ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.20
Committed: Wed Aug 11 20:28:31 2010 UTC (13 years, 9 months ago) by dl
Branch: MAIN
Changes since 1.19: +1 -1 lines
Log Message:
Typo

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package java.util.concurrent;
8    
9     import java.util.ArrayList;
10     import java.util.Arrays;
11     import java.util.Collection;
12     import java.util.Collections;
13     import java.util.List;
14     import java.util.concurrent.locks.LockSupport;
15     import java.util.concurrent.locks.ReentrantLock;
16     import java.util.concurrent.atomic.AtomicInteger;
17 dl 1.14 import java.util.concurrent.CountDownLatch;
18 jsr166 1.1
19     /**
20 jsr166 1.4 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
21 jsr166 1.8 * A {@code ForkJoinPool} provides the entry point for submissions
22 dl 1.18 * from non-{@code ForkJoinTask} clients, as well as management and
23 jsr166 1.11 * monitoring operations.
24 jsr166 1.1 *
25 jsr166 1.9 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
26     * ExecutorService} mainly by virtue of employing
27     * <em>work-stealing</em>: all threads in the pool attempt to find and
28     * execute subtasks created by other active tasks (eventually blocking
29     * waiting for work if none exist). This enables efficient processing
30     * when most tasks spawn other subtasks (as do most {@code
31 dl 1.18 * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
32     * constructors, {@code ForkJoinPool}s may also be appropriate for use
33     * with event-style tasks that are never joined.
34 jsr166 1.1 *
35 jsr166 1.9 * <p>A {@code ForkJoinPool} is constructed with a given target
36     * parallelism level; by default, equal to the number of available
37 dl 1.18 * processors. The pool attempts to maintain enough active (or
38     * available) threads by dynamically adding, suspending, or resuming
39     * internal worker threads, even if some tasks are stalled waiting to
40     * join others. However, no such adjustments are guaranteed in the
41     * face of blocked IO or other unmanaged synchronization. The nested
42     * {@link ManagedBlocker} interface enables extension of the kinds of
43     * synchronization accommodated.
44 jsr166 1.1 *
45     * <p>In addition to execution and lifecycle control methods, this
46     * class provides status check methods (for example
47 jsr166 1.4 * {@link #getStealCount}) that are intended to aid in developing,
48 jsr166 1.1 * tuning, and monitoring fork/join applications. Also, method
49 jsr166 1.4 * {@link #toString} returns indications of pool state in a
50 jsr166 1.1 * convenient form for informal monitoring.
51     *
52 dl 1.18 * <p> As is the case with other ExecutorServices, there are three
53 dl 1.19 * main task execution methods summarized in the following
54 dl 1.18 * table. These are designed to be used by clients not already engaged
55     * in fork/join computations in the current pool. The main forms of
56     * these methods accept instances of {@code ForkJoinTask}, but
57     * overloaded forms also allow mixed execution of plain {@code
58     * Runnable}- or {@code Callable}- based activities as well. However,
59     * tasks that are already executing in a pool should normally
60     * <em>NOT</em> use these pool execution methods, but instead use the
61 dl 1.19 * within-computation forms listed in the table.
62 dl 1.18 *
63     * <table BORDER CELLPADDING=3 CELLSPACING=1>
64     * <tr>
65     * <td></td>
66     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
67     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
68     * </tr>
69     * <tr>
70     * <td> <b>Arange async execution</td>
71     * <td> {@link #execute(ForkJoinTask)}</td>
72     * <td> {@link ForkJoinTask#fork}</td>
73     * </tr>
74     * <tr>
75     * <td> <b>Await and obtain result</td>
76     * <td> {@link #invoke(ForkJoinTask)}</td>
77     * <td> {@link ForkJoinTask#invoke}</td>
78     * </tr>
79     * <tr>
80     * <td> <b>Arrange exec and obtain Future</td>
81     * <td> {@link #submit(ForkJoinTask)}</td>
82     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
83     * </tr>
84     * </table>
85 dl 1.19 *
86 jsr166 1.9 * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
87     * used for all parallel task execution in a program or subsystem.
88     * Otherwise, use would not usually outweigh the construction and
89     * bookkeeping overhead of creating a large set of threads. For
90     * example, a common pool could be used for the {@code SortTasks}
91     * illustrated in {@link RecursiveAction}. Because {@code
92     * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
93     * daemon} mode, there is typically no need to explicitly {@link
94     * #shutdown} such a pool upon program exit.
95     *
96     * <pre>
97     * static final ForkJoinPool mainPool = new ForkJoinPool();
98     * ...
99     * public void sort(long[] array) {
100     * mainPool.invoke(new SortTask(array, 0, array.length));
101     * }
102     * </pre>
103     *
104 jsr166 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
105     * maximum number of running threads to 32767. Attempts to create
106 jsr166 1.11 * pools with greater than the maximum number result in
107 jsr166 1.8 * {@code IllegalArgumentException}.
108 jsr166 1.1 *
109 jsr166 1.11 * <p>This implementation rejects submitted tasks (that is, by throwing
110 dl 1.19 * {@link RejectedExecutionException}) only when the pool is shut down
111 dl 1.20 * or internal resources have been exhausted.
112 jsr166 1.11 *
113 jsr166 1.1 * @since 1.7
114     * @author Doug Lea
115     */
116     public class ForkJoinPool extends AbstractExecutorService {
117    
118     /*
119 dl 1.14 * Implementation Overview
120     *
121     * This class provides the central bookkeeping and control for a
122     * set of worker threads: Submissions from non-FJ threads enter
123     * into a submission queue. Workers take these tasks and typically
124     * split them into subtasks that may be stolen by other workers.
125     * The main work-stealing mechanics implemented in class
126     * ForkJoinWorkerThread give first priority to processing tasks
127     * from their own queues (LIFO or FIFO, depending on mode), then
128     * to randomized FIFO steals of tasks in other worker queues, and
129     * lastly to new submissions. These mechanics do not consider
130     * affinities, loads, cache localities, etc, so rarely provide the
131     * best possible performance on a given machine, but portably
132     * provide good throughput by averaging over these factors.
133     * (Further, even if we did try to use such information, we do not
134     * usually have a basis for exploiting it. For example, some sets
135     * of tasks profit from cache affinities, but others are harmed by
136     * cache pollution effects.)
137     *
138 dl 1.19 * Beyond work-stealing support and essential bookkeeping, the
139     * main responsibility of this framework is to take actions when
140     * one worker is waiting to join a task stolen (or always held by)
141     * another. Becauae we are multiplexing many tasks on to a pool
142     * of workers, we can't just let them block (as in Thread.join).
143     * We also cannot just reassign the joiner's run-time stack with
144     * another and replace it later, which would be a form of
145     * "continuation", that even if possible is not necessarily a good
146     * idea. Given that the creation costs of most threads on most
147     * systems mainly surrounds setting up runtime stacks, thread
148     * creation and switching is usually not much more expensive than
149     * stack creation and switching, and is more flexible). Instead we
150     * combine two tactics:
151     *
152     * Helping: Arranging for the joiner to execute some task that it
153     * would be running if the steal had not occurred. Method
154     * ForkJoinWorkerThread.helpJoinTask tracks joining->stealing
155     * links to try to find such a task.
156     *
157     * Compensating: Unless there are already enough live threads,
158     * method helpMaintainParallelism() may create or or
159     * re-activate a spare thread to compensate for blocked
160     * joiners until they unblock.
161     *
162     * Because the determining existence of conservatively safe
163     * helping targets, the availability of already-created spares,
164     * and the apparent need to create new spares are all racy and
165     * require heuristic guidance, we rely on multiple retries of
166     * each. Further, because it is impossible to keep exactly the
167     * target (parallelism) number of threads running at any given
168     * time, we allow compensation during joins to fail, and enlist
169     * all other threads to help out whenever they are not otherwise
170     * occupied (i.e., mainly in method preStep).
171     *
172     * The ManagedBlocker extension API can't use helping so relies
173     * only on compensation in method awaitBlocker.
174     *
175 dl 1.14 * The main throughput advantages of work-stealing stem from
176     * decentralized control -- workers mostly steal tasks from each
177     * other. We do not want to negate this by creating bottlenecks
178 dl 1.19 * implementing other management responsibilities. So we use a
179     * collection of techniques that avoid, reduce, or cope well with
180     * contention. These entail several instances of bit-packing into
181     * CASable fields to maintain only the minimally required
182     * atomicity. To enable such packing, we restrict maximum
183     * parallelism to (1<<15)-1 (enabling twice this (to accommodate
184     * unbalanced increments and decrements) to fit into a 16 bit
185     * field, which is far in excess of normal operating range. Even
186     * though updates to some of these bookkeeping fields do sometimes
187     * contend with each other, they don't normally cache-contend with
188     * updates to others enough to warrant memory padding or
189     * isolation. So they are all held as fields of ForkJoinPool
190     * objects. The main capabilities are as follows:
191 dl 1.14 *
192     * 1. Creating and removing workers. Workers are recorded in the
193     * "workers" array. This is an array as opposed to some other data
194     * structure to support index-based random steals by workers.
195     * Updates to the array recording new workers and unrecording
196     * terminated ones are protected from each other by a lock
197     * (workerLock) but the array is otherwise concurrently readable,
198     * and accessed directly by workers. To simplify index-based
199     * operations, the array size is always a power of two, and all
200 dl 1.17 * readers must tolerate null slots. Currently, all worker thread
201     * creation is on-demand, triggered by task submissions,
202     * replacement of terminated workers, and/or compensation for
203     * blocked workers. However, all other support code is set up to
204     * work with other policies.
