ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.255
Committed: Wed Aug 5 13:31:36 2015 UTC (8 years, 10 months ago) by dl
Branch: MAIN
Changes since 1.254: +10 -5 lines
Log Message:
Reduce memory contention

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.58 * http://creativecommons.org/publicdomain/zero/1.0/
5 jsr166 1.1 */
6    
7     package java.util.concurrent;
8    
9 jsr166 1.156 import java.lang.Thread.UncaughtExceptionHandler;
10 jsr166 1.228 import java.security.AccessControlContext;
11     import java.security.Permissions;
12     import java.security.ProtectionDomain;
13 jsr166 1.1 import java.util.ArrayList;
14     import java.util.Arrays;
15     import java.util.Collection;
16     import java.util.Collections;
17     import java.util.List;
18 dl 1.215 import java.util.concurrent.atomic.AtomicLong;
19 dl 1.243 import java.util.concurrent.locks.LockSupport;
20 jsr166 1.1
21     /**
22 jsr166 1.4 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
23 jsr166 1.8 * A {@code ForkJoinPool} provides the entry point for submissions
24 dl 1.18 * from non-{@code ForkJoinTask} clients, as well as management and
25 jsr166 1.11 * monitoring operations.
26 jsr166 1.1 *
27 jsr166 1.9 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
28     * ExecutorService} mainly by virtue of employing
29     * <em>work-stealing</em>: all threads in the pool attempt to find and
30 dl 1.78 * execute tasks submitted to the pool and/or created by other active
31     * tasks (eventually blocking waiting for work if none exist). This
32     * enables efficient processing when most tasks spawn other subtasks
33     * (as do most {@code ForkJoinTask}s), as well as when many small
34     * tasks are submitted to the pool from external clients. Especially
35     * when setting <em>asyncMode</em> to true in constructors, {@code
36     * ForkJoinPool}s may also be appropriate for use with event-style
37     * tasks that are never joined.
38 jsr166 1.1 *
39 dl 1.112 * <p>A static {@link #commonPool()} is available and appropriate for
40 dl 1.101 * most applications. The common pool is used by any ForkJoinTask that
41     * is not explicitly submitted to a specified pool. Using the common
42     * pool normally reduces resource usage (its threads are slowly
43     * reclaimed during periods of non-use, and reinstated upon subsequent
44 dl 1.105 * use).
45 dl 1.100 *
46     * <p>For applications that require separate or custom pools, a {@code
47     * ForkJoinPool} may be constructed with a given target parallelism
48 jsr166 1.214 * level; by default, equal to the number of available processors.
49     * The pool attempts to maintain enough active (or available) threads
50     * by dynamically adding, suspending, or resuming internal worker
51 jsr166 1.187 * threads, even if some tasks are stalled waiting to join others.
52     * However, no such adjustments are guaranteed in the face of blocked
53     * I/O or other unmanaged synchronization. The nested {@link
54 dl 1.100 * ManagedBlocker} interface enables extension of the kinds of
55 dl 1.18 * synchronization accommodated.
56 jsr166 1.1 *
57     * <p>In addition to execution and lifecycle control methods, this
58     * class provides status check methods (for example
59 jsr166 1.4 * {@link #getStealCount}) that are intended to aid in developing,
60 jsr166 1.1 * tuning, and monitoring fork/join applications. Also, method
61 jsr166 1.4 * {@link #toString} returns indications of pool state in a
62 jsr166 1.1 * convenient form for informal monitoring.
63     *
64 jsr166 1.109 * <p>As is the case with other ExecutorServices, there are three
65 jsr166 1.84 * main task execution methods summarized in the following table.
66     * These are designed to be used primarily by clients not already
67     * engaged in fork/join computations in the current pool. The main
68     * forms of these methods accept instances of {@code ForkJoinTask},
69     * but overloaded forms also allow mixed execution of plain {@code
70     * Runnable}- or {@code Callable}- based activities as well. However,
71     * tasks that are already executing in a pool should normally instead
72     * use the within-computation forms listed in the table unless using
73     * async event-style tasks that are not usually joined, in which case
74     * there is little difference among choice of methods.
