ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.225
Committed: Sun Sep 14 23:22:11 2014 UTC (9 years, 8 months ago) by dl
Branch: MAIN
Changes since 1.224: +179 -155 lines
Log Message:
More preparation for tests of using VarHandles

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.58 * http://creativecommons.org/publicdomain/zero/1.0/
5 jsr166 1.1 */
6    
7     package java.util.concurrent;
8    
9 jsr166 1.156 import java.lang.Thread.UncaughtExceptionHandler;
10 jsr166 1.1 import java.util.ArrayList;
11     import java.util.Arrays;
12     import java.util.Collection;
13     import java.util.Collections;
14     import java.util.List;
15 dl 1.36 import java.util.concurrent.AbstractExecutorService;
16     import java.util.concurrent.Callable;
17     import java.util.concurrent.ExecutorService;
18     import java.util.concurrent.Future;
19     import java.util.concurrent.RejectedExecutionException;
20     import java.util.concurrent.RunnableFuture;
21 dl 1.178 import java.util.concurrent.ThreadLocalRandom;
22 dl 1.36 import java.util.concurrent.TimeUnit;
23 dl 1.215 import java.util.concurrent.atomic.AtomicLong;
24 dl 1.197 import java.security.AccessControlContext;
25     import java.security.ProtectionDomain;
26     import java.security.Permissions;
27 jsr166 1.1
28     /**
29 jsr166 1.4 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
30 jsr166 1.8 * A {@code ForkJoinPool} provides the entry point for submissions
31 dl 1.18 * from non-{@code ForkJoinTask} clients, as well as management and
32 jsr166 1.11 * monitoring operations.
33 jsr166 1.1 *
34 jsr166 1.9 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
35     * ExecutorService} mainly by virtue of employing
36     * <em>work-stealing</em>: all threads in the pool attempt to find and
37 dl 1.78 * execute tasks submitted to the pool and/or created by other active
38     * tasks (eventually blocking waiting for work if none exist). This
39     * enables efficient processing when most tasks spawn other subtasks
40     * (as do most {@code ForkJoinTask}s), as well as when many small
41     * tasks are submitted to the pool from external clients. Especially
42     * when setting <em>asyncMode</em> to true in constructors, {@code
43     * ForkJoinPool}s may also be appropriate for use with event-style
44     * tasks that are never joined.
45 jsr166 1.1 *
46 dl 1.112 * <p>A static {@link #commonPool()} is available and appropriate for
47 dl 1.101 * most applications. The common pool is used by any ForkJoinTask that
48     * is not explicitly submitted to a specified pool. Using the common
49     * pool normally reduces resource usage (its threads are slowly
50     * reclaimed during periods of non-use, and reinstated upon subsequent
51 dl 1.105 * use).
52 dl 1.100 *
53     * <p>For applications that require separate or custom pools, a {@code
54     * ForkJoinPool} may be constructed with a given target parallelism
55 jsr166 1.214 * level; by default, equal to the number of available processors.
56     * The pool attempts to maintain enough active (or available) threads
57     * by dynamically adding, suspending, or resuming internal worker
58 jsr166 1.187 * threads, even if some tasks are stalled waiting to join others.
59     * However, no such adjustments are guaranteed in the face of blocked
60     * I/O or other unmanaged synchronization. The nested {@link
61 dl 1.100 * ManagedBlocker} interface enables extension of the kinds of
62 dl 1.18 * synchronization accommodated.
63 jsr166 1.1 *
64     * <p>In addition to execution and lifecycle control methods, this
65     * class provides status check methods (for example
66 jsr166 1.4 * {@link #getStealCount}) that are intended to aid in developing,
67 jsr166 1.1 * tuning, and monitoring fork/join applications. Also, method
68 jsr166 1.4 * {@link #toString} returns indications of pool state in a
69 jsr166 1.1 * convenient form for informal monitoring.
70     *
71 jsr166 1.109 * <p>As is the case with other ExecutorServices, there are three
72 jsr166 1.84 * main task execution methods summarized in the following table.
73     * These are designed to be used primarily by clients not already
74     * engaged in fork/join computations in the current pool. The main
75     * forms of these methods accept instances of {@code ForkJoinTask},
76     * but overloaded forms also allow mixed execution of plain {@code
77     * Runnable}- or {@code Callable}- based activities as well. However,
78     * tasks that are already executing in a pool should normally instead
79     * use the within-computation forms listed in the table unless using
80     * async event-style tasks that are not usually joined, in which case
81     * there is little difference among choice of methods.
82 dl 1.18 *
83     * <table BORDER CELLPADDING=3 CELLSPACING=1>
84 jsr166 1.159 * <caption>Summary of task execution methods</caption>
85 dl 1.18 * <tr>
86     * <td></td>
87     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
88     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
89     * </tr>
90     * <tr>
91 jsr166 1.153 * <td> <b>Arrange async execution</b></td>
92 dl 1.18 * <td> {@link #execute(ForkJoinTask)}</td>
93     * <td> {@link ForkJoinTask#fork}</td>
94     * </tr>
95     * <tr>
96 jsr166 1.153 * <td> <b>Await and obtain result</b></td>
97 dl 1.18 * <td> {@link #invoke(ForkJoinTask)}</td>
98     * <td> {@link ForkJoinTask#invoke}</td>
99     * </tr>
100     * <tr>
101 jsr166 1.153 * <td> <b>Arrange exec and obtain Future</b></td>
102 dl 1.18 * <td> {@link #submit(ForkJoinTask)}</td>
103     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
104     * </tr>
105     * </table>
106 dl 1.19 *
107 dl 1.105 * <p>The common pool is by default constructed with default
108 jsr166 1.155 * parameters, but these may be controlled by setting three
109 jsr166 1.162 * {@linkplain System#getProperty system properties}:
110     * <ul>
111     * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
112     * - the parallelism level, a non-negative integer
113     * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
114     * - the class name of a {@link ForkJoinWorkerThreadFactory}
115     * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
116     * - the class name of a {@link UncaughtExceptionHandler}
117 dl 1.208 * <li>{@code java.util.concurrent.ForkJoinPool.common.maximumSpares}
118 dl 1.223 * - the maximum number of allowed extra threads to maintain target
119 dl 1.208 * parallelism (default 256).
120 jsr166 1.162 * </ul>
121 dl 1.197 * If a {@link SecurityManager} is present and no factory is
122     * specified, then the default pool uses a factory supplying
123     * threads that have no {@link Permissions} enabled.
124 jsr166 1.165 * The system class loader is used to load these classes.
125 jsr166 1.156 * Upon any error in establishing these settings, default parameters
126 dl 1.160 * are used. It is possible to disable or limit the use of threads in
127     * the common pool by setting the parallelism property to zero, and/or
128 dl 1.193 * using a factory that may return {@code null}. However doing so may
129     * cause unjoined tasks to never be executed.
130 dl 1.105 *
131 jsr166 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
132     * maximum number of running threads to 32767. Attempts to create
133 jsr166 1.11 * pools with greater than the maximum number result in
134 jsr166 1.8 * {@code IllegalArgumentException}.
135 jsr166 1.1 *
136 jsr166 1.11 * <p>This implementation rejects submitted tasks (that is, by throwing
137 dl 1.19 * {@link RejectedExecutionException}) only when the pool is shut down
138 dl 1.20 * or internal resources have been exhausted.
139 jsr166 1.11 *
140 jsr166 1.1 * @since 1.7
141     * @author Doug Lea
142     */
143 jsr166 1.171 @sun.misc.Contended
144 jsr166 1.1 public class ForkJoinPool extends AbstractExecutorService {
145    
146     /*
147 dl 1.14 * Implementation Overview
148     *
149 dl 1.78 * This class and its nested classes provide the main
150     * functionality and control for a set of worker threads:
151 jsr166 1.84 * Submissions from non-FJ threads enter into submission queues.
152     * Workers take these tasks and typically split them into subtasks
153     * that may be stolen by other workers. Preference rules give
154     * first priority to processing tasks from their own queues (LIFO
155     * or FIFO, depending on mode), then to randomized FIFO steals of
156 dl 1.200 * tasks in other queues. This framework began as vehicle for
157     * supporting tree-structured parallelism using work-stealing.
158     * Over time, its scalability advantages led to extensions and
159 dl 1.208 * changes to better support more diverse usage contexts. Because
160     * most internal methods and nested classes are interrelated,
161     * their main rationale and descriptions are presented here;
162     * individual methods and nested classes contain only brief
163     * comments about details.
164 dl 1.78 *
165 jsr166 1.84 * WorkQueues
166 dl 1.78 * ==========
167     *
168     * Most operations occur within work-stealing queues (in nested
169     * class WorkQueue). These are special forms of Deques that
170     * support only three of the four possible end-operations -- push,
171     * pop, and poll (aka steal), under the further constraints that
172     * push and pop are called only from the owning thread (or, as
173     * extended here, under a lock), while poll may be called from
174     * other threads. (If you are unfamiliar with them, you probably
175     * want to read Herlihy and Shavit's book "The Art of
176     * Multiprocessor programming", chapter 16 describing these in
177     * more detail before proceeding.) The main work-stealing queue
178     * design is roughly similar to those in the papers "Dynamic
179     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
180     * (http://research.sun.com/scalable/pubs/index.html) and
181     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
182     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
183 dl 1.200 * The main differences ultimately stem from GC requirements that
184     * we null out taken slots as soon as we can, to maintain as small
185     * a footprint as possible even in programs generating huge
186     * numbers of tasks. To accomplish this, we shift the CAS
187     * arbitrating pop vs poll (steal) from being on the indices
188     * ("base" and "top") to the slots themselves.
189     *
190     * Adding tasks then takes the form of a classic array push(task):
191     * q.array[q.top] = task; ++q.top;
192     *
193     * (The actual code needs to null-check and size-check the array,
194     * properly fence the accesses, and possibly signal waiting
195     * workers to start scanning -- see below.) Both a successful pop
196     * and poll mainly entail a CAS of a slot from non-null to null.
197     *
198 jsr166 1.202 * The pop operation (always performed by owner) is:
199 dl 1.200 * if ((base != top) and
200     * (the task at top slot is not null) and
201     * (CAS slot to null))
202     * decrement top and return task;
203     *
204     * And the poll operation (usually by a stealer) is
205     * if ((base != top) and
206     * (the task at base slot is not null) and
207     * (base has not changed) and
208     * (CAS slot to null))
209     * increment base and return task;
210     *
211     * Because we rely on CASes of references, we do not need tag bits
212     * on base or top. They are simple ints as used in any circular
213 dl 1.170 * array-based queue (see for example ArrayDeque). Updates to the
214 dl 1.200 * indices guarantee that top == base means the queue is empty,
215     * but otherwise may err on the side of possibly making the queue
216     * appear nonempty when a push, pop, or poll have not fully
217 dl 1.205 * committed. (Method isEmpty() checks the case of a partially
218 dl 1.211 * completed removal of the last element.) Because of this, the
219     * poll operation, considered individually, is not wait-free. One
220     * thief cannot successfully continue until another in-progress
221     * one (or, if previously empty, a push) completes. However, in
222     * the aggregate, we ensure at least probabilistic
223 dl 1.205 * non-blockingness. If an attempted steal fails, a thief always
224     * chooses a different random victim target to try next. So, in
225     * order for one thief to progress, it suffices for any
226     * in-progress poll or new push on any empty queue to
227     * complete. (This is why we normally use method pollAt and its
228     * variants that try once at the apparent base index, else
229     * consider alternative actions, rather than method poll, which
230     * retries.)
231 dl 1.200 *
232     * This approach also enables support of a user mode in which
233     * local task processing is in FIFO, not LIFO order, simply by
234     * using poll rather than pop. This can be useful in
235     * message-passing frameworks in which tasks are never joined.
236     * However neither mode considers affinities, loads, cache
237     * localities, etc, so rarely provide the best possible
238     * performance on a given machine, but portably provide good
239     * throughput by averaging over these factors. Further, even if
240     * we did try to use such information, we do not usually have a
241     * basis for exploiting it. For example, some sets of tasks
242     * profit from cache affinities, but others are harmed by cache
243     * pollution effects. Additionally, even though it requires
244     * scanning, long-term throughput is often best using random
245     * selection rather than directed selection policies, so cheap
246     * randomization of sufficient quality is used whenever
247     * applicable. Various Marsaglia XorShifts (some with different
248     * shift constants) are inlined at use points.
249 dl 1.78 *
250     * WorkQueues are also used in a similar way for tasks submitted
251     * to the pool. We cannot mix these tasks in the same queues used
252 dl 1.200 * by workers. Instead, we randomly associate submission queues
253 dl 1.83 * with submitting threads, using a form of hashing. The
254 dl 1.139 * ThreadLocalRandom probe value serves as a hash code for
255     * choosing existing queues, and may be randomly repositioned upon
256     * contention with other submitters. In essence, submitters act
257     * like workers except that they are restricted to executing local
258     * tasks that they submitted (or in the case of CountedCompleters,
259 dl 1.200 * others with the same root task). Insertion of tasks in shared
260 dl 1.139 * mode requires a lock (mainly to protect in the case of
261 dl 1.200 * resizing) but we use only a simple spinlock (using field
262     * qlock), because submitters encountering a busy queue move on to
263     * try or create other queues -- they block only when creating and
264 dl 1.211 * registering new queues. Additionally, "qlock" saturates to an
265     * unlockable value (-1) at shutdown. Unlocking still can be and
266     * is performed by cheaper ordered writes of "qlock" in successful
267     * cases, but uses CAS in unsuccessful cases.
268 dl 1.78 *
269 jsr166 1.84 * Management
270 dl 1.78 * ==========
271 dl 1.52 *
272     * The main throughput advantages of work-stealing stem from
273     * decentralized control -- workers mostly take tasks from
274 dl 1.200 * themselves or each other, at rates that can exceed a billion
275     * per second. The pool itself creates, activates (enables
276     * scanning for and running tasks), deactivates, blocks, and
277     * terminates threads, all with minimal central information.
278     * There are only a few properties that we can globally track or
279     * maintain, so we pack them into a small number of variables,
280     * often maintaining atomicity without blocking or locking.
281     * Nearly all essentially atomic control state is held in two
282     * volatile variables that are by far most often read (not
283 dl 1.215 * written) as status and consistency checks. (Also, field
284     * "config" holds unchanging configuration state.)
285 dl 1.78 *
286 dl 1.200 * Field "ctl" contains 64 bits holding information needed to
287     * atomically decide to add, inactivate, enqueue (on an event
288 dl 1.78 * queue), dequeue, and/or re-activate workers. To enable this
289     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
290     * far in excess of normal operating range) to allow ids, counts,
291     * and their negations (used for thresholding) to fit into 16bit
292 dl 1.215 * subfields.
293     *
294     * Field "runState" holds lockable state bits (STARTED, STOP, etc)
295     * also protecting updates to the workQueues array. When used as
296     * a lock, it is normally held only for a few instructions (the
297     * only exceptions are one-time array initialization and uncommon
298     * resizing), so is nearly always available after at most a brief
299     * spin. But to be extra-cautious, after spinning, method
300     * awaitRunStateLock (called only if an initial CAS fails), uses a
301     * wait/notify mechanics on a builtin monitor to block when
302     * (rarely) needed. This would be a terrible idea for a highly
303     * contended lock, but most pools run without the lock ever
304     * contending after the spin limit, so this works fine as a more
305     * conservative alternative. Because we don't otherwise have an
306     * internal Object to use as a monitor, the "stealCounter" (an
307     * AtomicLong) is used when available (it too must be lazily
308     * initialized; see externalSubmit).
309 jsr166 1.216 *
310 dl 1.215 * Usages of "runState" vs "ctl" interact in only one case:
311     * deciding to add a worker thread (see tryAddWorker), in which
312     * case the ctl CAS is performed while the lock is held.
313 dl 1.78 *
314     * Recording WorkQueues. WorkQueues are recorded in the
315 dl 1.200 * "workQueues" array. The array is created upon first use (see
316     * externalSubmit) and expanded if necessary. Updates to the
317     * array while recording new workers and unrecording terminated
318     * ones are protected from each other by the runState lock, but
319     * the array is otherwise concurrently readable, and accessed
320     * directly. We also ensure that reads of the array reference
321     * itself never become too stale. To simplify index-based
322     * operations, the array size is always a power of two, and all
323     * readers must tolerate null slots. Worker queues are at odd
324     * indices. Shared (submission) queues are at even indices, up to
325     * a maximum of 64 slots, to limit growth even if array needs to
326     * expand to add more workers. Grouping them together in this way
327     * simplifies and speeds up task scanning.
328 dl 1.86 *
329     * All worker thread creation is on-demand, triggered by task
330     * submissions, replacement of terminated workers, and/or
331 dl 1.78 * compensation for blocked workers. However, all other support
332     * code is set up to work with other policies. To ensure that we
333 dl 1.200 * do not hold on to worker references that would prevent GC, All
334 dl 1.78 * accesses to workQueues are via indices into the workQueues
335     * array (which is one source of some of the messy code
336     * constructions here). In essence, the workQueues array serves as
337 dl 1.200 * a weak reference mechanism. Thus for example the stack top
338     * subfield of ctl stores indices, not references.
339     *
340     * Queuing Idle Workers. Unlike HPC work-stealing frameworks, we
341     * cannot let workers spin indefinitely scanning for tasks when
342     * none can be found immediately, and we cannot start/resume
343     * workers unless there appear to be tasks available. On the
344     * other hand, we must quickly prod them into action when new
345     * tasks are submitted or generated. In many usages, ramp-up time
346     * to activate workers is the main limiting factor in overall
347     * performance, which is compounded at program start-up by JIT
348     * compilation and allocation. So we streamline this as much as
349     * possible.
350     *
351     * The "ctl" field atomically maintains active and total worker
352     * counts as well as a queue to place waiting threads so they can
353     * be located for signalling. Active counts also play the role of
354     * quiescence indicators, so are decremented when workers believe
355     * that there are no more tasks to execute. The "queue" is
356     * actually a form of Treiber stack. A stack is ideal for
357     * activating threads in most-recently used order. This improves
358     * performance and locality, outweighing the disadvantages of
359     * being prone to contention and inability to release a worker
360     * unless it is topmost on stack. We park/unpark workers after
361     * pushing on the idle worker stack (represented by the lower
362     * 32bit subfield of ctl) when they cannot find work. The top
363     * stack state holds the value of the "scanState" field of the
364     * worker: its index and status, plus a version counter that, in
365     * addition to the count subfields (also serving as version
366     * stamps) provide protection against Treiber stack ABA effects.
367     *
368     * Field scanState is used by both workers and the pool to manage
369     * and track whether a worker is INACTIVE (possibly blocked
370     * waiting for a signal), or SCANNING for tasks (when neither hold
371     * it is busy running tasks). When a worker is inactivated, its
372     * scanState field is set, and is prevented from executing tasks,
373     * even though it must scan once for them to avoid queuing
374     * races. Note that scanState updates lag queue CAS releases so
375     * usage requires care. When queued, the lower 16 bits of
376     * scanState must hold its pool index. So we place the index there
377     * upon initialization (see registerWorker) and otherwise keep it
378     * there or restore it when necessary.
379     *
380     * Memory ordering. See "Correct and Efficient Work-Stealing for
381     * Weak Memory Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
382     * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
383     * analysis of memory ordering requirements in work-stealing
384     * algorithms similar to the one used here. We usually need
385     * stronger than minimal ordering because we must sometimes signal
386     * workers, requiring Dekker-like full-fences to avoid lost
387     * signals. Arranging for enough ordering without expensive
388     * over-fencing requires tradeoffs among the supported means of
389     * expressing access constraints. The most central operations,
390     * taking from queues and updating ctl state, require full-fence
391     * CAS. Array slots are read using the emulation of volatiles
392     * provided by Unsafe. Access from other threads to WorkQueue
393     * base, top, and array requires a volatile load of the first of
394     * any of these read. We use the convention of declaring the
395     * "base" index volatile, and always read it before other fields.