205 dl 1.14 *
206 dl 1.19 * To ensure that we do not hold on to worker references that
207     * would prevent GC, ALL accesses to workers are via indices into
208     * the workers array (which is one source of some of the unusual
209     * code constructions here). In essence, the workers array serves
210     * as a WeakReference mechanism. Thus for example the event queue
211     * stores worker indices, not worker references. Access to the
212     * workers in associated methods (for example releaseEventWaiters)
213     * must both index-check and null-check the IDs. All such accesses
214     * ignore bad IDs by returning out early from what they are doing,
215     * since this can only be associated with shutdown, in which case
216     * it is OK to give up. On termination, we just clobber these
217     * data structures without trying to use them.
218     *
219 dl 1.14 * 2. Bookkeeping for dynamically adding and removing workers. We
220 dl 1.18 * aim to approximately maintain the given level of parallelism.
221     * When some workers are known to be blocked (on joins or via
222 dl 1.14 * ManagedBlocker), we may create or resume others to take their
223     * place until they unblock (see below). Implementing this
224     * requires counts of the number of "running" threads (i.e., those
225     * that are neither blocked nor artifically suspended) as well as
226     * the total number. These two values are packed into one field,
227     * "workerCounts" because we need accurate snapshots when deciding
228 dl 1.19 * to create, resume or suspend. Note however that the
229     * correspondance of these counts to reality is not guaranteed. In
230     * particular updates for unblocked threads may lag until they
231     * actually wake up.
232 dl 1.14 *
233     * 3. Maintaining global run state. The run state of the pool
234     * consists of a runLevel (SHUTDOWN, TERMINATING, etc) similar to
235     * those in other Executor implementations, as well as a count of
236     * "active" workers -- those that are, or soon will be, or
237     * recently were executing tasks. The runLevel and active count
238     * are packed together in order to correctly trigger shutdown and
239     * termination. Without care, active counts can be subject to very
240     * high contention. We substantially reduce this contention by
241     * relaxing update rules. A worker must claim active status
242     * prospectively, by activating if it sees that a submitted or
243     * stealable task exists (it may find after activating that the
244     * task no longer exists). It stays active while processing this
245     * task (if it exists) and any other local subtasks it produces,
246     * until it cannot find any other tasks. It then tries
247     * inactivating (see method preStep), but upon update contention
248     * instead scans for more tasks, later retrying inactivation if it
249     * doesn't find any.
250     *
251     * 4. Managing idle workers waiting for tasks. We cannot let
252     * workers spin indefinitely scanning for tasks when none are
253     * available. On the other hand, we must quickly prod them into
254     * action when new tasks are submitted or generated. We
255     * park/unpark these idle workers using an event-count scheme.
256     * Field eventCount is incremented upon events that may enable
257     * workers that previously could not find a task to now find one:
258     * Submission of a new task to the pool, or another worker pushing
259     * a task onto a previously empty queue. (We also use this
260 dl 1.19 * mechanism for termination actions that require wakeups of idle
261     * workers). Each worker maintains its last known event count,
262     * and blocks when a scan for work did not find a task AND its
263     * lastEventCount matches the current eventCount. Waiting idle
264     * workers are recorded in a variant of Treiber stack headed by
265     * field eventWaiters which, when nonzero, encodes the thread
266     * index and count awaited for by the worker thread most recently
267     * calling eventSync. This thread in turn has a record (field
268     * nextEventWaiter) for the next waiting worker. In addition to
269     * allowing simpler decisions about need for wakeup, the event
270     * count bits in eventWaiters serve the role of tags to avoid ABA
271     * errors in Treiber stacks. To reduce delays in task diffusion,
272     * workers not otherwise occupied may invoke method
273     * releaseEventWaiters, that removes and signals (unparks) workers
274     * not waiting on current count. To reduce stalls, To minimize
275     * task production stalls associate with signalling, any worker
276     * pushing a task on an empty queue invokes the weaker method
277     * signalWork, that only releases idle workers until it detects
278     * interference by other threads trying to release, and lets them
279     * take over. The net effect is a tree-like diffusion of signals,
280     * where released threads (and possibly others) help with unparks.
281     * To further reduce contention effects a bit, failed CASes to
282 dl 1.14 * increment field eventCount are tolerated without retries.
283     * Conceptually they are merged into the same event, which is OK
284     * when their only purpose is to enable workers to scan for work.
285     *
286     * 5. Managing suspension of extra workers. When a worker is about
287     * to block waiting for a join (or via ManagedBlockers), we may
288     * create a new thread to maintain parallelism level, or at least
289 dl 1.19 * avoid starvation. Usually, extra threads are needed for only
290     * very short periods, yet join dependencies are such that we
291     * sometimes need them in bursts. Rather than create new threads
292     * each time this happens, we suspend no-longer-needed extra ones
293     * as "spares". For most purposes, we don't distinguish "extra"
294     * spare threads from normal "core" threads: On each call to
295     * preStep (the only point at which we can do this) a worker
296 dl 1.14 * checks to see if there are now too many running workers, and if
297 dl 1.19 * so, suspends itself. Method helpMaintainParallelism looks for
298     * suspended threads to resume before considering creating a new
299     * replacement. The spares themselves are encoded on another
300     * variant of a Treiber Stack, headed at field "spareWaiters".
301     * Note that the use of spares is intrinsically racy. One thread
302 dl 1.14 * may become a spare at about the same time as another is
303     * needlessly being created. We counteract this and related slop
304     * in part by requiring resumed spares to immediately recheck (in
305 dl 1.19 * preStep) to see whether they they should re-suspend. To avoid
306     * long-term build-up of spares, the oldest spare (see
307     * ForkJoinWorkerThread.suspendAsSpare) occasionally wakes up if
308     * not signalled and calls tryTrimSpare, which uses two different
309     * thresholds: Always killing if the number of spares is greater
310     * that 25% of total, and killing others only at a slower rate
311     * (UNUSED_SPARE_TRIM_RATE_NANOS).
312 dl 1.14 *
313     * 6. Deciding when to create new workers. The main dynamic
314 dl 1.19 * control in this class is deciding when to create extra threads
315     * in method helpMaintainParallelism. We would like to keep
316     * exactly #parallelism threads running, which is an impossble
317     * task. We always need to create one when the number of running
318     * threads would become zero and all workers are busy. Beyond
319     * this, we must rely on heuristics that work well in the the
320     * presence of transients phenomena such as GC stalls, dynamic
321     * compilation, and wake-up lags. These transients are extremely
322     * common -- we are normally trying to fully saturate the CPUs on
323     * a machine, so almost any activity other than running tasks
324     * impedes accuracy. Our main defense is to allow some slack in
325     * creation thresholds, using rules that reflect the fact that the
326     * more threads we have running, the more likely that we are
327     * underestimating the number running threads. The rules also
328     * better cope with the fact that some of the methods in this
329     * class tend to never become compiled (but are interpreted), so
330     * some components of the entire set of controls might execute 100
331     * times faster than others. And similarly for cases where the
332     * apparent lack of work is just due to GC stalls and other
333     * transient system activity.
334 dl 1.14 *
335     * Beware that there is a lot of representation-level coupling
336     * among classes ForkJoinPool, ForkJoinWorkerThread, and
337     * ForkJoinTask. For example, direct access to "workers" array by
338     * workers, and direct access to ForkJoinTask.status by both
339     * ForkJoinPool and ForkJoinWorkerThread. There is little point
340     * trying to reduce this, since any associated future changes in
341     * representations will need to be accompanied by algorithmic
342     * changes anyway.
343     *
344     * Style notes: There are lots of inline assignments (of form
345     * "while ((local = field) != 0)") which are usually the simplest
346 dl 1.19 * way to ensure the required read orderings (which are sometimes
347     * critical). Also several occurrences of the unusual "do {}
348     * while(!cas...)" which is the simplest way to force an update of
349     * a CAS'ed variable. There are also other coding oddities that
350     * help some methods perform reasonably even when interpreted (not
351     * compiled), at the expense of some messy constructions that
352     * reduce byte code counts.
353 dl 1.14 *
354     * The order of declarations in this file is: (1) statics (2)
355     * fields (along with constants used when unpacking some of them)
356     * (3) internal control methods (4) callbacks and other support
357     * for ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
358     * methods (plus a few little helpers).
359 jsr166 1.1 */
360    
361     /**
362 jsr166 1.8 * Factory for creating new {@link ForkJoinWorkerThread}s.
363     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
364     * for {@code ForkJoinWorkerThread} subclasses that extend base
365     * functionality or initialize threads with different contexts.
366 jsr166 1.1 */
367     public static interface ForkJoinWorkerThreadFactory {
368     /**
369     * Returns a new worker thread operating in the given pool.
370     *
371     * @param pool the pool this thread works in
372 jsr166 1.11 * @throws NullPointerException if the pool is null
373 jsr166 1.1 */
374     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
375     }
376    
377     /**
378     * Default ForkJoinWorkerThreadFactory implementation; creates a
379     * new ForkJoinWorkerThread.
380     */
381 dl 1.18 static class DefaultForkJoinWorkerThreadFactory
382 jsr166 1.1 implements ForkJoinWorkerThreadFactory {
383     public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
384 dl 1.14 return new ForkJoinWorkerThread(pool);
385 jsr166 1.1 }
386     }
387    
388     /**
389     * Creates a new ForkJoinWorkerThread. This factory is used unless
390     * overridden in ForkJoinPool constructors.
391     */
392     public static final ForkJoinWorkerThreadFactory
393     defaultForkJoinWorkerThreadFactory =
394     new DefaultForkJoinWorkerThreadFactory();
395    
396     /**
397     * Permission required for callers of methods that may start or
398     * kill threads.