75 dl 1.18 *
76     * <table BORDER CELLPADDING=3 CELLSPACING=1>
77 jsr166 1.159 * <caption>Summary of task execution methods</caption>
78 dl 1.18 * <tr>
79     * <td></td>
80     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
81     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
82     * </tr>
83     * <tr>
84 jsr166 1.153 * <td> <b>Arrange async execution</b></td>
85 dl 1.18 * <td> {@link #execute(ForkJoinTask)}</td>
86     * <td> {@link ForkJoinTask#fork}</td>
87     * </tr>
88     * <tr>
89 jsr166 1.153 * <td> <b>Await and obtain result</b></td>
90 dl 1.18 * <td> {@link #invoke(ForkJoinTask)}</td>
91     * <td> {@link ForkJoinTask#invoke}</td>
92     * </tr>
93     * <tr>
94 jsr166 1.153 * <td> <b>Arrange exec and obtain Future</b></td>
95 dl 1.18 * <td> {@link #submit(ForkJoinTask)}</td>
96     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
97     * </tr>
98     * </table>
99 dl 1.19 *
100 dl 1.105 * <p>The common pool is by default constructed with default
101 jsr166 1.155 * parameters, but these may be controlled by setting three
102 jsr166 1.162 * {@linkplain System#getProperty system properties}:
103     * <ul>
104     * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
105     * - the parallelism level, a non-negative integer
106     * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
107     * - the class name of a {@link ForkJoinWorkerThreadFactory}
108     * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
109     * - the class name of a {@link UncaughtExceptionHandler}
110 dl 1.208 * <li>{@code java.util.concurrent.ForkJoinPool.common.maximumSpares}
111 dl 1.223 * - the maximum number of allowed extra threads to maintain target
112 dl 1.208 * parallelism (default 256).
113 jsr166 1.162 * </ul>
114 dl 1.197 * If a {@link SecurityManager} is present and no factory is
115     * specified, then the default pool uses a factory supplying
116     * threads that have no {@link Permissions} enabled.
117 jsr166 1.165 * The system class loader is used to load these classes.
118 jsr166 1.156 * Upon any error in establishing these settings, default parameters
119 dl 1.160 * are used. It is possible to disable or limit the use of threads in
120     * the common pool by setting the parallelism property to zero, and/or
121 dl 1.193 * using a factory that may return {@code null}. However doing so may
122     * cause unjoined tasks to never be executed.
123 dl 1.105 *
124 jsr166 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
125     * maximum number of running threads to 32767. Attempts to create
126 jsr166 1.11 * pools with greater than the maximum number result in
127 jsr166 1.8 * {@code IllegalArgumentException}.
128 jsr166 1.1 *
129 jsr166 1.11 * <p>This implementation rejects submitted tasks (that is, by throwing
130 dl 1.19 * {@link RejectedExecutionException}) only when the pool is shut down
131 dl 1.20 * or internal resources have been exhausted.
132 jsr166 1.11 *
133 jsr166 1.1 * @since 1.7
134     * @author Doug Lea
135     */
136 jsr166 1.171 @sun.misc.Contended
137 jsr166 1.1 public class ForkJoinPool extends AbstractExecutorService {
138    
139     /*
140 dl 1.14 * Implementation Overview
141     *
142 dl 1.78 * This class and its nested classes provide the main
143     * functionality and control for a set of worker threads:
144 jsr166 1.84 * Submissions from non-FJ threads enter into submission queues.
145     * Workers take these tasks and typically split them into subtasks
146     * that may be stolen by other workers. Preference rules give
147     * first priority to processing tasks from their own queues (LIFO
148     * or FIFO, depending on mode), then to randomized FIFO steals of
149 dl 1.200 * tasks in other queues. This framework began as vehicle for
150     * supporting tree-structured parallelism using work-stealing.
151     * Over time, its scalability advantages led to extensions and
152 dl 1.208 * changes to better support more diverse usage contexts. Because
153     * most internal methods and nested classes are interrelated,
154     * their main rationale and descriptions are presented here;
155     * individual methods and nested classes contain only brief
156     * comments about details.