396     * The owner thread must ensure ordered updates, so writes use
397     * ordered intrinsics unless they can piggyback on those for other
398     * writes. Similar conventions and rationales hold for other
399     * WorkQueue fields (such as "currentSteal") that are only written
400     * by owners but observed by others.
401     *
402     * Creating workers. To create a worker, we pre-increment total
403     * count (serving as a reservation), and attempt to construct a
404     * ForkJoinWorkerThread via its factory. Upon construction, the
405     * new thread invokes registerWorker, where it constructs a
406     * WorkQueue and is assigned an index in the workQueues array
407     * (expanding the array if necessary). The thread is then
408     * started. Upon any exception across these steps, or null return
409     * from factory, deregisterWorker adjusts counts and records
410     * accordingly. If a null return, the pool continues running with
411     * fewer than the target number workers. If exceptional, the
412     * exception is propagated, generally to some external caller.
413     * Worker index assignment avoids the bias in scanning that would
414     * occur if entries were sequentially packed starting at the front
415     * of the workQueues array. We treat the array as a simple
416     * power-of-two hash table, expanding as needed. The seedIndex
417     * increment ensures no collisions until a resize is needed or a
418     * worker is deregistered and replaced, and thereafter keeps
419 jsr166 1.202 * probability of collision low. We cannot use
420 dl 1.200 * ThreadLocalRandom.getProbe() for similar purposes here because
421     * the thread has not started yet, but do so for creating
422     * submission queues for existing external threads.
423     *
424 jsr166 1.202 * Deactivation and waiting. Queuing encounters several intrinsic
425 dl 1.200 * races; most notably that a task-producing thread can miss
426     * seeing (and signalling) another thread that gave up looking for
427     * work but has not yet entered the wait queue. When a worker
428     * cannot find a task to steal, it deactivates and enqueues. Very
429     * often, the lack of tasks is transient due to GC or OS
430     * scheduling. To reduce false-alarm deactivation, scanners
431 dl 1.211 * compute checksums of queue states during sweeps. (The
432 jsr166 1.212 * stability checks used here and elsewhere are probabilistic
433 dl 1.211 * variants of snapshot techniques -- see Herlihy & Shavit.)
434     * Workers give up and try to deactivate only after the sum is
435     * stable across scans. Further, to avoid missed signals, they
436     * repeat this scanning process after successful enqueuing until
437     * again stable. In this state, the worker cannot take/run a task
438     * it sees until it is released from the queue, so the worker
439     * itself eventually tries to release itself or any successor (see
440     * tryRelease). Otherwise, upon an empty scan, a deactivated
441     * worker uses an adaptive local spin construction (see awaitWork)
442     * before blocking (via park). Note the unusual conventions about
443 dl 1.200 * Thread.interrupts surrounding parking and other blocking:
444     * Because interrupts are used solely to alert threads to check
445     * termination, which is checked anyway upon blocking, we clear
446     * status (using Thread.interrupted) before any call to park, so
447     * that park does not immediately return due to status being set
448     * via some other unrelated call to interrupt in user code.
449     *
450     * Signalling and activation. Workers are created or activated
451     * only when there appears to be at least one task they might be
452     * able to find and execute. Upon push (either by a worker or an
453 dl 1.205 * external submission) to a previously (possibly) empty queue,
454     * workers are signalled if idle, or created if fewer exist than
455     * the given parallelism level. These primary signals are
456     * buttressed by others whenever other threads remove a task from
457     * a queue and notice that there are other tasks there as well.
458     * On most platforms, signalling (unpark) overhead time is
459     * noticeably long, and the time between signalling a thread and
460     * it actually making progress can be very noticeably long, so it
461     * is worth offloading these delays from critical paths as much as
462 dl 1.211 * possible. Also, because inactive workers are often rescanning
463 dl 1.200 * or spinning rather than blocking, we set and clear the "parker"
464     * field of WorkQueues to reduce unnecessary calls to unpark.
465     * (This requires a secondary recheck to avoid missed signals.)
466 dl 1.52 *
467     * Trimming workers. To release resources after periods of lack of
468     * use, a worker starting to wait when the pool is quiescent will
469 dl 1.208 * time out and terminate (see awaitWork) if the pool has remained
470     * quiescent for period IDLE_TIMEOUT, increasing the period as the
471     * number of threads decreases, eventually removing all workers.
472     * Also, when more than two spare threads exist, excess threads
473     * are immediately terminated at the next quiescent point.
474 dl 1.211 * (Padding by two avoids hysteresis.)
475 dl 1.52 *
476 dl 1.210 * Shutdown and Termination. A call to shutdownNow invokes
477     * tryTerminate to atomically set a runState bit. The calling
478     * thread, as well as every other worker thereafter terminating,
479     * helps terminate others by setting their (qlock) status,
480     * cancelling their unprocessed tasks, and waking them up, doing
481     * so repeatedly until stable (but with a loop bounded by the
482     * number of workers). Calls to non-abrupt shutdown() preface
483     * this by checking whether termination should commence. This
484     * relies primarily on the active count bits of "ctl" maintaining
485 jsr166 1.212 * consensus -- tryTerminate is called from awaitWork whenever
486 dl 1.211 * quiescent. However, external submitters do not take part in
487     * this consensus. So, tryTerminate sweeps through queues (until
488     * stable) to ensure lack of in-flight submissions and workers
489 dl 1.210 * about to process them before triggering the "STOP" phase of
490 dl 1.211 * termination. (Note: there is an intrinsic conflict if
491     * helpQuiescePool is called when shutdown is enabled. Both wait
492 jsr166 1.212 * for quiescence, but tryTerminate is biased to not trigger until
493 dl 1.211 * helpQuiescePool completes.)
494     *
495 dl 1.78 *
496 jsr166 1.84 * Joining Tasks
497     * =============
498 dl 1.78 *
499     * Any of several actions may be taken when one worker is waiting
500 jsr166 1.84 * to join a task stolen (or always held) by another. Because we
501 dl 1.78 * are multiplexing many tasks on to a pool of workers, we can't
502     * just let them block (as in Thread.join). We also cannot just
503     * reassign the joiner's run-time stack with another and replace
504     * it later, which would be a form of "continuation", that even if
505 dl 1.200 * possible is not necessarily a good idea since we may need both
506     * an unblocked task and its continuation to progress. Instead we
507     * combine two tactics:
508 dl 1.19 *
509     * Helping: Arranging for the joiner to execute some task that it
510 dl 1.78 * would be running if the steal had not occurred.
511 dl 1.19 *
512     * Compensating: Unless there are already enough live threads,
513 dl 1.78 * method tryCompensate() may create or re-activate a spare
514     * thread to compensate for blocked joiners until they unblock.
515     *
516 dl 1.105 * A third form (implemented in tryRemoveAndExec) amounts to
517     * helping a hypothetical compensator: If we can readily tell that
518     * a possible action of a compensator is to steal and execute the
519     * task being joined, the joining thread can do so directly,
520     * without the need for a compensation thread (although at the
521     * expense of larger run-time stacks, but the tradeoff is
522     * typically worthwhile).
523 dl 1.52 *
524     * The ManagedBlocker extension API can't use helping so relies
525     * only on compensation in method awaitBlocker.
526 dl 1.19 *
527 dl 1.200 * The algorithm in helpStealer entails a form of "linear
528     * helping". Each worker records (in field currentSteal) the most
529     * recent task it stole from some other worker (or a submission).
530     * It also records (in field currentJoin) the task it is currently
531     * actively joining. Method helpStealer uses these markers to try
532     * to find a worker to help (i.e., steal back a task from and
533     * execute it) that could hasten completion of the actively joined
534     * task. Thus, the joiner executes a task that would be on its
535     * own local deque had the to-be-joined task not been stolen. This
536     * is a conservative variant of the approach described in Wagner &
537 dl 1.78 * Calder "Leapfrogging: a portable technique for implementing
538     * efficient futures" SIGPLAN Notices, 1993
539     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
540     * that: (1) We only maintain dependency links across workers upon
541     * steals, rather than use per-task bookkeeping. This sometimes
542 dl 1.90 * requires a linear scan of workQueues array to locate stealers,
543     * but often doesn't because stealers leave hints (that may become
544 dl 1.112 * stale/wrong) of where to locate them. It is only a hint
545     * because a worker might have had multiple steals and the hint
546     * records only one of them (usually the most current). Hinting
547     * isolates cost to when it is needed, rather than adding to
548     * per-task overhead. (2) It is "shallow", ignoring nesting and
549     * potentially cyclic mutual steals. (3) It is intentionally
550 dl 1.78 * racy: field currentJoin is updated only while actively joining,
551     * which means that we miss links in the chain during long-lived
552     * tasks, GC stalls etc (which is OK since blocking in such cases
553     * is usually a good idea). (4) We bound the number of attempts
554 dl 1.200 * to find work using checksums and fall back to suspending the
555 dl 1.90 * worker and if necessary replacing it with another.
556 dl 1.78 *
557 dl 1.200 * Helping actions for CountedCompleters do not require tracking
558     * currentJoins: Method helpComplete takes and executes any task
559 jsr166 1.202 * with the same root as the task being waited on (preferring
560     * local pops to non-local polls). However, this still entails
561     * some traversal of completer chains, so is less efficient than
562     * using CountedCompleters without explicit joins.
563 dl 1.105 *
564 dl 1.200 * Compensation does not aim to keep exactly the target
565     * parallelism number of unblocked threads running at any given
566     * time. Some previous versions of this class employed immediate
567     * compensations for any blocked join. However, in practice, the
568     * vast majority of blockages are transient byproducts of GC and
569     * other JVM or OS activities that are made worse by replacement.
570     * Currently, compensation is attempted only after validating that
571     * all purportedly active threads are processing tasks by checking
572     * field WorkQueue.scanState, which eliminates most false
573     * positives. Also, compensation is bypassed (tolerating fewer
574     * threads) in the most common case in which it is rarely
575     * beneficial: when a worker with an empty queue (thus no
576     * continuation tasks) blocks on a join and there still remain
577 dl 1.208 * enough threads to ensure liveness.
578 dl 1.105 *
579 dl 1.211 * The compensation mechanism may be bounded. Bounds for the
580     * commonPool (see commonMaxSpares) better enable JVMs to cope
581 dl 1.208 * with programming errors and abuse before running out of
582     * resources to do so. In other cases, users may supply factories
583     * that limit thread construction. The effects of bounding in this
584     * pool (like all others) is imprecise. Total worker counts are
585     * decremented when threads deregister, not when they exit and
586     * resources are reclaimed by the JVM and OS. So the number of
587     * simultaneously live threads may transiently exceed bounds.
588 dl 1.205 *
589 dl 1.105 * Common Pool
590     * ===========
591     *
592 jsr166 1.175 * The static common pool always exists after static
593 dl 1.105 * initialization. Since it (or any other created pool) need
594     * never be used, we minimize initial construction overhead and
595     * footprint to the setup of about a dozen fields, with no nested
596     * allocation. Most bootstrapping occurs within method
597 dl 1.200 * externalSubmit during the first submission to the pool.
598 dl 1.105 *
599     * When external threads submit to the common pool, they can
600 dl 1.200 * perform subtask processing (see externalHelpComplete and
601     * related methods) upon joins. This caller-helps policy makes it
602     * sensible to set common pool parallelism level to one (or more)
603     * less than the total number of available cores, or even zero for
604     * pure caller-runs. We do not need to record whether external
605     * submissions are to the common pool -- if not, external help
606     * methods return quickly. These submitters would otherwise be
607     * blocked waiting for completion, so the extra effort (with
608     * liberally sprinkled task status checks) in inapplicable cases
609     * amounts to an odd form of limited spin-wait before blocking in
610     * ForkJoinTask.join.
611 dl 1.105 *
612 dl 1.197 * As a more appropriate default in managed environments, unless
613     * overridden by system properties, we use workers of subclass
614     * InnocuousForkJoinWorkerThread when there is a SecurityManager
615     * present. These workers have no permissions set, do not belong
616     * to any user-defined ThreadGroup, and erase all ThreadLocals
617 dl 1.200 * after executing any top-level task (see WorkQueue.runTask).
618     * The associated mechanics (mainly in ForkJoinWorkerThread) may
619     * be JVM-dependent and must access particular Thread class fields
620     * to achieve this effect.
621 jsr166 1.198 *
622 dl 1.105 * Style notes
623     * ===========
624     *
625 dl 1.200 * Memory ordering relies mainly on Unsafe intrinsics that carry
626     * the further responsibility of explicitly performing null- and
627     * bounds- checks otherwise carried out implicitly by JVMs. This
628     * can be awkward and ugly, but also reflects the need to control
629     * outcomes across the unusual cases that arise in very racy code
630     * with very few invariants. So these explicit checks would exist
631     * in some form anyway. All fields are read into locals before
632     * use, and null-checked if they are references. This is usually
633     * done in a "C"-like style of listing declarations at the heads
634     * of methods or blocks, and using inline assignments on first
635     * encounter. Array bounds-checks are usually performed by
636     * masking with array.length-1, which relies on the invariant that
637     * these arrays are created with positive lengths, which is itself
638     * paranoically checked. Nearly all explicit checks lead to
639     * bypass/return, not exception throws, because they may
640     * legitimately arise due to cancellation/revocation during
641     * shutdown.
642     *
643 dl 1.105 * There is a lot of representation-level coupling among classes
644     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
645     * fields of WorkQueue maintain data structures managed by
646     * ForkJoinPool, so are directly accessed. There is little point
647     * trying to reduce this, since any associated future changes in
648     * representations will need to be accompanied by algorithmic
649     * changes anyway. Several methods intrinsically sprawl because
650 dl 1.200 * they must accumulate sets of consistent reads of fields held in
651     * local variables. There are also other coding oddities
652     * (including several unnecessary-looking hoisted null checks)
653     * that help some methods perform reasonably even when interpreted
654     * (not compiled).
655 dl 1.52 *
656 dl 1.208 * The order of declarations in this file is (with a few exceptions):
657 dl 1.86 * (1) Static utility functions
658     * (2) Nested (static) classes
659     * (3) Static fields
660     * (4) Fields, along with constants used when unpacking some of them
661     * (5) Internal control methods
662     * (6) Callbacks and other support for ForkJoinTask methods
663     * (7) Exported methods
664     * (8) Static block initializing statics in minimally dependent order
665     */
666    
667     // Static utilities
668    
669     /**
670     * If there is a security manager, makes sure caller has
671     * permission to modify threads.
672 jsr166 1.1 */
673 dl 1.86 private static void checkPermission() {
674     SecurityManager security = System.getSecurityManager();
675     if (security != null)
676     security.checkPermission(modifyThreadPermission);
677     }
678    
679     // Nested classes
680 jsr166 1.1
681     /**
682 jsr166 1.8 * Factory for creating new {@link ForkJoinWorkerThread}s.
683     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
684     * for {@code ForkJoinWorkerThread} subclasses that extend base
685     * functionality or initialize threads with different contexts.
686 jsr166 1.1 */
687     public static interface ForkJoinWorkerThreadFactory {
688     /**
689     * Returns a new worker thread operating in the given pool.
690     *
691     * @param pool the pool this thread works in
692 jsr166 1.192 * @return the new worker thread
693 jsr166 1.11 * @throws NullPointerException if the pool is null
694 jsr166 1.1 */
695     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
696     }
697    
698     /**
699     * Default ForkJoinWorkerThreadFactory implementation; creates a
700     * new ForkJoinWorkerThread.
701     */
702 dl 1.112 static final class DefaultForkJoinWorkerThreadFactory
703 jsr166 1.1 implements ForkJoinWorkerThreadFactory {
704 dl 1.112 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
705 dl 1.14 return new ForkJoinWorkerThread(pool);
706 jsr166 1.1 }
707     }
708    
709     /**
710 dl 1.86 * Class for artificial tasks that are used to replace the target
711     * of local joins if they are removed from an interior queue slot
712     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
713     * actually do anything beyond having a unique identity.
714 jsr166 1.1 */
715 dl 1.86 static final class EmptyTask extends ForkJoinTask<Void> {
716 dl 1.105 private static final long serialVersionUID = -7721805057305804111L;
717 dl 1.86 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
718     public final Void getRawResult() { return null; }
719     public final void setRawResult(Void x) {}
720     public final boolean exec() { return true; }
721 jsr166 1.1 }
722    
723 dl 1.200 // Constants shared across ForkJoinPool and WorkQueue
724    
725     // Bounds
726     static final int SMASK = 0xffff; // short bits == max index
727     static final int MAX_CAP = 0x7fff; // max #workers - 1
728     static final int EVENMASK = 0xfffe; // even short bits
729     static final int SQMASK = 0x007e; // max 64 (even) slots
730    
731     // Masks and units for WorkQueue.scanState and ctl sp subfield
732     static final int SCANNING = 1; // false when running tasks
733     static final int INACTIVE = 1 << 31; // must be negative
734 dl 1.211 static final int SS_SEQ = 1 << 16; // version count
735 dl 1.200
736     // Mode bits for ForkJoinPool.config and WorkQueue.config
737 dl 1.211 static final int MODE_MASK = 0xffff << 16; // top half of int
738 dl 1.200 static final int LIFO_QUEUE = 0;
739     static final int FIFO_QUEUE = 1 << 16;
740     static final int SHARED_QUEUE = 1 << 31; // must be negative
741    
742 dl 1.225 // This version uses array access methods in anticipation of JDK9 support
743     // that should eliminate their need
744    
745     static final ForkJoinTask<?> getAt(ForkJoinTask<?>[] a, int i) {
746     return (ForkJoinTask<?>)U.getObjectVolatile(
747     a, (long)((i << ASHIFT) + ABASE));
748     }
749    
750     static final void setAt(ForkJoinTask<?>[] a, int i, ForkJoinTask<?> x) {
751     U.putOrderedObject(a, (long)((i << ASHIFT) + ABASE), x);
752     }
753    
754     static final boolean casAt(ForkJoinTask<?>[] a, int i,
755     ForkJoinTask<?> c, ForkJoinTask<?> v) {
756     return U.compareAndSwapObject(
757     a, (long)((i << ASHIFT) + ABASE), c, v);
758     }
759    
760     static final ForkJoinTask<?> xchgAt(ForkJoinTask<?>[] a, int i,
761     ForkJoinTask<?> x) {
762     return (ForkJoinTask<?>)U.getAndSetObject(
763     a, (long)((i << ASHIFT) + ABASE), x);
764     }
765    
766 jsr166 1.1 /**
767 dl 1.78 * Queues supporting work-stealing as well as external task
768 jsr166 1.202 * submission. See above for descriptions and algorithms.
769 dl 1.78 * Performance on most platforms is very sensitive to placement of
770     * instances of both WorkQueues and their arrays -- we absolutely
771     * do not want multiple WorkQueue instances or multiple queue
772 dl 1.200 * arrays sharing cache lines. The @Contended annotation alerts
773     * JVMs to try to keep instances apart.
774 dl 1.78 */
775 jsr166 1.171 @sun.misc.Contended
776 dl 1.78 static final class WorkQueue {
777 dl 1.200
778 dl 1.78 /**
779     * Capacity of work-stealing queue array upon initialization.
780 dl 1.90 * Must be a power of two; at least 4, but should be larger to
781     * reduce or eliminate cacheline sharing among queues.
782     * Currently, it is much larger, as a partial workaround for
783     * the fact that JVMs often place arrays in locations that
784     * share GC bookkeeping (especially cardmarks) such that
785     * per-write accesses encounter serious memory contention.
786 dl 1.78 */
787 dl 1.90 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
788 dl 1.78
789     /**
790     * Maximum size for queue arrays. Must be a power of two less
791     * than or equal to 1 << (31 - width of array entry) to ensure
792     * lack of wraparound of index calculations, but defined to a
793     * value a bit less than this to help users trap runaway
794     * programs before saturating systems.
