ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.232
Committed: Sun Jan 4 01:17:26 2015 UTC (9 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.231: +2 -2 lines
Log Message:
tiny improvements to array scale error handling

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.58 * http://creativecommons.org/publicdomain/zero/1.0/
5 jsr166 1.1 */
6    
7     package java.util.concurrent;
8    
9 jsr166 1.156 import java.lang.Thread.UncaughtExceptionHandler;
10 jsr166 1.228 import java.security.AccessControlContext;
11     import java.security.Permissions;
12     import java.security.ProtectionDomain;
13 jsr166 1.1 import java.util.ArrayList;
14     import java.util.Arrays;
15     import java.util.Collection;
16     import java.util.Collections;
17     import java.util.List;
18 dl 1.215 import java.util.concurrent.atomic.AtomicLong;
19 jsr166 1.1
20     /**
21 jsr166 1.4 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
22 jsr166 1.8 * A {@code ForkJoinPool} provides the entry point for submissions
23 dl 1.18 * from non-{@code ForkJoinTask} clients, as well as management and
24 jsr166 1.11 * monitoring operations.
25 jsr166 1.1 *
26 jsr166 1.9 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
27     * ExecutorService} mainly by virtue of employing
28     * <em>work-stealing</em>: all threads in the pool attempt to find and
29 dl 1.78 * execute tasks submitted to the pool and/or created by other active
30     * tasks (eventually blocking waiting for work if none exist). This
31     * enables efficient processing when most tasks spawn other subtasks
32     * (as do most {@code ForkJoinTask}s), as well as when many small
33     * tasks are submitted to the pool from external clients. Especially
34     * when setting <em>asyncMode</em> to true in constructors, {@code
35     * ForkJoinPool}s may also be appropriate for use with event-style
36     * tasks that are never joined.
37 jsr166 1.1 *
38 dl 1.112 * <p>A static {@link #commonPool()} is available and appropriate for
39 dl 1.101 * most applications. The common pool is used by any ForkJoinTask that
40     * is not explicitly submitted to a specified pool. Using the common
41     * pool normally reduces resource usage (its threads are slowly
42     * reclaimed during periods of non-use, and reinstated upon subsequent
43 dl 1.105 * use).
44 dl 1.100 *
45     * <p>For applications that require separate or custom pools, a {@code
46     * ForkJoinPool} may be constructed with a given target parallelism
47 jsr166 1.214 * level; by default, equal to the number of available processors.
48     * The pool attempts to maintain enough active (or available) threads
49     * by dynamically adding, suspending, or resuming internal worker
50 jsr166 1.187 * threads, even if some tasks are stalled waiting to join others.
51     * However, no such adjustments are guaranteed in the face of blocked
52     * I/O or other unmanaged synchronization. The nested {@link
53 dl 1.100 * ManagedBlocker} interface enables extension of the kinds of
54 dl 1.18 * synchronization accommodated.
55 jsr166 1.1 *
56     * <p>In addition to execution and lifecycle control methods, this
57     * class provides status check methods (for example
58 jsr166 1.4 * {@link #getStealCount}) that are intended to aid in developing,
59 jsr166 1.1 * tuning, and monitoring fork/join applications. Also, method
60 jsr166 1.4 * {@link #toString} returns indications of pool state in a
61 jsr166 1.1 * convenient form for informal monitoring.
62     *
63 jsr166 1.109 * <p>As is the case with other ExecutorServices, there are three
64 jsr166 1.84 * main task execution methods summarized in the following table.
65     * These are designed to be used primarily by clients not already
66     * engaged in fork/join computations in the current pool. The main
67     * forms of these methods accept instances of {@code ForkJoinTask},
68     * but overloaded forms also allow mixed execution of plain {@code
69     * Runnable}- or {@code Callable}- based activities as well. However,
70     * tasks that are already executing in a pool should normally instead
71     * use the within-computation forms listed in the table unless using
72     * async event-style tasks that are not usually joined, in which case
73     * there is little difference among choice of methods.
74 dl 1.18 *
75     * <table BORDER CELLPADDING=3 CELLSPACING=1>
76 jsr166 1.159 * <caption>Summary of task execution methods</caption>
77 dl 1.18 * <tr>
78     * <td></td>
79     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
80     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
81     * </tr>
82     * <tr>
83 jsr166 1.153 * <td> <b>Arrange async execution</b></td>
84 dl 1.18 * <td> {@link #execute(ForkJoinTask)}</td>
85     * <td> {@link ForkJoinTask#fork}</td>
86     * </tr>
87     * <tr>
88 jsr166 1.153 * <td> <b>Await and obtain result</b></td>
89 dl 1.18 * <td> {@link #invoke(ForkJoinTask)}</td>
90     * <td> {@link ForkJoinTask#invoke}</td>
91     * </tr>
92     * <tr>
93 jsr166 1.153 * <td> <b>Arrange exec and obtain Future</b></td>
94 dl 1.18 * <td> {@link #submit(ForkJoinTask)}</td>
95     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
96     * </tr>
97     * </table>
98 dl 1.19 *
99 dl 1.105 * <p>The common pool is by default constructed with default
100 jsr166 1.155 * parameters, but these may be controlled by setting three
101 jsr166 1.162 * {@linkplain System#getProperty system properties}:
102     * <ul>
103     * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
104     * - the parallelism level, a non-negative integer
105     * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
106     * - the class name of a {@link ForkJoinWorkerThreadFactory}
107     * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
108     * - the class name of a {@link UncaughtExceptionHandler}
109 dl 1.208 * <li>{@code java.util.concurrent.ForkJoinPool.common.maximumSpares}
110 dl 1.223 * - the maximum number of allowed extra threads to maintain target
111 dl 1.208 * parallelism (default 256).
112 jsr166 1.162 * </ul>
113 dl 1.197 * If a {@link SecurityManager} is present and no factory is
114     * specified, then the default pool uses a factory supplying
115     * threads that have no {@link Permissions} enabled.
116 jsr166 1.165 * The system class loader is used to load these classes.
117 jsr166 1.156 * Upon any error in establishing these settings, default parameters
118 dl 1.160 * are used. It is possible to disable or limit the use of threads in
119     * the common pool by setting the parallelism property to zero, and/or
120 dl 1.193 * using a factory that may return {@code null}. However doing so may
121     * cause unjoined tasks to never be executed.
122 dl 1.105 *
123 jsr166 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
124     * maximum number of running threads to 32767. Attempts to create
125 jsr166 1.11 * pools with greater than the maximum number result in
126 jsr166 1.8 * {@code IllegalArgumentException}.
127 jsr166 1.1 *
128 jsr166 1.11 * <p>This implementation rejects submitted tasks (that is, by throwing
129 dl 1.19 * {@link RejectedExecutionException}) only when the pool is shut down
130 dl 1.20 * or internal resources have been exhausted.
131 jsr166 1.11 *
132 jsr166 1.1 * @since 1.7
133     * @author Doug Lea
134     */
135 jsr166 1.171 @sun.misc.Contended
136 jsr166 1.1 public class ForkJoinPool extends AbstractExecutorService {
137    
138     /*
139 dl 1.14 * Implementation Overview
140     *
141 dl 1.78 * This class and its nested classes provide the main
142     * functionality and control for a set of worker threads:
143 jsr166 1.84 * Submissions from non-FJ threads enter into submission queues.
144     * Workers take these tasks and typically split them into subtasks
145     * that may be stolen by other workers. Preference rules give
146     * first priority to processing tasks from their own queues (LIFO
147     * or FIFO, depending on mode), then to randomized FIFO steals of
148 dl 1.200 * tasks in other queues. This framework began as vehicle for
149     * supporting tree-structured parallelism using work-stealing.
150     * Over time, its scalability advantages led to extensions and
151 dl 1.208 * changes to better support more diverse usage contexts. Because
152     * most internal methods and nested classes are interrelated,
153     * their main rationale and descriptions are presented here;
154     * individual methods and nested classes contain only brief
155     * comments about details.
156 dl 1.78 *
157 jsr166 1.84 * WorkQueues
158 dl 1.78 * ==========
159     *
160     * Most operations occur within work-stealing queues (in nested
161     * class WorkQueue). These are special forms of Deques that
162     * support only three of the four possible end-operations -- push,
163     * pop, and poll (aka steal), under the further constraints that
164     * push and pop are called only from the owning thread (or, as
165     * extended here, under a lock), while poll may be called from
166     * other threads. (If you are unfamiliar with them, you probably
167     * want to read Herlihy and Shavit's book "The Art of
168     * Multiprocessor programming", chapter 16 describing these in
169     * more detail before proceeding.) The main work-stealing queue
170     * design is roughly similar to those in the papers "Dynamic
171     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
172     * (http://research.sun.com/scalable/pubs/index.html) and
173     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
174     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
175 dl 1.200 * The main differences ultimately stem from GC requirements that
176     * we null out taken slots as soon as we can, to maintain as small
177     * a footprint as possible even in programs generating huge
178     * numbers of tasks. To accomplish this, we shift the CAS
179     * arbitrating pop vs poll (steal) from being on the indices
180     * ("base" and "top") to the slots themselves.
181     *
182     * Adding tasks then takes the form of a classic array push(task):
183     * q.array[q.top] = task; ++q.top;
184     *
185     * (The actual code needs to null-check and size-check the array,
186     * properly fence the accesses, and possibly signal waiting
187     * workers to start scanning -- see below.) Both a successful pop
188     * and poll mainly entail a CAS of a slot from non-null to null.
189     *
190 jsr166 1.202 * The pop operation (always performed by owner) is:
191 dl 1.200 * if ((base != top) and
192     * (the task at top slot is not null) and
193     * (CAS slot to null))
194     * decrement top and return task;
195     *
196     * And the poll operation (usually by a stealer) is
197     * if ((base != top) and
198     * (the task at base slot is not null) and
199     * (base has not changed) and
200     * (CAS slot to null))
201     * increment base and return task;
202     *
203     * Because we rely on CASes of references, we do not need tag bits
204     * on base or top. They are simple ints as used in any circular
205 dl 1.170 * array-based queue (see for example ArrayDeque). Updates to the
206 dl 1.200 * indices guarantee that top == base means the queue is empty,
207     * but otherwise may err on the side of possibly making the queue
208     * appear nonempty when a push, pop, or poll have not fully
209 dl 1.205 * committed. (Method isEmpty() checks the case of a partially
210 dl 1.211 * completed removal of the last element.) Because of this, the
211     * poll operation, considered individually, is not wait-free. One
212     * thief cannot successfully continue until another in-progress
213     * one (or, if previously empty, a push) completes. However, in
214     * the aggregate, we ensure at least probabilistic
215 dl 1.205 * non-blockingness. If an attempted steal fails, a thief always
216     * chooses a different random victim target to try next. So, in
217     * order for one thief to progress, it suffices for any
218     * in-progress poll or new push on any empty queue to
219     * complete. (This is why we normally use method pollAt and its
220     * variants that try once at the apparent base index, else
221     * consider alternative actions, rather than method poll, which
222     * retries.)
223 dl 1.200 *
224     * This approach also enables support of a user mode in which
225     * local task processing is in FIFO, not LIFO order, simply by
226     * using poll rather than pop. This can be useful in
227     * message-passing frameworks in which tasks are never joined.
228     * However neither mode considers affinities, loads, cache
229     * localities, etc, so rarely provide the best possible
230     * performance on a given machine, but portably provide good
231     * throughput by averaging over these factors. Further, even if
232     * we did try to use such information, we do not usually have a
233     * basis for exploiting it. For example, some sets of tasks
234     * profit from cache affinities, but others are harmed by cache
235     * pollution effects. Additionally, even though it requires
236     * scanning, long-term throughput is often best using random
237     * selection rather than directed selection policies, so cheap
238     * randomization of sufficient quality is used whenever
239     * applicable. Various Marsaglia XorShifts (some with different
240     * shift constants) are inlined at use points.
241 dl 1.78 *
242     * WorkQueues are also used in a similar way for tasks submitted
243     * to the pool. We cannot mix these tasks in the same queues used
244 dl 1.200 * by workers. Instead, we randomly associate submission queues
245 dl 1.83 * with submitting threads, using a form of hashing. The
246 dl 1.139 * ThreadLocalRandom probe value serves as a hash code for
247     * choosing existing queues, and may be randomly repositioned upon
248     * contention with other submitters. In essence, submitters act
249     * like workers except that they are restricted to executing local
250     * tasks that they submitted (or in the case of CountedCompleters,
251 dl 1.200 * others with the same root task). Insertion of tasks in shared
252 dl 1.139 * mode requires a lock (mainly to protect in the case of
253 dl 1.200 * resizing) but we use only a simple spinlock (using field
254     * qlock), because submitters encountering a busy queue move on to
255     * try or create other queues -- they block only when creating and
256 dl 1.211 * registering new queues. Additionally, "qlock" saturates to an
257     * unlockable value (-1) at shutdown. Unlocking still can be and
258     * is performed by cheaper ordered writes of "qlock" in successful
259     * cases, but uses CAS in unsuccessful cases.
260 dl 1.78 *
261 jsr166 1.84 * Management
262 dl 1.78 * ==========
263 dl 1.52 *
264     * The main throughput advantages of work-stealing stem from
265     * decentralized control -- workers mostly take tasks from
266 dl 1.200 * themselves or each other, at rates that can exceed a billion
267     * per second. The pool itself creates, activates (enables
268     * scanning for and running tasks), deactivates, blocks, and
269     * terminates threads, all with minimal central information.
270     * There are only a few properties that we can globally track or
271     * maintain, so we pack them into a small number of variables,
272     * often maintaining atomicity without blocking or locking.
273     * Nearly all essentially atomic control state is held in two
274     * volatile variables that are by far most often read (not
275 dl 1.215 * written) as status and consistency checks. (Also, field
276     * "config" holds unchanging configuration state.)
277 dl 1.78 *
278 dl 1.200 * Field "ctl" contains 64 bits holding information needed to
279     * atomically decide to add, inactivate, enqueue (on an event
280 dl 1.78 * queue), dequeue, and/or re-activate workers. To enable this
281     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
282     * far in excess of normal operating range) to allow ids, counts,
283     * and their negations (used for thresholding) to fit into 16bit
284 dl 1.215 * subfields.
285     *
286     * Field "runState" holds lockable state bits (STARTED, STOP, etc)
287     * also protecting updates to the workQueues array. When used as
288     * a lock, it is normally held only for a few instructions (the
289     * only exceptions are one-time array initialization and uncommon
290     * resizing), so is nearly always available after at most a brief
291     * spin. But to be extra-cautious, after spinning, method
292     * awaitRunStateLock (called only if an initial CAS fails), uses a
293     * wait/notify mechanics on a builtin monitor to block when
294     * (rarely) needed. This would be a terrible idea for a highly
295     * contended lock, but most pools run without the lock ever
296     * contending after the spin limit, so this works fine as a more
297     * conservative alternative. Because we don't otherwise have an
298     * internal Object to use as a monitor, the "stealCounter" (an
299     * AtomicLong) is used when available (it too must be lazily
300     * initialized; see externalSubmit).
301 jsr166 1.216 *
302 dl 1.215 * Usages of "runState" vs "ctl" interact in only one case:
303     * deciding to add a worker thread (see tryAddWorker), in which
304     * case the ctl CAS is performed while the lock is held.
305 dl 1.78 *
306     * Recording WorkQueues. WorkQueues are recorded in the
307 dl 1.200 * "workQueues" array. The array is created upon first use (see
308     * externalSubmit) and expanded if necessary. Updates to the
309     * array while recording new workers and unrecording terminated
310     * ones are protected from each other by the runState lock, but
311     * the array is otherwise concurrently readable, and accessed
312     * directly. We also ensure that reads of the array reference
313     * itself never become too stale. To simplify index-based
314     * operations, the array size is always a power of two, and all
315     * readers must tolerate null slots. Worker queues are at odd
316     * indices. Shared (submission) queues are at even indices, up to
317     * a maximum of 64 slots, to limit growth even if array needs to
318     * expand to add more workers. Grouping them together in this way
319     * simplifies and speeds up task scanning.
320 dl 1.86 *
321     * All worker thread creation is on-demand, triggered by task
322     * submissions, replacement of terminated workers, and/or
323 dl 1.78 * compensation for blocked workers. However, all other support
324     * code is set up to work with other policies. To ensure that we
325 dl 1.200 * do not hold on to worker references that would prevent GC, All
326 dl 1.78 * accesses to workQueues are via indices into the workQueues
327     * array (which is one source of some of the messy code
328     * constructions here). In essence, the workQueues array serves as
329 dl 1.200 * a weak reference mechanism. Thus for example the stack top
330     * subfield of ctl stores indices, not references.
331     *
332     * Queuing Idle Workers. Unlike HPC work-stealing frameworks, we
333     * cannot let workers spin indefinitely scanning for tasks when
334     * none can be found immediately, and we cannot start/resume
335     * workers unless there appear to be tasks available. On the
336     * other hand, we must quickly prod them into action when new
337     * tasks are submitted or generated. In many usages, ramp-up time
338     * to activate workers is the main limiting factor in overall
339     * performance, which is compounded at program start-up by JIT
340     * compilation and allocation. So we streamline this as much as
341     * possible.
342     *
343     * The "ctl" field atomically maintains active and total worker
344     * counts as well as a queue to place waiting threads so they can
345     * be located for signalling. Active counts also play the role of
346     * quiescence indicators, so are decremented when workers believe
347     * that there are no more tasks to execute. The "queue" is
348     * actually a form of Treiber stack. A stack is ideal for
349     * activating threads in most-recently used order. This improves
350     * performance and locality, outweighing the disadvantages of
351     * being prone to contention and inability to release a worker
352     * unless it is topmost on stack. We park/unpark workers after
353     * pushing on the idle worker stack (represented by the lower
354     * 32bit subfield of ctl) when they cannot find work. The top
355     * stack state holds the value of the "scanState" field of the
356     * worker: its index and status, plus a version counter that, in
357     * addition to the count subfields (also serving as version
358     * stamps) provide protection against Treiber stack ABA effects.
359     *
360     * Field scanState is used by both workers and the pool to manage
361     * and track whether a worker is INACTIVE (possibly blocked
362     * waiting for a signal), or SCANNING for tasks (when neither hold
363     * it is busy running tasks). When a worker is inactivated, its
364     * scanState field is set, and is prevented from executing tasks,
365     * even though it must scan once for them to avoid queuing
366     * races. Note that scanState updates lag queue CAS releases so
367     * usage requires care. When queued, the lower 16 bits of
368     * scanState must hold its pool index. So we place the index there
369     * upon initialization (see registerWorker) and otherwise keep it
370     * there or restore it when necessary.
371     *
372     * Memory ordering. See "Correct and Efficient Work-Stealing for
373     * Weak Memory Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
374     * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
375     * analysis of memory ordering requirements in work-stealing
376     * algorithms similar to the one used here. We usually need
377     * stronger than minimal ordering because we must sometimes signal
378     * workers, requiring Dekker-like full-fences to avoid lost
379     * signals. Arranging for enough ordering without expensive
380     * over-fencing requires tradeoffs among the supported means of
381     * expressing access constraints. The most central operations,
382     * taking from queues and updating ctl state, require full-fence
383     * CAS. Array slots are read using the emulation of volatiles
384     * provided by Unsafe. Access from other threads to WorkQueue
385     * base, top, and array requires a volatile load of the first of
386     * any of these read. We use the convention of declaring the
387     * "base" index volatile, and always read it before other fields.
388     * The owner thread must ensure ordered updates, so writes use
389     * ordered intrinsics unless they can piggyback on those for other
390     * writes. Similar conventions and rationales hold for other
391     * WorkQueue fields (such as "currentSteal") that are only written
392     * by owners but observed by others.
