ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.206
Committed: Tue Jul 8 17:58:12 2014 UTC (9 years, 10 months ago) by dl
Branch: MAIN
Changes since 1.205: +14 -11 lines
Log Message:
Restore termination behavior

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.58 * http://creativecommons.org/publicdomain/zero/1.0/
5 jsr166 1.1 */
6    
7     package java.util.concurrent;
8    
9 jsr166 1.156 import java.lang.Thread.UncaughtExceptionHandler;
10 jsr166 1.1 import java.util.ArrayList;
11     import java.util.Arrays;
12     import java.util.Collection;
13     import java.util.Collections;
14     import java.util.List;
15 dl 1.36 import java.util.concurrent.AbstractExecutorService;
16     import java.util.concurrent.Callable;
17     import java.util.concurrent.ExecutorService;
18     import java.util.concurrent.Future;
19     import java.util.concurrent.RejectedExecutionException;
20     import java.util.concurrent.RunnableFuture;
21 dl 1.178 import java.util.concurrent.ThreadLocalRandom;
22 dl 1.36 import java.util.concurrent.TimeUnit;
23 dl 1.197 import java.security.AccessControlContext;
24     import java.security.ProtectionDomain;
25     import java.security.Permissions;
26 jsr166 1.1
27     /**
28 jsr166 1.4 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
29 jsr166 1.8 * A {@code ForkJoinPool} provides the entry point for submissions
30 dl 1.18 * from non-{@code ForkJoinTask} clients, as well as management and
31 jsr166 1.11 * monitoring operations.
32 jsr166 1.1 *
33 jsr166 1.9 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
34     * ExecutorService} mainly by virtue of employing
35     * <em>work-stealing</em>: all threads in the pool attempt to find and
36 dl 1.78 * execute tasks submitted to the pool and/or created by other active
37     * tasks (eventually blocking waiting for work if none exist). This
38     * enables efficient processing when most tasks spawn other subtasks
39     * (as do most {@code ForkJoinTask}s), as well as when many small
40     * tasks are submitted to the pool from external clients. Especially
41     * when setting <em>asyncMode</em> to true in constructors, {@code
42     * ForkJoinPool}s may also be appropriate for use with event-style
43     * tasks that are never joined.
44 jsr166 1.1 *
45 dl 1.112 * <p>A static {@link #commonPool()} is available and appropriate for
46 dl 1.101 * most applications. The common pool is used by any ForkJoinTask that
47     * is not explicitly submitted to a specified pool. Using the common
48     * pool normally reduces resource usage (its threads are slowly
49     * reclaimed during periods of non-use, and reinstated upon subsequent
50 dl 1.105 * use).
51 dl 1.100 *
52     * <p>For applications that require separate or custom pools, a {@code
53     * ForkJoinPool} may be constructed with a given target parallelism
54     * level; by default, equal to the number of available processors. The
55     * pool attempts to maintain enough active (or available) threads by
56     * dynamically adding, suspending, or resuming internal worker
57 jsr166 1.187 * threads, even if some tasks are stalled waiting to join others.
58     * However, no such adjustments are guaranteed in the face of blocked
59     * I/O or other unmanaged synchronization. The nested {@link
60 dl 1.100 * ManagedBlocker} interface enables extension of the kinds of
61 dl 1.18 * synchronization accommodated.
62 jsr166 1.1 *
63     * <p>In addition to execution and lifecycle control methods, this
64     * class provides status check methods (for example
65 jsr166 1.4 * {@link #getStealCount}) that are intended to aid in developing,
66 jsr166 1.1 * tuning, and monitoring fork/join applications. Also, method
67 jsr166 1.4 * {@link #toString} returns indications of pool state in a
68 jsr166 1.1 * convenient form for informal monitoring.
69     *
70 jsr166 1.109 * <p>As is the case with other ExecutorServices, there are three
71 jsr166 1.84 * main task execution methods summarized in the following table.
72     * These are designed to be used primarily by clients not already
73     * engaged in fork/join computations in the current pool. The main
74     * forms of these methods accept instances of {@code ForkJoinTask},
75     * but overloaded forms also allow mixed execution of plain {@code
76     * Runnable}- or {@code Callable}- based activities as well. However,
77     * tasks that are already executing in a pool should normally instead
78     * use the within-computation forms listed in the table unless using
79     * async event-style tasks that are not usually joined, in which case
80     * there is little difference among choice of methods.
81 dl 1.18 *
82     * <table BORDER CELLPADDING=3 CELLSPACING=1>
83 jsr166 1.159 * <caption>Summary of task execution methods</caption>
84 dl 1.18 * <tr>
85     * <td></td>
86     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
87     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
88     * </tr>
89     * <tr>
90 jsr166 1.153 * <td> <b>Arrange async execution</b></td>
91 dl 1.18 * <td> {@link #execute(ForkJoinTask)}</td>
92     * <td> {@link ForkJoinTask#fork}</td>
93     * </tr>
94     * <tr>
95 jsr166 1.153 * <td> <b>Await and obtain result</b></td>
96 dl 1.18 * <td> {@link #invoke(ForkJoinTask)}</td>
97     * <td> {@link ForkJoinTask#invoke}</td>
98     * </tr>
99     * <tr>
100 jsr166 1.153 * <td> <b>Arrange exec and obtain Future</b></td>
101 dl 1.18 * <td> {@link #submit(ForkJoinTask)}</td>
102     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
103     * </tr>
104     * </table>
105 dl 1.19 *
106 dl 1.105 * <p>The common pool is by default constructed with default
107 jsr166 1.155 * parameters, but these may be controlled by setting three
108 jsr166 1.162 * {@linkplain System#getProperty system properties}:
109     * <ul>
110     * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
111     * - the parallelism level, a non-negative integer
112     * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
113     * - the class name of a {@link ForkJoinWorkerThreadFactory}
114     * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
115     * - the class name of a {@link UncaughtExceptionHandler}
116     * </ul>
117 dl 1.197 * If a {@link SecurityManager} is present and no factory is
118     * specified, then the default pool uses a factory supplying
119     * threads that have no {@link Permissions} enabled.
120 jsr166 1.165 * The system class loader is used to load these classes.
121 jsr166 1.156 * Upon any error in establishing these settings, default parameters
122 dl 1.160 * are used. It is possible to disable or limit the use of threads in
123     * the common pool by setting the parallelism property to zero, and/or
124 dl 1.193 * using a factory that may return {@code null}. However doing so may
125     * cause unjoined tasks to never be executed.
126 dl 1.105 *
127 jsr166 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
128     * maximum number of running threads to 32767. Attempts to create
129 jsr166 1.11 * pools with greater than the maximum number result in
130 jsr166 1.8 * {@code IllegalArgumentException}.
131 jsr166 1.1 *
132 jsr166 1.11 * <p>This implementation rejects submitted tasks (that is, by throwing
133 dl 1.19 * {@link RejectedExecutionException}) only when the pool is shut down
134 dl 1.20 * or internal resources have been exhausted.
135 jsr166 1.11 *
136 jsr166 1.1 * @since 1.7
137     * @author Doug Lea
138     */
139 jsr166 1.171 @sun.misc.Contended
140 jsr166 1.1 public class ForkJoinPool extends AbstractExecutorService {
141    
142     /*
143 dl 1.14 * Implementation Overview
144     *
145 dl 1.78 * This class and its nested classes provide the main
146     * functionality and control for a set of worker threads:
147 jsr166 1.84 * Submissions from non-FJ threads enter into submission queues.
148     * Workers take these tasks and typically split them into subtasks
149     * that may be stolen by other workers. Preference rules give
150     * first priority to processing tasks from their own queues (LIFO
151     * or FIFO, depending on mode), then to randomized FIFO steals of
152 dl 1.200 * tasks in other queues. This framework began as vehicle for
153     * supporting tree-structured parallelism using work-stealing.
154     * Over time, its scalability advantages led to extensions and
155     * changes to better support more diverse usage contexts.
156 dl 1.78 *
157 jsr166 1.84 * WorkQueues
158 dl 1.78 * ==========
159     *
160     * Most operations occur within work-stealing queues (in nested
161     * class WorkQueue). These are special forms of Deques that
162     * support only three of the four possible end-operations -- push,
163     * pop, and poll (aka steal), under the further constraints that
164     * push and pop are called only from the owning thread (or, as
165     * extended here, under a lock), while poll may be called from
166     * other threads. (If you are unfamiliar with them, you probably
167     * want to read Herlihy and Shavit's book "The Art of
168     * Multiprocessor programming", chapter 16 describing these in
169     * more detail before proceeding.) The main work-stealing queue
170     * design is roughly similar to those in the papers "Dynamic
171     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
172     * (http://research.sun.com/scalable/pubs/index.html) and
173     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
174     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
175 dl 1.200 * The main differences ultimately stem from GC requirements that
176     * we null out taken slots as soon as we can, to maintain as small
177     * a footprint as possible even in programs generating huge
178     * numbers of tasks. To accomplish this, we shift the CAS
179     * arbitrating pop vs poll (steal) from being on the indices
180     * ("base" and "top") to the slots themselves.
181     *
182     * Adding tasks then takes the form of a classic array push(task):
183     * q.array[q.top] = task; ++q.top;
184     *
185     * (The actual code needs to null-check and size-check the array,
186     * properly fence the accesses, and possibly signal waiting
187     * workers to start scanning -- see below.) Both a successful pop
188     * and poll mainly entail a CAS of a slot from non-null to null.
189     *
190 jsr166 1.202 * The pop operation (always performed by owner) is:
191 dl 1.200 * if ((base != top) and
192     * (the task at top slot is not null) and
193     * (CAS slot to null))
194     * decrement top and return task;
195     *
196     * And the poll operation (usually by a stealer) is
197     * if ((base != top) and
198     * (the task at base slot is not null) and
199     * (base has not changed) and
200     * (CAS slot to null))
201     * increment base and return task;
202     *
203     * Because we rely on CASes of references, we do not need tag bits
204     * on base or top. They are simple ints as used in any circular
205 dl 1.170 * array-based queue (see for example ArrayDeque). Updates to the
206 dl 1.200 * indices guarantee that top == base means the queue is empty,
207     * but otherwise may err on the side of possibly making the queue
208     * appear nonempty when a push, pop, or poll have not fully
209 dl 1.205 * committed. (Method isEmpty() checks the case of a partially
210     * completed removal of the last element.) Note that this means
211     * that the poll operation, considered individually, is not
212     * wait-free. One thief cannot successfully continue until another
213     * in-progress one (or, if previously empty, a push) completes.
214     * However, in the aggregate, we ensure at least probabilistic
215     * non-blockingness. If an attempted steal fails, a thief always
216     * chooses a different random victim target to try next. So, in
217     * order for one thief to progress, it suffices for any
218     * in-progress poll or new push on any empty queue to
219     * complete. (This is why we normally use method pollAt and its
220     * variants that try once at the apparent base index, else
221     * consider alternative actions, rather than method poll, which
222     * retries.)
223 dl 1.200 *
224     * This approach also enables support of a user mode in which
225     * local task processing is in FIFO, not LIFO order, simply by
226     * using poll rather than pop. This can be useful in
227     * message-passing frameworks in which tasks are never joined.
228     * However neither mode considers affinities, loads, cache
229     * localities, etc, so rarely provide the best possible
230     * performance on a given machine, but portably provide good
231     * throughput by averaging over these factors. Further, even if
232     * we did try to use such information, we do not usually have a
233     * basis for exploiting it. For example, some sets of tasks
234     * profit from cache affinities, but others are harmed by cache
235     * pollution effects. Additionally, even though it requires
236     * scanning, long-term throughput is often best using random
237     * selection rather than directed selection policies, so cheap
238     * randomization of sufficient quality is used whenever
239     * applicable. Various Marsaglia XorShifts (some with different
240     * shift constants) are inlined at use points.
241 dl 1.78 *
242     * WorkQueues are also used in a similar way for tasks submitted
243     * to the pool. We cannot mix these tasks in the same queues used
244 dl 1.200 * by workers. Instead, we randomly associate submission queues
245 dl 1.83 * with submitting threads, using a form of hashing. The
246 dl 1.139 * ThreadLocalRandom probe value serves as a hash code for
247     * choosing existing queues, and may be randomly repositioned upon
248     * contention with other submitters. In essence, submitters act
249     * like workers except that they are restricted to executing local
250     * tasks that they submitted (or in the case of CountedCompleters,
251 dl 1.200 * others with the same root task). Insertion of tasks in shared
252 dl 1.139 * mode requires a lock (mainly to protect in the case of
253 dl 1.200 * resizing) but we use only a simple spinlock (using field
254     * qlock), because submitters encountering a busy queue move on to
255     * try or create other queues -- they block only when creating and
256     * registering new queues.
257 dl 1.78 *
258 jsr166 1.84 * Management
259 dl 1.78 * ==========
260 dl 1.52 *
261     * The main throughput advantages of work-stealing stem from
262     * decentralized control -- workers mostly take tasks from
263 dl 1.200 * themselves or each other, at rates that can exceed a billion
264     * per second. The pool itself creates, activates (enables
265     * scanning for and running tasks), deactivates, blocks, and
266     * terminates threads, all with minimal central information.
267     * There are only a few properties that we can globally track or
268     * maintain, so we pack them into a small number of variables,
269     * often maintaining atomicity without blocking or locking.
270     * Nearly all essentially atomic control state is held in two
271     * volatile variables that are by far most often read (not
272     * written) as status and consistency checks.
273 dl 1.78 *
274 dl 1.200 * Field "ctl" contains 64 bits holding information needed to
275     * atomically decide to add, inactivate, enqueue (on an event
276 dl 1.78 * queue), dequeue, and/or re-activate workers. To enable this
277     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
278     * far in excess of normal operating range) to allow ids, counts,
279     * and their negations (used for thresholding) to fit into 16bit
280 dl 1.200 * subfields. Field "runState" holds lockable state bits
281     * (STARTED, STOP, etc) also protecting updates to the workQueues
282     * array. When used as a lock, it is normally held only for a few
283     * instructions (the only exceptions are one-time array
284     * initialization and uncommon resizing), so is nearly always
285     * available after at most a brief spin. But to be extra-cautious,
286     * we use a monitor-based backup strategy to block when needed
287     * (see awaitRunStateLock). Usages of "runState" vs "ctl"
288     * interact in only one case: deciding to add a worker thread (see
289     * tryAddWorker), in which case the ctl CAS is performed while the
290     * lock is held. Field "config" holds unchanging configuration
291     * state.
292 dl 1.78 *
293     * Recording WorkQueues. WorkQueues are recorded in the
294 dl 1.200 * "workQueues" array. The array is created upon first use (see
295     * externalSubmit) and expanded if necessary. Updates to the
296     * array while recording new workers and unrecording terminated
297     * ones are protected from each other by the runState lock, but
298     * the array is otherwise concurrently readable, and accessed
299     * directly. We also ensure that reads of the array reference
300     * itself never become too stale. To simplify index-based
301     * operations, the array size is always a power of two, and all
302     * readers must tolerate null slots. Worker queues are at odd
303     * indices. Shared (submission) queues are at even indices, up to
304     * a maximum of 64 slots, to limit growth even if array needs to
305     * expand to add more workers. Grouping them together in this way
306     * simplifies and speeds up task scanning.
307 dl 1.86 *
308     * All worker thread creation is on-demand, triggered by task
309     * submissions, replacement of terminated workers, and/or
310 dl 1.78 * compensation for blocked workers. However, all other support
311     * code is set up to work with other policies. To ensure that we
312 dl 1.200 * do not hold on to worker references that would prevent GC, All
313 dl 1.78 * accesses to workQueues are via indices into the workQueues
314     * array (which is one source of some of the messy code
315     * constructions here). In essence, the workQueues array serves as
316 dl 1.200 * a weak reference mechanism. Thus for example the stack top
317     * subfield of ctl stores indices, not references.
318     *
319     * Queuing Idle Workers. Unlike HPC work-stealing frameworks, we
320     * cannot let workers spin indefinitely scanning for tasks when
321     * none can be found immediately, and we cannot start/resume
322     * workers unless there appear to be tasks available. On the
323     * other hand, we must quickly prod them into action when new
324     * tasks are submitted or generated. In many usages, ramp-up time
325     * to activate workers is the main limiting factor in overall
326     * performance, which is compounded at program start-up by JIT
327     * compilation and allocation. So we streamline this as much as
328     * possible.
329     *
330     * The "ctl" field atomically maintains active and total worker
331     * counts as well as a queue to place waiting threads so they can
332     * be located for signalling. Active counts also play the role of
333     * quiescence indicators, so are decremented when workers believe
334     * that there are no more tasks to execute. The "queue" is
335     * actually a form of Treiber stack. A stack is ideal for
336     * activating threads in most-recently used order. This improves
337     * performance and locality, outweighing the disadvantages of
338     * being prone to contention and inability to release a worker
339     * unless it is topmost on stack. We park/unpark workers after
340     * pushing on the idle worker stack (represented by the lower
341     * 32bit subfield of ctl) when they cannot find work. The top
342     * stack state holds the value of the "scanState" field of the
343     * worker: its index and status, plus a version counter that, in
344     * addition to the count subfields (also serving as version
345     * stamps) provide protection against Treiber stack ABA effects.
346     *
347     * Field scanState is used by both workers and the pool to manage
348     * and track whether a worker is INACTIVE (possibly blocked
349     * waiting for a signal), or SCANNING for tasks (when neither hold
350     * it is busy running tasks). When a worker is inactivated, its
351     * scanState field is set, and is prevented from executing tasks,
352     * even though it must scan once for them to avoid queuing
353     * races. Note that scanState updates lag queue CAS releases so
354     * usage requires care. When queued, the lower 16 bits of
355     * scanState must hold its pool index. So we place the index there
356     * upon initialization (see registerWorker) and otherwise keep it
357     * there or restore it when necessary.
358     *
359     * Memory ordering. See "Correct and Efficient Work-Stealing for
360     * Weak Memory Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
361     * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
362     * analysis of memory ordering requirements in work-stealing
363     * algorithms similar to the one used here. We usually need
364     * stronger than minimal ordering because we must sometimes signal
365     * workers, requiring Dekker-like full-fences to avoid lost
366     * signals. Arranging for enough ordering without expensive
367     * over-fencing requires tradeoffs among the supported means of
368     * expressing access constraints. The most central operations,
369     * taking from queues and updating ctl state, require full-fence
370     * CAS. Array slots are read using the emulation of volatiles
371     * provided by Unsafe. Access from other threads to WorkQueue
372     * base, top, and array requires a volatile load of the first of
373     * any of these read. We use the convention of declaring the
374     * "base" index volatile, and always read it before other fields.