399     */
400     private static final RuntimePermission modifyThreadPermission =
401     new RuntimePermission("modifyThread");
402    
403     /**
404     * If there is a security manager, makes sure caller has
405     * permission to modify threads.
406     */
407     private static void checkPermission() {
408     SecurityManager security = System.getSecurityManager();
409     if (security != null)
410     security.checkPermission(modifyThreadPermission);
411     }
412    
413     /**
414     * Generator for assigning sequence numbers as pool names.
415     */
416     private static final AtomicInteger poolNumberGenerator =
417     new AtomicInteger();
418    
419     /**
420 dl 1.19 * Absolute bound for parallelism level. Twice this number plus
421     * one (i.e., 0xfff) must fit into a 16bit field to enable
422     * word-packing for some counts and indices.
423 dl 1.14 */
424 dl 1.19 private static final int MAX_WORKERS = 0x7fff;
425 dl 1.14
426     /**
427     * Array holding all worker threads in the pool. Array size must
428     * be a power of two. Updates and replacements are protected by
429     * workerLock, but the array is always kept in a consistent enough
430     * state to be randomly accessed without locking by workers
431     * performing work-stealing, as well as other traversal-based
432     * methods in this class. All readers must tolerate that some
433     * array slots may be null.
434 jsr166 1.1 */
435     volatile ForkJoinWorkerThread[] workers;
436    
437     /**
438 dl 1.14 * Queue for external submissions.
439 jsr166 1.1 */
440 dl 1.14 private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
441 jsr166 1.1
442     /**
443 dl 1.14 * Lock protecting updates to workers array.
444 jsr166 1.1 */
445 dl 1.14 private final ReentrantLock workerLock;
446 jsr166 1.1
447     /**
448 dl 1.14 * Latch released upon termination.
449 jsr166 1.1 */
450 dl 1.18 private final Phaser termination;
451 jsr166 1.1
452     /**
453     * Creation factory for worker threads.
454     */
455     private final ForkJoinWorkerThreadFactory factory;
456    
457     /**
458 dl 1.14 * Sum of per-thread steal counts, updated only when threads are
459     * idle or terminating.
460 jsr166 1.1 */
461 dl 1.14 private volatile long stealCount;
462 jsr166 1.1
463     /**
464 dl 1.19 * The last nanoTime that a spare thread was trimmed
465     */
466     private volatile long trimTime;
467    
468     /**
469     * The rate at which to trim unused spares
470     */
471     static final long UNUSED_SPARE_TRIM_RATE_NANOS =
472     1000L * 1000L * 1000L; // 1 sec
473    
474     /**
475 dl 1.14 * Encoded record of top of treiber stack of threads waiting for
476     * events. The top 32 bits contain the count being waited for. The
477 dl 1.19 * bottom 16 bits contains one plus the pool index of waiting
478     * worker thread. (Bits 16-31 are unused.)
479 jsr166 1.1 */
480 dl 1.14 private volatile long eventWaiters;
481    
482     private static final int EVENT_COUNT_SHIFT = 32;
483 dl 1.19 private static final long WAITER_ID_MASK = (1L << 16) - 1L;
484 jsr166 1.1
485     /**
486 dl 1.14 * A counter for events that may wake up worker threads:
487     * - Submission of a new task to the pool
488     * - A worker pushing a task on an empty queue
489 dl 1.19 * - termination
490 jsr166 1.1 */
491 dl 1.14 private volatile int eventCount;
492    
493     /**
494 dl 1.19 * Encoded record of top of treiber stack of spare threads waiting
495     * for resumption. The top 16 bits contain an arbitrary count to
496     * avoid ABA effects. The bottom 16bits contains one plus the pool
497     * index of waiting worker thread.
498     */
499     private volatile int spareWaiters;
500    
501     private static final int SPARE_COUNT_SHIFT = 16;
502     private static final int SPARE_ID_MASK = (1 << 16) - 1;
503    
504     /**
505 dl 1.14 * Lifecycle control. The low word contains the number of workers
506     * that are (probably) executing tasks. This value is atomically
507     * incremented before a worker gets a task to run, and decremented
508     * when worker has no tasks and cannot find any. Bits 16-18
509     * contain runLevel value. When all are zero, the pool is
510     * running. Level transitions are monotonic (running -> shutdown
511     * -> terminating -> terminated) so each transition adds a bit.
512     * These are bundled together to ensure consistent read for
513     * termination checks (i.e., that runLevel is at least SHUTDOWN
514     * and active threads is zero).
515     */
516     private volatile int runState;
517    
518     // Note: The order among run level values matters.
519     private static final int RUNLEVEL_SHIFT = 16;
520     private static final int SHUTDOWN = 1 << RUNLEVEL_SHIFT;
521     private static final int TERMINATING = 1 << (RUNLEVEL_SHIFT + 1);
522     private static final int TERMINATED = 1 << (RUNLEVEL_SHIFT + 2);
523     private static final int ACTIVE_COUNT_MASK = (1 << RUNLEVEL_SHIFT) - 1;
524     private static final int ONE_ACTIVE = 1; // active update delta
525 jsr166 1.1
526     /**
527 dl 1.14 * Holds number of total (i.e., created and not yet terminated)
528     * and running (i.e., not blocked on joins or other managed sync)
529     * threads, packed together to ensure consistent snapshot when
530     * making decisions about creating and suspending spare
531     * threads. Updated only by CAS. Note that adding a new worker
532     * requires incrementing both counts, since workers start off in
533 dl 1.19 * running state.
534 dl 1.14 */
535     private volatile int workerCounts;
536    
537     private static final int TOTAL_COUNT_SHIFT = 16;
538     private static final int RUNNING_COUNT_MASK = (1 << TOTAL_COUNT_SHIFT) - 1;
539     private static final int ONE_RUNNING = 1;
540     private static final int ONE_TOTAL = 1 << TOTAL_COUNT_SHIFT;
541    
542 jsr166 1.1 /**
543 dl 1.14 * The target parallelism level.
544 dl 1.18 * Accessed directly by ForkJoinWorkerThreads.
545 jsr166 1.1 */
546 dl 1.18 final int parallelism;
547 jsr166 1.1
548     /**
549 dl 1.14 * True if use local fifo, not default lifo, for local polling
550 dl 1.18 * Read by, and replicated by ForkJoinWorkerThreads
551 jsr166 1.1 */
552 dl 1.18 final boolean locallyFifo;
553 jsr166 1.1
554     /**
555 dl 1.18 * The uncaught exception handler used when any worker abruptly
556     * terminates.
557 jsr166 1.1 */
558 dl 1.18 private final Thread.UncaughtExceptionHandler ueh;
559 jsr166 1.1
560     /**
561 dl 1.14 * Pool number, just for assigning useful names to worker threads
562 jsr166 1.1 */
563 dl 1.14 private final int poolNumber;
564 jsr166 1.1
565 dl 1.19
566     // Utilities for CASing fields. Note that several of these
567     // are manually inlined by callers
568 jsr166 1.1
569     /**
570 dl 1.19 * Increments running count part of workerCounts
571 jsr166 1.1 */
572 dl 1.18 final void incrementRunningCount() {
573     int c;
574 dl 1.14 do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
575 dl 1.19 c = workerCounts,
576 dl 1.18 c + ONE_RUNNING));
577 jsr166 1.1 }
578 dl 1.19
579 jsr166 1.1 /**
580 dl 1.18 * Tries to decrement running count unless already zero
581 dl 1.17 */
582     final boolean tryDecrementRunningCount() {
583     int wc = workerCounts;
584     if ((wc & RUNNING_COUNT_MASK) == 0)
585     return false;
586     return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
587     wc, wc - ONE_RUNNING);
588     }
589    
590     /**
591 dl 1.19 * Forces decrement of encoded workerCounts, awaiting nonzero if
592     * (rarely) necessary when other count updates lag.
593     *
594     * @param dr -- either zero or ONE_RUNNING
595     * @param dt == either zero or ONE_TOTAL
596     */
597     private void decrementWorkerCounts(int dr, int dt) {
598     for (;;) {
599     int wc = workerCounts;
600     if (wc == 0 && (runState & TERMINATED) != 0)
601     return; // lagging termination on a backout
602     if ((wc & RUNNING_COUNT_MASK) - dr < 0 ||
603     (wc >>> TOTAL_COUNT_SHIFT) - dt < 0)
604     Thread.yield();
605     if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
606     wc, wc - (dr + dt)))
607     return;
608     }
609     }
610    
611     /**
612     * Increments event count
613     */
614     private void advanceEventCount() {
615     int c;
616     do {} while(!UNSAFE.compareAndSwapInt(this, eventCountOffset,
617     c = eventCount, c+1));
618     }
619    
620     /**
621 jsr166 1.1 * Tries incrementing active count; fails on contention.
622 dl 1.14 * Called by workers before executing tasks.
623 jsr166 1.1 *
624     * @return true on success
625     */
626     final boolean tryIncrementActiveCount() {
627 dl 1.14 int c;
628     return UNSAFE.compareAndSwapInt(this, runStateOffset,
629     c = runState, c + ONE_ACTIVE);
630 jsr166 1.1 }
631    
632     /**
633     * Tries decrementing active count; fails on contention.
634 dl 1.14 * Called when workers cannot find tasks to run.
635     */
636     final boolean tryDecrementActiveCount() {
637     int c;
638     return UNSAFE.compareAndSwapInt(this, runStateOffset,
639     c = runState, c - ONE_ACTIVE);
640     }
641    
642     /**
643     * Advances to at least the given level. Returns true if not
644     * already in at least the given level.
645     */
646     private boolean advanceRunLevel(int level) {
647     for (;;) {
648     int s = runState;
649     if ((s & level) != 0)
650     return false;
651     if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, s | level))
652     return true;
653     }
654     }
655    
656     // workers array maintenance
657    
658     /**
659     * Records and returns a workers array index for new worker.
