASE, b + 1);
2263 dl 1.166 t.doExec();
2264     }
2265     break;
2266     }
2267     if ((r = r.completer) == null)
2268     break outer;
2269     }
2270     }
2271     else
2272 dl 1.105 break;
2273     }
2274 dl 1.172 if (root.status >= 0)
2275 dl 1.174 helpComplete(root, null);
2276 dl 1.105 }
2277     }
2278    
2279     /**
2280     * Tries to help execute or signal availability of the given task
2281     * from submitter's queue in common pool.
2282     */
2283     static void externalHelpJoin(ForkJoinTask<?> t) {
2284     // Some hard-to-avoid overlap with tryExternalUnpush
2285 dl 1.139 ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w;
2286 jsr166 1.173 ForkJoinTask<?>[] a; int m, s, n, z;
2287 dl 1.112 if (t != null &&
2288 dl 1.139 (z = ThreadLocalRandom.getProbe()) != 0 &&
2289 dl 1.134 (p = common) != null &&
2290 dl 1.105 (ws = p.workQueues) != null &&
2291     (m = ws.length - 1) >= 0 &&
2292 dl 1.139 (q = ws[m & z & SQMASK]) != null &&
2293 dl 1.115 (a = q.array) != null) {
2294     int am = a.length - 1;
2295     if ((s = q.top) != q.base) {
2296     long j = ((am & (s - 1)) << ASHIFT) + ABASE;
2297     if (U.getObject(a, j) == t &&
2298     U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2299     if (q.array == a && q.top == s &&
2300     U.compareAndSwapObject(a, j, t, null)) {
2301     q.top = s - 1;
2302     q.qlock = 0;
2303     t.doExec();
2304     }
2305     else
2306     q.qlock = 0;
2307 dl 1.105 }
2308     }
2309 dl 1.172 if (t.status >= 0 && (t instanceof CountedCompleter))
2310     p.externalHelpComplete(q, t);
2311 dl 1.105 }
2312     }
2313    
2314 dl 1.52 // Exported methods
2315 jsr166 1.1
2316     // Constructors
2317    
2318     /**
2319 jsr166 1.9 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2320 dl 1.18 * java.lang.Runtime#availableProcessors}, using the {@linkplain
2321     * #defaultForkJoinWorkerThreadFactory default thread factory},
2322     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2323 jsr166 1.1 *
2324     * @throws SecurityException if a security manager exists and
2325     * the caller is not permitted to modify threads
2326     * because it does not hold {@link
2327     * java.lang.RuntimePermission}{@code ("modifyThread")}
2328     */
2329     public ForkJoinPool() {
2330 jsr166 1.148 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2331     defaultForkJoinWorkerThreadFactory, null, false);
2332 jsr166 1.1 }
2333    
2334     /**
2335 jsr166 1.9 * Creates a {@code ForkJoinPool} with the indicated parallelism
2336 dl 1.18 * level, the {@linkplain
2337     * #defaultForkJoinWorkerThreadFactory default thread factory},
2338     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2339 jsr166 1.1 *
2340 jsr166 1.9 * @param parallelism the parallelism level
2341 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
2342 jsr166 1.11 * equal to zero, or greater than implementation limit
2343 jsr166 1.1 * @throws SecurityException if a security manager exists and
2344     * the caller is not permitted to modify threads
2345     * because it does not hold {@link
2346     * java.lang.RuntimePermission}{@code ("modifyThread")}
2347     */
2348     public ForkJoinPool(int parallelism) {
2349 dl 1.18 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2350 jsr166 1.1 }
2351    
2352     /**
2353 dl 1.18 * Creates a {@code ForkJoinPool} with the given parameters.
2354 jsr166 1.1 *
2355 dl 1.18 * @param parallelism the parallelism level. For default value,
2356     * use {@link java.lang.Runtime#availableProcessors}.
2357     * @param factory the factory for creating new threads. For default value,
2358     * use {@link #defaultForkJoinWorkerThreadFactory}.
2359 dl 1.19 * @param handler the handler for internal worker threads that
2360     * terminate due to unrecoverable errors encountered while executing
2361 jsr166 1.31 * tasks. For default value, use {@code null}.
2362 dl 1.19 * @param asyncMode if true,
2363 dl 1.18 * establishes local first-in-first-out scheduling mode for forked
2364     * tasks that are never joined. This mode may be more appropriate
2365     * than default locally stack-based mode in applications in which
2366     * worker threads only process event-style asynchronous tasks.
2367 jsr166 1.31 * For default value, use {@code false}.