375     * The owner thread must ensure ordered updates, so writes use
376     * ordered intrinsics unless they can piggyback on those for other
377     * writes. Similar conventions and rationales hold for other
378     * WorkQueue fields (such as "currentSteal") that are only written
379     * by owners but observed by others.
380     *
381     * Creating workers. To create a worker, we pre-increment total
382     * count (serving as a reservation), and attempt to construct a
383     * ForkJoinWorkerThread via its factory. Upon construction, the
384     * new thread invokes registerWorker, where it constructs a
385     * WorkQueue and is assigned an index in the workQueues array
386     * (expanding the array if necessary). The thread is then
387     * started. Upon any exception across these steps, or null return
388     * from factory, deregisterWorker adjusts counts and records
389     * accordingly. If a null return, the pool continues running with
390     * fewer than the target number workers. If exceptional, the
391     * exception is propagated, generally to some external caller.
392     * Worker index assignment avoids the bias in scanning that would
393     * occur if entries were sequentially packed starting at the front
394     * of the workQueues array. We treat the array as a simple
395     * power-of-two hash table, expanding as needed. The seedIndex
396     * increment ensures no collisions until a resize is needed or a
397     * worker is deregistered and replaced, and thereafter keeps
398 jsr166 1.202 * probability of collision low. We cannot use
399 dl 1.200 * ThreadLocalRandom.getProbe() for similar purposes here because
400     * the thread has not started yet, but do so for creating
401     * submission queues for existing external threads.
402     *
403 jsr166 1.202 * Deactivation and waiting. Queuing encounters several intrinsic
404 dl 1.200 * races; most notably that a task-producing thread can miss
405     * seeing (and signalling) another thread that gave up looking for
406     * work but has not yet entered the wait queue. When a worker
407     * cannot find a task to steal, it deactivates and enqueues. Very
408     * often, the lack of tasks is transient due to GC or OS
409     * scheduling. To reduce false-alarm deactivation, scanners
410     * compute checksums of queue states during sweeps. They give up
411     * and try to deactivate only after the sum is stable across
412     * scans. Further, to avoid missed signals, they repeat this
413     * scanning process after successful enqueuing until again stable.
414     * In this state, the worker cannot take/run a task it sees until
415     * it is released from the queue, so the worker itself eventually
416 jsr166 1.202 * tries to release itself or any successor (see tryRelease).
417 dl 1.200 * Otherwise, upon an empty scan, a deactivated worker uses an
418     * adaptive local spin construction (see awaitWork) before
419     * blocking (via park). Note the unusual conventions about
420     * Thread.interrupts surrounding parking and other blocking:
421     * Because interrupts are used solely to alert threads to check
422     * termination, which is checked anyway upon blocking, we clear
423     * status (using Thread.interrupted) before any call to park, so
424     * that park does not immediately return due to status being set
425     * via some other unrelated call to interrupt in user code.
426     *
427     * Signalling and activation. Workers are created or activated
428     * only when there appears to be at least one task they might be
429     * able to find and execute. Upon push (either by a worker or an
430 dl 1.205 * external submission) to a previously (possibly) empty queue,
431     * workers are signalled if idle, or created if fewer exist than
432     * the given parallelism level. These primary signals are
433     * buttressed by others whenever other threads remove a task from
434     * a queue and notice that there are other tasks there as well.
435     * On most platforms, signalling (unpark) overhead time is
436     * noticeably long, and the time between signalling a thread and
437     * it actually making progress can be very noticeably long, so it
438     * is worth offloading these delays from critical paths as much as
439 dl 1.200 * possible. Also, because enqueued workers are often rescanning
440     * or spinning rather than blocking, we set and clear the "parker"
441     * field of WorkQueues to reduce unnecessary calls to unpark.
442     * (This requires a secondary recheck to avoid missed signals.)
443 dl 1.52 *
444     * Trimming workers. To release resources after periods of lack of
445     * use, a worker starting to wait when the pool is quiescent will
446 dl 1.100 * time out and terminate if the pool has remained quiescent for a
447     * given period -- a short period if there are more threads than
448     * parallelism, longer as the number of threads decreases. This
449 dl 1.200 * eventually terminates all workers after periods of non-use.
450 dl 1.52 *
451 dl 1.78 * Shutdown and Termination. A call to shutdownNow atomically sets
452 dl 1.200 * a runState bit and then (non-atomically) sets each worker's
453     * qlock status, cancels all unprocessed tasks, and wakes up all
454 dl 1.205 * waiting workers (see tryTerminate). Detecting whether
455     * termination should commence after a non-abrupt shutdown() call
456     * relies on the active count bits of "ctl" maintaining consensus
457     * about quiescence. However, external submitters do not take part
458     * in this consensus. So, tryTerminate sweeps through submission
459     * queues to ensure lack of in-flight submissions before
460     * triggering the "STOP" phase of termination.
461 dl 1.78 *
462 jsr166 1.84 * Joining Tasks
463     * =============
464 dl 1.78 *
465     * Any of several actions may be taken when one worker is waiting
466 jsr166 1.84 * to join a task stolen (or always held) by another. Because we
467 dl 1.78 * are multiplexing many tasks on to a pool of workers, we can't
468     * just let them block (as in Thread.join). We also cannot just
469     * reassign the joiner's run-time stack with another and replace
470     * it later, which would be a form of "continuation", that even if
471 dl 1.200 * possible is not necessarily a good idea since we may need both
472     * an unblocked task and its continuation to progress. Instead we
473     * combine two tactics:
474 dl 1.19 *
475     * Helping: Arranging for the joiner to execute some task that it
476 dl 1.78 * would be running if the steal had not occurred.
477 dl 1.19 *
478     * Compensating: Unless there are already enough live threads,
479 dl 1.78 * method tryCompensate() may create or re-activate a spare
480     * thread to compensate for blocked joiners until they unblock.
481     *
482 dl 1.105 * A third form (implemented in tryRemoveAndExec) amounts to
483     * helping a hypothetical compensator: If we can readily tell that
484     * a possible action of a compensator is to steal and execute the
485     * task being joined, the joining thread can do so directly,
486     * without the need for a compensation thread (although at the
487     * expense of larger run-time stacks, but the tradeoff is
488     * typically worthwhile).
489 dl 1.52 *
490     * The ManagedBlocker extension API can't use helping so relies
491     * only on compensation in method awaitBlocker.
492 dl 1.19 *
493 dl 1.200 * The algorithm in helpStealer entails a form of "linear
494     * helping". Each worker records (in field currentSteal) the most
495     * recent task it stole from some other worker (or a submission).
496     * It also records (in field currentJoin) the task it is currently
497     * actively joining. Method helpStealer uses these markers to try
498     * to find a worker to help (i.e., steal back a task from and
499     * execute it) that could hasten completion of the actively joined
500     * task. Thus, the joiner executes a task that would be on its
501     * own local deque had the to-be-joined task not been stolen. This
502     * is a conservative variant of the approach described in Wagner &
503 dl 1.78 * Calder "Leapfrogging: a portable technique for implementing
504     * efficient futures" SIGPLAN Notices, 1993
505     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
506     * that: (1) We only maintain dependency links across workers upon
507     * steals, rather than use per-task bookkeeping. This sometimes
508 dl 1.90 * requires a linear scan of workQueues array to locate stealers,
509     * but often doesn't because stealers leave hints (that may become
510 dl 1.112 * stale/wrong) of where to locate them. It is only a hint
511     * because a worker might have had multiple steals and the hint
512     * records only one of them (usually the most current). Hinting
513     * isolates cost to when it is needed, rather than adding to
514     * per-task overhead. (2) It is "shallow", ignoring nesting and
515     * potentially cyclic mutual steals. (3) It is intentionally
516 dl 1.78 * racy: field currentJoin is updated only while actively joining,
517     * which means that we miss links in the chain during long-lived
518     * tasks, GC stalls etc (which is OK since blocking in such cases
519     * is usually a good idea). (4) We bound the number of attempts
520 dl 1.200 * to find work using checksums and fall back to suspending the
521 dl 1.90 * worker and if necessary replacing it with another.
522 dl 1.78 *
523 dl 1.200 * Helping actions for CountedCompleters do not require tracking
524     * currentJoins: Method helpComplete takes and executes any task
525 jsr166 1.202 * with the same root as the task being waited on (preferring
526     * local pops to non-local polls). However, this still entails
527     * some traversal of completer chains, so is less efficient than
528     * using CountedCompleters without explicit joins.
529 dl 1.105 *
530 dl 1.200 * Compensation does not aim to keep exactly the target
531     * parallelism number of unblocked threads running at any given
532     * time. Some previous versions of this class employed immediate
533     * compensations for any blocked join. However, in practice, the
534     * vast majority of blockages are transient byproducts of GC and
535     * other JVM or OS activities that are made worse by replacement.
536     * Currently, compensation is attempted only after validating that
537     * all purportedly active threads are processing tasks by checking
538     * field WorkQueue.scanState, which eliminates most false
539     * positives. Also, compensation is bypassed (tolerating fewer
540     * threads) in the most common case in which it is rarely
541     * beneficial: when a worker with an empty queue (thus no
542     * continuation tasks) blocks on a join and there still remain
543 dl 1.205 * enough threads to ensure liveness. Also, whenever more than two
544     * spare threads are generated, they are killed (see awaitWork) at
545     * the next quiescent point (padding by two avoids hysteresis).
546 dl 1.200 *
547     * Bounds. The compensation mechanism is bounded (see MAX_SPARES),
548     * to better enable JVMs to cope with programming errors and abuse
549     * before running out of resources to do so, and may be further
550     * bounded via factories that limit thread construction. The
551     * effects of bounding in this pool (like all others) is
552     * imprecise. Total worker counts are decremented when threads
553     * deregister, not when they exit and resources are reclaimed by
554     * the JVM and OS. So the number of simultaneously live threads
555     * may transiently exceed bounds.
556 dl 1.105 *
557 dl 1.205 *
558 dl 1.105 * Common Pool
559     * ===========
560     *
561 jsr166 1.175 * The static common pool always exists after static
562 dl 1.105 * initialization. Since it (or any other created pool) need
563     * never be used, we minimize initial construction overhead and
564     * footprint to the setup of about a dozen fields, with no nested
565     * allocation. Most bootstrapping occurs within method
566 dl 1.200 * externalSubmit during the first submission to the pool.
567 dl 1.105 *
568     * When external threads submit to the common pool, they can
569 dl 1.200 * perform subtask processing (see externalHelpComplete and
570     * related methods) upon joins. This caller-helps policy makes it
571     * sensible to set common pool parallelism level to one (or more)
572     * less than the total number of available cores, or even zero for
573     * pure caller-runs. We do not need to record whether external
574     * submissions are to the common pool -- if not, external help
575     * methods return quickly. These submitters would otherwise be
576     * blocked waiting for completion, so the extra effort (with
577     * liberally sprinkled task status checks) in inapplicable cases
578     * amounts to an odd form of limited spin-wait before blocking in
579     * ForkJoinTask.join.
580 dl 1.105 *
581 dl 1.197 * As a more appropriate default in managed environments, unless
582     * overridden by system properties, we use workers of subclass
583     * InnocuousForkJoinWorkerThread when there is a SecurityManager
584     * present. These workers have no permissions set, do not belong
585     * to any user-defined ThreadGroup, and erase all ThreadLocals
586 dl 1.200 * after executing any top-level task (see WorkQueue.runTask).
587     * The associated mechanics (mainly in ForkJoinWorkerThread) may
588     * be JVM-dependent and must access particular Thread class fields
589     * to achieve this effect.
590 jsr166 1.198 *
591 dl 1.105 * Style notes
592     * ===========
593     *
594 dl 1.200 * Memory ordering relies mainly on Unsafe intrinsics that carry
595     * the further responsibility of explicitly performing null- and
596     * bounds- checks otherwise carried out implicitly by JVMs. This
597     * can be awkward and ugly, but also reflects the need to control
598     * outcomes across the unusual cases that arise in very racy code
599     * with very few invariants. So these explicit checks would exist
600     * in some form anyway. All fields are read into locals before
601     * use, and null-checked if they are references. This is usually
602     * done in a "C"-like style of listing declarations at the heads
603     * of methods or blocks, and using inline assignments on first
604     * encounter. Array bounds-checks are usually performed by
605     * masking with array.length-1, which relies on the invariant that
606     * these arrays are created with positive lengths, which is itself
607     * paranoically checked. Nearly all explicit checks lead to
608     * bypass/return, not exception throws, because they may
609     * legitimately arise due to cancellation/revocation during
610     * shutdown.
611     *
612 dl 1.105 * There is a lot of representation-level coupling among classes
613     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
614     * fields of WorkQueue maintain data structures managed by
615     * ForkJoinPool, so are directly accessed. There is little point
616     * trying to reduce this, since any associated future changes in
617     * representations will need to be accompanied by algorithmic
618     * changes anyway. Several methods intrinsically sprawl because
619 dl 1.200 * they must accumulate sets of consistent reads of fields held in
620     * local variables. There are also other coding oddities
621     * (including several unnecessary-looking hoisted null checks)
622     * that help some methods perform reasonably even when interpreted
623     * (not compiled).
624 dl 1.52 *
625 jsr166 1.84 * The order of declarations in this file is:
626 dl 1.86 * (1) Static utility functions
627     * (2) Nested (static) classes
628     * (3) Static fields
629     * (4) Fields, along with constants used when unpacking some of them
630     * (5) Internal control methods
631     * (6) Callbacks and other support for ForkJoinTask methods
632     * (7) Exported methods
633     * (8) Static block initializing statics in minimally dependent order
634     */
635    
636     // Static utilities
637    
638     /**
639     * If there is a security manager, makes sure caller has
640     * permission to modify threads.
641 jsr166 1.1 */
642 dl 1.86 private static void checkPermission() {
643     SecurityManager security = System.getSecurityManager();
644     if (security != null)
645     security.checkPermission(modifyThreadPermission);
646     }
647    
648     // Nested classes
649 jsr166 1.1
650     /**
651 jsr166 1.8 * Factory for creating new {@link ForkJoinWorkerThread}s.
652     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
653     * for {@code ForkJoinWorkerThread} subclasses that extend base
654     * functionality or initialize threads with different contexts.
655 jsr166 1.1 */
656     public static interface ForkJoinWorkerThreadFactory {
657     /**
658     * Returns a new worker thread operating in the given pool.
659     *
660     * @param pool the pool this thread works in
661 jsr166 1.192 * @return the new worker thread
662 jsr166 1.11 * @throws NullPointerException if the pool is null
663 jsr166 1.1 */
664     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
665     }
666    
667     /**
668     * Default ForkJoinWorkerThreadFactory implementation; creates a
669     * new ForkJoinWorkerThread.
670     */
671 dl 1.112 static final class DefaultForkJoinWorkerThreadFactory
672 jsr166 1.1 implements ForkJoinWorkerThreadFactory {
673 dl 1.112 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
674 dl 1.14 return new ForkJoinWorkerThread(pool);
675 jsr166 1.1 }
676     }
677    
678     /**
679 dl 1.86 * Class for artificial tasks that are used to replace the target
680     * of local joins if they are removed from an interior queue slot
681     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
682     * actually do anything beyond having a unique identity.
683 jsr166 1.1 */
684 dl 1.86 static final class EmptyTask extends ForkJoinTask<Void> {
685 dl 1.105 private static final long serialVersionUID = -7721805057305804111L;
686 dl 1.86 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
687     public final Void getRawResult() { return null; }
688     public final void setRawResult(Void x) {}
689     public final boolean exec() { return true; }
690 jsr166 1.1 }
691    
692 dl 1.200 // Constants shared across ForkJoinPool and WorkQueue
693    
694     // Bounds
695     static final int SMASK = 0xffff; // short bits == max index
696     static final int MAX_CAP = 0x7fff; // max #workers - 1
697     static final int EVENMASK = 0xfffe; // even short bits
698     static final int SQMASK = 0x007e; // max 64 (even) slots
699    
700     // Masks and units for WorkQueue.scanState and ctl sp subfield
701     static final int SCANNING = 1; // false when running tasks
702     static final int INACTIVE = 1 << 31; // must be negative
703     static final int SS_SHIFT = 16; // shift for version count
704     static final int SS_SEQ = 1 << SS_SHIFT; // version number
705     static final int SS_MASK = 0x7fffffff; // mask on update
706    
707     // Mode bits for ForkJoinPool.config and WorkQueue.config
708     static final int MODE_MASK = SMASK << 16;
709     static final int LIFO_QUEUE = 0;
710     static final int FIFO_QUEUE = 1 << 16;
711     static final int SHARED_QUEUE = 1 << 31; // must be negative
712    
713 jsr166 1.1 /**
714 dl 1.78 * Queues supporting work-stealing as well as external task
715 jsr166 1.202 * submission. See above for descriptions and algorithms.
716 dl 1.78 * Performance on most platforms is very sensitive to placement of
717     * instances of both WorkQueues and their arrays -- we absolutely
718     * do not want multiple WorkQueue instances or multiple queue
719 dl 1.200 * arrays sharing cache lines. The @Contended annotation alerts
720     * JVMs to try to keep instances apart.
721 dl 1.78 */
722 jsr166 1.171 @sun.misc.Contended
723 dl 1.78 static final class WorkQueue {
724 dl 1.200
725 dl 1.78 /**
726     * Capacity of work-stealing queue array upon initialization.
727 dl 1.90 * Must be a power of two; at least 4, but should be larger to
728     * reduce or eliminate cacheline sharing among queues.
729     * Currently, it is much larger, as a partial workaround for
730     * the fact that JVMs often place arrays in locations that
731     * share GC bookkeeping (especially cardmarks) such that
732     * per-write accesses encounter serious memory contention.
733 dl 1.78 */
734 dl 1.90 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
735 dl 1.78
736     /**
737     * Maximum size for queue arrays. Must be a power of two less
738     * than or equal to 1 << (31 - width of array entry) to ensure
739     * lack of wraparound of index calculations, but defined to a
740     * value a bit less than this to help users trap runaway
741     * programs before saturating systems.