157 dl 1.78 *
158 jsr166 1.84 * WorkQueues
159 dl 1.78 * ==========
160     *
161     * Most operations occur within work-stealing queues (in nested
162     * class WorkQueue). These are special forms of Deques that
163     * support only three of the four possible end-operations -- push,
164     * pop, and poll (aka steal), under the further constraints that
165     * push and pop are called only from the owning thread (or, as
166     * extended here, under a lock), while poll may be called from
167     * other threads. (If you are unfamiliar with them, you probably
168     * want to read Herlihy and Shavit's book "The Art of
169     * Multiprocessor programming", chapter 16 describing these in
170     * more detail before proceeding.) The main work-stealing queue
171     * design is roughly similar to those in the papers "Dynamic
172     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
173     * (http://research.sun.com/scalable/pubs/index.html) and
174     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
175     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
176 dl 1.200 * The main differences ultimately stem from GC requirements that
177     * we null out taken slots as soon as we can, to maintain as small
178     * a footprint as possible even in programs generating huge
179     * numbers of tasks. To accomplish this, we shift the CAS
180     * arbitrating pop vs poll (steal) from being on the indices
181     * ("base" and "top") to the slots themselves.
182     *
183 dl 1.243 * Adding tasks then takes the form of a classic array push(task)
184     * in a circular buffer:
185     * q.array[q.top++ % length] = task;
186 dl 1.200 *
187     * (The actual code needs to null-check and size-check the array,
188 jsr166 1.247 * uses masking, not mod, for indexing a power-of-two-sized array,
189 dl 1.243 * properly fences accesses, and possibly signals waiting workers
190     * to start scanning -- see below.) Both a successful pop and
191     * poll mainly entail a CAS of a slot from non-null to null.
192 dl 1.200 *
193 jsr166 1.202 * The pop operation (always performed by owner) is:
194 dl 1.243 * if ((the task at top slot is not null) and
195 dl 1.200 * (CAS slot to null))
196     * decrement top and return task;
197     *
198     * And the poll operation (usually by a stealer) is
199 dl 1.243 * if ((the task at base slot is not null) and
200 dl 1.200 * (CAS slot to null))
201     * increment base and return task;
202     *
203 dl 1.243 * There are several variants of each of these; for example most
204 jsr166 1.247 * versions of poll pre-screen the CAS by rechecking that the base
205 dl 1.243 * has not changed since reading the slot, and most methods only
206     * attempt the CAS if base appears not to be equal to top.
207     *
208     * Memory ordering. See "Correct and Efficient Work-Stealing for
209     * Weak Memory Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
210     * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
211     * analysis of memory ordering requirements in work-stealing
212     * algorithms similar to (but different than) the one used here.
213     * Extracting tasks in array slots via (fully fenced) CAS provides
214     * primary synchronization. The base and top indices imprecisely
215     * guide where to extract from. We do not always require strict
216     * orderings of array and index updates, so sometimes let them be
217     * subject to compiler and processor reorderings. However, the
218     * volatile "base" index also serves as a basis for memory
219     * ordering: Slot accesses are preceded by a read of base,
220 jsr166 1.247 * ensuring happens-before ordering with respect to stealers (so
221 dl 1.243 * the slots themselves can be read via plain array reads.) The
222     * only other memory orderings relied on are maintained in the
223     * course of signalling and activation (see below). A check that
224     * base == top indicates (momentary) emptiness, but otherwise may
225     * err on the side of possibly making the queue appear nonempty
226     * when a push, pop, or poll have not fully committed, or making
227     * it appear empty when an update of top has not yet been visibly
228     * written. (Method isEmpty() checks the case of a partially
229 dl 1.211 * completed removal of the last element.) Because of this, the
230     * poll operation, considered individually, is not wait-free. One
231     * thief cannot successfully continue until another in-progress
232 dl 1.243 * one (or, if previously empty, a push) visibly completes.
233     * However, in the aggregate, we ensure at least probabilistic
234     * non-blockingness. If an attempted steal fails, a scanning
235     * thief chooses a different random victim target to try next. So,
236     * in order for one thief to progress, it suffices for any
237 dl 1.205 * in-progress poll or new push on any empty queue to
238     * complete. (This is why we normally use method pollAt and its
239     * variants that try once at the apparent base index, else
240     * consider alternative actions, rather than method poll, which
241     * retries.)
242 dl 1.200 *
243     * This approach also enables support of a user mode in which
244     * local task processing is in FIFO, not LIFO order, simply by
245     * using poll rather than pop. This can be useful in
246     * message-passing frameworks in which tasks are never joined.