795     */
796     static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
797    
798 dl 1.200 // Instance fields
799     volatile int scanState; // versioned, <0: inactive; odd:scanning
800     int stackPred; // pool stack (ctl) predecessor
801 dl 1.178 int nsteals; // number of steals
802 dl 1.200 int hint; // randomization and stealer index hint
803     int config; // pool index and mode
804     volatile int qlock; // 1: locked, < 0: terminate; else 0
805 dl 1.78 volatile int base; // index of next slot for poll
806     int top; // index of next slot for push
807     ForkJoinTask<?>[] array; // the elements (initially unallocated)
808 dl 1.90 final ForkJoinPool pool; // the containing pool (may be null)
809 dl 1.78 final ForkJoinWorkerThread owner; // owning thread or null if shared
810     volatile Thread parker; // == owner during call to park; else null
811 dl 1.95 volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
812 dl 1.200 volatile ForkJoinTask<?> currentSteal; // mainly used by helpStealer
813 dl 1.112
814 dl 1.225 // Temporary repeats of array access methods
815    
816     static final ForkJoinTask<?> getAt(ForkJoinTask<?>[] a, int i) {
817     return (ForkJoinTask<?>)U.getObjectVolatile(
818     a, (long)((i << ASHIFT) + ABASE));
819     }
820    
821     static final void setAt(ForkJoinTask<?>[] a, int i, ForkJoinTask<?> x) {
822     U.putOrderedObject(a, (long)((i << ASHIFT) + ABASE), x);
823     }
824    
825     static final boolean casAt(ForkJoinTask<?>[] a, int i,
826     ForkJoinTask<?> c, ForkJoinTask<?> v) {
827     return U.compareAndSwapObject(
828     a, (long)((i << ASHIFT) + ABASE), c, v);
829     }
830    
831     static final ForkJoinTask<?> xchgAt(ForkJoinTask<?>[] a, int i,
832     ForkJoinTask<?> x) {
833     return (ForkJoinTask<?>)U.getAndSetObject(
834     a, (long)((i << ASHIFT) + ABASE), x);
835     }
836    
837    
838 dl 1.200 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner) {
839 dl 1.90 this.pool = pool;
840 dl 1.78 this.owner = owner;
841 dl 1.115 // Place indices in the center of array (that is not yet allocated)
842 dl 1.78 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
843     }
844    
845     /**
846 jsr166 1.220 * Returns an exportable index (used by ForkJoinWorkerThread).
847 dl 1.200 */
848     final int getPoolIndex() {
849     return (config & 0xffff) >>> 1; // ignore odd/even tag bit
850     }
851    
852     /**
853 dl 1.115 * Returns the approximate number of tasks in the queue.
854     */
855     final int queueSize() {
856     int n = base - top; // non-owner callers must read base first
857     return (n >= 0) ? 0 : -n; // ignore transient negative
858     }
859    
860 jsr166 1.180 /**
861 dl 1.115 * Provides a more accurate estimate of whether this queue has
862     * any tasks than does queueSize, by checking whether a
863     * near-empty queue has at least one unclaimed task.
864     */
865     final boolean isEmpty() {
866 dl 1.225 ForkJoinTask<?>[] a; int n, al, s;
867 dl 1.200 return ((n = base - (s = top)) >= 0 ||
868     (n == -1 && // possibly one task
869 dl 1.225 ((a = array) == null || (al = a.length) == 0 ||
870     getAt(a, (al - 1) & (s - 1)) == null)));
871 dl 1.115 }
872    
873     /**
874     * Pushes a task. Call only by owner in unshared queues. (The
875     * shared-queue version is embedded in method externalPush.)
876 dl 1.78 *
877     * @param task the task. Caller must ensure non-null.
878 jsr166 1.146 * @throws RejectedExecutionException if array cannot be resized
879 dl 1.78 */
880 dl 1.90 final void push(ForkJoinTask<?> task) {
881 dl 1.205 ForkJoinTask<?>[] a; ForkJoinPool p;
882 dl 1.225 if ((a = array) != null) { // ignore if queue removed
883 dl 1.224 int b = base, m = a.length - 1, s = top, n;
884 dl 1.225 if (m > 0) { // always true, but check required
885     setAt(a, m & s, task);
886 dl 1.224 U.putOrderedInt(this, QTOP, s + 1);
887     if ((n = s - b) <= 1) {
888     if ((p = pool) != null)
889     p.signalWork(p.workQueues, this);
890     }
891     else if (n >= m)
892     growArray();
893 dl 1.200 }
894 dl 1.78 }
895     }
896    
897 dl 1.178 /**
898 dl 1.112 * Initializes or doubles the capacity of array. Call either
899     * by owner or with lock held -- it is OK for base, but not
900     * top, to move while resizings are in progress.
901     */
902     final ForkJoinTask<?>[] growArray() {
903     ForkJoinTask<?>[] oldA = array;
904     int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
905 dl 1.225 if (size < INITIAL_QUEUE_CAPACITY || size > MAXIMUM_QUEUE_CAPACITY)
906 dl 1.112 throw new RejectedExecutionException("Queue capacity exceeded");
907     int oldMask, t, b;
908     ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
909 dl 1.225 if (oldA != null && (oldMask = oldA.length - 1) > 0 &&
910 dl 1.112 (t = top) - (b = base) > 0) {
911     int mask = size - 1;
912 dl 1.200 do { // emulate poll from old array, push to new array
913 dl 1.112 ForkJoinTask<?> x;
914 dl 1.225 int oldj = b & oldMask, j = b & mask;
915     if ((x = getAt(oldA, oldj)) != null &&
916     casAt(oldA, oldj, x, null))
917     setAt(a, j, x);
918 dl 1.112 } while (++b != t);
919 dl 1.78 }
920 dl 1.112 return a;
921 dl 1.78 }
922    
923     /**
924 dl 1.90 * Takes next task, if one exists, in LIFO order. Call only
925 dl 1.102 * by owner in unshared queues.
926 dl 1.90 */
927     final ForkJoinTask<?> pop() {
928 dl 1.225 ForkJoinTask<?>[] a; ForkJoinTask<?> t; int al;
929     if ((a = array) != null && (al = a.length) > 0) {
930 dl 1.90 for (int s; (s = top - 1) - base >= 0;) {
931 dl 1.225 int j = (al - 1) & s;
932     if ((t = getAt(a, j)) == null)
933 dl 1.90 break;
934 dl 1.225 if (casAt(a, j, t, null)) {
935 dl 1.200 U.putOrderedInt(this, QTOP, s);
936 dl 1.90 return t;
937     }
938     }
939     }
940     return null;
941     }
942    
943     /**
944     * Takes a task in FIFO order if b is base of queue and a task
945     * can be claimed without contention. Specialized versions
946 dl 1.200 * appear in ForkJoinPool methods scan and helpStealer.
947 dl 1.78 */
948 dl 1.90 final ForkJoinTask<?> pollAt(int b) {
949 dl 1.178 ForkJoinTask<?> t; ForkJoinTask<?>[] a;
950 dl 1.90 if ((a = array) != null) {
951 dl 1.225 int al = a.length, j = (al - 1) & b;
952     if (al > 0 && (t = getAt(a, j)) != null &&
953     base == b && casAt(a, j, t, null)) {
954 dl 1.200 base = b + 1;
955 dl 1.78 return t;
956     }
957     }
958     return null;
959     }
960    
961     /**
962 dl 1.90 * Takes next task, if one exists, in FIFO order.
963 dl 1.78 */
964 dl 1.90 final ForkJoinTask<?> poll() {
965 dl 1.225 ForkJoinTask<?>[] a; int b, al, j;
966     while ((b = base) - top < 0 && (a = array) != null &&
967     (al = a.length) > 0) {
968     ForkJoinTask<?> t = getAt(a, j = (al - 1) & b);
969 dl 1.200 if (base == b) {
970     if (t != null) {
971 dl 1.225 if (casAt(a, j, t, null)) {
972 dl 1.200 base = b + 1;
973     return t;
974     }
975 dl 1.78 }
976 dl 1.200 else if (b + 1 == top) // now empty
977 dl 1.90 break;
978     }
979 dl 1.78 }
980     return null;
981     }
982    
983     /**
984     * Takes next task, if one exists, in order specified by mode.
985     */
986     final ForkJoinTask<?> nextLocalTask() {
987 dl 1.200 return (config & FIFO_QUEUE) == 0 ? pop() : poll();
988 dl 1.78 }
989    
990     /**
991     * Returns next task, if one exists, in order specified by mode.
992     */
993     final ForkJoinTask<?> peek() {
994 dl 1.225 ForkJoinTask<?>[] a = array; int al;
995     if (a != null && (al = a.length) > 0) {
996     int i = (config & FIFO_QUEUE) == 0 ? top - 1 : base;
997     return getAt(a, (al - 1) & i);
998     }
999     return null;
1000 dl 1.78 }
1001    
1002     /**
1003     * Pops the given task only if it is at the current top.
1004 dl 1.105 * (A shared version is available only via FJP.tryExternalUnpush)
1005 dl 1.200 */
1006 dl 1.78 final boolean tryUnpush(ForkJoinTask<?> t) {
1007 dl 1.224 ForkJoinTask<?>[] a;
1008     if ((a = array) != null) {
1009 dl 1.225 int b = base, al = a.length, s = top;
1010     if (s != b && al > 0 &&
1011     casAt(a, (al - 1) & (s - 1), t, null)) {
1012 dl 1.224 U.putOrderedInt(this, QTOP, s - 1);
1013     return true;
1014     }
1015 dl 1.78 }
1016     return false;
1017     }
1018    
1019     /**
1020 jsr166 1.84 * Removes and cancels all known tasks, ignoring any exceptions.
1021 dl 1.78 */
1022     final void cancelAll() {
1023 dl 1.200 ForkJoinTask<?> t;
1024     if ((t = currentJoin) != null) {
1025     currentJoin = null;
1026     ForkJoinTask.cancelIgnoringExceptions(t);
1027     }
1028     if ((t = currentSteal) != null) {
1029     currentSteal = null;
1030     ForkJoinTask.cancelIgnoringExceptions(t);
1031     }
1032     while ((t = poll()) != null)
1033 dl 1.78 ForkJoinTask.cancelIgnoringExceptions(t);
1034     }
1035    
1036 dl 1.104 // Specialized execution methods
1037 dl 1.78
1038     /**
1039 dl 1.178 * Polls and runs tasks until empty.
1040 dl 1.78 */
1041 dl 1.178 final void pollAndExecAll() {
1042     for (ForkJoinTask<?> t; (t = poll()) != null;)
1043     t.doExec();
1044 dl 1.94 }
1045    
1046     /**
1047 dl 1.225 * Pops and runs tasks until empty.
1048     */
1049     final void popAndExecAll() {
1050     ForkJoinTask<?>[] a; ForkJoinTask<?> t;
1051     while ((a = array) != null) {
1052     int b = base, al = a.length, s = top, i = (al - 1) & (s - 1);
1053     if (b != s && al > 0 &&
1054     (t = xchgAt(a, i, null)) != null) {
1055     U.putOrderedInt(this, QTOP, s - 1);
1056     t.doExec();
1057 dl 1.200 }
1058     else
1059 dl 1.225 break;
1060 dl 1.200 }
1061     }
1062    
1063     /**
1064 jsr166 1.213 * Executes the given task and any remaining local tasks.
1065 dl 1.94 */
1066 dl 1.178 final void runTask(ForkJoinTask<?> task) {
1067 dl 1.200 if (task != null) {
1068     scanState &= ~SCANNING; // mark as busy
1069     (currentSteal = task).doExec();
1070     U.putOrderedObject(this, QCURRENTSTEAL, null); // release for GC
1071 dl 1.225 if ((config & FIFO_QUEUE) != 0)
1072     pollAndExecAll();
1073     else
1074     popAndExecAll();
1075 dl 1.200 ForkJoinWorkerThread thread = owner;
1076 dl 1.215 if (++nsteals < 0) // collect on overflow
1077     transferStealCount(pool);
1078 dl 1.200 scanState |= SCANNING;
1079     if (thread != null)
1080 dl 1.197 thread.afterTopLevelExec();
1081 dl 1.178 }
1082 dl 1.94 }
1083    
1084     /**
1085 dl 1.215 * Adds steal count to pool stealCounter if it exists, and resets.
1086     */
1087     final void transferStealCount(ForkJoinPool p) {
1088     AtomicLong sc;
1089     if (p != null && (sc = p.stealCounter) != null) {
1090     int s = nsteals;
1091     nsteals = 0; // if negative, correct for overflow
1092     sc.getAndAdd((long)(s < 0 ? Integer.MAX_VALUE : s));
1093     }
1094     }
1095    
1096     /**
1097 dl 1.105 * If present, removes from queue and executes the given task,
1098 jsr166 1.213 * or any other cancelled task. Used only by awaitJoin.
1099 dl 1.94 *
1100 jsr166 1.213 * @return true if queue empty and task not known to be done
1101 dl 1.94 */
1102 dl 1.105 final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
1103 dl 1.225 ForkJoinTask<?>[] a; int al, s, b, n;
1104     if ((a = array) != null && (al = a.length) > 0 && task != null) {
1105 dl 1.200 while ((n = (s = top) - (b = base)) > 0) {
1106     for (ForkJoinTask<?> t;;) { // traverse from s to b
1107 dl 1.225 int j = --s & (al - 1);
1108     if ((t = getAt(a, j)) == null)
1109 dl 1.200 return s + 1 == top; // shorter than expected
1110     else if (t == task) {
1111     boolean removed = false;
1112     if (s + 1 == top) { // pop
1113 dl 1.225 if (casAt(a, j, task, null)) {
1114 dl 1.200 U.putOrderedInt(this, QTOP, s);
1115     removed = true;
1116     }
1117     }
1118     else if (base == b) // replace with proxy
1119 dl 1.225 removed = casAt(a, j, task, new EmptyTask());
1120 dl 1.200 if (removed)
1121     task.doExec();
1122     break;
1123 dl 1.90 }
1124 dl 1.200 else if (t.status < 0 && s + 1 == top) {
1125 dl 1.225 if (casAt(a, j, t, null))
1126 dl 1.200 U.putOrderedInt(this, QTOP, s);
1127     break; // was cancelled
1128 dl 1.104 }
1129 dl 1.200 if (--n == 0)
1130     return false;
1131 dl 1.104 }
1132 dl 1.200 if (task.status < 0)
1133     return false;
1134 dl 1.104 }
1135     }
1136 dl 1.200 return true;
1137 dl 1.104 }
1138    
1139     /**
1140 dl 1.200 * Pops task if in the same CC computation as the given task,
1141     * in either shared or owned mode. Used only by helpComplete.
1142 dl 1.78 */
1143 dl 1.200 final CountedCompleter<?> popCC(CountedCompleter<?> task, int mode) {
1144 dl 1.225 ForkJoinTask<?>[] a; ForkJoinTask<?> o;
1145     if ((a = array) != null) {
1146     int b = base, al = a.length, s = top, i = (al - 1) & (s - 1);
1147     if (b != s && al > 0 &&
1148     ((o = a[i]) instanceof CountedCompleter)) {
1149 dl 1.200 CountedCompleter<?> t = (CountedCompleter<?>)o;
1150     for (CountedCompleter<?> r = t;;) {
1151     if (r == task) {
1152     if (mode < 0) { // must lock
1153     if (U.compareAndSwapInt(this, QLOCK, 0, 1)) {
1154     if (top == s && array == a &&
1155 dl 1.225 casAt(a, i, t, null)) {
1156 dl 1.200 U.putOrderedInt(this, QTOP, s - 1);
1157     U.putOrderedInt(this, QLOCK, 0);
1158     return t;
1159     }
1160 dl 1.209 U.compareAndSwapInt(this, QLOCK, 1, 0);
1161 dl 1.178 }
1162     }
1163 dl 1.225 else if (casAt(a, i, t, null)) {
1164 dl 1.200 U.putOrderedInt(this, QTOP, s - 1);
1165     return t;
1166     }
1167     break;
1168 dl 1.178 }
1169 dl 1.200 else if ((r = r.completer) == null) // try parent
1170 dl 1.178 break;
1171     }
1172 dl 1.94 }
1173 dl 1.78 }
1174 dl 1.200 return null;
1175 dl 1.78 }
1176    
1177     /**
1178 dl 1.200 * Steals and runs a task in the same CC computation as the
1179     * given task if one exists and can be taken without
1180     * contention. Otherwise returns a checksum/control value for
1181     * use by method helpComplete.
1182     *
1183     * @return 1 if successful, 2 if retryable (lost to another
1184     * stealer), -1 if non-empty but no matching task found, else
1185     * the base index, forced negative.
1186     */
1187     final int pollAndExecCC(CountedCompleter<?> task) {
1188 dl 1.225 int b, h, j, al; ForkJoinTask<?>[] a; Object o;
1189     if ((b = base) - top >= 0 || (a = array) == null ||
1190     (al = a.length) <= 0)
1191 dl 1.200 h = b | Integer.MIN_VALUE; // to sense movement on re-poll
1192 dl 1.225 else if ((o = getAt(a, j = (al - 1) & b)) == null)
1193     h = 2; // retryable
1194     else if (!(o instanceof CountedCompleter))
1195     h = -1; // unmatchable
1196 dl 1.200 else {
1197 dl 1.225 CountedCompleter<?> t = (CountedCompleter<?>)o;
1198     for (CountedCompleter<?> r = t;;) {
1199     if (r == task) {
1200     if (base == b && casAt(a, j, t, null)) {
1201     base = b + 1;
1202     t.doExec();
1203     h = 1; // success
1204 dl 1.200 }
1205 dl 1.225 else
1206     h = 2; // lost CAS
1207     break;
1208     }
1209     else if ((r = r.completer) == null) {
1210     h = -1; // unmatched
1211     break;
1212 dl 1.178 }
1213     }
1214 dl 1.78 }
1215 dl 1.200 return h;
1216 dl 1.78 }
1217    
1218     /**
1219 dl 1.86 * Returns true if owned and not known to be blocked.
1220     */
1221     final boolean isApparentlyUnblocked() {
1222     Thread wt; Thread.State s;
1223 dl 1.200 return (scanState >= 0 &&
1224 dl 1.86 (wt = owner) != null &&
1225     (s = wt.getState()) != Thread.State.BLOCKED &&
1226     s != Thread.State.WAITING &&
1227     s != Thread.State.TIMED_WAITING);
1228     }
1229    
1230 dl 1.211 // Unsafe mechanics. Note that some are (and must be) the same as in FJP
1231 dl 1.78 private static final sun.misc.Unsafe U;
1232 dl 1.200 private static final int ABASE;
1233     private static final int ASHIFT;
1234     private static final long QTOP;
1235 dl 1.105 private static final long QLOCK;
1236 dl 1.200 private static final long QCURRENTSTEAL;
1237 dl 1.78 static {
1238     try {
1239     U = sun.misc.Unsafe.getUnsafe();
1240 dl 1.200 Class<?> wk = WorkQueue.class;
1241 dl 1.78 Class<?> ak = ForkJoinTask[].class;
1242 dl 1.200 QTOP = U.objectFieldOffset
1243     (wk.getDeclaredField("top"));
1244 dl 1.105 QLOCK = U.objectFieldOffset
1245 dl 1.200 (wk.getDeclaredField("qlock"));
1246     QCURRENTSTEAL = U.objectFieldOffset
1247     (wk.getDeclaredField("currentSteal"));
1248 dl 1.78 ABASE = U.arrayBaseOffset(ak);
1249 jsr166 1.142 int scale = U.arrayIndexScale(ak);
1250     if ((scale & (scale - 1)) != 0)
1251     throw new Error("data type scale not a power of two");
1252     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1253 dl 1.78 } catch (Exception e) {
1254     throw new Error(e);
1255     }
1256     }
1257     }
1258 dl 1.14
1259 dl 1.112 // static fields (initialized in static initializer below)
1260    
1261     /**
1262     * Creates a new ForkJoinWorkerThread. This factory is used unless
1263     * overridden in ForkJoinPool constructors.