742     */
743     static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
744    
745 dl 1.200 // Instance fields
746     volatile int scanState; // versioned, <0: inactive; odd:scanning
747     int stackPred; // pool stack (ctl) predecessor
748 dl 1.178 int nsteals; // number of steals
749 dl 1.200 int hint; // randomization and stealer index hint
750     int config; // pool index and mode
751     volatile int qlock; // 1: locked, < 0: terminate; else 0
752 dl 1.78 volatile int base; // index of next slot for poll
753     int top; // index of next slot for push
754     ForkJoinTask<?>[] array; // the elements (initially unallocated)
755 dl 1.90 final ForkJoinPool pool; // the containing pool (may be null)
756 dl 1.78 final ForkJoinWorkerThread owner; // owning thread or null if shared
757     volatile Thread parker; // == owner during call to park; else null
758 dl 1.95 volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
759 dl 1.200 volatile ForkJoinTask<?> currentSteal; // mainly used by helpStealer
760 dl 1.112
761 dl 1.200 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner) {
762 dl 1.90 this.pool = pool;
763 dl 1.78 this.owner = owner;
764 dl 1.115 // Place indices in the center of array (that is not yet allocated)
765 dl 1.78 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
766     }
767    
768     /**
769 dl 1.200 * Returns an exportable index (used by ForkJoinWorkerThread)
770     */
771     final int getPoolIndex() {
772     return (config & 0xffff) >>> 1; // ignore odd/even tag bit
773     }
774    
775     /**
776 dl 1.115 * Returns the approximate number of tasks in the queue.
777     */
778     final int queueSize() {
779     int n = base - top; // non-owner callers must read base first
780     return (n >= 0) ? 0 : -n; // ignore transient negative
781     }
782    
783 jsr166 1.180 /**
784 dl 1.115 * Provides a more accurate estimate of whether this queue has
785     * any tasks than does queueSize, by checking whether a
786     * near-empty queue has at least one unclaimed task.
787     */
788     final boolean isEmpty() {
789 dl 1.200 ForkJoinTask<?>[] a; int n, m, s;
790     return ((n = base - (s = top)) >= 0 ||
791     (n == -1 && // possibly one task
792     ((a = array) == null || (m = a.length - 1) < 0 ||
793 dl 1.115 U.getObject
794     (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
795     }
796    
797     /**
798     * Pushes a task. Call only by owner in unshared queues. (The
799     * shared-queue version is embedded in method externalPush.)
800 dl 1.78 *
801     * @param task the task. Caller must ensure non-null.
802 jsr166 1.146 * @throws RejectedExecutionException if array cannot be resized
803 dl 1.78 */
804 dl 1.90 final void push(ForkJoinTask<?> task) {
805 dl 1.205 ForkJoinTask<?>[] a; ForkJoinPool p;
806     int b = base, s = top, n;
807 dl 1.112 if ((a = array) != null) { // ignore if queue removed
808 dl 1.200 int m = a.length - 1; // fenced write for task visibility
809 dl 1.178 U.putOrderedObject(a, ((m & s) << ASHIFT) + ABASE, task);
810 dl 1.200 U.putOrderedInt(this, QTOP, s + 1);
811 dl 1.205 if ((n = s - b) <= 1) {
812 dl 1.200 if ((p = pool) != null)
813     p.signalWork(p.workQueues, this);
814     }
815 dl 1.205 else if (n == m)
816 dl 1.112 growArray();
817 dl 1.78 }
818     }
819    
820 dl 1.178 /**
821 dl 1.112 * Initializes or doubles the capacity of array. Call either
822     * by owner or with lock held -- it is OK for base, but not
823     * top, to move while resizings are in progress.
824     */
825     final ForkJoinTask<?>[] growArray() {
826     ForkJoinTask<?>[] oldA = array;
827     int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
828     if (size > MAXIMUM_QUEUE_CAPACITY)
829     throw new RejectedExecutionException("Queue capacity exceeded");
830     int oldMask, t, b;
831     ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
832     if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
833     (t = top) - (b = base) > 0) {
834     int mask = size - 1;
835 dl 1.200 do { // emulate poll from old array, push to new array
836 dl 1.112 ForkJoinTask<?> x;
837     int oldj = ((b & oldMask) << ASHIFT) + ABASE;
838     int j = ((b & mask) << ASHIFT) + ABASE;
839     x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
840     if (x != null &&
841     U.compareAndSwapObject(oldA, oldj, x, null))
842     U.putObjectVolatile(a, j, x);
843     } while (++b != t);
844 dl 1.78 }
845 dl 1.112 return a;
846 dl 1.78 }
847    
848     /**
849 dl 1.90 * Takes next task, if one exists, in LIFO order. Call only
850 dl 1.102 * by owner in unshared queues.
851 dl 1.90 */
852     final ForkJoinTask<?> pop() {
853 dl 1.94 ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
854     if ((a = array) != null && (m = a.length - 1) >= 0) {
855 dl 1.90 for (int s; (s = top - 1) - base >= 0;) {
856 dl 1.94 long j = ((m & s) << ASHIFT) + ABASE;
857     if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
858 dl 1.90 break;
859     if (U.compareAndSwapObject(a, j, t, null)) {
860 dl 1.200 U.putOrderedInt(this, QTOP, s);
861 dl 1.90 return t;
862     }
863     }
864     }
865     return null;
866     }
867    
868     /**
869     * Takes a task in FIFO order if b is base of queue and a task
870     * can be claimed without contention. Specialized versions
871 dl 1.200 * appear in ForkJoinPool methods scan and helpStealer.
872 dl 1.78 */
873 dl 1.90 final ForkJoinTask<?> pollAt(int b) {
874 dl 1.178 ForkJoinTask<?> t; ForkJoinTask<?>[] a;
875 dl 1.90 if ((a = array) != null) {
876 dl 1.86 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
877     if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
878 dl 1.178 base == b && U.compareAndSwapObject(a, j, t, null)) {
879 dl 1.200 base = b + 1;
880 dl 1.78 return t;
881     }
882     }
883     return null;
884     }
885    
886     /**
887 dl 1.90 * Takes next task, if one exists, in FIFO order.
888 dl 1.78 */
889 dl 1.90 final ForkJoinTask<?> poll() {
890 dl 1.178 ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
891 dl 1.90 while ((b = base) - top < 0 && (a = array) != null) {
892     int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
893     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
894 dl 1.200 if (base == b) {
895     if (t != null) {
896     if (U.compareAndSwapObject(a, j, t, null)) {
897     base = b + 1;
898     return t;
899     }
900 dl 1.78 }
901 dl 1.200 else if (b + 1 == top) // now empty
902 dl 1.90 break;
903     }
904 dl 1.78 }
905     return null;
906     }
907    
908     /**
909     * Takes next task, if one exists, in order specified by mode.
910     */
911     final ForkJoinTask<?> nextLocalTask() {
912 dl 1.200 return (config & FIFO_QUEUE) == 0 ? pop() : poll();
913 dl 1.78 }
914    
915     /**
916     * Returns next task, if one exists, in order specified by mode.
917     */
918     final ForkJoinTask<?> peek() {
919     ForkJoinTask<?>[] a = array; int m;
920     if (a == null || (m = a.length - 1) < 0)
921     return null;
922 dl 1.200 int i = (config & FIFO_QUEUE) == 0 ? top - 1 : base;
923 dl 1.78 int j = ((i & m) << ASHIFT) + ABASE;
924     return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
925     }
926    
927     /**
928     * Pops the given task only if it is at the current top.
929 dl 1.105 * (A shared version is available only via FJP.tryExternalUnpush)
930 dl 1.200 */
931 dl 1.78 final boolean tryUnpush(ForkJoinTask<?> t) {
932     ForkJoinTask<?>[] a; int s;
933     if ((a = array) != null && (s = top) != base &&
934     U.compareAndSwapObject
935     (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
936 dl 1.200 U.putOrderedInt(this, QTOP, s);
937 dl 1.78 return true;
938     }
939     return false;
940     }
941    
942     /**
943 jsr166 1.84 * Removes and cancels all known tasks, ignoring any exceptions.
944 dl 1.78 */
945     final void cancelAll() {
946 dl 1.200 ForkJoinTask<?> t;
947     if ((t = currentJoin) != null) {
948     currentJoin = null;
949     ForkJoinTask.cancelIgnoringExceptions(t);
950     }
951     if ((t = currentSteal) != null) {
952     currentSteal = null;
953     ForkJoinTask.cancelIgnoringExceptions(t);
954     }
955     while ((t = poll()) != null)
956 dl 1.78 ForkJoinTask.cancelIgnoringExceptions(t);
957     }
958    
959 dl 1.104 // Specialized execution methods
960 dl 1.78
961     /**
962 dl 1.178 * Polls and runs tasks until empty.
963 dl 1.78 */
964 dl 1.178 final void pollAndExecAll() {
965     for (ForkJoinTask<?> t; (t = poll()) != null;)
966     t.doExec();
967 dl 1.94 }
968    
969     /**
970 dl 1.200 * Removes and executes all local tasks. If LIFO, invokes
971     * pollAndExecAll. Otherwise implements a specialized pop loop
972     * to exec until empty.
973     */
974     final void execLocalTasks() {
975     int b = base, m, s;
976     ForkJoinTask<?>[] a = array;
977     if (b - (s = top - 1) <= 0 && a != null &&
978     (m = a.length - 1) >= 0) {
979     if ((config & FIFO_QUEUE) == 0) {
980     for (ForkJoinTask<?> t;;) {
981     if ((t = (ForkJoinTask<?>)U.getAndSetObject
982     (a, ((m & s) << ASHIFT) + ABASE, null)) == null)
983     break;
984     U.putOrderedInt(this, QTOP, s);
985     t.doExec();
986     if (base - (s = top - 1) > 0)
987     break;
988     }
989     }
990     else
991     pollAndExecAll();
992     }
993     }
994    
995     /**
996     * Executes the given task and any remaining local tasks
997 dl 1.94 */
998 dl 1.178 final void runTask(ForkJoinTask<?> task) {
999 dl 1.200 if (task != null) {
1000     scanState &= ~SCANNING; // mark as busy
1001     (currentSteal = task).doExec();
1002     U.putOrderedObject(this, QCURRENTSTEAL, null); // release for GC
1003     execLocalTasks();
1004     ForkJoinWorkerThread thread = owner;
1005 dl 1.178 ++nsteals;
1006 dl 1.200 scanState |= SCANNING;
1007     if (thread != null)
1008 dl 1.197 thread.afterTopLevelExec();
1009 dl 1.178 }
1010 dl 1.94 }
1011    
1012     /**
1013 dl 1.105 * If present, removes from queue and executes the given task,
1014 dl 1.200 * or any other cancelled task. Used only by awaitJoin
1015 dl 1.94 *
1016 dl 1.200 * Returns true if queue empty and task not known to be done
1017 dl 1.94 */
1018 dl 1.105 final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
1019 dl 1.94 ForkJoinTask<?>[] a; int m, s, b, n;
1020 dl 1.200 if ((a = array) != null && (m = a.length - 1) >= 0 &&
1021     task != null) {
1022     while ((n = (s = top) - (b = base)) > 0) {
1023     for (ForkJoinTask<?> t;;) { // traverse from s to b
1024     long j = ((--s & m) << ASHIFT) + ABASE;
1025     if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
1026     return s + 1 == top; // shorter than expected
1027     else if (t == task) {
1028     boolean removed = false;
1029     if (s + 1 == top) { // pop
1030     if (U.compareAndSwapObject(a, j, task, null)) {
1031     U.putOrderedInt(this, QTOP, s);
1032     removed = true;
1033     }
1034     }
1035     else if (base == b) // replace with proxy
1036     removed = U.compareAndSwapObject(
1037     a, j, task, new EmptyTask());
1038     if (removed)
1039     task.doExec();
1040     break;
1041 dl 1.90 }
1042 dl 1.200 else if (t.status < 0 && s + 1 == top) {
1043     if (U.compareAndSwapObject(a, j, t, null))
1044     U.putOrderedInt(this, QTOP, s);
1045     break; // was cancelled
1046 dl 1.104 }
1047 dl 1.200 if (--n == 0)
1048     return false;
1049 dl 1.104 }
1050 dl 1.200 if (task.status < 0)
1051     return false;
1052 dl 1.104 }
1053     }
1054 dl 1.200 return true;
1055 dl 1.104 }
1056    
1057     /**
1058 dl 1.200 * Pops task if in the same CC computation as the given task,
1059     * in either shared or owned mode. Used only by helpComplete.
1060 dl 1.78 */
1061 dl 1.200 final CountedCompleter<?> popCC(CountedCompleter<?> task, int mode) {
1062     int s; ForkJoinTask<?>[] a; Object o;
1063 dl 1.178 if (base - (s = top) < 0 && (a = array) != null) {
1064     long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
1065 dl 1.200 if ((o = U.getObjectVolatile(a, j)) != null &&
1066     (o instanceof CountedCompleter)) {
1067     CountedCompleter<?> t = (CountedCompleter<?>)o;
1068     for (CountedCompleter<?> r = t;;) {
1069     if (r == task) {
1070     if (mode < 0) { // must lock
1071     if (U.compareAndSwapInt(this, QLOCK, 0, 1)) {
1072     if (top == s && array == a &&
1073     U.compareAndSwapObject(a, j, t, null)) {
1074     U.putOrderedInt(this, QTOP, s - 1);
1075     U.putOrderedInt(this, QLOCK, 0);
1076     return t;
1077     }
1078 dl 1.178 qlock = 0;
1079     }
1080     }
1081 dl 1.200 else if (U.compareAndSwapObject(a, j, t, null)) {
1082     U.putOrderedInt(this, QTOP, s - 1);
1083     return t;
1084     }
1085     break;
1086 dl 1.178 }
1087 dl 1.200 else if ((r = r.completer) == null) // try parent
1088 dl 1.178 break;
1089     }
1090 dl 1.94 }
1091 dl 1.78 }
1092 dl 1.200 return null;
1093 dl 1.78 }
1094    
1095     /**
1096 dl 1.200 * Steals and runs a task in the same CC computation as the
1097     * given task if one exists and can be taken without
1098     * contention. Otherwise returns a checksum/control value for
1099     * use by method helpComplete.
1100     *
1101     * @return 1 if successful, 2 if retryable (lost to another
1102     * stealer), -1 if non-empty but no matching task found, else
1103     * the base index, forced negative.
1104     */
1105     final int pollAndExecCC(CountedCompleter<?> task) {
1106     int b, h; ForkJoinTask<?>[] a; Object o;
1107     if ((b = base) - top >= 0 || (a = array) == null)
1108     h = b | Integer.MIN_VALUE; // to sense movement on re-poll
1109     else {
1110     long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
1111     if ((o = U.getObjectVolatile(a, j)) == null)
1112     h = 2; // retryable
1113     else if (!(o instanceof CountedCompleter))
1114     h = -1; // unmatchable
1115     else {
1116     CountedCompleter<?> t = (CountedCompleter<?>)o;
1117     for (CountedCompleter<?> r = t;;) {
1118     if (r == task) {
1119     if (base == b &&
1120     U.compareAndSwapObject(a, j, t, null)) {
1121     base = b + 1;
1122 dl 1.178 t.doExec();
1123 dl 1.200 h = 1; // success
1124 dl 1.178 }
1125 dl 1.200 else
1126     h = 2; // lost CAS
1127     break;
1128 dl 1.178 }
1129 dl 1.200 else if ((r = r.completer) == null) {
1130     h = -1; // unmatched
1131 dl 1.178 break;
1132 dl 1.200 }
1133 dl 1.178 }
1134     }
1135 dl 1.78 }
1136 dl 1.200 return h;
1137 dl 1.78 }
1138    
1139     /**
1140 dl 1.86 * Returns true if owned and not known to be blocked.
1141     */
1142     final boolean isApparentlyUnblocked() {
1143     Thread wt; Thread.State s;
1144 dl 1.200 return (scanState >= 0 &&
1145 dl 1.86 (wt = owner) != null &&
1146     (s = wt.getState()) != Thread.State.BLOCKED &&
1147     s != Thread.State.WAITING &&
1148     s != Thread.State.TIMED_WAITING);
1149     }
1150    
1151 dl 1.78 // Unsafe mechanics
1152     private static final sun.misc.Unsafe U;
1153 dl 1.200 private static final int ABASE;
1154     private static final int ASHIFT;
1155 dl 1.170 private static final long QBASE;
1156 dl 1.200 private static final long QTOP;
1157 dl 1.105 private static final long QLOCK;
1158 dl 1.200 private static final long QSCANSTATE;
1159     private static final long QCURRENTSTEAL;
1160 dl 1.78 static {
1161     try {
1162     U = sun.misc.Unsafe.getUnsafe();
1163 dl 1.200 Class<?> wk = WorkQueue.class;
1164 dl 1.78 Class<?> ak = ForkJoinTask[].class;
1165 dl 1.170 QBASE = U.objectFieldOffset
1166 dl 1.200 (wk.getDeclaredField("base"));
1167     QTOP = U.objectFieldOffset
1168     (wk.getDeclaredField("top"));
1169 dl 1.105 QLOCK = U.objectFieldOffset
1170 dl 1.200 (wk.getDeclaredField("qlock"));
1171     QSCANSTATE = U.objectFieldOffset
1172     (wk.getDeclaredField("scanState"));
1173     QCURRENTSTEAL = U.objectFieldOffset
1174     (wk.getDeclaredField("currentSteal"));
1175 dl 1.78 ABASE = U.arrayBaseOffset(ak);
1176 jsr166 1.142 int scale = U.arrayIndexScale(ak);
1177     if ((scale & (scale - 1)) != 0)
1178     throw new Error("data type scale not a power of two");
1179     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1180 dl 1.78 } catch (Exception e) {
1181     throw new Error(e);
1182     }
1183     }
1184     }
1185 dl 1.14
1186 dl 1.112 // static fields (initialized in static initializer below)
1187    
1188     /**
1189     * Creates a new ForkJoinWorkerThread. This factory is used unless
1190     * overridden in ForkJoinPool constructors.
1191     */
1192     public static final ForkJoinWorkerThreadFactory
1193     defaultForkJoinWorkerThreadFactory;
1194    
1195 jsr166 1.1 /**
1196 dl 1.115 * Permission required for callers of methods that may start or
1197     * kill threads.
1198     */
1199     private static final RuntimePermission modifyThreadPermission;
1200    
1201     /**
1202 dl 1.101 * Common (static) pool. Non-null for public use unless a static
1203 dl 1.105 * construction exception, but internal usages null-check on use
1204     * to paranoically avoid potential initialization circularities
1205     * as well as to simplify generated code.
1206 dl 1.101 */
1207 dl 1.134 static final ForkJoinPool common;
1208 dl 1.101
1209     /**
1210 dl 1.160 * Common pool parallelism. To allow simpler use and management
1211     * when common pool threads are disabled, we allow the underlying
1212 dl 1.185 * common.parallelism field to be zero, but in that case still report
1213 dl 1.160 * parallelism as 1 to reflect resulting caller-runs mechanics.
1214 dl 1.90 */
1215 dl 1.134 static final int commonParallelism;
1216 dl 1.90
1217     /**
1218 dl 1.105 * Sequence number for creating workerNamePrefix.
1219 dl 1.86 */
1220 dl 1.105 private static int poolNumberSequence;
1221 dl 1.86
1222 jsr166 1.1 /**
1223 jsr166 1.132 * Returns the next sequence number. We don't expect this to
1224     * ever contend, so use simple builtin sync.