247 dl 1.78 *
248     * WorkQueues are also used in a similar way for tasks submitted
249     * to the pool. We cannot mix these tasks in the same queues used
250 dl 1.200 * by workers. Instead, we randomly associate submission queues
251 dl 1.83 * with submitting threads, using a form of hashing. The
252 dl 1.139 * ThreadLocalRandom probe value serves as a hash code for
253     * choosing existing queues, and may be randomly repositioned upon
254     * contention with other submitters. In essence, submitters act
255     * like workers except that they are restricted to executing local
256     * tasks that they submitted (or in the case of CountedCompleters,
257 dl 1.200 * others with the same root task). Insertion of tasks in shared
258 dl 1.243 * mode requires a lock but we use only a simple spinlock (using
259     * field qlock), because submitters encountering a busy queue move
260     * on to try or create other queues -- they block only when
261     * creating and registering new queues. Because it is used only as
262     * a spinlock, unlocking requires only a "releasing" store (using
263     * putOrderedInt). The qlock is also used during termination
264 jsr166 1.247 * detection, in which case it is forced to a negative
265 dl 1.243 * nonlockable value.
266 dl 1.78 *
267 jsr166 1.84 * Management
268 dl 1.78 * ==========
269 dl 1.52 *
270     * The main throughput advantages of work-stealing stem from
271     * decentralized control -- workers mostly take tasks from
272 dl 1.200 * themselves or each other, at rates that can exceed a billion
273     * per second. The pool itself creates, activates (enables
274     * scanning for and running tasks), deactivates, blocks, and
275     * terminates threads, all with minimal central information.
276     * There are only a few properties that we can globally track or
277     * maintain, so we pack them into a small number of variables,
278     * often maintaining atomicity without blocking or locking.
279     * Nearly all essentially atomic control state is held in two
280     * volatile variables that are by far most often read (not
281 dl 1.215 * written) as status and consistency checks. (Also, field
282     * "config" holds unchanging configuration state.)
283 dl 1.78 *
284 dl 1.200 * Field "ctl" contains 64 bits holding information needed to
285     * atomically decide to add, inactivate, enqueue (on an event
286 dl 1.78 * queue), dequeue, and/or re-activate workers. To enable this
287     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
288     * far in excess of normal operating range) to allow ids, counts,
289     * and their negations (used for thresholding) to fit into 16bit
290 dl 1.215 * subfields.
291     *
292 dl 1.243 * Field "runState" holds CASed state bits (STARTED, STOP, etc).
293     *
294     * Field "workQueues" holds references to WorkQueues. We need a
295     * lock to create, resize, and install workers in this array. We
296     * opportunistically use the "stealCounter" object as a monitor
297     * protecting access; although it too is lazily initialized (see
298     * tryInitialize) and only exists when runstate is STARTED. The
299     * workQueues array is otherwise concurrently readable, and
300     * accessed directly. We also ensure that reads of the array
301     * reference itself never become too stale (for example,
302     * re-reading before each scan). To simplify index-based
303 dl 1.200 * operations, the array size is always a power of two, and all
304     * readers must tolerate null slots. Worker queues are at odd
305     * indices. Shared (submission) queues are at even indices, up to
306     * a maximum of 64 slots, to limit growth even if array needs to
307     * expand to add more workers. Grouping them together in this way
308     * simplifies and speeds up task scanning.
309 dl 1.86 *
310     * All worker thread creation is on-demand, triggered by task
311     * submissions, replacement of terminated workers, and/or
312 dl 1.78 * compensation for blocked workers. However, all other support
313     * code is set up to work with other policies. To ensure that we
314 dl 1.200 * do not hold on to worker references that would prevent GC, All
315 dl 1.78 * accesses to workQueues are via indices into the workQueues
316     * array (which is one source of some of the messy code
317     * constructions here). In essence, the workQueues array serves as
318 dl 1.200 * a weak reference mechanism. Thus for example the stack top
319     * subfield of ctl stores indices, not references.
320     *
321     * Queuing Idle Workers. Unlike HPC work-stealing frameworks, we
322     * cannot let workers spin indefinitely scanning for tasks when
323     * none can be found immediately, and we cannot start/resume
324     * workers unless there appear to be tasks available. On the
325     * other hand, we must quickly prod them into action when new
326     * tasks are submitted or generated. In many usages, ramp-up time
327     * to activate workers is the main limiting factor in overall
328     * performance, which is compounded at program start-up by JIT
329     * compilation and allocation. So we streamline this as much as
330     * possible.