2368 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
2369 jsr166 1.11 * equal to zero, or greater than implementation limit
2370     * @throws NullPointerException if the factory is null
2371 jsr166 1.1 * @throws SecurityException if a security manager exists and
2372     * the caller is not permitted to modify threads
2373     * because it does not hold {@link
2374     * java.lang.RuntimePermission}{@code ("modifyThread")}
2375     */
2376 dl 1.19 public ForkJoinPool(int parallelism,
2377 dl 1.18 ForkJoinWorkerThreadFactory factory,
2378 jsr166 1.156 UncaughtExceptionHandler handler,
2379 dl 1.18 boolean asyncMode) {
2380 dl 1.152 this(checkParallelism(parallelism),
2381     checkFactory(factory),
2382     handler,
2383     asyncMode,
2384     "ForkJoinPool-" + nextPoolId() + "-worker-");
2385 dl 1.14 checkPermission();
2386 dl 1.152 }
2387    
2388     private static int checkParallelism(int parallelism) {
2389     if (parallelism <= 0 || parallelism > MAX_CAP)
2390     throw new IllegalArgumentException();
2391     return parallelism;
2392     }
2393    
2394     private static ForkJoinWorkerThreadFactory checkFactory
2395     (ForkJoinWorkerThreadFactory factory) {
2396 dl 1.14 if (factory == null)
2397     throw new NullPointerException();
2398 dl 1.152 return factory;
2399     }
2400    
2401     /**
2402     * Creates a {@code ForkJoinPool} with the given parameters, without
2403     * any security checks or parameter validation. Invoked directly by
2404     * makeCommonPool.
2405     */
2406     private ForkJoinPool(int parallelism,
2407     ForkJoinWorkerThreadFactory factory,
2408 jsr166 1.156 UncaughtExceptionHandler handler,
2409 dl 1.152 boolean asyncMode,
2410     String workerNamePrefix) {
2411     this.workerNamePrefix = workerNamePrefix;
2412 jsr166 1.1 this.factory = factory;
2413 dl 1.18 this.ueh = handler;
2414 jsr166 1.113 this.config = parallelism | (asyncMode ? (FIFO_QUEUE << 16) : 0);
2415 dl 1.52 long np = (long)(-parallelism); // offset ctl counts
2416     this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2417 dl 1.101 }
2418    
2419     /**
2420 dl 1.128 * Returns the common pool instance. This pool is statically
2421 dl 1.134 * constructed; its run state is unaffected by attempts to {@link
2422     * #shutdown} or {@link #shutdownNow}. However this pool and any
2423     * ongoing processing are automatically terminated upon program
2424     * {@link System#exit}. Any program that relies on asynchronous
2425     * task processing to complete before program termination should
2426 jsr166 1.158 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2427     * before exit.
2428 dl 1.100 *
2429     * @return the common pool instance
2430 jsr166 1.138 * @since 1.8
2431 dl 1.100 */
2432     public static ForkJoinPool commonPool() {
2433 dl 1.134 // assert common != null : "static init error";
2434     return common;
2435 dl 1.100 }
2436    
2437 jsr166 1.1 // Execution methods
2438    
2439     /**
2440     * Performs the given task, returning its result upon completion.
2441 dl 1.52 * If the computation encounters an unchecked Exception or Error,
2442     * it is rethrown as the outcome of this invocation. Rethrown
2443     * exceptions behave in the same way as regular exceptions, but,
2444     * when possible, contain stack traces (as displayed for example
2445     * using {@code ex.printStackTrace()}) of both the current thread
2446     * as well as the thread actually encountering the exception;
2447     * minimally only the latter.
2448 jsr166 1.1 *
2449     * @param task the task
2450     * @return the task's result
2451 jsr166 1.11 * @throws NullPointerException if the task is null
2452     * @throws RejectedExecutionException if the task cannot be
2453     * scheduled for execution
2454 jsr166 1.1 */
2455     public <T> T invoke(ForkJoinTask<T> task) {
2456 dl 1.90 if (task == null)
2457     throw new NullPointerException();
2458 dl 1.105 externalPush(task);
2459 dl 1.78 return task.join();
2460 jsr166 1.1 }
2461    
2462     /**
2463     * Arranges for (asynchronous) execution of the given task.
2464     *
2465     * @param task the task
2466 jsr166 1.11 * @throws NullPointerException if the task is null
2467     * @throws RejectedExecutionException if the task cannot be
2468     * scheduled for execution
2469 jsr166 1.1 */
2470 jsr166 1.8 public void execute(ForkJoinTask<?> task) {
2471 dl 1.90 if (task == null)
2472     throw new NullPointerException();
2473 dl 1.105 externalPush(task);
2474 jsr166 1.1 }
2475    
2476     // AbstractExecutorService methods
2477    
2478 jsr166 1.11 /**
2479     * @throws NullPointerException if the task is null
2480     * @throws RejectedExecutionException if the task cannot be
2481     * scheduled for execution
2482     */
2483 jsr166 1.1 public void execute(Runnable task) {
2484 dl 1.41 if (task == null)
2485     throw new NullPointerException();
2486 jsr166 1.2 ForkJoinTask<?> job;
2487 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2488     job = (ForkJoinTask<?>) task;
2489 jsr166 1.2 else
2490 dl 1.152 job = new ForkJoinTask.RunnableExecuteAction(task);
2491 dl 1.105 externalPush(job);
2492 jsr166 1.1 }
2493    
2494 jsr166 1.11 /**
2495 dl 1.18 * Submits a ForkJoinTask for execution.