1264     */
1265     public static final ForkJoinWorkerThreadFactory
1266     defaultForkJoinWorkerThreadFactory;
1267    
1268 jsr166 1.1 /**
1269 dl 1.115 * Permission required for callers of methods that may start or
1270     * kill threads.
1271     */
1272     private static final RuntimePermission modifyThreadPermission;
1273    
1274     /**
1275 dl 1.101 * Common (static) pool. Non-null for public use unless a static
1276 dl 1.105 * construction exception, but internal usages null-check on use
1277     * to paranoically avoid potential initialization circularities
1278     * as well as to simplify generated code.
1279 dl 1.101 */
1280 dl 1.134 static final ForkJoinPool common;
1281 dl 1.101
1282     /**
1283 dl 1.160 * Common pool parallelism. To allow simpler use and management
1284     * when common pool threads are disabled, we allow the underlying
1285 dl 1.185 * common.parallelism field to be zero, but in that case still report
1286 dl 1.160 * parallelism as 1 to reflect resulting caller-runs mechanics.
1287 dl 1.90 */
1288 dl 1.134 static final int commonParallelism;
1289 dl 1.90
1290     /**
1291 dl 1.208 * Limit on spare thread construction in tryCompensate.
1292     */
1293     private static int commonMaxSpares;
1294    
1295     /**
1296 dl 1.105 * Sequence number for creating workerNamePrefix.
1297 dl 1.86 */
1298 dl 1.105 private static int poolNumberSequence;
1299 dl 1.86
1300 jsr166 1.1 /**
1301 jsr166 1.132 * Returns the next sequence number. We don't expect this to
1302     * ever contend, so use simple builtin sync.
1303 dl 1.83 */
1304 dl 1.105 private static final synchronized int nextPoolId() {
1305     return ++poolNumberSequence;
1306     }
1307 dl 1.86
1308 dl 1.200 // static configuration constants
1309 dl 1.86
1310     /**
1311 dl 1.105 * Initial timeout value (in nanoseconds) for the thread
1312     * triggering quiescence to park waiting for new work. On timeout,
1313     * the thread will instead try to shrink the number of
1314     * workers. The value should be large enough to avoid overly
1315     * aggressive shrinkage during most transient stalls (long GCs
1316     * etc).
1317 dl 1.86 */
1318 dl 1.208 private static final long IDLE_TIMEOUT = 2000L * 1000L * 1000L; // 2sec
1319 dl 1.86
1320     /**
1321 dl 1.120 * Tolerance for idle timeouts, to cope with timer undershoots
1322     */
1323 dl 1.208 private static final long TIMEOUT_SLOP = 20L * 1000L * 1000L; // 20ms
1324 dl 1.200
1325     /**
1326 dl 1.208 * The initial value for commonMaxSpares during static
1327     * initialization unless overridden using System property
1328     * "java.util.concurrent.ForkJoinPool.common.maximumSpares". The
1329     * default value is far in excess of normal requirements, but also
1330 dl 1.200 * far short of MAX_CAP and typical OS thread limits, so allows
1331     * JVMs to catch misuse/abuse before running out of resources
1332     * needed to do so.
1333     */
1334 dl 1.208 private static final int DEFAULT_COMMON_MAX_SPARES = 256;
1335 dl 1.120
1336     /**
1337 dl 1.200 * Number of times to spin-wait before blocking. The spins (in
1338     * awaitRunStateLock and awaitWork) currently use randomized
1339     * spins. If/when MWAIT-like intrinsics becomes available, they
1340     * may allow quieter spinning. The value of SPINS must be a power
1341     * of two, at least 4. The current value causes spinning for a
1342 dl 1.211 * small fraction of typical context-switch times, well worthwhile
1343     * given the typical likelihoods that blocking is not necessary.
1344 dl 1.90 */
1345 dl 1.200 private static final int SPINS = 1 << 11;
1346 dl 1.90
1347     /**
1348     * Increment for seed generators. See class ThreadLocal for
1349     * explanation.
1350     */
1351 dl 1.193 private static final int SEED_INCREMENT = 0x9e3779b9;
1352 dl 1.83
1353 jsr166 1.163 /*
1354 dl 1.200 * Bits and masks for field ctl, packed with 4 16 bit subfields:
1355     * AC: Number of active running workers minus target parallelism
1356     * TC: Number of total workers minus target parallelism
1357     * SS: version count and status of top waiting thread
1358     * ID: poolIndex of top of Treiber stack of waiters
1359     *
1360     * When convenient, we can extract the lower 32 stack top bits
1361     * (including version bits) as sp=(int)ctl. The offsets of counts
1362     * by the target parallelism and the positionings of fields makes
1363     * it possible to perform the most common checks via sign tests of
1364     * fields: When ac is negative, there are not enough active
1365     * workers, when tc is negative, there are not enough total
1366     * workers. When sp is non-zero, there are waiting workers. To
1367     * deal with possibly negative fields, we use casts in and out of
1368     * "short" and/or signed shifts to maintain signedness.
1369     *
1370     * Because it occupies uppermost bits, we can add one active count
1371     * using getAndAddLong of AC_UNIT, rather than CAS, when returning
1372     * from a blocked join. Other updates entail multiple subfields
1373     * and masking, requiring CAS.
1374     */
1375    
1376     // Lower and upper word masks
1377     private static final long SP_MASK = 0xffffffffL;
1378     private static final long UC_MASK = ~SP_MASK;
1379 dl 1.86
1380 dl 1.200 // Active counts
1381 dl 1.86 private static final int AC_SHIFT = 48;
1382 dl 1.200 private static final long AC_UNIT = 0x0001L << AC_SHIFT;
1383     private static final long AC_MASK = 0xffffL << AC_SHIFT;
1384    
1385     // Total counts
1386 dl 1.86 private static final int TC_SHIFT = 32;
1387 dl 1.200 private static final long TC_UNIT = 0x0001L << TC_SHIFT;
1388     private static final long TC_MASK = 0xffffL << TC_SHIFT;
1389     private static final long ADD_WORKER = 0x0001L << (TC_SHIFT + 15); // sign
1390    
1391 dl 1.205 // runState bits: SHUTDOWN must be negative, others arbitrary powers of two
1392 dl 1.200 private static final int RSLOCK = 1;
1393     private static final int RSIGNAL = 1 << 1;
1394     private static final int STARTED = 1 << 2;
1395 dl 1.205 private static final int STOP = 1 << 29;
1396     private static final int TERMINATED = 1 << 30;
1397     private static final int SHUTDOWN = 1 << 31;
1398 dl 1.86
1399     // Instance fields
1400 dl 1.200 volatile long ctl; // main pool control
1401     volatile int runState; // lockable status
1402     final int config; // parallelism, mode
1403     int indexSeed; // to generate worker index
1404     volatile WorkQueue[] workQueues; // main registry
1405 dl 1.112 final ForkJoinWorkerThreadFactory factory;
1406 dl 1.200 final UncaughtExceptionHandler ueh; // per-worker UEH
1407     final String workerNamePrefix; // to create worker name string
1408 dl 1.215 volatile AtomicLong stealCounter; // also used as sync monitor
1409 dl 1.101
1410 jsr166 1.145 /**
1411 jsr166 1.213 * Acquires the runState lock; returns current (locked) runState.
1412 dl 1.105 */
1413 dl 1.200 private int lockRunState() {
1414     int rs;
1415     return ((((rs = runState) & RSLOCK) != 0 ||
1416     !U.compareAndSwapInt(this, RUNSTATE, rs, rs |= RSLOCK)) ?
1417     awaitRunStateLock() : rs);
1418     }
1419    
1420     /**
1421 dl 1.215 * Spins and/or blocks until runstate lock is available. See
1422     * above for explanation.
1423 dl 1.200 */
1424     private int awaitRunStateLock() {
1425 dl 1.215 Object lock;
1426 dl 1.210 boolean wasInterrupted = false;
1427     for (int spins = SPINS, r = 0, rs, ns;;) {
1428 dl 1.200 if (((rs = runState) & RSLOCK) == 0) {
1429 dl 1.210 if (U.compareAndSwapInt(this, RUNSTATE, rs, ns = rs | RSLOCK)) {
1430     if (wasInterrupted) {
1431     try {
1432     Thread.currentThread().interrupt();
1433     } catch (SecurityException ignore) {
1434     }
1435     }
1436     return ns;
1437     }
1438 dl 1.200 }
1439     else if (r == 0)
1440     r = ThreadLocalRandom.nextSecondarySeed();
1441     else if (spins > 0) {
1442     r ^= r << 6; r ^= r >>> 21; r ^= r << 7; // xorshift
1443     if (r >= 0)
1444 dl 1.101 --spins;
1445     }
1446 dl 1.215 else if ((rs & STARTED) == 0 || (lock = stealCounter) == null)
1447     Thread.yield(); // initialization race
1448 dl 1.200 else if (U.compareAndSwapInt(this, RUNSTATE, rs, rs | RSIGNAL)) {
1449 dl 1.215 synchronized (lock) {
1450 dl 1.200 if ((runState & RSIGNAL) != 0) {
1451 dl 1.101 try {
1452 dl 1.215 lock.wait();
1453 dl 1.101 } catch (InterruptedException ie) {
1454 dl 1.210 if (!(Thread.currentThread() instanceof
1455     ForkJoinWorkerThread))
1456     wasInterrupted = true;
1457 dl 1.101 }
1458     }
1459     else
1460 dl 1.215 lock.notifyAll();
1461 dl 1.101 }
1462     }
1463     }
1464     }
1465 dl 1.78
1466 jsr166 1.1 /**
1467 dl 1.200 * Unlocks and sets runState to newRunState.
1468     *
1469     * @param oldRunState a value returned from lockRunState
1470     * @param newRunState the next value (must have lock bit clear).
1471 jsr166 1.1 */
1472 dl 1.200 private void unlockRunState(int oldRunState, int newRunState) {
1473     if (!U.compareAndSwapInt(this, RUNSTATE, oldRunState, newRunState)) {
1474 dl 1.215 Object lock = stealCounter;
1475 dl 1.200 runState = newRunState; // clears RSIGNAL bit
1476 dl 1.215 if (lock != null)
1477     synchronized (lock) { lock.notifyAll(); }
1478 dl 1.200 }
1479 dl 1.78 }
1480 jsr166 1.1
1481 dl 1.200 // Creating, registering and deregistering workers
1482    
1483 dl 1.112 /**
1484 dl 1.200 * Tries to construct and start one worker. Assumes that total
1485     * count has already been incremented as a reservation. Invokes
1486     * deregisterWorker on any failure.
1487     *
1488     * @return true if successful
1489 dl 1.115 */
1490 dl 1.200 private boolean createWorker() {
1491     ForkJoinWorkerThreadFactory fac = factory;
1492     Throwable ex = null;
1493     ForkJoinWorkerThread wt = null;
1494     try {
1495     if (fac != null && (wt = fac.newThread(this)) != null) {
1496     wt.start();
1497     return true;
1498 dl 1.115 }
1499 dl 1.200 } catch (Throwable rex) {
1500     ex = rex;
1501 dl 1.112 }
1502 dl 1.200 deregisterWorker(wt, ex);
1503     return false;
1504 dl 1.112 }
1505    
1506 dl 1.200 /**
1507     * Tries to add one worker, incrementing ctl counts before doing
1508     * so, relying on createWorker to back out on failure.
1509     *
1510     * @param c incoming ctl value, with total count negative and no
1511     * idle workers. On CAS failure, c is refreshed and retried if
1512 jsr166 1.202 * this holds (otherwise, a new worker is not needed).
1513 dl 1.200 */
1514     private void tryAddWorker(long c) {
1515     boolean add = false;
1516     do {
1517     long nc = ((AC_MASK & (c + AC_UNIT)) |
1518     (TC_MASK & (c + TC_UNIT)));
1519     if (ctl == c) {
1520     int rs, stop; // check if terminating
1521     if ((stop = (rs = lockRunState()) & STOP) == 0)
1522     add = U.compareAndSwapLong(this, CTL, c, nc);
1523     unlockRunState(rs, rs & ~RSLOCK);
1524     if (stop != 0)
1525     break;
1526     if (add) {
1527     createWorker();
1528     break;
1529     }
1530     }
1531     } while (((c = ctl) & ADD_WORKER) != 0L && (int)c == 0);
1532     }
1533 dl 1.112
1534     /**
1535 dl 1.200 * Callback from ForkJoinWorkerThread constructor to establish and
1536     * record its WorkQueue.
1537 dl 1.112 *
1538     * @param wt the worker thread
1539 dl 1.115 * @return the worker's queue
1540 dl 1.112 */
1541 dl 1.115 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1542 dl 1.200 UncaughtExceptionHandler handler;
1543     wt.setDaemon(true); // configure thread
1544 dl 1.115 if ((handler = ueh) != null)
1545     wt.setUncaughtExceptionHandler(handler);
1546 dl 1.200 WorkQueue w = new WorkQueue(this, wt);
1547     int i = 0; // assign a pool index
1548     int mode = config & MODE_MASK;
1549     int rs = lockRunState();
1550 dl 1.115 try {
1551 dl 1.200 WorkQueue[] ws; int n; // skip if no array
1552     if ((ws = workQueues) != null && (n = ws.length) > 0) {
1553     int s = indexSeed += SEED_INCREMENT; // unlikely to collide
1554     int m = n - 1;
1555     i = ((s << 1) | 1) & m; // odd-numbered indices
1556     if (ws[i] != null) { // collision
1557     int probes = 0; // step by approx half n
1558 dl 1.115 int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1559 dl 1.200 while (ws[i = (i + step) & m] != null) {
1560 dl 1.115 if (++probes >= n) {
1561     workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1562     m = n - 1;
1563     probes = 0;
1564 dl 1.94 }
1565     }
1566     }
1567 dl 1.200 w.hint = s; // use as random seed
1568     w.config = i | mode;
1569     w.scanState = i; // publication fence
1570     ws[i] = w;
1571 dl 1.78 }
1572 dl 1.115 } finally {
1573 dl 1.200 unlockRunState(rs, rs & ~RSLOCK);
1574 dl 1.78 }
1575 dl 1.200 wt.setName(workerNamePrefix.concat(Integer.toString(i >>> 1)));
1576 dl 1.115 return w;
1577 dl 1.78 }
1578 dl 1.19
1579 jsr166 1.1 /**
1580 dl 1.86 * Final callback from terminating worker, as well as upon failure
1581 dl 1.105 * to construct or start a worker. Removes record of worker from
1582     * array, and adjusts counts. If pool is shutting down, tries to
1583     * complete termination.
1584 dl 1.78 *
1585 jsr166 1.151 * @param wt the worker thread, or null if construction failed
1586 dl 1.78 * @param ex the exception causing failure, or null if none
1587 dl 1.45 */
1588 dl 1.78 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1589     WorkQueue w = null;
1590     if (wt != null && (w = wt.workQueue) != null) {
1591 dl 1.200 WorkQueue[] ws; // remove index from array
1592     int idx = w.config & SMASK;
1593     int rs = lockRunState();
1594     if ((ws = workQueues) != null && ws.length > idx && ws[idx] == w)
1595     ws[idx] = null;
1596     unlockRunState(rs, rs & ~RSLOCK);
1597     }
1598     long c; // decrement counts
1599     do {} while (!U.compareAndSwapLong
1600     (this, CTL, c = ctl, ((AC_MASK & (c - AC_UNIT)) |
1601     (TC_MASK & (c - TC_UNIT)) |
1602     (SP_MASK & c))));
1603     if (w != null) {
1604     w.qlock = -1; // ensure set
1605 dl 1.215 w.transferStealCount(this);
1606 dl 1.200 w.cancelAll(); // cancel remaining tasks
1607 dl 1.78 }
1608 dl 1.209 for (;;) { // possibly replace
1609 dl 1.205 WorkQueue[] ws; int m, sp;
1610 dl 1.209 if (tryTerminate(false, false) || w == null || w.array == null ||
1611     (runState & STOP) != 0 || (ws = workQueues) == null ||
1612     (m = ws.length - 1) < 0) // already terminating
1613     break;
1614     if ((sp = (int)(c = ctl)) != 0) { // wake up replacement
1615     if (tryRelease(c, ws[sp & m], AC_UNIT))
1616 dl 1.205 break;
1617 dl 1.120 }
1618 dl 1.209 else if (ex != null && (c & ADD_WORKER) != 0L) {
1619     tryAddWorker(c); // create replacement
1620     break;
1621     }
1622     else // don't need replacement
1623     break;
1624 dl 1.78 }
1625 dl 1.200 if (ex == null) // help clean on way out
1626 dl 1.120 ForkJoinTask.helpExpungeStaleExceptions();
1627 dl 1.200 else // rethrow
1628 dl 1.104 ForkJoinTask.rethrow(ex);
1629 dl 1.78 }
1630 dl 1.52
1631 dl 1.200 // Signalling
1632 dl 1.19
1633     /**
1634 dl 1.115 * Tries to create or activate a worker if too few are active.
1635     *
1636 dl 1.178 * @param ws the worker array to use to find signallees
1637 dl 1.200 * @param q a WorkQueue --if non-null, don't retry if now empty
1638 dl 1.105 */
1639 dl 1.178 final void signalWork(WorkQueue[] ws, WorkQueue q) {
1640 dl 1.200 long c; int sp, i; WorkQueue v; Thread p;
1641 dl 1.211 while ((c = ctl) < 0L) { // too few active
1642 dl 1.200 if ((sp = (int)c) == 0) { // no idle workers
1643     if ((c & ADD_WORKER) != 0L) // too few workers
1644     tryAddWorker(c);
1645     break;
1646     }
1647     if (ws == null) // unstarted/terminated
1648 dl 1.174 break;
1649 dl 1.200 if (ws.length <= (i = sp & SMASK)) // terminated
1650 dl 1.115 break;
1651 dl 1.200 if ((v = ws[i]) == null) // terminating
1652 dl 1.174 break;
1653 dl 1.200 int vs = (sp + SS_SEQ) & ~INACTIVE; // next scanState
1654     int d = sp - v.scanState; // screen CAS
1655     long nc = (UC_MASK & (c + AC_UNIT)) | (SP_MASK & v.stackPred);
1656     if (d == 0 && U.compareAndSwapLong(this, CTL, c, nc)) {
1657     v.scanState = vs; // activate v
1658     if ((p = v.parker) != null)
1659 dl 1.174 U.unpark(p);
1660     break;
1661     }
1662 dl 1.205 if (q != null && q.base == q.top) // no more work
1663 dl 1.174 break;
1664 dl 1.52 }
1665 dl 1.14 }
1666    
1667 dl 1.200 /**
1668     * Signals and releases worker v if it is top of idle worker
1669     * stack. This performs a one-shot version of signalWork only if
1670     * there is (apparently) at least one idle worker.
1671     *
1672     * @param c incoming ctl value
1673     * @param v if non-null, a worker
1674     * @param inc the increment to active count (zero when compensating)
1675     * @return true if successful
1676     */
1677     private boolean tryRelease(long c, WorkQueue v, long inc) {
1678     int sp = (int)c, vs = (sp + SS_SEQ) & ~INACTIVE; Thread p;
1679 dl 1.211 if (v != null && v.scanState == sp) { // v is at top of stack
1680 dl 1.200 long nc = (UC_MASK & (c + inc)) | (SP_MASK & v.stackPred);
1681     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1682     v.scanState = vs;
1683     if ((p = v.parker) != null)
1684     U.unpark(p);
1685     return true;
1686     }
1687     }
1688     return false;
1689     }
1690    
1691 dl 1.90 // Scanning for tasks
1692    
1693 dl 1.14 /**
1694 dl 1.90 * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1695 dl 1.14 */
1696 dl 1.90 final void runWorker(WorkQueue w) {
1697 dl 1.200 w.growArray(); // allocate queue
1698     int seed = w.hint; // initially holds randomization hint
1699     int r = (seed == 0) ? 1 : seed; // avoid 0 for xorShift
1700     for (ForkJoinTask<?> t;;) {
1701     if ((t = scan(w, r)) != null)
1702     w.runTask(t);
1703     else if (!awaitWork(w, r))
1704     break;
1705 dl 1.178 r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
1706     }
1707 dl 1.14 }
1708    
1709     /**
1710 dl 1.200 * Scans for and tries to steal a top-level task. Scans start at a
1711 jsr166 1.202 * random location, randomly moving on apparent contention,
1712 dl 1.200 * otherwise continuing linearly until reaching two consecutive
1713     * empty passes over all queues with the same checksum (summing
1714     * each base index of each queue, that moves on each steal), at
1715     * which point the worker tries to inactivate and then re-scans,
1716     * attempting to re-activate (itself or some other worker) if
1717     * finding a task; otherwise returning null to await work. Scans
1718     * otherwise touch as little memory as possible, to reduce
1719     * disruption on other scanning threads.