331     *
332     * The "ctl" field atomically maintains active and total worker
333     * counts as well as a queue to place waiting threads so they can
334     * be located for signalling. Active counts also play the role of
335     * quiescence indicators, so are decremented when workers believe
336     * that there are no more tasks to execute. The "queue" is
337     * actually a form of Treiber stack. A stack is ideal for
338     * activating threads in most-recently used order. This improves
339     * performance and locality, outweighing the disadvantages of
340     * being prone to contention and inability to release a worker
341 dl 1.243 * unless it is topmost on stack. We block/unblock workers after
342 dl 1.200 * pushing on the idle worker stack (represented by the lower
343     * 32bit subfield of ctl) when they cannot find work. The top
344     * stack state holds the value of the "scanState" field of the
345     * worker: its index and status, plus a version counter that, in
346     * addition to the count subfields (also serving as version
347     * stamps) provide protection against Treiber stack ABA effects.
348     *
349     * Creating workers. To create a worker, we pre-increment total
350     * count (serving as a reservation), and attempt to construct a
351     * ForkJoinWorkerThread via its factory. Upon construction, the
352     * new thread invokes registerWorker, where it constructs a
353     * WorkQueue and is assigned an index in the workQueues array
354     * (expanding the array if necessary). The thread is then
355     * started. Upon any exception across these steps, or null return
356     * from factory, deregisterWorker adjusts counts and records
357     * accordingly. If a null return, the pool continues running with
358     * fewer than the target number workers. If exceptional, the
359     * exception is propagated, generally to some external caller.
360     * Worker index assignment avoids the bias in scanning that would
361     * occur if entries were sequentially packed starting at the front
362     * of the workQueues array. We treat the array as a simple
363     * power-of-two hash table, expanding as needed. The seedIndex
364     * increment ensures no collisions until a resize is needed or a
365     * worker is deregistered and replaced, and thereafter keeps
366 jsr166 1.202 * probability of collision low. We cannot use
367 dl 1.200 * ThreadLocalRandom.getProbe() for similar purposes here because
368     * the thread has not started yet, but do so for creating
369 dl 1.243 * submission queues for existing external threads (see
370     * externalPush).
371     *
372     * WorkQueue field scanState is used by both workers and the pool
373     * to manage and track whether a worker is UNSIGNALLED (possibly
374     * blocked waiting for a signal). When a worker is inactivated,
375     * its scanState field is set, and is prevented from executing
376     * tasks, even though it must scan once for them to avoid queuing
377     * races. Note that scanState updates lag queue CAS releases so
378     * usage requires care. When queued, the lower 16 bits of
379     * scanState must hold its pool index. So we place the index there
380     * upon initialization (see registerWorker) and otherwise keep it
381     * there or restore it when necessary.
382     *
383     * The ctl field also serves as the basis for memory
384     * synchronization surrounding activation. This uses a more
385     * efficient version of a Dekker-like rule that task producers and
386     * consumers sync with each other by both writing/CASing ctl (even
387 dl 1.253 * if to its current value). This would be extremely costly. So
388     * we relax it in several ways: (1) Producers only signal when
389     * their queue is empty. Other workers propagate this signal (in
390     * method scan) when they find tasks. (2) Workers only enqueue
391     * after scanning (see below) and not finding any tasks. (3)
392     * Rather than CASing ctl to its current value in the common case
393     * where no action is required, we reduce write contention by
394     * equivalently prefacing signalWork when called by an external
395     * task producer using a memory access with full-volatile
396     * semantics (alternatively, a "fullFence" could be used). (4) For
397     * internal task producers we rely on the fact that even if no
398     * other workers awaken, the producer itself will eventually see
399     * the task and execute it.
400 dl 1.243 *
401 jsr166 1.249 * Almost always, too many signals are issued. A task producer
402 dl 1.243 * cannot in general tell if some existing worker is in the midst
403     * of finishing one task (or already scanning) and ready to take
404     * another without being signalled. So the producer might instead
405     * activate a different worker that does not find any work, and
406     * then inactivates. This scarcely matters in steady-state
407     * computations involving all workers, but can create contention
408 jsr166 1.247 * and bookkeeping bottlenecks during ramp-up, ramp-down, and small
409 dl 1.243 * computations involving only a few workers.