660     */
661     private int recordWorker(ForkJoinWorkerThread w) {
662     // Try using slot totalCount-1. If not available, scan and/or resize
663     int k = (workerCounts >>> TOTAL_COUNT_SHIFT) - 1;
664     final ReentrantLock lock = this.workerLock;
665     lock.lock();
666     try {
667     ForkJoinWorkerThread[] ws = workers;
668 dl 1.19 int n = ws.length;
669     if (k < 0 || k >= n || ws[k] != null) {
670     for (k = 0; k < n && ws[k] != null; ++k)
671 dl 1.14 ;
672 dl 1.19 if (k == n)
673     ws = Arrays.copyOf(ws, n << 1);
674 dl 1.14 }
675     ws[k] = w;
676     workers = ws; // volatile array write ensures slot visibility
677     } finally {
678     lock.unlock();
679     }
680     return k;
681     }
682    
683     /**
684     * Nulls out record of worker in workers array
685     */
686     private void forgetWorker(ForkJoinWorkerThread w) {
687     int idx = w.poolIndex;
688     // Locking helps method recordWorker avoid unecessary expansion
689     final ReentrantLock lock = this.workerLock;
690     lock.lock();
691     try {
692     ForkJoinWorkerThread[] ws = workers;
693     if (idx >= 0 && idx < ws.length && ws[idx] == w) // verify
694     ws[idx] = null;
695     } finally {
696     lock.unlock();
697     }
698     }
699    
700     // adding and removing workers
701    
702     /**
703     * Tries to create and add new worker. Assumes that worker counts
704     * are already updated to accommodate the worker, so adjusts on
705     * failure.
706     */
707 dl 1.19 private void addWorker() {
708 dl 1.14 ForkJoinWorkerThread w = null;
709     try {
710     w = factory.newThread(this);
711     } finally { // Adjust on either null or exceptional factory return
712     if (w == null) {
713 dl 1.19 decrementWorkerCounts(ONE_RUNNING, ONE_TOTAL);
714     tryTerminate(false); // in case of failure during shutdown
715 dl 1.14 }
716     }
717 dl 1.19 if (w != null)
718     w.start(recordWorker(w), ueh);
719 dl 1.14 }
720    
721     /**
722     * Final callback from terminating worker. Removes record of
723     * worker from array, and adjusts counts. If pool is shutting
724 dl 1.19 * down, tries to complete terminatation.
725 dl 1.14 *
726     * @param w the worker
727     */
728     final void workerTerminated(ForkJoinWorkerThread w) {
729     forgetWorker(w);
730 dl 1.19 decrementWorkerCounts(w.isTrimmed()? 0 : ONE_RUNNING, ONE_TOTAL);
731     while (w.stealCount != 0) // collect final count
732     tryAccumulateStealCount(w);
733     tryTerminate(false);
734 dl 1.14 }
735    
736     // Waiting for and signalling events
737    
738     /**
739     * Releases workers blocked on a count not equal to current count.
740 dl 1.19 * Normally called after precheck that eventWaiters isn't zero to
741     * avoid wasted array checks.
742     *
743     * @param signalling true if caller is a signalling worker so can
744     * exit upon (conservatively) detected contention by other threads
745     * who will continue to release
746 dl 1.14 */
747 dl 1.19 private void releaseEventWaiters(boolean signalling) {
748     ForkJoinWorkerThread[] ws = workers;
749     int n = ws.length;
750     long h; // head of stack
751     ForkJoinWorkerThread w; int id, ec;
752     while ((id = ((int)((h = eventWaiters) & WAITER_ID_MASK)) - 1) >= 0 &&
753     (int)(h >>> EVENT_COUNT_SHIFT) != (ec = eventCount) &&
754     id < n && (w = ws[id]) != null) {
755     if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
756     h, h = w.nextWaiter))
757 dl 1.14 LockSupport.unpark(w);
758 dl 1.19 if (signalling && (eventCount != ec || eventWaiters != h))
759     break;
760 dl 1.14 }
761     }
762    
763     /**
764 dl 1.19 * Tries to advance eventCount and releases waiters. Called only
765     * from workers.
766 dl 1.18 */
767 dl 1.19 final void signalWork() {
768     int c; // try to increment event count -- CAS failure OK
769     UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
770     if (eventWaiters != 0L)
771     releaseEventWaiters(true);
772 dl 1.18 }
773    
774     /**
775 dl 1.19 * Blocks worker until terminating or event count
776     * advances from last value held by worker
777     *
778     * @param w the calling worker thread
779 dl 1.14 */
780 dl 1.19 private void eventSync(ForkJoinWorkerThread w) {
781     int wec = w.lastEventCount;
782     long nh = (((long)wec) << EVENT_COUNT_SHIFT) | ((long)(w.poolIndex+1));
783     long h;
784     while ((runState < SHUTDOWN || !tryTerminate(false)) &&
785     ((h = eventWaiters) == 0L ||
786     (int)(h >>> EVENT_COUNT_SHIFT) == wec) &&
787     eventCount == wec) {
788     if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
789     w.nextWaiter = h, nh)) {
790     while (runState < TERMINATING && eventCount == wec) {
791     if (!tryAccumulateStealCount(w)) // transfer while idle
792     continue;
793     Thread.interrupted(); // clear/ignore interrupt
794     if (eventCount != wec)
795     break;
796     LockSupport.park(w);
797     }
798     break;
799 dl 1.14 }
800     }
801 dl 1.19 w.lastEventCount = eventCount;
802     }
803    
804     // Maintaining spares
805    
806     /**
807     * Pushes worker onto the spare stack
808     */
809     final void pushSpare(ForkJoinWorkerThread w) {
810     int ns = (++w.spareCount << SPARE_COUNT_SHIFT) | (w.poolIndex+1);
811     do {} while (!UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
812     w.nextSpare = spareWaiters,ns));
813 dl 1.14 }
814    
815     /**
816 dl 1.19 * Tries (once) to resume a spare if running count is less than
817     * target parallelism. Fails on contention or stale workers.
818 dl 1.14 */
819 dl 1.19 private void tryResumeSpare() {
820     int sw, id;
821     ForkJoinWorkerThread w;
822     ForkJoinWorkerThread[] ws;
823     if ((id = ((sw = spareWaiters) & SPARE_ID_MASK) - 1) >= 0 &&
824     id < (ws = workers).length && (w = ws[id]) != null &&
825     (workerCounts & RUNNING_COUNT_MASK) < parallelism &&
826     eventWaiters == 0L &&
827     spareWaiters == sw &&
828     UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
829     sw, w.nextSpare) &&
830     w.tryUnsuspend()) {
831     int c; // try increment; if contended, finish after unpark
832     boolean inc = UNSAFE.compareAndSwapInt(this, workerCountsOffset,
833     c = workerCounts,
834     c + ONE_RUNNING);
835     LockSupport.unpark(w);
836     if (!inc) {
837     do {} while(!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
838     c = workerCounts,
839     c + ONE_RUNNING));
840 dl 1.14 }
841     }
842 dl 1.19 }
843    
844     /**
845     * Callback from oldest spare occasionally waking up. Tries
846     * (once) to shutdown a spare if more than 25% spare overage, or
847     * if UNUSED_SPARE_TRIM_RATE_NANOS have elapsed and there are at
848     * least #parallelism running threads. Note that we don't need CAS
849     * or locks here because the method is called only from the oldest
850     * suspended spare occasionally waking (and even misfires are OK).
851     *
852     * @param now the wake up nanoTime of caller
853     */
854     final void tryTrimSpare(long now) {
855     long lastTrim = trimTime;
856     trimTime = now;
857     helpMaintainParallelism(); // first, help wake up any needed spares
858     int sw, id;
859     ForkJoinWorkerThread w;
860     ForkJoinWorkerThread[] ws;
861     int pc = parallelism;
862     int wc = workerCounts;
863     if ((wc & RUNNING_COUNT_MASK) >= pc &&
864     (((wc >>> TOTAL_COUNT_SHIFT) - pc) > (pc >>> 2) + 1 ||// approx 25%
865     now - lastTrim >= UNUSED_SPARE_TRIM_RATE_NANOS) &&
866     (id = ((sw = spareWaiters) & SPARE_ID_MASK) - 1) >= 0 &&
867     id < (ws = workers).length && (w = ws[id]) != null &&
868     UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
869     sw, w.nextSpare))
870     w.shutdown(false);
871     }
872    
873     /**
874     * Does at most one of:
875     *
876     * 1. Help wake up existing workers waiting for work via
877     * releaseEventWaiters. (If any exist, then it probably doesn't
878     * matter right now if under target parallelism level.)
879     *
880     * 2. If below parallelism level and a spare exists, try (once)
881     * to resume it via tryResumeSpare.
882     *
883     * 3. If neither of the above, tries (once) to add a new
884     * worker if either there are not enough total, or if all
885     * existing workers are busy, there are either no running
886     * workers or the deficit is at least twice the surplus.