1720 dl 1.78 *
1721     * @param w the worker (via its WorkQueue)
1722 dl 1.178 * @param r a random seed
1723 dl 1.200 * @return a task, or null if none found
1724 dl 1.78 */
1725 dl 1.200 private ForkJoinTask<?> scan(WorkQueue w, int r) {
1726 dl 1.115 WorkQueue[] ws; int m;
1727 dl 1.200 if ((ws = workQueues) != null && (m = ws.length - 1) > 0 && w != null) {
1728     int ss = w.scanState; // initially non-negative
1729     for (int origin = r & m, k = origin, oldSum = 0, checkSum = 0;;) {
1730 dl 1.225 WorkQueue q; ForkJoinTask<?> t; int al, i, n; long c;
1731 dl 1.200 if ((q = ws[k]) != null) {
1732 dl 1.225 int b = q.base; ForkJoinTask<?>[] a = q.array;
1733     if ((n = b - q.top) < 0 && a != null &&
1734     (al = a.length) > 0) { // non-empty
1735     if ((t = getAt(a, i = (al - 1) & b)) != null &&
1736 dl 1.200 q.base == b) {
1737     if (ss >= 0) {
1738 dl 1.225 if (casAt(a, i, t, null)) {
1739 dl 1.200 q.base = b + 1;
1740     if (n < -1) // signal others
1741     signalWork(ws, q);
1742     return t;
1743     }
1744     }
1745     else if (oldSum == 0 && // try to activate
1746     w.scanState < 0)
1747     tryRelease(c = ctl, ws[m & (int)c], AC_UNIT);
1748 dl 1.178 }
1749 dl 1.200 if (ss < 0) // refresh
1750     ss = w.scanState;
1751     r ^= r << 1; r ^= r >>> 3; r ^= r << 10;
1752     origin = k = r & m; // move and rescan
1753     oldSum = checkSum = 0;
1754     continue;
1755     }
1756     checkSum += b;
1757     }
1758     if ((k = (k + 1) & m) == origin) { // continue until stable
1759     if ((ss >= 0 || (ss == (ss = w.scanState))) &&
1760     oldSum == (oldSum = checkSum)) {
1761 dl 1.210 if (ss < 0 || w.qlock < 0) // already inactive
1762 dl 1.200 break;
1763     int ns = ss | INACTIVE; // try to inactivate
1764     long nc = ((SP_MASK & ns) |
1765     (UC_MASK & ((c = ctl) - AC_UNIT)));
1766     w.stackPred = (int)c; // hold prev stack top
1767     U.putInt(w, QSCANSTATE, ns);
1768     if (U.compareAndSwapLong(this, CTL, c, nc))
1769     ss = ns;
1770     else
1771     w.scanState = ss; // back out
1772 dl 1.174 }
1773 dl 1.200 checkSum = 0;
1774 dl 1.115 }
1775     }
1776 dl 1.52 }
1777 dl 1.200 return null;
1778 dl 1.14 }
1779    
1780     /**
1781 dl 1.200 * Possibly blocks worker w waiting for a task to steal, or
1782     * returns false if the worker should terminate. If inactivating
1783     * w has caused the pool to become quiescent, checks for pool
1784 dl 1.178 * termination, and, so long as this is not the only worker, waits
1785 dl 1.200 * for up to a given duration. On timeout, if ctl has not
1786     * changed, terminates the worker, which will in turn wake up
1787 dl 1.178 * another worker to possibly repeat this process.
1788 dl 1.52 *
1789 dl 1.78 * @param w the calling worker
1790 jsr166 1.221 * @param r a random seed (for spins)
1791 dl 1.200 * @return false if the worker should terminate
1792 dl 1.14 */
1793 dl 1.200 private boolean awaitWork(WorkQueue w, int r) {
1794     if (w == null || w.qlock < 0) // w is terminating
1795     return false;
1796     for (int pred = w.stackPred, spins = SPINS, ss;;) {
1797     if ((ss = w.scanState) >= 0)
1798     break;
1799     else if (spins > 0) {
1800     r ^= r << 6; r ^= r >>> 21; r ^= r << 7;
1801     if (r >= 0 && --spins == 0) { // randomize spins
1802 dl 1.215 WorkQueue v; WorkQueue[] ws; int s, j; AtomicLong sc;
1803 dl 1.200 if (pred != 0 && (ws = workQueues) != null &&
1804     (j = pred & SMASK) < ws.length &&
1805     (v = ws[j]) != null && // see if pred parking
1806     (v.parker == null || v.scanState >= 0))
1807 jsr166 1.202 spins = SPINS; // continue spinning
1808 dl 1.200 }
1809 dl 1.177 }
1810 dl 1.200 else if (w.qlock < 0) // recheck after spins
1811     return false;
1812     else if (!Thread.interrupted()) {
1813     long c, prevctl, parkTime, deadline;
1814     int ac = (int)((c = ctl) >> AC_SHIFT) + (config & SMASK);
1815 dl 1.210 if ((ac <= 0 && tryTerminate(false, false)) ||
1816     (runState & STOP) != 0) // pool terminating
1817 dl 1.200 return false;
1818     if (ac <= 0 && ss == (int)c) { // is last waiter
1819     prevctl = (UC_MASK & (c + AC_UNIT)) | (SP_MASK & pred);
1820 dl 1.205 int t = (short)(c >>> TC_SHIFT); // shrink excess spares
1821     if (t > 2 && U.compareAndSwapLong(this, CTL, c, prevctl))
1822 dl 1.208 return false; // else use timed wait
1823 dl 1.205 parkTime = IDLE_TIMEOUT * ((t >= 0) ? 1 : 1 - t);
1824 dl 1.178 deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
1825     }
1826     else
1827 dl 1.200 prevctl = parkTime = deadline = 0L;
1828     Thread wt = Thread.currentThread();
1829     U.putObject(wt, PARKBLOCKER, this); // emulate LockSupport
1830     w.parker = wt;
1831     if (w.scanState < 0 && ctl == c) // recheck before park
1832     U.park(false, parkTime);
1833     U.putOrderedObject(w, QPARKER, null);
1834     U.putObject(wt, PARKBLOCKER, null);
1835     if (w.scanState >= 0)
1836     break;
1837     if (parkTime != 0L && ctl == c &&
1838     deadline - System.nanoTime() <= 0L &&
1839     U.compareAndSwapLong(this, CTL, c, prevctl))
1840     return false; // shrink pool
1841 dl 1.120 }
1842     }
1843 dl 1.200 return true;
1844 dl 1.178 }
1845    
1846 dl 1.200 // Joining tasks
1847    
1848 dl 1.178 /**
1849 dl 1.200 * Tries to steal and run tasks within the target's computation.
1850     * Uses a variant of the top-level algorithm, restricted to tasks
1851     * with the given task as ancestor: It prefers taking and running
1852     * eligible tasks popped from the worker's own queue (via
1853     * popCC). Otherwise it scans others, randomly moving on
1854     * contention or execution, deciding to give up based on a
1855     * checksum (via return codes frob pollAndExecCC). The maxTasks
1856     * argument supports external usages; internal calls use zero,
1857     * allowing unbounded steps (external calls trap non-positive
1858     * values).
1859     *
1860     * @param w caller
1861 jsr166 1.202 * @param maxTasks if non-zero, the maximum number of other tasks to run
1862 dl 1.200 * @return task status on exit
1863     */
1864     final int helpComplete(WorkQueue w, CountedCompleter<?> task,
1865     int maxTasks) {
1866     WorkQueue[] ws; int s = 0, m;
1867 dl 1.225 if ((ws = workQueues) != null && (m = ws.length - 1) > 0 &&
1868 dl 1.200 task != null && w != null) {
1869     int mode = w.config; // for popCC
1870     int r = w.hint ^ w.top; // arbitrary seed for origin
1871     int origin = r & m; // first queue to scan
1872     int h = 1; // 1:ran, >1:contended, <0:hash
1873     for (int k = origin, oldSum = 0, checkSum = 0;;) {
1874     CountedCompleter<?> p; WorkQueue q;
1875     if ((s = task.status) < 0)
1876     break;
1877     if (h == 1 && (p = w.popCC(task, mode)) != null) {
1878     p.doExec(); // run local task
1879     if (maxTasks != 0 && --maxTasks == 0)
1880     break;
1881     origin = k; // reset
1882     oldSum = checkSum = 0;
1883     }
1884     else { // poll other queues
1885     if ((q = ws[k]) == null)
1886     h = 0;
1887     else if ((h = q.pollAndExecCC(task)) < 0)
1888     checkSum += h;
1889     if (h > 0) {
1890     if (h == 1 && maxTasks != 0 && --maxTasks == 0)
1891     break;
1892     r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
1893     origin = k = r & m; // move and restart
1894     oldSum = checkSum = 0;
1895     }
1896     else if ((k = (k + 1) & m) == origin) {
1897     if (oldSum == (oldSum = checkSum))
1898     break;
1899     checkSum = 0;
1900     }
1901     }
1902 dl 1.178 }
1903     }
1904 dl 1.200 return s;
1905 dl 1.120 }
1906    
1907     /**
1908 dl 1.78 * Tries to locate and execute tasks for a stealer of the given
1909     * task, or in turn one of its stealers, Traces currentSteal ->
1910     * currentJoin links looking for a thread working on a descendant
1911     * of the given task and with a non-empty queue to steal back and
1912     * execute tasks from. The first call to this method upon a
1913     * waiting join will often entail scanning/search, (which is OK
1914     * because the joiner has nothing better to do), but this method
1915 dl 1.200 * leaves hints in workers to speed up subsequent calls.
1916 dl 1.78 *
1917 dl 1.200 * @param w caller
1918 dl 1.78 * @param task the task to join
1919     */
1920 dl 1.200 private void helpStealer(WorkQueue w, ForkJoinTask<?> task) {
1921     WorkQueue[] ws = workQueues;
1922     int oldSum = 0, checkSum, m;
1923 dl 1.225 if (ws != null && (m = ws.length - 1) > 0 && w != null &&
1924 dl 1.200 task != null) {
1925     do { // restart point
1926     checkSum = 0; // for stability check
1927     ForkJoinTask<?> subtask;
1928     WorkQueue j = w, v; // v is subtask stealer
1929     descent: for (subtask = task; subtask.status >= 0; ) {
1930     for (int h = j.hint | 1, k = 0, i; ; k += 2) {
1931     if (k > m) // can't find stealer
1932     break descent;
1933     if ((v = ws[i = (h + k) & m]) != null) {
1934     if (v.currentSteal == subtask) {
1935     j.hint = i;
1936 dl 1.95 break;
1937     }
1938 dl 1.200 checkSum += v.base;
1939 dl 1.78 }
1940     }
1941 dl 1.200 for (;;) { // help v or descend
1942 dl 1.225 ForkJoinTask<?>[] a; int b, al, i;
1943 dl 1.200 checkSum += (b = v.base);
1944     ForkJoinTask<?> next = v.currentJoin;
1945     if (subtask.status < 0 || j.currentJoin != subtask ||
1946     v.currentSteal != subtask) // stale
1947     break descent;
1948 dl 1.224 if (b - v.top >= 0 || (a = v.array) == null ||
1949 dl 1.225 (al = a.length) <= 0) {
1950 dl 1.200 if ((subtask = next) == null)
1951     break descent;
1952     j = v;
1953     break;
1954 dl 1.95 }
1955 dl 1.225 ForkJoinTask<?> t = getAt(a, i = (al - 1) & b);
1956 dl 1.200 if (v.base == b) {
1957     if (t == null) // stale
1958     break descent;
1959 dl 1.225 if (casAt(a, i, t, null)) {
1960 dl 1.200 v.base = b + 1;
1961     ForkJoinTask<?> ps = w.currentSteal;
1962 dl 1.205 int top = w.top;
1963     do {
1964     U.putOrderedObject(w, QCURRENTSTEAL, t);
1965     t.doExec(); // clear local tasks too
1966     } while (task.status >= 0 &&
1967     w.top != top &&
1968     (t = w.pop()) != null);
1969 dl 1.200 U.putOrderedObject(w, QCURRENTSTEAL, ps);
1970 dl 1.205 if (w.base != w.top)
1971 dl 1.200 return; // can't further help
1972 dl 1.95 }
1973 dl 1.78 }
1974 dl 1.52 }
1975 dl 1.19 }
1976 dl 1.200 } while (task.status >= 0 && oldSum != (oldSum = checkSum));
1977 dl 1.14 }
1978 dl 1.22 }
1979    
1980 dl 1.52 /**
1981 dl 1.200 * Tries to decrement active count (sometimes implicitly) and
1982     * possibly release or create a compensating worker in preparation
1983     * for blocking. Returns false (retryable by caller), on
1984 dl 1.208 * contention, detected staleness, instability, or termination.
1985 dl 1.105 *
1986 dl 1.200 * @param w caller
1987 dl 1.19 */
1988 dl 1.200 private boolean tryCompensate(WorkQueue w) {
1989     boolean canBlock;
1990     WorkQueue[] ws; long c; int m, pc, sp;
1991     if (w == null || w.qlock < 0 || // caller terminating
1992     (ws = workQueues) == null || (m = ws.length - 1) <= 0 ||
1993     (pc = config & SMASK) == 0) // parallelism disabled
1994     canBlock = false;
1995     else if ((sp = (int)(c = ctl)) != 0) // release idle worker
1996     canBlock = tryRelease(c, ws[sp & m], 0L);
1997     else {
1998     int ac = (int)(c >> AC_SHIFT) + pc;
1999     int tc = (short)(c >> TC_SHIFT) + pc;
2000     int nbusy = 0; // validate saturation
2001     for (int i = 0; i <= m; ++i) { // two passes of odd indices
2002     WorkQueue v;
2003     if ((v = ws[((i << 1) | 1) & m]) != null) {
2004     if ((v.scanState & SCANNING) != 0)
2005 dl 1.190 break;
2006 dl 1.200 ++nbusy;
2007 dl 1.178 }
2008 dl 1.52 }
2009 dl 1.200 if (nbusy != (tc << 1) || ctl != c)
2010     canBlock = false; // unstable or stale
2011     else if (tc >= pc && ac > 1 && w.isEmpty()) {
2012     long nc = ((AC_MASK & (c - AC_UNIT)) |
2013     (~AC_MASK & c)); // uncompensated
2014     canBlock = U.compareAndSwapLong(this, CTL, c, nc);
2015 dl 1.105 }
2016 dl 1.208 else if (tc >= MAX_CAP ||
2017     (this == common && tc >= pc + commonMaxSpares))
2018 dl 1.200 throw new RejectedExecutionException(
2019     "Thread limit exceeded replacing blocked worker");
2020     else { // similar to tryAddWorker
2021     boolean add = false; int rs; // CAS within lock
2022     long nc = ((AC_MASK & c) |
2023     (TC_MASK & (c + TC_UNIT)));
2024     if (((rs = lockRunState()) & STOP) == 0)
2025     add = U.compareAndSwapLong(this, CTL, c, nc);
2026     unlockRunState(rs, rs & ~RSLOCK);
2027     canBlock = add && createWorker(); // throws on exception
2028 dl 1.90 }
2029     }
2030 dl 1.200 return canBlock;
2031 dl 1.90 }
2032    
2033     /**
2034 dl 1.200 * Helps and/or blocks until the given task is done or timeout.
2035 dl 1.90 *
2036 dl 1.200 * @param w caller
2037 dl 1.90 * @param task the task
2038 dl 1.219 * @param deadline for timed waits, if nonzero
2039 dl 1.90 * @return task status on exit
2040     */
2041 dl 1.200 final int awaitJoin(WorkQueue w, ForkJoinTask<?> task, long deadline) {
2042 dl 1.105 int s = 0;
2043 dl 1.200 if (task != null && w != null) {
2044     ForkJoinTask<?> prevJoin = w.currentJoin;
2045     U.putOrderedObject(w, QCURRENTJOIN, task);
2046     CountedCompleter<?> cc = (task instanceof CountedCompleter) ?
2047     (CountedCompleter<?>)task : null;
2048     for (;;) {
2049     if ((s = task.status) < 0)
2050     break;
2051     if (cc != null)
2052     helpComplete(w, cc, 0);
2053     else if (w.base == w.top || w.tryRemoveAndExec(task))
2054     helpStealer(w, task);
2055     if ((s = task.status) < 0)
2056     break;
2057     long ms, ns;
2058     if (deadline == 0L)
2059     ms = 0L;
2060     else if ((ns = deadline - System.nanoTime()) <= 0L)
2061     break;
2062     else if ((ms = TimeUnit.NANOSECONDS.toMillis(ns)) <= 0L)
2063     ms = 1L;
2064     if (tryCompensate(w)) {
2065     task.internalWait(ms);
2066     U.getAndAddLong(this, CTL, AC_UNIT);
2067 dl 1.90 }
2068     }
2069 dl 1.200 U.putOrderedObject(w, QCURRENTJOIN, prevJoin);
2070 dl 1.90 }
2071 dl 1.94 return s;
2072 dl 1.90 }
2073    
2074 dl 1.200 // Specialized scanning
2075 dl 1.90
2076     /**
2077     * Returns a (probably) non-empty steal queue, if one is found
2078 dl 1.131 * during a scan, else null. This method must be retried by
2079     * caller if, by the time it tries to use the queue, it is empty.
2080 dl 1.78 */
2081 dl 1.178 private WorkQueue findNonEmptyStealQueue() {
2082 dl 1.211 WorkQueue[] ws; int m; // one-shot version of scan loop
2083     int r = ThreadLocalRandom.nextSecondarySeed();
2084 dl 1.225 if ((ws = workQueues) != null && (m = ws.length - 1) > 0) {
2085 dl 1.211 for (int origin = r & m, k = origin, oldSum = 0, checkSum = 0;;) {
2086     WorkQueue q; int b;
2087     if ((q = ws[k]) != null) {
2088     if ((b = q.base) - q.top < 0)
2089     return q;
2090     checkSum += b;
2091     }
2092     if ((k = (k + 1) & m) == origin) {
2093     if (oldSum == (oldSum = checkSum))
2094     break;
2095     checkSum = 0;
2096 dl 1.52 }
2097     }
2098 dl 1.211 }
2099 dl 1.200 return null;
2100 dl 1.22 }
2101    
2102     /**
2103 dl 1.78 * Runs tasks until {@code isQuiescent()}. We piggyback on
2104     * active count ctl maintenance, but rather than blocking
2105     * when tasks cannot be found, we rescan until all others cannot
2106     * find tasks either.