410     *
411     * Scanning. Method scan() performs top-level scanning for tasks.
412     * Each scan traverses (and tries to poll from) each queue in
413     * pseudorandom permutation order by randomly selecting an origin
414     * index and a step value. (The pseudorandom generator need not
415     * have high-quality statistical properties in the long term, but
416     * just within computations; We use 64bit and 32bit Marsaglia
417     * XorShifts, which are cheap and suffice here.) Scanning also
418     * employs contention reduction: When scanning workers fail a CAS
419     * polling for work, they soon restart with a different
420     * pseudorandom scan order (thus likely retrying at different
421     * intervals). This improves throughput when many threads are
422     * trying to take tasks from few queues. Scans do not otherwise
423     * explicitly take into account core affinities, loads, cache
424     * localities, etc, However, they do exploit temporal locality
425 dl 1.253 * (which usually approximates these) by preferring to re-poll (up
426     * to POLL_LIMIT times) from the same queue after a successful
427     * poll before trying others. Restricted forms of scanning occur
428     * in methods helpComplete and findNonEmptyStealQueue, and take
429     * similar but simpler forms.
430 dl 1.200 *
431 jsr166 1.202 * Deactivation and waiting. Queuing encounters several intrinsic
432 dl 1.243 * races; most notably that a inactivating scanning worker can
433     * miss seeing a task produced during a scan. So when a worker
434     * cannot find a task to steal, it inactivates and enqueues, and
435     * then rescans to ensure that it didn't miss one, reactivating
436     * upon seeing one with probability approximately proportional to
437     * probability of a miss. (In most cases, the worker will be
438     * signalled before self-signalling, avoiding cascades of multiple
439     * signals for the same task).
440     *
441     * Workers block (in method awaitWork) using park/unpark;
442     * advertising the need for signallers to unpark by setting their
443     * "parker" fields.
444 dl 1.52 *
445     * Trimming workers. To release resources after periods of lack of
446     * use, a worker starting to wait when the pool is quiescent will
447 dl 1.208 * time out and terminate (see awaitWork) if the pool has remained
448     * quiescent for period IDLE_TIMEOUT, increasing the period as the
449     * number of threads decreases, eventually removing all workers.
450 dl 1.52 *
451 dl 1.210 * Shutdown and Termination. A call to shutdownNow invokes
452     * tryTerminate to atomically set a runState bit. The calling
453     * thread, as well as every other worker thereafter terminating,
454     * helps terminate others by setting their (qlock) status,
455     * cancelling their unprocessed tasks, and waking them up, doing
456     * so repeatedly until stable (but with a loop bounded by the
457     * number of workers). Calls to non-abrupt shutdown() preface
458     * this by checking whether termination should commence. This
459     * relies primarily on the active count bits of "ctl" maintaining
460 jsr166 1.212 * consensus -- tryTerminate is called from awaitWork whenever
461 dl 1.211 * quiescent. However, external submitters do not take part in
462     * this consensus. So, tryTerminate sweeps through queues (until
463     * stable) to ensure lack of in-flight submissions and workers
464 dl 1.210 * about to process them before triggering the "STOP" phase of
465 dl 1.211 * termination. (Note: there is an intrinsic conflict if
466     * helpQuiescePool is called when shutdown is enabled. Both wait
467 jsr166 1.212 * for quiescence, but tryTerminate is biased to not trigger until
468 dl 1.211 * helpQuiescePool completes.)
469     *
470 jsr166 1.84 * Joining Tasks
471     * =============
472 dl 1.78 *
473     * Any of several actions may be taken when one worker is waiting
474 jsr166 1.84 * to join a task stolen (or always held) by another. Because we
475 dl 1.78 * are multiplexing many tasks on to a pool of workers, we can't
476     * just let them block (as in Thread.join). We also cannot just
477     * reassign the joiner's run-time stack with another and replace
478     * it later, which would be a form of "continuation", that even if
479 dl 1.200 * possible is not necessarily a good idea since we may need both
480     * an unblocked task and its continuation to progress. Instead we
481     * combine two tactics:
482 dl 1.19 *
483     * Helping: Arranging for the joiner to execute some task that it
484 dl 1.78 * would be running if the steal had not occurred.