887     */
888     private void helpMaintainParallelism() {
889     // uglified to work better when not compiled
890     int pc, wc, rc, tc, rs; long h;
891     if ((h = eventWaiters) != 0L) {
892     if ((int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
893     releaseEventWaiters(false); // avoid useless call
894     }
895     else if ((pc = parallelism) >
896     (rc = ((wc = workerCounts) & RUNNING_COUNT_MASK))) {
897     if (spareWaiters != 0)
898     tryResumeSpare();
899     else if ((rs = runState) < TERMINATING &&
900     ((tc = wc >>> TOTAL_COUNT_SHIFT) < pc ||
901     (tc == (rs & ACTIVE_COUNT_MASK) && // all busy
902     (rc == 0 || // must add
903     rc < pc - ((tc - pc) << 1)) && // within slack
904     tc < MAX_WORKERS && runState == rs)) && // recheck busy
905     workerCounts == wc &&
906     UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
907     wc + (ONE_RUNNING|ONE_TOTAL)))
908     addWorker();
909     }
910 dl 1.14 }
911    
912     /**
913     * Callback from workers invoked upon each top-level action (i.e.,
914     * stealing a task or taking a submission and running
915 dl 1.19 * it). Performs one or more of the following:
916     *
917     * 1. If the worker cannot find work (misses > 0), updates its
918     * active status to inactive and updates activeCount unless
919     * this is the first miss and there is contention, in which
920     * case it may try again (either in this or a subsequent
921     * call).
922     *
923     * 2. If there are at least 2 misses, awaits the next task event
924     * via eventSync
925     *
926     * 3. If there are too many running threads, suspends this worker
927     * (first forcing inactivation if necessary). If it is not
928     * needed, it may be killed while suspended via
929     * tryTrimSpare. Otherwise, upon resume it rechecks to make
930     * sure that it is still needed.
931 dl 1.14 *
932 dl 1.19 * 4. Helps release and/or reactivate other workers via
933     * helpMaintainParallelism
934 dl 1.14 *
935     * @param w the worker
936 dl 1.19 * @param misses the number of scans by caller failing to find work
937     * (saturating at 2 just to avoid wraparound)
938 dl 1.14 */
939 dl 1.19 final void preStep(ForkJoinWorkerThread w, int misses) {
940 dl 1.14 boolean active = w.active;
941 dl 1.19 int pc = parallelism;
942 dl 1.14 for (;;) {
943 dl 1.19 int wc = workerCounts;
944     int rc = wc & RUNNING_COUNT_MASK;
945     if (active && (misses > 0 || rc > pc)) {
946     int rs; // try inactivate
947 dl 1.14 if (UNSAFE.compareAndSwapInt(this, runStateOffset,
948 dl 1.19 rs = runState, rs - ONE_ACTIVE))
949     active = w.active = false;
950     else if (misses > 1 || rc > pc ||
951     (rs & ACTIVE_COUNT_MASK) >= pc)
952     continue; // force inactivate
953     }
954     if (misses > 1) {
955     misses = 0; // don't re-sync
956     eventSync(w); // continue loop to recheck rc
957 dl 1.14 }
958 dl 1.19 else if (rc > pc) {
959     if (workerCounts == wc && // try to suspend as spare
960     UNSAFE.compareAndSwapInt(this, workerCountsOffset,
961     wc, wc - ONE_RUNNING) &&
962     !w.suspendAsSpare()) // false if killed
963     break;
964     }
965     else {
966     if (rc < pc || eventWaiters != 0L)
967     helpMaintainParallelism();
968     break;
969 dl 1.14 }
970     }
971     }
972    
973     /**
974 dl 1.19 * Helps and/or blocks awaiting join of the given task.
975     * Alternates between helpJoinTask() and helpMaintainParallelism()
976     * as many times as there is a deficit in running count (or longer
977     * if running count would become zero), then blocks if task still
978     * not done.
979 dl 1.17 *
980     * @param joinMe the task to join
981 dl 1.14 */
982 dl 1.19 final void awaitJoin(ForkJoinTask<?> joinMe, ForkJoinWorkerThread worker) {
983     int threshold = parallelism; // descend blocking thresholds
984     while (joinMe.status >= 0) {
985     boolean block; int wc;
986     worker.helpJoinTask(joinMe);
987     if (joinMe.status < 0)
988     break;
989     if (((wc = workerCounts) & RUNNING_COUNT_MASK) <= threshold) {
990     if (threshold > 0)
991     --threshold;
992     else
993     advanceEventCount(); // force release
994     block = false;
995     }
996     else
997     block = UNSAFE.compareAndSwapInt(this, workerCountsOffset,
998     wc, wc - ONE_RUNNING);
999     helpMaintainParallelism();
1000     if (block) {
1001     int c;
1002     joinMe.internalAwaitDone();
1003     do {} while (!UNSAFE.compareAndSwapInt
1004     (this, workerCountsOffset,
1005     c = workerCounts, c + ONE_RUNNING));
1006     break;
1007 dl 1.14 }
1008     }
1009     }
1010    
1011     /**
1012 dl 1.19 * Same idea as awaitJoin, but no helping
1013 dl 1.14 */
1014 dl 1.18 final void awaitBlocker(ManagedBlocker blocker)
1015 dl 1.14 throws InterruptedException {
1016 dl 1.19 int threshold = parallelism;
1017     while (!blocker.isReleasable()) {
1018     boolean block; int wc;
1019     if (((wc = workerCounts) & RUNNING_COUNT_MASK) <= threshold) {
1020     if (threshold > 0)
1021     --threshold;
1022     else
1023     advanceEventCount();
1024     block = false;
1025 dl 1.14 }
1026 dl 1.19 else
1027     block = UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1028     wc, wc - ONE_RUNNING);
1029     helpMaintainParallelism();
1030     if (block) {
1031     try {
1032     do {} while (!blocker.isReleasable() && !blocker.block());
1033     } finally {
1034 dl 1.14 int c;
1035 dl 1.17 do {} while (!UNSAFE.compareAndSwapInt
1036     (this, workerCountsOffset,
1037     c = workerCounts, c + ONE_RUNNING));
1038 dl 1.14 }
1039 dl 1.18 break;
1040     }
1041 dl 1.14 }
1042 dl 1.19 }
1043 dl 1.15
1044     /**
1045 dl 1.14 * Possibly initiates and/or completes termination.
1046     *
1047     * @param now if true, unconditionally terminate, else only
1048     * if shutdown and empty queue and no active workers
1049     * @return true if now terminating or terminated
1050 jsr166 1.1 */
1051 dl 1.14 private boolean tryTerminate(boolean now) {
1052     if (now)
1053     advanceRunLevel(SHUTDOWN); // ensure at least SHUTDOWN
1054     else if (runState < SHUTDOWN ||
1055     !submissionQueue.isEmpty() ||
1056     (runState & ACTIVE_COUNT_MASK) != 0)
1057 jsr166 1.1 return false;
1058 dl 1.14
1059     if (advanceRunLevel(TERMINATING))
1060     startTerminating();
1061    
1062     // Finish now if all threads terminated; else in some subsequent call
1063     if ((workerCounts >>> TOTAL_COUNT_SHIFT) == 0) {
1064     advanceRunLevel(TERMINATED);
1065 dl 1.18 termination.arrive();
1066 dl 1.14 }
1067 jsr166 1.1 return true;
1068     }
1069    
1070     /**
1071 dl 1.14 * Actions on transition to TERMINATING
1072 dl 1.19 *
1073     * Runs up to four passes through workers: (0) shutting down each
1074     * quietly (without waking up if parked) to quickly spread
1075     * notifications without unnecessary bouncing around event queues
1076     * etc (1) wake up and help cancel tasks (2) interrupt (3) mop up
1077     * races with interrupted workers
1078 dl 1.14 */
1079     private void startTerminating() {
1080 dl 1.19 cancelSubmissions();
1081     for (int passes = 0; passes < 4 && workerCounts != 0; ++passes) {
1082     advanceEventCount();
1083     eventWaiters = 0L; // clobber lists
1084     spareWaiters = 0;
1085     ForkJoinWorkerThread[] ws = workers;
1086     int n = ws.length;
1087     for (int i = 0; i < n; ++i) {
1088     ForkJoinWorkerThread w = ws[i];
1089     if (w != null) {
1090     w.shutdown(true);
1091     if (passes > 0 && !w.isTerminated()) {
1092     w.cancelTasks();
1093     LockSupport.unpark(w);
1094     if (passes > 1) {
1095     try {
1096     w.interrupt();
1097     } catch (SecurityException ignore) {
1098     }
1099     }
1100     }
1101     }
1102     }
1103 dl 1.17 }
1104     }
1105    
1106     /**
1107     * Clear out and cancel submissions, ignoring exceptions
1108     */
1109     private void cancelSubmissions() {
1110 dl 1.14 ForkJoinTask<?> task;
1111     while ((task = submissionQueue.poll()) != null) {
1112     try {
1113     task.cancel(false);
1114     } catch (Throwable ignore) {
1115     }
1116     }
1117 dl 1.17 }
1118    
1119 dl 1.14 // misc support for ForkJoinWorkerThread
1120    
1121     /**
1122     * Returns pool number
1123 jsr166 1.1 */
1124 dl 1.14 final int getPoolNumber() {
1125     return poolNumber;
1126 jsr166 1.1 }
1127    
1128     /**
1129 dl 1.19 * Tries to accumulates steal count from a worker, clearing
1130     * the worker's value.
1131     *
1132     * @return true if worker steal count now zero
1133 jsr166 1.1 */
1134 dl 1.19 final boolean tryAccumulateStealCount(ForkJoinWorkerThread w) {
1135 dl 1.14 int sc = w.stealCount;
1136 dl 1.19 long c = stealCount;
1137     // CAS even if zero, for fence effects
1138     if (UNSAFE.compareAndSwapLong(this, stealCountOffset, c, c + sc)) {
1139     if (sc != 0)
1140     w.stealCount = 0;
1141     return true;
1142 jsr166 1.1 }
1143 dl 1.19 return sc == 0;
1144 jsr166 1.1 }
1145    
1146     /**
1147 dl 1.14 * Returns the approximate (non-atomic) number of idle threads per
1148     * active thread.