2496     *
2497     * @param task the task to submit
2498     * @return the task
2499     * @throws NullPointerException if the task is null
2500     * @throws RejectedExecutionException if the task cannot be
2501     * scheduled for execution
2502     */
2503     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2504 dl 1.90 if (task == null)
2505     throw new NullPointerException();
2506 dl 1.105 externalPush(task);
2507 dl 1.18 return task;
2508     }
2509    
2510     /**
2511 jsr166 1.11 * @throws NullPointerException if the task is null
2512     * @throws RejectedExecutionException if the task cannot be
2513     * scheduled for execution
2514     */
2515 jsr166 1.1 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2516 dl 1.90 ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2517 dl 1.105 externalPush(job);
2518 jsr166 1.1 return job;
2519     }
2520    
2521 jsr166 1.11 /**
2522     * @throws NullPointerException if the task is null
2523     * @throws RejectedExecutionException if the task cannot be
2524     * scheduled for execution
2525     */
2526 jsr166 1.1 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2527 dl 1.90 ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2528 dl 1.105 externalPush(job);
2529 jsr166 1.1 return job;
2530     }
2531    
2532 jsr166 1.11 /**
2533     * @throws NullPointerException if the task is null
2534     * @throws RejectedExecutionException if the task cannot be
2535     * scheduled for execution
2536     */
2537 jsr166 1.1 public ForkJoinTask<?> submit(Runnable task) {
2538 dl 1.41 if (task == null)
2539     throw new NullPointerException();
2540 jsr166 1.2 ForkJoinTask<?> job;
2541 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2542     job = (ForkJoinTask<?>) task;
2543 jsr166 1.2 else
2544 dl 1.90 job = new ForkJoinTask.AdaptedRunnableAction(task);
2545 dl 1.105 externalPush(job);
2546 jsr166 1.1 return job;
2547     }
2548    
2549     /**
2550 jsr166 1.11 * @throws NullPointerException {@inheritDoc}
2551     * @throws RejectedExecutionException {@inheritDoc}
2552     */
2553 jsr166 1.1 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2554 dl 1.86 // In previous versions of this class, this method constructed
2555     // a task to run ForkJoinTask.invokeAll, but now external
2556     // invocation of multiple tasks is at least as efficient.
2557 jsr166 1.143 ArrayList<Future<T>> futures = new ArrayList<Future<T>>(tasks.size());
2558 jsr166 1.1
2559 dl 1.86 boolean done = false;
2560     try {
2561     for (Callable<T> t : tasks) {
2562 dl 1.90 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2563 jsr166 1.144 futures.add(f);
2564 dl 1.105 externalPush(f);
2565 dl 1.86 }
2566 jsr166 1.143 for (int i = 0, size = futures.size(); i < size; i++)
2567     ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2568 dl 1.86 done = true;
2569     return futures;
2570     } finally {
2571     if (!done)
2572 jsr166 1.143 for (int i = 0, size = futures.size(); i < size; i++)
2573     futures.get(i).cancel(false);
2574 jsr166 1.1 }
2575     }
2576    
2577     /**
2578     * Returns the factory used for constructing new workers.
2579     *
2580     * @return the factory used for constructing new workers
2581     */
2582     public ForkJoinWorkerThreadFactory getFactory() {
2583     return factory;
2584     }
2585    
2586     /**
2587     * Returns the handler for internal worker threads that terminate
2588     * due to unrecoverable errors encountered while executing tasks.
2589     *
2590 jsr166 1.4 * @return the handler, or {@code null} if none
2591 jsr166 1.1 */
2592 jsr166 1.156 public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2593 dl 1.14 return ueh;
2594 jsr166 1.1 }
2595    
2596     /**
2597 jsr166 1.9 * Returns the targeted parallelism level of this pool.
2598 jsr166 1.1 *
2599 jsr166 1.9 * @return the targeted parallelism level of this pool
2600 jsr166 1.1 */
2601     public int getParallelism() {
2602 dl 1.160 int par = (config & SMASK);
2603     return (par > 0) ? par : 1;
2604 jsr166 1.1 }
2605    
2606     /**
2607 dl 1.100 * Returns the targeted parallelism level of the common pool.
2608     *
2609     * @return the targeted parallelism level of the common pool
2610 jsr166 1.138 * @since 1.8
2611 dl 1.100 */
2612     public static int getCommonPoolParallelism() {
2613 dl 1.134 return commonParallelism;
2614 dl 1.100 }
2615    
2616     /**
2617 jsr166 1.1 * Returns the number of worker threads that have started but not
2618 jsr166 1.34 * yet terminated. The result returned by this method may differ
2619 jsr166 1.4 * from {@link #getParallelism} when threads are created to
2620 jsr166 1.1 * maintain parallelism when others are cooperatively blocked.
2621     *
2622     * @return the number of worker threads
2623     */
2624     public int getPoolSize() {
2625 dl 1.112 return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2626 jsr166 1.1 }
2627    
2628     /**
2629 jsr166 1.4 * Returns {@code true} if this pool uses local first-in-first-out
2630 jsr166 1.1 * scheduling mode for forked tasks that are never joined.
2631     *
2632 jsr166 1.4 * @return {@code true} if this pool uses async mode
2633 jsr166 1.1 */
2634     public boolean getAsyncMode() {
2635 dl 1.112 return (config >>> 16) == FIFO_QUEUE;
2636 jsr166 1.1 }
2637    
2638     /**
2639     * Returns an estimate of the number of worker threads that are
2640     * not blocked waiting to join tasks or for other managed
2641 dl 1.14 * synchronization. This method may overestimate the
2642     * number of running threads.