393     *
394     * Creating workers. To create a worker, we pre-increment total
395     * count (serving as a reservation), and attempt to construct a
396     * ForkJoinWorkerThread via its factory. Upon construction, the
397     * new thread invokes registerWorker, where it constructs a
398     * WorkQueue and is assigned an index in the workQueues array
399     * (expanding the array if necessary). The thread is then
400     * started. Upon any exception across these steps, or null return
401     * from factory, deregisterWorker adjusts counts and records
402     * accordingly. If a null return, the pool continues running with
403     * fewer than the target number workers. If exceptional, the
404     * exception is propagated, generally to some external caller.
405     * Worker index assignment avoids the bias in scanning that would
406     * occur if entries were sequentially packed starting at the front
407     * of the workQueues array. We treat the array as a simple
408     * power-of-two hash table, expanding as needed. The seedIndex
409     * increment ensures no collisions until a resize is needed or a
410     * worker is deregistered and replaced, and thereafter keeps
411 jsr166 1.202 * probability of collision low. We cannot use
412 dl 1.200 * ThreadLocalRandom.getProbe() for similar purposes here because
413     * the thread has not started yet, but do so for creating
414     * submission queues for existing external threads.
415     *
416 jsr166 1.202 * Deactivation and waiting. Queuing encounters several intrinsic
417 dl 1.200 * races; most notably that a task-producing thread can miss
418     * seeing (and signalling) another thread that gave up looking for
419     * work but has not yet entered the wait queue. When a worker
420     * cannot find a task to steal, it deactivates and enqueues. Very
421     * often, the lack of tasks is transient due to GC or OS
422     * scheduling. To reduce false-alarm deactivation, scanners
423 dl 1.211 * compute checksums of queue states during sweeps. (The
424 jsr166 1.212 * stability checks used here and elsewhere are probabilistic
425 dl 1.211 * variants of snapshot techniques -- see Herlihy & Shavit.)
426     * Workers give up and try to deactivate only after the sum is
427     * stable across scans. Further, to avoid missed signals, they
428     * repeat this scanning process after successful enqueuing until
429     * again stable. In this state, the worker cannot take/run a task
430     * it sees until it is released from the queue, so the worker
431     * itself eventually tries to release itself or any successor (see
432     * tryRelease). Otherwise, upon an empty scan, a deactivated
433     * worker uses an adaptive local spin construction (see awaitWork)
434     * before blocking (via park). Note the unusual conventions about
435 dl 1.200 * Thread.interrupts surrounding parking and other blocking:
436     * Because interrupts are used solely to alert threads to check
437     * termination, which is checked anyway upon blocking, we clear
438     * status (using Thread.interrupted) before any call to park, so
439     * that park does not immediately return due to status being set
440     * via some other unrelated call to interrupt in user code.
441     *
442     * Signalling and activation. Workers are created or activated
443     * only when there appears to be at least one task they might be
444     * able to find and execute. Upon push (either by a worker or an
445 dl 1.205 * external submission) to a previously (possibly) empty queue,
446     * workers are signalled if idle, or created if fewer exist than
447     * the given parallelism level. These primary signals are
448     * buttressed by others whenever other threads remove a task from
449     * a queue and notice that there are other tasks there as well.
450     * On most platforms, signalling (unpark) overhead time is
451     * noticeably long, and the time between signalling a thread and
452     * it actually making progress can be very noticeably long, so it
453     * is worth offloading these delays from critical paths as much as
454 dl 1.211 * possible. Also, because inactive workers are often rescanning
455 dl 1.200 * or spinning rather than blocking, we set and clear the "parker"
456     * field of WorkQueues to reduce unnecessary calls to unpark.
457     * (This requires a secondary recheck to avoid missed signals.)
458 dl 1.52 *
459     * Trimming workers. To release resources after periods of lack of
460     * use, a worker starting to wait when the pool is quiescent will
461 dl 1.208 * time out and terminate (see awaitWork) if the pool has remained
462     * quiescent for period IDLE_TIMEOUT, increasing the period as the
463     * number of threads decreases, eventually removing all workers.
464     * Also, when more than two spare threads exist, excess threads
465     * are immediately terminated at the next quiescent point.
466 dl 1.211 * (Padding by two avoids hysteresis.)
467 dl 1.52 *
468 dl 1.210 * Shutdown and Termination. A call to shutdownNow invokes
469     * tryTerminate to atomically set a runState bit. The calling
470     * thread, as well as every other worker thereafter terminating,
471     * helps terminate others by setting their (qlock) status,
472     * cancelling their unprocessed tasks, and waking them up, doing
473     * so repeatedly until stable (but with a loop bounded by the
474     * number of workers). Calls to non-abrupt shutdown() preface
475     * this by checking whether termination should commence. This
476     * relies primarily on the active count bits of "ctl" maintaining
477 jsr166 1.212 * consensus -- tryTerminate is called from awaitWork whenever
478 dl 1.211 * quiescent. However, external submitters do not take part in
479     * this consensus. So, tryTerminate sweeps through queues (until
480     * stable) to ensure lack of in-flight submissions and workers
481 dl 1.210 * about to process them before triggering the "STOP" phase of
482 dl 1.211 * termination. (Note: there is an intrinsic conflict if
483     * helpQuiescePool is called when shutdown is enabled. Both wait
484 jsr166 1.212 * for quiescence, but tryTerminate is biased to not trigger until
485 dl 1.211 * helpQuiescePool completes.)
486     *
487 dl 1.78 *
488 jsr166 1.84 * Joining Tasks
489     * =============
490 dl 1.78 *
491     * Any of several actions may be taken when one worker is waiting
492 jsr166 1.84 * to join a task stolen (or always held) by another. Because we
493 dl 1.78 * are multiplexing many tasks on to a pool of workers, we can't
494     * just let them block (as in Thread.join). We also cannot just
495     * reassign the joiner's run-time stack with another and replace
496     * it later, which would be a form of "continuation", that even if
497 dl 1.200 * possible is not necessarily a good idea since we may need both
498     * an unblocked task and its continuation to progress. Instead we
499     * combine two tactics:
500 dl 1.19 *
501     * Helping: Arranging for the joiner to execute some task that it
502 dl 1.78 * would be running if the steal had not occurred.
503 dl 1.19 *
504     * Compensating: Unless there are already enough live threads,
505 dl 1.78 * method tryCompensate() may create or re-activate a spare
506     * thread to compensate for blocked joiners until they unblock.
507     *
508 dl 1.105 * A third form (implemented in tryRemoveAndExec) amounts to
509     * helping a hypothetical compensator: If we can readily tell that
510     * a possible action of a compensator is to steal and execute the
511     * task being joined, the joining thread can do so directly,
512     * without the need for a compensation thread (although at the
513     * expense of larger run-time stacks, but the tradeoff is
514     * typically worthwhile).
515 dl 1.52 *
516     * The ManagedBlocker extension API can't use helping so relies
517     * only on compensation in method awaitBlocker.
518 dl 1.19 *
519 dl 1.200 * The algorithm in helpStealer entails a form of "linear
520     * helping". Each worker records (in field currentSteal) the most
521     * recent task it stole from some other worker (or a submission).
522     * It also records (in field currentJoin) the task it is currently
523     * actively joining. Method helpStealer uses these markers to try
524     * to find a worker to help (i.e., steal back a task from and
525     * execute it) that could hasten completion of the actively joined
526     * task. Thus, the joiner executes a task that would be on its
527     * own local deque had the to-be-joined task not been stolen. This
528     * is a conservative variant of the approach described in Wagner &
529 dl 1.78 * Calder "Leapfrogging: a portable technique for implementing
530     * efficient futures" SIGPLAN Notices, 1993
531     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
532     * that: (1) We only maintain dependency links across workers upon
533     * steals, rather than use per-task bookkeeping. This sometimes
534 dl 1.90 * requires a linear scan of workQueues array to locate stealers,
535     * but often doesn't because stealers leave hints (that may become
536 dl 1.112 * stale/wrong) of where to locate them. It is only a hint
537     * because a worker might have had multiple steals and the hint
538     * records only one of them (usually the most current). Hinting
539     * isolates cost to when it is needed, rather than adding to
540     * per-task overhead. (2) It is "shallow", ignoring nesting and
541     * potentially cyclic mutual steals. (3) It is intentionally
542 dl 1.78 * racy: field currentJoin is updated only while actively joining,
543     * which means that we miss links in the chain during long-lived
544     * tasks, GC stalls etc (which is OK since blocking in such cases
545     * is usually a good idea). (4) We bound the number of attempts
546 dl 1.200 * to find work using checksums and fall back to suspending the
547 dl 1.90 * worker and if necessary replacing it with another.
548 dl 1.78 *
549 dl 1.200 * Helping actions for CountedCompleters do not require tracking
550     * currentJoins: Method helpComplete takes and executes any task
551 jsr166 1.202 * with the same root as the task being waited on (preferring
552     * local pops to non-local polls). However, this still entails
553     * some traversal of completer chains, so is less efficient than
554     * using CountedCompleters without explicit joins.
555 dl 1.105 *
556 dl 1.200 * Compensation does not aim to keep exactly the target
557     * parallelism number of unblocked threads running at any given
558     * time. Some previous versions of this class employed immediate
559     * compensations for any blocked join. However, in practice, the
560     * vast majority of blockages are transient byproducts of GC and
561     * other JVM or OS activities that are made worse by replacement.
562     * Currently, compensation is attempted only after validating that
563     * all purportedly active threads are processing tasks by checking
564     * field WorkQueue.scanState, which eliminates most false
565     * positives. Also, compensation is bypassed (tolerating fewer
566     * threads) in the most common case in which it is rarely
567     * beneficial: when a worker with an empty queue (thus no
568     * continuation tasks) blocks on a join and there still remain
569 dl 1.208 * enough threads to ensure liveness.
570 dl 1.105 *
571 dl 1.211 * The compensation mechanism may be bounded. Bounds for the
572     * commonPool (see commonMaxSpares) better enable JVMs to cope
573 dl 1.208 * with programming errors and abuse before running out of
574     * resources to do so. In other cases, users may supply factories
575     * that limit thread construction. The effects of bounding in this
576     * pool (like all others) is imprecise. Total worker counts are
577     * decremented when threads deregister, not when they exit and
578     * resources are reclaimed by the JVM and OS. So the number of
579     * simultaneously live threads may transiently exceed bounds.
580 dl 1.205 *
581 dl 1.105 * Common Pool
582     * ===========
583     *
584 jsr166 1.175 * The static common pool always exists after static
585 dl 1.105 * initialization. Since it (or any other created pool) need
586     * never be used, we minimize initial construction overhead and
587     * footprint to the setup of about a dozen fields, with no nested
588     * allocation. Most bootstrapping occurs within method
589 dl 1.200 * externalSubmit during the first submission to the pool.
590 dl 1.105 *
591     * When external threads submit to the common pool, they can
592 dl 1.200 * perform subtask processing (see externalHelpComplete and
593     * related methods) upon joins. This caller-helps policy makes it
594     * sensible to set common pool parallelism level to one (or more)
595     * less than the total number of available cores, or even zero for
596     * pure caller-runs. We do not need to record whether external
597     * submissions are to the common pool -- if not, external help
598     * methods return quickly. These submitters would otherwise be
599     * blocked waiting for completion, so the extra effort (with
600     * liberally sprinkled task status checks) in inapplicable cases
601     * amounts to an odd form of limited spin-wait before blocking in
602     * ForkJoinTask.join.
603 dl 1.105 *
604 dl 1.197 * As a more appropriate default in managed environments, unless
605     * overridden by system properties, we use workers of subclass
606     * InnocuousForkJoinWorkerThread when there is a SecurityManager
607     * present. These workers have no permissions set, do not belong
608     * to any user-defined ThreadGroup, and erase all ThreadLocals
609 dl 1.200 * after executing any top-level task (see WorkQueue.runTask).
610     * The associated mechanics (mainly in ForkJoinWorkerThread) may
611     * be JVM-dependent and must access particular Thread class fields
612     * to achieve this effect.
613 jsr166 1.198 *
614 dl 1.105 * Style notes
615     * ===========
616     *
617 dl 1.200 * Memory ordering relies mainly on Unsafe intrinsics that carry
618     * the further responsibility of explicitly performing null- and
619     * bounds- checks otherwise carried out implicitly by JVMs. This
620     * can be awkward and ugly, but also reflects the need to control
621     * outcomes across the unusual cases that arise in very racy code
622     * with very few invariants. So these explicit checks would exist
623     * in some form anyway. All fields are read into locals before
624     * use, and null-checked if they are references. This is usually
625     * done in a "C"-like style of listing declarations at the heads
626     * of methods or blocks, and using inline assignments on first
627     * encounter. Array bounds-checks are usually performed by
628     * masking with array.length-1, which relies on the invariant that
629     * these arrays are created with positive lengths, which is itself
630     * paranoically checked. Nearly all explicit checks lead to
631     * bypass/return, not exception throws, because they may
632     * legitimately arise due to cancellation/revocation during
633     * shutdown.
634     *
635 dl 1.105 * There is a lot of representation-level coupling among classes
636     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
637     * fields of WorkQueue maintain data structures managed by
638     * ForkJoinPool, so are directly accessed. There is little point
639     * trying to reduce this, since any associated future changes in
640     * representations will need to be accompanied by algorithmic
641     * changes anyway. Several methods intrinsically sprawl because
642 dl 1.200 * they must accumulate sets of consistent reads of fields held in
643     * local variables. There are also other coding oddities
644     * (including several unnecessary-looking hoisted null checks)
645     * that help some methods perform reasonably even when interpreted
646     * (not compiled).
647 dl 1.52 *
648 dl 1.208 * The order of declarations in this file is (with a few exceptions):
649 dl 1.86 * (1) Static utility functions
650     * (2) Nested (static) classes
651     * (3) Static fields
652     * (4) Fields, along with constants used when unpacking some of them
653     * (5) Internal control methods
654     * (6) Callbacks and other support for ForkJoinTask methods
655     * (7) Exported methods
656     * (8) Static block initializing statics in minimally dependent order
657     */
658    
659     // Static utilities
660    
661     /**
662     * If there is a security manager, makes sure caller has
663     * permission to modify threads.
664 jsr166 1.1 */
665 dl 1.86 private static void checkPermission() {
666     SecurityManager security = System.getSecurityManager();
667     if (security != null)
668     security.checkPermission(modifyThreadPermission);
669     }
670    
671     // Nested classes
672 jsr166 1.1
673     /**
674 jsr166 1.8 * Factory for creating new {@link ForkJoinWorkerThread}s.
675     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
676     * for {@code ForkJoinWorkerThread} subclasses that extend base
677     * functionality or initialize threads with different contexts.
678 jsr166 1.1 */
679     public static interface ForkJoinWorkerThreadFactory {
680     /**
681     * Returns a new worker thread operating in the given pool.
682     *
683     * @param pool the pool this thread works in
684 jsr166 1.192 * @return the new worker thread
685 jsr166 1.11 * @throws NullPointerException if the pool is null
686 jsr166 1.1 */
687     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
688     }
689    
690     /**
691     * Default ForkJoinWorkerThreadFactory implementation; creates a
692     * new ForkJoinWorkerThread.
693     */
694 dl 1.112 static final class DefaultForkJoinWorkerThreadFactory
695 jsr166 1.1 implements ForkJoinWorkerThreadFactory {
696 dl 1.112 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
697 dl 1.14 return new ForkJoinWorkerThread(pool);
698 jsr166 1.1 }
699     }
700    
701     /**
702 dl 1.86 * Class for artificial tasks that are used to replace the target
703     * of local joins if they are removed from an interior queue slot
704     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
705     * actually do anything beyond having a unique identity.
706 jsr166 1.1 */
707 dl 1.86 static final class EmptyTask extends ForkJoinTask<Void> {
708 dl 1.105 private static final long serialVersionUID = -7721805057305804111L;
709 dl 1.86 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
710     public final Void getRawResult() { return null; }
711     public final void setRawResult(Void x) {}
712     public final boolean exec() { return true; }
713 jsr166 1.1 }
714    
715 dl 1.200 // Constants shared across ForkJoinPool and WorkQueue
716    
717     // Bounds
718     static final int SMASK = 0xffff; // short bits == max index
719     static final int MAX_CAP = 0x7fff; // max #workers - 1
720     static final int EVENMASK = 0xfffe; // even short bits
721     static final int SQMASK = 0x007e; // max 64 (even) slots
722    
723     // Masks and units for WorkQueue.scanState and ctl sp subfield
724     static final int SCANNING = 1; // false when running tasks
725     static final int INACTIVE = 1 << 31; // must be negative
726 dl 1.211 static final int SS_SEQ = 1 << 16; // version count
727 dl 1.200
728     // Mode bits for ForkJoinPool.config and WorkQueue.config
729 dl 1.211 static final int MODE_MASK = 0xffff << 16; // top half of int
730 dl 1.200 static final int LIFO_QUEUE = 0;
731     static final int FIFO_QUEUE = 1 << 16;
732     static final int SHARED_QUEUE = 1 << 31; // must be negative
733    
734 dl 1.225 // This version uses array access methods in anticipation of JDK9 support
735     // that should eliminate their need
736    
737     static final ForkJoinTask<?> getAt(ForkJoinTask<?>[] a, int i) {
738     return (ForkJoinTask<?>)U.getObjectVolatile(
739     a, (long)((i << ASHIFT) + ABASE));
740     }
741    
742     static final void setAt(ForkJoinTask<?>[] a, int i, ForkJoinTask<?> x) {
743     U.putOrderedObject(a, (long)((i << ASHIFT) + ABASE), x);
744     }
745    
746     static final boolean casAt(ForkJoinTask<?>[] a, int i,
747     ForkJoinTask<?> c, ForkJoinTask<?> v) {
748     return U.compareAndSwapObject(
749     a, (long)((i << ASHIFT) + ABASE), c, v);
750     }
751    
752     static final ForkJoinTask<?> xchgAt(ForkJoinTask<?>[] a, int i,
753     ForkJoinTask<?> x) {
754     return (ForkJoinTask<?>)U.getAndSetObject(
755     a, (long)((i << ASHIFT) + ABASE), x);
756     }
757    
758 jsr166 1.1 /**
759 dl 1.78 * Queues supporting work-stealing as well as external task
760 jsr166 1.202 * submission. See above for descriptions and algorithms.
761 dl 1.78 * Performance on most platforms is very sensitive to placement of
762     * instances of both WorkQueues and their arrays -- we absolutely
763     * do not want multiple WorkQueue instances or multiple queue
764 dl 1.200 * arrays sharing cache lines. The @Contended annotation alerts
765     * JVMs to try to keep instances apart.
766 dl 1.78 */
767 jsr166 1.171 @sun.misc.Contended
768 dl 1.78 static final class WorkQueue {
769 dl 1.200
770 dl 1.78 /**
771     * Capacity of work-stealing queue array upon initialization.
772 dl 1.90 * Must be a power of two; at least 4, but should be larger to
773     * reduce or eliminate cacheline sharing among queues.
774     * Currently, it is much larger, as a partial workaround for
775     * the fact that JVMs often place arrays in locations that
776     * share GC bookkeeping (especially cardmarks) such that
777     * per-write accesses encounter serious memory contention.
778 dl 1.78 */
779 dl 1.90 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
780 dl 1.78
781     /**
782     * Maximum size for queue arrays. Must be a power of two less
783     * than or equal to 1 << (31 - width of array entry) to ensure
784     * lack of wraparound of index calculations, but defined to a
785     * value a bit less than this to help users trap runaway
786     * programs before saturating systems.