1149     */
1150     final int idlePerActive() {
1151 dl 1.19 int pc = parallelism; // use parallelism, not rc
1152 dl 1.14 int ac = runState; // no mask -- artifically boosts during shutdown
1153     // Use exact results for small values, saturate past 4
1154     return pc <= ac? 0 : pc >>> 1 <= ac? 1 : pc >>> 2 <= ac? 3 : pc >>> 3;
1155     }
1156    
1157     // Public and protected methods
1158 jsr166 1.1
1159     // Constructors
1160    
1161     /**
1162 jsr166 1.9 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1163 dl 1.18 * java.lang.Runtime#availableProcessors}, using the {@linkplain
1164     * #defaultForkJoinWorkerThreadFactory default thread factory},
1165     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1166 jsr166 1.1 *
1167     * @throws SecurityException if a security manager exists and
1168     * the caller is not permitted to modify threads
1169     * because it does not hold {@link
1170     * java.lang.RuntimePermission}{@code ("modifyThread")}
1171     */
1172     public ForkJoinPool() {
1173     this(Runtime.getRuntime().availableProcessors(),
1174 dl 1.18 defaultForkJoinWorkerThreadFactory, null, false);
1175 jsr166 1.1 }
1176    
1177     /**
1178 jsr166 1.9 * Creates a {@code ForkJoinPool} with the indicated parallelism
1179 dl 1.18 * level, the {@linkplain
1180     * #defaultForkJoinWorkerThreadFactory default thread factory},
1181     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1182 jsr166 1.1 *
1183 jsr166 1.9 * @param parallelism the parallelism level
1184 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
1185 jsr166 1.11 * equal to zero, or greater than implementation limit
1186 jsr166 1.1 * @throws SecurityException if a security manager exists and
1187     * the caller is not permitted to modify threads
1188     * because it does not hold {@link
1189     * java.lang.RuntimePermission}{@code ("modifyThread")}
1190     */
1191     public ForkJoinPool(int parallelism) {
1192 dl 1.18 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
1193 jsr166 1.1 }
1194    
1195     /**
1196 dl 1.18 * Creates a {@code ForkJoinPool} with the given parameters.
1197 jsr166 1.1 *
1198 dl 1.18 * @param parallelism the parallelism level. For default value,
1199     * use {@link java.lang.Runtime#availableProcessors}.
1200     * @param factory the factory for creating new threads. For default value,
1201     * use {@link #defaultForkJoinWorkerThreadFactory}.
1202 dl 1.19 * @param handler the handler for internal worker threads that
1203     * terminate due to unrecoverable errors encountered while executing
1204 dl 1.18 * tasks. For default value, use <code>null</code>.
1205 dl 1.19 * @param asyncMode if true,
1206 dl 1.18 * establishes local first-in-first-out scheduling mode for forked
1207     * tasks that are never joined. This mode may be more appropriate
1208     * than default locally stack-based mode in applications in which
1209     * worker threads only process event-style asynchronous tasks.
1210     * For default value, use <code>false</code>.
1211 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
1212 jsr166 1.11 * equal to zero, or greater than implementation limit
1213     * @throws NullPointerException if the factory is null
1214 jsr166 1.1 * @throws SecurityException if a security manager exists and
1215     * the caller is not permitted to modify threads
1216     * because it does not hold {@link
1217     * java.lang.RuntimePermission}{@code ("modifyThread")}
1218     */
1219 dl 1.19 public ForkJoinPool(int parallelism,
1220 dl 1.18 ForkJoinWorkerThreadFactory factory,
1221     Thread.UncaughtExceptionHandler handler,
1222     boolean asyncMode) {
1223 dl 1.14 checkPermission();
1224     if (factory == null)
1225     throw new NullPointerException();
1226 dl 1.19 if (parallelism <= 0 || parallelism > MAX_WORKERS)
1227 jsr166 1.1 throw new IllegalArgumentException();
1228 dl 1.14 this.parallelism = parallelism;
1229 jsr166 1.1 this.factory = factory;
1230 dl 1.18 this.ueh = handler;
1231     this.locallyFifo = asyncMode;
1232     int arraySize = initialArraySizeFor(parallelism);
1233 dl 1.14 this.workers = new ForkJoinWorkerThread[arraySize];
1234     this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
1235 jsr166 1.1 this.workerLock = new ReentrantLock();
1236 dl 1.18 this.termination = new Phaser(1);
1237     this.poolNumber = poolNumberGenerator.incrementAndGet();
1238 dl 1.19 this.trimTime = System.nanoTime();
1239 jsr166 1.1 }
1240    
1241     /**
1242 dl 1.14 * Returns initial power of two size for workers array.
1243     * @param pc the initial parallelism level
1244     */
1245     private static int initialArraySizeFor(int pc) {
1246 dl 1.19 // See Hackers Delight, sec 3.2. We know MAX_WORKERS < (1 >>> 16)
1247     int size = pc < MAX_WORKERS ? pc + 1 : MAX_WORKERS;
1248 dl 1.14 size |= size >>> 1;
1249     size |= size >>> 2;
1250     size |= size >>> 4;
1251     size |= size >>> 8;
1252     return size + 1;
1253 jsr166 1.1 }
1254    
1255     // Execution methods
1256    
1257     /**
1258     * Common code for execute, invoke and submit
1259     */
1260     private <T> void doSubmit(ForkJoinTask<T> task) {
1261 jsr166 1.2 if (task == null)
1262     throw new NullPointerException();
1263 dl 1.14 if (runState >= SHUTDOWN)
1264 jsr166 1.1 throw new RejectedExecutionException();
1265 dl 1.19 submissionQueue.offer(task);
1266     advanceEventCount();
1267     helpMaintainParallelism(); // start or wake up workers
1268 jsr166 1.1 }
1269    
1270     /**
1271     * Performs the given task, returning its result upon completion.
1272 dl 1.18 * If the caller is already engaged in a fork/join computation in
1273 dl 1.19 * the current pool, this method is equivalent in effect to
1274 dl 1.18 * {@link ForkJoinTask#invoke}.
1275 jsr166 1.1 *
1276     * @param task the task
1277     * @return the task's result
1278 jsr166 1.11 * @throws NullPointerException if the task is null
1279     * @throws RejectedExecutionException if the task cannot be
1280     * scheduled for execution
1281 jsr166 1.1 */
1282     public <T> T invoke(ForkJoinTask<T> task) {
1283     doSubmit(task);
1284     return task.join();
1285     }
1286    
1287     /**
1288     * Arranges for (asynchronous) execution of the given task.
1289 dl 1.18 * If the caller is already engaged in a fork/join computation in
1290 dl 1.19 * the current pool, this method is equivalent in effect to
1291 dl 1.18 * {@link ForkJoinTask#fork}.
1292 jsr166 1.1 *
1293     * @param task the task
1294 jsr166 1.11 * @throws NullPointerException if the task is null
1295     * @throws RejectedExecutionException if the task cannot be
1296     * scheduled for execution
1297 jsr166 1.1 */
1298 jsr166 1.8 public void execute(ForkJoinTask<?> task) {
1299 jsr166 1.1 doSubmit(task);
1300     }
1301    
1302     // AbstractExecutorService methods
1303    
1304 jsr166 1.11 /**
1305     * @throws NullPointerException if the task is null
1306     * @throws RejectedExecutionException if the task cannot be
1307     * scheduled for execution
1308     */
1309 jsr166 1.1 public void execute(Runnable task) {
1310 jsr166 1.2 ForkJoinTask<?> job;
1311 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1312     job = (ForkJoinTask<?>) task;
1313 jsr166 1.2 else
1314 jsr166 1.7 job = ForkJoinTask.adapt(task, null);
1315 jsr166 1.2 doSubmit(job);
1316 jsr166 1.1 }
1317    
1318 jsr166 1.11 /**
1319 dl 1.18 * Submits a ForkJoinTask for execution.
1320     * If the caller is already engaged in a fork/join computation in
1321 dl 1.19 * the current pool, this method is equivalent in effect to
1322 dl 1.18 * {@link ForkJoinTask#fork}.
1323     *
1324     * @param task the task to submit
1325     * @return the task
1326     * @throws NullPointerException if the task is null
1327     * @throws RejectedExecutionException if the task cannot be
1328     * scheduled for execution
1329     */
1330     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1331     doSubmit(task);
1332     return task;
1333     }
1334    
1335     /**
1336 jsr166 1.11 * @throws NullPointerException if the task is null
1337     * @throws RejectedExecutionException if the task cannot be
1338     * scheduled for execution
1339     */
1340 jsr166 1.1 public <T> ForkJoinTask<T> submit(Callable<T> task) {
1341 jsr166 1.7 ForkJoinTask<T> job = ForkJoinTask.adapt(task);
1342 jsr166 1.1 doSubmit(job);
1343     return job;
1344     }
1345    
1346 jsr166 1.11 /**
1347     * @throws NullPointerException if the task is null
1348     * @throws RejectedExecutionException if the task cannot be
1349     * scheduled for execution
1350     */
1351 jsr166 1.1 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
1352 jsr166 1.7 ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
1353 jsr166 1.1 doSubmit(job);
1354     return job;
1355     }
1356    
1357 jsr166 1.11 /**
1358     * @throws NullPointerException if the task is null
1359     * @throws RejectedExecutionException if the task cannot be
1360     * scheduled for execution
1361     */
1362 jsr166 1.1 public ForkJoinTask<?> submit(Runnable task) {
1363 jsr166 1.2 ForkJoinTask<?> job;
1364 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1365     job = (ForkJoinTask<?>) task;
1366 jsr166 1.2 else
1367 jsr166 1.7 job = ForkJoinTask.adapt(task, null);
1368 jsr166 1.1 doSubmit(job);
1369     return job;
1370     }
1371    
1372     /**
1373 jsr166 1.11 * @throws NullPointerException {@inheritDoc}
1374     * @throws RejectedExecutionException {@inheritDoc}
1375     */
1376 jsr166 1.1 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
1377     ArrayList<ForkJoinTask<T>> forkJoinTasks =
1378     new ArrayList<ForkJoinTask<T>>(tasks.size());
1379     for (Callable<T> task : tasks)
1380 jsr166 1.7 forkJoinTasks.add(ForkJoinTask.adapt(task));
1381 jsr166 1.1 invoke(new InvokeAll<T>(forkJoinTasks));
1382    
1383     @SuppressWarnings({"unchecked", "rawtypes"})
1384 dl 1.15 List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1385 jsr166 1.1 return futures;
1386     }
1387    
1388     static final class InvokeAll<T> extends RecursiveAction {
1389     final ArrayList<ForkJoinTask<T>> tasks;
1390     InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
1391     public void compute() {
1392     try { invokeAll(tasks); }
1393     catch (Exception ignore) {}
1394     }
1395     private static final long serialVersionUID = -7914297376763021607L;
1396     }
1397    
1398     /**
1399     * Returns the factory used for constructing new workers.