2643 jsr166 1.1 *
2644     * @return the number of worker threads
2645     */
2646     public int getRunningThreadCount() {
2647 dl 1.78 int rc = 0;
2648     WorkQueue[] ws; WorkQueue w;
2649     if ((ws = workQueues) != null) {
2650 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2651     if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2652 dl 1.78 ++rc;
2653     }
2654     }
2655     return rc;
2656 jsr166 1.1 }
2657    
2658     /**
2659     * Returns an estimate of the number of threads that are currently
2660     * stealing or executing tasks. This method may overestimate the
2661     * number of active threads.
2662     *
2663     * @return the number of active threads
2664     */
2665     public int getActiveThreadCount() {
2666 dl 1.112 int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2667 jsr166 1.63 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2668 jsr166 1.1 }
2669    
2670     /**
2671 jsr166 1.4 * Returns {@code true} if all worker threads are currently idle.
2672     * An idle worker is one that cannot obtain a task to execute
2673     * because none are available to steal from other threads, and
2674     * there are no pending submissions to the pool. This method is
2675     * conservative; it might not return {@code true} immediately upon
2676     * idleness of all threads, but will eventually become true if
2677     * threads remain inactive.
2678 jsr166 1.1 *
2679 jsr166 1.4 * @return {@code true} if all threads are currently idle
2680 jsr166 1.1 */
2681     public boolean isQuiescent() {
2682 dl 1.112 return (int)(ctl >> AC_SHIFT) + (config & SMASK) == 0;
2683 jsr166 1.1 }
2684    
2685     /**
2686     * Returns an estimate of the total number of tasks stolen from
2687     * one thread's work queue by another. The reported value
2688     * underestimates the actual total number of steals when the pool
2689     * is not quiescent. This value may be useful for monitoring and
2690     * tuning fork/join programs: in general, steal counts should be
2691     * high enough to keep threads busy, but low enough to avoid
2692     * overhead and contention across threads.
2693     *
2694     * @return the number of steals
2695     */
2696     public long getStealCount() {
2697 dl 1.101 long count = stealCount;
2698 dl 1.78 WorkQueue[] ws; WorkQueue w;
2699     if ((ws = workQueues) != null) {
2700 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2701 dl 1.78 if ((w = ws[i]) != null)
2702 dl 1.105 count += w.nsteals;
2703 dl 1.78 }
2704     }
2705     return count;
2706 jsr166 1.1 }
2707    
2708     /**
2709     * Returns an estimate of the total number of tasks currently held
2710     * in queues by worker threads (but not including tasks submitted
2711     * to the pool that have not begun executing). This value is only
2712     * an approximation, obtained by iterating across all threads in
2713     * the pool. This method may be useful for tuning task
2714     * granularities.
2715     *
2716     * @return the number of queued tasks
2717     */
2718     public long getQueuedTaskCount() {
2719     long count = 0;
2720 dl 1.78 WorkQueue[] ws; WorkQueue w;
2721     if ((ws = workQueues) != null) {
2722 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2723 dl 1.78 if ((w = ws[i]) != null)
2724     count += w.queueSize();
2725     }
2726 dl 1.52 }
2727 jsr166 1.1 return count;
2728     }
2729    
2730     /**
2731 jsr166 1.8 * Returns an estimate of the number of tasks submitted to this
2732 dl 1.55 * pool that have not yet begun executing. This method may take
2733 dl 1.52 * time proportional to the number of submissions.
2734 jsr166 1.1 *
2735     * @return the number of queued submissions
2736     */
2737     public int getQueuedSubmissionCount() {
2738 dl 1.78 int count = 0;
2739     WorkQueue[] ws; WorkQueue w;
2740     if ((ws = workQueues) != null) {
2741 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2742 dl 1.78 if ((w = ws[i]) != null)
2743     count += w.queueSize();
2744     }
2745     }
2746     return count;
2747 jsr166 1.1 }
2748    
2749     /**
2750 jsr166 1.4 * Returns {@code true} if there are any tasks submitted to this
2751     * pool that have not yet begun executing.
2752 jsr166 1.1 *
2753     * @return {@code true} if there are any queued submissions
2754     */
2755     public boolean hasQueuedSubmissions() {
2756 dl 1.78 WorkQueue[] ws; WorkQueue w;
2757     if ((ws = workQueues) != null) {
2758 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2759 dl 1.115 if ((w = ws[i]) != null && !w.isEmpty())
2760 dl 1.78 return true;
2761     }
2762     }
2763     return false;
2764 jsr166 1.1 }
2765    
2766     /**
2767     * Removes and returns the next unexecuted submission if one is
2768     * available. This method may be useful in extensions to this
2769     * class that re-assign work in systems with multiple pools.
2770     *
2771 jsr166 1.4 * @return the next submission, or {@code null} if none
2772 jsr166 1.1 */
2773     protected ForkJoinTask<?> pollSubmission() {
2774 dl 1.78 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2775     if ((ws = workQueues) != null) {
2776 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2777 dl 1.78 if ((w = ws[i]) != null && (t = w.poll()) != null)
2778     return t;
2779 dl 1.52 }
2780     }
2781     return null;
2782 jsr166 1.1 }
2783    
2784     /**
2785     * Removes all available unexecuted submitted and forked tasks
2786     * from scheduling queues and adds them to the given collection,
2787     * without altering their execution status. These may include
2788 jsr166 1.8 * artificially generated or wrapped tasks. This method is
2789     * designed to be invoked only when the pool is known to be
2790 jsr166 1.1 * quiescent. Invocations at other times may not remove all
2791     * tasks. A failure encountered while attempting to add elements
2792     * to collection {@code c} may result in elements being in
2793     * neither, either or both collections when the associated
2794     * exception is thrown. The behavior of this operation is
2795     * undefined if the specified collection is modified while the
2796     * operation is in progress.