787     */
788     static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
789    
790 dl 1.200 // Instance fields
791     volatile int scanState; // versioned, <0: inactive; odd:scanning
792     int stackPred; // pool stack (ctl) predecessor
793 dl 1.178 int nsteals; // number of steals
794 dl 1.200 int hint; // randomization and stealer index hint
795     int config; // pool index and mode
796     volatile int qlock; // 1: locked, < 0: terminate; else 0
797 dl 1.78 volatile int base; // index of next slot for poll
798     int top; // index of next slot for push
799     ForkJoinTask<?>[] array; // the elements (initially unallocated)
800 dl 1.90 final ForkJoinPool pool; // the containing pool (may be null)
801 dl 1.78 final ForkJoinWorkerThread owner; // owning thread or null if shared
802     volatile Thread parker; // == owner during call to park; else null
803 dl 1.95 volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
804 dl 1.200 volatile ForkJoinTask<?> currentSteal; // mainly used by helpStealer
805 dl 1.112
806 dl 1.225 // Temporary repeats of array access methods
807    
808     static final ForkJoinTask<?> getAt(ForkJoinTask<?>[] a, int i) {
809     return (ForkJoinTask<?>)U.getObjectVolatile(
810     a, (long)((i << ASHIFT) + ABASE));
811     }
812    
813     static final void setAt(ForkJoinTask<?>[] a, int i, ForkJoinTask<?> x) {
814     U.putOrderedObject(a, (long)((i << ASHIFT) + ABASE), x);
815     }
816    
817     static final boolean casAt(ForkJoinTask<?>[] a, int i,
818     ForkJoinTask<?> c, ForkJoinTask<?> v) {
819     return U.compareAndSwapObject(
820     a, (long)((i << ASHIFT) + ABASE), c, v);
821     }
822    
823     static final ForkJoinTask<?> xchgAt(ForkJoinTask<?>[] a, int i,
824     ForkJoinTask<?> x) {
825     return (ForkJoinTask<?>)U.getAndSetObject(
826     a, (long)((i << ASHIFT) + ABASE), x);
827     }
828    
829    
830 dl 1.200 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner) {
831 dl 1.90 this.pool = pool;
832 dl 1.78 this.owner = owner;
833 dl 1.115 // Place indices in the center of array (that is not yet allocated)
834 dl 1.78 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
835     }
836    
837     /**
838 jsr166 1.220 * Returns an exportable index (used by ForkJoinWorkerThread).
839 dl 1.200 */
840     final int getPoolIndex() {
841     return (config & 0xffff) >>> 1; // ignore odd/even tag bit
842     }
843    
844     /**
845 dl 1.115 * Returns the approximate number of tasks in the queue.
846     */
847     final int queueSize() {
848     int n = base - top; // non-owner callers must read base first
849     return (n >= 0) ? 0 : -n; // ignore transient negative
850     }
851    
852 jsr166 1.180 /**
853 dl 1.115 * Provides a more accurate estimate of whether this queue has
854     * any tasks than does queueSize, by checking whether a
855     * near-empty queue has at least one unclaimed task.
856     */
857     final boolean isEmpty() {
858 dl 1.225 ForkJoinTask<?>[] a; int n, al, s;
859 dl 1.200 return ((n = base - (s = top)) >= 0 ||
860     (n == -1 && // possibly one task
861 dl 1.225 ((a = array) == null || (al = a.length) == 0 ||
862     getAt(a, (al - 1) & (s - 1)) == null)));
863 dl 1.115 }
864    
865     /**
866     * Pushes a task. Call only by owner in unshared queues. (The
867     * shared-queue version is embedded in method externalPush.)
868 dl 1.78 *
869     * @param task the task. Caller must ensure non-null.
870 jsr166 1.146 * @throws RejectedExecutionException if array cannot be resized
871 dl 1.78 */
872 dl 1.90 final void push(ForkJoinTask<?> task) {
873 dl 1.205 ForkJoinTask<?>[] a; ForkJoinPool p;
874 dl 1.225 if ((a = array) != null) { // ignore if queue removed
875 dl 1.224 int b = base, m = a.length - 1, s = top, n;
876 dl 1.225 if (m > 0) { // always true, but check required
877     setAt(a, m & s, task);
878 dl 1.224 U.putOrderedInt(this, QTOP, s + 1);
879     if ((n = s - b) <= 1) {
880     if ((p = pool) != null)
881     p.signalWork(p.workQueues, this);
882     }
883     else if (n >= m)
884     growArray();
885 dl 1.200 }
886 dl 1.78 }
887     }
888    
889 dl 1.178 /**
890 dl 1.112 * Initializes or doubles the capacity of array. Call either
891     * by owner or with lock held -- it is OK for base, but not
892     * top, to move while resizings are in progress.
893     */
894     final ForkJoinTask<?>[] growArray() {
895     ForkJoinTask<?>[] oldA = array;
896     int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
897 dl 1.225 if (size < INITIAL_QUEUE_CAPACITY || size > MAXIMUM_QUEUE_CAPACITY)
898 dl 1.112 throw new RejectedExecutionException("Queue capacity exceeded");
899     int oldMask, t, b;
900     ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
901 dl 1.225 if (oldA != null && (oldMask = oldA.length - 1) > 0 &&
902 dl 1.112 (t = top) - (b = base) > 0) {
903     int mask = size - 1;
904 dl 1.200 do { // emulate poll from old array, push to new array
905 dl 1.112 ForkJoinTask<?> x;
906 dl 1.225 int oldj = b & oldMask, j = b & mask;
907     if ((x = getAt(oldA, oldj)) != null &&
908     casAt(oldA, oldj, x, null))
909     setAt(a, j, x);
910 dl 1.112 } while (++b != t);
911 dl 1.78 }
912 dl 1.112 return a;
913 dl 1.78 }
914    
915     /**
916 dl 1.90 * Takes next task, if one exists, in LIFO order. Call only
917 dl 1.102 * by owner in unshared queues.
918 dl 1.90 */
919     final ForkJoinTask<?> pop() {
920 dl 1.225 ForkJoinTask<?>[] a; ForkJoinTask<?> t; int al;
921     if ((a = array) != null && (al = a.length) > 0) {
922 dl 1.90 for (int s; (s = top - 1) - base >= 0;) {
923 dl 1.225 int j = (al - 1) & s;
924     if ((t = getAt(a, j)) == null)
925 dl 1.90 break;
926 dl 1.225 if (casAt(a, j, t, null)) {
927 dl 1.200 U.putOrderedInt(this, QTOP, s);
928 dl 1.90 return t;
929     }
930     }
931     }
932     return null;
933     }
934    
935     /**
936     * Takes a task in FIFO order if b is base of queue and a task
937     * can be claimed without contention. Specialized versions
938 dl 1.200 * appear in ForkJoinPool methods scan and helpStealer.
939 dl 1.78 */
940 dl 1.90 final ForkJoinTask<?> pollAt(int b) {
941 dl 1.178 ForkJoinTask<?> t; ForkJoinTask<?>[] a;
942 dl 1.90 if ((a = array) != null) {
943 dl 1.225 int al = a.length, j = (al - 1) & b;
944     if (al > 0 && (t = getAt(a, j)) != null &&
945     base == b && casAt(a, j, t, null)) {
946 dl 1.200 base = b + 1;
947 dl 1.78 return t;
948     }
949     }
950     return null;
951     }
952    
953     /**
954 dl 1.90 * Takes next task, if one exists, in FIFO order.
955 dl 1.78 */
956 dl 1.90 final ForkJoinTask<?> poll() {
957 dl 1.225 ForkJoinTask<?>[] a; int b, al, j;
958     while ((b = base) - top < 0 && (a = array) != null &&
959     (al = a.length) > 0) {
960     ForkJoinTask<?> t = getAt(a, j = (al - 1) & b);
961 dl 1.200 if (base == b) {
962     if (t != null) {
963 dl 1.225 if (casAt(a, j, t, null)) {
964 dl 1.200 base = b + 1;
965     return t;
966     }
967 dl 1.78 }
968 dl 1.200 else if (b + 1 == top) // now empty
969 dl 1.90 break;
970     }
971 dl 1.78 }
972     return null;
973     }
974    
975     /**
976     * Takes next task, if one exists, in order specified by mode.
977     */
978     final ForkJoinTask<?> nextLocalTask() {
979 dl 1.200 return (config & FIFO_QUEUE) == 0 ? pop() : poll();
980 dl 1.78 }
981    
982     /**
983     * Returns next task, if one exists, in order specified by mode.
984     */
985     final ForkJoinTask<?> peek() {
986 dl 1.225 ForkJoinTask<?>[] a = array; int al;
987     if (a != null && (al = a.length) > 0) {
988     int i = (config & FIFO_QUEUE) == 0 ? top - 1 : base;
989     return getAt(a, (al - 1) & i);
990     }
991     return null;
992 dl 1.78 }
993    
994     /**
995     * Pops the given task only if it is at the current top.
996 dl 1.105 * (A shared version is available only via FJP.tryExternalUnpush)
997 dl 1.200 */
998 dl 1.78 final boolean tryUnpush(ForkJoinTask<?> t) {
999 dl 1.224 ForkJoinTask<?>[] a;
1000     if ((a = array) != null) {
1001 dl 1.225 int b = base, al = a.length, s = top;
1002     if (s != b && al > 0 &&
1003     casAt(a, (al - 1) & (s - 1), t, null)) {
1004 dl 1.224 U.putOrderedInt(this, QTOP, s - 1);
1005     return true;
1006     }
1007 dl 1.78 }
1008     return false;
1009     }
1010    
1011     /**
1012 jsr166 1.84 * Removes and cancels all known tasks, ignoring any exceptions.
1013 dl 1.78 */
1014     final void cancelAll() {
1015 dl 1.200 ForkJoinTask<?> t;
1016     if ((t = currentJoin) != null) {
1017     currentJoin = null;
1018     ForkJoinTask.cancelIgnoringExceptions(t);
1019     }
1020     if ((t = currentSteal) != null) {
1021     currentSteal = null;
1022     ForkJoinTask.cancelIgnoringExceptions(t);
1023     }
1024     while ((t = poll()) != null)
1025 dl 1.78 ForkJoinTask.cancelIgnoringExceptions(t);
1026     }
1027    
1028 dl 1.104 // Specialized execution methods
1029 dl 1.78
1030     /**
1031 dl 1.178 * Polls and runs tasks until empty.
1032 dl 1.78 */
1033 dl 1.178 final void pollAndExecAll() {
1034     for (ForkJoinTask<?> t; (t = poll()) != null;)
1035     t.doExec();
1036 dl 1.94 }
1037    
1038     /**
1039 dl 1.225 * Pops and runs tasks until empty.
1040     */
1041     final void popAndExecAll() {
1042     ForkJoinTask<?>[] a; ForkJoinTask<?> t;
1043     while ((a = array) != null) {
1044     int b = base, al = a.length, s = top, i = (al - 1) & (s - 1);
1045     if (b != s && al > 0 &&
1046     (t = xchgAt(a, i, null)) != null) {
1047     U.putOrderedInt(this, QTOP, s - 1);
1048     t.doExec();
1049 dl 1.200 }
1050     else
1051 dl 1.225 break;
1052 dl 1.200 }
1053     }
1054    
1055     /**
1056 jsr166 1.213 * Executes the given task and any remaining local tasks.
1057 dl 1.94 */
1058 dl 1.178 final void runTask(ForkJoinTask<?> task) {
1059 dl 1.200 if (task != null) {
1060     scanState &= ~SCANNING; // mark as busy
1061     (currentSteal = task).doExec();
1062     U.putOrderedObject(this, QCURRENTSTEAL, null); // release for GC
1063 dl 1.225 if ((config & FIFO_QUEUE) != 0)
1064     pollAndExecAll();
1065     else
1066     popAndExecAll();
1067 dl 1.200 ForkJoinWorkerThread thread = owner;
1068 dl 1.215 if (++nsteals < 0) // collect on overflow
1069     transferStealCount(pool);
1070 dl 1.200 scanState |= SCANNING;
1071     if (thread != null)
1072 dl 1.197 thread.afterTopLevelExec();
1073 dl 1.178 }
1074 dl 1.94 }
1075    
1076     /**
1077 dl 1.215 * Adds steal count to pool stealCounter if it exists, and resets.
1078     */
1079     final void transferStealCount(ForkJoinPool p) {
1080     AtomicLong sc;
1081     if (p != null && (sc = p.stealCounter) != null) {
1082     int s = nsteals;
1083     nsteals = 0; // if negative, correct for overflow
1084     sc.getAndAdd((long)(s < 0 ? Integer.MAX_VALUE : s));
1085     }
1086     }
1087    
1088     /**
1089 dl 1.105 * If present, removes from queue and executes the given task,
1090 jsr166 1.213 * or any other cancelled task. Used only by awaitJoin.
1091 dl 1.94 *
1092 jsr166 1.213 * @return true if queue empty and task not known to be done
1093 dl 1.94 */
1094 dl 1.105 final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
1095 dl 1.225 ForkJoinTask<?>[] a; int al, s, b, n;
1096     if ((a = array) != null && (al = a.length) > 0 && task != null) {
1097 dl 1.200 while ((n = (s = top) - (b = base)) > 0) {
1098     for (ForkJoinTask<?> t;;) { // traverse from s to b
1099 dl 1.225 int j = --s & (al - 1);
1100     if ((t = getAt(a, j)) == null)
1101 dl 1.200 return s + 1 == top; // shorter than expected
1102     else if (t == task) {
1103     boolean removed = false;
1104     if (s + 1 == top) { // pop
1105 dl 1.225 if (casAt(a, j, task, null)) {
1106 dl 1.200 U.putOrderedInt(this, QTOP, s);
1107     removed = true;
1108     }
1109     }
1110     else if (base == b) // replace with proxy
1111 dl 1.225 removed = casAt(a, j, task, new EmptyTask());
1112 dl 1.200 if (removed)
1113     task.doExec();
1114     break;
1115 dl 1.90 }
1116 dl 1.200 else if (t.status < 0 && s + 1 == top) {
1117 dl 1.225 if (casAt(a, j, t, null))
1118 dl 1.200 U.putOrderedInt(this, QTOP, s);
1119     break; // was cancelled
1120 dl 1.104 }
1121 dl 1.200 if (--n == 0)
1122     return false;
1123 dl 1.104 }
1124 dl 1.200 if (task.status < 0)
1125     return false;
1126 dl 1.104 }
1127     }
1128 dl 1.200 return true;
1129 dl 1.104 }
1130    
1131     /**
1132 dl 1.200 * Pops task if in the same CC computation as the given task,
1133     * in either shared or owned mode. Used only by helpComplete.
1134 dl 1.78 */
1135 dl 1.200 final CountedCompleter<?> popCC(CountedCompleter<?> task, int mode) {
1136 dl 1.225 ForkJoinTask<?>[] a; ForkJoinTask<?> o;
1137     if ((a = array) != null) {
1138     int b = base, al = a.length, s = top, i = (al - 1) & (s - 1);
1139     if (b != s && al > 0 &&
1140     ((o = a[i]) instanceof CountedCompleter)) {
1141 dl 1.200 CountedCompleter<?> t = (CountedCompleter<?>)o;
1142     for (CountedCompleter<?> r = t;;) {
1143     if (r == task) {
1144     if (mode < 0) { // must lock
1145     if (U.compareAndSwapInt(this, QLOCK, 0, 1)) {
1146     if (top == s && array == a &&
1147 dl 1.225 casAt(a, i, t, null)) {
1148 dl 1.200 U.putOrderedInt(this, QTOP, s - 1);
1149     U.putOrderedInt(this, QLOCK, 0);
1150     return t;
1151     }
1152 dl 1.209 U.compareAndSwapInt(this, QLOCK, 1, 0);
1153 dl 1.178 }
1154     }
1155 dl 1.225 else if (casAt(a, i, t, null)) {
1156 dl 1.200 U.putOrderedInt(this, QTOP, s - 1);
1157     return t;
1158     }
1159     break;
1160 dl 1.178 }
1161 dl 1.200 else if ((r = r.completer) == null) // try parent
1162 dl 1.178 break;
1163     }
1164 dl 1.94 }
1165 dl 1.78 }
1166 dl 1.200 return null;
1167 dl 1.78 }
1168    
1169     /**
1170 dl 1.200 * Steals and runs a task in the same CC computation as the
1171     * given task if one exists and can be taken without
1172     * contention. Otherwise returns a checksum/control value for
1173     * use by method helpComplete.
1174     *
1175     * @return 1 if successful, 2 if retryable (lost to another
1176     * stealer), -1 if non-empty but no matching task found, else
1177     * the base index, forced negative.
1178     */
1179     final int pollAndExecCC(CountedCompleter<?> task) {
1180 dl 1.225 int b, h, j, al; ForkJoinTask<?>[] a; Object o;
1181     if ((b = base) - top >= 0 || (a = array) == null ||
1182     (al = a.length) <= 0)
1183 dl 1.200 h = b | Integer.MIN_VALUE; // to sense movement on re-poll
1184 dl 1.225 else if ((o = getAt(a, j = (al - 1) & b)) == null)
1185     h = 2; // retryable
1186     else if (!(o instanceof CountedCompleter))
1187     h = -1; // unmatchable
1188 dl 1.200 else {
1189 dl 1.225 CountedCompleter<?> t = (CountedCompleter<?>)o;
1190     for (CountedCompleter<?> r = t;;) {
1191     if (r == task) {
1192     if (base == b && casAt(a, j, t, null)) {
1193     base = b + 1;
1194     t.doExec();
1195     h = 1; // success
1196 dl 1.200 }
1197 dl 1.225 else
1198     h = 2; // lost CAS
1199     break;
1200     }
1201     else if ((r = r.completer) == null) {
1202     h = -1; // unmatched
1203     break;
1204 dl 1.178 }
1205     }
1206 dl 1.78 }
1207 dl 1.200 return h;
1208 dl 1.78 }
1209    
1210     /**
1211 dl 1.86 * Returns true if owned and not known to be blocked.
1212     */
1213     final boolean isApparentlyUnblocked() {
1214     Thread wt; Thread.State s;
1215 dl 1.200 return (scanState >= 0 &&
1216 dl 1.86 (wt = owner) != null &&
1217     (s = wt.getState()) != Thread.State.BLOCKED &&
1218     s != Thread.State.WAITING &&
1219     s != Thread.State.TIMED_WAITING);
1220     }
1221    
1222 dl 1.211 // Unsafe mechanics. Note that some are (and must be) the same as in FJP
1223 dl 1.78 private static final sun.misc.Unsafe U;
1224 dl 1.200 private static final int ABASE;
1225     private static final int ASHIFT;
1226     private static final long QTOP;
1227 dl 1.105 private static final long QLOCK;
1228 dl 1.200 private static final long QCURRENTSTEAL;
1229 dl 1.78 static {
1230     try {
1231     U = sun.misc.Unsafe.getUnsafe();
1232 dl 1.200 Class<?> wk = WorkQueue.class;
1233 dl 1.78 Class<?> ak = ForkJoinTask[].class;
1234 dl 1.200 QTOP = U.objectFieldOffset
1235     (wk.getDeclaredField("top"));
1236 dl 1.105 QLOCK = U.objectFieldOffset
1237 dl 1.200 (wk.getDeclaredField("qlock"));
1238     QCURRENTSTEAL = U.objectFieldOffset
1239     (wk.getDeclaredField("currentSteal"));
1240 dl 1.78 ABASE = U.arrayBaseOffset(ak);
1241 jsr166 1.142 int scale = U.arrayIndexScale(ak);
1242     if ((scale & (scale - 1)) != 0)
1243 jsr166 1.232 throw new Error("array index scale not a power of two");
1244 jsr166 1.142 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1245 jsr166 1.231 } catch (ReflectiveOperationException e) {
1246 dl 1.78 throw new Error(e);
1247     }
1248     }
1249     }
1250 dl 1.14
1251 dl 1.112 // static fields (initialized in static initializer below)
1252    
1253     /**
1254     * Creates a new ForkJoinWorkerThread. This factory is used unless
1255     * overridden in ForkJoinPool constructors.
1256     */
1257     public static final ForkJoinWorkerThreadFactory
1258     defaultForkJoinWorkerThreadFactory;
1259    
1260 jsr166 1.1 /**
1261 dl 1.115 * Permission required for callers of methods that may start or
1262     * kill threads.
