ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.209
Committed: Thu Jul 10 16:00:59 2014 UTC (9 years, 10 months ago) by dl
Branch: MAIN
Changes since 1.208: +47 -32 lines
Log Message:
Max spares settable; termination compatibility

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.58 * http://creativecommons.org/publicdomain/zero/1.0/
5 jsr166 1.1 */
6    
7     package java.util.concurrent;
8    
9 jsr166 1.156 import java.lang.Thread.UncaughtExceptionHandler;
10 jsr166 1.1 import java.util.ArrayList;
11     import java.util.Arrays;
12     import java.util.Collection;
13     import java.util.Collections;
14     import java.util.List;
15 dl 1.36 import java.util.concurrent.AbstractExecutorService;
16     import java.util.concurrent.Callable;
17     import java.util.concurrent.ExecutorService;
18     import java.util.concurrent.Future;
19     import java.util.concurrent.RejectedExecutionException;
20     import java.util.concurrent.RunnableFuture;
21 dl 1.178 import java.util.concurrent.ThreadLocalRandom;
22 dl 1.36 import java.util.concurrent.TimeUnit;
23 dl 1.197 import java.security.AccessControlContext;
24     import java.security.ProtectionDomain;
25     import java.security.Permissions;
26 jsr166 1.1
27     /**
28 jsr166 1.4 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
29 jsr166 1.8 * A {@code ForkJoinPool} provides the entry point for submissions
30 dl 1.18 * from non-{@code ForkJoinTask} clients, as well as management and
31 jsr166 1.11 * monitoring operations.
32 jsr166 1.1 *
33 jsr166 1.9 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
34     * ExecutorService} mainly by virtue of employing
35     * <em>work-stealing</em>: all threads in the pool attempt to find and
36 dl 1.78 * execute tasks submitted to the pool and/or created by other active
37     * tasks (eventually blocking waiting for work if none exist). This
38     * enables efficient processing when most tasks spawn other subtasks
39     * (as do most {@code ForkJoinTask}s), as well as when many small
40     * tasks are submitted to the pool from external clients. Especially
41     * when setting <em>asyncMode</em> to true in constructors, {@code
42     * ForkJoinPool}s may also be appropriate for use with event-style
43     * tasks that are never joined.
44 jsr166 1.1 *
45 dl 1.112 * <p>A static {@link #commonPool()} is available and appropriate for
46 dl 1.101 * most applications. The common pool is used by any ForkJoinTask that
47     * is not explicitly submitted to a specified pool. Using the common
48     * pool normally reduces resource usage (its threads are slowly
49     * reclaimed during periods of non-use, and reinstated upon subsequent
50 dl 1.105 * use).
51 dl 1.100 *
52     * <p>For applications that require separate or custom pools, a {@code
53     * ForkJoinPool} may be constructed with a given target parallelism
54     * level; by default, equal to the number of available processors. The
55     * pool attempts to maintain enough active (or available) threads by
56     * dynamically adding, suspending, or resuming internal worker
57 jsr166 1.187 * threads, even if some tasks are stalled waiting to join others.
58     * However, no such adjustments are guaranteed in the face of blocked
59     * I/O or other unmanaged synchronization. The nested {@link
60 dl 1.100 * ManagedBlocker} interface enables extension of the kinds of
61 dl 1.18 * synchronization accommodated.
62 jsr166 1.1 *
63     * <p>In addition to execution and lifecycle control methods, this
64     * class provides status check methods (for example
65 jsr166 1.4 * {@link #getStealCount}) that are intended to aid in developing,
66 jsr166 1.1 * tuning, and monitoring fork/join applications. Also, method
67 jsr166 1.4 * {@link #toString} returns indications of pool state in a
68 jsr166 1.1 * convenient form for informal monitoring.
69     *
70 jsr166 1.109 * <p>As is the case with other ExecutorServices, there are three
71 jsr166 1.84 * main task execution methods summarized in the following table.
72     * These are designed to be used primarily by clients not already
73     * engaged in fork/join computations in the current pool. The main
74     * forms of these methods accept instances of {@code ForkJoinTask},
75     * but overloaded forms also allow mixed execution of plain {@code
76     * Runnable}- or {@code Callable}- based activities as well. However,
77     * tasks that are already executing in a pool should normally instead
78     * use the within-computation forms listed in the table unless using
79     * async event-style tasks that are not usually joined, in which case
80     * there is little difference among choice of methods.
81 dl 1.18 *
82     * <table BORDER CELLPADDING=3 CELLSPACING=1>
83 jsr166 1.159 * <caption>Summary of task execution methods</caption>
84 dl 1.18 * <tr>
85     * <td></td>
86     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
87     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
88     * </tr>
89     * <tr>
90 jsr166 1.153 * <td> <b>Arrange async execution</b></td>
91 dl 1.18 * <td> {@link #execute(ForkJoinTask)}</td>
92     * <td> {@link ForkJoinTask#fork}</td>
93     * </tr>
94     * <tr>
95 jsr166 1.153 * <td> <b>Await and obtain result</b></td>
96 dl 1.18 * <td> {@link #invoke(ForkJoinTask)}</td>
97     * <td> {@link ForkJoinTask#invoke}</td>
98     * </tr>
99     * <tr>
100 jsr166 1.153 * <td> <b>Arrange exec and obtain Future</b></td>
101 dl 1.18 * <td> {@link #submit(ForkJoinTask)}</td>
102     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
103     * </tr>
104     * </table>
105 dl 1.19 *
106 dl 1.105 * <p>The common pool is by default constructed with default
107 jsr166 1.155 * parameters, but these may be controlled by setting three
108 jsr166 1.162 * {@linkplain System#getProperty system properties}:
109     * <ul>
110     * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
111     * - the parallelism level, a non-negative integer
112     * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
113     * - the class name of a {@link ForkJoinWorkerThreadFactory}
114     * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
115     * - the class name of a {@link UncaughtExceptionHandler}
116 dl 1.208 * <!--
117     * <li>{@code java.util.concurrent.ForkJoinPool.common.maximumSpares}
118     * - the maximum number of alloed extra threads to maintain target
119     * parallelism (default 256).
120     * -->
121 jsr166 1.162 * </ul>
122 dl 1.197 * If a {@link SecurityManager} is present and no factory is
123     * specified, then the default pool uses a factory supplying
124     * threads that have no {@link Permissions} enabled.
125 jsr166 1.165 * The system class loader is used to load these classes.
126 jsr166 1.156 * Upon any error in establishing these settings, default parameters
127 dl 1.160 * are used. It is possible to disable or limit the use of threads in
128     * the common pool by setting the parallelism property to zero, and/or
129 dl 1.193 * using a factory that may return {@code null}. However doing so may
130     * cause unjoined tasks to never be executed.
131 dl 1.105 *
132 jsr166 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
133     * maximum number of running threads to 32767. Attempts to create
134 jsr166 1.11 * pools with greater than the maximum number result in
135 jsr166 1.8 * {@code IllegalArgumentException}.
136 jsr166 1.1 *
137 jsr166 1.11 * <p>This implementation rejects submitted tasks (that is, by throwing
138 dl 1.19 * {@link RejectedExecutionException}) only when the pool is shut down
139 dl 1.20 * or internal resources have been exhausted.
140 jsr166 1.11 *
141 jsr166 1.1 * @since 1.7
142     * @author Doug Lea
143     */
144 jsr166 1.171 @sun.misc.Contended
145 jsr166 1.1 public class ForkJoinPool extends AbstractExecutorService {
146    
147     /*
148 dl 1.14 * Implementation Overview
149     *
150 dl 1.78 * This class and its nested classes provide the main
151     * functionality and control for a set of worker threads:
152 jsr166 1.84 * Submissions from non-FJ threads enter into submission queues.
153     * Workers take these tasks and typically split them into subtasks
154     * that may be stolen by other workers. Preference rules give
155     * first priority to processing tasks from their own queues (LIFO
156     * or FIFO, depending on mode), then to randomized FIFO steals of
157 dl 1.200 * tasks in other queues. This framework began as vehicle for
158     * supporting tree-structured parallelism using work-stealing.
159     * Over time, its scalability advantages led to extensions and
160 dl 1.208 * changes to better support more diverse usage contexts. Because
161     * most internal methods and nested classes are interrelated,
162     * their main rationale and descriptions are presented here;
163     * individual methods and nested classes contain only brief
164     * comments about details.
165 dl 1.78 *
166 jsr166 1.84 * WorkQueues
167 dl 1.78 * ==========
168     *
169     * Most operations occur within work-stealing queues (in nested
170     * class WorkQueue). These are special forms of Deques that
171     * support only three of the four possible end-operations -- push,
172     * pop, and poll (aka steal), under the further constraints that
173     * push and pop are called only from the owning thread (or, as
174     * extended here, under a lock), while poll may be called from
175     * other threads. (If you are unfamiliar with them, you probably
176     * want to read Herlihy and Shavit's book "The Art of
177     * Multiprocessor programming", chapter 16 describing these in
178     * more detail before proceeding.) The main work-stealing queue
179     * design is roughly similar to those in the papers "Dynamic
180     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
181     * (http://research.sun.com/scalable/pubs/index.html) and
182     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
183     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
184 dl 1.200 * The main differences ultimately stem from GC requirements that
185     * we null out taken slots as soon as we can, to maintain as small
186     * a footprint as possible even in programs generating huge
187     * numbers of tasks. To accomplish this, we shift the CAS
188     * arbitrating pop vs poll (steal) from being on the indices
189     * ("base" and "top") to the slots themselves.
190     *
191     * Adding tasks then takes the form of a classic array push(task):
192     * q.array[q.top] = task; ++q.top;
193     *
194     * (The actual code needs to null-check and size-check the array,
195     * properly fence the accesses, and possibly signal waiting
196     * workers to start scanning -- see below.) Both a successful pop
197     * and poll mainly entail a CAS of a slot from non-null to null.
198     *
199 jsr166 1.202 * The pop operation (always performed by owner) is:
200 dl 1.200 * if ((base != top) and
201     * (the task at top slot is not null) and
202     * (CAS slot to null))
203     * decrement top and return task;
204     *
205     * And the poll operation (usually by a stealer) is
206     * if ((base != top) and
207     * (the task at base slot is not null) and
208     * (base has not changed) and
209     * (CAS slot to null))
210     * increment base and return task;
211     *
212     * Because we rely on CASes of references, we do not need tag bits
213     * on base or top. They are simple ints as used in any circular
214 dl 1.170 * array-based queue (see for example ArrayDeque). Updates to the
215 dl 1.200 * indices guarantee that top == base means the queue is empty,
216     * but otherwise may err on the side of possibly making the queue
217     * appear nonempty when a push, pop, or poll have not fully
218 dl 1.205 * committed. (Method isEmpty() checks the case of a partially
219     * completed removal of the last element.) Note that this means
220     * that the poll operation, considered individually, is not
221     * wait-free. One thief cannot successfully continue until another
222     * in-progress one (or, if previously empty, a push) completes.
223     * However, in the aggregate, we ensure at least probabilistic
224     * non-blockingness. If an attempted steal fails, a thief always
225     * chooses a different random victim target to try next. So, in
226     * order for one thief to progress, it suffices for any
227     * in-progress poll or new push on any empty queue to
228     * complete. (This is why we normally use method pollAt and its
229     * variants that try once at the apparent base index, else
230     * consider alternative actions, rather than method poll, which
231     * retries.)
232 dl 1.200 *
233     * This approach also enables support of a user mode in which
234     * local task processing is in FIFO, not LIFO order, simply by
235     * using poll rather than pop. This can be useful in
236     * message-passing frameworks in which tasks are never joined.
237     * However neither mode considers affinities, loads, cache
238     * localities, etc, so rarely provide the best possible
239     * performance on a given machine, but portably provide good
240     * throughput by averaging over these factors. Further, even if
241     * we did try to use such information, we do not usually have a
242     * basis for exploiting it. For example, some sets of tasks
243     * profit from cache affinities, but others are harmed by cache
244     * pollution effects. Additionally, even though it requires
245     * scanning, long-term throughput is often best using random
246     * selection rather than directed selection policies, so cheap
247     * randomization of sufficient quality is used whenever
248     * applicable. Various Marsaglia XorShifts (some with different
249     * shift constants) are inlined at use points.
250 dl 1.78 *
251     * WorkQueues are also used in a similar way for tasks submitted
252     * to the pool. We cannot mix these tasks in the same queues used
253 dl 1.200 * by workers. Instead, we randomly associate submission queues
254 dl 1.83 * with submitting threads, using a form of hashing. The
255 dl 1.139 * ThreadLocalRandom probe value serves as a hash code for
256     * choosing existing queues, and may be randomly repositioned upon
257     * contention with other submitters. In essence, submitters act
258     * like workers except that they are restricted to executing local
259     * tasks that they submitted (or in the case of CountedCompleters,
260 dl 1.200 * others with the same root task). Insertion of tasks in shared
261 dl 1.139 * mode requires a lock (mainly to protect in the case of
262 dl 1.200 * resizing) but we use only a simple spinlock (using field
263     * qlock), because submitters encountering a busy queue move on to
264     * try or create other queues -- they block only when creating and
265     * registering new queues.
266 dl 1.78 *
267 jsr166 1.84 * Management
268 dl 1.78 * ==========
269 dl 1.52 *
270     * The main throughput advantages of work-stealing stem from
271     * decentralized control -- workers mostly take tasks from
272 dl 1.200 * themselves or each other, at rates that can exceed a billion
273     * per second. The pool itself creates, activates (enables
274     * scanning for and running tasks), deactivates, blocks, and
275     * terminates threads, all with minimal central information.
276     * There are only a few properties that we can globally track or
277     * maintain, so we pack them into a small number of variables,
278     * often maintaining atomicity without blocking or locking.
279     * Nearly all essentially atomic control state is held in two
280     * volatile variables that are by far most often read (not
281     * written) as status and consistency checks.
282 dl 1.78 *
283 dl 1.200 * Field "ctl" contains 64 bits holding information needed to
284     * atomically decide to add, inactivate, enqueue (on an event
285 dl 1.78 * queue), dequeue, and/or re-activate workers. To enable this
286     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
287     * far in excess of normal operating range) to allow ids, counts,
288     * and their negations (used for thresholding) to fit into 16bit
289 dl 1.200 * subfields. Field "runState" holds lockable state bits
290     * (STARTED, STOP, etc) also protecting updates to the workQueues
291     * array. When used as a lock, it is normally held only for a few
292     * instructions (the only exceptions are one-time array
293     * initialization and uncommon resizing), so is nearly always
294     * available after at most a brief spin. But to be extra-cautious,
295     * we use a monitor-based backup strategy to block when needed
296     * (see awaitRunStateLock). Usages of "runState" vs "ctl"
297     * interact in only one case: deciding to add a worker thread (see
298     * tryAddWorker), in which case the ctl CAS is performed while the
299     * lock is held. Field "config" holds unchanging configuration
300     * state.
301 dl 1.78 *
302     * Recording WorkQueues. WorkQueues are recorded in the
303 dl 1.200 * "workQueues" array. The array is created upon first use (see
304     * externalSubmit) and expanded if necessary. Updates to the
305     * array while recording new workers and unrecording terminated
306     * ones are protected from each other by the runState lock, but
307     * the array is otherwise concurrently readable, and accessed
308     * directly. We also ensure that reads of the array reference
309     * itself never become too stale. To simplify index-based
310     * operations, the array size is always a power of two, and all
311     * readers must tolerate null slots. Worker queues are at odd
312     * indices. Shared (submission) queues are at even indices, up to
313     * a maximum of 64 slots, to limit growth even if array needs to
314     * expand to add more workers. Grouping them together in this way
315     * simplifies and speeds up task scanning.
316 dl 1.86 *
317     * All worker thread creation is on-demand, triggered by task
318     * submissions, replacement of terminated workers, and/or
319 dl 1.78 * compensation for blocked workers. However, all other support
320     * code is set up to work with other policies. To ensure that we
321 dl 1.200 * do not hold on to worker references that would prevent GC, All
322 dl 1.78 * accesses to workQueues are via indices into the workQueues
323     * array (which is one source of some of the messy code
324     * constructions here). In essence, the workQueues array serves as
325 dl 1.200 * a weak reference mechanism. Thus for example the stack top
326     * subfield of ctl stores indices, not references.
327     *
328     * Queuing Idle Workers. Unlike HPC work-stealing frameworks, we
329     * cannot let workers spin indefinitely scanning for tasks when
330     * none can be found immediately, and we cannot start/resume
331     * workers unless there appear to be tasks available. On the
332     * other hand, we must quickly prod them into action when new
333     * tasks are submitted or generated. In many usages, ramp-up time
334     * to activate workers is the main limiting factor in overall
335     * performance, which is compounded at program start-up by JIT
336     * compilation and allocation. So we streamline this as much as
337     * possible.
338     *
339     * The "ctl" field atomically maintains active and total worker
340     * counts as well as a queue to place waiting threads so they can
341     * be located for signalling. Active counts also play the role of
342     * quiescence indicators, so are decremented when workers believe
343     * that there are no more tasks to execute. The "queue" is
344     * actually a form of Treiber stack. A stack is ideal for
345     * activating threads in most-recently used order. This improves
346     * performance and locality, outweighing the disadvantages of
347     * being prone to contention and inability to release a worker
348     * unless it is topmost on stack. We park/unpark workers after
349     * pushing on the idle worker stack (represented by the lower
350     * 32bit subfield of ctl) when they cannot find work. The top
351     * stack state holds the value of the "scanState" field of the
352     * worker: its index and status, plus a version counter that, in
353     * addition to the count subfields (also serving as version
354     * stamps) provide protection against Treiber stack ABA effects.
355     *
356     * Field scanState is used by both workers and the pool to manage
357     * and track whether a worker is INACTIVE (possibly blocked
358     * waiting for a signal), or SCANNING for tasks (when neither hold
359     * it is busy running tasks). When a worker is inactivated, its
360     * scanState field is set, and is prevented from executing tasks,
361     * even though it must scan once for them to avoid queuing
362     * races. Note that scanState updates lag queue CAS releases so
363     * usage requires care. When queued, the lower 16 bits of
364     * scanState must hold its pool index. So we place the index there
365     * upon initialization (see registerWorker) and otherwise keep it
366     * there or restore it when necessary.
367     *
368     * Memory ordering. See "Correct and Efficient Work-Stealing for
369     * Weak Memory Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
370     * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
371     * analysis of memory ordering requirements in work-stealing
372     * algorithms similar to the one used here. We usually need
373     * stronger than minimal ordering because we must sometimes signal
374     * workers, requiring Dekker-like full-fences to avoid lost
375     * signals. Arranging for enough ordering without expensive
376     * over-fencing requires tradeoffs among the supported means of
377     * expressing access constraints. The most central operations,
378     * taking from queues and updating ctl state, require full-fence
379     * CAS. Array slots are read using the emulation of volatiles
380     * provided by Unsafe. Access from other threads to WorkQueue
381     * base, top, and array requires a volatile load of the first of
382     * any of these read. We use the convention of declaring the
383     * "base" index volatile, and always read it before other fields.