2797     *
2798     * @param c the collection to transfer elements into
2799     * @return the number of elements transferred
2800     */
2801 jsr166 1.5 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2802 dl 1.52 int count = 0;
2803 dl 1.78 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2804     if ((ws = workQueues) != null) {
2805 dl 1.86 for (int i = 0; i < ws.length; ++i) {
2806 dl 1.78 if ((w = ws[i]) != null) {
2807     while ((t = w.poll()) != null) {
2808     c.add(t);
2809     ++count;
2810     }
2811     }
2812 dl 1.52 }
2813     }
2814 dl 1.18 return count;
2815     }
2816    
2817     /**
2818 jsr166 1.1 * Returns a string identifying this pool, as well as its state,
2819     * including indications of run state, parallelism level, and
2820     * worker and task counts.
2821     *
2822     * @return a string identifying this pool, as well as its state
2823     */
2824     public String toString() {
2825 dl 1.86 // Use a single pass through workQueues to collect counts
2826     long qt = 0L, qs = 0L; int rc = 0;
2827 dl 1.101 long st = stealCount;
2828 dl 1.86 long c = ctl;
2829     WorkQueue[] ws; WorkQueue w;
2830     if ((ws = workQueues) != null) {
2831     for (int i = 0; i < ws.length; ++i) {
2832     if ((w = ws[i]) != null) {
2833     int size = w.queueSize();
2834     if ((i & 1) == 0)
2835     qs += size;
2836     else {
2837     qt += size;
2838 dl 1.105 st += w.nsteals;
2839 dl 1.86 if (w.isApparentlyUnblocked())
2840     ++rc;
2841     }
2842     }
2843     }
2844     }
2845 dl 1.112 int pc = (config & SMASK);
2846 dl 1.52 int tc = pc + (short)(c >>> TC_SHIFT);
2847 dl 1.78 int ac = pc + (int)(c >> AC_SHIFT);
2848     if (ac < 0) // ignore transient negative
2849     ac = 0;
2850 dl 1.52 String level;
2851     if ((c & STOP_BIT) != 0)
2852 jsr166 1.63 level = (tc == 0) ? "Terminated" : "Terminating";
2853 dl 1.52 else
2854 dl 1.105 level = plock < 0 ? "Shutting down" : "Running";
2855 jsr166 1.1 return super.toString() +
2856 dl 1.52 "[" + level +
2857 dl 1.14 ", parallelism = " + pc +
2858     ", size = " + tc +
2859     ", active = " + ac +
2860     ", running = " + rc +
2861 jsr166 1.1 ", steals = " + st +
2862     ", tasks = " + qt +
2863     ", submissions = " + qs +
2864     "]";
2865     }
2866    
2867     /**
2868 dl 1.100 * Possibly initiates an orderly shutdown in which previously
2869     * submitted tasks are executed, but no new tasks will be
2870     * accepted. Invocation has no effect on execution state if this
2871 jsr166 1.137 * is the {@link #commonPool()}, and no additional effect if
2872 dl 1.100 * already shut down. Tasks that are in the process of being
2873     * submitted concurrently during the course of this method may or
2874     * may not be rejected.
2875 jsr166 1.1 *
2876     * @throws SecurityException if a security manager exists and
2877     * the caller is not permitted to modify threads
2878     * because it does not hold {@link
2879     * java.lang.RuntimePermission}{@code ("modifyThread")}
2880     */
2881     public void shutdown() {
2882     checkPermission();
2883 dl 1.105 tryTerminate(false, true);
2884 jsr166 1.1 }
2885    
2886     /**
2887 dl 1.100 * Possibly attempts to cancel and/or stop all tasks, and reject
2888     * all subsequently submitted tasks. Invocation has no effect on
2889 jsr166 1.137 * execution state if this is the {@link #commonPool()}, and no
2890 dl 1.100 * additional effect if already shut down. Otherwise, tasks that
2891     * are in the process of being submitted or executed concurrently
2892     * during the course of this method may or may not be
2893     * rejected. This method cancels both existing and unexecuted
2894     * tasks, in order to permit termination in the presence of task
2895     * dependencies. So the method always returns an empty list
2896     * (unlike the case for some other Executors).
2897 jsr166 1.1 *
2898     * @return an empty list
2899     * @throws SecurityException if a security manager exists and
2900     * the caller is not permitted to modify threads
2901     * because it does not hold {@link
2902     * java.lang.RuntimePermission}{@code ("modifyThread")}
2903     */
2904     public List<Runnable> shutdownNow() {
2905     checkPermission();
2906 dl 1.105 tryTerminate(true, true);
2907 jsr166 1.1 return Collections.emptyList();
2908     }
2909    
2910     /**
2911     * Returns {@code true} if all tasks have completed following shut down.