1263     */
1264     private static final RuntimePermission modifyThreadPermission;
1265    
1266     /**
1267 dl 1.101 * Common (static) pool. Non-null for public use unless a static
1268 dl 1.105 * construction exception, but internal usages null-check on use
1269     * to paranoically avoid potential initialization circularities
1270     * as well as to simplify generated code.
1271 dl 1.101 */
1272 dl 1.134 static final ForkJoinPool common;
1273 dl 1.101
1274     /**
1275 dl 1.160 * Common pool parallelism. To allow simpler use and management
1276     * when common pool threads are disabled, we allow the underlying
1277 dl 1.185 * common.parallelism field to be zero, but in that case still report
1278 dl 1.160 * parallelism as 1 to reflect resulting caller-runs mechanics.
1279 dl 1.90 */
1280 dl 1.134 static final int commonParallelism;
1281 dl 1.90
1282     /**
1283 dl 1.208 * Limit on spare thread construction in tryCompensate.
1284     */
1285     private static int commonMaxSpares;
1286    
1287     /**
1288 dl 1.105 * Sequence number for creating workerNamePrefix.
1289 dl 1.86 */
1290 dl 1.105 private static int poolNumberSequence;
1291 dl 1.86
1292 jsr166 1.1 /**
1293 jsr166 1.132 * Returns the next sequence number. We don't expect this to
1294     * ever contend, so use simple builtin sync.
1295 dl 1.83 */
1296 dl 1.105 private static final synchronized int nextPoolId() {
1297     return ++poolNumberSequence;
1298     }
1299 dl 1.86
1300 dl 1.200 // static configuration constants
1301 dl 1.86
1302     /**
1303 dl 1.105 * Initial timeout value (in nanoseconds) for the thread
1304     * triggering quiescence to park waiting for new work. On timeout,
1305     * the thread will instead try to shrink the number of
1306     * workers. The value should be large enough to avoid overly
1307     * aggressive shrinkage during most transient stalls (long GCs
1308     * etc).
1309 dl 1.86 */
1310 dl 1.208 private static final long IDLE_TIMEOUT = 2000L * 1000L * 1000L; // 2sec
1311 dl 1.86
1312     /**
1313 dl 1.120 * Tolerance for idle timeouts, to cope with timer undershoots
1314     */
1315 dl 1.208 private static final long TIMEOUT_SLOP = 20L * 1000L * 1000L; // 20ms
1316 dl 1.200
1317     /**
1318 dl 1.208 * The initial value for commonMaxSpares during static
1319     * initialization unless overridden using System property
1320     * "java.util.concurrent.ForkJoinPool.common.maximumSpares". The
1321     * default value is far in excess of normal requirements, but also
1322 dl 1.200 * far short of MAX_CAP and typical OS thread limits, so allows
1323     * JVMs to catch misuse/abuse before running out of resources
1324     * needed to do so.
1325     */
1326 dl 1.208 private static final int DEFAULT_COMMON_MAX_SPARES = 256;
1327 dl 1.120
1328     /**
1329 dl 1.200 * Number of times to spin-wait before blocking. The spins (in
1330     * awaitRunStateLock and awaitWork) currently use randomized
1331     * spins. If/when MWAIT-like intrinsics becomes available, they
1332     * may allow quieter spinning. The value of SPINS must be a power
1333     * of two, at least 4. The current value causes spinning for a
1334 dl 1.211 * small fraction of typical context-switch times, well worthwhile
1335     * given the typical likelihoods that blocking is not necessary.
1336 dl 1.90 */
1337 jsr166 1.230 private static final int SPINS = 1 << 11;
1338 dl 1.90
1339     /**
1340     * Increment for seed generators. See class ThreadLocal for
1341     * explanation.
1342     */
1343 dl 1.193 private static final int SEED_INCREMENT = 0x9e3779b9;
1344 dl 1.83
1345 jsr166 1.163 /*
1346 dl 1.200 * Bits and masks for field ctl, packed with 4 16 bit subfields:
1347     * AC: Number of active running workers minus target parallelism
1348     * TC: Number of total workers minus target parallelism
1349     * SS: version count and status of top waiting thread
1350     * ID: poolIndex of top of Treiber stack of waiters
1351     *
1352     * When convenient, we can extract the lower 32 stack top bits
1353     * (including version bits) as sp=(int)ctl. The offsets of counts
1354     * by the target parallelism and the positionings of fields makes
1355     * it possible to perform the most common checks via sign tests of
1356     * fields: When ac is negative, there are not enough active
1357     * workers, when tc is negative, there are not enough total
1358     * workers. When sp is non-zero, there are waiting workers. To
1359     * deal with possibly negative fields, we use casts in and out of
1360     * "short" and/or signed shifts to maintain signedness.
1361     *
1362     * Because it occupies uppermost bits, we can add one active count
1363     * using getAndAddLong of AC_UNIT, rather than CAS, when returning
1364     * from a blocked join. Other updates entail multiple subfields
1365     * and masking, requiring CAS.
1366     */
1367    
1368     // Lower and upper word masks
1369     private static final long SP_MASK = 0xffffffffL;
1370     private static final long UC_MASK = ~SP_MASK;
1371 dl 1.86
1372 dl 1.200 // Active counts
1373 dl 1.86 private static final int AC_SHIFT = 48;
1374 dl 1.200 private static final long AC_UNIT = 0x0001L << AC_SHIFT;
1375     private static final long AC_MASK = 0xffffL << AC_SHIFT;
1376    
1377     // Total counts
1378 dl 1.86 private static final int TC_SHIFT = 32;
1379 dl 1.200 private static final long TC_UNIT = 0x0001L << TC_SHIFT;
1380     private static final long TC_MASK = 0xffffL << TC_SHIFT;
1381     private static final long ADD_WORKER = 0x0001L << (TC_SHIFT + 15); // sign
1382    
1383 dl 1.205 // runState bits: SHUTDOWN must be negative, others arbitrary powers of two
1384 dl 1.200 private static final int RSLOCK = 1;
1385     private static final int RSIGNAL = 1 << 1;
1386     private static final int STARTED = 1 << 2;
1387 dl 1.205 private static final int STOP = 1 << 29;
1388     private static final int TERMINATED = 1 << 30;
1389     private static final int SHUTDOWN = 1 << 31;
1390 dl 1.86
1391     // Instance fields
1392 dl 1.200 volatile long ctl; // main pool control
1393     volatile int runState; // lockable status
1394     final int config; // parallelism, mode
1395     int indexSeed; // to generate worker index
1396     volatile WorkQueue[] workQueues; // main registry
1397 dl 1.112 final ForkJoinWorkerThreadFactory factory;
1398 dl 1.200 final UncaughtExceptionHandler ueh; // per-worker UEH
1399     final String workerNamePrefix; // to create worker name string
1400 dl 1.215 volatile AtomicLong stealCounter; // also used as sync monitor
1401 dl 1.101
1402 jsr166 1.145 /**
1403 jsr166 1.213 * Acquires the runState lock; returns current (locked) runState.
1404 dl 1.105 */
1405 dl 1.200 private int lockRunState() {
1406     int rs;
1407     return ((((rs = runState) & RSLOCK) != 0 ||
1408     !U.compareAndSwapInt(this, RUNSTATE, rs, rs |= RSLOCK)) ?
1409     awaitRunStateLock() : rs);
1410     }
1411    
1412     /**
1413 dl 1.215 * Spins and/or blocks until runstate lock is available. See
1414     * above for explanation.
1415 dl 1.200 */
1416     private int awaitRunStateLock() {
1417 dl 1.215 Object lock;
1418 dl 1.210 boolean wasInterrupted = false;
1419     for (int spins = SPINS, r = 0, rs, ns;;) {
1420 dl 1.200 if (((rs = runState) & RSLOCK) == 0) {
1421 dl 1.210 if (U.compareAndSwapInt(this, RUNSTATE, rs, ns = rs | RSLOCK)) {
1422     if (wasInterrupted) {
1423     try {
1424     Thread.currentThread().interrupt();
1425     } catch (SecurityException ignore) {
1426     }
1427     }
1428     return ns;
1429     }
1430 dl 1.200 }
1431     else if (r == 0)
1432     r = ThreadLocalRandom.nextSecondarySeed();
1433     else if (spins > 0) {
1434     r ^= r << 6; r ^= r >>> 21; r ^= r << 7; // xorshift
1435     if (r >= 0)
1436 dl 1.101 --spins;
1437     }
1438 dl 1.215 else if ((rs & STARTED) == 0 || (lock = stealCounter) == null)
1439     Thread.yield(); // initialization race
1440 dl 1.200 else if (U.compareAndSwapInt(this, RUNSTATE, rs, rs | RSIGNAL)) {
1441 dl 1.215 synchronized (lock) {
1442 dl 1.200 if ((runState & RSIGNAL) != 0) {
1443 dl 1.101 try {
1444 dl 1.215 lock.wait();
1445 dl 1.101 } catch (InterruptedException ie) {
1446 dl 1.210 if (!(Thread.currentThread() instanceof
1447     ForkJoinWorkerThread))
1448     wasInterrupted = true;
1449 dl 1.101 }
1450     }
1451     else
1452 dl 1.215 lock.notifyAll();
1453 dl 1.101 }
1454     }
1455     }
1456     }
1457 dl 1.78
1458 jsr166 1.1 /**
1459 dl 1.200 * Unlocks and sets runState to newRunState.
1460     *
1461     * @param oldRunState a value returned from lockRunState
1462     * @param newRunState the next value (must have lock bit clear).
1463 jsr166 1.1 */
1464 dl 1.200 private void unlockRunState(int oldRunState, int newRunState) {
1465     if (!U.compareAndSwapInt(this, RUNSTATE, oldRunState, newRunState)) {
1466 dl 1.215 Object lock = stealCounter;
1467 dl 1.200 runState = newRunState; // clears RSIGNAL bit
1468 dl 1.215 if (lock != null)
1469     synchronized (lock) { lock.notifyAll(); }
1470 dl 1.200 }
1471 dl 1.78 }
1472 jsr166 1.1
1473 dl 1.200 // Creating, registering and deregistering workers
1474    
1475 dl 1.112 /**
1476 dl 1.200 * Tries to construct and start one worker. Assumes that total
1477     * count has already been incremented as a reservation. Invokes
1478     * deregisterWorker on any failure.
1479     *
1480     * @return true if successful
1481 dl 1.115 */
1482 dl 1.200 private boolean createWorker() {
1483     ForkJoinWorkerThreadFactory fac = factory;
1484     Throwable ex = null;
1485     ForkJoinWorkerThread wt = null;
1486     try {
1487     if (fac != null && (wt = fac.newThread(this)) != null) {
1488     wt.start();
1489     return true;
1490 dl 1.115 }
1491 dl 1.200 } catch (Throwable rex) {
1492     ex = rex;
1493 dl 1.112 }
1494 dl 1.200 deregisterWorker(wt, ex);
1495     return false;
1496 dl 1.112 }
1497    
1498 dl 1.200 /**
1499     * Tries to add one worker, incrementing ctl counts before doing
1500     * so, relying on createWorker to back out on failure.
1501     *
1502     * @param c incoming ctl value, with total count negative and no
1503     * idle workers. On CAS failure, c is refreshed and retried if
1504 jsr166 1.202 * this holds (otherwise, a new worker is not needed).
1505 dl 1.200 */
1506     private void tryAddWorker(long c) {
1507     boolean add = false;
1508     do {
1509     long nc = ((AC_MASK & (c + AC_UNIT)) |
1510     (TC_MASK & (c + TC_UNIT)));
1511     if (ctl == c) {
1512     int rs, stop; // check if terminating
1513     if ((stop = (rs = lockRunState()) & STOP) == 0)
1514     add = U.compareAndSwapLong(this, CTL, c, nc);
1515     unlockRunState(rs, rs & ~RSLOCK);
1516     if (stop != 0)
1517     break;
1518     if (add) {
1519     createWorker();
1520     break;
1521     }
1522     }
1523     } while (((c = ctl) & ADD_WORKER) != 0L && (int)c == 0);
1524     }
1525 dl 1.112
1526     /**
1527 dl 1.200 * Callback from ForkJoinWorkerThread constructor to establish and
1528     * record its WorkQueue.
1529 dl 1.112 *
1530     * @param wt the worker thread
1531 dl 1.115 * @return the worker's queue
1532 dl 1.112 */
1533 dl 1.115 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1534 dl 1.200 UncaughtExceptionHandler handler;
1535     wt.setDaemon(true); // configure thread
1536 dl 1.115 if ((handler = ueh) != null)
1537     wt.setUncaughtExceptionHandler(handler);
1538 dl 1.200 WorkQueue w = new WorkQueue(this, wt);
1539     int i = 0; // assign a pool index
1540     int mode = config & MODE_MASK;
1541     int rs = lockRunState();
1542 dl 1.115 try {
1543 dl 1.200 WorkQueue[] ws; int n; // skip if no array
1544     if ((ws = workQueues) != null && (n = ws.length) > 0) {
1545     int s = indexSeed += SEED_INCREMENT; // unlikely to collide
1546     int m = n - 1;
1547     i = ((s << 1) | 1) & m; // odd-numbered indices
1548     if (ws[i] != null) { // collision
1549     int probes = 0; // step by approx half n
1550 dl 1.115 int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1551 dl 1.200 while (ws[i = (i + step) & m] != null) {
1552 dl 1.115 if (++probes >= n) {
1553     workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1554     m = n - 1;
1555     probes = 0;
1556 dl 1.94 }
1557     }
1558     }
1559 dl 1.200 w.hint = s; // use as random seed
1560     w.config = i | mode;
1561     w.scanState = i; // publication fence
1562     ws[i] = w;
1563 dl 1.78 }
1564 dl 1.115 } finally {
1565 dl 1.200 unlockRunState(rs, rs & ~RSLOCK);
1566 dl 1.78 }
1567 dl 1.200 wt.setName(workerNamePrefix.concat(Integer.toString(i >>> 1)));
1568 dl 1.115 return w;
1569 dl 1.78 }
1570 dl 1.19
1571 jsr166 1.1 /**
1572 dl 1.86 * Final callback from terminating worker, as well as upon failure
1573 dl 1.105 * to construct or start a worker. Removes record of worker from
1574     * array, and adjusts counts. If pool is shutting down, tries to
1575     * complete termination.
1576 dl 1.78 *
1577 jsr166 1.151 * @param wt the worker thread, or null if construction failed
1578 dl 1.78 * @param ex the exception causing failure, or null if none
1579 dl 1.45 */
1580 dl 1.78 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1581     WorkQueue w = null;
1582     if (wt != null && (w = wt.workQueue) != null) {
1583 dl 1.200 WorkQueue[] ws; // remove index from array
1584     int idx = w.config & SMASK;
1585     int rs = lockRunState();
1586     if ((ws = workQueues) != null && ws.length > idx && ws[idx] == w)
1587     ws[idx] = null;
1588     unlockRunState(rs, rs & ~RSLOCK);
1589     }
1590     long c; // decrement counts
1591     do {} while (!U.compareAndSwapLong
1592     (this, CTL, c = ctl, ((AC_MASK & (c - AC_UNIT)) |
1593     (TC_MASK & (c - TC_UNIT)) |
1594     (SP_MASK & c))));
1595     if (w != null) {
1596     w.qlock = -1; // ensure set
1597 dl 1.215 w.transferStealCount(this);
1598 dl 1.200 w.cancelAll(); // cancel remaining tasks
1599 dl 1.78 }
1600 dl 1.209 for (;;) { // possibly replace
1601 dl 1.205 WorkQueue[] ws; int m, sp;
1602 dl 1.209 if (tryTerminate(false, false) || w == null || w.array == null ||
1603     (runState & STOP) != 0 || (ws = workQueues) == null ||
1604     (m = ws.length - 1) < 0) // already terminating
1605     break;
1606     if ((sp = (int)(c = ctl)) != 0) { // wake up replacement
1607     if (tryRelease(c, ws[sp & m], AC_UNIT))
1608 dl 1.205 break;
1609 dl 1.120 }
1610 dl 1.209 else if (ex != null && (c & ADD_WORKER) != 0L) {
1611     tryAddWorker(c); // create replacement
1612     break;
1613     }
1614     else // don't need replacement
1615     break;
1616 dl 1.78 }
1617 dl 1.200 if (ex == null) // help clean on way out
1618 dl 1.120 ForkJoinTask.helpExpungeStaleExceptions();
1619 dl 1.200 else // rethrow
1620 dl 1.104 ForkJoinTask.rethrow(ex);
1621 dl 1.78 }
1622 dl 1.52
1623 dl 1.200 // Signalling
1624 dl 1.19
1625     /**
1626 dl 1.115 * Tries to create or activate a worker if too few are active.
1627     *
1628 dl 1.178 * @param ws the worker array to use to find signallees
1629 dl 1.200 * @param q a WorkQueue --if non-null, don't retry if now empty
1630 dl 1.105 */
1631 dl 1.178 final void signalWork(WorkQueue[] ws, WorkQueue q) {
1632 dl 1.200 long c; int sp, i; WorkQueue v; Thread p;
1633 dl 1.211 while ((c = ctl) < 0L) { // too few active
1634 dl 1.200 if ((sp = (int)c) == 0) { // no idle workers
1635     if ((c & ADD_WORKER) != 0L) // too few workers
1636     tryAddWorker(c);
1637     break;
1638     }
1639     if (ws == null) // unstarted/terminated
1640 dl 1.174 break;
1641 dl 1.200 if (ws.length <= (i = sp & SMASK)) // terminated
1642 dl 1.115 break;
1643 dl 1.200 if ((v = ws[i]) == null) // terminating
1644 dl 1.174 break;
1645 dl 1.200 int vs = (sp + SS_SEQ) & ~INACTIVE; // next scanState
1646     int d = sp - v.scanState; // screen CAS
1647     long nc = (UC_MASK & (c + AC_UNIT)) | (SP_MASK & v.stackPred);
1648     if (d == 0 && U.compareAndSwapLong(this, CTL, c, nc)) {
1649     v.scanState = vs; // activate v
1650     if ((p = v.parker) != null)
1651 dl 1.174 U.unpark(p);
1652     break;
1653     }
1654 dl 1.205 if (q != null && q.base == q.top) // no more work
1655 dl 1.174 break;
1656 dl 1.52 }
1657 dl 1.14 }
1658    
1659 dl 1.200 /**
1660     * Signals and releases worker v if it is top of idle worker
1661     * stack. This performs a one-shot version of signalWork only if
1662     * there is (apparently) at least one idle worker.
1663     *
1664     * @param c incoming ctl value
1665     * @param v if non-null, a worker
1666     * @param inc the increment to active count (zero when compensating)
1667     * @return true if successful
1668     */
1669     private boolean tryRelease(long c, WorkQueue v, long inc) {
1670     int sp = (int)c, vs = (sp + SS_SEQ) & ~INACTIVE; Thread p;
1671 dl 1.211 if (v != null && v.scanState == sp) { // v is at top of stack
1672 dl 1.200 long nc = (UC_MASK & (c + inc)) | (SP_MASK & v.stackPred);
1673     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1674     v.scanState = vs;
1675     if ((p = v.parker) != null)
1676     U.unpark(p);
1677     return true;
1678     }
1679     }
1680     return false;
1681     }
1682    
1683 dl 1.90 // Scanning for tasks
1684    
1685 dl 1.14 /**
1686 dl 1.90 * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1687 dl 1.14 */
1688 dl 1.90 final void runWorker(WorkQueue w) {
1689 dl 1.200 w.growArray(); // allocate queue
1690     int seed = w.hint; // initially holds randomization hint
1691     int r = (seed == 0) ? 1 : seed; // avoid 0 for xorShift
1692     for (ForkJoinTask<?> t;;) {
1693     if ((t = scan(w, r)) != null)
1694     w.runTask(t);
1695     else if (!awaitWork(w, r))
1696     break;
1697 dl 1.178 r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
1698     }
1699 dl 1.14 }
1700    
1701     /**
1702 dl 1.200 * Scans for and tries to steal a top-level task. Scans start at a
1703 jsr166 1.202 * random location, randomly moving on apparent contention,
1704 dl 1.200 * otherwise continuing linearly until reaching two consecutive
1705     * empty passes over all queues with the same checksum (summing
1706     * each base index of each queue, that moves on each steal), at
1707     * which point the worker tries to inactivate and then re-scans,
1708     * attempting to re-activate (itself or some other worker) if
1709     * finding a task; otherwise returning null to await work. Scans
1710     * otherwise touch as little memory as possible, to reduce
1711     * disruption on other scanning threads.