1225 dl 1.83 */
1226 dl 1.105 private static final synchronized int nextPoolId() {
1227     return ++poolNumberSequence;
1228     }
1229 dl 1.86
1230 dl 1.200 // static configuration constants
1231 dl 1.86
1232     /**
1233 dl 1.105 * Initial timeout value (in nanoseconds) for the thread
1234     * triggering quiescence to park waiting for new work. On timeout,
1235     * the thread will instead try to shrink the number of
1236     * workers. The value should be large enough to avoid overly
1237     * aggressive shrinkage during most transient stalls (long GCs
1238     * etc).
1239 dl 1.86 */
1240 dl 1.105 private static final long IDLE_TIMEOUT = 2000L * 1000L * 1000L; // 2sec
1241 dl 1.86
1242     /**
1243 dl 1.120 * Tolerance for idle timeouts, to cope with timer undershoots
1244     */
1245 dl 1.200 private static final long TIMEOUT_SLOP = 20L * 1000L * 1000L; // 20ms
1246    
1247     /**
1248     * Limit on spare thread construction in tryCompensate. The
1249     * current value is far in excess of normal requirements, but also
1250     * far short of MAX_CAP and typical OS thread limits, so allows
1251     * JVMs to catch misuse/abuse before running out of resources
1252     * needed to do so.
1253     */
1254     private static int MAX_SPARES = 256;
1255 dl 1.120
1256     /**
1257 dl 1.200 * Number of times to spin-wait before blocking. The spins (in
1258     * awaitRunStateLock and awaitWork) currently use randomized
1259     * spins. If/when MWAIT-like intrinsics becomes available, they
1260     * may allow quieter spinning. The value of SPINS must be a power
1261     * of two, at least 4. The current value causes spinning for a
1262     * small fraction of context-switch times that is worthwhile given
1263     * the typical likelihoods that blocking is not necessary.
1264 dl 1.90 */
1265 dl 1.200 private static final int SPINS = 1 << 11;
1266 dl 1.90
1267     /**
1268     * Increment for seed generators. See class ThreadLocal for
1269     * explanation.
1270     */
1271 dl 1.193 private static final int SEED_INCREMENT = 0x9e3779b9;
1272 dl 1.83
1273 jsr166 1.163 /*
1274 dl 1.200 * Bits and masks for field ctl, packed with 4 16 bit subfields:
1275     * AC: Number of active running workers minus target parallelism
1276     * TC: Number of total workers minus target parallelism
1277     * SS: version count and status of top waiting thread
1278     * ID: poolIndex of top of Treiber stack of waiters
1279     *
1280     * When convenient, we can extract the lower 32 stack top bits
1281     * (including version bits) as sp=(int)ctl. The offsets of counts
1282     * by the target parallelism and the positionings of fields makes
1283     * it possible to perform the most common checks via sign tests of
1284     * fields: When ac is negative, there are not enough active
1285     * workers, when tc is negative, there are not enough total
1286     * workers. When sp is non-zero, there are waiting workers. To
1287     * deal with possibly negative fields, we use casts in and out of
1288     * "short" and/or signed shifts to maintain signedness.
1289     *
1290     * Because it occupies uppermost bits, we can add one active count
1291     * using getAndAddLong of AC_UNIT, rather than CAS, when returning
1292     * from a blocked join. Other updates entail multiple subfields
1293     * and masking, requiring CAS.
1294     */
1295    
1296     // Lower and upper word masks
1297     private static final long SP_MASK = 0xffffffffL;
1298     private static final long UC_MASK = ~SP_MASK;
1299 dl 1.86
1300 dl 1.200 // Active counts
1301 dl 1.86 private static final int AC_SHIFT = 48;
1302 dl 1.200 private static final long AC_UNIT = 0x0001L << AC_SHIFT;
1303     private static final long AC_MASK = 0xffffL << AC_SHIFT;
1304    
1305     // Total counts
1306 dl 1.86 private static final int TC_SHIFT = 32;
1307 dl 1.200 private static final long TC_UNIT = 0x0001L << TC_SHIFT;
1308     private static final long TC_MASK = 0xffffL << TC_SHIFT;
1309     private static final long ADD_WORKER = 0x0001L << (TC_SHIFT + 15); // sign
1310    
1311 dl 1.205 // runState bits: SHUTDOWN must be negative, others arbitrary powers of two
1312 dl 1.200 private static final int RSLOCK = 1;
1313     private static final int RSIGNAL = 1 << 1;
1314     private static final int STARTED = 1 << 2;
1315 dl 1.205 private static final int STOP = 1 << 29;
1316     private static final int TERMINATED = 1 << 30;
1317     private static final int SHUTDOWN = 1 << 31;
1318 dl 1.86
1319     // Instance fields
1320 dl 1.200 volatile long stealCount; // collects worker counts
1321     volatile long ctl; // main pool control
1322     volatile int runState; // lockable status
1323     final int config; // parallelism, mode
1324     int indexSeed; // to generate worker index
1325     volatile WorkQueue[] workQueues; // main registry
1326 dl 1.112 final ForkJoinWorkerThreadFactory factory;
1327 dl 1.200 final UncaughtExceptionHandler ueh; // per-worker UEH
1328     final String workerNamePrefix; // to create worker name string
1329 dl 1.101
1330 jsr166 1.145 /**
1331 dl 1.200 * Acquires the runState lock; returns current (locked) runState
1332 dl 1.105 */
1333 dl 1.200 private int lockRunState() {
1334     int rs;
1335     return ((((rs = runState) & RSLOCK) != 0 ||
1336     !U.compareAndSwapInt(this, RUNSTATE, rs, rs |= RSLOCK)) ?
1337     awaitRunStateLock() : rs);
1338     }
1339    
1340     /**
1341     * Spins and/or blocks until runstate lock is available. This
1342     * method is called only if an initial CAS fails. This acts as a
1343     * spinlock for normal cases, but falls back to builtin monitor to
1344     * block when (rarely) needed. This would be a terrible idea for a
1345     * highly contended lock, but most pools run without the lock ever
1346     * contending after the spin limit, so this works fine as a more
1347     * conservative alternative to a pure spinlock.
1348     */
1349     private int awaitRunStateLock() {
1350     for (int spins = SPINS, r = 0, rs, nrs;;) {
1351     if (((rs = runState) & RSLOCK) == 0) {
1352     if (U.compareAndSwapInt(this, RUNSTATE, rs, nrs = rs | RSLOCK))
1353     return nrs;
1354     }
1355     else if (r == 0)
1356     r = ThreadLocalRandom.nextSecondarySeed();
1357     else if (spins > 0) {
1358     r ^= r << 6; r ^= r >>> 21; r ^= r << 7; // xorshift
1359     if (r >= 0)
1360 dl 1.101 --spins;
1361     }
1362 dl 1.200 else if (U.compareAndSwapInt(this, RUNSTATE, rs, rs | RSIGNAL)) {
1363 jsr166 1.106 synchronized (this) {
1364 dl 1.200 if ((runState & RSIGNAL) != 0) {
1365 dl 1.101 try {
1366     wait();
1367     } catch (InterruptedException ie) {
1368 dl 1.104 try {
1369     Thread.currentThread().interrupt();
1370     } catch (SecurityException ignore) {
1371     }
1372 dl 1.101 }
1373     }
1374     else
1375 dl 1.105 notifyAll();
1376 dl 1.101 }
1377     }
1378     }
1379     }
1380 dl 1.78
1381 jsr166 1.1 /**
1382 dl 1.200 * Unlocks and sets runState to newRunState.
1383     *
1384     * @param oldRunState a value returned from lockRunState
1385     * @param newRunState the next value (must have lock bit clear).
1386 jsr166 1.1 */
1387 dl 1.200 private void unlockRunState(int oldRunState, int newRunState) {
1388     if (!U.compareAndSwapInt(this, RUNSTATE, oldRunState, newRunState)) {
1389     runState = newRunState; // clears RSIGNAL bit
1390     synchronized (this) { notifyAll(); }
1391     }
1392 dl 1.78 }
1393 jsr166 1.1
1394 dl 1.200 // Creating, registering and deregistering workers
1395    
1396 dl 1.112 /**
1397 dl 1.200 * Tries to construct and start one worker. Assumes that total
1398     * count has already been incremented as a reservation. Invokes
1399     * deregisterWorker on any failure.
1400     *
1401     * @return true if successful
1402 dl 1.115 */
1403 dl 1.200 private boolean createWorker() {
1404     ForkJoinWorkerThreadFactory fac = factory;
1405     Throwable ex = null;
1406     ForkJoinWorkerThread wt = null;
1407     try {
1408     if (fac != null && (wt = fac.newThread(this)) != null) {
1409     wt.start();
1410     return true;
1411 dl 1.115 }
1412 dl 1.200 } catch (Throwable rex) {
1413     ex = rex;
1414 dl 1.112 }
1415 dl 1.200 deregisterWorker(wt, ex);
1416     return false;
1417 dl 1.112 }
1418    
1419 dl 1.200 /**
1420     * Tries to add one worker, incrementing ctl counts before doing
1421     * so, relying on createWorker to back out on failure.
1422     *
1423     * @param c incoming ctl value, with total count negative and no
1424     * idle workers. On CAS failure, c is refreshed and retried if
1425 jsr166 1.202 * this holds (otherwise, a new worker is not needed).
1426 dl 1.200 */
1427     private void tryAddWorker(long c) {
1428     boolean add = false;
1429     do {
1430     long nc = ((AC_MASK & (c + AC_UNIT)) |
1431     (TC_MASK & (c + TC_UNIT)));
1432     if (ctl == c) {
1433     int rs, stop; // check if terminating
1434     if ((stop = (rs = lockRunState()) & STOP) == 0)
1435     add = U.compareAndSwapLong(this, CTL, c, nc);
1436     unlockRunState(rs, rs & ~RSLOCK);
1437     if (stop != 0)
1438     break;
1439     if (add) {
1440     createWorker();
1441     break;
1442     }
1443     }
1444     } while (((c = ctl) & ADD_WORKER) != 0L && (int)c == 0);
1445     }
1446 dl 1.112
1447     /**
1448 dl 1.200 * Callback from ForkJoinWorkerThread constructor to establish and
1449     * record its WorkQueue.
1450 dl 1.112 *
1451     * @param wt the worker thread
1452 dl 1.115 * @return the worker's queue
1453 dl 1.112 */
1454 dl 1.115 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1455 dl 1.200 UncaughtExceptionHandler handler;
1456     wt.setDaemon(true); // configure thread
1457 dl 1.115 if ((handler = ueh) != null)
1458     wt.setUncaughtExceptionHandler(handler);
1459 dl 1.200 WorkQueue w = new WorkQueue(this, wt);
1460     int i = 0; // assign a pool index
1461     int mode = config & MODE_MASK;
1462     int rs = lockRunState();
1463 dl 1.115 try {
1464 dl 1.200 WorkQueue[] ws; int n; // skip if no array
1465     if ((ws = workQueues) != null && (n = ws.length) > 0) {
1466     int s = indexSeed += SEED_INCREMENT; // unlikely to collide
1467     int m = n - 1;
1468     i = ((s << 1) | 1) & m; // odd-numbered indices
1469     if (ws[i] != null) { // collision
1470     int probes = 0; // step by approx half n
1471 dl 1.115 int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1472 dl 1.200 while (ws[i = (i + step) & m] != null) {
1473 dl 1.115 if (++probes >= n) {
1474     workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1475     m = n - 1;
1476     probes = 0;
1477 dl 1.94 }
1478     }
1479     }
1480 dl 1.200 w.hint = s; // use as random seed
1481     w.config = i | mode;
1482     w.scanState = i; // publication fence
1483     ws[i] = w;
1484 dl 1.78 }
1485 dl 1.115 } finally {
1486 dl 1.200 unlockRunState(rs, rs & ~RSLOCK);
1487 dl 1.78 }
1488 dl 1.200 wt.setName(workerNamePrefix.concat(Integer.toString(i >>> 1)));
1489 dl 1.115 return w;
1490 dl 1.78 }
1491 dl 1.19
1492 jsr166 1.1 /**
1493 dl 1.86 * Final callback from terminating worker, as well as upon failure
1494 dl 1.105 * to construct or start a worker. Removes record of worker from
1495     * array, and adjusts counts. If pool is shutting down, tries to
1496     * complete termination.
1497 dl 1.78 *
1498 jsr166 1.151 * @param wt the worker thread, or null if construction failed
1499 dl 1.78 * @param ex the exception causing failure, or null if none
1500 dl 1.45 */
1501 dl 1.78 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1502     WorkQueue w = null;
1503     if (wt != null && (w = wt.workQueue) != null) {
1504 dl 1.200 WorkQueue[] ws; // remove index from array
1505     int idx = w.config & SMASK;
1506     int rs = lockRunState();
1507     if ((ws = workQueues) != null && ws.length > idx && ws[idx] == w)
1508     ws[idx] = null;
1509     unlockRunState(rs, rs & ~RSLOCK);
1510     }
1511     long c; // decrement counts
1512     do {} while (!U.compareAndSwapLong
1513     (this, CTL, c = ctl, ((AC_MASK & (c - AC_UNIT)) |
1514     (TC_MASK & (c - TC_UNIT)) |
1515     (SP_MASK & c))));
1516     if (w != null) {
1517     w.qlock = -1; // ensure set
1518     w.cancelAll(); // cancel remaining tasks
1519 dl 1.178 U.getAndAddLong(this, STEALCOUNT, w.nsteals); // collect steals
1520 dl 1.78 }
1521 dl 1.120 if (!tryTerminate(false, false) && w != null && w.array != null) {
1522 dl 1.205 WorkQueue[] ws; int m, sp;
1523 dl 1.206 while ((runState & STOP) == 0 &&
1524     (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1525 dl 1.205 if ((sp = (int)(c = ctl)) != 0) { // wake up replacement
1526     if (tryRelease(c, ws[sp & m], AC_UNIT))
1527     break;
1528     }
1529     else if (ex != null && (c & ADD_WORKER) != 0L) {
1530 dl 1.200 tryAddWorker(c); // create replacement
1531 dl 1.205 break;
1532     }
1533     else
1534     break;
1535 dl 1.120 }
1536 dl 1.78 }
1537 dl 1.200 if (ex == null) // help clean on way out
1538 dl 1.120 ForkJoinTask.helpExpungeStaleExceptions();
1539 dl 1.200 else // rethrow
1540 dl 1.104 ForkJoinTask.rethrow(ex);
1541 dl 1.78 }
1542 dl 1.52
1543 dl 1.200 // Signalling
1544 dl 1.19
1545     /**
1546 dl 1.115 * Tries to create or activate a worker if too few are active.
1547     *
1548 dl 1.178 * @param ws the worker array to use to find signallees
1549 dl 1.200 * @param q a WorkQueue --if non-null, don't retry if now empty
1550 dl 1.105 */
1551 dl 1.178 final void signalWork(WorkQueue[] ws, WorkQueue q) {
1552 dl 1.200 long c; int sp, i; WorkQueue v; Thread p;
1553     while ((c = ctl) < 0L) {
1554     if ((sp = (int)c) == 0) { // no idle workers
1555     if ((c & ADD_WORKER) != 0L) // too few workers
1556     tryAddWorker(c);
1557     break;
1558     }
1559     if (ws == null) // unstarted/terminated
1560 dl 1.174 break;
1561 dl 1.200 if (ws.length <= (i = sp & SMASK)) // terminated
1562 dl 1.115 break;
1563 dl 1.200 if ((v = ws[i]) == null) // terminating
1564 dl 1.174 break;
1565 dl 1.200 int vs = (sp + SS_SEQ) & ~INACTIVE; // next scanState
1566     int d = sp - v.scanState; // screen CAS
1567     long nc = (UC_MASK & (c + AC_UNIT)) | (SP_MASK & v.stackPred);
1568     if (d == 0 && U.compareAndSwapLong(this, CTL, c, nc)) {
1569     v.scanState = vs; // activate v
1570     if ((p = v.parker) != null)
1571 dl 1.174 U.unpark(p);
1572     break;
1573     }
1574 dl 1.205 if (q != null && q.base == q.top) // no more work
1575 dl 1.174 break;
1576 dl 1.52 }
1577 dl 1.14 }
1578    
1579 dl 1.200 /**
1580     * Signals and releases worker v if it is top of idle worker
1581     * stack. This performs a one-shot version of signalWork only if
1582     * there is (apparently) at least one idle worker.
1583     *
1584     * @param c incoming ctl value
1585     * @param v if non-null, a worker
1586     * @param inc the increment to active count (zero when compensating)
1587     * @return true if successful
1588     */
1589     private boolean tryRelease(long c, WorkQueue v, long inc) {
1590     int sp = (int)c, vs = (sp + SS_SEQ) & ~INACTIVE; Thread p;
1591     if (v != null && v.scanState == sp) { // v is at top of stack
1592     long nc = (UC_MASK & (c + inc)) | (SP_MASK & v.stackPred);
1593     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1594     v.scanState = vs;
1595     if ((p = v.parker) != null)
1596     U.unpark(p);
1597     return true;
1598     }
1599     }
1600     return false;
1601     }
1602    
1603 dl 1.90 // Scanning for tasks
1604    
1605 dl 1.14 /**
1606 dl 1.90 * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1607 dl 1.14 */
1608 dl 1.90 final void runWorker(WorkQueue w) {
1609 dl 1.200 w.growArray(); // allocate queue
1610     int seed = w.hint; // initially holds randomization hint
1611     int r = (seed == 0) ? 1 : seed; // avoid 0 for xorShift
1612     for (ForkJoinTask<?> t;;) {
1613     if ((t = scan(w, r)) != null)
1614     w.runTask(t);
1615     else if (!awaitWork(w, r))
1616     break;
1617 dl 1.178 r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
1618     }
1619 dl 1.14 }
1620    
1621     /**
1622 dl 1.200 * Scans for and tries to steal a top-level task. Scans start at a
1623 jsr166 1.202 * random location, randomly moving on apparent contention,
1624 dl 1.200 * otherwise continuing linearly until reaching two consecutive
1625     * empty passes over all queues with the same checksum (summing
1626     * each base index of each queue, that moves on each steal), at
1627     * which point the worker tries to inactivate and then re-scans,
1628     * attempting to re-activate (itself or some other worker) if
1629     * finding a task; otherwise returning null to await work. Scans
1630     * otherwise touch as little memory as possible, to reduce
1631     * disruption on other scanning threads.