485 dl 1.19 *
486     * Compensating: Unless there are already enough live threads,
487 dl 1.78 * method tryCompensate() may create or re-activate a spare
488     * thread to compensate for blocked joiners until they unblock.
489     *
490 dl 1.105 * A third form (implemented in tryRemoveAndExec) amounts to
491     * helping a hypothetical compensator: If we can readily tell that
492     * a possible action of a compensator is to steal and execute the
493     * task being joined, the joining thread can do so directly,
494     * without the need for a compensation thread (although at the
495     * expense of larger run-time stacks, but the tradeoff is
496     * typically worthwhile).
497 dl 1.52 *
498     * The ManagedBlocker extension API can't use helping so relies
499     * only on compensation in method awaitBlocker.
500 dl 1.19 *
501 dl 1.200 * The algorithm in helpStealer entails a form of "linear
502     * helping". Each worker records (in field currentSteal) the most
503     * recent task it stole from some other worker (or a submission).
504     * It also records (in field currentJoin) the task it is currently
505     * actively joining. Method helpStealer uses these markers to try
506     * to find a worker to help (i.e., steal back a task from and
507     * execute it) that could hasten completion of the actively joined
508     * task. Thus, the joiner executes a task that would be on its
509     * own local deque had the to-be-joined task not been stolen. This
510     * is a conservative variant of the approach described in Wagner &
511 dl 1.78 * Calder "Leapfrogging: a portable technique for implementing
512     * efficient futures" SIGPLAN Notices, 1993
513     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
514     * that: (1) We only maintain dependency links across workers upon
515     * steals, rather than use per-task bookkeeping. This sometimes
516 dl 1.90 * requires a linear scan of workQueues array to locate stealers,
517     * but often doesn't because stealers leave hints (that may become
518 dl 1.112 * stale/wrong) of where to locate them. It is only a hint
519     * because a worker might have had multiple steals and the hint
520     * records only one of them (usually the most current). Hinting
521     * isolates cost to when it is needed, rather than adding to
522     * per-task overhead. (2) It is "shallow", ignoring nesting and
523     * potentially cyclic mutual steals. (3) It is intentionally
524 dl 1.78 * racy: field currentJoin is updated only while actively joining,
525     * which means that we miss links in the chain during long-lived
526     * tasks, GC stalls etc (which is OK since blocking in such cases
527     * is usually a good idea). (4) We bound the number of attempts
528 dl 1.200 * to find work using checksums and fall back to suspending the
529 dl 1.90 * worker and if necessary replacing it with another.
530 dl 1.78 *
531 dl 1.200 * Helping actions for CountedCompleters do not require tracking
532     * currentJoins: Method helpComplete takes and executes any task
533 jsr166 1.202 * with the same root as the task being waited on (preferring
534     * local pops to non-local polls). However, this still entails
535     * some traversal of completer chains, so is less efficient than
536     * using CountedCompleters without explicit joins.
537 dl 1.105 *
538 dl 1.200 * Compensation does not aim to keep exactly the target
539     * parallelism number of unblocked threads running at any given
540     * time. Some previous versions of this class employed immediate
541     * compensations for any blocked join. However, in practice, the
542     * vast majority of blockages are transient byproducts of GC and
543     * other JVM or OS activities that are made worse by replacement.
544     * Currently, compensation is attempted only after validating that
545     * all purportedly active threads are processing tasks by checking
546     * field WorkQueue.scanState, which eliminates most false
547     * positives. Also, compensation is bypassed (tolerating fewer
548     * threads) in the most common case in which it is rarely
549     * beneficial: when a worker with an empty queue (thus no
550     * continuation tasks) blocks on a join and there still remain
551 dl 1.208 * enough threads to ensure liveness.
552 dl 1.105 *
553 dl 1.243 * Spare threads are removed as soon as they notice that the
554     * target parallelism level has been exceeded, in method
555     * tryDropSpare. (Method scan arranges returns for rechecks upon
556 jsr166 1.247 * each probe via the "bound" parameter.)