384     * The owner thread must ensure ordered updates, so writes use
385     * ordered intrinsics unless they can piggyback on those for other
386     * writes. Similar conventions and rationales hold for other
387     * WorkQueue fields (such as "currentSteal") that are only written
388     * by owners but observed by others.
389     *
390     * Creating workers. To create a worker, we pre-increment total
391     * count (serving as a reservation), and attempt to construct a
392     * ForkJoinWorkerThread via its factory. Upon construction, the
393     * new thread invokes registerWorker, where it constructs a
394     * WorkQueue and is assigned an index in the workQueues array
395     * (expanding the array if necessary). The thread is then
396     * started. Upon any exception across these steps, or null return
397     * from factory, deregisterWorker adjusts counts and records
398     * accordingly. If a null return, the pool continues running with
399     * fewer than the target number workers. If exceptional, the
400     * exception is propagated, generally to some external caller.
401     * Worker index assignment avoids the bias in scanning that would
402     * occur if entries were sequentially packed starting at the front
403     * of the workQueues array. We treat the array as a simple
404     * power-of-two hash table, expanding as needed. The seedIndex
405     * increment ensures no collisions until a resize is needed or a
406     * worker is deregistered and replaced, and thereafter keeps
407 jsr166 1.202 * probability of collision low. We cannot use
408 dl 1.200 * ThreadLocalRandom.getProbe() for similar purposes here because
409     * the thread has not started yet, but do so for creating
410     * submission queues for existing external threads.
411     *
412 jsr166 1.202 * Deactivation and waiting. Queuing encounters several intrinsic
413 dl 1.200 * races; most notably that a task-producing thread can miss
414     * seeing (and signalling) another thread that gave up looking for
415     * work but has not yet entered the wait queue. When a worker
416     * cannot find a task to steal, it deactivates and enqueues. Very
417     * often, the lack of tasks is transient due to GC or OS
418     * scheduling. To reduce false-alarm deactivation, scanners
419     * compute checksums of queue states during sweeps. They give up
420     * and try to deactivate only after the sum is stable across
421     * scans. Further, to avoid missed signals, they repeat this
422     * scanning process after successful enqueuing until again stable.
423     * In this state, the worker cannot take/run a task it sees until
424     * it is released from the queue, so the worker itself eventually
425 jsr166 1.202 * tries to release itself or any successor (see tryRelease).
426 dl 1.200 * Otherwise, upon an empty scan, a deactivated worker uses an
427     * adaptive local spin construction (see awaitWork) before
428     * blocking (via park). Note the unusual conventions about
429     * Thread.interrupts surrounding parking and other blocking:
430     * Because interrupts are used solely to alert threads to check
431     * termination, which is checked anyway upon blocking, we clear
432     * status (using Thread.interrupted) before any call to park, so
433     * that park does not immediately return due to status being set
434     * via some other unrelated call to interrupt in user code.
435     *
436     * Signalling and activation. Workers are created or activated
437     * only when there appears to be at least one task they might be
438     * able to find and execute. Upon push (either by a worker or an
439 dl 1.205 * external submission) to a previously (possibly) empty queue,
440     * workers are signalled if idle, or created if fewer exist than
441     * the given parallelism level. These primary signals are
442     * buttressed by others whenever other threads remove a task from
443     * a queue and notice that there are other tasks there as well.
444     * On most platforms, signalling (unpark) overhead time is
445     * noticeably long, and the time between signalling a thread and
446     * it actually making progress can be very noticeably long, so it
447     * is worth offloading these delays from critical paths as much as
448 dl 1.200 * possible. Also, because enqueued workers are often rescanning
449     * or spinning rather than blocking, we set and clear the "parker"
450     * field of WorkQueues to reduce unnecessary calls to unpark.
451     * (This requires a secondary recheck to avoid missed signals.)
452 dl 1.52 *
453     * Trimming workers. To release resources after periods of lack of
454     * use, a worker starting to wait when the pool is quiescent will
455 dl 1.208 * time out and terminate (see awaitWork) if the pool has remained
456     * quiescent for period IDLE_TIMEOUT, increasing the period as the
457     * number of threads decreases, eventually removing all workers.
458     * Also, when more than two spare threads exist, excess threads
459     * are immediately terminated at the next quiescent point.
460     * (Padding by two avoids hysteresis).
461 dl 1.52 *
462 dl 1.78 * Shutdown and Termination. A call to shutdownNow atomically sets
463 dl 1.200 * a runState bit and then (non-atomically) sets each worker's
464     * qlock status, cancels all unprocessed tasks, and wakes up all
465 dl 1.205 * waiting workers (see tryTerminate). Detecting whether
466     * termination should commence after a non-abrupt shutdown() call
467     * relies on the active count bits of "ctl" maintaining consensus
468     * about quiescence. However, external submitters do not take part
469 dl 1.208 * in this consensus. So, tryTerminate sweeps through queues to
470 dl 1.209 * ensure lack of in-flight submissions and workers about to
471     * process them before triggering the "STOP" phase of
472     * termination.
473 dl 1.78 *
474 jsr166 1.84 * Joining Tasks
475     * =============
476 dl 1.78 *
477     * Any of several actions may be taken when one worker is waiting
478 jsr166 1.84 * to join a task stolen (or always held) by another. Because we
479 dl 1.78 * are multiplexing many tasks on to a pool of workers, we can't
480     * just let them block (as in Thread.join). We also cannot just
481     * reassign the joiner's run-time stack with another and replace
482     * it later, which would be a form of "continuation", that even if
483 dl 1.200 * possible is not necessarily a good idea since we may need both
484     * an unblocked task and its continuation to progress. Instead we
485     * combine two tactics:
486 dl 1.19 *
487     * Helping: Arranging for the joiner to execute some task that it
488 dl 1.78 * would be running if the steal had not occurred.
489 dl 1.19 *
490     * Compensating: Unless there are already enough live threads,
491 dl 1.78 * method tryCompensate() may create or re-activate a spare
492     * thread to compensate for blocked joiners until they unblock.
493     *
494 dl 1.105 * A third form (implemented in tryRemoveAndExec) amounts to
495     * helping a hypothetical compensator: If we can readily tell that
496     * a possible action of a compensator is to steal and execute the
497     * task being joined, the joining thread can do so directly,
498     * without the need for a compensation thread (although at the
499     * expense of larger run-time stacks, but the tradeoff is
500     * typically worthwhile).
501 dl 1.52 *
502     * The ManagedBlocker extension API can't use helping so relies
503     * only on compensation in method awaitBlocker.
504 dl 1.19 *
505 dl 1.200 * The algorithm in helpStealer entails a form of "linear
506     * helping". Each worker records (in field currentSteal) the most
507     * recent task it stole from some other worker (or a submission).
508     * It also records (in field currentJoin) the task it is currently
509     * actively joining. Method helpStealer uses these markers to try
510     * to find a worker to help (i.e., steal back a task from and
511     * execute it) that could hasten completion of the actively joined
512     * task. Thus, the joiner executes a task that would be on its
513     * own local deque had the to-be-joined task not been stolen. This
514     * is a conservative variant of the approach described in Wagner &
515 dl 1.78 * Calder "Leapfrogging: a portable technique for implementing
516     * efficient futures" SIGPLAN Notices, 1993
517     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
518     * that: (1) We only maintain dependency links across workers upon
519     * steals, rather than use per-task bookkeeping. This sometimes
520 dl 1.90 * requires a linear scan of workQueues array to locate stealers,
521     * but often doesn't because stealers leave hints (that may become
522 dl 1.112 * stale/wrong) of where to locate them. It is only a hint
523     * because a worker might have had multiple steals and the hint
524     * records only one of them (usually the most current). Hinting
525     * isolates cost to when it is needed, rather than adding to
526     * per-task overhead. (2) It is "shallow", ignoring nesting and
527     * potentially cyclic mutual steals. (3) It is intentionally
528 dl 1.78 * racy: field currentJoin is updated only while actively joining,
529     * which means that we miss links in the chain during long-lived
530     * tasks, GC stalls etc (which is OK since blocking in such cases
531     * is usually a good idea). (4) We bound the number of attempts
532 dl 1.200 * to find work using checksums and fall back to suspending the
533 dl 1.90 * worker and if necessary replacing it with another.
534 dl 1.78 *
535 dl 1.200 * Helping actions for CountedCompleters do not require tracking
536     * currentJoins: Method helpComplete takes and executes any task
537 jsr166 1.202 * with the same root as the task being waited on (preferring
538     * local pops to non-local polls). However, this still entails
539     * some traversal of completer chains, so is less efficient than
540     * using CountedCompleters without explicit joins.
541 dl 1.105 *
542 dl 1.200 * Compensation does not aim to keep exactly the target
543     * parallelism number of unblocked threads running at any given
544     * time. Some previous versions of this class employed immediate
545     * compensations for any blocked join. However, in practice, the
546     * vast majority of blockages are transient byproducts of GC and
547     * other JVM or OS activities that are made worse by replacement.
548     * Currently, compensation is attempted only after validating that
549     * all purportedly active threads are processing tasks by checking
550     * field WorkQueue.scanState, which eliminates most false
551     * positives. Also, compensation is bypassed (tolerating fewer
552     * threads) in the most common case in which it is rarely
553     * beneficial: when a worker with an empty queue (thus no
554     * continuation tasks) blocks on a join and there still remain
555 dl 1.208 * enough threads to ensure liveness.
556 dl 1.105 *
557 dl 1.208 * Bounds. The compensation mechanism may be bounded. Bounds for
558     * the commonPool (see commonMaxSpares) better enable JVMs to cope
559     * with programming errors and abuse before running out of
560     * resources to do so. In other cases, users may supply factories
561     * that limit thread construction. The effects of bounding in this
562     * pool (like all others) is imprecise. Total worker counts are
563     * decremented when threads deregister, not when they exit and
564     * resources are reclaimed by the JVM and OS. So the number of
565     * simultaneously live threads may transiently exceed bounds.
566 dl 1.205 *
567 dl 1.105 * Common Pool
568     * ===========
569     *
570 jsr166 1.175 * The static common pool always exists after static
571 dl 1.105 * initialization. Since it (or any other created pool) need
572     * never be used, we minimize initial construction overhead and
573     * footprint to the setup of about a dozen fields, with no nested
574     * allocation. Most bootstrapping occurs within method
575 dl 1.200 * externalSubmit during the first submission to the pool.
576 dl 1.105 *
577     * When external threads submit to the common pool, they can
578 dl 1.200 * perform subtask processing (see externalHelpComplete and
579     * related methods) upon joins. This caller-helps policy makes it
580     * sensible to set common pool parallelism level to one (or more)
581     * less than the total number of available cores, or even zero for
582     * pure caller-runs. We do not need to record whether external
583     * submissions are to the common pool -- if not, external help
584     * methods return quickly. These submitters would otherwise be
585     * blocked waiting for completion, so the extra effort (with
586     * liberally sprinkled task status checks) in inapplicable cases
587     * amounts to an odd form of limited spin-wait before blocking in
588     * ForkJoinTask.join.
589 dl 1.105 *
590 dl 1.197 * As a more appropriate default in managed environments, unless
591     * overridden by system properties, we use workers of subclass
592     * InnocuousForkJoinWorkerThread when there is a SecurityManager
593     * present. These workers have no permissions set, do not belong
594     * to any user-defined ThreadGroup, and erase all ThreadLocals
595 dl 1.200 * after executing any top-level task (see WorkQueue.runTask).
596     * The associated mechanics (mainly in ForkJoinWorkerThread) may
597     * be JVM-dependent and must access particular Thread class fields
598     * to achieve this effect.
599 jsr166 1.198 *
600 dl 1.105 * Style notes
601     * ===========
602     *
603 dl 1.200 * Memory ordering relies mainly on Unsafe intrinsics that carry
604     * the further responsibility of explicitly performing null- and
605     * bounds- checks otherwise carried out implicitly by JVMs. This
606     * can be awkward and ugly, but also reflects the need to control
607     * outcomes across the unusual cases that arise in very racy code
608     * with very few invariants. So these explicit checks would exist
609     * in some form anyway. All fields are read into locals before
610     * use, and null-checked if they are references. This is usually
611     * done in a "C"-like style of listing declarations at the heads
612     * of methods or blocks, and using inline assignments on first
613     * encounter. Array bounds-checks are usually performed by
614     * masking with array.length-1, which relies on the invariant that
615     * these arrays are created with positive lengths, which is itself
616     * paranoically checked. Nearly all explicit checks lead to
617     * bypass/return, not exception throws, because they may
618     * legitimately arise due to cancellation/revocation during
619     * shutdown.
620     *
621 dl 1.105 * There is a lot of representation-level coupling among classes
622     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
623     * fields of WorkQueue maintain data structures managed by
624     * ForkJoinPool, so are directly accessed. There is little point
625     * trying to reduce this, since any associated future changes in
626     * representations will need to be accompanied by algorithmic
627     * changes anyway. Several methods intrinsically sprawl because
628 dl 1.200 * they must accumulate sets of consistent reads of fields held in
629     * local variables. There are also other coding oddities
630     * (including several unnecessary-looking hoisted null checks)
631     * that help some methods perform reasonably even when interpreted
632     * (not compiled).
633 dl 1.52 *
634 dl 1.208 * The order of declarations in this file is (with a few exceptions):
635 dl 1.86 * (1) Static utility functions
636     * (2) Nested (static) classes
637     * (3) Static fields
638     * (4) Fields, along with constants used when unpacking some of them
639     * (5) Internal control methods
640     * (6) Callbacks and other support for ForkJoinTask methods
641     * (7) Exported methods
642     * (8) Static block initializing statics in minimally dependent order
643     */
644    
645     // Static utilities
646    
647     /**
648     * If there is a security manager, makes sure caller has
649     * permission to modify threads.
650 jsr166 1.1 */
651 dl 1.86 private static void checkPermission() {
652     SecurityManager security = System.getSecurityManager();
653     if (security != null)
654     security.checkPermission(modifyThreadPermission);
655     }
656    
657     // Nested classes
658 jsr166 1.1
659     /**
660 jsr166 1.8 * Factory for creating new {@link ForkJoinWorkerThread}s.
661     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
662     * for {@code ForkJoinWorkerThread} subclasses that extend base
663     * functionality or initialize threads with different contexts.
664 jsr166 1.1 */
665     public static interface ForkJoinWorkerThreadFactory {
666     /**
667     * Returns a new worker thread operating in the given pool.
668     *
669     * @param pool the pool this thread works in
670 jsr166 1.192 * @return the new worker thread
671 jsr166 1.11 * @throws NullPointerException if the pool is null
672 jsr166 1.1 */
673     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
674     }
675    
676     /**
677     * Default ForkJoinWorkerThreadFactory implementation; creates a
678     * new ForkJoinWorkerThread.
679     */
680 dl 1.112 static final class DefaultForkJoinWorkerThreadFactory
681 jsr166 1.1 implements ForkJoinWorkerThreadFactory {
682 dl 1.112 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
683 dl 1.14 return new ForkJoinWorkerThread(pool);
684 jsr166 1.1 }
685     }
686    
687     /**
688 dl 1.86 * Class for artificial tasks that are used to replace the target
689     * of local joins if they are removed from an interior queue slot
690     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
691     * actually do anything beyond having a unique identity.
692 jsr166 1.1 */
693 dl 1.86 static final class EmptyTask extends ForkJoinTask<Void> {
694 dl 1.105 private static final long serialVersionUID = -7721805057305804111L;
695 dl 1.86 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
696     public final Void getRawResult() { return null; }
697     public final void setRawResult(Void x) {}
698     public final boolean exec() { return true; }
699 jsr166 1.1 }
700    
701 dl 1.200 // Constants shared across ForkJoinPool and WorkQueue
702    
703     // Bounds
704     static final int SMASK = 0xffff; // short bits == max index
705     static final int MAX_CAP = 0x7fff; // max #workers - 1
706     static final int EVENMASK = 0xfffe; // even short bits
707     static final int SQMASK = 0x007e; // max 64 (even) slots
708    
709     // Masks and units for WorkQueue.scanState and ctl sp subfield
710     static final int SCANNING = 1; // false when running tasks
711     static final int INACTIVE = 1 << 31; // must be negative
712     static final int SS_SHIFT = 16; // shift for version count
713     static final int SS_SEQ = 1 << SS_SHIFT; // version number
714     static final int SS_MASK = 0x7fffffff; // mask on update
715    
716     // Mode bits for ForkJoinPool.config and WorkQueue.config
717     static final int MODE_MASK = SMASK << 16;
718     static final int LIFO_QUEUE = 0;
719     static final int FIFO_QUEUE = 1 << 16;
720     static final int SHARED_QUEUE = 1 << 31; // must be negative
721    
722 jsr166 1.1 /**
723 dl 1.78 * Queues supporting work-stealing as well as external task
724 jsr166 1.202 * submission. See above for descriptions and algorithms.
725 dl 1.78 * Performance on most platforms is very sensitive to placement of
726     * instances of both WorkQueues and their arrays -- we absolutely
727     * do not want multiple WorkQueue instances or multiple queue
728 dl 1.200 * arrays sharing cache lines. The @Contended annotation alerts
729     * JVMs to try to keep instances apart.
730 dl 1.78 */
731 jsr166 1.171 @sun.misc.Contended
732 dl 1.78 static final class WorkQueue {
733 dl 1.200
734 dl 1.78 /**
735     * Capacity of work-stealing queue array upon initialization.
736 dl 1.90 * Must be a power of two; at least 4, but should be larger to
737     * reduce or eliminate cacheline sharing among queues.
738     * Currently, it is much larger, as a partial workaround for
739     * the fact that JVMs often place arrays in locations that
740     * share GC bookkeeping (especially cardmarks) such that
741     * per-write accesses encounter serious memory contention.
742 dl 1.78 */
743 dl 1.90 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
744 dl 1.78
745     /**
746     * Maximum size for queue arrays. Must be a power of two less
747     * than or equal to 1 << (31 - width of array entry) to ensure
748     * lack of wraparound of index calculations, but defined to a
749     * value a bit less than this to help users trap runaway
750     * programs before saturating systems.
751     */
752     static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
753    
754 dl 1.200 // Instance fields
755     volatile int scanState; // versioned, <0: inactive; odd:scanning
756     int stackPred; // pool stack (ctl) predecessor
757 dl 1.178 int nsteals; // number of steals
758 dl 1.200 int hint; // randomization and stealer index hint
759     int config; // pool index and mode
760     volatile int qlock; // 1: locked, < 0: terminate; else 0
761 dl 1.78 volatile int base; // index of next slot for poll
762     int top; // index of next slot for push
763     ForkJoinTask<?>[] array; // the elements (initially unallocated)
764 dl 1.90 final ForkJoinPool pool; // the containing pool (may be null)
765 dl 1.78 final ForkJoinWorkerThread owner; // owning thread or null if shared
766     volatile Thread parker; // == owner during call to park; else null
767 dl 1.95 volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
768 dl 1.200 volatile ForkJoinTask<?> currentSteal; // mainly used by helpStealer
769 dl 1.112
770 dl 1.200 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner) {
771 dl 1.90 this.pool = pool;
772 dl 1.78 this.owner = owner;
773 dl 1.115 // Place indices in the center of array (that is not yet allocated)
774 dl 1.78 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
775     }
776    
777     /**
778 dl 1.200 * Returns an exportable index (used by ForkJoinWorkerThread)
779     */
780     final int getPoolIndex() {
781     return (config & 0xffff) >>> 1; // ignore odd/even tag bit
782     }
783    
784     /**
785 dl 1.115 * Returns the approximate number of tasks in the queue.