1632 dl 1.78 *
1633     * @param w the worker (via its WorkQueue)
1634 dl 1.178 * @param r a random seed
1635 dl 1.200 * @return a task, or null if none found
1636 dl 1.78 */
1637 dl 1.200 private ForkJoinTask<?> scan(WorkQueue w, int r) {
1638 dl 1.115 WorkQueue[] ws; int m;
1639 dl 1.200 if ((ws = workQueues) != null && (m = ws.length - 1) > 0 && w != null) {
1640     int ss = w.scanState; // initially non-negative
1641     for (int origin = r & m, k = origin, oldSum = 0, checkSum = 0;;) {
1642     WorkQueue q; ForkJoinTask<?>[] a; ForkJoinTask<?> t;
1643     int b, n; long c;
1644     if ((q = ws[k]) != null) {
1645     if ((n = (b = q.base) - q.top) < 0 &&
1646     (a = q.array) != null) { // non-empty
1647     long i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1648     if ((t = ((ForkJoinTask<?>)
1649     U.getObjectVolatile(a, i))) != null &&
1650     q.base == b) {
1651     if (ss >= 0) {
1652     if (U.compareAndSwapObject(a, i, t, null)) {
1653     q.base = b + 1;
1654     if (n < -1) // signal others
1655     signalWork(ws, q);
1656     return t;
1657     }
1658     }
1659     else if (oldSum == 0 && // try to activate
1660     w.scanState < 0)
1661     tryRelease(c = ctl, ws[m & (int)c], AC_UNIT);
1662 dl 1.178 }
1663 dl 1.200 if (ss < 0) // refresh
1664     ss = w.scanState;
1665     r ^= r << 1; r ^= r >>> 3; r ^= r << 10;
1666     origin = k = r & m; // move and rescan
1667     oldSum = checkSum = 0;
1668     continue;
1669     }
1670     checkSum += b;
1671     }
1672     if ((k = (k + 1) & m) == origin) { // continue until stable
1673     if ((ss >= 0 || (ss == (ss = w.scanState))) &&
1674     oldSum == (oldSum = checkSum)) {
1675     if (ss < 0) // already inactive
1676     break;
1677     int ns = ss | INACTIVE; // try to inactivate
1678     long nc = ((SP_MASK & ns) |
1679     (UC_MASK & ((c = ctl) - AC_UNIT)));
1680     w.stackPred = (int)c; // hold prev stack top
1681     U.putInt(w, QSCANSTATE, ns);
1682     if (U.compareAndSwapLong(this, CTL, c, nc))
1683     ss = ns;
1684     else
1685     w.scanState = ss; // back out
1686 dl 1.174 }
1687 dl 1.200 checkSum = 0;
1688 dl 1.115 }
1689     }
1690 dl 1.52 }
1691 dl 1.200 return null;
1692 dl 1.14 }
1693    
1694     /**
1695 dl 1.200 * Possibly blocks worker w waiting for a task to steal, or
1696     * returns false if the worker should terminate. If inactivating
1697     * w has caused the pool to become quiescent, checks for pool
1698 dl 1.178 * termination, and, so long as this is not the only worker, waits
1699 dl 1.200 * for up to a given duration. On timeout, if ctl has not
1700     * changed, terminates the worker, which will in turn wake up
1701 dl 1.178 * another worker to possibly repeat this process.
1702 dl 1.52 *
1703 dl 1.78 * @param w the calling worker
1704 dl 1.200 * param r a random seed (for spins)
1705     * @return false if the worker should terminate
1706 dl 1.14 */
1707 dl 1.200 private boolean awaitWork(WorkQueue w, int r) {
1708     if (w == null || w.qlock < 0) // w is terminating
1709     return false;
1710     for (int pred = w.stackPred, spins = SPINS, ss;;) {
1711     if ((ss = w.scanState) >= 0)
1712     break;
1713     else if (spins > 0) {
1714     r ^= r << 6; r ^= r >>> 21; r ^= r << 7;
1715     if (r >= 0 && --spins == 0) { // randomize spins
1716     WorkQueue v; WorkQueue[] ws; int s, j;
1717     if (pred != 0 && (ws = workQueues) != null &&
1718     (j = pred & SMASK) < ws.length &&
1719     (v = ws[j]) != null && // see if pred parking
1720     (v.parker == null || v.scanState >= 0))
1721 jsr166 1.202 spins = SPINS; // continue spinning
1722 dl 1.200 else if ((s = w.nsteals) != 0) {
1723     w.nsteals = 0; // collect steals
1724     U.getAndAddLong(this, STEALCOUNT, s);
1725     }
1726     }
1727 dl 1.177 }
1728 dl 1.200 else if (w.qlock < 0) // recheck after spins
1729     return false;
1730     else if (!Thread.interrupted()) {
1731     long c, prevctl, parkTime, deadline;
1732     if ((runState & STOP) != 0) // pool terminating
1733     return false;
1734     int ac = (int)((c = ctl) >> AC_SHIFT) + (config & SMASK);
1735     if (ac <= 0 && tryTerminate(false, false))
1736     return false;
1737     if (ac <= 0 && ss == (int)c) { // is last waiter
1738     prevctl = (UC_MASK & (c + AC_UNIT)) | (SP_MASK & pred);
1739 dl 1.205 int t = (short)(c >>> TC_SHIFT); // shrink excess spares
1740     if (t > 2 && U.compareAndSwapLong(this, CTL, c, prevctl))
1741     return false;
1742     parkTime = IDLE_TIMEOUT * ((t >= 0) ? 1 : 1 - t);
1743 dl 1.178 deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
1744     }
1745     else
1746 dl 1.200 prevctl = parkTime = deadline = 0L;
1747     Thread wt = Thread.currentThread();
1748     U.putObject(wt, PARKBLOCKER, this); // emulate LockSupport
1749     w.parker = wt;
1750     if (w.scanState < 0 && ctl == c) // recheck before park
1751     U.park(false, parkTime);
1752     U.putOrderedObject(w, QPARKER, null);
1753     U.putObject(wt, PARKBLOCKER, null);
1754     if (w.scanState >= 0)
1755     break;
1756     if (parkTime != 0L && ctl == c &&
1757     deadline - System.nanoTime() <= 0L &&
1758     U.compareAndSwapLong(this, CTL, c, prevctl))
1759     return false; // shrink pool
1760 dl 1.120 }
1761     }
1762 dl 1.200 return true;
1763 dl 1.178 }
1764    
1765 dl 1.200 // Joining tasks
1766    
1767 dl 1.178 /**
1768 dl 1.200 * Tries to steal and run tasks within the target's computation.
1769     * Uses a variant of the top-level algorithm, restricted to tasks
1770     * with the given task as ancestor: It prefers taking and running
1771     * eligible tasks popped from the worker's own queue (via
1772     * popCC). Otherwise it scans others, randomly moving on
1773     * contention or execution, deciding to give up based on a
1774     * checksum (via return codes frob pollAndExecCC). The maxTasks
1775     * argument supports external usages; internal calls use zero,
1776     * allowing unbounded steps (external calls trap non-positive
1777     * values).
1778     *
1779     * @param w caller
1780 jsr166 1.202 * @param maxTasks if non-zero, the maximum number of other tasks to run
1781 dl 1.200 * @return task status on exit
1782     */
1783     final int helpComplete(WorkQueue w, CountedCompleter<?> task,
1784     int maxTasks) {
1785     WorkQueue[] ws; int s = 0, m;
1786     if ((ws = workQueues) != null && (m = ws.length - 1) >= 0 &&
1787     task != null && w != null) {
1788     int mode = w.config; // for popCC
1789     int r = w.hint ^ w.top; // arbitrary seed for origin
1790     int origin = r & m; // first queue to scan
1791     int h = 1; // 1:ran, >1:contended, <0:hash
1792     for (int k = origin, oldSum = 0, checkSum = 0;;) {
1793     CountedCompleter<?> p; WorkQueue q;
1794     if ((s = task.status) < 0)
1795     break;
1796     if (h == 1 && (p = w.popCC(task, mode)) != null) {
1797     p.doExec(); // run local task
1798     if (maxTasks != 0 && --maxTasks == 0)
1799     break;
1800     origin = k; // reset
1801     oldSum = checkSum = 0;
1802     }
1803     else { // poll other queues
1804     if ((q = ws[k]) == null)
1805     h = 0;
1806     else if ((h = q.pollAndExecCC(task)) < 0)
1807     checkSum += h;
1808     if (h > 0) {
1809     if (h == 1 && maxTasks != 0 && --maxTasks == 0)
1810     break;
1811     r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
1812     origin = k = r & m; // move and restart
1813     oldSum = checkSum = 0;
1814     }
1815     else if ((k = (k + 1) & m) == origin) {
1816     if (oldSum == (oldSum = checkSum))
1817     break;
1818     checkSum = 0;
1819     }
1820     }
1821 dl 1.178 }
1822     }
1823 dl 1.200 return s;
1824 dl 1.120 }
1825    
1826     /**
1827 dl 1.78 * Tries to locate and execute tasks for a stealer of the given
1828     * task, or in turn one of its stealers, Traces currentSteal ->
1829     * currentJoin links looking for a thread working on a descendant
1830     * of the given task and with a non-empty queue to steal back and
1831     * execute tasks from. The first call to this method upon a
1832     * waiting join will often entail scanning/search, (which is OK
1833     * because the joiner has nothing better to do), but this method
1834 dl 1.200 * leaves hints in workers to speed up subsequent calls.
1835 dl 1.78 *
1836 dl 1.200 * @param w caller
1837 dl 1.78 * @param task the task to join
1838     */
1839 dl 1.200 private void helpStealer(WorkQueue w, ForkJoinTask<?> task) {
1840     WorkQueue[] ws = workQueues;
1841     int oldSum = 0, checkSum, m;
1842     if (ws != null && (m = ws.length - 1) >= 0 && w != null &&
1843     task != null) {
1844     do { // restart point
1845     checkSum = 0; // for stability check
1846     ForkJoinTask<?> subtask;
1847     WorkQueue j = w, v; // v is subtask stealer
1848     descent: for (subtask = task; subtask.status >= 0; ) {
1849     for (int h = j.hint | 1, k = 0, i; ; k += 2) {
1850     if (k > m) // can't find stealer
1851     break descent;
1852     if ((v = ws[i = (h + k) & m]) != null) {
1853     if (v.currentSteal == subtask) {
1854     j.hint = i;
1855 dl 1.95 break;
1856     }
1857 dl 1.200 checkSum += v.base;
1858 dl 1.78 }
1859     }
1860 dl 1.200 for (;;) { // help v or descend
1861 jsr166 1.195 ForkJoinTask<?>[] a; int b;
1862 dl 1.200 checkSum += (b = v.base);
1863     ForkJoinTask<?> next = v.currentJoin;
1864     if (subtask.status < 0 || j.currentJoin != subtask ||
1865     v.currentSteal != subtask) // stale
1866     break descent;
1867     if (b - v.top >= 0 || (a = v.array) == null) {
1868     if ((subtask = next) == null)
1869     break descent;
1870     j = v;
1871     break;
1872 dl 1.95 }
1873 dl 1.200 int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1874     ForkJoinTask<?> t = ((ForkJoinTask<?>)
1875     U.getObjectVolatile(a, i));
1876     if (v.base == b) {
1877     if (t == null) // stale
1878     break descent;
1879     if (U.compareAndSwapObject(a, i, t, null)) {
1880     v.base = b + 1;
1881     ForkJoinTask<?> ps = w.currentSteal;
1882 dl 1.205 int top = w.top;
1883     do {
1884     U.putOrderedObject(w, QCURRENTSTEAL, t);
1885     t.doExec(); // clear local tasks too
1886     } while (task.status >= 0 &&
1887     w.top != top &&
1888     (t = w.pop()) != null);
1889 dl 1.200 U.putOrderedObject(w, QCURRENTSTEAL, ps);
1890 dl 1.205 if (w.base != w.top)
1891 dl 1.200 return; // can't further help
1892 dl 1.95 }
1893 dl 1.78 }
1894 dl 1.52 }
1895 dl 1.19 }
1896 dl 1.200 } while (task.status >= 0 && oldSum != (oldSum = checkSum));
1897 dl 1.14 }
1898 dl 1.22 }
1899    
1900 dl 1.52 /**
1901 dl 1.200 * Tries to decrement active count (sometimes implicitly) and
1902     * possibly release or create a compensating worker in preparation
1903     * for blocking. Returns false (retryable by caller), on
1904     * contention, detected staleness, instability or termination.
1905 dl 1.105 *
1906 dl 1.200 * @param w caller
1907 dl 1.19 */
1908 dl 1.200 private boolean tryCompensate(WorkQueue w) {
1909     boolean canBlock;
1910     WorkQueue[] ws; long c; int m, pc, sp;
1911     if (w == null || w.qlock < 0 || // caller terminating
1912     (ws = workQueues) == null || (m = ws.length - 1) <= 0 ||
1913     (pc = config & SMASK) == 0) // parallelism disabled
1914     canBlock = false;
1915     else if ((sp = (int)(c = ctl)) != 0) // release idle worker
1916     canBlock = tryRelease(c, ws[sp & m], 0L);
1917     else {
1918     int ac = (int)(c >> AC_SHIFT) + pc;
1919     int tc = (short)(c >> TC_SHIFT) + pc;
1920     int nbusy = 0; // validate saturation
1921     for (int i = 0; i <= m; ++i) { // two passes of odd indices
1922     WorkQueue v;
1923     if ((v = ws[((i << 1) | 1) & m]) != null) {
1924     if ((v.scanState & SCANNING) != 0)
1925 dl 1.190 break;
1926 dl 1.200 ++nbusy;
1927 dl 1.178 }
1928 dl 1.52 }
1929 dl 1.200 if (nbusy != (tc << 1) || ctl != c)
1930     canBlock = false; // unstable or stale
1931     else if (tc >= pc && ac > 1 && w.isEmpty()) {
1932     long nc = ((AC_MASK & (c - AC_UNIT)) |
1933     (~AC_MASK & c)); // uncompensated
1934     canBlock = U.compareAndSwapLong(this, CTL, c, nc);
1935 dl 1.105 }
1936 dl 1.200 else if (tc >= MAX_CAP || tc >= pc + MAX_SPARES)
1937     throw new RejectedExecutionException(
1938     "Thread limit exceeded replacing blocked worker");
1939     else { // similar to tryAddWorker
1940     boolean add = false; int rs; // CAS within lock
1941     long nc = ((AC_MASK & c) |
1942     (TC_MASK & (c + TC_UNIT)));
1943     if (((rs = lockRunState()) & STOP) == 0)
1944     add = U.compareAndSwapLong(this, CTL, c, nc);
1945     unlockRunState(rs, rs & ~RSLOCK);
1946     canBlock = add && createWorker(); // throws on exception
1947 dl 1.90 }
1948     }
1949 dl 1.200 return canBlock;
1950 dl 1.90 }
1951    
1952     /**
1953 dl 1.200 * Helps and/or blocks until the given task is done or timeout.
1954 dl 1.90 *
1955 dl 1.200 * @param w caller
1956 dl 1.90 * @param task the task
1957 dl 1.200 * @param if nonzero, deadline for timed waits
1958 dl 1.90 * @return task status on exit
1959     */
1960 dl 1.200 final int awaitJoin(WorkQueue w, ForkJoinTask<?> task, long deadline) {
1961 dl 1.105 int s = 0;
1962 dl 1.200 if (task != null && w != null) {
1963     ForkJoinTask<?> prevJoin = w.currentJoin;
1964     U.putOrderedObject(w, QCURRENTJOIN, task);
1965     CountedCompleter<?> cc = (task instanceof CountedCompleter) ?
1966     (CountedCompleter<?>)task : null;
1967     for (;;) {
1968     if ((s = task.status) < 0)
1969     break;
1970     if (cc != null)
1971     helpComplete(w, cc, 0);
1972     else if (w.base == w.top || w.tryRemoveAndExec(task))
1973     helpStealer(w, task);
1974     if ((s = task.status) < 0)
1975     break;
1976     long ms, ns;
1977     if (deadline == 0L)
1978     ms = 0L;
1979     else if ((ns = deadline - System.nanoTime()) <= 0L)
1980     break;
1981     else if ((ms = TimeUnit.NANOSECONDS.toMillis(ns)) <= 0L)
1982     ms = 1L;
1983     if (tryCompensate(w)) {
1984     task.internalWait(ms);
1985     U.getAndAddLong(this, CTL, AC_UNIT);
1986 dl 1.90 }
1987     }
1988 dl 1.200 U.putOrderedObject(w, QCURRENTJOIN, prevJoin);
1989 dl 1.90 }
1990 dl 1.94 return s;
1991 dl 1.90 }
1992    
1993 dl 1.200 // Specialized scanning
1994 dl 1.90
1995     /**
1996     * Returns a (probably) non-empty steal queue, if one is found
1997 dl 1.131 * during a scan, else null. This method must be retried by
1998     * caller if, by the time it tries to use the queue, it is empty.
1999 dl 1.78 */
2000 dl 1.178 private WorkQueue findNonEmptyStealQueue() {
2001 dl 1.200 int r = ThreadLocalRandom.nextSecondarySeed(), oldSum = 0, checkSum;
2002     do {
2003     checkSum = 0;
2004     WorkQueue[] ws; WorkQueue q; int m, k, b;
2005     if ((ws = workQueues) != null && (m = ws.length - 1) > 0) {
2006     for (int i = 0; i <= m; ++i) {
2007     if ((k = (i + r + m) & m) <= m && k >= 0 &&
2008     (q = ws[k]) != null) {
2009     if ((b = q.base) - q.top < 0)
2010     return q;
2011     checkSum += b;
2012     }
2013 dl 1.52 }
2014     }
2015 dl 1.200 } while (oldSum != (oldSum = checkSum));
2016     return null;
2017 dl 1.22 }
2018    
2019     /**
2020 dl 1.78 * Runs tasks until {@code isQuiescent()}. We piggyback on
2021     * active count ctl maintenance, but rather than blocking
2022     * when tasks cannot be found, we rescan until all others cannot
2023     * find tasks either.