1712 dl 1.78 *
1713     * @param w the worker (via its WorkQueue)
1714 dl 1.178 * @param r a random seed
1715 dl 1.200 * @return a task, or null if none found
1716 dl 1.78 */
1717 dl 1.200 private ForkJoinTask<?> scan(WorkQueue w, int r) {
1718 dl 1.115 WorkQueue[] ws; int m;
1719 dl 1.200 if ((ws = workQueues) != null && (m = ws.length - 1) > 0 && w != null) {
1720     int ss = w.scanState; // initially non-negative
1721     for (int origin = r & m, k = origin, oldSum = 0, checkSum = 0;;) {
1722 dl 1.225 WorkQueue q; ForkJoinTask<?> t; int al, i, n; long c;
1723 dl 1.200 if ((q = ws[k]) != null) {
1724 dl 1.225 int b = q.base; ForkJoinTask<?>[] a = q.array;
1725     if ((n = b - q.top) < 0 && a != null &&
1726     (al = a.length) > 0) { // non-empty
1727     if ((t = getAt(a, i = (al - 1) & b)) != null &&
1728 dl 1.200 q.base == b) {
1729     if (ss >= 0) {
1730 dl 1.225 if (casAt(a, i, t, null)) {
1731 dl 1.200 q.base = b + 1;
1732     if (n < -1) // signal others
1733     signalWork(ws, q);
1734     return t;
1735     }
1736     }
1737     else if (oldSum == 0 && // try to activate
1738     w.scanState < 0)
1739     tryRelease(c = ctl, ws[m & (int)c], AC_UNIT);
1740 dl 1.178 }
1741 dl 1.200 if (ss < 0) // refresh
1742     ss = w.scanState;
1743     r ^= r << 1; r ^= r >>> 3; r ^= r << 10;
1744     origin = k = r & m; // move and rescan
1745     oldSum = checkSum = 0;
1746     continue;
1747     }
1748     checkSum += b;
1749     }
1750     if ((k = (k + 1) & m) == origin) { // continue until stable
1751     if ((ss >= 0 || (ss == (ss = w.scanState))) &&
1752     oldSum == (oldSum = checkSum)) {
1753 dl 1.210 if (ss < 0 || w.qlock < 0) // already inactive
1754 dl 1.200 break;
1755     int ns = ss | INACTIVE; // try to inactivate
1756     long nc = ((SP_MASK & ns) |
1757     (UC_MASK & ((c = ctl) - AC_UNIT)));
1758     w.stackPred = (int)c; // hold prev stack top
1759     U.putInt(w, QSCANSTATE, ns);
1760     if (U.compareAndSwapLong(this, CTL, c, nc))
1761     ss = ns;
1762     else
1763     w.scanState = ss; // back out
1764 dl 1.174 }
1765 dl 1.200 checkSum = 0;
1766 dl 1.115 }
1767     }
1768 dl 1.52 }
1769 dl 1.200 return null;
1770 dl 1.14 }
1771    
1772     /**
1773 dl 1.200 * Possibly blocks worker w waiting for a task to steal, or
1774     * returns false if the worker should terminate. If inactivating
1775     * w has caused the pool to become quiescent, checks for pool
1776 dl 1.178 * termination, and, so long as this is not the only worker, waits
1777 dl 1.200 * for up to a given duration. On timeout, if ctl has not
1778     * changed, terminates the worker, which will in turn wake up
1779 dl 1.178 * another worker to possibly repeat this process.
1780 dl 1.52 *
1781 dl 1.78 * @param w the calling worker
1782 jsr166 1.221 * @param r a random seed (for spins)
1783 dl 1.200 * @return false if the worker should terminate
1784 dl 1.14 */
1785 dl 1.200 private boolean awaitWork(WorkQueue w, int r) {
1786     if (w == null || w.qlock < 0) // w is terminating
1787     return false;
1788     for (int pred = w.stackPred, spins = SPINS, ss;;) {
1789     if ((ss = w.scanState) >= 0)
1790     break;
1791     else if (spins > 0) {
1792     r ^= r << 6; r ^= r >>> 21; r ^= r << 7;
1793     if (r >= 0 && --spins == 0) { // randomize spins
1794 dl 1.215 WorkQueue v; WorkQueue[] ws; int s, j; AtomicLong sc;
1795 dl 1.200 if (pred != 0 && (ws = workQueues) != null &&
1796     (j = pred & SMASK) < ws.length &&
1797     (v = ws[j]) != null && // see if pred parking
1798     (v.parker == null || v.scanState >= 0))
1799 jsr166 1.202 spins = SPINS; // continue spinning
1800 dl 1.200 }
1801 dl 1.177 }
1802 dl 1.200 else if (w.qlock < 0) // recheck after spins
1803     return false;
1804     else if (!Thread.interrupted()) {
1805     long c, prevctl, parkTime, deadline;
1806     int ac = (int)((c = ctl) >> AC_SHIFT) + (config & SMASK);
1807 dl 1.210 if ((ac <= 0 && tryTerminate(false, false)) ||
1808     (runState & STOP) != 0) // pool terminating
1809 dl 1.200 return false;
1810     if (ac <= 0 && ss == (int)c) { // is last waiter
1811     prevctl = (UC_MASK & (c + AC_UNIT)) | (SP_MASK & pred);
1812 dl 1.205 int t = (short)(c >>> TC_SHIFT); // shrink excess spares
1813     if (t > 2 && U.compareAndSwapLong(this, CTL, c, prevctl))
1814 dl 1.208 return false; // else use timed wait
1815 dl 1.205 parkTime = IDLE_TIMEOUT * ((t >= 0) ? 1 : 1 - t);
1816 dl 1.178 deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
1817     }
1818     else
1819 dl 1.200 prevctl = parkTime = deadline = 0L;
1820     Thread wt = Thread.currentThread();
1821     U.putObject(wt, PARKBLOCKER, this); // emulate LockSupport
1822     w.parker = wt;
1823     if (w.scanState < 0 && ctl == c) // recheck before park
1824     U.park(false, parkTime);
1825     U.putOrderedObject(w, QPARKER, null);
1826     U.putObject(wt, PARKBLOCKER, null);
1827     if (w.scanState >= 0)
1828     break;
1829     if (parkTime != 0L && ctl == c &&
1830     deadline - System.nanoTime() <= 0L &&
1831     U.compareAndSwapLong(this, CTL, c, prevctl))
1832     return false; // shrink pool
1833 dl 1.120 }
1834     }
1835 dl 1.200 return true;
1836 dl 1.178 }
1837    
1838 dl 1.200 // Joining tasks
1839    
1840 dl 1.178 /**
1841 dl 1.200 * Tries to steal and run tasks within the target's computation.
1842     * Uses a variant of the top-level algorithm, restricted to tasks
1843     * with the given task as ancestor: It prefers taking and running
1844     * eligible tasks popped from the worker's own queue (via
1845     * popCC). Otherwise it scans others, randomly moving on
1846     * contention or execution, deciding to give up based on a
1847     * checksum (via return codes frob pollAndExecCC). The maxTasks
1848     * argument supports external usages; internal calls use zero,
1849     * allowing unbounded steps (external calls trap non-positive
1850     * values).
1851     *
1852     * @param w caller
1853 jsr166 1.202 * @param maxTasks if non-zero, the maximum number of other tasks to run
1854 dl 1.200 * @return task status on exit
1855     */
1856     final int helpComplete(WorkQueue w, CountedCompleter<?> task,
1857     int maxTasks) {
1858     WorkQueue[] ws; int s = 0, m;
1859 dl 1.225 if ((ws = workQueues) != null && (m = ws.length - 1) > 0 &&
1860 dl 1.200 task != null && w != null) {
1861     int mode = w.config; // for popCC
1862     int r = w.hint ^ w.top; // arbitrary seed for origin
1863     int origin = r & m; // first queue to scan
1864     int h = 1; // 1:ran, >1:contended, <0:hash
1865     for (int k = origin, oldSum = 0, checkSum = 0;;) {
1866     CountedCompleter<?> p; WorkQueue q;
1867     if ((s = task.status) < 0)
1868     break;
1869     if (h == 1 && (p = w.popCC(task, mode)) != null) {
1870     p.doExec(); // run local task
1871     if (maxTasks != 0 && --maxTasks == 0)
1872     break;
1873     origin = k; // reset
1874     oldSum = checkSum = 0;
1875     }
1876     else { // poll other queues
1877     if ((q = ws[k]) == null)
1878     h = 0;
1879     else if ((h = q.pollAndExecCC(task)) < 0)
1880     checkSum += h;
1881     if (h > 0) {
1882     if (h == 1 && maxTasks != 0 && --maxTasks == 0)
1883     break;
1884     r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
1885     origin = k = r & m; // move and restart
1886     oldSum = checkSum = 0;
1887     }
1888     else if ((k = (k + 1) & m) == origin) {
1889     if (oldSum == (oldSum = checkSum))
1890     break;
1891     checkSum = 0;
1892     }
1893     }
1894 dl 1.178 }
1895     }
1896 dl 1.200 return s;
1897 dl 1.120 }
1898    
1899     /**
1900 dl 1.78 * Tries to locate and execute tasks for a stealer of the given
1901     * task, or in turn one of its stealers, Traces currentSteal ->
1902     * currentJoin links looking for a thread working on a descendant
1903     * of the given task and with a non-empty queue to steal back and
1904     * execute tasks from. The first call to this method upon a
1905     * waiting join will often entail scanning/search, (which is OK
1906     * because the joiner has nothing better to do), but this method
1907 dl 1.200 * leaves hints in workers to speed up subsequent calls.
1908 dl 1.78 *
1909 dl 1.200 * @param w caller
1910 dl 1.78 * @param task the task to join
1911     */
1912 dl 1.200 private void helpStealer(WorkQueue w, ForkJoinTask<?> task) {
1913     WorkQueue[] ws = workQueues;
1914     int oldSum = 0, checkSum, m;
1915 dl 1.225 if (ws != null && (m = ws.length - 1) > 0 && w != null &&
1916 dl 1.200 task != null) {
1917     do { // restart point
1918     checkSum = 0; // for stability check
1919     ForkJoinTask<?> subtask;
1920     WorkQueue j = w, v; // v is subtask stealer
1921     descent: for (subtask = task; subtask.status >= 0; ) {
1922     for (int h = j.hint | 1, k = 0, i; ; k += 2) {
1923     if (k > m) // can't find stealer
1924     break descent;
1925     if ((v = ws[i = (h + k) & m]) != null) {
1926     if (v.currentSteal == subtask) {
1927     j.hint = i;
1928 dl 1.95 break;
1929     }
1930 dl 1.200 checkSum += v.base;
1931 dl 1.78 }
1932     }
1933 dl 1.200 for (;;) { // help v or descend
1934 dl 1.225 ForkJoinTask<?>[] a; int b, al, i;
1935 dl 1.200 checkSum += (b = v.base);
1936     ForkJoinTask<?> next = v.currentJoin;
1937     if (subtask.status < 0 || j.currentJoin != subtask ||
1938     v.currentSteal != subtask) // stale
1939     break descent;
1940 dl 1.224 if (b - v.top >= 0 || (a = v.array) == null ||
1941 dl 1.225 (al = a.length) <= 0) {
1942 dl 1.200 if ((subtask = next) == null)
1943     break descent;
1944     j = v;
1945     break;
1946 dl 1.95 }
1947 dl 1.225 ForkJoinTask<?> t = getAt(a, i = (al - 1) & b);
1948 dl 1.200 if (v.base == b) {
1949     if (t == null) // stale
1950     break descent;
1951 dl 1.225 if (casAt(a, i, t, null)) {
1952 dl 1.200 v.base = b + 1;
1953     ForkJoinTask<?> ps = w.currentSteal;
1954 dl 1.205 int top = w.top;
1955     do {
1956     U.putOrderedObject(w, QCURRENTSTEAL, t);
1957     t.doExec(); // clear local tasks too
1958     } while (task.status >= 0 &&
1959     w.top != top &&
1960     (t = w.pop()) != null);
1961 dl 1.200 U.putOrderedObject(w, QCURRENTSTEAL, ps);
1962 dl 1.205 if (w.base != w.top)
1963 dl 1.200 return; // can't further help
1964 dl 1.95 }
1965 dl 1.78 }
1966 dl 1.52 }
1967 dl 1.19 }
1968 dl 1.200 } while (task.status >= 0 && oldSum != (oldSum = checkSum));
1969 dl 1.14 }
1970 dl 1.22 }
1971    
1972 dl 1.52 /**
1973 dl 1.200 * Tries to decrement active count (sometimes implicitly) and
1974     * possibly release or create a compensating worker in preparation
1975     * for blocking. Returns false (retryable by caller), on
1976 dl 1.208 * contention, detected staleness, instability, or termination.
1977 dl 1.105 *
1978 dl 1.200 * @param w caller
1979 dl 1.19 */
1980 dl 1.200 private boolean tryCompensate(WorkQueue w) {
1981     boolean canBlock;
1982     WorkQueue[] ws; long c; int m, pc, sp;
1983     if (w == null || w.qlock < 0 || // caller terminating
1984     (ws = workQueues) == null || (m = ws.length - 1) <= 0 ||
1985     (pc = config & SMASK) == 0) // parallelism disabled
1986     canBlock = false;
1987     else if ((sp = (int)(c = ctl)) != 0) // release idle worker
1988     canBlock = tryRelease(c, ws[sp & m], 0L);
1989     else {
1990     int ac = (int)(c >> AC_SHIFT) + pc;
1991     int tc = (short)(c >> TC_SHIFT) + pc;
1992     int nbusy = 0; // validate saturation
1993     for (int i = 0; i <= m; ++i) { // two passes of odd indices
1994     WorkQueue v;
1995     if ((v = ws[((i << 1) | 1) & m]) != null) {
1996     if ((v.scanState & SCANNING) != 0)
1997 dl 1.190 break;
1998 dl 1.200 ++nbusy;
1999 dl 1.178 }
2000 dl 1.52 }
2001 dl 1.200 if (nbusy != (tc << 1) || ctl != c)
2002     canBlock = false; // unstable or stale
2003     else if (tc >= pc && ac > 1 && w.isEmpty()) {
2004     long nc = ((AC_MASK & (c - AC_UNIT)) |
2005     (~AC_MASK & c)); // uncompensated
2006     canBlock = U.compareAndSwapLong(this, CTL, c, nc);
2007 dl 1.105 }
2008 dl 1.208 else if (tc >= MAX_CAP ||
2009     (this == common && tc >= pc + commonMaxSpares))
2010 dl 1.200 throw new RejectedExecutionException(
2011     "Thread limit exceeded replacing blocked worker");
2012     else { // similar to tryAddWorker
2013     boolean add = false; int rs; // CAS within lock
2014     long nc = ((AC_MASK & c) |
2015     (TC_MASK & (c + TC_UNIT)));
2016     if (((rs = lockRunState()) & STOP) == 0)
2017     add = U.compareAndSwapLong(this, CTL, c, nc);
2018     unlockRunState(rs, rs & ~RSLOCK);
2019     canBlock = add && createWorker(); // throws on exception
2020 dl 1.90 }
2021     }
2022 dl 1.200 return canBlock;
2023 dl 1.90 }
2024    
2025     /**
2026 dl 1.200 * Helps and/or blocks until the given task is done or timeout.
2027 dl 1.90 *
2028 dl 1.200 * @param w caller
2029 dl 1.90 * @param task the task
2030 dl 1.219 * @param deadline for timed waits, if nonzero
2031 dl 1.90 * @return task status on exit
2032     */
2033 dl 1.200 final int awaitJoin(WorkQueue w, ForkJoinTask<?> task, long deadline) {
2034 dl 1.105 int s = 0;
2035 dl 1.200 if (task != null && w != null) {
2036     ForkJoinTask<?> prevJoin = w.currentJoin;
2037     U.putOrderedObject(w, QCURRENTJOIN, task);
2038     CountedCompleter<?> cc = (task instanceof CountedCompleter) ?
2039     (CountedCompleter<?>)task : null;
2040     for (;;) {
2041     if ((s = task.status) < 0)
2042     break;
2043     if (cc != null)
2044     helpComplete(w, cc, 0);
2045     else if (w.base == w.top || w.tryRemoveAndExec(task))
2046     helpStealer(w, task);
2047     if ((s = task.status) < 0)
2048     break;
2049     long ms, ns;
2050     if (deadline == 0L)
2051     ms = 0L;
2052     else if ((ns = deadline - System.nanoTime()) <= 0L)
2053     break;
2054     else if ((ms = TimeUnit.NANOSECONDS.toMillis(ns)) <= 0L)
2055     ms = 1L;
2056     if (tryCompensate(w)) {
2057     task.internalWait(ms);
2058     U.getAndAddLong(this, CTL, AC_UNIT);
2059 dl 1.90 }
2060     }
2061 dl 1.200 U.putOrderedObject(w, QCURRENTJOIN, prevJoin);
2062 dl 1.90 }
2063 dl 1.94 return s;
2064 dl 1.90 }
2065    
2066 dl 1.200 // Specialized scanning
2067 dl 1.90
2068     /**
2069     * Returns a (probably) non-empty steal queue, if one is found
2070 dl 1.131 * during a scan, else null. This method must be retried by
2071     * caller if, by the time it tries to use the queue, it is empty.
2072 dl 1.78 */
2073 dl 1.178 private WorkQueue findNonEmptyStealQueue() {
2074 dl 1.211 WorkQueue[] ws; int m; // one-shot version of scan loop
2075     int r = ThreadLocalRandom.nextSecondarySeed();
2076 dl 1.225 if ((ws = workQueues) != null && (m = ws.length - 1) > 0) {
2077 dl 1.211 for (int origin = r & m, k = origin, oldSum = 0, checkSum = 0;;) {
2078     WorkQueue q; int b;
2079     if ((q = ws[k]) != null) {
2080     if ((b = q.base) - q.top < 0)
2081     return q;
2082     checkSum += b;
2083     }
2084     if ((k = (k + 1) & m) == origin) {
2085     if (oldSum == (oldSum = checkSum))
2086     break;
2087     checkSum = 0;
2088 dl 1.52 }
2089     }
2090 dl 1.211 }
2091 dl 1.200 return null;
2092 dl 1.22 }
2093    
2094     /**
2095 dl 1.78 * Runs tasks until {@code isQuiescent()}. We piggyback on
2096     * active count ctl maintenance, but rather than blocking
2097     * when tasks cannot be found, we rescan until all others cannot
2098     * find tasks either.