1400     *
1401     * @return the factory used for constructing new workers
1402     */
1403     public ForkJoinWorkerThreadFactory getFactory() {
1404     return factory;
1405     }
1406    
1407     /**
1408     * Returns the handler for internal worker threads that terminate
1409     * due to unrecoverable errors encountered while executing tasks.
1410     *
1411 jsr166 1.4 * @return the handler, or {@code null} if none
1412 jsr166 1.1 */
1413     public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1414 dl 1.14 return ueh;
1415 jsr166 1.1 }
1416    
1417     /**
1418 jsr166 1.9 * Returns the targeted parallelism level of this pool.
1419 jsr166 1.1 *
1420 jsr166 1.9 * @return the targeted parallelism level of this pool
1421 jsr166 1.1 */
1422     public int getParallelism() {
1423     return parallelism;
1424     }
1425    
1426     /**
1427     * Returns the number of worker threads that have started but not
1428     * yet terminated. This result returned by this method may differ
1429 jsr166 1.4 * from {@link #getParallelism} when threads are created to
1430 jsr166 1.1 * maintain parallelism when others are cooperatively blocked.
1431     *
1432     * @return the number of worker threads
1433     */
1434     public int getPoolSize() {
1435 dl 1.14 return workerCounts >>> TOTAL_COUNT_SHIFT;
1436 jsr166 1.1 }
1437    
1438     /**
1439 jsr166 1.4 * Returns {@code true} if this pool uses local first-in-first-out
1440 jsr166 1.1 * scheduling mode for forked tasks that are never joined.
1441     *
1442 jsr166 1.4 * @return {@code true} if this pool uses async mode
1443 jsr166 1.1 */
1444     public boolean getAsyncMode() {
1445     return locallyFifo;
1446     }
1447    
1448     /**
1449     * Returns an estimate of the number of worker threads that are
1450     * not blocked waiting to join tasks or for other managed
1451 dl 1.14 * synchronization. This method may overestimate the
1452     * number of running threads.
1453 jsr166 1.1 *
1454     * @return the number of worker threads
1455     */
1456     public int getRunningThreadCount() {
1457 dl 1.14 return workerCounts & RUNNING_COUNT_MASK;
1458 jsr166 1.1 }
1459    
1460     /**
1461     * Returns an estimate of the number of threads that are currently
1462     * stealing or executing tasks. This method may overestimate the
1463     * number of active threads.
1464     *
1465     * @return the number of active threads
1466     */
1467     public int getActiveThreadCount() {
1468 dl 1.14 return runState & ACTIVE_COUNT_MASK;
1469 jsr166 1.1 }
1470    
1471     /**
1472 jsr166 1.4 * Returns {@code true} if all worker threads are currently idle.
1473     * An idle worker is one that cannot obtain a task to execute
1474     * because none are available to steal from other threads, and
1475     * there are no pending submissions to the pool. This method is
1476     * conservative; it might not return {@code true} immediately upon
1477     * idleness of all threads, but will eventually become true if
1478     * threads remain inactive.
1479 jsr166 1.1 *
1480 jsr166 1.4 * @return {@code true} if all threads are currently idle
1481 jsr166 1.1 */
1482     public boolean isQuiescent() {
1483 dl 1.14 return (runState & ACTIVE_COUNT_MASK) == 0;
1484 jsr166 1.1 }
1485    
1486     /**
1487     * Returns an estimate of the total number of tasks stolen from
1488     * one thread's work queue by another. The reported value
1489     * underestimates the actual total number of steals when the pool
1490     * is not quiescent. This value may be useful for monitoring and
1491     * tuning fork/join programs: in general, steal counts should be
1492     * high enough to keep threads busy, but low enough to avoid
1493     * overhead and contention across threads.
1494     *
1495     * @return the number of steals
1496     */
1497     public long getStealCount() {
1498 dl 1.14 return stealCount;
1499 jsr166 1.1 }
1500    
1501     /**
1502     * Returns an estimate of the total number of tasks currently held
1503     * in queues by worker threads (but not including tasks submitted
1504     * to the pool that have not begun executing). This value is only
1505     * an approximation, obtained by iterating across all threads in
1506     * the pool. This method may be useful for tuning task
1507     * granularities.
1508     *
1509     * @return the number of queued tasks
1510     */
1511     public long getQueuedTaskCount() {
1512     long count = 0;
1513 dl 1.17 ForkJoinWorkerThread[] ws = workers;
1514 dl 1.19 int n = ws.length;
1515     for (int i = 0; i < n; ++i) {
1516 dl 1.17 ForkJoinWorkerThread w = ws[i];
1517 dl 1.14 if (w != null)
1518     count += w.getQueueSize();
1519 jsr166 1.1 }
1520     return count;
1521     }
1522    
1523     /**
1524 jsr166 1.8 * Returns an estimate of the number of tasks submitted to this
1525     * pool that have not yet begun executing. This method takes time
1526 jsr166 1.1 * proportional to the number of submissions.
1527     *
1528     * @return the number of queued submissions
1529     */
1530     public int getQueuedSubmissionCount() {
1531     return submissionQueue.size();
1532     }
1533    
1534     /**
1535 jsr166 1.4 * Returns {@code true} if there are any tasks submitted to this
1536     * pool that have not yet begun executing.
1537 jsr166 1.1 *
1538     * @return {@code true} if there are any queued submissions
1539     */
1540     public boolean hasQueuedSubmissions() {
1541     return !submissionQueue.isEmpty();
1542     }
1543    
1544     /**
1545     * Removes and returns the next unexecuted submission if one is
1546     * available. This method may be useful in extensions to this
1547     * class that re-assign work in systems with multiple pools.
1548     *
1549 jsr166 1.4 * @return the next submission, or {@code null} if none
1550 jsr166 1.1 */
1551     protected ForkJoinTask<?> pollSubmission() {
1552     return submissionQueue.poll();
1553     }
1554    
1555     /**
1556     * Removes all available unexecuted submitted and forked tasks
1557     * from scheduling queues and adds them to the given collection,
1558     * without altering their execution status. These may include
1559 jsr166 1.8 * artificially generated or wrapped tasks. This method is
1560     * designed to be invoked only when the pool is known to be
1561 jsr166 1.1 * quiescent. Invocations at other times may not remove all
1562     * tasks. A failure encountered while attempting to add elements
1563     * to collection {@code c} may result in elements being in
1564     * neither, either or both collections when the associated
1565     * exception is thrown. The behavior of this operation is
1566     * undefined if the specified collection is modified while the
1567     * operation is in progress.
1568     *
1569     * @param c the collection to transfer elements into
1570     * @return the number of elements transferred
1571     */
1572 jsr166 1.5 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1573 dl 1.19 int count = submissionQueue.drainTo(c);
1574 dl 1.18 ForkJoinWorkerThread[] ws = workers;
1575 dl 1.19 int n = ws.length;
1576     for (int i = 0; i < n; ++i) {
1577 dl 1.18 ForkJoinWorkerThread w = ws[i];
1578     if (w != null)
1579 dl 1.19 count += w.drainTasksTo(c);
1580 dl 1.18 }
1581     return count;
1582     }
1583    
1584     /**
1585 jsr166 1.1 * Returns a string identifying this pool, as well as its state,
1586     * including indications of run state, parallelism level, and
1587     * worker and task counts.
1588     *
1589     * @return a string identifying this pool, as well as its state
1590     */
1591     public String toString() {
1592     long st = getStealCount();
1593     long qt = getQueuedTaskCount();
1594     long qs = getQueuedSubmissionCount();
1595 dl 1.14 int wc = workerCounts;
1596     int tc = wc >>> TOTAL_COUNT_SHIFT;
1597     int rc = wc & RUNNING_COUNT_MASK;
1598     int pc = parallelism;
1599     int rs = runState;
1600     int ac = rs & ACTIVE_COUNT_MASK;
1601 jsr166 1.1 return super.toString() +
1602 dl 1.14 "[" + runLevelToString(rs) +
1603     ", parallelism = " + pc +
1604     ", size = " + tc +
1605     ", active = " + ac +
1606     ", running = " + rc +
1607 jsr166 1.1 ", steals = " + st +
1608     ", tasks = " + qt +
1609     ", submissions = " + qs +
1610     "]";
1611     }
1612    
1613 dl 1.14 private static String runLevelToString(int s) {
1614     return ((s & TERMINATED) != 0 ? "Terminated" :
1615     ((s & TERMINATING) != 0 ? "Terminating" :
1616     ((s & SHUTDOWN) != 0 ? "Shutting down" :
1617     "Running")));
1618 jsr166 1.1 }
1619    
1620     /**
1621     * Initiates an orderly shutdown in which previously submitted
1622     * tasks are executed, but no new tasks will be accepted.