2107     */
2108     final void helpQuiescePool(WorkQueue w) {
2109 dl 1.211 ForkJoinTask<?> ps = w.currentSteal; // save context
2110 dl 1.78 for (boolean active = true;;) {
2111 dl 1.131 long c; WorkQueue q; ForkJoinTask<?> t; int b;
2112 dl 1.225 if ((w.config & FIFO_QUEUE) != 0)
2113     w.pollAndExecAll(); // run locals before each scan
2114     else
2115     w.popAndExecAll();
2116 dl 1.178 if ((q = findNonEmptyStealQueue()) != null) {
2117 dl 1.78 if (!active) { // re-establish active count
2118     active = true;
2119 dl 1.200 U.getAndAddLong(this, CTL, AC_UNIT);
2120     }
2121     if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2122     U.putOrderedObject(w, QCURRENTSTEAL, t);
2123     t.doExec();
2124 dl 1.215 if (++w.nsteals < 0)
2125     w.transferStealCount(this);
2126 dl 1.178 }
2127 dl 1.78 }
2128 jsr166 1.194 else if (active) { // decrement active count without queuing
2129 dl 1.200 long nc = (AC_MASK & ((c = ctl) - AC_UNIT)) | (~AC_MASK & c);
2130     if ((int)(nc >> AC_SHIFT) + (config & SMASK) <= 0)
2131 dl 1.185 break; // bypass decrement-then-increment
2132 dl 1.131 if (U.compareAndSwapLong(this, CTL, c, nc))
2133 dl 1.78 active = false;
2134 dl 1.22 }
2135 dl 1.200 else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) <= 0 &&
2136     U.compareAndSwapLong(this, CTL, c, c + AC_UNIT))
2137 dl 1.185 break;
2138 dl 1.22 }
2139 dl 1.211 U.putOrderedObject(w, QCURRENTSTEAL, ps);
2140 dl 1.22 }
2141    
2142     /**
2143 jsr166 1.84 * Gets and removes a local or stolen task for the given worker.
2144 dl 1.78 *
2145     * @return a task, if available
2146 dl 1.22 */
2147 dl 1.78 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2148     for (ForkJoinTask<?> t;;) {
2149 dl 1.90 WorkQueue q; int b;
2150 dl 1.78 if ((t = w.nextLocalTask()) != null)
2151     return t;
2152 dl 1.178 if ((q = findNonEmptyStealQueue()) == null)
2153 dl 1.78 return null;
2154 dl 1.172 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2155 dl 1.78 return t;
2156 dl 1.52 }
2157 dl 1.14 }
2158    
2159     /**
2160 dl 1.105 * Returns a cheap heuristic guide for task partitioning when
2161     * programmers, frameworks, tools, or languages have little or no
2162 jsr166 1.222 * idea about task granularity. In essence, by offering this
2163 dl 1.105 * method, we ask users only about tradeoffs in overhead vs
2164     * expected throughput and its variance, rather than how finely to
2165     * partition tasks.
2166     *
2167     * In a steady state strict (tree-structured) computation, each
2168     * thread makes available for stealing enough tasks for other
2169     * threads to remain active. Inductively, if all threads play by
2170     * the same rules, each thread should make available only a
2171     * constant number of tasks.
2172     *
2173     * The minimum useful constant is just 1. But using a value of 1
2174     * would require immediate replenishment upon each steal to
2175     * maintain enough tasks, which is infeasible. Further,
2176     * partitionings/granularities of offered tasks should minimize
2177     * steal rates, which in general means that threads nearer the top
2178     * of computation tree should generate more than those nearer the
2179     * bottom. In perfect steady state, each thread is at
2180     * approximately the same level of computation tree. However,
2181     * producing extra tasks amortizes the uncertainty of progress and
2182     * diffusion assumptions.
2183     *
2184 jsr166 1.161 * So, users will want to use values larger (but not much larger)
2185 dl 1.105 * than 1 to both smooth over transient shortages and hedge
2186     * against uneven progress; as traded off against the cost of
2187     * extra task overhead. We leave the user to pick a threshold
2188     * value to compare with the results of this call to guide
2189     * decisions, but recommend values such as 3.
2190     *
2191     * When all threads are active, it is on average OK to estimate
2192     * surplus strictly locally. In steady-state, if one thread is
2193     * maintaining say 2 surplus tasks, then so are others. So we can
2194     * just use estimated queue length. However, this strategy alone
2195     * leads to serious mis-estimates in some non-steady-state
2196     * conditions (ramp-up, ramp-down, other stalls). We can detect
2197     * many of these by further considering the number of "idle"
2198     * threads, that are known to have zero queued tasks, so
2199     * compensate by a factor of (#idle/#active) threads.
2200     */
2201     static int getSurplusQueuedTaskCount() {
2202     Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2203     if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2204 dl 1.200 int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).
2205     config & SMASK;
2206 dl 1.112 int n = (q = wt.workQueue).top - q.base;
2207 dl 1.105 int a = (int)(pool.ctl >> AC_SHIFT) + p;
2208 dl 1.112 return n - (a > (p >>>= 1) ? 0 :
2209     a > (p >>>= 1) ? 1 :
2210     a > (p >>>= 1) ? 2 :
2211     a > (p >>>= 1) ? 4 :
2212     8);
2213 dl 1.105 }
2214     return 0;
2215 dl 1.100 }
2216    
2217 dl 1.86 // Termination
2218 dl 1.14
2219     /**
2220 dl 1.210 * Possibly initiates and/or completes termination.
2221 dl 1.14 *
2222     * @param now if true, unconditionally terminate, else only
2223 dl 1.78 * if no work and no active workers
2224 jsr166 1.87 * @param enable if true, enable shutdown when next possible
2225 dl 1.14 * @return true if now terminating or terminated
2226 jsr166 1.1 */
2227 dl 1.86 private boolean tryTerminate(boolean now, boolean enable) {
2228 dl 1.200 int rs;
2229     if (this == common) // cannot shut down
2230 dl 1.105 return false;
2231 dl 1.210 if ((rs = runState) >= 0) {
2232 dl 1.131 if (!enable)
2233     return false;
2234 dl 1.210 rs = lockRunState(); // enter SHUTDOWN phase
2235 dl 1.200 unlockRunState(rs, (rs & ~RSLOCK) | SHUTDOWN);
2236     }
2237 dl 1.210
2238 jsr166 1.204 if ((rs & STOP) == 0) {
2239 dl 1.210 if (!now) { // check quiescence
2240 dl 1.211 for (long oldSum = 0L;;) { // repeat until stable
2241 dl 1.210 WorkQueue[] ws; WorkQueue w; int m, b; long c;
2242     long checkSum = ctl;
2243     if ((int)(checkSum >> AC_SHIFT) + (config & SMASK) > 0)
2244     return false; // still active workers
2245 dl 1.209 if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
2246 dl 1.210 break; // check queues
2247 dl 1.209 for (int i = 0; i <= m; ++i) {
2248     if ((w = ws[i]) != null) {
2249 dl 1.210 if ((b = w.base) != w.top || w.scanState >= 0 ||
2250     w.currentSteal != null) {
2251     tryRelease(c = ctl, ws[m & (int)c], AC_UNIT);
2252 dl 1.211 return false; // arrange for recheck
2253 dl 1.210 }
2254     checkSum += b;
2255 dl 1.209 if ((i & 1) == 0)
2256 dl 1.210 w.qlock = -1; // try to disable external
2257 dl 1.206 }
2258 dl 1.203 }
2259 dl 1.209 if (oldSum == (oldSum = checkSum))
2260 dl 1.210 break;
2261 dl 1.203 }
2262     }
2263 dl 1.210 if ((runState & STOP) == 0) {
2264     rs = lockRunState(); // enter STOP phase
2265     unlockRunState(rs, (rs & ~RSLOCK) | STOP);
2266     }
2267 dl 1.200 }
2268 dl 1.210
2269     int pass = 0; // 3 passes to help terminate
2270     for (long oldSum = 0L;;) { // or until done or stable
2271     WorkQueue[] ws; WorkQueue w; ForkJoinWorkerThread wt; int m;
2272     long checkSum = ctl;
2273     if ((short)(checkSum >>> TC_SHIFT) + (config & SMASK) <= 0 ||
2274     (ws = workQueues) == null || (m = ws.length - 1) <= 0) {
2275     if ((runState & TERMINATED) == 0) {
2276     rs = lockRunState(); // done
2277     unlockRunState(rs, (rs & ~RSLOCK) | TERMINATED);
2278     synchronized (this) { notifyAll(); } // for awaitTermination
2279     }
2280     break;
2281     }
2282     for (int i = 0; i <= m; ++i) {
2283     if ((w = ws[i]) != null) {
2284     checkSum += w.base;
2285     w.qlock = -1; // try to disable
2286     if (pass > 0) {
2287     w.cancelAll(); // clear queue
2288     if (pass > 1 && (wt = w.owner) != null) {
2289     if (!wt.isInterrupted()) {
2290     try { // unblock join
2291     wt.interrupt();
2292     } catch (Throwable ignore) {
2293 dl 1.200 }
2294     }
2295 dl 1.210 if (w.scanState < 0)
2296     U.unpark(wt); // wake up
2297 dl 1.200 }
2298 dl 1.101 }
2299 dl 1.78 }
2300     }
2301 dl 1.210 if (checkSum != oldSum) { // unstable
2302     oldSum = checkSum;
2303     pass = 0;
2304     }
2305     else if (pass > 3 && pass > m) // can't further help
2306     break;
2307     else if (++pass > 1) { // try to dequeue
2308     long c; int j = 0, sp; // bound attempts
2309     while (j++ <= m && (sp = (int)(c = ctl)) != 0)
2310     tryRelease(c, ws[sp & m], AC_UNIT);
2311 dl 1.200 }
2312     }
2313     return true;
2314     }
2315    
2316     // External operations
2317    
2318     /**
2319     * Full version of externalPush, handling uncommon cases, as well
2320     * as performing secondary initialization upon the first
2321     * submission of the first task to the pool. It also detects
2322     * first submission by an external thread and creates a new shared
2323     * queue if the one at index if empty or contended.
2324     *
2325     * @param task the task. Caller must ensure non-null.
2326     */
2327     private void externalSubmit(ForkJoinTask<?> task) {
2328     int r; // initialize caller's probe
2329     if ((r = ThreadLocalRandom.getProbe()) == 0) {
2330     ThreadLocalRandom.localInit();
2331     r = ThreadLocalRandom.getProbe();
2332     }
2333     for (;;) {
2334     WorkQueue[] ws; WorkQueue q; int rs, m, k;
2335     boolean move = false;
2336 dl 1.210 if ((rs = runState) < 0) {
2337     tryTerminate(false, false); // help terminate
2338 dl 1.200 throw new RejectedExecutionException();
2339 dl 1.210 }
2340 dl 1.215 else if ((rs & STARTED) == 0 || // initialize
2341 dl 1.225 ((ws = workQueues) == null || (m = ws.length - 1) <= 0)) {
2342 dl 1.200 int ns = 0;
2343     rs = lockRunState();
2344     try {
2345 dl 1.215 if ((rs & STARTED) == 0) {
2346     U.compareAndSwapObject(this, STEALCOUNTER, null,
2347     new AtomicLong());
2348     // create workQueues array with size a power of two
2349 dl 1.200 int p = config & SMASK; // ensure at least 2 slots
2350     int n = (p > 1) ? p - 1 : 1;
2351     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4;
2352     n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1;
2353     workQueues = new WorkQueue[n];
2354     ns = STARTED;
2355 dl 1.78 }
2356 dl 1.200 } finally {
2357     unlockRunState(rs, (rs & ~RSLOCK) | ns);
2358 dl 1.52 }
2359     }
2360 dl 1.200 else if ((q = ws[k = r & m & SQMASK]) != null) {
2361     if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2362     ForkJoinTask<?>[] a = q.array;
2363 dl 1.225 int s = q.top;
2364 dl 1.200 boolean submitted = false; // initial submission or resizing
2365     try { // locked version of push
2366 dl 1.225 if ((a != null && a.length > s + 1 - q.base) ||
2367     (a = q.growArray()) != null) {
2368     int al = a.length, j = (al - 1) & s;
2369     if (al > 0) {
2370     setAt(a, j, task);
2371     U.putOrderedInt(q, QTOP, s + 1);
2372     submitted = true;
2373     }
2374 dl 1.86 }
2375 dl 1.200 } finally {
2376 dl 1.209 U.compareAndSwapInt(q, QLOCK, 1, 0);
2377 dl 1.200 }
2378     if (submitted) {
2379     signalWork(ws, q);
2380     return;
2381 dl 1.78 }
2382 dl 1.52 }
2383 dl 1.200 move = true; // move on failure
2384 dl 1.52 }
2385 dl 1.200 else if (((rs = runState) & RSLOCK) == 0) { // create new queue
2386     q = new WorkQueue(this, null);
2387     q.hint = r;
2388     q.config = k | SHARED_QUEUE;
2389 dl 1.210 q.scanState = INACTIVE;
2390 dl 1.200 rs = lockRunState(); // publish index
2391 dl 1.209 if (rs > 0 && (ws = workQueues) != null &&
2392     k < ws.length && ws[k] == null)
2393 dl 1.200 ws[k] = q; // else terminated
2394     unlockRunState(rs, rs & ~RSLOCK);
2395     }
2396     else
2397     move = true; // move if busy
2398     if (move)
2399     r = ThreadLocalRandom.advanceProbe(r);
2400 dl 1.52 }
2401     }
2402    
2403 dl 1.200 /**
2404     * Tries to add the given task to a submission queue at
2405     * submitter's current queue. Only the (vastly) most common path
2406     * is directly handled in this method, while screening for need
2407     * for externalSubmit.
2408     *
2409     * @param task the task. Caller must ensure non-null.
2410     */
2411     final void externalPush(ForkJoinTask<?> task) {
2412     WorkQueue[] ws; WorkQueue q; int m;
2413     int r = ThreadLocalRandom.getProbe();
2414 dl 1.205 int rs = runState;
2415 dl 1.225 if ((ws = workQueues) != null && (m = (ws.length - 1)) > 0 &&
2416 dl 1.205 (q = ws[m & r & SQMASK]) != null && r != 0 && rs > 0 &&
2417 dl 1.200 U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2418 dl 1.224 ForkJoinTask<?>[] a;
2419     if ((a = q.array) != null) {
2420 dl 1.225 int b = q.base, al = a.length, s = q.top;
2421     if (al > 0) {
2422     int am = al - 1, j = am & s, n;
2423     if ((n = s - b) < am) {
2424     setAt(a, j, task);
2425     U.putOrderedInt(q, QTOP, s + 1);
2426     U.putOrderedInt(q, QLOCK, 0);
2427     if (n <= 1)
2428     signalWork(ws, q);
2429     return;
2430     }
2431 dl 1.224 }
2432 dl 1.200 }
2433 dl 1.209 U.compareAndSwapInt(q, QLOCK, 1, 0);
2434 dl 1.200 }
2435     externalSubmit(task);
2436     }
2437 dl 1.105
2438     /**
2439 jsr166 1.213 * Returns common pool queue for an external thread.
2440 dl 1.105 */
2441     static WorkQueue commonSubmitterQueue() {
2442 dl 1.200 ForkJoinPool p = common;
2443     int r = ThreadLocalRandom.getProbe();
2444     WorkQueue[] ws; int m;
2445     return (p != null && (ws = p.workQueues) != null &&
2446 dl 1.225 (m = ws.length - 1) > 0) ?
2447 dl 1.200 ws[m & r & SQMASK] : null;
2448 dl 1.105 }
2449    
2450     /**
2451 dl 1.200 * Performs tryUnpush for an external submitter: Finds queue,
2452     * locks if apparently non-empty, validates upon locking, and
2453     * adjusts top. Each check can fail but rarely does.
2454 dl 1.105 */
2455 dl 1.178 final boolean tryExternalUnpush(ForkJoinTask<?> task) {
2456 dl 1.224 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?>[] a; int m;
2457 dl 1.200 int r = ThreadLocalRandom.getProbe();
2458 dl 1.225 if ((ws = workQueues) != null && (m = ws.length - 1) > 0 &&
2459 dl 1.200 (w = ws[m & r & SQMASK]) != null &&
2460 dl 1.224 (a = w.array) != null) {
2461 dl 1.225 int b = w.base, al = a.length, s = w.top;
2462     if (s != b && al > 0 &&
2463     U.compareAndSwapInt(w, QLOCK, 0, 1)) {
2464     int i = (al - 1) & (s - 1);
2465     if (w.top == s && w.array == a && casAt(a, i, task, null)) {
2466 dl 1.200 U.putOrderedInt(w, QTOP, s - 1);
2467     U.putOrderedInt(w, QLOCK, 0);
2468     return true;
2469 dl 1.115 }
2470 dl 1.209 U.compareAndSwapInt(w, QLOCK, 1, 0);
2471 dl 1.105 }
2472     }
2473 dl 1.200 return false;
2474 dl 1.105 }
2475    
2476 dl 1.200 /**
2477 jsr166 1.213 * Performs helpComplete for an external submitter.
2478 dl 1.200 */
2479 dl 1.190 final int externalHelpComplete(CountedCompleter<?> task, int maxTasks) {
2480 dl 1.200 WorkQueue[] ws; int n;
2481     int r = ThreadLocalRandom.getProbe();
2482     return ((ws = workQueues) == null || (n = ws.length) == 0) ? 0 :
2483     helpComplete(ws[(n - 1) & r & SQMASK], task, maxTasks);
2484 dl 1.105 }
2485    
2486 dl 1.52 // Exported methods
2487 jsr166 1.1
2488     // Constructors
2489    
2490     /**
2491 jsr166 1.9 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2492 dl 1.18 * java.lang.Runtime#availableProcessors}, using the {@linkplain
2493     * #defaultForkJoinWorkerThreadFactory default thread factory},
2494     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2495 jsr166 1.1 *
2496     * @throws SecurityException if a security manager exists and
2497     * the caller is not permitted to modify threads
2498     * because it does not hold {@link
2499     * java.lang.RuntimePermission}{@code ("modifyThread")}
2500     */
2501     public ForkJoinPool() {
2502 jsr166 1.148 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2503     defaultForkJoinWorkerThreadFactory, null, false);
2504 jsr166 1.1 }
2505    
2506     /**
2507 jsr166 1.9 * Creates a {@code ForkJoinPool} with the indicated parallelism
2508 dl 1.18 * level, the {@linkplain
2509     * #defaultForkJoinWorkerThreadFactory default thread factory},
2510     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2511 jsr166 1.1 *
2512 jsr166 1.9 * @param parallelism the parallelism level
2513 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
2514 jsr166 1.11 * equal to zero, or greater than implementation limit
2515 jsr166 1.1 * @throws SecurityException if a security manager exists and
2516     * the caller is not permitted to modify threads
2517     * because it does not hold {@link
2518     * java.lang.RuntimePermission}{@code ("modifyThread")}
2519     */
2520     public ForkJoinPool(int parallelism) {
2521 dl 1.18 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2522 jsr166 1.1 }
2523    
2524     /**
2525 dl 1.18 * Creates a {@code ForkJoinPool} with the given parameters.
2526 jsr166 1.1 *
2527 dl 1.18 * @param parallelism the parallelism level. For default value,
2528     * use {@link java.lang.Runtime#availableProcessors}.
2529     * @param factory the factory for creating new threads. For default value,
2530     * use {@link #defaultForkJoinWorkerThreadFactory}.
2531 dl 1.19 * @param handler the handler for internal worker threads that
2532     * terminate due to unrecoverable errors encountered while executing
2533 jsr166 1.31 * tasks. For default value, use {@code null}.
2534 dl 1.19 * @param asyncMode if true,
2535 dl 1.18 * establishes local first-in-first-out scheduling mode for forked
2536     * tasks that are never joined. This mode may be more appropriate
2537     * than default locally stack-based mode in applications in which
2538     * worker threads only process event-style asynchronous tasks.
2539 jsr166 1.31 * For default value, use {@code false}.