2912     *
2913     * @return {@code true} if all tasks have completed following shut down
2914     */
2915     public boolean isTerminated() {
2916 dl 1.52 long c = ctl;
2917     return ((c & STOP_BIT) != 0L &&
2918 dl 1.112 (short)(c >>> TC_SHIFT) == -(config & SMASK));
2919 jsr166 1.1 }
2920    
2921     /**
2922     * Returns {@code true} if the process of termination has
2923 jsr166 1.9 * commenced but not yet completed. This method may be useful for
2924     * debugging. A return of {@code true} reported a sufficient
2925     * period after shutdown may indicate that submitted tasks have
2926 jsr166 1.119 * ignored or suppressed interruption, or are waiting for I/O,
2927 dl 1.49 * causing this executor not to properly terminate. (See the
2928     * advisory notes for class {@link ForkJoinTask} stating that
2929     * tasks should not normally entail blocking operations. But if
2930     * they do, they must abort them on interrupt.)
2931 jsr166 1.1 *
2932 jsr166 1.9 * @return {@code true} if terminating but not yet terminated
2933 jsr166 1.1 */
2934     public boolean isTerminating() {
2935 dl 1.52 long c = ctl;
2936     return ((c & STOP_BIT) != 0L &&
2937 dl 1.112 (short)(c >>> TC_SHIFT) != -(config & SMASK));
2938 jsr166 1.1 }
2939    
2940     /**
2941     * Returns {@code true} if this pool has been shut down.
2942     *
2943     * @return {@code true} if this pool has been shut down
2944     */
2945     public boolean isShutdown() {
2946 dl 1.105 return plock < 0;
2947 jsr166 1.9 }
2948    
2949     /**
2950 dl 1.105 * Blocks until all tasks have completed execution after a
2951     * shutdown request, or the timeout occurs, or the current thread
2952 dl 1.134 * is interrupted, whichever happens first. Because the {@link
2953     * #commonPool()} never terminates until program shutdown, when
2954     * applied to the common pool, this method is equivalent to {@link
2955 jsr166 1.158 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
2956 jsr166 1.1 *
2957     * @param timeout the maximum time to wait
2958     * @param unit the time unit of the timeout argument
2959     * @return {@code true} if this executor terminated and
2960     * {@code false} if the timeout elapsed before termination
2961     * @throws InterruptedException if interrupted while waiting
2962     */
2963     public boolean awaitTermination(long timeout, TimeUnit unit)
2964     throws InterruptedException {
2965 dl 1.134 if (Thread.interrupted())
2966     throw new InterruptedException();
2967     if (this == common) {
2968     awaitQuiescence(timeout, unit);
2969     return false;
2970     }
2971 dl 1.52 long nanos = unit.toNanos(timeout);
2972 dl 1.101 if (isTerminated())
2973     return true;
2974     long startTime = System.nanoTime();
2975     boolean terminated = false;
2976 jsr166 1.103 synchronized (this) {
2977 dl 1.101 for (long waitTime = nanos, millis = 0L;;) {
2978     if (terminated = isTerminated() ||
2979     waitTime <= 0L ||
2980     (millis = unit.toMillis(waitTime)) <= 0L)
2981     break;
2982     wait(millis);
2983     waitTime = nanos - (System.nanoTime() - startTime);
2984 dl 1.52 }
2985 dl 1.18 }
2986 dl 1.101 return terminated;
2987 jsr166 1.1 }
2988    
2989     /**
2990 dl 1.134 * If called by a ForkJoinTask operating in this pool, equivalent
2991     * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
2992     * waits and/or attempts to assist performing tasks until this
2993     * pool {@link #isQuiescent} or the indicated timeout elapses.
2994     *
2995     * @param timeout the maximum time to wait
2996     * @param unit the time unit of the timeout argument
2997     * @return {@code true} if quiescent; {@code false} if the
2998     * timeout elapsed.
2999     */
3000     public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3001     long nanos = unit.toNanos(timeout);
3002     ForkJoinWorkerThread wt;
3003     Thread thread = Thread.currentThread();
3004     if ((thread instanceof ForkJoinWorkerThread) &&
3005     (wt = (ForkJoinWorkerThread)thread).pool == this) {
3006     helpQuiescePool(wt.workQueue);
3007     return true;
3008     }
3009     long startTime = System.nanoTime();
3010     WorkQueue[] ws;
3011     int r = 0, m;
3012     boolean found = true;
3013     while (!isQuiescent() && (ws = workQueues) != null &&
3014     (m = ws.length - 1) >= 0) {
3015     if (!found) {
3016     if ((System.nanoTime() - startTime) > nanos)
3017     return false;
3018     Thread.yield(); // cannot block
3019     }
3020     found = false;
3021     for (int j = (m + 1) << 2; j >= 0; --j) {
3022     ForkJoinTask<?> t; WorkQueue q; int b;
3023     if ((q = ws[r++ & m]) != null && (b = q.base) - q.top < 0) {
3024     found = true;
3025 dl 1.172 if ((t = q.pollAt(b)) != null)
3026 dl 1.134 t.doExec();
3027     break;
3028     }
3029     }
3030     }
3031     return true;
3032     }
3033    
3034     /**
3035     * Waits and/or attempts to assist performing tasks indefinitely
3036 jsr166 1.141 * until the {@link #commonPool()} {@link #isQuiescent}.