2024     */
2025     final void helpQuiescePool(WorkQueue w) {
2026     for (boolean active = true;;) {
2027 dl 1.131 long c; WorkQueue q; ForkJoinTask<?> t; int b;
2028 dl 1.172 while ((t = w.nextLocalTask()) != null)
2029 dl 1.131 t.doExec();
2030 dl 1.178 if ((q = findNonEmptyStealQueue()) != null) {
2031 dl 1.78 if (!active) { // re-establish active count
2032     active = true;
2033 dl 1.200 U.getAndAddLong(this, CTL, AC_UNIT);
2034     }
2035     if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2036     ForkJoinTask<?> ps = w.currentSteal;
2037     U.putOrderedObject(w, QCURRENTSTEAL, t);
2038     t.doExec();
2039     U.putOrderedObject(w, QCURRENTSTEAL, ps);
2040     ++w.nsteals;
2041 dl 1.178 }
2042 dl 1.78 }
2043 jsr166 1.194 else if (active) { // decrement active count without queuing
2044 dl 1.200 long nc = (AC_MASK & ((c = ctl) - AC_UNIT)) | (~AC_MASK & c);
2045     if ((int)(nc >> AC_SHIFT) + (config & SMASK) <= 0)
2046 dl 1.185 break; // bypass decrement-then-increment
2047 dl 1.131 if (U.compareAndSwapLong(this, CTL, c, nc))
2048 dl 1.78 active = false;
2049 dl 1.22 }
2050 dl 1.200 else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) <= 0 &&
2051     U.compareAndSwapLong(this, CTL, c, c + AC_UNIT))
2052 dl 1.185 break;
2053 dl 1.22 }
2054     }
2055    
2056     /**
2057 jsr166 1.84 * Gets and removes a local or stolen task for the given worker.
2058 dl 1.78 *
2059     * @return a task, if available
2060 dl 1.22 */
2061 dl 1.78 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2062     for (ForkJoinTask<?> t;;) {
2063 dl 1.90 WorkQueue q; int b;
2064 dl 1.78 if ((t = w.nextLocalTask()) != null)
2065     return t;
2066 dl 1.178 if ((q = findNonEmptyStealQueue()) == null)
2067 dl 1.78 return null;
2068 dl 1.172 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2069 dl 1.78 return t;
2070 dl 1.52 }
2071 dl 1.14 }
2072    
2073     /**
2074 dl 1.105 * Returns a cheap heuristic guide for task partitioning when
2075     * programmers, frameworks, tools, or languages have little or no
2076     * idea about task granularity. In essence by offering this
2077     * method, we ask users only about tradeoffs in overhead vs
2078     * expected throughput and its variance, rather than how finely to
2079     * partition tasks.
2080     *
2081     * In a steady state strict (tree-structured) computation, each
2082     * thread makes available for stealing enough tasks for other
2083     * threads to remain active. Inductively, if all threads play by
2084     * the same rules, each thread should make available only a
2085     * constant number of tasks.
2086     *
2087     * The minimum useful constant is just 1. But using a value of 1
2088     * would require immediate replenishment upon each steal to
2089     * maintain enough tasks, which is infeasible. Further,
2090     * partitionings/granularities of offered tasks should minimize
2091     * steal rates, which in general means that threads nearer the top
2092     * of computation tree should generate more than those nearer the
2093     * bottom. In perfect steady state, each thread is at
2094     * approximately the same level of computation tree. However,
2095     * producing extra tasks amortizes the uncertainty of progress and
2096     * diffusion assumptions.
2097     *
2098 jsr166 1.161 * So, users will want to use values larger (but not much larger)
2099 dl 1.105 * than 1 to both smooth over transient shortages and hedge
2100     * against uneven progress; as traded off against the cost of
2101     * extra task overhead. We leave the user to pick a threshold
2102     * value to compare with the results of this call to guide
2103     * decisions, but recommend values such as 3.
2104     *
2105     * When all threads are active, it is on average OK to estimate
2106     * surplus strictly locally. In steady-state, if one thread is
2107     * maintaining say 2 surplus tasks, then so are others. So we can
2108     * just use estimated queue length. However, this strategy alone
2109     * leads to serious mis-estimates in some non-steady-state
2110     * conditions (ramp-up, ramp-down, other stalls). We can detect
2111     * many of these by further considering the number of "idle"
2112     * threads, that are known to have zero queued tasks, so
2113     * compensate by a factor of (#idle/#active) threads.
2114     */
2115     static int getSurplusQueuedTaskCount() {
2116     Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2117     if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2118 dl 1.200 int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).
2119     config & SMASK;
2120 dl 1.112 int n = (q = wt.workQueue).top - q.base;
2121 dl 1.105 int a = (int)(pool.ctl >> AC_SHIFT) + p;
2122 dl 1.112 return n - (a > (p >>>= 1) ? 0 :
2123     a > (p >>>= 1) ? 1 :
2124     a > (p >>>= 1) ? 2 :
2125     a > (p >>>= 1) ? 4 :
2126     8);
2127 dl 1.105 }
2128     return 0;
2129 dl 1.100 }
2130    
2131 dl 1.86 // Termination
2132 dl 1.14
2133     /**
2134 dl 1.200 * Possibly initiates and/or completes termination. When
2135     * terminating (STOP phase), runs three passes through workQueues:
2136     * (0) Setting termination status (which also stops external
2137     * submitters by locking queues), (1) cancelling all tasks; (2)
2138     * interrupting lagging threads (likely in external tasks, but
2139     * possibly also blocked in joins). Each pass repeats previous
2140     * steps because of potential lagging thread creation.
2141 dl 1.14 *
2142     * @param now if true, unconditionally terminate, else only
2143 dl 1.78 * if no work and no active workers
2144 jsr166 1.87 * @param enable if true, enable shutdown when next possible
2145 dl 1.14 * @return true if now terminating or terminated
2146 jsr166 1.1 */
2147 dl 1.86 private boolean tryTerminate(boolean now, boolean enable) {
2148 dl 1.200 int rs;
2149     if (this == common) // cannot shut down
2150 dl 1.105 return false;
2151 dl 1.205 if ((rs = runState) >= 0) { // else already shutdown
2152 dl 1.131 if (!enable)
2153     return false;
2154 dl 1.205 rs = lockRunState(); // enable
2155 dl 1.200 unlockRunState(rs, (rs & ~RSLOCK) | SHUTDOWN);
2156     }
2157 jsr166 1.204 if ((rs & STOP) == 0) {
2158 dl 1.206 if (!now) {
2159     if ((int)(ctl >> AC_SHIFT) + (config & SMASK) > 0)
2160     return false;
2161     WorkQueue[] ws; WorkQueue w; // check external submissions
2162     if ((ws = workQueues) != null) {
2163     for (int i = 0; i < ws.length; ++i) {
2164     if ((w = ws[i]) != null && !w.isEmpty()) {
2165     signalWork(ws, w);
2166     return false;
2167     }
2168 dl 1.203 }
2169     }
2170 dl 1.206 if ((int)(ctl >> AC_SHIFT) + (config & SMASK) > 0)
2171     return false; // recheck
2172 dl 1.203 }
2173 dl 1.205 rs = lockRunState(); // enter STOP phase
2174 dl 1.200 unlockRunState(rs, (rs & ~RSLOCK) | STOP);
2175     }
2176     for (int pass = 0; pass < 3; ++pass) { // clobber other workers
2177     WorkQueue[] ws; int n;
2178     if ((ws = workQueues) != null && (n = ws.length) > 0) {
2179     WorkQueue w; Thread wt;
2180     for (int i = 0; i < n; ++i) {
2181     if ((w = ws[i]) != null) {
2182     w.qlock = -1;
2183     if (pass > 0) {
2184     w.cancelAll(); // clear queue
2185     if (pass > 1 && (wt = w.owner) != null) {
2186     if (!wt.isInterrupted()) {
2187     try {
2188     wt.interrupt();
2189     } catch (Throwable ignore) {
2190     }
2191     }
2192     U.unpark(wt); // wake up
2193     }
2194     }
2195 dl 1.101 }
2196 dl 1.78 }
2197     }
2198 dl 1.200 }
2199     if ((short)(ctl >>> TC_SHIFT) + (config & SMASK) <= 0) {
2200     rs = lockRunState(); // done -- no more workers
2201     unlockRunState(rs, (rs & ~RSLOCK) | TERMINATED);
2202     synchronized (this) { // release awaitTermination
2203     notifyAll();
2204     }
2205     }
2206     return true;
2207     }
2208    
2209     // External operations
2210    
2211     /**
2212     * Full version of externalPush, handling uncommon cases, as well
2213     * as performing secondary initialization upon the first
2214     * submission of the first task to the pool. It also detects
2215     * first submission by an external thread and creates a new shared
2216     * queue if the one at index if empty or contended.
2217     *
2218     * @param task the task. Caller must ensure non-null.
2219     */
2220     private void externalSubmit(ForkJoinTask<?> task) {
2221     int r; // initialize caller's probe
2222     if ((r = ThreadLocalRandom.getProbe()) == 0) {
2223     ThreadLocalRandom.localInit();
2224     r = ThreadLocalRandom.getProbe();
2225     }
2226     for (;;) {
2227     WorkQueue[] ws; WorkQueue q; int rs, m, k;
2228     boolean move = false;
2229 dl 1.205 if ((rs = runState) < 0)
2230 dl 1.200 throw new RejectedExecutionException();
2231     else if ((rs & STARTED) == 0 || // initialize workQueues array
2232     ((ws = workQueues) == null || (m = ws.length - 1) < 0)) {
2233     int ns = 0;
2234     rs = lockRunState();
2235     try {
2236     if ((rs & STARTED) == 0) { // find power of two table size
2237     int p = config & SMASK; // ensure at least 2 slots
2238     int n = (p > 1) ? p - 1 : 1;
2239     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4;
2240     n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1;
2241     workQueues = new WorkQueue[n];
2242     ns = STARTED;
2243 dl 1.78 }
2244 dl 1.200 } finally {
2245     unlockRunState(rs, (rs & ~RSLOCK) | ns);
2246 dl 1.52 }
2247     }
2248 dl 1.200 else if ((q = ws[k = r & m & SQMASK]) != null) {
2249     if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2250     ForkJoinTask<?>[] a = q.array;
2251     int s = q.top;
2252     boolean submitted = false; // initial submission or resizing
2253     try { // locked version of push
2254     if ((a != null && a.length > s + 1 - q.base) ||
2255     (a = q.growArray()) != null) {
2256     int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
2257     U.putOrderedObject(a, j, task);
2258     U.putOrderedInt(q, QTOP, s + 1);
2259     submitted = true;
2260 dl 1.86 }
2261 dl 1.200 } finally {
2262     q.qlock = 0;
2263     }
2264     if (submitted) {
2265     signalWork(ws, q);
2266     return;
2267 dl 1.78 }
2268 dl 1.52 }
2269 dl 1.200 move = true; // move on failure
2270 dl 1.52 }
2271 dl 1.200 else if (((rs = runState) & RSLOCK) == 0) { // create new queue
2272     q = new WorkQueue(this, null);
2273     q.hint = r;
2274     q.config = k | SHARED_QUEUE;
2275     rs = lockRunState(); // publish index
2276     if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
2277     ws[k] = q; // else terminated
2278     unlockRunState(rs, rs & ~RSLOCK);
2279     }
2280     else
2281     move = true; // move if busy
2282     if (move)
2283     r = ThreadLocalRandom.advanceProbe(r);
2284 dl 1.52 }
2285     }
2286    
2287 dl 1.200 /**
2288     * Tries to add the given task to a submission queue at
2289     * submitter's current queue. Only the (vastly) most common path
2290     * is directly handled in this method, while screening for need
2291     * for externalSubmit.
2292     *
2293     * @param task the task. Caller must ensure non-null.
2294     */
2295     final void externalPush(ForkJoinTask<?> task) {
2296     WorkQueue[] ws; WorkQueue q; int m;
2297     int r = ThreadLocalRandom.getProbe();
2298 dl 1.205 int rs = runState;
2299 dl 1.200 if ((ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
2300 dl 1.205 (q = ws[m & r & SQMASK]) != null && r != 0 && rs > 0 &&
2301 dl 1.200 U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2302     ForkJoinTask<?>[] a; int am, n, s;
2303     if ((a = q.array) != null &&
2304     (am = a.length - 1) > (n = (s = q.top) - q.base)) {
2305     int j = ((am & s) << ASHIFT) + ABASE;
2306     U.putOrderedObject(a, j, task);
2307     U.putOrderedInt(q, QTOP, s + 1);
2308     U.putOrderedInt(q, QLOCK, 0);
2309 dl 1.205 if (n <= 1)
2310 dl 1.200 signalWork(ws, q);
2311     return;
2312     }
2313     q.qlock = 0;
2314     }
2315     externalSubmit(task);
2316     }
2317 dl 1.105
2318     /**
2319 dl 1.200 * Returns common pool queue for an external thread
2320 dl 1.105 */
2321     static WorkQueue commonSubmitterQueue() {
2322 dl 1.200 ForkJoinPool p = common;
2323     int r = ThreadLocalRandom.getProbe();
2324     WorkQueue[] ws; int m;
2325     return (p != null && (ws = p.workQueues) != null &&
2326 dl 1.105 (m = ws.length - 1) >= 0) ?
2327 dl 1.200 ws[m & r & SQMASK] : null;
2328 dl 1.105 }
2329    
2330     /**
2331 dl 1.200 * Performs tryUnpush for an external submitter: Finds queue,
2332     * locks if apparently non-empty, validates upon locking, and
2333     * adjusts top. Each check can fail but rarely does.
2334 dl 1.105 */
2335 dl 1.178 final boolean tryExternalUnpush(ForkJoinTask<?> task) {
2336 dl 1.200 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?>[] a; int m, s;
2337     int r = ThreadLocalRandom.getProbe();
2338     if ((ws = workQueues) != null && (m = ws.length - 1) >= 0 &&
2339     (w = ws[m & r & SQMASK]) != null &&
2340     (a = w.array) != null && (s = w.top) != w.base) {
2341 dl 1.115 long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
2342 dl 1.200 if (U.compareAndSwapInt(w, QLOCK, 0, 1)) {
2343     if (w.top == s && w.array == a &&
2344     U.getObject(a, j) == task &&
2345 dl 1.178 U.compareAndSwapObject(a, j, task, null)) {
2346 dl 1.200 U.putOrderedInt(w, QTOP, s - 1);
2347     U.putOrderedInt(w, QLOCK, 0);
2348     return true;
2349 dl 1.115 }
2350 dl 1.200 w.qlock = 0;
2351 dl 1.105 }
2352     }
2353 dl 1.200 return false;
2354 dl 1.105 }
2355    
2356 dl 1.200 /**
2357     * Performs helpComplete for an external submitter
2358     */
2359 dl 1.190 final int externalHelpComplete(CountedCompleter<?> task, int maxTasks) {
2360 dl 1.200 WorkQueue[] ws; int n;
2361     int r = ThreadLocalRandom.getProbe();
2362     return ((ws = workQueues) == null || (n = ws.length) == 0) ? 0 :
2363     helpComplete(ws[(n - 1) & r & SQMASK], task, maxTasks);
2364 dl 1.105 }
2365    
2366 dl 1.52 // Exported methods
2367 jsr166 1.1
2368     // Constructors
2369    
2370     /**
2371 jsr166 1.9 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2372 dl 1.18 * java.lang.Runtime#availableProcessors}, using the {@linkplain
2373     * #defaultForkJoinWorkerThreadFactory default thread factory},
2374     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2375 jsr166 1.1 *
2376     * @throws SecurityException if a security manager exists and
2377     * the caller is not permitted to modify threads
2378     * because it does not hold {@link
2379     * java.lang.RuntimePermission}{@code ("modifyThread")}
2380     */
2381     public ForkJoinPool() {
2382 jsr166 1.148 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2383     defaultForkJoinWorkerThreadFactory, null, false);
2384 jsr166 1.1 }
2385    
2386     /**
2387 jsr166 1.9 * Creates a {@code ForkJoinPool} with the indicated parallelism
2388 dl 1.18 * level, the {@linkplain
2389     * #defaultForkJoinWorkerThreadFactory default thread factory},
2390     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2391 jsr166 1.1 *
2392 jsr166 1.9 * @param parallelism the parallelism level
2393 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
2394 jsr166 1.11 * equal to zero, or greater than implementation limit
2395 jsr166 1.1 * @throws SecurityException if a security manager exists and
2396     * the caller is not permitted to modify threads
2397     * because it does not hold {@link
2398     * java.lang.RuntimePermission}{@code ("modifyThread")}
2399     */
2400     public ForkJoinPool(int parallelism) {
2401 dl 1.18 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2402 jsr166 1.1 }
2403    
2404     /**
2405 dl 1.18 * Creates a {@code ForkJoinPool} with the given parameters.
2406 jsr166 1.1 *
2407 dl 1.18 * @param parallelism the parallelism level. For default value,
2408     * use {@link java.lang.Runtime#availableProcessors}.
2409     * @param factory the factory for creating new threads. For default value,
2410     * use {@link #defaultForkJoinWorkerThreadFactory}.
2411 dl 1.19 * @param handler the handler for internal worker threads that
2412     * terminate due to unrecoverable errors encountered while executing
2413 jsr166 1.31 * tasks. For default value, use {@code null}.
2414 dl 1.19 * @param asyncMode if true,
2415 dl 1.18 * establishes local first-in-first-out scheduling mode for forked
2416     * tasks that are never joined. This mode may be more appropriate
2417     * than default locally stack-based mode in applications in which
2418     * worker threads only process event-style asynchronous tasks.
2419 jsr166 1.31 * For default value, use {@code false}.
2420 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
2421 jsr166 1.11 * equal to zero, or greater than implementation limit
2422     * @throws NullPointerException if the factory is null
2423 jsr166 1.1 * @throws SecurityException if a security manager exists and
2424     * the caller is not permitted to modify threads
2425     * because it does not hold {@link
2426     * java.lang.RuntimePermission}{@code ("modifyThread")}
2427     */
2428 dl 1.19 public ForkJoinPool(int parallelism,
2429 dl 1.18 ForkJoinWorkerThreadFactory factory,
2430 jsr166 1.156 UncaughtExceptionHandler handler,
2431 dl 1.18 boolean asyncMode) {
2432 dl 1.152 this(checkParallelism(parallelism),
2433     checkFactory(factory),
2434     handler,
2435 jsr166 1.201 asyncMode ? FIFO_QUEUE : LIFO_QUEUE,
2436 dl 1.152 "ForkJoinPool-" + nextPoolId() + "-worker-");
2437 dl 1.14 checkPermission();
2438 dl 1.152 }
2439    
2440     private static int checkParallelism(int parallelism) {
2441     if (parallelism <= 0 || parallelism > MAX_CAP)
2442     throw new IllegalArgumentException();
2443     return parallelism;
2444     }
2445    
2446     private static ForkJoinWorkerThreadFactory checkFactory
2447     (ForkJoinWorkerThreadFactory factory) {
2448 dl 1.14 if (factory == null)
2449     throw new NullPointerException();
2450 dl 1.152 return factory;
2451     }
2452    
2453     /**
2454     * Creates a {@code ForkJoinPool} with the given parameters, without
2455     * any security checks or parameter validation. Invoked directly by
2456     * makeCommonPool.