786     */
787     final int queueSize() {
788     int n = base - top; // non-owner callers must read base first
789     return (n >= 0) ? 0 : -n; // ignore transient negative
790     }
791    
792 jsr166 1.180 /**
793 dl 1.115 * Provides a more accurate estimate of whether this queue has
794     * any tasks than does queueSize, by checking whether a
795     * near-empty queue has at least one unclaimed task.
796     */
797     final boolean isEmpty() {
798 dl 1.200 ForkJoinTask<?>[] a; int n, m, s;
799     return ((n = base - (s = top)) >= 0 ||
800     (n == -1 && // possibly one task
801     ((a = array) == null || (m = a.length - 1) < 0 ||
802 dl 1.115 U.getObject
803     (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
804     }
805    
806     /**
807     * Pushes a task. Call only by owner in unshared queues. (The
808     * shared-queue version is embedded in method externalPush.)
809 dl 1.78 *
810     * @param task the task. Caller must ensure non-null.
811 jsr166 1.146 * @throws RejectedExecutionException if array cannot be resized
812 dl 1.78 */
813 dl 1.90 final void push(ForkJoinTask<?> task) {
814 dl 1.205 ForkJoinTask<?>[] a; ForkJoinPool p;
815     int b = base, s = top, n;
816 dl 1.112 if ((a = array) != null) { // ignore if queue removed
817 dl 1.200 int m = a.length - 1; // fenced write for task visibility
818 dl 1.178 U.putOrderedObject(a, ((m & s) << ASHIFT) + ABASE, task);
819 dl 1.200 U.putOrderedInt(this, QTOP, s + 1);
820 dl 1.205 if ((n = s - b) <= 1) {
821 dl 1.200 if ((p = pool) != null)
822     p.signalWork(p.workQueues, this);
823     }
824 dl 1.205 else if (n == m)
825 dl 1.112 growArray();
826 dl 1.78 }
827     }
828    
829 dl 1.178 /**
830 dl 1.112 * Initializes or doubles the capacity of array. Call either
831     * by owner or with lock held -- it is OK for base, but not
832     * top, to move while resizings are in progress.
833     */
834     final ForkJoinTask<?>[] growArray() {
835     ForkJoinTask<?>[] oldA = array;
836     int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
837     if (size > MAXIMUM_QUEUE_CAPACITY)
838     throw new RejectedExecutionException("Queue capacity exceeded");
839     int oldMask, t, b;
840     ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
841     if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
842     (t = top) - (b = base) > 0) {
843     int mask = size - 1;
844 dl 1.200 do { // emulate poll from old array, push to new array
845 dl 1.112 ForkJoinTask<?> x;
846     int oldj = ((b & oldMask) << ASHIFT) + ABASE;
847     int j = ((b & mask) << ASHIFT) + ABASE;
848     x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
849     if (x != null &&
850     U.compareAndSwapObject(oldA, oldj, x, null))
851     U.putObjectVolatile(a, j, x);
852     } while (++b != t);
853 dl 1.78 }
854 dl 1.112 return a;
855 dl 1.78 }
856    
857     /**
858 dl 1.90 * Takes next task, if one exists, in LIFO order. Call only
859 dl 1.102 * by owner in unshared queues.
860 dl 1.90 */
861     final ForkJoinTask<?> pop() {
862 dl 1.94 ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
863     if ((a = array) != null && (m = a.length - 1) >= 0) {
864 dl 1.90 for (int s; (s = top - 1) - base >= 0;) {
865 dl 1.94 long j = ((m & s) << ASHIFT) + ABASE;
866     if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
867 dl 1.90 break;
868     if (U.compareAndSwapObject(a, j, t, null)) {
869 dl 1.200 U.putOrderedInt(this, QTOP, s);
870 dl 1.90 return t;
871     }
872     }
873     }
874     return null;
875     }
876    
877     /**
878     * Takes a task in FIFO order if b is base of queue and a task
879     * can be claimed without contention. Specialized versions
880 dl 1.200 * appear in ForkJoinPool methods scan and helpStealer.
881 dl 1.78 */
882 dl 1.90 final ForkJoinTask<?> pollAt(int b) {
883 dl 1.178 ForkJoinTask<?> t; ForkJoinTask<?>[] a;
884 dl 1.90 if ((a = array) != null) {
885 dl 1.86 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
886     if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
887 dl 1.178 base == b && U.compareAndSwapObject(a, j, t, null)) {
888 dl 1.200 base = b + 1;
889 dl 1.78 return t;
890     }
891     }
892     return null;
893     }
894    
895     /**
896 dl 1.90 * Takes next task, if one exists, in FIFO order.
897 dl 1.78 */
898 dl 1.90 final ForkJoinTask<?> poll() {
899 dl 1.178 ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
900 dl 1.90 while ((b = base) - top < 0 && (a = array) != null) {
901     int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
902     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
903 dl 1.200 if (base == b) {
904     if (t != null) {
905     if (U.compareAndSwapObject(a, j, t, null)) {
906     base = b + 1;
907     return t;
908     }
909 dl 1.78 }
910 dl 1.200 else if (b + 1 == top) // now empty
911 dl 1.90 break;
912     }
913 dl 1.78 }
914     return null;
915     }
916    
917     /**
918     * Takes next task, if one exists, in order specified by mode.
919     */
920     final ForkJoinTask<?> nextLocalTask() {
921 dl 1.200 return (config & FIFO_QUEUE) == 0 ? pop() : poll();
922 dl 1.78 }
923    
924     /**
925     * Returns next task, if one exists, in order specified by mode.
926     */
927     final ForkJoinTask<?> peek() {
928     ForkJoinTask<?>[] a = array; int m;
929     if (a == null || (m = a.length - 1) < 0)
930     return null;
931 dl 1.200 int i = (config & FIFO_QUEUE) == 0 ? top - 1 : base;
932 dl 1.78 int j = ((i & m) << ASHIFT) + ABASE;
933     return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
934     }
935    
936     /**
937     * Pops the given task only if it is at the current top.
938 dl 1.105 * (A shared version is available only via FJP.tryExternalUnpush)
939 dl 1.200 */
940 dl 1.78 final boolean tryUnpush(ForkJoinTask<?> t) {
941     ForkJoinTask<?>[] a; int s;
942     if ((a = array) != null && (s = top) != base &&
943     U.compareAndSwapObject
944     (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
945 dl 1.200 U.putOrderedInt(this, QTOP, s);
946 dl 1.78 return true;
947     }
948     return false;
949     }
950    
951     /**
952 jsr166 1.84 * Removes and cancels all known tasks, ignoring any exceptions.
953 dl 1.78 */
954     final void cancelAll() {
955 dl 1.200 ForkJoinTask<?> t;
956     if ((t = currentJoin) != null) {
957     currentJoin = null;
958     ForkJoinTask.cancelIgnoringExceptions(t);
959     }
960     if ((t = currentSteal) != null) {
961     currentSteal = null;
962     ForkJoinTask.cancelIgnoringExceptions(t);
963     }
964     while ((t = poll()) != null)
965 dl 1.78 ForkJoinTask.cancelIgnoringExceptions(t);
966     }
967    
968 dl 1.104 // Specialized execution methods
969 dl 1.78
970     /**
971 dl 1.178 * Polls and runs tasks until empty.
972 dl 1.78 */
973 dl 1.178 final void pollAndExecAll() {
974     for (ForkJoinTask<?> t; (t = poll()) != null;)
975     t.doExec();
976 dl 1.94 }
977    
978     /**
979 dl 1.200 * Removes and executes all local tasks. If LIFO, invokes
980     * pollAndExecAll. Otherwise implements a specialized pop loop
981     * to exec until empty.
982     */
983     final void execLocalTasks() {
984     int b = base, m, s;
985     ForkJoinTask<?>[] a = array;
986     if (b - (s = top - 1) <= 0 && a != null &&
987     (m = a.length - 1) >= 0) {
988     if ((config & FIFO_QUEUE) == 0) {
989     for (ForkJoinTask<?> t;;) {
990     if ((t = (ForkJoinTask<?>)U.getAndSetObject
991     (a, ((m & s) << ASHIFT) + ABASE, null)) == null)
992     break;
993     U.putOrderedInt(this, QTOP, s);
994     t.doExec();
995     if (base - (s = top - 1) > 0)
996     break;
997     }
998     }
999     else
1000     pollAndExecAll();
1001     }
1002     }
1003    
1004     /**
1005     * Executes the given task and any remaining local tasks
1006 dl 1.94 */
1007 dl 1.178 final void runTask(ForkJoinTask<?> task) {
1008 dl 1.200 if (task != null) {
1009     scanState &= ~SCANNING; // mark as busy
1010     (currentSteal = task).doExec();
1011     U.putOrderedObject(this, QCURRENTSTEAL, null); // release for GC
1012     execLocalTasks();
1013     ForkJoinWorkerThread thread = owner;
1014 dl 1.178 ++nsteals;
1015 dl 1.200 scanState |= SCANNING;
1016     if (thread != null)
1017 dl 1.197 thread.afterTopLevelExec();
1018 dl 1.178 }
1019 dl 1.94 }
1020    
1021     /**
1022 dl 1.105 * If present, removes from queue and executes the given task,
1023 dl 1.200 * or any other cancelled task. Used only by awaitJoin
1024 dl 1.94 *
1025 dl 1.200 * Returns true if queue empty and task not known to be done
1026 dl 1.94 */
1027 dl 1.105 final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
1028 dl 1.94 ForkJoinTask<?>[] a; int m, s, b, n;
1029 dl 1.200 if ((a = array) != null && (m = a.length - 1) >= 0 &&
1030     task != null) {
1031     while ((n = (s = top) - (b = base)) > 0) {
1032     for (ForkJoinTask<?> t;;) { // traverse from s to b
1033     long j = ((--s & m) << ASHIFT) + ABASE;
1034     if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
1035     return s + 1 == top; // shorter than expected
1036     else if (t == task) {
1037     boolean removed = false;
1038     if (s + 1 == top) { // pop
1039     if (U.compareAndSwapObject(a, j, task, null)) {
1040     U.putOrderedInt(this, QTOP, s);
1041     removed = true;
1042     }
1043     }
1044     else if (base == b) // replace with proxy
1045     removed = U.compareAndSwapObject(
1046     a, j, task, new EmptyTask());
1047     if (removed)
1048     task.doExec();
1049     break;
1050 dl 1.90 }
1051 dl 1.200 else if (t.status < 0 && s + 1 == top) {
1052     if (U.compareAndSwapObject(a, j, t, null))
1053     U.putOrderedInt(this, QTOP, s);
1054     break; // was cancelled
1055 dl 1.104 }
1056 dl 1.200 if (--n == 0)
1057     return false;
1058 dl 1.104 }
1059 dl 1.200 if (task.status < 0)
1060     return false;
1061 dl 1.104 }
1062     }
1063 dl 1.200 return true;
1064 dl 1.104 }
1065    
1066     /**
1067 dl 1.200 * Pops task if in the same CC computation as the given task,
1068     * in either shared or owned mode. Used only by helpComplete.
1069 dl 1.78 */
1070 dl 1.200 final CountedCompleter<?> popCC(CountedCompleter<?> task, int mode) {
1071     int s; ForkJoinTask<?>[] a; Object o;
1072 dl 1.178 if (base - (s = top) < 0 && (a = array) != null) {
1073     long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
1074 dl 1.200 if ((o = U.getObjectVolatile(a, j)) != null &&
1075     (o instanceof CountedCompleter)) {
1076     CountedCompleter<?> t = (CountedCompleter<?>)o;
1077     for (CountedCompleter<?> r = t;;) {
1078     if (r == task) {
1079     if (mode < 0) { // must lock
1080     if (U.compareAndSwapInt(this, QLOCK, 0, 1)) {
1081     if (top == s && array == a &&
1082     U.compareAndSwapObject(a, j, t, null)) {
1083     U.putOrderedInt(this, QTOP, s - 1);
1084     U.putOrderedInt(this, QLOCK, 0);
1085     return t;
1086     }
1087 dl 1.209 U.compareAndSwapInt(this, QLOCK, 1, 0);
1088 dl 1.178 }
1089     }
1090 dl 1.200 else if (U.compareAndSwapObject(a, j, t, null)) {
1091     U.putOrderedInt(this, QTOP, s - 1);
1092     return t;
1093     }
1094     break;
1095 dl 1.178 }
1096 dl 1.200 else if ((r = r.completer) == null) // try parent
1097 dl 1.178 break;
1098     }
1099 dl 1.94 }
1100 dl 1.78 }
1101 dl 1.200 return null;
1102 dl 1.78 }
1103    
1104     /**
1105 dl 1.200 * Steals and runs a task in the same CC computation as the
1106     * given task if one exists and can be taken without
1107     * contention. Otherwise returns a checksum/control value for
1108     * use by method helpComplete.
1109     *
1110     * @return 1 if successful, 2 if retryable (lost to another
1111     * stealer), -1 if non-empty but no matching task found, else
1112     * the base index, forced negative.
1113     */
1114     final int pollAndExecCC(CountedCompleter<?> task) {
1115     int b, h; ForkJoinTask<?>[] a; Object o;
1116     if ((b = base) - top >= 0 || (a = array) == null)
1117     h = b | Integer.MIN_VALUE; // to sense movement on re-poll
1118     else {
1119     long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
1120     if ((o = U.getObjectVolatile(a, j)) == null)
1121     h = 2; // retryable
1122     else if (!(o instanceof CountedCompleter))
1123     h = -1; // unmatchable
1124     else {
1125     CountedCompleter<?> t = (CountedCompleter<?>)o;
1126     for (CountedCompleter<?> r = t;;) {
1127     if (r == task) {
1128     if (base == b &&
1129     U.compareAndSwapObject(a, j, t, null)) {
1130     base = b + 1;
1131 dl 1.178 t.doExec();
1132 dl 1.200 h = 1; // success
1133 dl 1.178 }
1134 dl 1.200 else
1135     h = 2; // lost CAS
1136     break;
1137 dl 1.178 }
1138 dl 1.200 else if ((r = r.completer) == null) {
1139     h = -1; // unmatched
1140 dl 1.178 break;
1141 dl 1.200 }
1142 dl 1.178 }
1143     }
1144 dl 1.78 }
1145 dl 1.200 return h;
1146 dl 1.78 }
1147    
1148     /**
1149 dl 1.86 * Returns true if owned and not known to be blocked.
1150     */
1151     final boolean isApparentlyUnblocked() {
1152     Thread wt; Thread.State s;
1153 dl 1.200 return (scanState >= 0 &&
1154 dl 1.86 (wt = owner) != null &&
1155     (s = wt.getState()) != Thread.State.BLOCKED &&
1156     s != Thread.State.WAITING &&
1157     s != Thread.State.TIMED_WAITING);
1158     }
1159    
1160 dl 1.78 // Unsafe mechanics
1161     private static final sun.misc.Unsafe U;
1162 dl 1.200 private static final int ABASE;
1163     private static final int ASHIFT;
1164 dl 1.170 private static final long QBASE;
1165 dl 1.200 private static final long QTOP;
1166 dl 1.105 private static final long QLOCK;
1167 dl 1.200 private static final long QSCANSTATE;
1168     private static final long QCURRENTSTEAL;
1169 dl 1.78 static {
1170     try {
1171     U = sun.misc.Unsafe.getUnsafe();
1172 dl 1.200 Class<?> wk = WorkQueue.class;
1173 dl 1.78 Class<?> ak = ForkJoinTask[].class;
1174 dl 1.170 QBASE = U.objectFieldOffset
1175 dl 1.200 (wk.getDeclaredField("base"));
1176     QTOP = U.objectFieldOffset
1177     (wk.getDeclaredField("top"));
1178 dl 1.105 QLOCK = U.objectFieldOffset
1179 dl 1.200 (wk.getDeclaredField("qlock"));
1180     QSCANSTATE = U.objectFieldOffset
1181     (wk.getDeclaredField("scanState"));
1182     QCURRENTSTEAL = U.objectFieldOffset
1183     (wk.getDeclaredField("currentSteal"));
1184 dl 1.78 ABASE = U.arrayBaseOffset(ak);
1185 jsr166 1.142 int scale = U.arrayIndexScale(ak);
1186     if ((scale & (scale - 1)) != 0)
1187     throw new Error("data type scale not a power of two");
1188     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1189 dl 1.78 } catch (Exception e) {
1190     throw new Error(e);
1191     }
1192     }
1193     }
1194 dl 1.14
1195 dl 1.112 // static fields (initialized in static initializer below)
1196    
1197     /**
1198     * Creates a new ForkJoinWorkerThread. This factory is used unless
1199     * overridden in ForkJoinPool constructors.
1200     */
1201     public static final ForkJoinWorkerThreadFactory
1202     defaultForkJoinWorkerThreadFactory;
1203    
1204 jsr166 1.1 /**
1205 dl 1.115 * Permission required for callers of methods that may start or
1206     * kill threads.
1207     */
1208     private static final RuntimePermission modifyThreadPermission;
1209    
1210     /**
1211 dl 1.101 * Common (static) pool. Non-null for public use unless a static
1212 dl 1.105 * construction exception, but internal usages null-check on use
1213     * to paranoically avoid potential initialization circularities
1214     * as well as to simplify generated code.
1215 dl 1.101 */
1216 dl 1.134 static final ForkJoinPool common;
1217 dl 1.101
1218     /**
1219 dl 1.160 * Common pool parallelism. To allow simpler use and management
1220     * when common pool threads are disabled, we allow the underlying
1221 dl 1.185 * common.parallelism field to be zero, but in that case still report
1222 dl 1.160 * parallelism as 1 to reflect resulting caller-runs mechanics.
1223 dl 1.90 */
1224 dl 1.134 static final int commonParallelism;
1225 dl 1.90
1226     /**
1227 dl 1.208 * Limit on spare thread construction in tryCompensate.
1228     */
1229     private static int commonMaxSpares;
1230    
1231     /**
1232 dl 1.105 * Sequence number for creating workerNamePrefix.
1233 dl 1.86 */
1234 dl 1.105 private static int poolNumberSequence;
1235 dl 1.86
1236 jsr166 1.1 /**
1237 jsr166 1.132 * Returns the next sequence number. We don't expect this to
1238     * ever contend, so use simple builtin sync.