3037 dl 1.134 */
3038 dl 1.136 static void quiesceCommonPool() {
3039 dl 1.134 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3040     }
3041    
3042     /**
3043 jsr166 1.1 * Interface for extending managed parallelism for tasks running
3044 jsr166 1.8 * in {@link ForkJoinPool}s.
3045     *
3046 dl 1.19 * <p>A {@code ManagedBlocker} provides two methods. Method
3047     * {@code isReleasable} must return {@code true} if blocking is
3048     * not necessary. Method {@code block} blocks the current thread
3049     * if necessary (perhaps internally invoking {@code isReleasable}
3050 dl 1.54 * before actually blocking). These actions are performed by any
3051 jsr166 1.157 * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
3052     * The unusual methods in this API accommodate synchronizers that
3053     * may, but don't usually, block for long periods. Similarly, they
3054 dl 1.54 * allow more efficient internal handling of cases in which
3055     * additional workers may be, but usually are not, needed to
3056     * ensure sufficient parallelism. Toward this end,
3057     * implementations of method {@code isReleasable} must be amenable
3058     * to repeated invocation.
3059 jsr166 1.1 *
3060     * <p>For example, here is a ManagedBlocker based on a
3061     * ReentrantLock:
3062     * <pre> {@code
3063     * class ManagedLocker implements ManagedBlocker {
3064     * final ReentrantLock lock;
3065     * boolean hasLock = false;
3066     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3067     * public boolean block() {
3068     * if (!hasLock)
3069     * lock.lock();
3070     * return true;
3071     * }
3072     * public boolean isReleasable() {
3073     * return hasLock || (hasLock = lock.tryLock());
3074     * }
3075     * }}</pre>
3076 dl 1.19 *
3077     * <p>Here is a class that possibly blocks waiting for an
3078     * item on a given queue:
3079     * <pre> {@code
3080     * class QueueTaker<E> implements ManagedBlocker {
3081     * final BlockingQueue<E> queue;
3082     * volatile E item = null;
3083     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3084     * public boolean block() throws InterruptedException {
3085     * if (item == null)
3086 dl 1.23 * item = queue.take();
3087 dl 1.19 * return true;
3088     * }
3089     * public boolean isReleasable() {
3090 dl 1.23 * return item != null || (item = queue.poll()) != null;
3091 dl 1.19 * }
3092     * public E getItem() { // call after pool.managedBlock completes
3093     * return item;
3094     * }
3095     * }}</pre>
3096 jsr166 1.1 */
3097     public static interface ManagedBlocker {
3098     /**
3099     * Possibly blocks the current thread, for example waiting for
3100     * a lock or condition.
3101     *
3102 jsr166 1.4 * @return {@code true} if no additional blocking is necessary
3103     * (i.e., if isReleasable would return true)
3104 jsr166 1.1 * @throws InterruptedException if interrupted while waiting
3105     * (the method is not required to do so, but is allowed to)
3106     */
3107     boolean block() throws InterruptedException;
3108    
3109     /**
3110 jsr166 1.4 * Returns {@code true} if blocking is unnecessary.
3111 jsr166 1.154 * @return {@code true} if blocking is unnecessary
3112 jsr166 1.1 */
3113     boolean isReleasable();
3114     }
3115    
3116     /**
3117     * Blocks in accord with the given blocker. If the current thread
3118 jsr166 1.8 * is a {@link ForkJoinWorkerThread}, this method possibly
3119     * arranges for a spare thread to be activated if necessary to
3120 dl 1.18 * ensure sufficient parallelism while the current thread is blocked.
3121 jsr166 1.1 *
3122 jsr166 1.8 * <p>If the caller is not a {@link ForkJoinTask}, this method is
3123     * behaviorally equivalent to
3124 jsr166 1.82 * <pre> {@code
3125 jsr166 1.1 * while (!blocker.isReleasable())
3126     * if (blocker.block())
3127     * return;
3128     * }</pre>
3129 jsr166 1.8 *
3130     * If the caller is a {@code ForkJoinTask}, then the pool may
3131     * first be expanded to ensure parallelism, and later adjusted.
3132 jsr166 1.1 *
3133     * @param blocker the blocker
3134     * @throws InterruptedException if blocker.block did so
3135     */
3136 dl 1.18 public static void managedBlock(ManagedBlocker blocker)
3137 jsr166 1.1 throws InterruptedException {
3138     Thread t = Thread.currentThread();
3139 dl 1.105 if (t instanceof ForkJoinWorkerThread) {
3140     ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3141 dl 1.172 while (!blocker.isReleasable()) {
3142 dl 1.105 if (p.tryCompensate()) {
3143     try {
3144     do {} while (!blocker.isReleasable() &&
3145     !blocker.block());
3146     } finally {
3147 dl 1.78 p.incrementActiveCount();
3148 dl 1.105 }
3149     break;
3150 dl 1.78 }
3151     }
3152 dl 1.18 }
3153 dl 1.105 else {
3154     do {} while (!blocker.isReleasable() &&
3155     !blocker.block());
3156     }
3157 jsr166 1.1 }
3158    
3159 jsr166 1.7 // AbstractExecutorService overrides. These rely on undocumented
3160     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3161     // implement RunnableFuture.