2099     */
2100     final void helpQuiescePool(WorkQueue w) {
2101 dl 1.211 ForkJoinTask<?> ps = w.currentSteal; // save context
2102 dl 1.78 for (boolean active = true;;) {
2103 dl 1.131 long c; WorkQueue q; ForkJoinTask<?> t; int b;
2104 dl 1.225 if ((w.config & FIFO_QUEUE) != 0)
2105     w.pollAndExecAll(); // run locals before each scan
2106     else
2107     w.popAndExecAll();
2108 dl 1.178 if ((q = findNonEmptyStealQueue()) != null) {
2109 dl 1.78 if (!active) { // re-establish active count
2110     active = true;
2111 dl 1.200 U.getAndAddLong(this, CTL, AC_UNIT);
2112     }
2113     if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2114     U.putOrderedObject(w, QCURRENTSTEAL, t);
2115     t.doExec();
2116 dl 1.215 if (++w.nsteals < 0)
2117     w.transferStealCount(this);
2118 dl 1.178 }
2119 dl 1.78 }
2120 jsr166 1.194 else if (active) { // decrement active count without queuing
2121 dl 1.200 long nc = (AC_MASK & ((c = ctl) - AC_UNIT)) | (~AC_MASK & c);
2122     if ((int)(nc >> AC_SHIFT) + (config & SMASK) <= 0)
2123 dl 1.185 break; // bypass decrement-then-increment
2124 dl 1.131 if (U.compareAndSwapLong(this, CTL, c, nc))
2125 dl 1.78 active = false;
2126 dl 1.22 }
2127 dl 1.200 else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) <= 0 &&
2128     U.compareAndSwapLong(this, CTL, c, c + AC_UNIT))
2129 dl 1.185 break;
2130 dl 1.22 }
2131 dl 1.211 U.putOrderedObject(w, QCURRENTSTEAL, ps);
2132 dl 1.22 }
2133    
2134     /**
2135 jsr166 1.84 * Gets and removes a local or stolen task for the given worker.
2136 dl 1.78 *
2137     * @return a task, if available
2138 dl 1.22 */
2139 dl 1.78 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2140     for (ForkJoinTask<?> t;;) {
2141 dl 1.90 WorkQueue q; int b;
2142 dl 1.78 if ((t = w.nextLocalTask()) != null)
2143     return t;
2144 dl 1.178 if ((q = findNonEmptyStealQueue()) == null)
2145 dl 1.78 return null;
2146 dl 1.172 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2147 dl 1.78 return t;
2148 dl 1.52 }
2149 dl 1.14 }
2150    
2151     /**
2152 dl 1.105 * Returns a cheap heuristic guide for task partitioning when
2153     * programmers, frameworks, tools, or languages have little or no
2154 jsr166 1.222 * idea about task granularity. In essence, by offering this
2155 dl 1.105 * method, we ask users only about tradeoffs in overhead vs
2156     * expected throughput and its variance, rather than how finely to
2157     * partition tasks.
2158     *
2159     * In a steady state strict (tree-structured) computation, each
2160     * thread makes available for stealing enough tasks for other
2161     * threads to remain active. Inductively, if all threads play by
2162     * the same rules, each thread should make available only a
2163     * constant number of tasks.
2164     *
2165     * The minimum useful constant is just 1. But using a value of 1
2166     * would require immediate replenishment upon each steal to
2167     * maintain enough tasks, which is infeasible. Further,
2168     * partitionings/granularities of offered tasks should minimize
2169     * steal rates, which in general means that threads nearer the top
2170     * of computation tree should generate more than those nearer the
2171     * bottom. In perfect steady state, each thread is at
2172     * approximately the same level of computation tree. However,
2173     * producing extra tasks amortizes the uncertainty of progress and
2174     * diffusion assumptions.
2175     *
2176 jsr166 1.161 * So, users will want to use values larger (but not much larger)
2177 dl 1.105 * than 1 to both smooth over transient shortages and hedge
2178     * against uneven progress; as traded off against the cost of
2179     * extra task overhead. We leave the user to pick a threshold
2180     * value to compare with the results of this call to guide
2181     * decisions, but recommend values such as 3.
2182     *
2183     * When all threads are active, it is on average OK to estimate
2184     * surplus strictly locally. In steady-state, if one thread is
2185     * maintaining say 2 surplus tasks, then so are others. So we can
2186     * just use estimated queue length. However, this strategy alone
2187     * leads to serious mis-estimates in some non-steady-state
2188     * conditions (ramp-up, ramp-down, other stalls). We can detect
2189     * many of these by further considering the number of "idle"
2190     * threads, that are known to have zero queued tasks, so
2191     * compensate by a factor of (#idle/#active) threads.
2192     */
2193     static int getSurplusQueuedTaskCount() {
2194     Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2195 jsr166 1.229 if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) {
2196 dl 1.200 int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).
2197     config & SMASK;
2198 dl 1.112 int n = (q = wt.workQueue).top - q.base;
2199 dl 1.105 int a = (int)(pool.ctl >> AC_SHIFT) + p;
2200 dl 1.112 return n - (a > (p >>>= 1) ? 0 :
2201     a > (p >>>= 1) ? 1 :
2202     a > (p >>>= 1) ? 2 :
2203     a > (p >>>= 1) ? 4 :
2204     8);
2205 dl 1.105 }
2206     return 0;
2207 dl 1.100 }
2208    
2209 dl 1.86 // Termination
2210 dl 1.14
2211     /**
2212 dl 1.210 * Possibly initiates and/or completes termination.
2213 dl 1.14 *
2214     * @param now if true, unconditionally terminate, else only
2215 dl 1.78 * if no work and no active workers
2216 jsr166 1.87 * @param enable if true, enable shutdown when next possible
2217 dl 1.14 * @return true if now terminating or terminated
2218 jsr166 1.1 */
2219 dl 1.86 private boolean tryTerminate(boolean now, boolean enable) {
2220 dl 1.200 int rs;
2221     if (this == common) // cannot shut down
2222 dl 1.105 return false;
2223 dl 1.210 if ((rs = runState) >= 0) {
2224 dl 1.131 if (!enable)
2225     return false;
2226 dl 1.210 rs = lockRunState(); // enter SHUTDOWN phase
2227 dl 1.200 unlockRunState(rs, (rs & ~RSLOCK) | SHUTDOWN);
2228     }
2229 dl 1.210
2230 jsr166 1.204 if ((rs & STOP) == 0) {
2231 dl 1.210 if (!now) { // check quiescence
2232 dl 1.211 for (long oldSum = 0L;;) { // repeat until stable
2233 dl 1.210 WorkQueue[] ws; WorkQueue w; int m, b; long c;
2234     long checkSum = ctl;
2235     if ((int)(checkSum >> AC_SHIFT) + (config & SMASK) > 0)
2236     return false; // still active workers
2237 dl 1.209 if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
2238 dl 1.210 break; // check queues
2239 dl 1.209 for (int i = 0; i <= m; ++i) {
2240     if ((w = ws[i]) != null) {
2241 dl 1.210 if ((b = w.base) != w.top || w.scanState >= 0 ||
2242     w.currentSteal != null) {
2243     tryRelease(c = ctl, ws[m & (int)c], AC_UNIT);
2244 dl 1.211 return false; // arrange for recheck
2245 dl 1.210 }
2246     checkSum += b;
2247 dl 1.209 if ((i & 1) == 0)
2248 dl 1.210 w.qlock = -1; // try to disable external
2249 dl 1.206 }
2250 dl 1.203 }
2251 dl 1.209 if (oldSum == (oldSum = checkSum))
2252 dl 1.210 break;
2253 dl 1.203 }
2254     }
2255 dl 1.210 if ((runState & STOP) == 0) {
2256     rs = lockRunState(); // enter STOP phase
2257     unlockRunState(rs, (rs & ~RSLOCK) | STOP);
2258     }
2259 dl 1.200 }
2260 dl 1.210
2261     int pass = 0; // 3 passes to help terminate
2262     for (long oldSum = 0L;;) { // or until done or stable
2263     WorkQueue[] ws; WorkQueue w; ForkJoinWorkerThread wt; int m;
2264     long checkSum = ctl;
2265     if ((short)(checkSum >>> TC_SHIFT) + (config & SMASK) <= 0 ||
2266     (ws = workQueues) == null || (m = ws.length - 1) <= 0) {
2267     if ((runState & TERMINATED) == 0) {
2268     rs = lockRunState(); // done
2269     unlockRunState(rs, (rs & ~RSLOCK) | TERMINATED);
2270     synchronized (this) { notifyAll(); } // for awaitTermination
2271     }
2272     break;
2273     }
2274     for (int i = 0; i <= m; ++i) {
2275     if ((w = ws[i]) != null) {
2276     checkSum += w.base;
2277     w.qlock = -1; // try to disable
2278     if (pass > 0) {
2279     w.cancelAll(); // clear queue
2280     if (pass > 1 && (wt = w.owner) != null) {
2281     if (!wt.isInterrupted()) {
2282     try { // unblock join
2283     wt.interrupt();
2284     } catch (Throwable ignore) {
2285 dl 1.200 }
2286     }
2287 dl 1.210 if (w.scanState < 0)
2288     U.unpark(wt); // wake up
2289 dl 1.200 }
2290 dl 1.101 }
2291 dl 1.78 }
2292     }
2293 dl 1.210 if (checkSum != oldSum) { // unstable
2294     oldSum = checkSum;
2295     pass = 0;
2296     }
2297     else if (pass > 3 && pass > m) // can't further help
2298     break;
2299     else if (++pass > 1) { // try to dequeue
2300     long c; int j = 0, sp; // bound attempts
2301     while (j++ <= m && (sp = (int)(c = ctl)) != 0)
2302     tryRelease(c, ws[sp & m], AC_UNIT);
2303 dl 1.200 }
2304     }
2305     return true;
2306     }
2307    
2308     // External operations
2309    
2310     /**
2311     * Full version of externalPush, handling uncommon cases, as well
2312     * as performing secondary initialization upon the first
2313     * submission of the first task to the pool. It also detects
2314     * first submission by an external thread and creates a new shared
2315     * queue if the one at index if empty or contended.
2316     *
2317     * @param task the task. Caller must ensure non-null.
2318     */
2319     private void externalSubmit(ForkJoinTask<?> task) {
2320     int r; // initialize caller's probe
2321     if ((r = ThreadLocalRandom.getProbe()) == 0) {
2322     ThreadLocalRandom.localInit();
2323     r = ThreadLocalRandom.getProbe();
2324     }
2325     for (;;) {
2326     WorkQueue[] ws; WorkQueue q; int rs, m, k;
2327     boolean move = false;
2328 dl 1.210 if ((rs = runState) < 0) {
2329     tryTerminate(false, false); // help terminate
2330 dl 1.200 throw new RejectedExecutionException();
2331 dl 1.210 }
2332 dl 1.215 else if ((rs & STARTED) == 0 || // initialize
2333 dl 1.225 ((ws = workQueues) == null || (m = ws.length - 1) <= 0)) {
2334 dl 1.200 int ns = 0;
2335     rs = lockRunState();
2336     try {
2337 dl 1.215 if ((rs & STARTED) == 0) {
2338     U.compareAndSwapObject(this, STEALCOUNTER, null,
2339     new AtomicLong());
2340     // create workQueues array with size a power of two
2341 dl 1.200 int p = config & SMASK; // ensure at least 2 slots
2342     int n = (p > 1) ? p - 1 : 1;
2343     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4;
2344     n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1;
2345     workQueues = new WorkQueue[n];
2346     ns = STARTED;
2347 dl 1.78 }
2348 dl 1.200 } finally {
2349     unlockRunState(rs, (rs & ~RSLOCK) | ns);
2350 dl 1.52 }
2351     }
2352 dl 1.200 else if ((q = ws[k = r & m & SQMASK]) != null) {
2353     if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2354     ForkJoinTask<?>[] a = q.array;
2355 dl 1.225 int s = q.top;
2356 dl 1.200 boolean submitted = false; // initial submission or resizing
2357     try { // locked version of push
2358 dl 1.225 if ((a != null && a.length > s + 1 - q.base) ||
2359     (a = q.growArray()) != null) {
2360     int al = a.length, j = (al - 1) & s;
2361     if (al > 0) {
2362     setAt(a, j, task);
2363     U.putOrderedInt(q, QTOP, s + 1);
2364     submitted = true;
2365     }
2366 dl 1.86 }
2367 dl 1.200 } finally {
2368 dl 1.209 U.compareAndSwapInt(q, QLOCK, 1, 0);
2369 dl 1.200 }
2370     if (submitted) {
2371     signalWork(ws, q);
2372     return;
2373 dl 1.78 }
2374 dl 1.52 }
2375 dl 1.200 move = true; // move on failure
2376 dl 1.52 }
2377 dl 1.200 else if (((rs = runState) & RSLOCK) == 0) { // create new queue
2378     q = new WorkQueue(this, null);
2379     q.hint = r;
2380     q.config = k | SHARED_QUEUE;
2381 dl 1.210 q.scanState = INACTIVE;
2382 dl 1.200 rs = lockRunState(); // publish index
2383 dl 1.209 if (rs > 0 && (ws = workQueues) != null &&
2384     k < ws.length && ws[k] == null)
2385 dl 1.200 ws[k] = q; // else terminated
2386     unlockRunState(rs, rs & ~RSLOCK);
2387     }
2388     else
2389     move = true; // move if busy
2390     if (move)
2391     r = ThreadLocalRandom.advanceProbe(r);
2392 dl 1.52 }
2393     }
2394    
2395 dl 1.200 /**
2396     * Tries to add the given task to a submission queue at
2397     * submitter's current queue. Only the (vastly) most common path
2398     * is directly handled in this method, while screening for need
2399     * for externalSubmit.
2400     *
2401     * @param task the task. Caller must ensure non-null.
2402     */
2403     final void externalPush(ForkJoinTask<?> task) {
2404     WorkQueue[] ws; WorkQueue q; int m;
2405     int r = ThreadLocalRandom.getProbe();
2406 dl 1.205 int rs = runState;
2407 dl 1.225 if ((ws = workQueues) != null && (m = (ws.length - 1)) > 0 &&
2408 dl 1.205 (q = ws[m & r & SQMASK]) != null && r != 0 && rs > 0 &&
2409 dl 1.200 U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2410 dl 1.224 ForkJoinTask<?>[] a;
2411     if ((a = q.array) != null) {
2412 dl 1.225 int b = q.base, al = a.length, s = q.top;
2413     if (al > 0) {
2414     int am = al - 1, j = am & s, n;
2415     if ((n = s - b) < am) {
2416     setAt(a, j, task);
2417     U.putOrderedInt(q, QTOP, s + 1);
2418     U.putOrderedInt(q, QLOCK, 0);
2419     if (n <= 1)
2420     signalWork(ws, q);
2421     return;
2422     }
2423 dl 1.224 }
2424 dl 1.200 }
2425 dl 1.209 U.compareAndSwapInt(q, QLOCK, 1, 0);
2426 dl 1.200 }
2427     externalSubmit(task);
2428     }
2429 dl 1.105
2430     /**
2431 jsr166 1.213 * Returns common pool queue for an external thread.
2432 dl 1.105 */
2433     static WorkQueue commonSubmitterQueue() {
2434 dl 1.200 ForkJoinPool p = common;
2435     int r = ThreadLocalRandom.getProbe();
2436     WorkQueue[] ws; int m;
2437     return (p != null && (ws = p.workQueues) != null &&
2438 dl 1.225 (m = ws.length - 1) > 0) ?
2439 dl 1.200 ws[m & r & SQMASK] : null;
2440 dl 1.105 }
2441    
2442     /**
2443 dl 1.200 * Performs tryUnpush for an external submitter: Finds queue,
2444     * locks if apparently non-empty, validates upon locking, and
2445     * adjusts top. Each check can fail but rarely does.
2446 dl 1.105 */
2447 dl 1.178 final boolean tryExternalUnpush(ForkJoinTask<?> task) {
2448 dl 1.224 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?>[] a; int m;
2449 dl 1.200 int r = ThreadLocalRandom.getProbe();
2450 dl 1.225 if ((ws = workQueues) != null && (m = ws.length - 1) > 0 &&
2451 dl 1.200 (w = ws[m & r & SQMASK]) != null &&
2452 dl 1.224 (a = w.array) != null) {
2453 dl 1.225 int b = w.base, al = a.length, s = w.top;
2454     if (s != b && al > 0 &&
2455     U.compareAndSwapInt(w, QLOCK, 0, 1)) {
2456     int i = (al - 1) & (s - 1);
2457     if (w.top == s && w.array == a && casAt(a, i, task, null)) {
2458 dl 1.200 U.putOrderedInt(w, QTOP, s - 1);
2459     U.putOrderedInt(w, QLOCK, 0);
2460     return true;
2461 dl 1.115 }
2462 dl 1.209 U.compareAndSwapInt(w, QLOCK, 1, 0);
2463 dl 1.105 }
2464     }
2465 dl 1.200 return false;
2466 dl 1.105 }
2467    
2468 dl 1.200 /**
2469 jsr166 1.213 * Performs helpComplete for an external submitter.
2470 dl 1.200 */
2471 dl 1.190 final int externalHelpComplete(CountedCompleter<?> task, int maxTasks) {
2472 dl 1.200 WorkQueue[] ws; int n;
2473     int r = ThreadLocalRandom.getProbe();
2474     return ((ws = workQueues) == null || (n = ws.length) == 0) ? 0 :
2475     helpComplete(ws[(n - 1) & r & SQMASK], task, maxTasks);
2476 dl 1.105 }
2477    
2478 dl 1.52 // Exported methods
2479 jsr166 1.1
2480     // Constructors
2481    
2482     /**
2483 jsr166 1.9 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2484 dl 1.18 * java.lang.Runtime#availableProcessors}, using the {@linkplain
2485     * #defaultForkJoinWorkerThreadFactory default thread factory},
2486     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2487 jsr166 1.1 *
2488     * @throws SecurityException if a security manager exists and
2489     * the caller is not permitted to modify threads
2490     * because it does not hold {@link
2491     * java.lang.RuntimePermission}{@code ("modifyThread")}
2492     */
2493     public ForkJoinPool() {
2494 jsr166 1.148 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2495     defaultForkJoinWorkerThreadFactory, null, false);
2496 jsr166 1.1 }
2497    
2498     /**
2499 jsr166 1.9 * Creates a {@code ForkJoinPool} with the indicated parallelism
2500 dl 1.18 * level, the {@linkplain
2501     * #defaultForkJoinWorkerThreadFactory default thread factory},
2502     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2503 jsr166 1.1 *
2504 jsr166 1.9 * @param parallelism the parallelism level
2505 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
2506 jsr166 1.11 * equal to zero, or greater than implementation limit
2507 jsr166 1.1 * @throws SecurityException if a security manager exists and
2508     * the caller is not permitted to modify threads
2509     * because it does not hold {@link
2510     * java.lang.RuntimePermission}{@code ("modifyThread")}
2511     */
2512     public ForkJoinPool(int parallelism) {
2513 dl 1.18 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2514 jsr166 1.1 }
2515    
2516     /**
2517 dl 1.18 * Creates a {@code ForkJoinPool} with the given parameters.
2518 jsr166 1.1 *
2519 dl 1.18 * @param parallelism the parallelism level. For default value,
2520     * use {@link java.lang.Runtime#availableProcessors}.
2521     * @param factory the factory for creating new threads. For default value,
2522     * use {@link #defaultForkJoinWorkerThreadFactory}.
2523 dl 1.19 * @param handler the handler for internal worker threads that
2524     * terminate due to unrecoverable errors encountered while executing
2525 jsr166 1.31 * tasks. For default value, use {@code null}.
2526 dl 1.19 * @param asyncMode if true,
2527 dl 1.18 * establishes local first-in-first-out scheduling mode for forked
2528     * tasks that are never joined. This mode may be more appropriate
2529     * than default locally stack-based mode in applications in which
2530     * worker threads only process event-style asynchronous tasks.
2531 jsr166 1.31 * For default value, use {@code false}.