2457     */
2458     private ForkJoinPool(int parallelism,
2459     ForkJoinWorkerThreadFactory factory,
2460 jsr166 1.156 UncaughtExceptionHandler handler,
2461 dl 1.185 int mode,
2462 dl 1.152 String workerNamePrefix) {
2463     this.workerNamePrefix = workerNamePrefix;
2464 jsr166 1.1 this.factory = factory;
2465 dl 1.18 this.ueh = handler;
2466 dl 1.200 this.config = (parallelism & SMASK) | mode;
2467 dl 1.52 long np = (long)(-parallelism); // offset ctl counts
2468     this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2469 dl 1.101 }
2470    
2471     /**
2472 dl 1.128 * Returns the common pool instance. This pool is statically
2473 dl 1.134 * constructed; its run state is unaffected by attempts to {@link
2474     * #shutdown} or {@link #shutdownNow}. However this pool and any
2475     * ongoing processing are automatically terminated upon program
2476     * {@link System#exit}. Any program that relies on asynchronous
2477     * task processing to complete before program termination should
2478 jsr166 1.158 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2479     * before exit.
2480 dl 1.100 *
2481     * @return the common pool instance
2482 jsr166 1.138 * @since 1.8
2483 dl 1.100 */
2484     public static ForkJoinPool commonPool() {
2485 dl 1.134 // assert common != null : "static init error";
2486     return common;
2487 dl 1.100 }
2488    
2489 jsr166 1.1 // Execution methods
2490    
2491     /**
2492     * Performs the given task, returning its result upon completion.
2493 dl 1.52 * If the computation encounters an unchecked Exception or Error,
2494     * it is rethrown as the outcome of this invocation. Rethrown
2495     * exceptions behave in the same way as regular exceptions, but,
2496     * when possible, contain stack traces (as displayed for example
2497     * using {@code ex.printStackTrace()}) of both the current thread
2498     * as well as the thread actually encountering the exception;
2499     * minimally only the latter.
2500 jsr166 1.1 *
2501     * @param task the task
2502 jsr166 1.191 * @param <T> the type of the task's result
2503 jsr166 1.1 * @return the task's result
2504 jsr166 1.11 * @throws NullPointerException if the task is null
2505     * @throws RejectedExecutionException if the task cannot be
2506     * scheduled for execution
2507 jsr166 1.1 */
2508     public <T> T invoke(ForkJoinTask<T> task) {
2509 dl 1.90 if (task == null)
2510     throw new NullPointerException();
2511 dl 1.105 externalPush(task);
2512 dl 1.78 return task.join();
2513 jsr166 1.1 }
2514    
2515     /**
2516     * Arranges for (asynchronous) execution of the given task.
2517     *
2518     * @param task the task
2519 jsr166 1.11 * @throws NullPointerException if the task is null
2520     * @throws RejectedExecutionException if the task cannot be
2521     * scheduled for execution
2522 jsr166 1.1 */
2523 jsr166 1.8 public void execute(ForkJoinTask<?> task) {
2524 dl 1.90 if (task == null)
2525     throw new NullPointerException();
2526 dl 1.105 externalPush(task);
2527 jsr166 1.1 }
2528    
2529     // AbstractExecutorService methods
2530    
2531 jsr166 1.11 /**
2532     * @throws NullPointerException if the task is null
2533     * @throws RejectedExecutionException if the task cannot be
2534     * scheduled for execution
2535     */
2536 jsr166 1.1 public void execute(Runnable task) {
2537 dl 1.41 if (task == null)
2538     throw new NullPointerException();
2539 jsr166 1.2 ForkJoinTask<?> job;
2540 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2541     job = (ForkJoinTask<?>) task;
2542 jsr166 1.2 else
2543 dl 1.152 job = new ForkJoinTask.RunnableExecuteAction(task);
2544 dl 1.105 externalPush(job);
2545 jsr166 1.1 }
2546    
2547 jsr166 1.11 /**
2548 dl 1.18 * Submits a ForkJoinTask for execution.
2549     *
2550     * @param task the task to submit
2551 jsr166 1.191 * @param <T> the type of the task's result
2552 dl 1.18 * @return the task
2553     * @throws NullPointerException if the task is null
2554     * @throws RejectedExecutionException if the task cannot be
2555     * scheduled for execution
2556     */
2557     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2558 dl 1.90 if (task == null)
2559     throw new NullPointerException();
2560 dl 1.105 externalPush(task);
2561 dl 1.18 return task;
2562     }
2563    
2564     /**
2565 jsr166 1.11 * @throws NullPointerException if the task is null
2566     * @throws RejectedExecutionException if the task cannot be
2567     * scheduled for execution
2568     */
2569 jsr166 1.1 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2570 dl 1.90 ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2571 dl 1.105 externalPush(job);
2572 jsr166 1.1 return job;
2573     }
2574    
2575 jsr166 1.11 /**
2576     * @throws NullPointerException if the task is null
2577     * @throws RejectedExecutionException if the task cannot be
2578     * scheduled for execution
2579     */
2580 jsr166 1.1 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2581 dl 1.90 ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2582 dl 1.105 externalPush(job);
2583 jsr166 1.1 return job;
2584     }
2585    
2586 jsr166 1.11 /**
2587     * @throws NullPointerException if the task is null
2588     * @throws RejectedExecutionException if the task cannot be
2589     * scheduled for execution
2590     */
2591 jsr166 1.1 public ForkJoinTask<?> submit(Runnable task) {
2592 dl 1.41 if (task == null)
2593     throw new NullPointerException();
2594 jsr166 1.2 ForkJoinTask<?> job;
2595 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2596     job = (ForkJoinTask<?>) task;
2597 jsr166 1.2 else
2598 dl 1.90 job = new ForkJoinTask.AdaptedRunnableAction(task);
2599 dl 1.105 externalPush(job);
2600 jsr166 1.1 return job;
2601     }
2602    
2603     /**
2604 jsr166 1.11 * @throws NullPointerException {@inheritDoc}
2605     * @throws RejectedExecutionException {@inheritDoc}
2606     */
2607 jsr166 1.1 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2608 dl 1.86 // In previous versions of this class, this method constructed
2609     // a task to run ForkJoinTask.invokeAll, but now external
2610     // invocation of multiple tasks is at least as efficient.
2611 jsr166 1.199 ArrayList<Future<T>> futures = new ArrayList<>(tasks.size());
2612 jsr166 1.1
2613 dl 1.86 boolean done = false;
2614     try {
2615     for (Callable<T> t : tasks) {
2616 dl 1.90 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2617 jsr166 1.144 futures.add(f);
2618 dl 1.105 externalPush(f);
2619 dl 1.86 }
2620 jsr166 1.143 for (int i = 0, size = futures.size(); i < size; i++)
2621     ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2622 dl 1.86 done = true;
2623     return futures;
2624     } finally {
2625     if (!done)
2626 jsr166 1.143 for (int i = 0, size = futures.size(); i < size; i++)
2627     futures.get(i).cancel(false);
2628 jsr166 1.1 }
2629     }
2630    
2631     /**
2632     * Returns the factory used for constructing new workers.
2633     *
2634     * @return the factory used for constructing new workers
2635     */
2636     public ForkJoinWorkerThreadFactory getFactory() {
2637     return factory;
2638     }
2639    
2640     /**
2641     * Returns the handler for internal worker threads that terminate
2642     * due to unrecoverable errors encountered while executing tasks.
2643     *
2644 jsr166 1.4 * @return the handler, or {@code null} if none
2645 jsr166 1.1 */
2646 jsr166 1.156 public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2647 dl 1.14 return ueh;
2648 jsr166 1.1 }
2649    
2650     /**
2651 jsr166 1.9 * Returns the targeted parallelism level of this pool.
2652 jsr166 1.1 *
2653 jsr166 1.9 * @return the targeted parallelism level of this pool
2654 jsr166 1.1 */
2655     public int getParallelism() {
2656 dl 1.185 int par;
2657 dl 1.200 return ((par = config & SMASK) > 0) ? par : 1;
2658 jsr166 1.1 }
2659    
2660     /**
2661 dl 1.100 * Returns the targeted parallelism level of the common pool.
2662     *
2663     * @return the targeted parallelism level of the common pool
2664 jsr166 1.138 * @since 1.8
2665 dl 1.100 */
2666     public static int getCommonPoolParallelism() {
2667 dl 1.134 return commonParallelism;
2668 dl 1.100 }
2669    
2670     /**
2671 jsr166 1.1 * Returns the number of worker threads that have started but not
2672 jsr166 1.34 * yet terminated. The result returned by this method may differ
2673 jsr166 1.4 * from {@link #getParallelism} when threads are created to
2674 jsr166 1.1 * maintain parallelism when others are cooperatively blocked.
2675     *
2676     * @return the number of worker threads
2677     */
2678     public int getPoolSize() {
2679 dl 1.200 return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2680 jsr166 1.1 }
2681    
2682     /**
2683 jsr166 1.4 * Returns {@code true} if this pool uses local first-in-first-out
2684 jsr166 1.1 * scheduling mode for forked tasks that are never joined.
2685     *
2686 jsr166 1.4 * @return {@code true} if this pool uses async mode
2687 jsr166 1.1 */
2688     public boolean getAsyncMode() {
2689 dl 1.200 return (config & FIFO_QUEUE) != 0;
2690 jsr166 1.1 }
2691    
2692     /**
2693     * Returns an estimate of the number of worker threads that are
2694     * not blocked waiting to join tasks or for other managed
2695 dl 1.14 * synchronization. This method may overestimate the
2696     * number of running threads.
2697 jsr166 1.1 *
2698     * @return the number of worker threads
2699     */
2700     public int getRunningThreadCount() {
2701 dl 1.78 int rc = 0;
2702     WorkQueue[] ws; WorkQueue w;
2703     if ((ws = workQueues) != null) {
2704 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2705     if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2706 dl 1.78 ++rc;
2707     }
2708     }
2709     return rc;
2710 jsr166 1.1 }
2711    
2712     /**
2713     * Returns an estimate of the number of threads that are currently
2714     * stealing or executing tasks. This method may overestimate the
2715     * number of active threads.
2716     *
2717     * @return the number of active threads
2718     */
2719     public int getActiveThreadCount() {
2720 dl 1.200 int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2721 jsr166 1.63 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2722 jsr166 1.1 }
2723    
2724     /**
2725 jsr166 1.4 * Returns {@code true} if all worker threads are currently idle.
2726     * An idle worker is one that cannot obtain a task to execute
2727     * because none are available to steal from other threads, and
2728     * there are no pending submissions to the pool. This method is
2729     * conservative; it might not return {@code true} immediately upon
2730     * idleness of all threads, but will eventually become true if
2731     * threads remain inactive.
2732 jsr166 1.1 *
2733 jsr166 1.4 * @return {@code true} if all threads are currently idle
2734 jsr166 1.1 */
2735     public boolean isQuiescent() {
2736 dl 1.200 return (config & SMASK) + (int)(ctl >> AC_SHIFT) <= 0;
2737 jsr166 1.1 }
2738    
2739     /**
2740     * Returns an estimate of the total number of tasks stolen from
2741     * one thread's work queue by another. The reported value
2742     * underestimates the actual total number of steals when the pool
2743     * is not quiescent. This value may be useful for monitoring and
2744     * tuning fork/join programs: in general, steal counts should be
2745     * high enough to keep threads busy, but low enough to avoid
2746     * overhead and contention across threads.
2747     *
2748     * @return the number of steals
2749     */
2750     public long getStealCount() {
2751 dl 1.101 long count = stealCount;
2752 dl 1.78 WorkQueue[] ws; WorkQueue w;
2753     if ((ws = workQueues) != null) {
2754 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2755 dl 1.78 if ((w = ws[i]) != null)
2756 dl 1.105 count += w.nsteals;
2757 dl 1.78 }
2758     }
2759     return count;
2760 jsr166 1.1 }
2761    
2762     /**
2763     * Returns an estimate of the total number of tasks currently held
2764     * in queues by worker threads (but not including tasks submitted
2765     * to the pool that have not begun executing). This value is only
2766     * an approximation, obtained by iterating across all threads in
2767     * the pool. This method may be useful for tuning task
2768     * granularities.
2769     *
2770     * @return the number of queued tasks
2771     */
2772     public long getQueuedTaskCount() {
2773     long count = 0;
2774 dl 1.78 WorkQueue[] ws; WorkQueue w;
2775     if ((ws = workQueues) != null) {
2776 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2777 dl 1.78 if ((w = ws[i]) != null)
2778     count += w.queueSize();
2779     }
2780 dl 1.52 }
2781 jsr166 1.1 return count;
2782     }
2783    
2784     /**
2785 jsr166 1.8 * Returns an estimate of the number of tasks submitted to this
2786 dl 1.55 * pool that have not yet begun executing. This method may take
2787 dl 1.52 * time proportional to the number of submissions.
2788 jsr166 1.1 *
2789     * @return the number of queued submissions
2790     */
2791     public int getQueuedSubmissionCount() {
2792 dl 1.78 int count = 0;
2793     WorkQueue[] ws; WorkQueue w;
2794     if ((ws = workQueues) != null) {
2795 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2796 dl 1.78 if ((w = ws[i]) != null)
2797     count += w.queueSize();
2798     }
2799     }
2800     return count;
2801 jsr166 1.1 }
2802    
2803     /**
2804 jsr166 1.4 * Returns {@code true} if there are any tasks submitted to this
2805     * pool that have not yet begun executing.
2806 jsr166 1.1 *
2807     * @return {@code true} if there are any queued submissions
2808     */
2809     public boolean hasQueuedSubmissions() {
2810 dl 1.78 WorkQueue[] ws; WorkQueue w;
2811     if ((ws = workQueues) != null) {
2812 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2813 dl 1.115 if ((w = ws[i]) != null && !w.isEmpty())
2814 dl 1.78 return true;
2815     }
2816     }
2817     return false;
2818 jsr166 1.1 }
2819    
2820     /**
2821     * Removes and returns the next unexecuted submission if one is
2822     * available. This method may be useful in extensions to this
2823     * class that re-assign work in systems with multiple pools.
2824     *
2825 jsr166 1.4 * @return the next submission, or {@code null} if none
2826 jsr166 1.1 */
2827     protected ForkJoinTask<?> pollSubmission() {
2828 dl 1.78 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2829     if ((ws = workQueues) != null) {
2830 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2831 dl 1.78 if ((w = ws[i]) != null && (t = w.poll()) != null)
2832     return t;
2833 dl 1.52 }
2834     }
2835     return null;
2836 jsr166 1.1 }
2837    
2838     /**
2839     * Removes all available unexecuted submitted and forked tasks
2840     * from scheduling queues and adds them to the given collection,
2841     * without altering their execution status. These may include
2842 jsr166 1.8 * artificially generated or wrapped tasks. This method is
2843     * designed to be invoked only when the pool is known to be
2844 jsr166 1.1 * quiescent. Invocations at other times may not remove all
2845     * tasks. A failure encountered while attempting to add elements
2846     * to collection {@code c} may result in elements being in
2847     * neither, either or both collections when the associated
2848     * exception is thrown. The behavior of this operation is
2849     * undefined if the specified collection is modified while the
2850     * operation is in progress.
2851     *
2852     * @param c the collection to transfer elements into
2853     * @return the number of elements transferred
2854     */
2855 jsr166 1.5 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2856 dl 1.52 int count = 0;
2857 dl 1.78 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2858     if ((ws = workQueues) != null) {
2859 dl 1.86 for (int i = 0; i < ws.length; ++i) {
2860 dl 1.78 if ((w = ws[i]) != null) {
2861     while ((t = w.poll()) != null) {
2862     c.add(t);
2863     ++count;
2864     }
2865     }
2866 dl 1.52 }
2867     }
2868 dl 1.18 return count;
2869     }
2870    
2871     /**
2872 jsr166 1.1 * Returns a string identifying this pool, as well as its state,
2873     * including indications of run state, parallelism level, and
2874     * worker and task counts.
2875     *
2876     * @return a string identifying this pool, as well as its state
2877     */
2878     public String toString() {
2879 dl 1.86 // Use a single pass through workQueues to collect counts
2880     long qt = 0L, qs = 0L; int rc = 0;
2881 dl 1.101 long st = stealCount;
2882 dl 1.86 long c = ctl;
2883     WorkQueue[] ws; WorkQueue w;
2884     if ((ws = workQueues) != null) {
2885     for (int i = 0; i < ws.length; ++i) {
2886     if ((w = ws[i]) != null) {
2887     int size = w.queueSize();
2888     if ((i & 1) == 0)
2889     qs += size;
2890     else {
2891     qt += size;
2892 dl 1.105 st += w.nsteals;
2893 dl 1.86 if (w.isApparentlyUnblocked())
2894     ++rc;
2895     }
2896     }
2897     }
2898     }
2899 dl 1.200 int pc = (config & SMASK);
2900 dl 1.52 int tc = pc + (short)(c >>> TC_SHIFT);
2901 dl 1.78 int ac = pc + (int)(c >> AC_SHIFT);
2902     if (ac < 0) // ignore transient negative
2903     ac = 0;
2904 dl 1.200 int rs = runState;
2905     String level = ((rs & TERMINATED) != 0 ? "Terminated" :
2906     (rs & STOP) != 0 ? "Terminating" :
2907     (rs & SHUTDOWN) != 0 ? "Shutting down" :
2908     "Running");
2909 jsr166 1.1 return super.toString() +
2910 dl 1.52 "[" + level +
2911 dl 1.14 ", parallelism = " + pc +
2912     ", size = " + tc +
2913     ", active = " + ac +
2914     ", running = " + rc +
2915 jsr166 1.1 ", steals = " + st +
2916     ", tasks = " + qt +
2917     ", submissions = " + qs +
2918     "]";
2919     }
2920    
2921     /**
2922 dl 1.100 * Possibly initiates an orderly shutdown in which previously
2923     * submitted tasks are executed, but no new tasks will be
2924     * accepted. Invocation has no effect on execution state if this
2925 jsr166 1.137 * is the {@link #commonPool()}, and no additional effect if
2926 dl 1.100 * already shut down. Tasks that are in the process of being
2927     * submitted concurrently during the course of this method may or
2928     * may not be rejected.
2929 jsr166 1.1 *
2930     * @throws SecurityException if a security manager exists and
2931     * the caller is not permitted to modify threads
2932     * because it does not hold {@link
2933     * java.lang.RuntimePermission}{@code ("modifyThread")}
2934     */
2935     public void shutdown() {
2936     checkPermission();
2937 dl 1.105 tryTerminate(false, true);
2938 jsr166 1.1 }
2939    
2940     /**
2941 dl 1.100 * Possibly attempts to cancel and/or stop all tasks, and reject
2942     * all subsequently submitted tasks. Invocation has no effect on
2943 jsr166 1.137 * execution state if this is the {@link #commonPool()}, and no
2944 dl 1.100 * additional effect if already shut down. Otherwise, tasks that
2945     * are in the process of being submitted or executed concurrently
2946     * during the course of this method may or may not be
2947     * rejected. This method cancels both existing and unexecuted
2948     * tasks, in order to permit termination in the presence of task
2949     * dependencies. So the method always returns an empty list
2950     * (unlike the case for some other Executors).