3162 jsr166 1.1
3163     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3164 dl 1.90 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3165 jsr166 1.1 }
3166    
3167     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3168 dl 1.90 return new ForkJoinTask.AdaptedCallable<T>(callable);
3169 jsr166 1.1 }
3170    
3171     // Unsafe mechanics
3172 dl 1.78 private static final sun.misc.Unsafe U;
3173     private static final long CTL;
3174     private static final long PARKBLOCKER;
3175 dl 1.90 private static final int ABASE;
3176     private static final int ASHIFT;
3177 dl 1.101 private static final long STEALCOUNT;
3178 dl 1.105 private static final long PLOCK;
3179     private static final long INDEXSEED;
3180 dl 1.170 private static final long QBASE;
3181 dl 1.105 private static final long QLOCK;
3182 dl 1.52
3183     static {
3184 jsr166 1.142 // initialize field offsets for CAS etc
3185 jsr166 1.3 try {
3186 dl 1.78 U = sun.misc.Unsafe.getUnsafe();
3187 jsr166 1.64 Class<?> k = ForkJoinPool.class;
3188 dl 1.78 CTL = U.objectFieldOffset
3189 dl 1.52 (k.getDeclaredField("ctl"));
3190 dl 1.101 STEALCOUNT = U.objectFieldOffset
3191     (k.getDeclaredField("stealCount"));
3192 dl 1.105 PLOCK = U.objectFieldOffset
3193     (k.getDeclaredField("plock"));
3194     INDEXSEED = U.objectFieldOffset
3195     (k.getDeclaredField("indexSeed"));
3196 dl 1.86 Class<?> tk = Thread.class;
3197 dl 1.78 PARKBLOCKER = U.objectFieldOffset
3198     (tk.getDeclaredField("parkBlocker"));
3199 dl 1.105 Class<?> wk = WorkQueue.class;
3200 dl 1.170 QBASE = U.objectFieldOffset
3201     (wk.getDeclaredField("base"));
3202 dl 1.105 QLOCK = U.objectFieldOffset
3203     (wk.getDeclaredField("qlock"));
3204     Class<?> ak = ForkJoinTask[].class;
3205 dl 1.90 ABASE = U.arrayBaseOffset(ak);
3206 jsr166 1.142 int scale = U.arrayIndexScale(ak);
3207     if ((scale & (scale - 1)) != 0)
3208     throw new Error("data type scale not a power of two");
3209     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3210 dl 1.52 } catch (Exception e) {
3211     throw new Error(e);
3212     }
3213 dl 1.105
3214 dl 1.152 defaultForkJoinWorkerThreadFactory =
3215 dl 1.112 new DefaultForkJoinWorkerThreadFactory();
3216 dl 1.115 modifyThreadPermission = new RuntimePermission("modifyThread");
3217    
3218 dl 1.152 common = java.security.AccessController.doPrivileged
3219     (new java.security.PrivilegedAction<ForkJoinPool>() {
3220     public ForkJoinPool run() { return makeCommonPool(); }});
3221 dl 1.160 int par = common.config; // report 1 even if threads disabled
3222     commonParallelism = par > 0 ? par : 1;
3223 dl 1.152 }
3224 dl 1.112
3225 dl 1.152 /**
3226     * Creates and returns the common pool, respecting user settings
3227     * specified via system properties.
3228     */
3229     private static ForkJoinPool makeCommonPool() {
3230 dl 1.160 int parallelism = -1;
3231 dl 1.152 ForkJoinWorkerThreadFactory factory
3232     = defaultForkJoinWorkerThreadFactory;
3233 jsr166 1.156 UncaughtExceptionHandler handler = null;
3234 dl 1.152 try { // ignore exceptions in accesing/parsing properties
3235 dl 1.112 String pp = System.getProperty
3236     ("java.util.concurrent.ForkJoinPool.common.parallelism");
3237 dl 1.152 String fp = System.getProperty
3238     ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3239 dl 1.112 String hp = System.getProperty
3240     ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3241 dl 1.152 if (pp != null)
3242     parallelism = Integer.parseInt(pp);
3243 dl 1.112 if (fp != null)
3244 dl 1.152 factory = ((ForkJoinWorkerThreadFactory)ClassLoader.
3245     getSystemClassLoader().loadClass(fp).newInstance());
3246 dl 1.112 if (hp != null)
3247 jsr166 1.156 handler = ((UncaughtExceptionHandler)ClassLoader.
3248 dl 1.112 getSystemClassLoader().loadClass(hp).newInstance());
3249     } catch (Exception ignore) {
3250     }
3251    
3252 dl 1.167 if (parallelism < 0 && // default 1 less than #cores
3253     (parallelism = Runtime.getRuntime().availableProcessors() - 1) < 0)
3254     parallelism = 0;
3255 dl 1.152 if (parallelism > MAX_CAP)
3256     parallelism = MAX_CAP;
3257     return new ForkJoinPool(parallelism, factory, handler, false,
3258     "ForkJoinPool.commonPool-worker-");
3259 jsr166 1.3 }
3260 dl 1.52
3261 jsr166 1.1 }