1239 dl 1.83 */
1240 dl 1.105 private static final synchronized int nextPoolId() {
1241     return ++poolNumberSequence;
1242     }
1243 dl 1.86
1244 dl 1.200 // static configuration constants
1245 dl 1.86
1246     /**
1247 dl 1.105 * Initial timeout value (in nanoseconds) for the thread
1248     * triggering quiescence to park waiting for new work. On timeout,
1249     * the thread will instead try to shrink the number of
1250     * workers. The value should be large enough to avoid overly
1251     * aggressive shrinkage during most transient stalls (long GCs
1252     * etc).
1253 dl 1.86 */
1254 dl 1.208 private static final long IDLE_TIMEOUT = 2000L * 1000L * 1000L; // 2sec
1255 dl 1.86
1256     /**
1257 dl 1.120 * Tolerance for idle timeouts, to cope with timer undershoots
1258     */
1259 dl 1.208 private static final long TIMEOUT_SLOP = 20L * 1000L * 1000L; // 20ms
1260 dl 1.200
1261     /**
1262 dl 1.208 * The initial value for commonMaxSpares during static
1263     * initialization unless overridden using System property
1264     * "java.util.concurrent.ForkJoinPool.common.maximumSpares". The
1265     * default value is far in excess of normal requirements, but also
1266 dl 1.200 * far short of MAX_CAP and typical OS thread limits, so allows
1267     * JVMs to catch misuse/abuse before running out of resources
1268     * needed to do so.
1269     */
1270 dl 1.208 private static final int DEFAULT_COMMON_MAX_SPARES = 256;
1271 dl 1.120
1272     /**
1273 dl 1.200 * Number of times to spin-wait before blocking. The spins (in
1274     * awaitRunStateLock and awaitWork) currently use randomized
1275     * spins. If/when MWAIT-like intrinsics becomes available, they
1276     * may allow quieter spinning. The value of SPINS must be a power
1277     * of two, at least 4. The current value causes spinning for a
1278     * small fraction of context-switch times that is worthwhile given
1279     * the typical likelihoods that blocking is not necessary.
1280 dl 1.90 */
1281 dl 1.200 private static final int SPINS = 1 << 11;
1282 dl 1.90
1283     /**
1284     * Increment for seed generators. See class ThreadLocal for
1285     * explanation.
1286     */
1287 dl 1.193 private static final int SEED_INCREMENT = 0x9e3779b9;
1288 dl 1.83
1289 jsr166 1.163 /*
1290 dl 1.200 * Bits and masks for field ctl, packed with 4 16 bit subfields:
1291     * AC: Number of active running workers minus target parallelism
1292     * TC: Number of total workers minus target parallelism
1293     * SS: version count and status of top waiting thread
1294     * ID: poolIndex of top of Treiber stack of waiters
1295     *
1296     * When convenient, we can extract the lower 32 stack top bits
1297     * (including version bits) as sp=(int)ctl. The offsets of counts
1298     * by the target parallelism and the positionings of fields makes
1299     * it possible to perform the most common checks via sign tests of
1300     * fields: When ac is negative, there are not enough active
1301     * workers, when tc is negative, there are not enough total
1302     * workers. When sp is non-zero, there are waiting workers. To
1303     * deal with possibly negative fields, we use casts in and out of
1304     * "short" and/or signed shifts to maintain signedness.
1305     *
1306     * Because it occupies uppermost bits, we can add one active count
1307     * using getAndAddLong of AC_UNIT, rather than CAS, when returning
1308     * from a blocked join. Other updates entail multiple subfields
1309     * and masking, requiring CAS.
1310     */
1311    
1312     // Lower and upper word masks
1313     private static final long SP_MASK = 0xffffffffL;
1314     private static final long UC_MASK = ~SP_MASK;
1315 dl 1.86
1316 dl 1.200 // Active counts
1317 dl 1.86 private static final int AC_SHIFT = 48;
1318 dl 1.200 private static final long AC_UNIT = 0x0001L << AC_SHIFT;
1319     private static final long AC_MASK = 0xffffL << AC_SHIFT;
1320    
1321     // Total counts
1322 dl 1.86 private static final int TC_SHIFT = 32;
1323 dl 1.200 private static final long TC_UNIT = 0x0001L << TC_SHIFT;
1324     private static final long TC_MASK = 0xffffL << TC_SHIFT;
1325     private static final long ADD_WORKER = 0x0001L << (TC_SHIFT + 15); // sign
1326    
1327 dl 1.205 // runState bits: SHUTDOWN must be negative, others arbitrary powers of two
1328 dl 1.200 private static final int RSLOCK = 1;
1329     private static final int RSIGNAL = 1 << 1;
1330     private static final int STARTED = 1 << 2;
1331 dl 1.205 private static final int STOP = 1 << 29;
1332     private static final int TERMINATED = 1 << 30;
1333     private static final int SHUTDOWN = 1 << 31;
1334 dl 1.86
1335     // Instance fields
1336 dl 1.200 volatile long stealCount; // collects worker counts
1337     volatile long ctl; // main pool control
1338     volatile int runState; // lockable status
1339     final int config; // parallelism, mode
1340     int indexSeed; // to generate worker index
1341     volatile WorkQueue[] workQueues; // main registry
1342 dl 1.112 final ForkJoinWorkerThreadFactory factory;
1343 dl 1.200 final UncaughtExceptionHandler ueh; // per-worker UEH
1344     final String workerNamePrefix; // to create worker name string
1345 dl 1.101
1346 jsr166 1.145 /**
1347 dl 1.200 * Acquires the runState lock; returns current (locked) runState
1348 dl 1.105 */
1349 dl 1.200 private int lockRunState() {
1350     int rs;
1351     return ((((rs = runState) & RSLOCK) != 0 ||
1352     !U.compareAndSwapInt(this, RUNSTATE, rs, rs |= RSLOCK)) ?
1353     awaitRunStateLock() : rs);
1354     }
1355    
1356     /**
1357     * Spins and/or blocks until runstate lock is available. This
1358     * method is called only if an initial CAS fails. This acts as a
1359     * spinlock for normal cases, but falls back to builtin monitor to
1360     * block when (rarely) needed. This would be a terrible idea for a
1361     * highly contended lock, but most pools run without the lock ever
1362     * contending after the spin limit, so this works fine as a more
1363     * conservative alternative to a pure spinlock.
1364     */
1365     private int awaitRunStateLock() {
1366     for (int spins = SPINS, r = 0, rs, nrs;;) {
1367     if (((rs = runState) & RSLOCK) == 0) {
1368     if (U.compareAndSwapInt(this, RUNSTATE, rs, nrs = rs | RSLOCK))
1369     return nrs;
1370     }
1371     else if (r == 0)
1372     r = ThreadLocalRandom.nextSecondarySeed();
1373     else if (spins > 0) {
1374     r ^= r << 6; r ^= r >>> 21; r ^= r << 7; // xorshift
1375     if (r >= 0)
1376 dl 1.101 --spins;
1377     }
1378 dl 1.200 else if (U.compareAndSwapInt(this, RUNSTATE, rs, rs | RSIGNAL)) {
1379 jsr166 1.106 synchronized (this) {
1380 dl 1.200 if ((runState & RSIGNAL) != 0) {
1381 dl 1.101 try {
1382     wait();
1383     } catch (InterruptedException ie) {
1384 dl 1.104 try {
1385     Thread.currentThread().interrupt();
1386     } catch (SecurityException ignore) {
1387     }
1388 dl 1.101 }
1389     }
1390     else
1391 dl 1.105 notifyAll();
1392 dl 1.101 }
1393     }
1394     }
1395     }
1396 dl 1.78
1397 jsr166 1.1 /**
1398 dl 1.200 * Unlocks and sets runState to newRunState.
1399     *
1400     * @param oldRunState a value returned from lockRunState
1401     * @param newRunState the next value (must have lock bit clear).
1402 jsr166 1.1 */
1403 dl 1.200 private void unlockRunState(int oldRunState, int newRunState) {
1404     if (!U.compareAndSwapInt(this, RUNSTATE, oldRunState, newRunState)) {
1405     runState = newRunState; // clears RSIGNAL bit
1406     synchronized (this) { notifyAll(); }
1407     }
1408 dl 1.78 }
1409 jsr166 1.1
1410 dl 1.200 // Creating, registering and deregistering workers
1411    
1412 dl 1.112 /**
1413 dl 1.200 * Tries to construct and start one worker. Assumes that total
1414     * count has already been incremented as a reservation. Invokes
1415     * deregisterWorker on any failure.
1416     *
1417     * @return true if successful
1418 dl 1.115 */
1419 dl 1.200 private boolean createWorker() {
1420     ForkJoinWorkerThreadFactory fac = factory;
1421     Throwable ex = null;
1422     ForkJoinWorkerThread wt = null;
1423     try {
1424     if (fac != null && (wt = fac.newThread(this)) != null) {
1425     wt.start();
1426     return true;
1427 dl 1.115 }
1428 dl 1.200 } catch (Throwable rex) {
1429     ex = rex;
1430 dl 1.112 }
1431 dl 1.200 deregisterWorker(wt, ex);
1432     return false;
1433 dl 1.112 }
1434    
1435 dl 1.200 /**
1436     * Tries to add one worker, incrementing ctl counts before doing
1437     * so, relying on createWorker to back out on failure.
1438     *
1439     * @param c incoming ctl value, with total count negative and no
1440     * idle workers. On CAS failure, c is refreshed and retried if
1441 jsr166 1.202 * this holds (otherwise, a new worker is not needed).
1442 dl 1.200 */
1443     private void tryAddWorker(long c) {
1444     boolean add = false;
1445     do {
1446     long nc = ((AC_MASK & (c + AC_UNIT)) |
1447     (TC_MASK & (c + TC_UNIT)));
1448     if (ctl == c) {
1449     int rs, stop; // check if terminating
1450     if ((stop = (rs = lockRunState()) & STOP) == 0)
1451     add = U.compareAndSwapLong(this, CTL, c, nc);
1452     unlockRunState(rs, rs & ~RSLOCK);
1453     if (stop != 0)
1454     break;
1455     if (add) {
1456     createWorker();
1457     break;
1458     }
1459     }
1460     } while (((c = ctl) & ADD_WORKER) != 0L && (int)c == 0);
1461     }
1462 dl 1.112
1463     /**
1464 dl 1.200 * Callback from ForkJoinWorkerThread constructor to establish and
1465     * record its WorkQueue.
1466 dl 1.112 *
1467     * @param wt the worker thread
1468 dl 1.115 * @return the worker's queue
1469 dl 1.112 */
1470 dl 1.115 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1471 dl 1.200 UncaughtExceptionHandler handler;
1472     wt.setDaemon(true); // configure thread
1473 dl 1.115 if ((handler = ueh) != null)
1474     wt.setUncaughtExceptionHandler(handler);
1475 dl 1.200 WorkQueue w = new WorkQueue(this, wt);
1476     int i = 0; // assign a pool index
1477     int mode = config & MODE_MASK;
1478     int rs = lockRunState();
1479 dl 1.115 try {
1480 dl 1.200 WorkQueue[] ws; int n; // skip if no array
1481     if ((ws = workQueues) != null && (n = ws.length) > 0) {
1482     int s = indexSeed += SEED_INCREMENT; // unlikely to collide
1483     int m = n - 1;
1484     i = ((s << 1) | 1) & m; // odd-numbered indices
1485     if (ws[i] != null) { // collision
1486     int probes = 0; // step by approx half n
1487 dl 1.115 int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1488 dl 1.200 while (ws[i = (i + step) & m] != null) {
1489 dl 1.115 if (++probes >= n) {
1490     workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1491     m = n - 1;
1492     probes = 0;
1493 dl 1.94 }
1494     }
1495     }
1496 dl 1.200 w.hint = s; // use as random seed
1497     w.config = i | mode;
1498     w.scanState = i; // publication fence
1499     ws[i] = w;
1500 dl 1.78 }
1501 dl 1.115 } finally {
1502 dl 1.200 unlockRunState(rs, rs & ~RSLOCK);
1503 dl 1.78 }
1504 dl 1.200 wt.setName(workerNamePrefix.concat(Integer.toString(i >>> 1)));
1505 dl 1.115 return w;
1506 dl 1.78 }
1507 dl 1.19
1508 jsr166 1.1 /**
1509 dl 1.86 * Final callback from terminating worker, as well as upon failure
1510 dl 1.105 * to construct or start a worker. Removes record of worker from
1511     * array, and adjusts counts. If pool is shutting down, tries to
1512     * complete termination.
1513 dl 1.78 *
1514 jsr166 1.151 * @param wt the worker thread, or null if construction failed
1515 dl 1.78 * @param ex the exception causing failure, or null if none
1516 dl 1.45 */
1517 dl 1.78 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1518     WorkQueue w = null;
1519     if (wt != null && (w = wt.workQueue) != null) {
1520 dl 1.200 WorkQueue[] ws; // remove index from array
1521     int idx = w.config & SMASK;
1522     int rs = lockRunState();
1523     if ((ws = workQueues) != null && ws.length > idx && ws[idx] == w)
1524     ws[idx] = null;
1525     unlockRunState(rs, rs & ~RSLOCK);
1526     }
1527     long c; // decrement counts
1528     do {} while (!U.compareAndSwapLong
1529     (this, CTL, c = ctl, ((AC_MASK & (c - AC_UNIT)) |
1530     (TC_MASK & (c - TC_UNIT)) |
1531     (SP_MASK & c))));
1532     if (w != null) {
1533     w.qlock = -1; // ensure set
1534     w.cancelAll(); // cancel remaining tasks
1535 dl 1.178 U.getAndAddLong(this, STEALCOUNT, w.nsteals); // collect steals
1536 dl 1.78 }
1537 dl 1.209 for (;;) { // possibly replace
1538 dl 1.205 WorkQueue[] ws; int m, sp;
1539 dl 1.209 if (tryTerminate(false, false) || w == null || w.array == null ||
1540     (runState & STOP) != 0 || (ws = workQueues) == null ||
1541     (m = ws.length - 1) < 0) // already terminating
1542     break;
1543     if ((sp = (int)(c = ctl)) != 0) { // wake up replacement
1544     if (tryRelease(c, ws[sp & m], AC_UNIT))
1545 dl 1.205 break;
1546 dl 1.120 }
1547 dl 1.209 else if (ex != null && (c & ADD_WORKER) != 0L) {
1548     tryAddWorker(c); // create replacement
1549     break;
1550     }
1551     else // don't need replacement
1552     break;
1553 dl 1.78 }
1554 dl 1.200 if (ex == null) // help clean on way out
1555 dl 1.120 ForkJoinTask.helpExpungeStaleExceptions();
1556 dl 1.200 else // rethrow
1557 dl 1.104 ForkJoinTask.rethrow(ex);
1558 dl 1.78 }
1559 dl 1.52
1560 dl 1.200 // Signalling
1561 dl 1.19
1562     /**
1563 dl 1.115 * Tries to create or activate a worker if too few are active.
1564     *
1565 dl 1.178 * @param ws the worker array to use to find signallees
1566 dl 1.200 * @param q a WorkQueue --if non-null, don't retry if now empty
1567 dl 1.105 */
1568 dl 1.178 final void signalWork(WorkQueue[] ws, WorkQueue q) {
1569 dl 1.200 long c; int sp, i; WorkQueue v; Thread p;
1570     while ((c = ctl) < 0L) {
1571     if ((sp = (int)c) == 0) { // no idle workers
1572     if ((c & ADD_WORKER) != 0L) // too few workers
1573     tryAddWorker(c);
1574     break;
1575     }
1576     if (ws == null) // unstarted/terminated
1577 dl 1.174 break;
1578 dl 1.200 if (ws.length <= (i = sp & SMASK)) // terminated
1579 dl 1.115 break;
1580 dl 1.200 if ((v = ws[i]) == null) // terminating
1581 dl 1.174 break;
1582 dl 1.200 int vs = (sp + SS_SEQ) & ~INACTIVE; // next scanState
1583     int d = sp - v.scanState; // screen CAS
1584     long nc = (UC_MASK & (c + AC_UNIT)) | (SP_MASK & v.stackPred);
1585     if (d == 0 && U.compareAndSwapLong(this, CTL, c, nc)) {
1586     v.scanState = vs; // activate v
1587     if ((p = v.parker) != null)
1588 dl 1.174 U.unpark(p);
1589     break;
1590     }
1591 dl 1.205 if (q != null && q.base == q.top) // no more work
1592 dl 1.174 break;
1593 dl 1.52 }
1594 dl 1.14 }
1595    
1596 dl 1.200 /**
1597     * Signals and releases worker v if it is top of idle worker
1598     * stack. This performs a one-shot version of signalWork only if
1599     * there is (apparently) at least one idle worker.
1600     *
1601     * @param c incoming ctl value
1602     * @param v if non-null, a worker
1603     * @param inc the increment to active count (zero when compensating)
1604     * @return true if successful
1605     */
1606     private boolean tryRelease(long c, WorkQueue v, long inc) {
1607     int sp = (int)c, vs = (sp + SS_SEQ) & ~INACTIVE; Thread p;
1608     if (v != null && v.scanState == sp) { // v is at top of stack
1609     long nc = (UC_MASK & (c + inc)) | (SP_MASK & v.stackPred);
1610     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1611     v.scanState = vs;
1612     if ((p = v.parker) != null)
1613     U.unpark(p);
1614     return true;
1615     }
1616     }
1617     return false;
1618     }
1619    
1620 dl 1.90 // Scanning for tasks
1621    
1622 dl 1.14 /**
1623 dl 1.90 * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1624 dl 1.14 */
1625 dl 1.90 final void runWorker(WorkQueue w) {
1626 dl 1.200 w.growArray(); // allocate queue
1627     int seed = w.hint; // initially holds randomization hint
1628     int r = (seed == 0) ? 1 : seed; // avoid 0 for xorShift
1629     for (ForkJoinTask<?> t;;) {
1630     if ((t = scan(w, r)) != null)
1631     w.runTask(t);
1632     else if (!awaitWork(w, r))
1633     break;
1634 dl 1.178 r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
1635     }
1636 dl 1.14 }
1637    
1638     /**
1639 dl 1.200 * Scans for and tries to steal a top-level task. Scans start at a
1640 jsr166 1.202 * random location, randomly moving on apparent contention,
1641 dl 1.200 * otherwise continuing linearly until reaching two consecutive
1642     * empty passes over all queues with the same checksum (summing
1643     * each base index of each queue, that moves on each steal), at
1644     * which point the worker tries to inactivate and then re-scans,
1645     * attempting to re-activate (itself or some other worker) if
1646     * finding a task; otherwise returning null to await work. Scans
1647     * otherwise touch as little memory as possible, to reduce
1648     * disruption on other scanning threads.