2540 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
2541 jsr166 1.11 * equal to zero, or greater than implementation limit
2542     * @throws NullPointerException if the factory is null
2543 jsr166 1.1 * @throws SecurityException if a security manager exists and
2544     * the caller is not permitted to modify threads
2545     * because it does not hold {@link
2546     * java.lang.RuntimePermission}{@code ("modifyThread")}
2547     */
2548 dl 1.19 public ForkJoinPool(int parallelism,
2549 dl 1.18 ForkJoinWorkerThreadFactory factory,
2550 jsr166 1.156 UncaughtExceptionHandler handler,
2551 dl 1.18 boolean asyncMode) {
2552 dl 1.152 this(checkParallelism(parallelism),
2553     checkFactory(factory),
2554     handler,
2555 jsr166 1.201 asyncMode ? FIFO_QUEUE : LIFO_QUEUE,
2556 dl 1.152 "ForkJoinPool-" + nextPoolId() + "-worker-");
2557 dl 1.14 checkPermission();
2558 dl 1.152 }
2559    
2560     private static int checkParallelism(int parallelism) {
2561     if (parallelism <= 0 || parallelism > MAX_CAP)
2562     throw new IllegalArgumentException();
2563     return parallelism;
2564     }
2565    
2566     private static ForkJoinWorkerThreadFactory checkFactory
2567     (ForkJoinWorkerThreadFactory factory) {
2568 dl 1.14 if (factory == null)
2569     throw new NullPointerException();
2570 dl 1.152 return factory;
2571     }
2572    
2573     /**
2574     * Creates a {@code ForkJoinPool} with the given parameters, without
2575     * any security checks or parameter validation. Invoked directly by
2576     * makeCommonPool.
2577     */
2578     private ForkJoinPool(int parallelism,
2579     ForkJoinWorkerThreadFactory factory,
2580 jsr166 1.156 UncaughtExceptionHandler handler,
2581 dl 1.185 int mode,
2582 dl 1.152 String workerNamePrefix) {
2583     this.workerNamePrefix = workerNamePrefix;
2584 jsr166 1.1 this.factory = factory;
2585 dl 1.18 this.ueh = handler;
2586 dl 1.200 this.config = (parallelism & SMASK) | mode;
2587 dl 1.52 long np = (long)(-parallelism); // offset ctl counts
2588     this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2589 dl 1.101 }
2590    
2591     /**
2592 dl 1.128 * Returns the common pool instance. This pool is statically
2593 dl 1.134 * constructed; its run state is unaffected by attempts to {@link
2594     * #shutdown} or {@link #shutdownNow}. However this pool and any
2595     * ongoing processing are automatically terminated upon program
2596     * {@link System#exit}. Any program that relies on asynchronous
2597     * task processing to complete before program termination should
2598 jsr166 1.158 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2599     * before exit.
2600 dl 1.100 *
2601     * @return the common pool instance
2602 jsr166 1.138 * @since 1.8
2603 dl 1.100 */
2604     public static ForkJoinPool commonPool() {
2605 dl 1.134 // assert common != null : "static init error";
2606     return common;
2607 dl 1.100 }
2608    
2609 jsr166 1.1 // Execution methods
2610    
2611     /**
2612     * Performs the given task, returning its result upon completion.
2613 dl 1.52 * If the computation encounters an unchecked Exception or Error,
2614     * it is rethrown as the outcome of this invocation. Rethrown
2615     * exceptions behave in the same way as regular exceptions, but,
2616     * when possible, contain stack traces (as displayed for example
2617     * using {@code ex.printStackTrace()}) of both the current thread
2618     * as well as the thread actually encountering the exception;
2619     * minimally only the latter.
2620 jsr166 1.1 *
2621     * @param task the task
2622 jsr166 1.191 * @param <T> the type of the task's result
2623 jsr166 1.1 * @return the task's result
2624 jsr166 1.11 * @throws NullPointerException if the task is null
2625     * @throws RejectedExecutionException if the task cannot be
2626     * scheduled for execution
2627 jsr166 1.1 */
2628     public <T> T invoke(ForkJoinTask<T> task) {
2629 dl 1.90 if (task == null)
2630     throw new NullPointerException();
2631 dl 1.105 externalPush(task);
2632 dl 1.78 return task.join();
2633 jsr166 1.1 }
2634    
2635     /**
2636     * Arranges for (asynchronous) execution of the given task.
2637     *
2638     * @param task the task
2639 jsr166 1.11 * @throws NullPointerException if the task is null
2640     * @throws RejectedExecutionException if the task cannot be
2641     * scheduled for execution
2642 jsr166 1.1 */
2643 jsr166 1.8 public void execute(ForkJoinTask<?> task) {
2644 dl 1.90 if (task == null)
2645     throw new NullPointerException();
2646 dl 1.105 externalPush(task);
2647 jsr166 1.1 }
2648    
2649     // AbstractExecutorService methods
2650    
2651 jsr166 1.11 /**
2652     * @throws NullPointerException if the task is null
2653     * @throws RejectedExecutionException if the task cannot be
2654     * scheduled for execution
2655     */
2656 jsr166 1.1 public void execute(Runnable task) {
2657 dl 1.41 if (task == null)
2658     throw new NullPointerException();
2659 jsr166 1.2 ForkJoinTask<?> job;
2660 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2661     job = (ForkJoinTask<?>) task;
2662 jsr166 1.2 else
2663 dl 1.152 job = new ForkJoinTask.RunnableExecuteAction(task);
2664 dl 1.105 externalPush(job);
2665 jsr166 1.1 }
2666    
2667 jsr166 1.11 /**
2668 dl 1.18 * Submits a ForkJoinTask for execution.
2669     *
2670     * @param task the task to submit
2671 jsr166 1.191 * @param <T> the type of the task's result
2672 dl 1.18 * @return the task
2673     * @throws NullPointerException if the task is null
2674     * @throws RejectedExecutionException if the task cannot be
2675     * scheduled for execution
2676     */
2677     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2678 dl 1.90 if (task == null)
2679     throw new NullPointerException();
2680 dl 1.105 externalPush(task);
2681 dl 1.18 return task;
2682     }
2683    
2684     /**
2685 jsr166 1.11 * @throws NullPointerException if the task is null
2686     * @throws RejectedExecutionException if the task cannot be
2687     * scheduled for execution
2688     */
2689 jsr166 1.1 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2690 dl 1.90 ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2691 dl 1.105 externalPush(job);
2692 jsr166 1.1 return job;
2693     }
2694    
2695 jsr166 1.11 /**
2696     * @throws NullPointerException if the task is null
2697     * @throws RejectedExecutionException if the task cannot be
2698     * scheduled for execution
2699     */
2700 jsr166 1.1 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2701 dl 1.90 ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2702 dl 1.105 externalPush(job);
2703 jsr166 1.1 return job;
2704     }
2705    
2706 jsr166 1.11 /**
2707     * @throws NullPointerException if the task is null
2708     * @throws RejectedExecutionException if the task cannot be
2709     * scheduled for execution
2710     */
2711 jsr166 1.1 public ForkJoinTask<?> submit(Runnable task) {
2712 dl 1.41 if (task == null)
2713     throw new NullPointerException();
2714 jsr166 1.2 ForkJoinTask<?> job;
2715 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2716     job = (ForkJoinTask<?>) task;
2717 jsr166 1.2 else
2718 dl 1.90 job = new ForkJoinTask.AdaptedRunnableAction(task);
2719 dl 1.105 externalPush(job);
2720 jsr166 1.1 return job;
2721     }
2722    
2723     /**
2724 jsr166 1.11 * @throws NullPointerException {@inheritDoc}
2725     * @throws RejectedExecutionException {@inheritDoc}
2726     */
2727 jsr166 1.1 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2728 dl 1.86 // In previous versions of this class, this method constructed
2729     // a task to run ForkJoinTask.invokeAll, but now external
2730     // invocation of multiple tasks is at least as efficient.
2731 jsr166 1.199 ArrayList<Future<T>> futures = new ArrayList<>(tasks.size());
2732 jsr166 1.1
2733 dl 1.86 boolean done = false;
2734     try {
2735     for (Callable<T> t : tasks) {
2736 dl 1.90 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2737 jsr166 1.144 futures.add(f);
2738 dl 1.105 externalPush(f);
2739 dl 1.86 }
2740 jsr166 1.143 for (int i = 0, size = futures.size(); i < size; i++)
2741     ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2742 dl 1.86 done = true;
2743     return futures;
2744     } finally {
2745     if (!done)
2746 jsr166 1.143 for (int i = 0, size = futures.size(); i < size; i++)
2747     futures.get(i).cancel(false);
2748 jsr166 1.1 }
2749     }
2750    
2751     /**
2752     * Returns the factory used for constructing new workers.
2753     *
2754     * @return the factory used for constructing new workers
2755     */
2756     public ForkJoinWorkerThreadFactory getFactory() {
2757     return factory;
2758     }
2759    
2760     /**
2761     * Returns the handler for internal worker threads that terminate
2762     * due to unrecoverable errors encountered while executing tasks.
2763     *
2764 jsr166 1.4 * @return the handler, or {@code null} if none
2765 jsr166 1.1 */
2766 jsr166 1.156 public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2767 dl 1.14 return ueh;
2768 jsr166 1.1 }
2769    
2770     /**
2771 jsr166 1.9 * Returns the targeted parallelism level of this pool.
2772 jsr166 1.1 *
2773 jsr166 1.9 * @return the targeted parallelism level of this pool
2774 jsr166 1.1 */
2775     public int getParallelism() {
2776 dl 1.185 int par;
2777 dl 1.200 return ((par = config & SMASK) > 0) ? par : 1;
2778 jsr166 1.1 }
2779    
2780     /**
2781 dl 1.100 * Returns the targeted parallelism level of the common pool.
2782     *
2783     * @return the targeted parallelism level of the common pool
2784 jsr166 1.138 * @since 1.8
2785 dl 1.100 */
2786     public static int getCommonPoolParallelism() {
2787 dl 1.134 return commonParallelism;
2788 dl 1.100 }
2789    
2790     /**
2791 jsr166 1.1 * Returns the number of worker threads that have started but not
2792 jsr166 1.34 * yet terminated. The result returned by this method may differ
2793 jsr166 1.4 * from {@link #getParallelism} when threads are created to
2794 jsr166 1.1 * maintain parallelism when others are cooperatively blocked.
2795     *
2796     * @return the number of worker threads
2797     */
2798     public int getPoolSize() {
2799 dl 1.200 return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2800 jsr166 1.1 }
2801    
2802     /**
2803 jsr166 1.4 * Returns {@code true} if this pool uses local first-in-first-out
2804 jsr166 1.1 * scheduling mode for forked tasks that are never joined.
2805     *
2806 jsr166 1.4 * @return {@code true} if this pool uses async mode
2807 jsr166 1.1 */
2808     public boolean getAsyncMode() {
2809 dl 1.200 return (config & FIFO_QUEUE) != 0;
2810 jsr166 1.1 }
2811    
2812     /**
2813     * Returns an estimate of the number of worker threads that are
2814     * not blocked waiting to join tasks or for other managed
2815 dl 1.14 * synchronization. This method may overestimate the
2816     * number of running threads.
2817 jsr166 1.1 *
2818     * @return the number of worker threads
2819     */
2820     public int getRunningThreadCount() {
2821 dl 1.78 int rc = 0;
2822     WorkQueue[] ws; WorkQueue w;
2823     if ((ws = workQueues) != null) {
2824 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2825     if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2826 dl 1.78 ++rc;
2827     }
2828     }
2829     return rc;
2830 jsr166 1.1 }
2831    
2832     /**
2833     * Returns an estimate of the number of threads that are currently
2834     * stealing or executing tasks. This method may overestimate the
2835     * number of active threads.
2836     *
2837     * @return the number of active threads
2838     */
2839     public int getActiveThreadCount() {
2840 dl 1.200 int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2841 jsr166 1.63 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2842 jsr166 1.1 }
2843    
2844     /**
2845 jsr166 1.4 * Returns {@code true} if all worker threads are currently idle.
2846     * An idle worker is one that cannot obtain a task to execute
2847     * because none are available to steal from other threads, and
2848     * there are no pending submissions to the pool. This method is
2849     * conservative; it might not return {@code true} immediately upon
2850     * idleness of all threads, but will eventually become true if
2851     * threads remain inactive.
2852 jsr166 1.1 *
2853 jsr166 1.4 * @return {@code true} if all threads are currently idle
2854 jsr166 1.1 */
2855     public boolean isQuiescent() {
2856 dl 1.200 return (config & SMASK) + (int)(ctl >> AC_SHIFT) <= 0;
2857 jsr166 1.1 }
2858    
2859     /**
2860     * Returns an estimate of the total number of tasks stolen from
2861     * one thread's work queue by another. The reported value
2862     * underestimates the actual total number of steals when the pool
2863     * is not quiescent. This value may be useful for monitoring and
2864     * tuning fork/join programs: in general, steal counts should be
2865     * high enough to keep threads busy, but low enough to avoid
2866     * overhead and contention across threads.
2867     *
2868     * @return the number of steals
2869     */
2870     public long getStealCount() {
2871 dl 1.215 AtomicLong sc = stealCounter;
2872     long count = (sc == null) ? 0L : sc.get();
2873 dl 1.78 WorkQueue[] ws; WorkQueue w;
2874     if ((ws = workQueues) != null) {
2875 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2876 dl 1.78 if ((w = ws[i]) != null)
2877 dl 1.105 count += w.nsteals;
2878 dl 1.78 }
2879     }
2880     return count;
2881 jsr166 1.1 }
2882    
2883     /**
2884     * Returns an estimate of the total number of tasks currently held
2885     * in queues by worker threads (but not including tasks submitted
2886     * to the pool that have not begun executing). This value is only
2887     * an approximation, obtained by iterating across all threads in
2888     * the pool. This method may be useful for tuning task
2889     * granularities.
2890     *
2891     * @return the number of queued tasks
2892     */
2893     public long getQueuedTaskCount() {
2894     long count = 0;
2895 dl 1.78 WorkQueue[] ws; WorkQueue w;
2896     if ((ws = workQueues) != null) {
2897 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2898 dl 1.78 if ((w = ws[i]) != null)
2899     count += w.queueSize();
2900     }
2901 dl 1.52 }
2902 jsr166 1.1 return count;
2903     }
2904    
2905     /**
2906 jsr166 1.8 * Returns an estimate of the number of tasks submitted to this
2907 dl 1.55 * pool that have not yet begun executing. This method may take
2908 dl 1.52 * time proportional to the number of submissions.
2909 jsr166 1.1 *
2910     * @return the number of queued submissions
2911     */
2912     public int getQueuedSubmissionCount() {
2913 dl 1.78 int count = 0;
2914     WorkQueue[] ws; WorkQueue w;
2915     if ((ws = workQueues) != null) {
2916 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2917 dl 1.78 if ((w = ws[i]) != null)
2918     count += w.queueSize();
2919     }
2920     }
2921     return count;
2922 jsr166 1.1 }
2923    
2924     /**
2925 jsr166 1.4 * Returns {@code true} if there are any tasks submitted to this
2926     * pool that have not yet begun executing.
2927 jsr166 1.1 *
2928     * @return {@code true} if there are any queued submissions
2929     */
2930     public boolean hasQueuedSubmissions() {
2931 dl 1.78 WorkQueue[] ws; WorkQueue w;
2932     if ((ws = workQueues) != null) {
2933 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2934 dl 1.115 if ((w = ws[i]) != null && !w.isEmpty())
2935 dl 1.78 return true;
2936     }
2937     }
2938     return false;
2939 jsr166 1.1 }
2940    
2941     /**
2942     * Removes and returns the next unexecuted submission if one is
2943     * available. This method may be useful in extensions to this
2944     * class that re-assign work in systems with multiple pools.
2945     *
2946 jsr166 1.4 * @return the next submission, or {@code null} if none
2947 jsr166 1.1 */
2948     protected ForkJoinTask<?> pollSubmission() {
2949 dl 1.78 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2950     if ((ws = workQueues) != null) {
2951 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2952 dl 1.78 if ((w = ws[i]) != null && (t = w.poll()) != null)
2953     return t;
2954 dl 1.52 }
2955     }
2956     return null;
2957 jsr166 1.1 }
2958    
2959     /**
2960     * Removes all available unexecuted submitted and forked tasks
2961     * from scheduling queues and adds them to the given collection,
2962     * without altering their execution status. These may include
2963 jsr166 1.8 * artificially generated or wrapped tasks. This method is
2964     * designed to be invoked only when the pool is known to be
2965 jsr166 1.1 * quiescent. Invocations at other times may not remove all
2966     * tasks. A failure encountered while attempting to add elements
2967     * to collection {@code c} may result in elements being in
2968     * neither, either or both collections when the associated
2969     * exception is thrown. The behavior of this operation is
2970     * undefined if the specified collection is modified while the
2971     * operation is in progress.
2972     *
2973     * @param c the collection to transfer elements into
2974     * @return the number of elements transferred
2975     */
2976 jsr166 1.5 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2977 dl 1.52 int count = 0;
2978 dl 1.78 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2979     if ((ws = workQueues) != null) {
2980 dl 1.86 for (int i = 0; i < ws.length; ++i) {
2981 dl 1.78 if ((w = ws[i]) != null) {
2982     while ((t = w.poll()) != null) {
2983     c.add(t);
2984     ++count;
2985     }
2986     }
2987 dl 1.52 }
2988     }
2989 dl 1.18 return count;
2990     }
2991    
2992     /**
2993 jsr166 1.1 * Returns a string identifying this pool, as well as its state,
2994     * including indications of run state, parallelism level, and
2995     * worker and task counts.
2996     *
2997     * @return a string identifying this pool, as well as its state
2998     */
2999     public String toString() {
3000 dl 1.86 // Use a single pass through workQueues to collect counts
3001     long qt = 0L, qs = 0L; int rc = 0;
3002 dl 1.215 AtomicLong sc = stealCounter;
3003     long st = (sc == null) ? 0L : sc.get();
3004 dl 1.86 long c = ctl;
3005     WorkQueue[] ws; WorkQueue w;
3006     if ((ws = workQueues) != null) {
3007     for (int i = 0; i < ws.length; ++i) {
3008     if ((w = ws[i]) != null) {
3009     int size = w.queueSize();
3010     if ((i & 1) == 0)
3011     qs += size;
3012     else {
3013     qt += size;
3014 dl 1.105 st += w.nsteals;
3015 dl 1.86 if (w.isApparentlyUnblocked())
3016     ++rc;
3017     }
3018     }
3019     }
3020     }
3021 dl 1.200 int pc = (config & SMASK);
3022 dl 1.52 int tc = pc + (short)(c >>> TC_SHIFT);
3023 dl 1.78 int ac = pc + (int)(c >> AC_SHIFT);
3024     if (ac < 0) // ignore transient negative
3025     ac = 0;
3026 dl 1.200 int rs = runState;
3027     String level = ((rs & TERMINATED) != 0 ? "Terminated" :
3028     (rs & STOP) != 0 ? "Terminating" :
3029     (rs & SHUTDOWN) != 0 ? "Shutting down" :
3030     "Running");
3031 jsr166 1.1 return super.toString() +
3032 dl 1.52 "[" + level +
3033 dl 1.14 ", parallelism = " + pc +
3034     ", size = " + tc +
3035     ", active = " + ac +
3036     ", running = " + rc +
3037 jsr166 1.1 ", steals = " + st +
3038     ", tasks = " + qt +
3039     ", submissions = " + qs +
3040     "]";
3041     }
3042    
3043     /**
3044 dl 1.100 * Possibly initiates an orderly shutdown in which previously
3045     * submitted tasks are executed, but no new tasks will be
3046     * accepted. Invocation has no effect on execution state if this
3047 jsr166 1.137 * is the {@link #commonPool()}, and no additional effect if
3048 dl 1.100 * already shut down. Tasks that are in the process of being
3049     * submitted concurrently during the course of this method may or
3050     * may not be rejected.