2951 jsr166 1.1 *
2952     * @return an empty list
2953     * @throws SecurityException if a security manager exists and
2954     * the caller is not permitted to modify threads
2955     * because it does not hold {@link
2956     * java.lang.RuntimePermission}{@code ("modifyThread")}
2957     */
2958     public List<Runnable> shutdownNow() {
2959     checkPermission();
2960 dl 1.105 tryTerminate(true, true);
2961 jsr166 1.1 return Collections.emptyList();
2962     }
2963    
2964     /**
2965     * Returns {@code true} if all tasks have completed following shut down.
2966     *
2967     * @return {@code true} if all tasks have completed following shut down
2968     */
2969     public boolean isTerminated() {
2970 dl 1.200 return (runState & TERMINATED) != 0;
2971 jsr166 1.1 }
2972    
2973     /**
2974     * Returns {@code true} if the process of termination has
2975 jsr166 1.9 * commenced but not yet completed. This method may be useful for
2976     * debugging. A return of {@code true} reported a sufficient
2977     * period after shutdown may indicate that submitted tasks have
2978 jsr166 1.119 * ignored or suppressed interruption, or are waiting for I/O,
2979 dl 1.49 * causing this executor not to properly terminate. (See the
2980     * advisory notes for class {@link ForkJoinTask} stating that
2981     * tasks should not normally entail blocking operations. But if
2982     * they do, they must abort them on interrupt.)
2983 jsr166 1.1 *
2984 jsr166 1.9 * @return {@code true} if terminating but not yet terminated
2985 jsr166 1.1 */
2986     public boolean isTerminating() {
2987 dl 1.200 int rs = runState;
2988     return (rs & STOP) != 0 && (rs & TERMINATED) == 0;
2989 jsr166 1.1 }
2990    
2991     /**
2992     * Returns {@code true} if this pool has been shut down.
2993     *
2994     * @return {@code true} if this pool has been shut down
2995     */
2996     public boolean isShutdown() {
2997 dl 1.200 return (runState & SHUTDOWN) != 0;
2998 jsr166 1.9 }
2999    
3000     /**
3001 dl 1.105 * Blocks until all tasks have completed execution after a
3002     * shutdown request, or the timeout occurs, or the current thread
3003 dl 1.134 * is interrupted, whichever happens first. Because the {@link
3004     * #commonPool()} never terminates until program shutdown, when
3005     * applied to the common pool, this method is equivalent to {@link
3006 jsr166 1.158 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
3007 jsr166 1.1 *
3008     * @param timeout the maximum time to wait
3009     * @param unit the time unit of the timeout argument
3010     * @return {@code true} if this executor terminated and
3011     * {@code false} if the timeout elapsed before termination
3012     * @throws InterruptedException if interrupted while waiting
3013     */
3014     public boolean awaitTermination(long timeout, TimeUnit unit)
3015     throws InterruptedException {
3016 dl 1.134 if (Thread.interrupted())
3017     throw new InterruptedException();
3018     if (this == common) {
3019     awaitQuiescence(timeout, unit);
3020     return false;
3021     }
3022 dl 1.52 long nanos = unit.toNanos(timeout);
3023 dl 1.101 if (isTerminated())
3024     return true;
3025 dl 1.183 if (nanos <= 0L)
3026     return false;
3027     long deadline = System.nanoTime() + nanos;
3028 jsr166 1.103 synchronized (this) {
3029 jsr166 1.184 for (;;) {
3030 dl 1.183 if (isTerminated())
3031     return true;
3032     if (nanos <= 0L)
3033     return false;
3034     long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
3035     wait(millis > 0L ? millis : 1L);
3036     nanos = deadline - System.nanoTime();
3037 dl 1.52 }
3038 dl 1.18 }
3039 jsr166 1.1 }
3040    
3041     /**
3042 dl 1.134 * If called by a ForkJoinTask operating in this pool, equivalent
3043     * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3044     * waits and/or attempts to assist performing tasks until this
3045     * pool {@link #isQuiescent} or the indicated timeout elapses.
3046     *
3047     * @param timeout the maximum time to wait
3048     * @param unit the time unit of the timeout argument
3049     * @return {@code true} if quiescent; {@code false} if the
3050     * timeout elapsed.
3051     */
3052     public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3053     long nanos = unit.toNanos(timeout);
3054     ForkJoinWorkerThread wt;
3055     Thread thread = Thread.currentThread();
3056     if ((thread instanceof ForkJoinWorkerThread) &&
3057     (wt = (ForkJoinWorkerThread)thread).pool == this) {
3058     helpQuiescePool(wt.workQueue);
3059     return true;
3060     }
3061     long startTime = System.nanoTime();
3062     WorkQueue[] ws;
3063     int r = 0, m;
3064     boolean found = true;
3065     while (!isQuiescent() && (ws = workQueues) != null &&
3066     (m = ws.length - 1) >= 0) {
3067     if (!found) {
3068     if ((System.nanoTime() - startTime) > nanos)
3069     return false;
3070     Thread.yield(); // cannot block
3071     }
3072     found = false;
3073     for (int j = (m + 1) << 2; j >= 0; --j) {
3074 dl 1.200 ForkJoinTask<?> t; WorkQueue q; int b, k;
3075     if ((k = r++ & m) <= m && k >= 0 && (q = ws[k]) != null &&
3076     (b = q.base) - q.top < 0) {
3077 dl 1.134 found = true;
3078 dl 1.172 if ((t = q.pollAt(b)) != null)
3079 dl 1.134 t.doExec();
3080     break;
3081     }
3082     }
3083     }
3084     return true;
3085     }
3086    
3087     /**
3088     * Waits and/or attempts to assist performing tasks indefinitely
3089 jsr166 1.141 * until the {@link #commonPool()} {@link #isQuiescent}.
3090 dl 1.134 */
3091 dl 1.136 static void quiesceCommonPool() {
3092 dl 1.134 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3093     }
3094    
3095     /**
3096 jsr166 1.1 * Interface for extending managed parallelism for tasks running
3097 jsr166 1.8 * in {@link ForkJoinPool}s.
3098     *
3099 dl 1.19 * <p>A {@code ManagedBlocker} provides two methods. Method
3100     * {@code isReleasable} must return {@code true} if blocking is
3101     * not necessary. Method {@code block} blocks the current thread
3102     * if necessary (perhaps internally invoking {@code isReleasable}
3103 dl 1.54 * before actually blocking). These actions are performed by any
3104 jsr166 1.157 * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
3105     * The unusual methods in this API accommodate synchronizers that
3106     * may, but don't usually, block for long periods. Similarly, they
3107 dl 1.54 * allow more efficient internal handling of cases in which
3108     * additional workers may be, but usually are not, needed to
3109     * ensure sufficient parallelism. Toward this end,
3110     * implementations of method {@code isReleasable} must be amenable
3111     * to repeated invocation.
3112 jsr166 1.1 *
3113     * <p>For example, here is a ManagedBlocker based on a
3114     * ReentrantLock:
3115     * <pre> {@code
3116     * class ManagedLocker implements ManagedBlocker {
3117     * final ReentrantLock lock;
3118     * boolean hasLock = false;
3119     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3120     * public boolean block() {
3121     * if (!hasLock)
3122     * lock.lock();
3123     * return true;
3124     * }
3125     * public boolean isReleasable() {
3126     * return hasLock || (hasLock = lock.tryLock());
3127     * }
3128     * }}</pre>
3129 dl 1.19 *
3130     * <p>Here is a class that possibly blocks waiting for an
3131     * item on a given queue:
3132     * <pre> {@code
3133     * class QueueTaker<E> implements ManagedBlocker {
3134     * final BlockingQueue<E> queue;
3135     * volatile E item = null;
3136     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3137     * public boolean block() throws InterruptedException {
3138     * if (item == null)
3139 dl 1.23 * item = queue.take();
3140 dl 1.19 * return true;
3141     * }
3142     * public boolean isReleasable() {
3143 dl 1.23 * return item != null || (item = queue.poll()) != null;
3144 dl 1.19 * }
3145     * public E getItem() { // call after pool.managedBlock completes
3146     * return item;
3147     * }
3148     * }}</pre>
3149 jsr166 1.1 */
3150     public static interface ManagedBlocker {
3151     /**
3152     * Possibly blocks the current thread, for example waiting for
3153     * a lock or condition.
3154     *
3155 jsr166 1.4 * @return {@code true} if no additional blocking is necessary
3156     * (i.e., if isReleasable would return true)
3157 jsr166 1.1 * @throws InterruptedException if interrupted while waiting
3158     * (the method is not required to do so, but is allowed to)
3159     */
3160     boolean block() throws InterruptedException;
3161    
3162     /**
3163 jsr166 1.4 * Returns {@code true} if blocking is unnecessary.
3164 jsr166 1.154 * @return {@code true} if blocking is unnecessary
3165 jsr166 1.1 */
3166     boolean isReleasable();
3167     }
3168    
3169     /**
3170     * Blocks in accord with the given blocker. If the current thread
3171 jsr166 1.8 * is a {@link ForkJoinWorkerThread}, this method possibly
3172     * arranges for a spare thread to be activated if necessary to
3173 dl 1.18 * ensure sufficient parallelism while the current thread is blocked.
3174 jsr166 1.1 *
3175 jsr166 1.8 * <p>If the caller is not a {@link ForkJoinTask}, this method is
3176     * behaviorally equivalent to
3177 jsr166 1.82 * <pre> {@code
3178 jsr166 1.1 * while (!blocker.isReleasable())
3179     * if (blocker.block())
3180 jsr166 1.196 * return;}</pre>
3181 jsr166 1.8 *
3182     * If the caller is a {@code ForkJoinTask}, then the pool may
3183     * first be expanded to ensure parallelism, and later adjusted.
3184 jsr166 1.1 *
3185     * @param blocker the blocker
3186     * @throws InterruptedException if blocker.block did so
3187     */
3188 dl 1.18 public static void managedBlock(ManagedBlocker blocker)
3189 jsr166 1.1 throws InterruptedException {
3190 dl 1.200 ForkJoinPool p;
3191     ForkJoinWorkerThread wt;
3192 jsr166 1.1 Thread t = Thread.currentThread();
3193 dl 1.200 if ((t instanceof ForkJoinWorkerThread) &&
3194     (p = (wt = (ForkJoinWorkerThread)t).pool) != null) {
3195     WorkQueue w = wt.workQueue;
3196 dl 1.172 while (!blocker.isReleasable()) {
3197 dl 1.200 if (p.tryCompensate(w)) {
3198 dl 1.105 try {
3199     do {} while (!blocker.isReleasable() &&
3200     !blocker.block());
3201     } finally {
3202 dl 1.200 U.getAndAddLong(p, CTL, AC_UNIT);
3203 dl 1.105 }
3204     break;
3205 dl 1.78 }
3206     }
3207 dl 1.18 }
3208 dl 1.105 else {
3209     do {} while (!blocker.isReleasable() &&
3210     !blocker.block());
3211     }
3212 jsr166 1.1 }
3213    
3214 jsr166 1.7 // AbstractExecutorService overrides. These rely on undocumented
3215     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3216     // implement RunnableFuture.
3217 jsr166 1.1
3218     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3219 dl 1.90 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3220 jsr166 1.1 }
3221    
3222     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3223 dl 1.90 return new ForkJoinTask.AdaptedCallable<T>(callable);
3224 jsr166 1.1 }
3225    
3226     // Unsafe mechanics
3227 dl 1.78 private static final sun.misc.Unsafe U;
3228 dl 1.200 private static final int ABASE;
3229     private static final int ASHIFT;
3230 dl 1.78 private static final long CTL;
3231     private static final long PARKBLOCKER;
3232 dl 1.101 private static final long STEALCOUNT;
3233 dl 1.200 private static final long RUNSTATE;
3234 dl 1.170 private static final long QBASE;
3235 dl 1.200 private static final long QTOP;
3236 dl 1.105 private static final long QLOCK;
3237 dl 1.200 private static final long QSCANSTATE;
3238     private static final long QPARKER;
3239     private static final long QCURRENTSTEAL;
3240     private static final long QCURRENTJOIN;
3241 dl 1.52
3242     static {
3243 jsr166 1.142 // initialize field offsets for CAS etc
3244 jsr166 1.3 try {
3245 dl 1.78 U = sun.misc.Unsafe.getUnsafe();
3246 jsr166 1.64 Class<?> k = ForkJoinPool.class;
3247 dl 1.78 CTL = U.objectFieldOffset
3248 dl 1.52 (k.getDeclaredField("ctl"));
3249 dl 1.101 STEALCOUNT = U.objectFieldOffset
3250     (k.getDeclaredField("stealCount"));
3251 dl 1.200 RUNSTATE = U.objectFieldOffset
3252     (k.getDeclaredField("runState"));
3253 dl 1.86 Class<?> tk = Thread.class;
3254 dl 1.78 PARKBLOCKER = U.objectFieldOffset
3255     (tk.getDeclaredField("parkBlocker"));
3256 dl 1.105 Class<?> wk = WorkQueue.class;
3257 dl 1.170 QBASE = U.objectFieldOffset
3258     (wk.getDeclaredField("base"));
3259 dl 1.200 QTOP = U.objectFieldOffset
3260     (wk.getDeclaredField("top"));
3261 dl 1.105 QLOCK = U.objectFieldOffset
3262     (wk.getDeclaredField("qlock"));
3263 dl 1.200 QSCANSTATE = U.objectFieldOffset
3264     (wk.getDeclaredField("scanState"));
3265     QPARKER = U.objectFieldOffset
3266     (wk.getDeclaredField("parker"));
3267     QCURRENTSTEAL = U.objectFieldOffset
3268     (wk.getDeclaredField("currentSteal"));
3269     QCURRENTJOIN = U.objectFieldOffset
3270     (wk.getDeclaredField("currentJoin"));
3271 dl 1.105 Class<?> ak = ForkJoinTask[].class;
3272 dl 1.90 ABASE = U.arrayBaseOffset(ak);
3273 jsr166 1.142 int scale = U.arrayIndexScale(ak);
3274     if ((scale & (scale - 1)) != 0)
3275     throw new Error("data type scale not a power of two");
3276     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3277 dl 1.52 } catch (Exception e) {
3278     throw new Error(e);
3279     }
3280 dl 1.105
3281 dl 1.152 defaultForkJoinWorkerThreadFactory =
3282 dl 1.112 new DefaultForkJoinWorkerThreadFactory();
3283 dl 1.115 modifyThreadPermission = new RuntimePermission("modifyThread");
3284    
3285 dl 1.152 common = java.security.AccessController.doPrivileged
3286     (new java.security.PrivilegedAction<ForkJoinPool>() {
3287     public ForkJoinPool run() { return makeCommonPool(); }});
3288 dl 1.200 int par = common.config & SMASK; // report 1 even if threads disabled
3289 dl 1.160 commonParallelism = par > 0 ? par : 1;
3290 dl 1.152 }
3291 dl 1.112
3292 dl 1.152 /**
3293     * Creates and returns the common pool, respecting user settings
3294     * specified via system properties.
3295     */
3296     private static ForkJoinPool makeCommonPool() {
3297 dl 1.160 int parallelism = -1;
3298 dl 1.197 ForkJoinWorkerThreadFactory factory = null;
3299 jsr166 1.156 UncaughtExceptionHandler handler = null;
3300 jsr166 1.189 try { // ignore exceptions in accessing/parsing properties
3301 dl 1.112 String pp = System.getProperty
3302     ("java.util.concurrent.ForkJoinPool.common.parallelism");
3303 dl 1.152 String fp = System.getProperty
3304     ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3305 dl 1.112 String hp = System.getProperty
3306     ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3307 dl 1.152 if (pp != null)
3308     parallelism = Integer.parseInt(pp);
3309 dl 1.112 if (fp != null)
3310 dl 1.152 factory = ((ForkJoinWorkerThreadFactory)ClassLoader.
3311     getSystemClassLoader().loadClass(fp).newInstance());
3312 dl 1.112 if (hp != null)
3313 jsr166 1.156 handler = ((UncaughtExceptionHandler)ClassLoader.
3314 dl 1.112 getSystemClassLoader().loadClass(hp).newInstance());
3315     } catch (Exception ignore) {
3316     }
3317 dl 1.197 if (factory == null) {
3318     if (System.getSecurityManager() == null)
3319     factory = defaultForkJoinWorkerThreadFactory;
3320     else // use security-managed default
3321     factory = new InnocuousForkJoinWorkerThreadFactory();
3322     }
3323 dl 1.167 if (parallelism < 0 && // default 1 less than #cores
3324 dl 1.193 (parallelism = Runtime.getRuntime().availableProcessors() - 1) <= 0)
3325     parallelism = 1;
3326 dl 1.152 if (parallelism > MAX_CAP)
3327     parallelism = MAX_CAP;
3328 dl 1.185 return new ForkJoinPool(parallelism, factory, handler, LIFO_QUEUE,
3329 dl 1.152 "ForkJoinPool.commonPool-worker-");
3330 jsr166 1.3 }
3331 dl 1.52
3332 dl 1.197 /**
3333     * Factory for innocuous worker threads
3334     */
3335     static final class InnocuousForkJoinWorkerThreadFactory
3336     implements ForkJoinWorkerThreadFactory {
3337    
3338     /**
3339     * An ACC to restrict permissions for the factory itself.
3340     * The constructed workers have no permissions set.
3341     */
3342     private static final AccessControlContext innocuousAcc;
3343     static {
3344     Permissions innocuousPerms = new Permissions();
3345     innocuousPerms.add(modifyThreadPermission);
3346     innocuousPerms.add(new RuntimePermission(
3347     "enableContextClassLoaderOverride"));
3348     innocuousPerms.add(new RuntimePermission(
3349     "modifyThreadGroup"));
3350     innocuousAcc = new AccessControlContext(new ProtectionDomain[] {
3351     new ProtectionDomain(null, innocuousPerms)
3352     });
3353     }
3354    
3355     public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
3356     return (ForkJoinWorkerThread.InnocuousForkJoinWorkerThread)
3357     java.security.AccessController.doPrivileged(
3358     new java.security.PrivilegedAction<ForkJoinWorkerThread>() {
3359     public ForkJoinWorkerThread run() {
3360     return new ForkJoinWorkerThread.
3361     InnocuousForkJoinWorkerThread(pool);
3362     }}, innocuousAcc);
3363     }
3364     }
3365    
3366 jsr166 1.1 }