1649 dl 1.78 *
1650     * @param w the worker (via its WorkQueue)
1651 dl 1.178 * @param r a random seed
1652 dl 1.200 * @return a task, or null if none found
1653 dl 1.78 */
1654 dl 1.200 private ForkJoinTask<?> scan(WorkQueue w, int r) {
1655 dl 1.115 WorkQueue[] ws; int m;
1656 dl 1.200 if ((ws = workQueues) != null && (m = ws.length - 1) > 0 && w != null) {
1657     int ss = w.scanState; // initially non-negative
1658     for (int origin = r & m, k = origin, oldSum = 0, checkSum = 0;;) {
1659     WorkQueue q; ForkJoinTask<?>[] a; ForkJoinTask<?> t;
1660     int b, n; long c;
1661     if ((q = ws[k]) != null) {
1662     if ((n = (b = q.base) - q.top) < 0 &&
1663     (a = q.array) != null) { // non-empty
1664     long i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1665     if ((t = ((ForkJoinTask<?>)
1666     U.getObjectVolatile(a, i))) != null &&
1667     q.base == b) {
1668     if (ss >= 0) {
1669     if (U.compareAndSwapObject(a, i, t, null)) {
1670     q.base = b + 1;
1671     if (n < -1) // signal others
1672     signalWork(ws, q);
1673     return t;
1674     }
1675     }
1676     else if (oldSum == 0 && // try to activate
1677     w.scanState < 0)
1678     tryRelease(c = ctl, ws[m & (int)c], AC_UNIT);
1679 dl 1.178 }
1680 dl 1.200 if (ss < 0) // refresh
1681     ss = w.scanState;
1682     r ^= r << 1; r ^= r >>> 3; r ^= r << 10;
1683     origin = k = r & m; // move and rescan
1684     oldSum = checkSum = 0;
1685     continue;
1686     }
1687     checkSum += b;
1688     }
1689     if ((k = (k + 1) & m) == origin) { // continue until stable
1690     if ((ss >= 0 || (ss == (ss = w.scanState))) &&
1691     oldSum == (oldSum = checkSum)) {
1692     if (ss < 0) // already inactive
1693     break;
1694     int ns = ss | INACTIVE; // try to inactivate
1695     long nc = ((SP_MASK & ns) |
1696     (UC_MASK & ((c = ctl) - AC_UNIT)));
1697     w.stackPred = (int)c; // hold prev stack top
1698     U.putInt(w, QSCANSTATE, ns);
1699     if (U.compareAndSwapLong(this, CTL, c, nc))
1700     ss = ns;
1701     else
1702     w.scanState = ss; // back out
1703 dl 1.174 }
1704 dl 1.200 checkSum = 0;
1705 dl 1.115 }
1706     }
1707 dl 1.52 }
1708 dl 1.200 return null;
1709 dl 1.14 }
1710    
1711     /**
1712 dl 1.200 * Possibly blocks worker w waiting for a task to steal, or
1713     * returns false if the worker should terminate. If inactivating
1714     * w has caused the pool to become quiescent, checks for pool
1715 dl 1.178 * termination, and, so long as this is not the only worker, waits
1716 dl 1.200 * for up to a given duration. On timeout, if ctl has not
1717     * changed, terminates the worker, which will in turn wake up
1718 dl 1.178 * another worker to possibly repeat this process.
1719 dl 1.52 *
1720 dl 1.78 * @param w the calling worker
1721 dl 1.200 * param r a random seed (for spins)
1722     * @return false if the worker should terminate
1723 dl 1.14 */
1724 dl 1.200 private boolean awaitWork(WorkQueue w, int r) {
1725     if (w == null || w.qlock < 0) // w is terminating
1726     return false;
1727     for (int pred = w.stackPred, spins = SPINS, ss;;) {
1728     if ((ss = w.scanState) >= 0)
1729     break;
1730     else if (spins > 0) {
1731     r ^= r << 6; r ^= r >>> 21; r ^= r << 7;
1732     if (r >= 0 && --spins == 0) { // randomize spins
1733     WorkQueue v; WorkQueue[] ws; int s, j;
1734     if (pred != 0 && (ws = workQueues) != null &&
1735     (j = pred & SMASK) < ws.length &&
1736     (v = ws[j]) != null && // see if pred parking
1737     (v.parker == null || v.scanState >= 0))
1738 jsr166 1.202 spins = SPINS; // continue spinning
1739 dl 1.200 else if ((s = w.nsteals) != 0) {
1740     w.nsteals = 0; // collect steals
1741     U.getAndAddLong(this, STEALCOUNT, s);
1742     }
1743     }
1744 dl 1.177 }
1745 dl 1.200 else if (w.qlock < 0) // recheck after spins
1746     return false;
1747     else if (!Thread.interrupted()) {
1748     long c, prevctl, parkTime, deadline;
1749     if ((runState & STOP) != 0) // pool terminating
1750     return false;
1751     int ac = (int)((c = ctl) >> AC_SHIFT) + (config & SMASK);
1752     if (ac <= 0 && tryTerminate(false, false))
1753     return false;
1754     if (ac <= 0 && ss == (int)c) { // is last waiter
1755     prevctl = (UC_MASK & (c + AC_UNIT)) | (SP_MASK & pred);
1756 dl 1.205 int t = (short)(c >>> TC_SHIFT); // shrink excess spares
1757     if (t > 2 && U.compareAndSwapLong(this, CTL, c, prevctl))
1758 dl 1.208 return false; // else use timed wait
1759 dl 1.205 parkTime = IDLE_TIMEOUT * ((t >= 0) ? 1 : 1 - t);
1760 dl 1.178 deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
1761     }
1762     else
1763 dl 1.200 prevctl = parkTime = deadline = 0L;
1764     Thread wt = Thread.currentThread();
1765     U.putObject(wt, PARKBLOCKER, this); // emulate LockSupport
1766     w.parker = wt;
1767     if (w.scanState < 0 && ctl == c) // recheck before park
1768     U.park(false, parkTime);
1769     U.putOrderedObject(w, QPARKER, null);
1770     U.putObject(wt, PARKBLOCKER, null);
1771     if (w.scanState >= 0)
1772     break;
1773     if (parkTime != 0L && ctl == c &&
1774     deadline - System.nanoTime() <= 0L &&
1775     U.compareAndSwapLong(this, CTL, c, prevctl))
1776     return false; // shrink pool
1777 dl 1.120 }
1778     }
1779 dl 1.200 return true;
1780 dl 1.178 }
1781    
1782 dl 1.200 // Joining tasks
1783    
1784 dl 1.178 /**
1785 dl 1.200 * Tries to steal and run tasks within the target's computation.
1786     * Uses a variant of the top-level algorithm, restricted to tasks
1787     * with the given task as ancestor: It prefers taking and running
1788     * eligible tasks popped from the worker's own queue (via
1789     * popCC). Otherwise it scans others, randomly moving on
1790     * contention or execution, deciding to give up based on a
1791     * checksum (via return codes frob pollAndExecCC). The maxTasks
1792     * argument supports external usages; internal calls use zero,
1793     * allowing unbounded steps (external calls trap non-positive
1794     * values).
1795     *
1796     * @param w caller
1797 jsr166 1.202 * @param maxTasks if non-zero, the maximum number of other tasks to run
1798 dl 1.200 * @return task status on exit
1799     */
1800     final int helpComplete(WorkQueue w, CountedCompleter<?> task,
1801     int maxTasks) {
1802     WorkQueue[] ws; int s = 0, m;
1803     if ((ws = workQueues) != null && (m = ws.length - 1) >= 0 &&
1804     task != null && w != null) {
1805     int mode = w.config; // for popCC
1806     int r = w.hint ^ w.top; // arbitrary seed for origin
1807     int origin = r & m; // first queue to scan
1808     int h = 1; // 1:ran, >1:contended, <0:hash
1809     for (int k = origin, oldSum = 0, checkSum = 0;;) {
1810     CountedCompleter<?> p; WorkQueue q;
1811     if ((s = task.status) < 0)
1812     break;
1813     if (h == 1 && (p = w.popCC(task, mode)) != null) {
1814     p.doExec(); // run local task
1815     if (maxTasks != 0 && --maxTasks == 0)
1816     break;
1817     origin = k; // reset
1818     oldSum = checkSum = 0;
1819     }
1820     else { // poll other queues
1821     if ((q = ws[k]) == null)
1822     h = 0;
1823     else if ((h = q.pollAndExecCC(task)) < 0)
1824     checkSum += h;
1825     if (h > 0) {
1826     if (h == 1 && maxTasks != 0 && --maxTasks == 0)
1827     break;
1828     r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
1829     origin = k = r & m; // move and restart
1830     oldSum = checkSum = 0;
1831     }
1832     else if ((k = (k + 1) & m) == origin) {
1833     if (oldSum == (oldSum = checkSum))
1834     break;
1835     checkSum = 0;
1836     }
1837     }
1838 dl 1.178 }
1839     }
1840 dl 1.200 return s;
1841 dl 1.120 }
1842    
1843     /**
1844 dl 1.78 * Tries to locate and execute tasks for a stealer of the given
1845     * task, or in turn one of its stealers, Traces currentSteal ->
1846     * currentJoin links looking for a thread working on a descendant
1847     * of the given task and with a non-empty queue to steal back and
1848     * execute tasks from. The first call to this method upon a
1849     * waiting join will often entail scanning/search, (which is OK
1850     * because the joiner has nothing better to do), but this method
1851 dl 1.200 * leaves hints in workers to speed up subsequent calls.
1852 dl 1.78 *
1853 dl 1.200 * @param w caller
1854 dl 1.78 * @param task the task to join
1855     */
1856 dl 1.200 private void helpStealer(WorkQueue w, ForkJoinTask<?> task) {
1857     WorkQueue[] ws = workQueues;
1858     int oldSum = 0, checkSum, m;
1859     if (ws != null && (m = ws.length - 1) >= 0 && w != null &&
1860     task != null) {
1861     do { // restart point
1862     checkSum = 0; // for stability check
1863     ForkJoinTask<?> subtask;
1864     WorkQueue j = w, v; // v is subtask stealer
1865     descent: for (subtask = task; subtask.status >= 0; ) {
1866     for (int h = j.hint | 1, k = 0, i; ; k += 2) {
1867     if (k > m) // can't find stealer
1868     break descent;
1869     if ((v = ws[i = (h + k) & m]) != null) {
1870     if (v.currentSteal == subtask) {
1871     j.hint = i;
1872 dl 1.95 break;
1873     }
1874 dl 1.200 checkSum += v.base;
1875 dl 1.78 }
1876     }
1877 dl 1.200 for (;;) { // help v or descend
1878 jsr166 1.195 ForkJoinTask<?>[] a; int b;
1879 dl 1.200 checkSum += (b = v.base);
1880     ForkJoinTask<?> next = v.currentJoin;
1881     if (subtask.status < 0 || j.currentJoin != subtask ||
1882     v.currentSteal != subtask) // stale
1883     break descent;
1884     if (b - v.top >= 0 || (a = v.array) == null) {
1885     if ((subtask = next) == null)
1886     break descent;
1887     j = v;
1888     break;
1889 dl 1.95 }
1890 dl 1.200 int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1891     ForkJoinTask<?> t = ((ForkJoinTask<?>)
1892     U.getObjectVolatile(a, i));
1893     if (v.base == b) {
1894     if (t == null) // stale
1895     break descent;
1896     if (U.compareAndSwapObject(a, i, t, null)) {
1897     v.base = b + 1;
1898     ForkJoinTask<?> ps = w.currentSteal;
1899 dl 1.205 int top = w.top;
1900     do {
1901     U.putOrderedObject(w, QCURRENTSTEAL, t);
1902     t.doExec(); // clear local tasks too
1903     } while (task.status >= 0 &&
1904     w.top != top &&
1905     (t = w.pop()) != null);
1906 dl 1.200 U.putOrderedObject(w, QCURRENTSTEAL, ps);
1907 dl 1.205 if (w.base != w.top)
1908 dl 1.200 return; // can't further help
1909 dl 1.95 }
1910 dl 1.78 }
1911 dl 1.52 }
1912 dl 1.19 }
1913 dl 1.200 } while (task.status >= 0 && oldSum != (oldSum = checkSum));
1914 dl 1.14 }
1915 dl 1.22 }
1916    
1917 dl 1.52 /**
1918 dl 1.200 * Tries to decrement active count (sometimes implicitly) and
1919     * possibly release or create a compensating worker in preparation
1920     * for blocking. Returns false (retryable by caller), on
1921 dl 1.208 * contention, detected staleness, instability, or termination.
1922 dl 1.105 *
1923 dl 1.200 * @param w caller
1924 dl 1.19 */
1925 dl 1.200 private boolean tryCompensate(WorkQueue w) {
1926     boolean canBlock;
1927     WorkQueue[] ws; long c; int m, pc, sp;
1928     if (w == null || w.qlock < 0 || // caller terminating
1929     (ws = workQueues) == null || (m = ws.length - 1) <= 0 ||
1930     (pc = config & SMASK) == 0) // parallelism disabled
1931     canBlock = false;
1932     else if ((sp = (int)(c = ctl)) != 0) // release idle worker
1933     canBlock = tryRelease(c, ws[sp & m], 0L);
1934     else {
1935     int ac = (int)(c >> AC_SHIFT) + pc;
1936     int tc = (short)(c >> TC_SHIFT) + pc;
1937     int nbusy = 0; // validate saturation
1938     for (int i = 0; i <= m; ++i) { // two passes of odd indices
1939     WorkQueue v;
1940     if ((v = ws[((i << 1) | 1) & m]) != null) {
1941     if ((v.scanState & SCANNING) != 0)
1942 dl 1.190 break;
1943 dl 1.200 ++nbusy;
1944 dl 1.178 }
1945 dl 1.52 }
1946 dl 1.200 if (nbusy != (tc << 1) || ctl != c)
1947     canBlock = false; // unstable or stale
1948     else if (tc >= pc && ac > 1 && w.isEmpty()) {
1949     long nc = ((AC_MASK & (c - AC_UNIT)) |
1950     (~AC_MASK & c)); // uncompensated
1951     canBlock = U.compareAndSwapLong(this, CTL, c, nc);
1952 dl 1.105 }
1953 dl 1.208 else if (tc >= MAX_CAP ||
1954     (this == common && tc >= pc + commonMaxSpares))
1955 dl 1.200 throw new RejectedExecutionException(
1956     "Thread limit exceeded replacing blocked worker");
1957     else { // similar to tryAddWorker
1958     boolean add = false; int rs; // CAS within lock
1959     long nc = ((AC_MASK & c) |
1960     (TC_MASK & (c + TC_UNIT)));
1961     if (((rs = lockRunState()) & STOP) == 0)
1962     add = U.compareAndSwapLong(this, CTL, c, nc);
1963     unlockRunState(rs, rs & ~RSLOCK);
1964     canBlock = add && createWorker(); // throws on exception
1965 dl 1.90 }
1966     }
1967 dl 1.200 return canBlock;
1968 dl 1.90 }
1969    
1970     /**
1971 dl 1.200 * Helps and/or blocks until the given task is done or timeout.
1972 dl 1.90 *
1973 dl 1.200 * @param w caller
1974 dl 1.90 * @param task the task
1975 dl 1.200 * @param if nonzero, deadline for timed waits
1976 dl 1.90 * @return task status on exit
1977     */
1978 dl 1.200 final int awaitJoin(WorkQueue w, ForkJoinTask<?> task, long deadline) {
1979 dl 1.105 int s = 0;
1980 dl 1.200 if (task != null && w != null) {
1981     ForkJoinTask<?> prevJoin = w.currentJoin;
1982     U.putOrderedObject(w, QCURRENTJOIN, task);
1983     CountedCompleter<?> cc = (task instanceof CountedCompleter) ?
1984     (CountedCompleter<?>)task : null;
1985     for (;;) {
1986     if ((s = task.status) < 0)
1987     break;
1988     if (cc != null)
1989     helpComplete(w, cc, 0);
1990     else if (w.base == w.top || w.tryRemoveAndExec(task))
1991     helpStealer(w, task);
1992     if ((s = task.status) < 0)
1993     break;
1994     long ms, ns;
1995     if (deadline == 0L)
1996     ms = 0L;
1997     else if ((ns = deadline - System.nanoTime()) <= 0L)
1998     break;
1999     else if ((ms = TimeUnit.NANOSECONDS.toMillis(ns)) <= 0L)
2000     ms = 1L;
2001     if (tryCompensate(w)) {
2002     task.internalWait(ms);
2003     U.getAndAddLong(this, CTL, AC_UNIT);
2004 dl 1.90 }
2005     }
2006 dl 1.200 U.putOrderedObject(w, QCURRENTJOIN, prevJoin);
2007 dl 1.90 }
2008 dl 1.94 return s;
2009 dl 1.90 }
2010    
2011 dl 1.200 // Specialized scanning
2012 dl 1.90
2013     /**
2014     * Returns a (probably) non-empty steal queue, if one is found
2015 dl 1.131 * during a scan, else null. This method must be retried by
2016     * caller if, by the time it tries to use the queue, it is empty.
2017 dl 1.78 */
2018 dl 1.178 private WorkQueue findNonEmptyStealQueue() {
2019 dl 1.200 int r = ThreadLocalRandom.nextSecondarySeed(), oldSum = 0, checkSum;
2020     do {
2021     checkSum = 0;
2022     WorkQueue[] ws; WorkQueue q; int m, k, b;
2023     if ((ws = workQueues) != null && (m = ws.length - 1) > 0) {
2024     for (int i = 0; i <= m; ++i) {
2025     if ((k = (i + r + m) & m) <= m && k >= 0 &&
2026     (q = ws[k]) != null) {
2027     if ((b = q.base) - q.top < 0)
2028     return q;
2029     checkSum += b;
2030     }
2031 dl 1.52 }
2032     }
2033 dl 1.200 } while (oldSum != (oldSum = checkSum));
2034     return null;
2035 dl 1.22 }
2036    
2037     /**
2038 dl 1.78 * Runs tasks until {@code isQuiescent()}. We piggyback on
2039     * active count ctl maintenance, but rather than blocking
2040     * when tasks cannot be found, we rescan until all others cannot
2041     * find tasks either.
2042     */
2043     final void helpQuiescePool(WorkQueue w) {
2044     for (boolean active = true;;) {
2045 dl 1.131 long c; WorkQueue q; ForkJoinTask<?> t; int b;
2046 dl 1.172 while ((t = w.nextLocalTask()) != null)
2047 dl 1.131 t.doExec();
2048 dl 1.178 if ((q = findNonEmptyStealQueue()) != null) {
2049 dl 1.78 if (!active) { // re-establish active count
2050     active = true;
2051 dl 1.200 U.getAndAddLong(this, CTL, AC_UNIT);
2052     }
2053     if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2054     ForkJoinTask<?> ps = w.currentSteal;
2055     U.putOrderedObject(w, QCURRENTSTEAL, t);
2056     t.doExec();
2057     U.putOrderedObject(w, QCURRENTSTEAL, ps);
2058     ++w.nsteals;
2059 dl 1.178 }
2060 dl 1.78 }
2061 jsr166 1.194 else if (active) { // decrement active count without queuing
2062 dl 1.200 long nc = (AC_MASK & ((c = ctl) - AC_UNIT)) | (~AC_MASK & c);
2063     if ((int)(nc >> AC_SHIFT) + (config & SMASK) <= 0)
2064 dl 1.185 break; // bypass decrement-then-increment
2065 dl 1.131 if (U.compareAndSwapLong(this, CTL, c, nc))
2066 dl 1.78 active = false;
2067 dl 1.22 }
2068 dl 1.200 else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) <= 0 &&
2069     U.compareAndSwapLong(this, CTL, c, c + AC_UNIT))
2070 dl 1.185 break;
2071 dl 1.22 }
2072     }
2073    
2074     /**
2075 jsr166 1.84 * Gets and removes a local or stolen task for the given worker.