2532 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
2533 jsr166 1.11 * equal to zero, or greater than implementation limit
2534     * @throws NullPointerException if the factory is null
2535 jsr166 1.1 * @throws SecurityException if a security manager exists and
2536     * the caller is not permitted to modify threads
2537     * because it does not hold {@link
2538     * java.lang.RuntimePermission}{@code ("modifyThread")}
2539     */
2540 dl 1.19 public ForkJoinPool(int parallelism,
2541 dl 1.18 ForkJoinWorkerThreadFactory factory,
2542 jsr166 1.156 UncaughtExceptionHandler handler,
2543 dl 1.18 boolean asyncMode) {
2544 dl 1.152 this(checkParallelism(parallelism),
2545     checkFactory(factory),
2546     handler,
2547 jsr166 1.201 asyncMode ? FIFO_QUEUE : LIFO_QUEUE,
2548 dl 1.152 "ForkJoinPool-" + nextPoolId() + "-worker-");
2549 dl 1.14 checkPermission();
2550 dl 1.152 }
2551    
2552     private static int checkParallelism(int parallelism) {
2553     if (parallelism <= 0 || parallelism > MAX_CAP)
2554     throw new IllegalArgumentException();
2555     return parallelism;
2556     }
2557    
2558     private static ForkJoinWorkerThreadFactory checkFactory
2559     (ForkJoinWorkerThreadFactory factory) {
2560 dl 1.14 if (factory == null)
2561     throw new NullPointerException();
2562 dl 1.152 return factory;
2563     }
2564    
2565     /**
2566     * Creates a {@code ForkJoinPool} with the given parameters, without
2567     * any security checks or parameter validation. Invoked directly by
2568     * makeCommonPool.
2569     */
2570     private ForkJoinPool(int parallelism,
2571     ForkJoinWorkerThreadFactory factory,
2572 jsr166 1.156 UncaughtExceptionHandler handler,
2573 dl 1.185 int mode,
2574 dl 1.152 String workerNamePrefix) {
2575     this.workerNamePrefix = workerNamePrefix;
2576 jsr166 1.1 this.factory = factory;
2577 dl 1.18 this.ueh = handler;
2578 dl 1.200 this.config = (parallelism & SMASK) | mode;
2579 dl 1.52 long np = (long)(-parallelism); // offset ctl counts
2580     this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2581 dl 1.101 }
2582    
2583     /**
2584 dl 1.128 * Returns the common pool instance. This pool is statically
2585 dl 1.134 * constructed; its run state is unaffected by attempts to {@link
2586     * #shutdown} or {@link #shutdownNow}. However this pool and any
2587     * ongoing processing are automatically terminated upon program
2588     * {@link System#exit}. Any program that relies on asynchronous
2589     * task processing to complete before program termination should
2590 jsr166 1.158 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2591     * before exit.
2592 dl 1.100 *
2593     * @return the common pool instance
2594 jsr166 1.138 * @since 1.8
2595 dl 1.100 */
2596     public static ForkJoinPool commonPool() {
2597 dl 1.134 // assert common != null : "static init error";
2598     return common;
2599 dl 1.100 }
2600    
2601 jsr166 1.1 // Execution methods
2602    
2603     /**
2604     * Performs the given task, returning its result upon completion.
2605 dl 1.52 * If the computation encounters an unchecked Exception or Error,
2606     * it is rethrown as the outcome of this invocation. Rethrown
2607     * exceptions behave in the same way as regular exceptions, but,
2608     * when possible, contain stack traces (as displayed for example
2609     * using {@code ex.printStackTrace()}) of both the current thread
2610     * as well as the thread actually encountering the exception;
2611     * minimally only the latter.
2612 jsr166 1.1 *
2613     * @param task the task
2614 jsr166 1.191 * @param <T> the type of the task's result
2615 jsr166 1.1 * @return the task's result
2616 jsr166 1.11 * @throws NullPointerException if the task is null
2617     * @throws RejectedExecutionException if the task cannot be
2618     * scheduled for execution
2619 jsr166 1.1 */
2620     public <T> T invoke(ForkJoinTask<T> task) {
2621 dl 1.90 if (task == null)
2622     throw new NullPointerException();
2623 dl 1.105 externalPush(task);
2624 dl 1.78 return task.join();
2625 jsr166 1.1 }
2626    
2627     /**
2628     * Arranges for (asynchronous) execution of the given task.
2629     *
2630     * @param task the task
2631 jsr166 1.11 * @throws NullPointerException if the task is null
2632     * @throws RejectedExecutionException if the task cannot be
2633     * scheduled for execution
2634 jsr166 1.1 */
2635 jsr166 1.8 public void execute(ForkJoinTask<?> task) {
2636 dl 1.90 if (task == null)
2637     throw new NullPointerException();
2638 dl 1.105 externalPush(task);
2639 jsr166 1.1 }
2640    
2641     // AbstractExecutorService methods
2642    
2643 jsr166 1.11 /**
2644     * @throws NullPointerException if the task is null
2645     * @throws RejectedExecutionException if the task cannot be
2646     * scheduled for execution
2647     */
2648 jsr166 1.1 public void execute(Runnable task) {
2649 dl 1.41 if (task == null)
2650     throw new NullPointerException();
2651 jsr166 1.2 ForkJoinTask<?> job;
2652 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2653     job = (ForkJoinTask<?>) task;
2654 jsr166 1.2 else
2655 dl 1.152 job = new ForkJoinTask.RunnableExecuteAction(task);
2656 dl 1.105 externalPush(job);
2657 jsr166 1.1 }
2658    
2659 jsr166 1.11 /**
2660 dl 1.18 * Submits a ForkJoinTask for execution.
2661     *
2662     * @param task the task to submit
2663 jsr166 1.191 * @param <T> the type of the task's result
2664 dl 1.18 * @return the task
2665     * @throws NullPointerException if the task is null
2666     * @throws RejectedExecutionException if the task cannot be
2667     * scheduled for execution
2668     */
2669     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2670 dl 1.90 if (task == null)
2671     throw new NullPointerException();
2672 dl 1.105 externalPush(task);
2673 dl 1.18 return task;
2674     }
2675    
2676     /**
2677 jsr166 1.11 * @throws NullPointerException if the task is null
2678     * @throws RejectedExecutionException if the task cannot be
2679     * scheduled for execution
2680     */
2681 jsr166 1.1 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2682 dl 1.90 ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2683 dl 1.105 externalPush(job);
2684 jsr166 1.1 return job;
2685     }
2686    
2687 jsr166 1.11 /**
2688     * @throws NullPointerException if the task is null
2689     * @throws RejectedExecutionException if the task cannot be
2690     * scheduled for execution
2691     */
2692 jsr166 1.1 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2693 dl 1.90 ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2694 dl 1.105 externalPush(job);
2695 jsr166 1.1 return job;
2696     }
2697    
2698 jsr166 1.11 /**
2699     * @throws NullPointerException if the task is null
2700     * @throws RejectedExecutionException if the task cannot be
2701     * scheduled for execution
2702     */
2703 jsr166 1.1 public ForkJoinTask<?> submit(Runnable task) {
2704 dl 1.41 if (task == null)
2705     throw new NullPointerException();
2706 jsr166 1.2 ForkJoinTask<?> job;
2707 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2708     job = (ForkJoinTask<?>) task;
2709 jsr166 1.2 else
2710 dl 1.90 job = new ForkJoinTask.AdaptedRunnableAction(task);
2711 dl 1.105 externalPush(job);
2712 jsr166 1.1 return job;
2713     }
2714    
2715     /**
2716 jsr166 1.11 * @throws NullPointerException {@inheritDoc}
2717     * @throws RejectedExecutionException {@inheritDoc}
2718     */
2719 jsr166 1.1 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2720 dl 1.86 // In previous versions of this class, this method constructed
2721     // a task to run ForkJoinTask.invokeAll, but now external
2722     // invocation of multiple tasks is at least as efficient.
2723 jsr166 1.199 ArrayList<Future<T>> futures = new ArrayList<>(tasks.size());
2724 jsr166 1.1
2725 dl 1.86 try {
2726     for (Callable<T> t : tasks) {
2727 dl 1.90 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2728 jsr166 1.144 futures.add(f);
2729 dl 1.105 externalPush(f);
2730 dl 1.86 }
2731 jsr166 1.143 for (int i = 0, size = futures.size(); i < size; i++)
2732     ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2733 dl 1.86 return futures;
2734 jsr166 1.226 } catch (Throwable t) {
2735     for (int i = 0, size = futures.size(); i < size; i++)
2736     futures.get(i).cancel(false);
2737     throw t;
2738 jsr166 1.1 }
2739     }
2740    
2741     /**
2742     * Returns the factory used for constructing new workers.
2743     *
2744     * @return the factory used for constructing new workers
2745     */
2746     public ForkJoinWorkerThreadFactory getFactory() {
2747     return factory;
2748     }
2749    
2750     /**
2751     * Returns the handler for internal worker threads that terminate
2752     * due to unrecoverable errors encountered while executing tasks.
2753     *
2754 jsr166 1.4 * @return the handler, or {@code null} if none
2755 jsr166 1.1 */
2756 jsr166 1.156 public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2757 dl 1.14 return ueh;
2758 jsr166 1.1 }
2759    
2760     /**
2761 jsr166 1.9 * Returns the targeted parallelism level of this pool.
2762 jsr166 1.1 *
2763 jsr166 1.9 * @return the targeted parallelism level of this pool
2764 jsr166 1.1 */
2765     public int getParallelism() {
2766 dl 1.185 int par;
2767 dl 1.200 return ((par = config & SMASK) > 0) ? par : 1;
2768 jsr166 1.1 }
2769    
2770     /**
2771 dl 1.100 * Returns the targeted parallelism level of the common pool.
2772     *
2773     * @return the targeted parallelism level of the common pool
2774 jsr166 1.138 * @since 1.8
2775 dl 1.100 */
2776     public static int getCommonPoolParallelism() {
2777 dl 1.134 return commonParallelism;
2778 dl 1.100 }
2779    
2780     /**
2781 jsr166 1.1 * Returns the number of worker threads that have started but not
2782 jsr166 1.34 * yet terminated. The result returned by this method may differ
2783 jsr166 1.4 * from {@link #getParallelism} when threads are created to
2784 jsr166 1.1 * maintain parallelism when others are cooperatively blocked.
2785     *
2786     * @return the number of worker threads
2787     */
2788     public int getPoolSize() {
2789 dl 1.200 return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2790 jsr166 1.1 }
2791    
2792     /**
2793 jsr166 1.4 * Returns {@code true} if this pool uses local first-in-first-out
2794 jsr166 1.1 * scheduling mode for forked tasks that are never joined.
2795     *
2796 jsr166 1.4 * @return {@code true} if this pool uses async mode
2797 jsr166 1.1 */
2798     public boolean getAsyncMode() {
2799 dl 1.200 return (config & FIFO_QUEUE) != 0;
2800 jsr166 1.1 }
2801    
2802     /**
2803     * Returns an estimate of the number of worker threads that are
2804     * not blocked waiting to join tasks or for other managed
2805 dl 1.14 * synchronization. This method may overestimate the
2806     * number of running threads.
2807 jsr166 1.1 *
2808     * @return the number of worker threads
2809     */
2810     public int getRunningThreadCount() {
2811 dl 1.78 int rc = 0;
2812     WorkQueue[] ws; WorkQueue w;
2813     if ((ws = workQueues) != null) {
2814 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2815     if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2816 dl 1.78 ++rc;
2817     }
2818     }
2819     return rc;
2820 jsr166 1.1 }
2821    
2822     /**
2823     * Returns an estimate of the number of threads that are currently
2824     * stealing or executing tasks. This method may overestimate the
2825     * number of active threads.
2826     *
2827     * @return the number of active threads
2828     */
2829     public int getActiveThreadCount() {
2830 dl 1.200 int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2831 jsr166 1.63 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2832 jsr166 1.1 }
2833    
2834     /**
2835 jsr166 1.4 * Returns {@code true} if all worker threads are currently idle.
2836     * An idle worker is one that cannot obtain a task to execute
2837     * because none are available to steal from other threads, and
2838     * there are no pending submissions to the pool. This method is
2839     * conservative; it might not return {@code true} immediately upon
2840     * idleness of all threads, but will eventually become true if
2841     * threads remain inactive.
2842 jsr166 1.1 *
2843 jsr166 1.4 * @return {@code true} if all threads are currently idle
2844 jsr166 1.1 */
2845     public boolean isQuiescent() {
2846 dl 1.200 return (config & SMASK) + (int)(ctl >> AC_SHIFT) <= 0;
2847 jsr166 1.1 }
2848    
2849     /**
2850     * Returns an estimate of the total number of tasks stolen from
2851     * one thread's work queue by another. The reported value
2852     * underestimates the actual total number of steals when the pool
2853     * is not quiescent. This value may be useful for monitoring and
2854     * tuning fork/join programs: in general, steal counts should be
2855     * high enough to keep threads busy, but low enough to avoid
2856     * overhead and contention across threads.
2857     *
2858     * @return the number of steals
2859     */
2860     public long getStealCount() {
2861 dl 1.215 AtomicLong sc = stealCounter;
2862     long count = (sc == null) ? 0L : sc.get();
2863 dl 1.78 WorkQueue[] ws; WorkQueue w;
2864     if ((ws = workQueues) != null) {
2865 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2866 dl 1.78 if ((w = ws[i]) != null)
2867 dl 1.105 count += w.nsteals;
2868 dl 1.78 }
2869     }
2870     return count;
2871 jsr166 1.1 }
2872    
2873     /**
2874     * Returns an estimate of the total number of tasks currently held
2875     * in queues by worker threads (but not including tasks submitted
2876     * to the pool that have not begun executing). This value is only
2877     * an approximation, obtained by iterating across all threads in
2878     * the pool. This method may be useful for tuning task
2879     * granularities.
2880     *
2881     * @return the number of queued tasks
2882     */
2883     public long getQueuedTaskCount() {
2884     long count = 0;
2885 dl 1.78 WorkQueue[] ws; WorkQueue w;
2886     if ((ws = workQueues) != null) {
2887 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2888 dl 1.78 if ((w = ws[i]) != null)
2889     count += w.queueSize();
2890     }
2891 dl 1.52 }
2892 jsr166 1.1 return count;
2893     }
2894    
2895     /**
2896 jsr166 1.8 * Returns an estimate of the number of tasks submitted to this
2897 dl 1.55 * pool that have not yet begun executing. This method may take
2898 dl 1.52 * time proportional to the number of submissions.
2899 jsr166 1.1 *
2900     * @return the number of queued submissions
2901     */
2902     public int getQueuedSubmissionCount() {
2903 dl 1.78 int count = 0;
2904     WorkQueue[] ws; WorkQueue w;
2905     if ((ws = workQueues) != null) {
2906 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2907 dl 1.78 if ((w = ws[i]) != null)
2908     count += w.queueSize();
2909     }
2910     }
2911     return count;
2912 jsr166 1.1 }
2913    
2914     /**
2915 jsr166 1.4 * Returns {@code true} if there are any tasks submitted to this
2916     * pool that have not yet begun executing.
2917 jsr166 1.1 *
2918     * @return {@code true} if there are any queued submissions
2919     */
2920     public boolean hasQueuedSubmissions() {
2921 dl 1.78 WorkQueue[] ws; WorkQueue w;
2922     if ((ws = workQueues) != null) {
2923 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2924 dl 1.115 if ((w = ws[i]) != null && !w.isEmpty())
2925 dl 1.78 return true;
2926     }
2927     }
2928     return false;
2929 jsr166 1.1 }
2930    
2931     /**
2932     * Removes and returns the next unexecuted submission if one is
2933     * available. This method may be useful in extensions to this
2934     * class that re-assign work in systems with multiple pools.
2935     *
2936 jsr166 1.4 * @return the next submission, or {@code null} if none
2937 jsr166 1.1 */
2938     protected ForkJoinTask<?> pollSubmission() {
2939 dl 1.78 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2940     if ((ws = workQueues) != null) {
2941 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2942 dl 1.78 if ((w = ws[i]) != null && (t = w.poll()) != null)
2943     return t;
2944 dl 1.52 }
2945     }
2946     return null;
2947 jsr166 1.1 }
2948    
2949     /**
2950     * Removes all available unexecuted submitted and forked tasks
2951     * from scheduling queues and adds them to the given collection,
2952     * without altering their execution status. These may include
2953 jsr166 1.8 * artificially generated or wrapped tasks. This method is
2954     * designed to be invoked only when the pool is known to be
2955 jsr166 1.1 * quiescent. Invocations at other times may not remove all
2956     * tasks. A failure encountered while attempting to add elements
2957     * to collection {@code c} may result in elements being in
2958     * neither, either or both collections when the associated
2959     * exception is thrown. The behavior of this operation is
2960     * undefined if the specified collection is modified while the
2961     * operation is in progress.
2962     *
2963     * @param c the collection to transfer elements into
2964     * @return the number of elements transferred
2965     */
2966 jsr166 1.5 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2967 dl 1.52 int count = 0;
2968 dl 1.78 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2969     if ((ws = workQueues) != null) {
2970 dl 1.86 for (int i = 0; i < ws.length; ++i) {
2971 dl 1.78 if ((w = ws[i]) != null) {
2972     while ((t = w.poll()) != null) {
2973     c.add(t);
2974     ++count;
2975     }
2976     }
2977 dl 1.52 }
2978     }
2979 dl 1.18 return count;
2980     }
2981    
2982     /**
2983 jsr166 1.1 * Returns a string identifying this pool, as well as its state,
2984     * including indications of run state, parallelism level, and
2985     * worker and task counts.
2986     *
2987     * @return a string identifying this pool, as well as its state
2988     */
2989     public String toString() {
2990 dl 1.86 // Use a single pass through workQueues to collect counts
2991     long qt = 0L, qs = 0L; int rc = 0;
2992 dl 1.215 AtomicLong sc = stealCounter;
2993     long st = (sc == null) ? 0L : sc.get();
2994 dl 1.86 long c = ctl;
2995     WorkQueue[] ws; WorkQueue w;
2996     if ((ws = workQueues) != null) {
2997     for (int i = 0; i < ws.length; ++i) {
2998     if ((w = ws[i]) != null) {
2999     int size = w.queueSize();
3000     if ((i & 1) == 0)
3001     qs += size;
3002     else {
3003     qt += size;
3004 dl 1.105 st += w.nsteals;
3005 dl 1.86 if (w.isApparentlyUnblocked())
3006     ++rc;
3007     }
3008     }
3009     }
3010     }
3011 dl 1.200 int pc = (config & SMASK);
3012 dl 1.52 int tc = pc + (short)(c >>> TC_SHIFT);
3013 dl 1.78 int ac = pc + (int)(c >> AC_SHIFT);
3014     if (ac < 0) // ignore transient negative
3015     ac = 0;
3016 dl 1.200 int rs = runState;
3017     String level = ((rs & TERMINATED) != 0 ? "Terminated" :
3018     (rs & STOP) != 0 ? "Terminating" :
3019     (rs & SHUTDOWN) != 0 ? "Shutting down" :
3020     "Running");
3021 jsr166 1.1 return super.toString() +
3022 dl 1.52 "[" + level +
3023 dl 1.14 ", parallelism = " + pc +
3024     ", size = " + tc +
3025     ", active = " + ac +
3026     ", running = " + rc +
3027 jsr166 1.1 ", steals = " + st +
3028     ", tasks = " + qt +
3029     ", submissions = " + qs +
3030     "]";
3031     }
3032    
3033     /**
3034 dl 1.100 * Possibly initiates an orderly shutdown in which previously
3035     * submitted tasks are executed, but no new tasks will be
3036     * accepted. Invocation has no effect on execution state if this
3037 jsr166 1.137 * is the {@link #commonPool()}, and no additional effect if
3038 dl 1.100 * already shut down. Tasks that are in the process of being
3039     * submitted concurrently during the course of this method may or
3040     * may not be rejected.