3051 jsr166 1.1 *
3052     * @throws SecurityException if a security manager exists and
3053     * the caller is not permitted to modify threads
3054     * because it does not hold {@link
3055     * java.lang.RuntimePermission}{@code ("modifyThread")}
3056     */
3057     public void shutdown() {
3058     checkPermission();
3059 dl 1.105 tryTerminate(false, true);
3060 jsr166 1.1 }
3061    
3062     /**
3063 dl 1.100 * Possibly attempts to cancel and/or stop all tasks, and reject
3064     * all subsequently submitted tasks. Invocation has no effect on
3065 jsr166 1.137 * execution state if this is the {@link #commonPool()}, and no
3066 dl 1.100 * additional effect if already shut down. Otherwise, tasks that
3067     * are in the process of being submitted or executed concurrently
3068     * during the course of this method may or may not be
3069     * rejected. This method cancels both existing and unexecuted
3070     * tasks, in order to permit termination in the presence of task
3071     * dependencies. So the method always returns an empty list
3072     * (unlike the case for some other Executors).
3073 jsr166 1.1 *
3074     * @return an empty list
3075     * @throws SecurityException if a security manager exists and
3076     * the caller is not permitted to modify threads
3077     * because it does not hold {@link
3078     * java.lang.RuntimePermission}{@code ("modifyThread")}
3079     */
3080     public List<Runnable> shutdownNow() {
3081     checkPermission();
3082 dl 1.105 tryTerminate(true, true);
3083 jsr166 1.1 return Collections.emptyList();
3084     }
3085    
3086     /**
3087     * Returns {@code true} if all tasks have completed following shut down.
3088     *
3089     * @return {@code true} if all tasks have completed following shut down
3090     */
3091     public boolean isTerminated() {
3092 dl 1.200 return (runState & TERMINATED) != 0;
3093 jsr166 1.1 }
3094    
3095     /**
3096     * Returns {@code true} if the process of termination has
3097 jsr166 1.9 * commenced but not yet completed. This method may be useful for
3098     * debugging. A return of {@code true} reported a sufficient
3099     * period after shutdown may indicate that submitted tasks have
3100 jsr166 1.119 * ignored or suppressed interruption, or are waiting for I/O,
3101 dl 1.49 * causing this executor not to properly terminate. (See the
3102     * advisory notes for class {@link ForkJoinTask} stating that
3103     * tasks should not normally entail blocking operations. But if
3104     * they do, they must abort them on interrupt.)
3105 jsr166 1.1 *
3106 jsr166 1.9 * @return {@code true} if terminating but not yet terminated
3107 jsr166 1.1 */
3108     public boolean isTerminating() {
3109 dl 1.200 int rs = runState;
3110     return (rs & STOP) != 0 && (rs & TERMINATED) == 0;
3111 jsr166 1.1 }
3112    
3113     /**
3114     * Returns {@code true} if this pool has been shut down.
3115     *
3116     * @return {@code true} if this pool has been shut down
3117     */
3118     public boolean isShutdown() {
3119 dl 1.200 return (runState & SHUTDOWN) != 0;
3120 jsr166 1.9 }
3121    
3122     /**
3123 dl 1.105 * Blocks until all tasks have completed execution after a
3124     * shutdown request, or the timeout occurs, or the current thread
3125 dl 1.134 * is interrupted, whichever happens first. Because the {@link
3126     * #commonPool()} never terminates until program shutdown, when
3127     * applied to the common pool, this method is equivalent to {@link
3128 jsr166 1.158 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
3129 jsr166 1.1 *
3130     * @param timeout the maximum time to wait
3131     * @param unit the time unit of the timeout argument
3132     * @return {@code true} if this executor terminated and
3133     * {@code false} if the timeout elapsed before termination
3134     * @throws InterruptedException if interrupted while waiting
3135     */
3136     public boolean awaitTermination(long timeout, TimeUnit unit)
3137     throws InterruptedException {
3138 dl 1.134 if (Thread.interrupted())
3139     throw new InterruptedException();
3140     if (this == common) {
3141     awaitQuiescence(timeout, unit);
3142     return false;
3143     }
3144 dl 1.52 long nanos = unit.toNanos(timeout);
3145 dl 1.101 if (isTerminated())
3146     return true;
3147 dl 1.183 if (nanos <= 0L)
3148     return false;
3149     long deadline = System.nanoTime() + nanos;
3150 jsr166 1.103 synchronized (this) {
3151 jsr166 1.184 for (;;) {
3152 dl 1.183 if (isTerminated())
3153     return true;
3154     if (nanos <= 0L)
3155     return false;
3156     long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
3157     wait(millis > 0L ? millis : 1L);
3158     nanos = deadline - System.nanoTime();
3159 dl 1.52 }
3160 dl 1.18 }
3161 jsr166 1.1 }
3162    
3163     /**
3164 dl 1.134 * If called by a ForkJoinTask operating in this pool, equivalent
3165     * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3166     * waits and/or attempts to assist performing tasks until this
3167     * pool {@link #isQuiescent} or the indicated timeout elapses.
3168     *
3169     * @param timeout the maximum time to wait
3170     * @param unit the time unit of the timeout argument
3171     * @return {@code true} if quiescent; {@code false} if the
3172     * timeout elapsed.
3173     */
3174     public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3175     long nanos = unit.toNanos(timeout);
3176     ForkJoinWorkerThread wt;
3177     Thread thread = Thread.currentThread();
3178     if ((thread instanceof ForkJoinWorkerThread) &&
3179     (wt = (ForkJoinWorkerThread)thread).pool == this) {
3180     helpQuiescePool(wt.workQueue);
3181     return true;
3182     }
3183     long startTime = System.nanoTime();
3184     WorkQueue[] ws;
3185     int r = 0, m;
3186     boolean found = true;
3187     while (!isQuiescent() && (ws = workQueues) != null &&
3188 dl 1.225 (m = ws.length - 1) > 0) {
3189 dl 1.134 if (!found) {
3190     if ((System.nanoTime() - startTime) > nanos)
3191     return false;
3192     Thread.yield(); // cannot block
3193     }
3194     found = false;
3195     for (int j = (m + 1) << 2; j >= 0; --j) {
3196 dl 1.200 ForkJoinTask<?> t; WorkQueue q; int b, k;
3197     if ((k = r++ & m) <= m && k >= 0 && (q = ws[k]) != null &&
3198     (b = q.base) - q.top < 0) {
3199 dl 1.134 found = true;
3200 dl 1.172 if ((t = q.pollAt(b)) != null)
3201 dl 1.134 t.doExec();
3202     break;
3203     }
3204     }
3205     }
3206     return true;
3207     }
3208    
3209     /**
3210     * Waits and/or attempts to assist performing tasks indefinitely
3211 jsr166 1.141 * until the {@link #commonPool()} {@link #isQuiescent}.
3212 dl 1.134 */
3213 dl 1.136 static void quiesceCommonPool() {
3214 dl 1.134 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3215     }
3216    
3217     /**
3218 jsr166 1.1 * Interface for extending managed parallelism for tasks running
3219 jsr166 1.8 * in {@link ForkJoinPool}s.
3220     *
3221 dl 1.19 * <p>A {@code ManagedBlocker} provides two methods. Method
3222 jsr166 1.218 * {@link #isReleasable} must return {@code true} if blocking is
3223     * not necessary. Method {@link #block} blocks the current thread
3224 dl 1.19 * if necessary (perhaps internally invoking {@code isReleasable}
3225 dl 1.54 * before actually blocking). These actions are performed by any
3226 jsr166 1.157 * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
3227     * The unusual methods in this API accommodate synchronizers that
3228     * may, but don't usually, block for long periods. Similarly, they
3229 dl 1.54 * allow more efficient internal handling of cases in which
3230     * additional workers may be, but usually are not, needed to
3231     * ensure sufficient parallelism. Toward this end,
3232     * implementations of method {@code isReleasable} must be amenable
3233     * to repeated invocation.
3234 jsr166 1.1 *
3235     * <p>For example, here is a ManagedBlocker based on a
3236     * ReentrantLock:
3237     * <pre> {@code
3238     * class ManagedLocker implements ManagedBlocker {
3239     * final ReentrantLock lock;
3240     * boolean hasLock = false;
3241     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3242     * public boolean block() {
3243     * if (!hasLock)
3244     * lock.lock();
3245     * return true;
3246     * }
3247     * public boolean isReleasable() {
3248     * return hasLock || (hasLock = lock.tryLock());
3249     * }
3250     * }}</pre>
3251 dl 1.19 *
3252     * <p>Here is a class that possibly blocks waiting for an
3253     * item on a given queue:
3254     * <pre> {@code
3255     * class QueueTaker<E> implements ManagedBlocker {
3256     * final BlockingQueue<E> queue;
3257     * volatile E item = null;
3258     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3259     * public boolean block() throws InterruptedException {
3260     * if (item == null)
3261 dl 1.23 * item = queue.take();
3262 dl 1.19 * return true;
3263     * }
3264     * public boolean isReleasable() {
3265 dl 1.23 * return item != null || (item = queue.poll()) != null;
3266 dl 1.19 * }
3267     * public E getItem() { // call after pool.managedBlock completes
3268     * return item;
3269     * }
3270     * }}</pre>
3271 jsr166 1.1 */
3272     public static interface ManagedBlocker {
3273     /**
3274     * Possibly blocks the current thread, for example waiting for
3275     * a lock or condition.
3276     *
3277 jsr166 1.4 * @return {@code true} if no additional blocking is necessary
3278     * (i.e., if isReleasable would return true)
3279 jsr166 1.1 * @throws InterruptedException if interrupted while waiting
3280     * (the method is not required to do so, but is allowed to)
3281     */
3282     boolean block() throws InterruptedException;
3283    
3284     /**
3285 jsr166 1.4 * Returns {@code true} if blocking is unnecessary.
3286 jsr166 1.154 * @return {@code true} if blocking is unnecessary
3287 jsr166 1.1 */
3288     boolean isReleasable();
3289     }
3290    
3291     /**
3292 jsr166 1.217 * Runs the given possibly blocking task. When {@linkplain
3293     * ForkJoinTask#inForkJoinPool() running in a ForkJoinPool}, this
3294     * method possibly arranges for a spare thread to be activated if
3295     * necessary to ensure sufficient parallelism while the current
3296     * thread is blocked in {@link ManagedBlocker#block blocker.block()}.
3297 jsr166 1.1 *
3298 jsr166 1.217 * <p>This method repeatedly calls {@code blocker.isReleasable()} and
3299     * {@code blocker.block()} until either method returns {@code true}.
3300     * Every call to {@code blocker.block()} is preceded by a call to
3301     * {@code blocker.isReleasable()} that returned {@code false}.
3302     *
3303     * <p>If not running in a ForkJoinPool, this method is
3304 jsr166 1.8 * behaviorally equivalent to
3305 jsr166 1.82 * <pre> {@code
3306 jsr166 1.1 * while (!blocker.isReleasable())
3307     * if (blocker.block())
3308 jsr166 1.217 * break;}</pre>
3309 jsr166 1.8 *
3310 jsr166 1.217 * If running in a ForkJoinPool, the pool may first be expanded to
3311     * ensure sufficient parallelism available during the call to
3312     * {@code blocker.block()}.
3313 jsr166 1.1 *
3314 jsr166 1.217 * @param blocker the blocker task
3315     * @throws InterruptedException if {@code blocker.block()} did so
3316 jsr166 1.1 */
3317 dl 1.18 public static void managedBlock(ManagedBlocker blocker)
3318 jsr166 1.1 throws InterruptedException {
3319 dl 1.200 ForkJoinPool p;
3320     ForkJoinWorkerThread wt;
3321 jsr166 1.1 Thread t = Thread.currentThread();
3322 dl 1.200 if ((t instanceof ForkJoinWorkerThread) &&
3323     (p = (wt = (ForkJoinWorkerThread)t).pool) != null) {
3324     WorkQueue w = wt.workQueue;
3325 dl 1.172 while (!blocker.isReleasable()) {
3326 dl 1.200 if (p.tryCompensate(w)) {
3327 dl 1.105 try {
3328     do {} while (!blocker.isReleasable() &&
3329     !blocker.block());
3330     } finally {
3331 dl 1.200 U.getAndAddLong(p, CTL, AC_UNIT);
3332 dl 1.105 }
3333     break;
3334 dl 1.78 }
3335     }
3336 dl 1.18 }
3337 dl 1.105 else {
3338     do {} while (!blocker.isReleasable() &&
3339     !blocker.block());
3340     }
3341 jsr166 1.1 }
3342    
3343 jsr166 1.7 // AbstractExecutorService overrides. These rely on undocumented
3344     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3345     // implement RunnableFuture.
3346 jsr166 1.1
3347     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3348 dl 1.90 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3349 jsr166 1.1 }
3350    
3351     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3352 dl 1.90 return new ForkJoinTask.AdaptedCallable<T>(callable);
3353 jsr166 1.1 }
3354    
3355     // Unsafe mechanics
3356 dl 1.78 private static final sun.misc.Unsafe U;
3357 dl 1.200 private static final int ABASE;
3358     private static final int ASHIFT;
3359 dl 1.78 private static final long CTL;
3360 dl 1.211 private static final long RUNSTATE;
3361 dl 1.215 private static final long STEALCOUNTER;
3362 dl 1.78 private static final long PARKBLOCKER;
3363 dl 1.200 private static final long QTOP;
3364 dl 1.105 private static final long QLOCK;
3365 dl 1.200 private static final long QSCANSTATE;
3366     private static final long QPARKER;
3367     private static final long QCURRENTSTEAL;
3368     private static final long QCURRENTJOIN;
3369 dl 1.52
3370     static {
3371 jsr166 1.142 // initialize field offsets for CAS etc
3372 jsr166 1.3 try {
3373 dl 1.78 U = sun.misc.Unsafe.getUnsafe();
3374 jsr166 1.64 Class<?> k = ForkJoinPool.class;
3375 dl 1.78 CTL = U.objectFieldOffset
3376 dl 1.52 (k.getDeclaredField("ctl"));
3377 dl 1.211 RUNSTATE = U.objectFieldOffset
3378     (k.getDeclaredField("runState"));
3379 dl 1.215 STEALCOUNTER = U.objectFieldOffset
3380     (k.getDeclaredField("stealCounter"));
3381 dl 1.86 Class<?> tk = Thread.class;
3382 dl 1.78 PARKBLOCKER = U.objectFieldOffset
3383     (tk.getDeclaredField("parkBlocker"));
3384 dl 1.105 Class<?> wk = WorkQueue.class;
3385 dl 1.200 QTOP = U.objectFieldOffset
3386     (wk.getDeclaredField("top"));
3387 dl 1.105 QLOCK = U.objectFieldOffset
3388     (wk.getDeclaredField("qlock"));
3389 dl 1.200 QSCANSTATE = U.objectFieldOffset
3390     (wk.getDeclaredField("scanState"));
3391     QPARKER = U.objectFieldOffset
3392     (wk.getDeclaredField("parker"));
3393     QCURRENTSTEAL = U.objectFieldOffset
3394     (wk.getDeclaredField("currentSteal"));
3395     QCURRENTJOIN = U.objectFieldOffset
3396     (wk.getDeclaredField("currentJoin"));
3397 dl 1.105 Class<?> ak = ForkJoinTask[].class;
3398 dl 1.90 ABASE = U.arrayBaseOffset(ak);
3399 jsr166 1.142 int scale = U.arrayIndexScale(ak);
3400     if ((scale & (scale - 1)) != 0)
3401     throw new Error("data type scale not a power of two");
3402     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3403 dl 1.52 } catch (Exception e) {
3404     throw new Error(e);
3405     }
3406 dl 1.105
3407 dl 1.208 commonMaxSpares = DEFAULT_COMMON_MAX_SPARES;
3408 dl 1.152 defaultForkJoinWorkerThreadFactory =
3409 dl 1.112 new DefaultForkJoinWorkerThreadFactory();
3410 dl 1.115 modifyThreadPermission = new RuntimePermission("modifyThread");
3411    
3412 dl 1.152 common = java.security.AccessController.doPrivileged
3413     (new java.security.PrivilegedAction<ForkJoinPool>() {
3414     public ForkJoinPool run() { return makeCommonPool(); }});
3415 dl 1.200 int par = common.config & SMASK; // report 1 even if threads disabled
3416 dl 1.160 commonParallelism = par > 0 ? par : 1;
3417 dl 1.152 }
3418 dl 1.112
3419 dl 1.152 /**
3420     * Creates and returns the common pool, respecting user settings
3421     * specified via system properties.
3422     */
3423     private static ForkJoinPool makeCommonPool() {
3424 dl 1.160 int parallelism = -1;
3425 dl 1.197 ForkJoinWorkerThreadFactory factory = null;
3426 jsr166 1.156 UncaughtExceptionHandler handler = null;
3427 jsr166 1.189 try { // ignore exceptions in accessing/parsing properties
3428 dl 1.112 String pp = System.getProperty
3429     ("java.util.concurrent.ForkJoinPool.common.parallelism");
3430 dl 1.152 String fp = System.getProperty
3431     ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3432 dl 1.112 String hp = System.getProperty
3433     ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3434 dl 1.208 String mp = System.getProperty
3435     ("java.util.concurrent.ForkJoinPool.common.maximumSpares");
3436 dl 1.152 if (pp != null)
3437     parallelism = Integer.parseInt(pp);
3438 dl 1.112 if (fp != null)
3439 dl 1.152 factory = ((ForkJoinWorkerThreadFactory)ClassLoader.
3440     getSystemClassLoader().loadClass(fp).newInstance());
3441 dl 1.112 if (hp != null)
3442 jsr166 1.156 handler = ((UncaughtExceptionHandler)ClassLoader.
3443 dl 1.112 getSystemClassLoader().loadClass(hp).newInstance());
3444 dl 1.208 if (mp != null)
3445     commonMaxSpares = Integer.parseInt(mp);
3446 dl 1.112 } catch (Exception ignore) {
3447     }
3448 dl 1.197 if (factory == null) {
3449     if (System.getSecurityManager() == null)
3450     factory = defaultForkJoinWorkerThreadFactory;
3451     else // use security-managed default
3452     factory = new InnocuousForkJoinWorkerThreadFactory();
3453     }
3454 dl 1.167 if (parallelism < 0 && // default 1 less than #cores
3455 dl 1.193 (parallelism = Runtime.getRuntime().availableProcessors() - 1) <= 0)
3456     parallelism = 1;
3457 dl 1.152 if (parallelism > MAX_CAP)
3458     parallelism = MAX_CAP;
3459 dl 1.185 return new ForkJoinPool(parallelism, factory, handler, LIFO_QUEUE,
3460 dl 1.152 "ForkJoinPool.commonPool-worker-");
3461 jsr166 1.3 }
3462 dl 1.52
3463 dl 1.197 /**
3464     * Factory for innocuous worker threads
3465     */
3466     static final class InnocuousForkJoinWorkerThreadFactory
3467     implements ForkJoinWorkerThreadFactory {
3468    
3469     /**
3470     * An ACC to restrict permissions for the factory itself.
3471     * The constructed workers have no permissions set.
3472     */
3473     private static final AccessControlContext innocuousAcc;
3474     static {
3475     Permissions innocuousPerms = new Permissions();
3476     innocuousPerms.add(modifyThreadPermission);
3477     innocuousPerms.add(new RuntimePermission(
3478     "enableContextClassLoaderOverride"));
3479     innocuousPerms.add(new RuntimePermission(
3480     "modifyThreadGroup"));
3481     innocuousAcc = new AccessControlContext(new ProtectionDomain[] {
3482     new ProtectionDomain(null, innocuousPerms)
3483     });
3484     }
3485    
3486     public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
3487     return (ForkJoinWorkerThread.InnocuousForkJoinWorkerThread)
3488     java.security.AccessController.doPrivileged(
3489     new java.security.PrivilegedAction<ForkJoinWorkerThread>() {
3490     public ForkJoinWorkerThread run() {
3491     return new ForkJoinWorkerThread.
3492     InnocuousForkJoinWorkerThread(pool);
3493     }}, innocuousAcc);
3494     }
3495     }
3496    
3497 jsr166 1.1 }