2076 dl 1.78 *
2077     * @return a task, if available
2078 dl 1.22 */
2079 dl 1.78 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2080     for (ForkJoinTask<?> t;;) {
2081 dl 1.90 WorkQueue q; int b;
2082 dl 1.78 if ((t = w.nextLocalTask()) != null)
2083     return t;
2084 dl 1.178 if ((q = findNonEmptyStealQueue()) == null)
2085 dl 1.78 return null;
2086 dl 1.172 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2087 dl 1.78 return t;
2088 dl 1.52 }
2089 dl 1.14 }
2090    
2091     /**
2092 dl 1.105 * Returns a cheap heuristic guide for task partitioning when
2093     * programmers, frameworks, tools, or languages have little or no
2094     * idea about task granularity. In essence by offering this
2095     * method, we ask users only about tradeoffs in overhead vs
2096     * expected throughput and its variance, rather than how finely to
2097     * partition tasks.
2098     *
2099     * In a steady state strict (tree-structured) computation, each
2100     * thread makes available for stealing enough tasks for other
2101     * threads to remain active. Inductively, if all threads play by
2102     * the same rules, each thread should make available only a
2103     * constant number of tasks.
2104     *
2105     * The minimum useful constant is just 1. But using a value of 1
2106     * would require immediate replenishment upon each steal to
2107     * maintain enough tasks, which is infeasible. Further,
2108     * partitionings/granularities of offered tasks should minimize
2109     * steal rates, which in general means that threads nearer the top
2110     * of computation tree should generate more than those nearer the
2111     * bottom. In perfect steady state, each thread is at
2112     * approximately the same level of computation tree. However,
2113     * producing extra tasks amortizes the uncertainty of progress and
2114     * diffusion assumptions.
2115     *
2116 jsr166 1.161 * So, users will want to use values larger (but not much larger)
2117 dl 1.105 * than 1 to both smooth over transient shortages and hedge
2118     * against uneven progress; as traded off against the cost of
2119     * extra task overhead. We leave the user to pick a threshold
2120     * value to compare with the results of this call to guide
2121     * decisions, but recommend values such as 3.
2122     *
2123     * When all threads are active, it is on average OK to estimate
2124     * surplus strictly locally. In steady-state, if one thread is
2125     * maintaining say 2 surplus tasks, then so are others. So we can
2126     * just use estimated queue length. However, this strategy alone
2127     * leads to serious mis-estimates in some non-steady-state
2128     * conditions (ramp-up, ramp-down, other stalls). We can detect
2129     * many of these by further considering the number of "idle"
2130     * threads, that are known to have zero queued tasks, so
2131     * compensate by a factor of (#idle/#active) threads.
2132     */
2133     static int getSurplusQueuedTaskCount() {
2134     Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2135     if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2136 dl 1.200 int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).
2137     config & SMASK;
2138 dl 1.112 int n = (q = wt.workQueue).top - q.base;
2139 dl 1.105 int a = (int)(pool.ctl >> AC_SHIFT) + p;
2140 dl 1.112 return n - (a > (p >>>= 1) ? 0 :
2141     a > (p >>>= 1) ? 1 :
2142     a > (p >>>= 1) ? 2 :
2143     a > (p >>>= 1) ? 4 :
2144     8);
2145 dl 1.105 }
2146     return 0;
2147 dl 1.100 }
2148    
2149 dl 1.86 // Termination
2150 dl 1.14
2151     /**
2152 dl 1.200 * Possibly initiates and/or completes termination. When
2153     * terminating (STOP phase), runs three passes through workQueues:
2154     * (0) Setting termination status (which also stops external
2155     * submitters by locking queues), (1) cancelling all tasks; (2)
2156     * interrupting lagging threads (likely in external tasks, but
2157     * possibly also blocked in joins). Each pass repeats previous
2158     * steps because of potential lagging thread creation.
2159 dl 1.14 *
2160     * @param now if true, unconditionally terminate, else only
2161 dl 1.78 * if no work and no active workers
2162 jsr166 1.87 * @param enable if true, enable shutdown when next possible
2163 dl 1.14 * @return true if now terminating or terminated
2164 jsr166 1.1 */
2165 dl 1.86 private boolean tryTerminate(boolean now, boolean enable) {
2166 dl 1.200 int rs;
2167     if (this == common) // cannot shut down
2168 dl 1.105 return false;
2169 dl 1.205 if ((rs = runState) >= 0) { // else already shutdown
2170 dl 1.131 if (!enable)
2171     return false;
2172 dl 1.205 rs = lockRunState(); // enable
2173 dl 1.200 unlockRunState(rs, (rs & ~RSLOCK) | SHUTDOWN);
2174     }
2175 jsr166 1.204 if ((rs & STOP) == 0) {
2176 dl 1.206 if (!now) {
2177 dl 1.209 for (int oldSum = 0, checkSum = 0;;) {
2178     WorkQueue[] ws; WorkQueue w; int m, b;
2179     if ((int)(ctl >> AC_SHIFT) + (config & SMASK) > 0)
2180     return false; // not quiescent
2181     if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
2182     break; // scan for submissions
2183     for (int i = 0; i <= m; ++i) {
2184     if ((w = ws[i]) != null) {
2185     if ((i & 1) == 0)
2186     w.qlock = -1; // disable external queue
2187     else if (w.scanState >= 0)
2188     return false; // still active
2189     if ((b = w.base) != w.top )
2190     return false;
2191     checkSum += b;
2192 dl 1.206 }
2193 dl 1.203 }
2194 dl 1.209 if (oldSum == (oldSum = checkSum))
2195     break; // continue until stable
2196     checkSum = 0;
2197 dl 1.203 }
2198     }
2199 dl 1.205 rs = lockRunState(); // enter STOP phase
2200 dl 1.209 int ns = rs & STOP;
2201     if (ns != 0 || !now ||
2202     (int)(ctl >> AC_SHIFT) + (config & SMASK) <= 0)
2203     ns = STOP; // recheck under lock
2204     unlockRunState(rs, (rs & ~RSLOCK) | ns);
2205     if (ns == 0)
2206     return false;
2207 dl 1.200 }
2208     for (int pass = 0; pass < 3; ++pass) { // clobber other workers
2209     WorkQueue[] ws; int n;
2210     if ((ws = workQueues) != null && (n = ws.length) > 0) {
2211     WorkQueue w; Thread wt;
2212     for (int i = 0; i < n; ++i) {
2213     if ((w = ws[i]) != null) {
2214     w.qlock = -1;
2215     if (pass > 0) {
2216     w.cancelAll(); // clear queue
2217     if (pass > 1 && (wt = w.owner) != null) {
2218     if (!wt.isInterrupted()) {
2219     try {
2220     wt.interrupt();
2221     } catch (Throwable ignore) {
2222     }
2223     }
2224     U.unpark(wt); // wake up
2225     }
2226     }
2227 dl 1.101 }
2228 dl 1.78 }
2229     }
2230 dl 1.200 }
2231     if ((short)(ctl >>> TC_SHIFT) + (config & SMASK) <= 0) {
2232     rs = lockRunState(); // done -- no more workers
2233     unlockRunState(rs, (rs & ~RSLOCK) | TERMINATED);
2234     synchronized (this) { // release awaitTermination
2235     notifyAll();
2236     }
2237     }
2238     return true;
2239     }
2240    
2241     // External operations
2242    
2243     /**
2244     * Full version of externalPush, handling uncommon cases, as well
2245     * as performing secondary initialization upon the first
2246     * submission of the first task to the pool. It also detects
2247     * first submission by an external thread and creates a new shared
2248     * queue if the one at index if empty or contended.
2249     *
2250     * @param task the task. Caller must ensure non-null.
2251     */
2252     private void externalSubmit(ForkJoinTask<?> task) {
2253     int r; // initialize caller's probe
2254     if ((r = ThreadLocalRandom.getProbe()) == 0) {
2255     ThreadLocalRandom.localInit();
2256     r = ThreadLocalRandom.getProbe();
2257     }
2258     for (;;) {
2259     WorkQueue[] ws; WorkQueue q; int rs, m, k;
2260     boolean move = false;
2261 dl 1.205 if ((rs = runState) < 0)
2262 dl 1.200 throw new RejectedExecutionException();
2263     else if ((rs & STARTED) == 0 || // initialize workQueues array
2264     ((ws = workQueues) == null || (m = ws.length - 1) < 0)) {
2265     int ns = 0;
2266     rs = lockRunState();
2267     try {
2268     if ((rs & STARTED) == 0) { // find power of two table size
2269     int p = config & SMASK; // ensure at least 2 slots
2270     int n = (p > 1) ? p - 1 : 1;
2271     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4;
2272     n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1;
2273     workQueues = new WorkQueue[n];
2274     ns = STARTED;
2275 dl 1.78 }
2276 dl 1.200 } finally {
2277     unlockRunState(rs, (rs & ~RSLOCK) | ns);
2278 dl 1.52 }
2279     }
2280 dl 1.200 else if ((q = ws[k = r & m & SQMASK]) != null) {
2281     if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2282     ForkJoinTask<?>[] a = q.array;
2283     int s = q.top;
2284     boolean submitted = false; // initial submission or resizing
2285     try { // locked version of push
2286     if ((a != null && a.length > s + 1 - q.base) ||
2287     (a = q.growArray()) != null) {
2288     int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
2289     U.putOrderedObject(a, j, task);
2290     U.putOrderedInt(q, QTOP, s + 1);
2291     submitted = true;
2292 dl 1.86 }
2293 dl 1.200 } finally {
2294 dl 1.209 U.compareAndSwapInt(q, QLOCK, 1, 0);
2295 dl 1.200 }
2296     if (submitted) {
2297     signalWork(ws, q);
2298     return;
2299 dl 1.78 }
2300 dl 1.52 }
2301 dl 1.200 move = true; // move on failure
2302 dl 1.52 }
2303 dl 1.200 else if (((rs = runState) & RSLOCK) == 0) { // create new queue
2304     q = new WorkQueue(this, null);
2305     q.hint = r;
2306     q.config = k | SHARED_QUEUE;
2307     rs = lockRunState(); // publish index
2308 dl 1.209 if (rs > 0 && (ws = workQueues) != null &&
2309     k < ws.length && ws[k] == null)
2310 dl 1.200 ws[k] = q; // else terminated
2311     unlockRunState(rs, rs & ~RSLOCK);
2312     }
2313     else
2314     move = true; // move if busy
2315     if (move)
2316     r = ThreadLocalRandom.advanceProbe(r);
2317 dl 1.52 }
2318     }
2319    
2320 dl 1.200 /**
2321     * Tries to add the given task to a submission queue at
2322     * submitter's current queue. Only the (vastly) most common path
2323     * is directly handled in this method, while screening for need
2324     * for externalSubmit.
2325     *
2326     * @param task the task. Caller must ensure non-null.
2327     */
2328     final void externalPush(ForkJoinTask<?> task) {
2329     WorkQueue[] ws; WorkQueue q; int m;
2330     int r = ThreadLocalRandom.getProbe();
2331 dl 1.205 int rs = runState;
2332 dl 1.200 if ((ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
2333 dl 1.205 (q = ws[m & r & SQMASK]) != null && r != 0 && rs > 0 &&
2334 dl 1.200 U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2335     ForkJoinTask<?>[] a; int am, n, s;
2336     if ((a = q.array) != null &&
2337     (am = a.length - 1) > (n = (s = q.top) - q.base)) {
2338     int j = ((am & s) << ASHIFT) + ABASE;
2339     U.putOrderedObject(a, j, task);
2340     U.putOrderedInt(q, QTOP, s + 1);
2341     U.putOrderedInt(q, QLOCK, 0);
2342 dl 1.205 if (n <= 1)
2343 dl 1.200 signalWork(ws, q);
2344     return;
2345     }
2346 dl 1.209 U.compareAndSwapInt(q, QLOCK, 1, 0);
2347 dl 1.200 }
2348     externalSubmit(task);
2349     }
2350 dl 1.105
2351     /**
2352 dl 1.200 * Returns common pool queue for an external thread
2353 dl 1.105 */
2354     static WorkQueue commonSubmitterQueue() {
2355 dl 1.200 ForkJoinPool p = common;
2356     int r = ThreadLocalRandom.getProbe();
2357     WorkQueue[] ws; int m;
2358     return (p != null && (ws = p.workQueues) != null &&
2359 dl 1.105 (m = ws.length - 1) >= 0) ?
2360 dl 1.200 ws[m & r & SQMASK] : null;
2361 dl 1.105 }
2362    
2363     /**
2364 dl 1.200 * Performs tryUnpush for an external submitter: Finds queue,
2365     * locks if apparently non-empty, validates upon locking, and
2366     * adjusts top. Each check can fail but rarely does.
2367 dl 1.105 */
2368 dl 1.178 final boolean tryExternalUnpush(ForkJoinTask<?> task) {
2369 dl 1.200 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?>[] a; int m, s;
2370     int r = ThreadLocalRandom.getProbe();
2371     if ((ws = workQueues) != null && (m = ws.length - 1) >= 0 &&
2372     (w = ws[m & r & SQMASK]) != null &&
2373     (a = w.array) != null && (s = w.top) != w.base) {
2374 dl 1.115 long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
2375 dl 1.200 if (U.compareAndSwapInt(w, QLOCK, 0, 1)) {
2376     if (w.top == s && w.array == a &&
2377     U.getObject(a, j) == task &&
2378 dl 1.178 U.compareAndSwapObject(a, j, task, null)) {
2379 dl 1.200 U.putOrderedInt(w, QTOP, s - 1);
2380     U.putOrderedInt(w, QLOCK, 0);
2381     return true;
2382 dl 1.115 }
2383 dl 1.209 U.compareAndSwapInt(w, QLOCK, 1, 0);
2384 dl 1.105 }
2385     }
2386 dl 1.200 return false;
2387 dl 1.105 }
2388    
2389 dl 1.200 /**
2390     * Performs helpComplete for an external submitter
2391     */
2392 dl 1.190 final int externalHelpComplete(CountedCompleter<?> task, int maxTasks) {
2393 dl 1.200 WorkQueue[] ws; int n;
2394     int r = ThreadLocalRandom.getProbe();
2395     return ((ws = workQueues) == null || (n = ws.length) == 0) ? 0 :
2396     helpComplete(ws[(n - 1) & r & SQMASK], task, maxTasks);
2397 dl 1.105 }
2398    
2399 dl 1.52 // Exported methods
2400 jsr166 1.1
2401     // Constructors
2402    
2403     /**
2404 jsr166 1.9 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2405 dl 1.18 * java.lang.Runtime#availableProcessors}, using the {@linkplain
2406     * #defaultForkJoinWorkerThreadFactory default thread factory},
2407     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2408 jsr166 1.1 *
2409     * @throws SecurityException if a security manager exists and
2410     * the caller is not permitted to modify threads
2411     * because it does not hold {@link
2412     * java.lang.RuntimePermission}{@code ("modifyThread")}
2413     */
2414     public ForkJoinPool() {
2415 jsr166 1.148 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2416     defaultForkJoinWorkerThreadFactory, null, false);
2417 jsr166 1.1 }
2418    
2419     /**
2420 jsr166 1.9 * Creates a {@code ForkJoinPool} with the indicated parallelism
2421 dl 1.18 * level, the {@linkplain
2422     * #defaultForkJoinWorkerThreadFactory default thread factory},
2423     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2424 jsr166 1.1 *
2425 jsr166 1.9 * @param parallelism the parallelism level
2426 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
2427 jsr166 1.11 * equal to zero, or greater than implementation limit
2428 jsr166 1.1 * @throws SecurityException if a security manager exists and
2429     * the caller is not permitted to modify threads
2430     * because it does not hold {@link
2431     * java.lang.RuntimePermission}{@code ("modifyThread")}
2432     */
2433     public ForkJoinPool(int parallelism) {
2434 dl 1.18 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2435 jsr166 1.1 }
2436    
2437     /**
2438 dl 1.18 * Creates a {@code ForkJoinPool} with the given parameters.
2439 jsr166 1.1 *
2440 dl 1.18 * @param parallelism the parallelism level. For default value,
2441     * use {@link java.lang.Runtime#availableProcessors}.
2442     * @param factory the factory for creating new threads. For default value,
2443     * use {@link #defaultForkJoinWorkerThreadFactory}.
2444 dl 1.19 * @param handler the handler for internal worker threads that
2445     * terminate due to unrecoverable errors encountered while executing
2446 jsr166 1.31 * tasks. For default value, use {@code null}.
2447 dl 1.19 * @param asyncMode if true,
2448 dl 1.18 * establishes local first-in-first-out scheduling mode for forked
2449     * tasks that are never joined. This mode may be more appropriate
2450     * than default locally stack-based mode in applications in which
2451     * worker threads only process event-style asynchronous tasks.
2452 jsr166 1.31 * For default value, use {@code false}.
2453 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
2454 jsr166 1.11 * equal to zero, or greater than implementation limit
2455     * @throws NullPointerException if the factory is null
2456 jsr166 1.1 * @throws SecurityException if a security manager exists and
2457     * the caller is not permitted to modify threads
2458     * because it does not hold {@link
2459     * java.lang.RuntimePermission}{@code ("modifyThread")}
2460     */
2461 dl 1.19 public ForkJoinPool(int parallelism,
2462 dl 1.18 ForkJoinWorkerThreadFactory factory,
2463 jsr166 1.156 UncaughtExceptionHandler handler,
2464 dl 1.18 boolean asyncMode) {
2465 dl 1.152 this(checkParallelism(parallelism),
2466     checkFactory(factory),
2467     handler,
2468 jsr166 1.201 asyncMode ? FIFO_QUEUE : LIFO_QUEUE,
2469 dl 1.152 "ForkJoinPool-" + nextPoolId() + "-worker-");
2470 dl 1.14 checkPermission();
2471 dl 1.152 }
2472    
2473     private static int checkParallelism(int parallelism) {
2474     if (parallelism <= 0 || parallelism > MAX_CAP)
2475     throw new IllegalArgumentException();
2476     return parallelism;
2477     }
2478    
2479     private static ForkJoinWorkerThreadFactory checkFactory
2480     (ForkJoinWorkerThreadFactory factory) {
2481 dl 1.14 if (factory == null)
2482     throw new NullPointerException();
2483 dl 1.152 return factory;
2484     }
2485    
2486     /**
2487     * Creates a {@code ForkJoinPool} with the given parameters, without
2488     * any security checks or parameter validation. Invoked directly by
2489     * makeCommonPool.