3041 jsr166 1.1 *
3042     * @throws SecurityException if a security manager exists and
3043     * the caller is not permitted to modify threads
3044     * because it does not hold {@link
3045     * java.lang.RuntimePermission}{@code ("modifyThread")}
3046     */
3047     public void shutdown() {
3048     checkPermission();
3049 dl 1.105 tryTerminate(false, true);
3050 jsr166 1.1 }
3051    
3052     /**
3053 dl 1.100 * Possibly attempts to cancel and/or stop all tasks, and reject
3054     * all subsequently submitted tasks. Invocation has no effect on
3055 jsr166 1.137 * execution state if this is the {@link #commonPool()}, and no
3056 dl 1.100 * additional effect if already shut down. Otherwise, tasks that
3057     * are in the process of being submitted or executed concurrently
3058     * during the course of this method may or may not be
3059     * rejected. This method cancels both existing and unexecuted
3060     * tasks, in order to permit termination in the presence of task
3061     * dependencies. So the method always returns an empty list
3062     * (unlike the case for some other Executors).
3063 jsr166 1.1 *
3064     * @return an empty list
3065     * @throws SecurityException if a security manager exists and
3066     * the caller is not permitted to modify threads
3067     * because it does not hold {@link
3068     * java.lang.RuntimePermission}{@code ("modifyThread")}
3069     */
3070     public List<Runnable> shutdownNow() {
3071     checkPermission();
3072 dl 1.105 tryTerminate(true, true);
3073 jsr166 1.1 return Collections.emptyList();
3074     }
3075    
3076     /**
3077     * Returns {@code true} if all tasks have completed following shut down.
3078     *
3079     * @return {@code true} if all tasks have completed following shut down
3080     */
3081     public boolean isTerminated() {
3082 dl 1.200 return (runState & TERMINATED) != 0;
3083 jsr166 1.1 }
3084    
3085     /**
3086     * Returns {@code true} if the process of termination has
3087 jsr166 1.9 * commenced but not yet completed. This method may be useful for
3088     * debugging. A return of {@code true} reported a sufficient
3089     * period after shutdown may indicate that submitted tasks have
3090 jsr166 1.119 * ignored or suppressed interruption, or are waiting for I/O,
3091 dl 1.49 * causing this executor not to properly terminate. (See the
3092     * advisory notes for class {@link ForkJoinTask} stating that
3093     * tasks should not normally entail blocking operations. But if
3094     * they do, they must abort them on interrupt.)
3095 jsr166 1.1 *
3096 jsr166 1.9 * @return {@code true} if terminating but not yet terminated
3097 jsr166 1.1 */
3098     public boolean isTerminating() {
3099 dl 1.200 int rs = runState;
3100     return (rs & STOP) != 0 && (rs & TERMINATED) == 0;
3101 jsr166 1.1 }
3102    
3103     /**
3104     * Returns {@code true} if this pool has been shut down.
3105     *
3106     * @return {@code true} if this pool has been shut down
3107     */
3108     public boolean isShutdown() {
3109 dl 1.200 return (runState & SHUTDOWN) != 0;
3110 jsr166 1.9 }
3111    
3112     /**
3113 dl 1.105 * Blocks until all tasks have completed execution after a
3114     * shutdown request, or the timeout occurs, or the current thread
3115 dl 1.134 * is interrupted, whichever happens first. Because the {@link
3116     * #commonPool()} never terminates until program shutdown, when
3117     * applied to the common pool, this method is equivalent to {@link
3118 jsr166 1.158 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
3119 jsr166 1.1 *
3120     * @param timeout the maximum time to wait
3121     * @param unit the time unit of the timeout argument
3122     * @return {@code true} if this executor terminated and
3123     * {@code false} if the timeout elapsed before termination
3124     * @throws InterruptedException if interrupted while waiting
3125     */
3126     public boolean awaitTermination(long timeout, TimeUnit unit)
3127     throws InterruptedException {
3128 dl 1.134 if (Thread.interrupted())
3129     throw new InterruptedException();
3130     if (this == common) {
3131     awaitQuiescence(timeout, unit);
3132     return false;
3133     }
3134 dl 1.52 long nanos = unit.toNanos(timeout);
3135 dl 1.101 if (isTerminated())
3136     return true;
3137 dl 1.183 if (nanos <= 0L)
3138     return false;
3139     long deadline = System.nanoTime() + nanos;
3140 jsr166 1.103 synchronized (this) {
3141 jsr166 1.184 for (;;) {
3142 dl 1.183 if (isTerminated())
3143     return true;
3144     if (nanos <= 0L)
3145     return false;
3146     long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
3147     wait(millis > 0L ? millis : 1L);
3148     nanos = deadline - System.nanoTime();
3149 dl 1.52 }
3150 dl 1.18 }
3151 jsr166 1.1 }
3152    
3153     /**
3154 dl 1.134 * If called by a ForkJoinTask operating in this pool, equivalent
3155     * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3156     * waits and/or attempts to assist performing tasks until this
3157     * pool {@link #isQuiescent} or the indicated timeout elapses.
3158     *
3159     * @param timeout the maximum time to wait
3160     * @param unit the time unit of the timeout argument
3161     * @return {@code true} if quiescent; {@code false} if the
3162     * timeout elapsed.
3163     */
3164     public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3165     long nanos = unit.toNanos(timeout);
3166     ForkJoinWorkerThread wt;
3167     Thread thread = Thread.currentThread();
3168     if ((thread instanceof ForkJoinWorkerThread) &&
3169     (wt = (ForkJoinWorkerThread)thread).pool == this) {
3170     helpQuiescePool(wt.workQueue);
3171     return true;
3172     }
3173     long startTime = System.nanoTime();
3174     WorkQueue[] ws;
3175     int r = 0, m;
3176     boolean found = true;
3177     while (!isQuiescent() && (ws = workQueues) != null &&
3178 dl 1.225 (m = ws.length - 1) > 0) {
3179 dl 1.134 if (!found) {
3180     if ((System.nanoTime() - startTime) > nanos)
3181     return false;
3182     Thread.yield(); // cannot block
3183     }
3184     found = false;
3185     for (int j = (m + 1) << 2; j >= 0; --j) {
3186 dl 1.200 ForkJoinTask<?> t; WorkQueue q; int b, k;
3187     if ((k = r++ & m) <= m && k >= 0 && (q = ws[k]) != null &&
3188     (b = q.base) - q.top < 0) {
3189 dl 1.134 found = true;
3190 dl 1.172 if ((t = q.pollAt(b)) != null)
3191 dl 1.134 t.doExec();
3192     break;
3193     }
3194     }
3195     }
3196     return true;
3197     }
3198    
3199     /**
3200     * Waits and/or attempts to assist performing tasks indefinitely
3201 jsr166 1.141 * until the {@link #commonPool()} {@link #isQuiescent}.
3202 dl 1.134 */
3203 dl 1.136 static void quiesceCommonPool() {
3204 dl 1.134 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3205     }
3206    
3207     /**
3208 jsr166 1.1 * Interface for extending managed parallelism for tasks running
3209 jsr166 1.8 * in {@link ForkJoinPool}s.
3210     *
3211 dl 1.19 * <p>A {@code ManagedBlocker} provides two methods. Method
3212 jsr166 1.218 * {@link #isReleasable} must return {@code true} if blocking is
3213     * not necessary. Method {@link #block} blocks the current thread
3214 dl 1.19 * if necessary (perhaps internally invoking {@code isReleasable}
3215 dl 1.54 * before actually blocking). These actions are performed by any
3216 jsr166 1.157 * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
3217     * The unusual methods in this API accommodate synchronizers that
3218     * may, but don't usually, block for long periods. Similarly, they
3219 dl 1.54 * allow more efficient internal handling of cases in which
3220     * additional workers may be, but usually are not, needed to
3221     * ensure sufficient parallelism. Toward this end,
3222     * implementations of method {@code isReleasable} must be amenable
3223     * to repeated invocation.
3224 jsr166 1.1 *
3225     * <p>For example, here is a ManagedBlocker based on a
3226     * ReentrantLock:
3227     * <pre> {@code
3228     * class ManagedLocker implements ManagedBlocker {
3229     * final ReentrantLock lock;
3230     * boolean hasLock = false;
3231     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3232     * public boolean block() {
3233     * if (!hasLock)
3234     * lock.lock();
3235     * return true;
3236     * }
3237     * public boolean isReleasable() {
3238     * return hasLock || (hasLock = lock.tryLock());
3239     * }
3240     * }}</pre>
3241 dl 1.19 *
3242     * <p>Here is a class that possibly blocks waiting for an
3243     * item on a given queue:
3244     * <pre> {@code
3245     * class QueueTaker<E> implements ManagedBlocker {
3246     * final BlockingQueue<E> queue;
3247     * volatile E item = null;
3248     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3249     * public boolean block() throws InterruptedException {
3250     * if (item == null)
3251 dl 1.23 * item = queue.take();
3252 dl 1.19 * return true;
3253     * }
3254     * public boolean isReleasable() {
3255 dl 1.23 * return item != null || (item = queue.poll()) != null;
3256 dl 1.19 * }
3257     * public E getItem() { // call after pool.managedBlock completes
3258     * return item;
3259     * }
3260     * }}</pre>
3261 jsr166 1.1 */
3262     public static interface ManagedBlocker {
3263     /**
3264     * Possibly blocks the current thread, for example waiting for
3265     * a lock or condition.
3266     *
3267 jsr166 1.4 * @return {@code true} if no additional blocking is necessary
3268     * (i.e., if isReleasable would return true)
3269 jsr166 1.1 * @throws InterruptedException if interrupted while waiting
3270     * (the method is not required to do so, but is allowed to)
3271     */
3272     boolean block() throws InterruptedException;
3273    
3274     /**
3275 jsr166 1.4 * Returns {@code true} if blocking is unnecessary.
3276 jsr166 1.154 * @return {@code true} if blocking is unnecessary
3277 jsr166 1.1 */
3278     boolean isReleasable();
3279     }
3280    
3281     /**
3282 jsr166 1.217 * Runs the given possibly blocking task. When {@linkplain
3283     * ForkJoinTask#inForkJoinPool() running in a ForkJoinPool}, this
3284     * method possibly arranges for a spare thread to be activated if
3285     * necessary to ensure sufficient parallelism while the current
3286     * thread is blocked in {@link ManagedBlocker#block blocker.block()}.
3287 jsr166 1.1 *
3288 jsr166 1.217 * <p>This method repeatedly calls {@code blocker.isReleasable()} and
3289     * {@code blocker.block()} until either method returns {@code true}.
3290     * Every call to {@code blocker.block()} is preceded by a call to
3291     * {@code blocker.isReleasable()} that returned {@code false}.
3292     *
3293     * <p>If not running in a ForkJoinPool, this method is
3294 jsr166 1.8 * behaviorally equivalent to
3295 jsr166 1.82 * <pre> {@code
3296 jsr166 1.1 * while (!blocker.isReleasable())
3297     * if (blocker.block())
3298 jsr166 1.217 * break;}</pre>
3299 jsr166 1.8 *
3300 jsr166 1.217 * If running in a ForkJoinPool, the pool may first be expanded to
3301     * ensure sufficient parallelism available during the call to
3302     * {@code blocker.block()}.
3303 jsr166 1.1 *
3304 jsr166 1.217 * @param blocker the blocker task
3305     * @throws InterruptedException if {@code blocker.block()} did so
3306 jsr166 1.1 */
3307 dl 1.18 public static void managedBlock(ManagedBlocker blocker)
3308 jsr166 1.1 throws InterruptedException {
3309 dl 1.200 ForkJoinPool p;
3310     ForkJoinWorkerThread wt;
3311 jsr166 1.1 Thread t = Thread.currentThread();
3312 dl 1.200 if ((t instanceof ForkJoinWorkerThread) &&
3313     (p = (wt = (ForkJoinWorkerThread)t).pool) != null) {
3314     WorkQueue w = wt.workQueue;
3315 dl 1.172 while (!blocker.isReleasable()) {
3316 dl 1.200 if (p.tryCompensate(w)) {
3317 dl 1.105 try {
3318     do {} while (!blocker.isReleasable() &&
3319     !blocker.block());
3320     } finally {
3321 dl 1.200 U.getAndAddLong(p, CTL, AC_UNIT);
3322 dl 1.105 }
3323     break;
3324 dl 1.78 }
3325     }
3326 dl 1.18 }
3327 dl 1.105 else {
3328     do {} while (!blocker.isReleasable() &&
3329     !blocker.block());
3330     }
3331 jsr166 1.1 }
3332    
3333 jsr166 1.7 // AbstractExecutorService overrides. These rely on undocumented
3334     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3335     // implement RunnableFuture.
3336 jsr166 1.1
3337     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3338 dl 1.90 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3339 jsr166 1.1 }
3340    
3341     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3342 dl 1.90 return new ForkJoinTask.AdaptedCallable<T>(callable);
3343 jsr166 1.1 }
3344    
3345     // Unsafe mechanics
3346 dl 1.78 private static final sun.misc.Unsafe U;
3347 dl 1.200 private static final int ABASE;
3348     private static final int ASHIFT;
3349 dl 1.78 private static final long CTL;
3350 dl 1.211 private static final long RUNSTATE;
3351 dl 1.215 private static final long STEALCOUNTER;
3352 dl 1.78 private static final long PARKBLOCKER;
3353 dl 1.200 private static final long QTOP;
3354 dl 1.105 private static final long QLOCK;
3355 dl 1.200 private static final long QSCANSTATE;
3356     private static final long QPARKER;
3357     private static final long QCURRENTSTEAL;
3358     private static final long QCURRENTJOIN;
3359 dl 1.52
3360     static {
3361 jsr166 1.142 // initialize field offsets for CAS etc
3362 jsr166 1.3 try {
3363 dl 1.78 U = sun.misc.Unsafe.getUnsafe();
3364 jsr166 1.64 Class<?> k = ForkJoinPool.class;
3365 dl 1.78 CTL = U.objectFieldOffset
3366 dl 1.52 (k.getDeclaredField("ctl"));
3367 dl 1.211 RUNSTATE = U.objectFieldOffset
3368     (k.getDeclaredField("runState"));
3369 dl 1.215 STEALCOUNTER = U.objectFieldOffset
3370     (k.getDeclaredField("stealCounter"));
3371 dl 1.86 Class<?> tk = Thread.class;
3372 dl 1.78 PARKBLOCKER = U.objectFieldOffset
3373     (tk.getDeclaredField("parkBlocker"));
3374 dl 1.105 Class<?> wk = WorkQueue.class;
3375 dl 1.200 QTOP = U.objectFieldOffset
3376     (wk.getDeclaredField("top"));
3377 dl 1.105 QLOCK = U.objectFieldOffset
3378     (wk.getDeclaredField("qlock"));
3379 dl 1.200 QSCANSTATE = U.objectFieldOffset
3380     (wk.getDeclaredField("scanState"));
3381     QPARKER = U.objectFieldOffset
3382     (wk.getDeclaredField("parker"));
3383     QCURRENTSTEAL = U.objectFieldOffset
3384     (wk.getDeclaredField("currentSteal"));
3385     QCURRENTJOIN = U.objectFieldOffset
3386     (wk.getDeclaredField("currentJoin"));
3387 dl 1.105 Class<?> ak = ForkJoinTask[].class;
3388 dl 1.90 ABASE = U.arrayBaseOffset(ak);
3389 jsr166 1.142 int scale = U.arrayIndexScale(ak);
3390     if ((scale & (scale - 1)) != 0)
3391 jsr166 1.232 throw new Error("array index scale not a power of two");
3392 jsr166 1.142 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3393 jsr166 1.231 } catch (ReflectiveOperationException e) {
3394 dl 1.52 throw new Error(e);
3395     }
3396 dl 1.105
3397 dl 1.208 commonMaxSpares = DEFAULT_COMMON_MAX_SPARES;
3398 dl 1.152 defaultForkJoinWorkerThreadFactory =
3399 dl 1.112 new DefaultForkJoinWorkerThreadFactory();
3400 dl 1.115 modifyThreadPermission = new RuntimePermission("modifyThread");
3401    
3402 dl 1.152 common = java.security.AccessController.doPrivileged
3403     (new java.security.PrivilegedAction<ForkJoinPool>() {
3404     public ForkJoinPool run() { return makeCommonPool(); }});
3405 dl 1.200 int par = common.config & SMASK; // report 1 even if threads disabled
3406 dl 1.160 commonParallelism = par > 0 ? par : 1;
3407 dl 1.152 }
3408 dl 1.112
3409 dl 1.152 /**
3410     * Creates and returns the common pool, respecting user settings
3411     * specified via system properties.
3412     */
3413     private static ForkJoinPool makeCommonPool() {
3414 dl 1.160 int parallelism = -1;
3415 dl 1.197 ForkJoinWorkerThreadFactory factory = null;
3416 jsr166 1.156 UncaughtExceptionHandler handler = null;
3417 jsr166 1.189 try { // ignore exceptions in accessing/parsing properties
3418 dl 1.112 String pp = System.getProperty
3419     ("java.util.concurrent.ForkJoinPool.common.parallelism");
3420 dl 1.152 String fp = System.getProperty
3421     ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3422 dl 1.112 String hp = System.getProperty
3423     ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3424 dl 1.208 String mp = System.getProperty
3425     ("java.util.concurrent.ForkJoinPool.common.maximumSpares");
3426 dl 1.152 if (pp != null)
3427     parallelism = Integer.parseInt(pp);
3428 dl 1.112 if (fp != null)
3429 dl 1.152 factory = ((ForkJoinWorkerThreadFactory)ClassLoader.
3430     getSystemClassLoader().loadClass(fp).newInstance());
3431 dl 1.112 if (hp != null)
3432 jsr166 1.156 handler = ((UncaughtExceptionHandler)ClassLoader.
3433 dl 1.112 getSystemClassLoader().loadClass(hp).newInstance());
3434 dl 1.208 if (mp != null)
3435     commonMaxSpares = Integer.parseInt(mp);
3436 dl 1.112 } catch (Exception ignore) {
3437     }
3438 dl 1.197 if (factory == null) {
3439     if (System.getSecurityManager() == null)
3440     factory = defaultForkJoinWorkerThreadFactory;
3441     else // use security-managed default
3442     factory = new InnocuousForkJoinWorkerThreadFactory();
3443     }
3444 dl 1.167 if (parallelism < 0 && // default 1 less than #cores
3445 dl 1.193 (parallelism = Runtime.getRuntime().availableProcessors() - 1) <= 0)
3446     parallelism = 1;
3447 dl 1.152 if (parallelism > MAX_CAP)
3448     parallelism = MAX_CAP;
3449 dl 1.185 return new ForkJoinPool(parallelism, factory, handler, LIFO_QUEUE,
3450 dl 1.152 "ForkJoinPool.commonPool-worker-");
3451 jsr166 1.3 }
3452 dl 1.52
3453 dl 1.197 /**
3454     * Factory for innocuous worker threads
3455     */
3456     static final class InnocuousForkJoinWorkerThreadFactory
3457     implements ForkJoinWorkerThreadFactory {
3458    
3459     /**
3460     * An ACC to restrict permissions for the factory itself.
3461     * The constructed workers have no permissions set.
3462     */
3463     private static final AccessControlContext innocuousAcc;
3464     static {
3465     Permissions innocuousPerms = new Permissions();
3466     innocuousPerms.add(modifyThreadPermission);
3467     innocuousPerms.add(new RuntimePermission(
3468     "enableContextClassLoaderOverride"));
3469     innocuousPerms.add(new RuntimePermission(
3470     "modifyThreadGroup"));
3471     innocuousAcc = new AccessControlContext(new ProtectionDomain[] {
3472     new ProtectionDomain(null, innocuousPerms)
3473     });
3474     }
3475    
3476     public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
3477 jsr166 1.227 return java.security.AccessController.doPrivileged(
3478     new java.security.PrivilegedAction<ForkJoinWorkerThread>() {
3479 dl 1.197 public ForkJoinWorkerThread run() {
3480     return new ForkJoinWorkerThread.
3481     InnocuousForkJoinWorkerThread(pool);
3482     }}, innocuousAcc);
3483     }
3484     }
3485    
3486 jsr166 1.1 }