1623     * Invocation has no additional effect if already shut down.
1624     * Tasks that are in the process of being submitted concurrently
1625     * during the course of this method may or may not be rejected.
1626     *
1627     * @throws SecurityException if a security manager exists and
1628     * the caller is not permitted to modify threads
1629     * because it does not hold {@link
1630     * java.lang.RuntimePermission}{@code ("modifyThread")}
1631     */
1632     public void shutdown() {
1633     checkPermission();
1634 dl 1.14 advanceRunLevel(SHUTDOWN);
1635     tryTerminate(false);
1636 jsr166 1.1 }
1637    
1638     /**
1639 jsr166 1.9 * Attempts to cancel and/or stop all tasks, and reject all
1640     * subsequently submitted tasks. Tasks that are in the process of
1641     * being submitted or executed concurrently during the course of
1642     * this method may or may not be rejected. This method cancels
1643     * both existing and unexecuted tasks, in order to permit
1644     * termination in the presence of task dependencies. So the method
1645     * always returns an empty list (unlike the case for some other
1646     * Executors).
1647 jsr166 1.1 *
1648     * @return an empty list
1649     * @throws SecurityException if a security manager exists and
1650     * the caller is not permitted to modify threads
1651     * because it does not hold {@link
1652     * java.lang.RuntimePermission}{@code ("modifyThread")}
1653     */
1654     public List<Runnable> shutdownNow() {
1655     checkPermission();
1656 dl 1.14 tryTerminate(true);
1657 jsr166 1.1 return Collections.emptyList();
1658     }
1659    
1660     /**
1661     * Returns {@code true} if all tasks have completed following shut down.
1662     *
1663     * @return {@code true} if all tasks have completed following shut down
1664     */
1665     public boolean isTerminated() {
1666 dl 1.14 return runState >= TERMINATED;
1667 jsr166 1.1 }
1668    
1669     /**
1670     * Returns {@code true} if the process of termination has
1671 jsr166 1.9 * commenced but not yet completed. This method may be useful for
1672     * debugging. A return of {@code true} reported a sufficient
1673     * period after shutdown may indicate that submitted tasks have
1674     * ignored or suppressed interruption, causing this executor not
1675     * to properly terminate.
1676 jsr166 1.1 *
1677 jsr166 1.9 * @return {@code true} if terminating but not yet terminated
1678 jsr166 1.1 */
1679     public boolean isTerminating() {
1680 dl 1.14 return (runState & (TERMINATING|TERMINATED)) == TERMINATING;
1681 jsr166 1.1 }
1682    
1683     /**
1684     * Returns {@code true} if this pool has been shut down.
1685     *
1686     * @return {@code true} if this pool has been shut down
1687     */
1688     public boolean isShutdown() {
1689 dl 1.14 return runState >= SHUTDOWN;
1690 jsr166 1.9 }
1691    
1692     /**
1693 jsr166 1.1 * Blocks until all tasks have completed execution after a shutdown
1694     * request, or the timeout occurs, or the current thread is
1695     * interrupted, whichever happens first.
1696     *
1697     * @param timeout the maximum time to wait
1698     * @param unit the time unit of the timeout argument
1699     * @return {@code true} if this executor terminated and
1700     * {@code false} if the timeout elapsed before termination
1701     * @throws InterruptedException if interrupted while waiting
1702     */
1703     public boolean awaitTermination(long timeout, TimeUnit unit)
1704     throws InterruptedException {
1705 dl 1.18 try {
1706     return termination.awaitAdvanceInterruptibly(0, timeout, unit) > 0;
1707     } catch(TimeoutException ex) {
1708     return false;
1709     }
1710 jsr166 1.1 }
1711    
1712     /**
1713     * Interface for extending managed parallelism for tasks running
1714 jsr166 1.8 * in {@link ForkJoinPool}s.
1715     *
1716 dl 1.19 * <p>A {@code ManagedBlocker} provides two methods. Method
1717     * {@code isReleasable} must return {@code true} if blocking is
1718     * not necessary. Method {@code block} blocks the current thread
1719     * if necessary (perhaps internally invoking {@code isReleasable}
1720     * before actually blocking). The unusual methods in this API
1721     * accommodate synchronizers that may, but don't usually, block
1722     * for long periods. Similarly, they allow more efficient internal
1723     * handling of cases in which additional workers may be, but
1724     * usually are not, needed to ensure sufficient parallelism.
1725     * Toward this end, implementations of method {@code isReleasable}
1726     * must be amenable to repeated invocation.
1727 jsr166 1.1 *
1728     * <p>For example, here is a ManagedBlocker based on a
1729     * ReentrantLock:
1730     * <pre> {@code
1731     * class ManagedLocker implements ManagedBlocker {
1732     * final ReentrantLock lock;
1733     * boolean hasLock = false;
1734     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
1735     * public boolean block() {
1736     * if (!hasLock)
1737     * lock.lock();
1738     * return true;
1739     * }
1740     * public boolean isReleasable() {
1741     * return hasLock || (hasLock = lock.tryLock());
1742     * }
1743     * }}</pre>
1744 dl 1.19 *
1745     * <p>Here is a class that possibly blocks waiting for an
1746     * item on a given queue:
1747     * <pre> {@code
1748     * class QueueTaker<E> implements ManagedBlocker {
1749     * final BlockingQueue<E> queue;
1750     * volatile E item = null;
1751     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
1752     * public boolean block() throws InterruptedException {
1753     * if (item == null)
1754     * item = queue.take
1755     * return true;
1756     * }
1757     * public boolean isReleasable() {
1758     * return item != null || (item = queue.poll) != null;
1759     * }
1760     * public E getItem() { // call after pool.managedBlock completes
1761     * return item;
1762     * }
1763     * }}</pre>
1764 jsr166 1.1 */
1765     public static interface ManagedBlocker {
1766     /**
1767     * Possibly blocks the current thread, for example waiting for
1768     * a lock or condition.
1769     *
1770 jsr166 1.4 * @return {@code true} if no additional blocking is necessary
1771     * (i.e., if isReleasable would return true)
1772 jsr166 1.1 * @throws InterruptedException if interrupted while waiting
1773     * (the method is not required to do so, but is allowed to)
1774     */
1775     boolean block() throws InterruptedException;
1776    
1777     /**
1778 jsr166 1.4 * Returns {@code true} if blocking is unnecessary.
1779 jsr166 1.1 */
1780     boolean isReleasable();
1781     }
1782    
1783     /**
1784     * Blocks in accord with the given blocker. If the current thread
1785 jsr166 1.8 * is a {@link ForkJoinWorkerThread}, this method possibly
1786     * arranges for a spare thread to be activated if necessary to
1787 dl 1.18 * ensure sufficient parallelism while the current thread is blocked.
1788 jsr166 1.1 *
1789 jsr166 1.8 * <p>If the caller is not a {@link ForkJoinTask}, this method is
1790     * behaviorally equivalent to
1791 jsr166 1.1 * <pre> {@code
1792     * while (!blocker.isReleasable())
1793     * if (blocker.block())
1794     * return;
1795     * }</pre>
1796 jsr166 1.8 *
1797     * If the caller is a {@code ForkJoinTask}, then the pool may
1798     * first be expanded to ensure parallelism, and later adjusted.
1799 jsr166 1.1 *
1800     * @param blocker the blocker
1801     * @throws InterruptedException if blocker.block did so
1802     */
1803 dl 1.18 public static void managedBlock(ManagedBlocker blocker)
1804 jsr166 1.1 throws InterruptedException {
1805     Thread t = Thread.currentThread();
1806 dl 1.19 if (t instanceof ForkJoinWorkerThread) {
1807     ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
1808     w.pool.awaitBlocker(blocker);
1809     }
1810 dl 1.18 else {
1811     do {} while (!blocker.isReleasable() && !blocker.block());
1812     }
1813 jsr166 1.1 }
1814    
1815 jsr166 1.7 // AbstractExecutorService overrides. These rely on undocumented
1816     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
1817     // implement RunnableFuture.
1818 jsr166 1.1
1819     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
1820 jsr166 1.7 return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
1821 jsr166 1.1 }
1822    
1823     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
1824 jsr166 1.7 return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
1825 jsr166 1.1 }
1826    
1827     // Unsafe mechanics
1828    
1829     private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
1830 dl 1.14 private static final long workerCountsOffset =
1831     objectFieldOffset("workerCounts", ForkJoinPool.class);
1832     private static final long runStateOffset =
1833     objectFieldOffset("runState", ForkJoinPool.class);
1834 jsr166 1.2 private static final long eventCountOffset =
1835 jsr166 1.3 objectFieldOffset("eventCount", ForkJoinPool.class);
1836 dl 1.14 private static final long eventWaitersOffset =
1837     objectFieldOffset("eventWaiters",ForkJoinPool.class);
1838     private static final long stealCountOffset =
1839     objectFieldOffset("stealCount",ForkJoinPool.class);
1840 dl 1.19 private static final long spareWaitersOffset =
1841     objectFieldOffset("spareWaiters",ForkJoinPool.class);
1842 jsr166 1.3
1843     private static long objectFieldOffset(String field, Class<?> klazz) {
1844     try {
1845     return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1846     } catch (NoSuchFieldException e) {
1847     // Convert Exception to corresponding Error
1848     NoSuchFieldError error = new NoSuchFieldError(field);
1849     error.initCause(e);
1850     throw error;
1851     }
1852     }
1853 jsr166 1.1 }