2490     */
2491     private ForkJoinPool(int parallelism,
2492     ForkJoinWorkerThreadFactory factory,
2493 jsr166 1.156 UncaughtExceptionHandler handler,
2494 dl 1.185 int mode,
2495 dl 1.152 String workerNamePrefix) {
2496     this.workerNamePrefix = workerNamePrefix;
2497 jsr166 1.1 this.factory = factory;
2498 dl 1.18 this.ueh = handler;
2499 dl 1.200 this.config = (parallelism & SMASK) | mode;
2500 dl 1.52 long np = (long)(-parallelism); // offset ctl counts
2501     this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2502 dl 1.101 }
2503    
2504     /**
2505 dl 1.128 * Returns the common pool instance. This pool is statically
2506 dl 1.134 * constructed; its run state is unaffected by attempts to {@link
2507     * #shutdown} or {@link #shutdownNow}. However this pool and any
2508     * ongoing processing are automatically terminated upon program
2509     * {@link System#exit}. Any program that relies on asynchronous
2510     * task processing to complete before program termination should
2511 jsr166 1.158 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2512     * before exit.
2513 dl 1.100 *
2514     * @return the common pool instance
2515 jsr166 1.138 * @since 1.8
2516 dl 1.100 */
2517     public static ForkJoinPool commonPool() {
2518 dl 1.134 // assert common != null : "static init error";
2519     return common;
2520 dl 1.100 }
2521    
2522 jsr166 1.1 // Execution methods
2523    
2524     /**
2525     * Performs the given task, returning its result upon completion.
2526 dl 1.52 * If the computation encounters an unchecked Exception or Error,
2527     * it is rethrown as the outcome of this invocation. Rethrown
2528     * exceptions behave in the same way as regular exceptions, but,
2529     * when possible, contain stack traces (as displayed for example
2530     * using {@code ex.printStackTrace()}) of both the current thread
2531     * as well as the thread actually encountering the exception;
2532     * minimally only the latter.
2533 jsr166 1.1 *
2534     * @param task the task
2535 jsr166 1.191 * @param <T> the type of the task's result
2536 jsr166 1.1 * @return the task's result
2537 jsr166 1.11 * @throws NullPointerException if the task is null
2538     * @throws RejectedExecutionException if the task cannot be
2539     * scheduled for execution
2540 jsr166 1.1 */
2541     public <T> T invoke(ForkJoinTask<T> task) {
2542 dl 1.90 if (task == null)
2543     throw new NullPointerException();
2544 dl 1.105 externalPush(task);
2545 dl 1.78 return task.join();
2546 jsr166 1.1 }
2547    
2548     /**
2549     * Arranges for (asynchronous) execution of the given task.
2550     *
2551     * @param task the task
2552 jsr166 1.11 * @throws NullPointerException if the task is null
2553     * @throws RejectedExecutionException if the task cannot be
2554     * scheduled for execution
2555 jsr166 1.1 */
2556 jsr166 1.8 public void execute(ForkJoinTask<?> task) {
2557 dl 1.90 if (task == null)
2558     throw new NullPointerException();
2559 dl 1.105 externalPush(task);
2560 jsr166 1.1 }
2561    
2562     // AbstractExecutorService methods
2563    
2564 jsr166 1.11 /**
2565     * @throws NullPointerException if the task is null
2566     * @throws RejectedExecutionException if the task cannot be
2567     * scheduled for execution
2568     */
2569 jsr166 1.1 public void execute(Runnable task) {
2570 dl 1.41 if (task == null)
2571     throw new NullPointerException();
2572 jsr166 1.2 ForkJoinTask<?> job;
2573 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2574     job = (ForkJoinTask<?>) task;
2575 jsr166 1.2 else
2576 dl 1.152 job = new ForkJoinTask.RunnableExecuteAction(task);
2577 dl 1.105 externalPush(job);
2578 jsr166 1.1 }
2579    
2580 jsr166 1.11 /**
2581 dl 1.18 * Submits a ForkJoinTask for execution.
2582     *
2583     * @param task the task to submit
2584 jsr166 1.191 * @param <T> the type of the task's result
2585 dl 1.18 * @return the task
2586     * @throws NullPointerException if the task is null
2587     * @throws RejectedExecutionException if the task cannot be
2588     * scheduled for execution
2589     */
2590     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2591 dl 1.90 if (task == null)
2592     throw new NullPointerException();
2593 dl 1.105 externalPush(task);
2594 dl 1.18 return task;
2595     }
2596    
2597     /**
2598 jsr166 1.11 * @throws NullPointerException if the task is null
2599     * @throws RejectedExecutionException if the task cannot be
2600     * scheduled for execution
2601     */
2602 jsr166 1.1 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2603 dl 1.90 ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2604 dl 1.105 externalPush(job);
2605 jsr166 1.1 return job;
2606     }
2607    
2608 jsr166 1.11 /**
2609     * @throws NullPointerException if the task is null
2610     * @throws RejectedExecutionException if the task cannot be
2611     * scheduled for execution
2612     */
2613 jsr166 1.1 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2614 dl 1.90 ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2615 dl 1.105 externalPush(job);
2616 jsr166 1.1 return job;
2617     }
2618    
2619 jsr166 1.11 /**
2620     * @throws NullPointerException if the task is null
2621     * @throws RejectedExecutionException if the task cannot be
2622     * scheduled for execution
2623     */
2624 jsr166 1.1 public ForkJoinTask<?> submit(Runnable task) {
2625 dl 1.41 if (task == null)
2626     throw new NullPointerException();
2627 jsr166 1.2 ForkJoinTask<?> job;
2628 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2629     job = (ForkJoinTask<?>) task;
2630 jsr166 1.2 else
2631 dl 1.90 job = new ForkJoinTask.AdaptedRunnableAction(task);
2632 dl 1.105 externalPush(job);
2633 jsr166 1.1 return job;
2634     }
2635    
2636     /**
2637 jsr166 1.11 * @throws NullPointerException {@inheritDoc}
2638     * @throws RejectedExecutionException {@inheritDoc}
2639     */
2640 jsr166 1.1 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2641 dl 1.86 // In previous versions of this class, this method constructed
2642     // a task to run ForkJoinTask.invokeAll, but now external
2643     // invocation of multiple tasks is at least as efficient.
2644 jsr166 1.199 ArrayList<Future<T>> futures = new ArrayList<>(tasks.size());
2645 jsr166 1.1
2646 dl 1.86 boolean done = false;
2647     try {
2648     for (Callable<T> t : tasks) {
2649 dl 1.90 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2650 jsr166 1.144 futures.add(f);
2651 dl 1.105 externalPush(f);
2652 dl 1.86 }
2653 jsr166 1.143 for (int i = 0, size = futures.size(); i < size; i++)
2654     ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2655 dl 1.86 done = true;
2656     return futures;
2657     } finally {
2658     if (!done)
2659 jsr166 1.143 for (int i = 0, size = futures.size(); i < size; i++)
2660     futures.get(i).cancel(false);
2661 jsr166 1.1 }
2662     }
2663    
2664     /**
2665     * Returns the factory used for constructing new workers.
2666     *
2667     * @return the factory used for constructing new workers
2668     */
2669     public ForkJoinWorkerThreadFactory getFactory() {
2670     return factory;
2671     }
2672    
2673     /**
2674     * Returns the handler for internal worker threads that terminate
2675     * due to unrecoverable errors encountered while executing tasks.
2676     *
2677 jsr166 1.4 * @return the handler, or {@code null} if none
2678 jsr166 1.1 */
2679 jsr166 1.156 public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2680 dl 1.14 return ueh;
2681 jsr166 1.1 }
2682    
2683     /**
2684 jsr166 1.9 * Returns the targeted parallelism level of this pool.
2685 jsr166 1.1 *
2686 jsr166 1.9 * @return the targeted parallelism level of this pool
2687 jsr166 1.1 */
2688     public int getParallelism() {
2689 dl 1.185 int par;
2690 dl 1.200 return ((par = config & SMASK) > 0) ? par : 1;
2691 jsr166 1.1 }
2692    
2693     /**
2694 dl 1.100 * Returns the targeted parallelism level of the common pool.
2695     *
2696     * @return the targeted parallelism level of the common pool
2697 jsr166 1.138 * @since 1.8
2698 dl 1.100 */
2699     public static int getCommonPoolParallelism() {
2700 dl 1.134 return commonParallelism;
2701 dl 1.100 }
2702    
2703     /**
2704 jsr166 1.1 * Returns the number of worker threads that have started but not
2705 jsr166 1.34 * yet terminated. The result returned by this method may differ
2706 jsr166 1.4 * from {@link #getParallelism} when threads are created to
2707 jsr166 1.1 * maintain parallelism when others are cooperatively blocked.
2708     *
2709     * @return the number of worker threads
2710     */
2711     public int getPoolSize() {
2712 dl 1.200 return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2713 jsr166 1.1 }
2714    
2715     /**
2716 jsr166 1.4 * Returns {@code true} if this pool uses local first-in-first-out
2717 jsr166 1.1 * scheduling mode for forked tasks that are never joined.
2718     *
2719 jsr166 1.4 * @return {@code true} if this pool uses async mode
2720 jsr166 1.1 */
2721     public boolean getAsyncMode() {
2722 dl 1.200 return (config & FIFO_QUEUE) != 0;
2723 jsr166 1.1 }
2724    
2725     /**
2726     * Returns an estimate of the number of worker threads that are
2727     * not blocked waiting to join tasks or for other managed
2728 dl 1.14 * synchronization. This method may overestimate the
2729     * number of running threads.
2730 jsr166 1.1 *
2731     * @return the number of worker threads
2732     */
2733     public int getRunningThreadCount() {
2734 dl 1.78 int rc = 0;
2735     WorkQueue[] ws; WorkQueue w;
2736     if ((ws = workQueues) != null) {
2737 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2738     if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2739 dl 1.78 ++rc;
2740     }
2741     }
2742     return rc;
2743 jsr166 1.1 }
2744    
2745     /**
2746     * Returns an estimate of the number of threads that are currently
2747     * stealing or executing tasks. This method may overestimate the
2748     * number of active threads.
2749     *
2750     * @return the number of active threads
2751     */
2752     public int getActiveThreadCount() {
2753 dl 1.200 int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2754 jsr166 1.63 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2755 jsr166 1.1 }
2756    
2757     /**
2758 jsr166 1.4 * Returns {@code true} if all worker threads are currently idle.
2759     * An idle worker is one that cannot obtain a task to execute
2760     * because none are available to steal from other threads, and
2761     * there are no pending submissions to the pool. This method is
2762     * conservative; it might not return {@code true} immediately upon
2763     * idleness of all threads, but will eventually become true if
2764     * threads remain inactive.
2765 jsr166 1.1 *
2766 jsr166 1.4 * @return {@code true} if all threads are currently idle
2767 jsr166 1.1 */
2768     public boolean isQuiescent() {
2769 dl 1.200 return (config & SMASK) + (int)(ctl >> AC_SHIFT) <= 0;
2770 jsr166 1.1 }
2771    
2772     /**
2773     * Returns an estimate of the total number of tasks stolen from
2774     * one thread's work queue by another. The reported value
2775     * underestimates the actual total number of steals when the pool
2776     * is not quiescent. This value may be useful for monitoring and
2777     * tuning fork/join programs: in general, steal counts should be
2778     * high enough to keep threads busy, but low enough to avoid
2779     * overhead and contention across threads.
2780     *
2781     * @return the number of steals
2782     */
2783     public long getStealCount() {
2784 dl 1.101 long count = stealCount;
2785 dl 1.78 WorkQueue[] ws; WorkQueue w;
2786     if ((ws = workQueues) != null) {
2787 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2788 dl 1.78 if ((w = ws[i]) != null)
2789 dl 1.105 count += w.nsteals;
2790 dl 1.78 }
2791     }
2792     return count;
2793 jsr166 1.1 }
2794    
2795     /**
2796     * Returns an estimate of the total number of tasks currently held
2797     * in queues by worker threads (but not including tasks submitted
2798     * to the pool that have not begun executing). This value is only
2799     * an approximation, obtained by iterating across all threads in
2800     * the pool. This method may be useful for tuning task
2801     * granularities.
2802     *
2803     * @return the number of queued tasks
2804     */
2805     public long getQueuedTaskCount() {
2806     long count = 0;
2807 dl 1.78 WorkQueue[] ws; WorkQueue w;
2808     if ((ws = workQueues) != null) {
2809 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2810 dl 1.78 if ((w = ws[i]) != null)
2811     count += w.queueSize();
2812     }
2813 dl 1.52 }
2814 jsr166 1.1 return count;
2815     }
2816    
2817     /**
2818 jsr166 1.8 * Returns an estimate of the number of tasks submitted to this
2819 dl 1.55 * pool that have not yet begun executing. This method may take
2820 dl 1.52 * time proportional to the number of submissions.
2821 jsr166 1.1 *
2822     * @return the number of queued submissions
2823     */
2824     public int getQueuedSubmissionCount() {
2825 dl 1.78 int count = 0;
2826     WorkQueue[] ws; WorkQueue w;
2827     if ((ws = workQueues) != null) {
2828 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2829 dl 1.78 if ((w = ws[i]) != null)
2830     count += w.queueSize();
2831     }
2832     }
2833     return count;
2834 jsr166 1.1 }
2835    
2836     /**
2837 jsr166 1.4 * Returns {@code true} if there are any tasks submitted to this
2838     * pool that have not yet begun executing.
2839 jsr166 1.1 *
2840     * @return {@code true} if there are any queued submissions
2841     */
2842     public boolean hasQueuedSubmissions() {
2843 dl 1.78 WorkQueue[] ws; WorkQueue w;
2844     if ((ws = workQueues) != null) {
2845 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2846 dl 1.115 if ((w = ws[i]) != null && !w.isEmpty())
2847 dl 1.78 return true;
2848     }
2849     }
2850     return false;
2851 jsr166 1.1 }
2852    
2853     /**
2854     * Removes and returns the next unexecuted submission if one is
2855     * available. This method may be useful in extensions to this
2856     * class that re-assign work in systems with multiple pools.
2857     *
2858 jsr166 1.4 * @return the next submission, or {@code null} if none
2859 jsr166 1.1 */
2860     protected ForkJoinTask<?> pollSubmission() {
2861 dl 1.78 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2862     if ((ws = workQueues) != null) {
2863 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2864 dl 1.78 if ((w = ws[i]) != null && (t = w.poll()) != null)
2865     return t;
2866 dl 1.52 }
2867     }
2868     return null;
2869 jsr166 1.1 }
2870    
2871     /**
2872     * Removes all available unexecuted submitted and forked tasks
2873     * from scheduling queues and adds them to the given collection,
2874     * without altering their execution status. These may include
2875 jsr166 1.8 * artificially generated or wrapped tasks. This method is
2876     * designed to be invoked only when the pool is known to be
2877 jsr166 1.1 * quiescent. Invocations at other times may not remove all
2878     * tasks. A failure encountered while attempting to add elements
2879     * to collection {@code c} may result in elements being in
2880     * neither, either or both collections when the associated
2881     * exception is thrown. The behavior of this operation is
2882     * undefined if the specified collection is modified while the
2883     * operation is in progress.
2884     *
2885     * @param c the collection to transfer elements into
2886     * @return the number of elements transferred
2887     */
2888 jsr166 1.5 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2889 dl 1.52 int count = 0;
2890 dl 1.78 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2891     if ((ws = workQueues) != null) {
2892 dl 1.86 for (int i = 0; i < ws.length; ++i) {
2893 dl 1.78 if ((w = ws[i]) != null) {
2894     while ((t = w.poll()) != null) {
2895     c.add(t);
2896     ++count;
2897     }
2898     }
2899 dl 1.52 }
2900     }
2901 dl 1.18 return count;
2902     }
2903    
2904     /**
2905 jsr166 1.1 * Returns a string identifying this pool, as well as its state,
2906     * including indications of run state, parallelism level, and
2907     * worker and task counts.
2908     *
2909     * @return a string identifying this pool, as well as its state
2910     */
2911     public String toString() {
2912 dl 1.86 // Use a single pass through workQueues to collect counts
2913     long qt = 0L, qs = 0L; int rc = 0;
2914 dl 1.101 long st = stealCount;
2915 dl 1.86 long c = ctl;
2916     WorkQueue[] ws; WorkQueue w;
2917     if ((ws = workQueues) != null) {
2918     for (int i = 0; i < ws.length; ++i) {
2919     if ((w = ws[i]) != null) {
2920     int size = w.queueSize();
2921     if ((i & 1) == 0)
2922     qs += size;
2923     else {
2924     qt += size;
2925 dl 1.105 st += w.nsteals;
2926 dl 1.86 if (w.isApparentlyUnblocked())
2927     ++rc;
2928     }
2929     }
2930     }
2931     }
2932 dl 1.200 int pc = (config & SMASK);
2933 dl 1.52 int tc = pc + (short)(c >>> TC_SHIFT);
2934 dl 1.78 int ac = pc + (int)(c >> AC_SHIFT);
2935     if (ac < 0) // ignore transient negative
2936     ac = 0;
2937 dl 1.200 int rs = runState;
2938     String level = ((rs & TERMINATED) != 0 ? "Terminated" :
2939     (rs & STOP) != 0 ? "Terminating" :
2940     (rs & SHUTDOWN) != 0 ? "Shutting down" :
2941     "Running");
2942 jsr166 1.1 return super.toString() +
2943 dl 1.52 "[" + level +
2944 dl 1.14 ", parallelism = " + pc +
2945     ", size = " + tc +
2946     ", active = " + ac +
2947     ", running = " + rc +
2948 jsr166 1.1 ", steals = " + st +
2949     ", tasks = " + qt +
2950     ", submissions = " + qs +
2951     "]";
2952     }
2953    
2954     /**
2955 dl 1.100 * Possibly initiates an orderly shutdown in which previously
2956     * submitted tasks are executed, but no new tasks will be
2957     * accepted. Invocation has no effect on execution state if this
2958 jsr166 1.137 * is the {@link #commonPool()}, and no additional effect if
2959 dl 1.100 * already shut down. Tasks that are in the process of being
2960     * submitted concurrently during the course of this method may or
2961     * may not be rejected.
2962 jsr166 1.1 *
2963     * @throws SecurityException if a security manager exists and
2964     * the caller is not permitted to modify threads
2965     * because it does not hold {@link
2966     * java.lang.RuntimePermission}{@code ("modifyThread")}
2967     */
2968     public void shutdown() {
2969     checkPermission();
2970 dl 1.105 tryTerminate(false, true);
2971 jsr166 1.1 }
2972    
2973     /**
2974 dl 1.100 * Possibly attempts to cancel and/or stop all tasks, and reject
2975     * all subsequently submitted tasks. Invocation has no effect on
2976 jsr166 1.137 * execution state if this is the {@link #commonPool()}, and no
2977 dl 1.100 * additional effect if already shut down. Otherwise, tasks that
2978     * are in the process of being submitted or executed concurrently
2979     * during the course of this method may or may not be
2980     * rejected. This method cancels both existing and unexecuted
2981     * tasks, in order to permit termination in the presence of task
2982     * dependencies. So the method always returns an empty list
2983     * (unlike the case for some other Executors).
2984 jsr166 1.1 *
2985     * @return an empty list
2986     * @throws SecurityException if a security manager exists and
2987     * the caller is not permitted to modify threads
2988     * because it does not hold {@link
2989     * java.lang.RuntimePermission}{@code ("modifyThread")}
2990     */
2991     public List<Runnable> shutdownNow() {
2992     checkPermission();
2993 dl 1.105 tryTerminate(true, true);
2994 jsr166 1.1 return Collections.emptyList();
2995     }
2996    
2997     /**
2998     * Returns {@code true} if all tasks have completed following shut down.
2999     *
3000     * @return {@code true} if all tasks have completed following shut down
3001     */
3002     public boolean isTerminated() {
3003 dl 1.200 return (runState & TERMINATED) != 0;
3004 jsr166 1.1 }
3005    
3006     /**
3007     * Returns {@code true} if the process of termination has
3008 jsr166 1.9 * commenced but not yet completed. This method may be useful for
3009     * debugging. A return of {@code true} reported a sufficient
3010     * period after shutdown may indicate that submitted tasks have
3011 jsr166 1.119 * ignored or suppressed interruption, or are waiting for I/O,
3012 dl 1.49 * causing this executor not to properly terminate. (See the
3013     * advisory notes for class {@link ForkJoinTask} stating that
3014     * tasks should not normally entail blocking operations. But if
3015     * they do, they must abort them on interrupt.)
3016 jsr166 1.1 *
3017 jsr166 1.9 * @return {@code true} if terminating but not yet terminated
3018 jsr166 1.1 */
3019     public boolean isTerminating() {
3020 dl 1.200 int rs = runState;
3021     return (rs & STOP) != 0 && (rs & TERMINATED) == 0;
3022 jsr166 1.1 }
3023    
3024     /**
3025     * Returns {@code true} if this pool has been shut down.
3026     *
3027     * @return {@code true} if this pool has been shut down
3028     */
3029     public boolean isShutdown() {
3030 dl 1.200 return (runState & SHUTDOWN) != 0;
3031 jsr166 1.9 }
3032    
3033     /**
3034 dl 1.105 * Blocks until all tasks have completed execution after a
3035     * shutdown request, or the timeout occurs, or the current thread
3036 dl 1.134 * is interrupted, whichever happens first. Because the {@link
3037     * #commonPool()} never terminates until program shutdown, when
3038     * applied to the common pool, this method is equivalent to {@link
3039 jsr166 1.158 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
3040 jsr166 1.1 *
3041     * @param timeout the maximum time to wait
3042     * @param unit the time unit of the timeout argument
3043     * @return {@code true} if this executor terminated and
3044     * {@code false} if the timeout elapsed before termination
3045     * @throws InterruptedException if interrupted while waiting
3046     */
3047     public boolean awaitTermination(long timeout, TimeUnit unit)
3048     throws InterruptedException {
3049 dl 1.134 if (Thread.interrupted())
3050     throw new InterruptedException();
3051     if (this == common) {
3052     awaitQuiescence(timeout, unit);
3053     return false;
3054     }
3055 dl 1.52 long nanos = unit.toNanos(timeout);
3056 dl 1.101 if (isTerminated())
3057     return true;
3058 dl 1.183 if (nanos <= 0L)
3059     return false;
3060     long deadline = System.nanoTime() + nanos;
3061 jsr166 1.103 synchronized (this) {
3062 jsr166 1.184 for (;;) {
3063 dl 1.183 if (isTerminated())
3064     return true;
3065     if (nanos <= 0L)
3066     return false;
3067     long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
3068     wait(millis > 0L ? millis : 1L);
3069     nanos = deadline - System.nanoTime();
3070 dl 1.52 }
3071 dl 1.18 }
3072 jsr166 1.1 }
3073    
3074     /**
3075 dl 1.134 * If called by a ForkJoinTask operating in this pool, equivalent
3076     * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3077     * waits and/or attempts to assist performing tasks until this
3078     * pool {@link #isQuiescent} or the indicated timeout elapses.
3079     *
3080     * @param timeout the maximum time to wait
3081     * @param unit the time unit of the timeout argument
3082     * @return {@code true} if quiescent; {@code false} if the
3083     * timeout elapsed.
3084     */
3085     public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3086     long nanos = unit.toNanos(timeout);
3087     ForkJoinWorkerThread wt;
3088     Thread thread = Thread.currentThread();
3089     if ((thread instanceof ForkJoinWorkerThread) &&
3090     (wt = (ForkJoinWorkerThread)thread).pool == this) {
3091     helpQuiescePool(wt.workQueue);
3092     return true;
3093     }
3094     long startTime = System.nanoTime();
3095     WorkQueue[] ws;
3096     int r = 0, m;
3097     boolean found = true;
3098     while (!isQuiescent() && (ws = workQueues) != null &&
3099     (m = ws.length - 1) >= 0) {
3100     if (!found) {
3101     if ((System.nanoTime() - startTime) > nanos)
3102     return false;
3103     Thread.yield(); // cannot block
3104     }
3105     found = false;
3106     for (int j = (m + 1) << 2; j >= 0; --j) {
3107 dl 1.200 ForkJoinTask<?> t; WorkQueue q; int b, k;
3108     if ((k = r++ & m) <= m && k >= 0 && (q = ws[k]) != null &&
3109     (b = q.base) - q.top < 0) {
3110 dl 1.134 found = true;
3111 dl 1.172 if ((t = q.pollAt(b)) != null)
3112 dl 1.134 t.doExec();
3113     break;
3114     }
3115     }
3116     }
3117     return true;
3118     }
3119    
3120     /**
3121     * Waits and/or attempts to assist performing tasks indefinitely
3122 jsr166 1.141 * until the {@link #commonPool()} {@link #isQuiescent}.
3123 dl 1.134 */
3124 dl 1.136 static void quiesceCommonPool() {
3125 dl 1.134 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3126     }
3127    
3128     /**
3129 jsr166 1.1 * Interface for extending managed parallelism for tasks running
3130 jsr166 1.8 * in {@link ForkJoinPool}s.
3131     *
3132 dl 1.19 * <p>A {@code ManagedBlocker} provides two methods. Method
3133     * {@code isReleasable} must return {@code true} if blocking is
3134     * not necessary. Method {@code block} blocks the current thread
3135     * if necessary (perhaps internally invoking {@code isReleasable}
3136 dl 1.54 * before actually blocking). These actions are performed by any
3137 jsr166 1.157 * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
3138     * The unusual methods in this API accommodate synchronizers that
3139     * may, but don't usually, block for long periods. Similarly, they
3140 dl 1.54 * allow more efficient internal handling of cases in which
3141     * additional workers may be, but usually are not, needed to
3142     * ensure sufficient parallelism. Toward this end,
3143     * implementations of method {@code isReleasable} must be amenable
3144     * to repeated invocation.
3145 jsr166 1.1 *
3146     * <p>For example, here is a ManagedBlocker based on a
3147     * ReentrantLock:
3148     * <pre> {@code
3149     * class ManagedLocker implements ManagedBlocker {
3150     * final ReentrantLock lock;
3151     * boolean hasLock = false;
3152     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3153     * public boolean block() {
3154     * if (!hasLock)
3155     * lock.lock();
3156     * return true;
3157     * }
3158     * public boolean isReleasable() {
3159     * return hasLock || (hasLock = lock.tryLock());
3160     * }
3161     * }}</pre>
3162 dl 1.19 *
3163     * <p>Here is a class that possibly blocks waiting for an
3164     * item on a given queue:
3165     * <pre> {@code
3166     * class QueueTaker<E> implements ManagedBlocker {
3167     * final BlockingQueue<E> queue;
3168     * volatile E item = null;
3169     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3170     * public boolean block() throws InterruptedException {
3171     * if (item == null)
3172 dl 1.23 * item = queue.take();
3173 dl 1.19 * return true;
3174     * }
3175     * public boolean isReleasable() {
3176 dl 1.23 * return item != null || (item = queue.poll()) != null;
3177 dl 1.19 * }
3178     * public E getItem() { // call after pool.managedBlock completes
3179     * return item;
3180     * }
3181     * }}</pre>
3182 jsr166 1.1 */
3183     public static interface ManagedBlocker {
3184     /**
3185     * Possibly blocks the current thread, for example waiting for
3186     * a lock or condition.
3187     *
3188 jsr166 1.4 * @return {@code true} if no additional blocking is necessary
3189     * (i.e., if isReleasable would return true)
3190 jsr166 1.1 * @throws InterruptedException if interrupted while waiting
3191     * (the method is not required to do so, but is allowed to)
3192     */
3193     boolean block() throws InterruptedException;
3194    
3195     /**
3196 jsr166 1.4 * Returns {@code true} if blocking is unnecessary.
3197 jsr166 1.154 * @return {@code true} if blocking is unnecessary
3198 jsr166 1.1 */
3199     boolean isReleasable();
3200     }
3201    
3202     /**
3203     * Blocks in accord with the given blocker. If the current thread
3204 jsr166 1.8 * is a {@link ForkJoinWorkerThread}, this method possibly
3205     * arranges for a spare thread to be activated if necessary to
3206 dl 1.18 * ensure sufficient parallelism while the current thread is blocked.
3207 jsr166 1.1 *
3208 jsr166 1.8 * <p>If the caller is not a {@link ForkJoinTask}, this method is
3209     * behaviorally equivalent to
3210 jsr166 1.82 * <pre> {@code
3211 jsr166 1.1 * while (!blocker.isReleasable())
3212     * if (blocker.block())
3213 jsr166 1.196 * return;}</pre>
3214 jsr166 1.8 *
3215     * If the caller is a {@code ForkJoinTask}, then the pool may
3216     * first be expanded to ensure parallelism, and later adjusted.
3217 jsr166 1.1 *
3218     * @param blocker the blocker
3219     * @throws InterruptedException if blocker.block did so
3220     */
3221 dl 1.18 public static void managedBlock(ManagedBlocker blocker)
3222 jsr166 1.1 throws InterruptedException {
3223 dl 1.200 ForkJoinPool p;
3224     ForkJoinWorkerThread wt;
3225 jsr166 1.1 Thread t = Thread.currentThread();
3226 dl 1.200 if ((t instanceof ForkJoinWorkerThread) &&
3227     (p = (wt = (ForkJoinWorkerThread)t).pool) != null) {
3228     WorkQueue w = wt.workQueue;
3229 dl 1.172 while (!blocker.isReleasable()) {
3230 dl 1.200 if (p.tryCompensate(w)) {
3231 dl 1.105 try {
3232     do {} while (!blocker.isReleasable() &&
3233     !blocker.block());
3234     } finally {
3235 dl 1.200 U.getAndAddLong(p, CTL, AC_UNIT);
3236 dl 1.105 }
3237     break;
3238 dl 1.78 }
3239     }
3240 dl 1.18 }
3241 dl 1.105 else {
3242     do {} while (!blocker.isReleasable() &&
3243     !blocker.block());
3244     }
3245 jsr166 1.1 }
3246    
3247 jsr166 1.7 // AbstractExecutorService overrides. These rely on undocumented
3248     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3249     // implement RunnableFuture.
3250 jsr166 1.1
3251     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3252 dl 1.90 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3253 jsr166 1.1 }
3254    
3255     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3256 dl 1.90 return new ForkJoinTask.AdaptedCallable<T>(callable);
3257 jsr166 1.1 }
3258    
3259     // Unsafe mechanics
3260 dl 1.78 private static final sun.misc.Unsafe U;
3261 dl 1.200 private static final int ABASE;
3262     private static final int ASHIFT;
3263 dl 1.78 private static final long CTL;
3264     private static final long PARKBLOCKER;
3265 dl 1.101 private static final long STEALCOUNT;
3266 dl 1.200 private static final long RUNSTATE;
3267 dl 1.170 private static final long QBASE;
3268 dl 1.200 private static final long QTOP;
3269 dl 1.105 private static final long QLOCK;
3270 dl 1.200 private static final long QSCANSTATE;
3271     private static final long QPARKER;
3272     private static final long QCURRENTSTEAL;
3273     private static final long QCURRENTJOIN;
3274 dl 1.52
3275     static {
3276 jsr166 1.142 // initialize field offsets for CAS etc
3277 jsr166 1.3 try {
3278 dl 1.78 U = sun.misc.Unsafe.getUnsafe();
3279 jsr166 1.64 Class<?> k = ForkJoinPool.class;
3280 dl 1.78 CTL = U.objectFieldOffset
3281 dl 1.52 (k.getDeclaredField("ctl"));
3282 dl 1.101 STEALCOUNT = U.objectFieldOffset
3283     (k.getDeclaredField("stealCount"));
3284 dl 1.200 RUNSTATE = U.objectFieldOffset
3285     (k.getDeclaredField("runState"));
3286 dl 1.86 Class<?> tk = Thread.class;
3287 dl 1.78 PARKBLOCKER = U.objectFieldOffset
3288     (tk.getDeclaredField("parkBlocker"));
3289 dl 1.105 Class<?> wk = WorkQueue.class;
3290 dl 1.170 QBASE = U.objectFieldOffset
3291     (wk.getDeclaredField("base"));
3292 dl 1.200 QTOP = U.objectFieldOffset
3293     (wk.getDeclaredField("top"));
3294 dl 1.105 QLOCK = U.objectFieldOffset
3295     (wk.getDeclaredField("qlock"));
3296 dl 1.200 QSCANSTATE = U.objectFieldOffset
3297     (wk.getDeclaredField("scanState"));
3298     QPARKER = U.objectFieldOffset
3299     (wk.getDeclaredField("parker"));
3300     QCURRENTSTEAL = U.objectFieldOffset
3301     (wk.getDeclaredField("currentSteal"));
3302     QCURRENTJOIN = U.objectFieldOffset
3303     (wk.getDeclaredField("currentJoin"));
3304 dl 1.105 Class<?> ak = ForkJoinTask[].class;
3305 dl 1.90 ABASE = U.arrayBaseOffset(ak);
3306 jsr166 1.142 int scale = U.arrayIndexScale(ak);
3307     if ((scale & (scale - 1)) != 0)
3308     throw new Error("data type scale not a power of two");
3309     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3310 dl 1.52 } catch (Exception e) {
3311     throw new Error(e);
3312     }
3313 dl 1.105
3314 dl 1.208 commonMaxSpares = DEFAULT_COMMON_MAX_SPARES;
3315 dl 1.152 defaultForkJoinWorkerThreadFactory =
3316 dl 1.112 new DefaultForkJoinWorkerThreadFactory();
3317 dl 1.115 modifyThreadPermission = new RuntimePermission("modifyThread");
3318    
3319 dl 1.152 common = java.security.AccessController.doPrivileged
3320     (new java.security.PrivilegedAction<ForkJoinPool>() {
3321     public ForkJoinPool run() { return makeCommonPool(); }});
3322 dl 1.200 int par = common.config & SMASK; // report 1 even if threads disabled
3323 dl 1.160 commonParallelism = par > 0 ? par : 1;
3324 dl 1.152 }
3325 dl 1.112
3326 dl 1.152 /**
3327     * Creates and returns the common pool, respecting user settings
3328     * specified via system properties.
3329     */
3330     private static ForkJoinPool makeCommonPool() {
3331 dl 1.160 int parallelism = -1;
3332 dl 1.197 ForkJoinWorkerThreadFactory factory = null;
3333 jsr166 1.156 UncaughtExceptionHandler handler = null;
3334 jsr166 1.189 try { // ignore exceptions in accessing/parsing properties
3335 dl 1.112 String pp = System.getProperty
3336     ("java.util.concurrent.ForkJoinPool.common.parallelism");
3337 dl 1.152 String fp = System.getProperty
3338     ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3339 dl 1.112 String hp = System.getProperty
3340     ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3341 dl 1.208 String mp = System.getProperty
3342     ("java.util.concurrent.ForkJoinPool.common.maximumSpares");
3343 dl 1.152 if (pp != null)
3344     parallelism = Integer.parseInt(pp);
3345 dl 1.112 if (fp != null)
3346 dl 1.152 factory = ((ForkJoinWorkerThreadFactory)ClassLoader.
3347     getSystemClassLoader().loadClass(fp).newInstance());
3348 dl 1.112 if (hp != null)
3349 jsr166 1.156 handler = ((UncaughtExceptionHandler)ClassLoader.
3350 dl 1.112 getSystemClassLoader().loadClass(hp).newInstance());
3351 dl 1.208 if (mp != null)
3352     commonMaxSpares = Integer.parseInt(mp);
3353 dl 1.112 } catch (Exception ignore) {
3354     }
3355 dl 1.197 if (factory == null) {
3356     if (System.getSecurityManager() == null)
3357     factory = defaultForkJoinWorkerThreadFactory;
3358     else // use security-managed default
3359     factory = new InnocuousForkJoinWorkerThreadFactory();
3360     }
3361 dl 1.167 if (parallelism < 0 && // default 1 less than #cores
3362 dl 1.193 (parallelism = Runtime.getRuntime().availableProcessors() - 1) <= 0)
3363     parallelism = 1;
3364 dl 1.152 if (parallelism > MAX_CAP)
3365     parallelism = MAX_CAP;
3366 dl 1.185 return new ForkJoinPool(parallelism, factory, handler, LIFO_QUEUE,
3367 dl 1.152 "ForkJoinPool.commonPool-worker-");
3368 jsr166 1.3 }
3369 dl 1.52
3370 dl 1.197 /**
3371     * Factory for innocuous worker threads
3372     */
3373     static final class InnocuousForkJoinWorkerThreadFactory
3374     implements ForkJoinWorkerThreadFactory {
3375    
3376     /**
3377     * An ACC to restrict permissions for the factory itself.
3378     * The constructed workers have no permissions set.
3379     */
3380     private static final AccessControlContext innocuousAcc;
3381     static {
3382     Permissions innocuousPerms = new Permissions();
3383     innocuousPerms.add(modifyThreadPermission);
3384     innocuousPerms.add(new RuntimePermission(
3385     "enableContextClassLoaderOverride"));
3386     innocuousPerms.add(new RuntimePermission(
3387     "modifyThreadGroup"));
3388     innocuousAcc = new AccessControlContext(new ProtectionDomain[] {
3389     new ProtectionDomain(null, innocuousPerms)
3390     });
3391     }
3392    
3393     public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
3394     return (ForkJoinWorkerThread.InnocuousForkJoinWorkerThread)
3395     java.security.AccessController.doPrivileged(
3396     new java.security.PrivilegedAction<ForkJoinWorkerThread>() {
3397     public ForkJoinWorkerThread run() {
3398     return new ForkJoinWorkerThread.
3399     InnocuousForkJoinWorkerThread(pool);
3400     }}, innocuousAcc);
3401     }
3402     }
3403    
3404 jsr166 1.1 }