557 dl 1.243 *
558 dl 1.211 * The compensation mechanism may be bounded. Bounds for the
559     * commonPool (see commonMaxSpares) better enable JVMs to cope
560 dl 1.208 * with programming errors and abuse before running out of
561     * resources to do so. In other cases, users may supply factories
562     * that limit thread construction. The effects of bounding in this
563     * pool (like all others) is imprecise. Total worker counts are
564     * decremented when threads deregister, not when they exit and
565     * resources are reclaimed by the JVM and OS. So the number of
566     * simultaneously live threads may transiently exceed bounds.
567 dl 1.205 *
568 dl 1.105 * Common Pool
569     * ===========
570     *
571 jsr166 1.175 * The static common pool always exists after static
572 dl 1.105 * initialization. Since it (or any other created pool) need
573     * never be used, we minimize initial construction overhead and
574     * footprint to the setup of about a dozen fields, with no nested
575     * allocation. Most bootstrapping occurs within method
576 dl 1.200 * externalSubmit during the first submission to the pool.
577 dl 1.105 *
578     * When external threads submit to the common pool, they can
579 dl 1.200 * perform subtask processing (see externalHelpComplete and
580     * related methods) upon joins. This caller-helps policy makes it
581     * sensible to set common pool parallelism level to one (or more)
582     * less than the total number of available cores, or even zero for
583     * pure caller-runs. We do not need to record whether external
584     * submissions are to the common pool -- if not, external help
585     * methods return quickly. These submitters would otherwise be
586     * blocked waiting for completion, so the extra effort (with
587     * liberally sprinkled task status checks) in inapplicable cases
588     * amounts to an odd form of limited spin-wait before blocking in
589     * ForkJoinTask.join.
590 dl 1.105 *
591 dl 1.197 * As a more appropriate default in managed environments, unless
592     * overridden by system properties, we use workers of subclass
593     * InnocuousForkJoinWorkerThread when there is a SecurityManager
594     * present. These workers have no permissions set, do not belong
595     * to any user-defined ThreadGroup, and erase all ThreadLocals
596 dl 1.200 * after executing any top-level task (see WorkQueue.runTask).
597     * The associated mechanics (mainly in ForkJoinWorkerThread) may
598     * be JVM-dependent and must access particular Thread class fields
599     * to achieve this effect.
600 jsr166 1.198 *
601 dl 1.105 * Style notes
602     * ===========
603     *
604 dl 1.200 * Memory ordering relies mainly on Unsafe intrinsics that carry
605     * the further responsibility of explicitly performing null- and
606     * bounds- checks otherwise carried out implicitly by JVMs. This
607     * can be awkward and ugly, but also reflects the need to control
608     * outcomes across the unusual cases that arise in very racy code
609     * with very few invariants. So these explicit checks would exist
610     * in some form anyway. All fields are read into locals before
611     * use, and null-checked if they are references. This is usually
612     * done in a "C"-like style of listing declarations at the heads
613     * of methods or blocks, and using inline assignments on first
614     * encounter. Array bounds-checks are usually performed by
615     * masking with array.length-1, which relies on the invariant that
616     * these arrays are created with positive lengths, which is itself
617     * paranoically checked. Nearly all explicit checks lead to
618     * bypass/return, not exception throws, because they may
619     * legitimately arise due to cancellation/revocation during
620     * shutdown.
621     *
622 dl 1.105 * There is a lot of representation-level coupling among classes
623     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
624     * fields of WorkQueue maintain data structures managed by
625     * ForkJoinPool, so are directly accessed. There is little point
626     * trying to reduce this, since any associated future changes in
627     * representations will need to be accompanied by algorithmic
628     * changes anyway. Several methods intrinsically sprawl because
629 dl 1.200 * they must accumulate sets of consistent reads of fields held in
630     * local variables. There are also other coding oddities
631     * (including several unnecessary-looking hoisted null checks)
632     * that help some methods perform reasonably even when interpreted
633     * (not compiled).
634 dl 1.52 *
635 dl 1.208 * The order of declarations in this file is (with a few exceptions):
636 dl 1.86 * (1) Static utility functions
637     * (2) Nested (static) classes
638     * (3) Static fields
639     * (4) Fields, along with constants used when unpacking some of them
640     * (5) Internal control methods
641     * (6) Callbacks and other support for ForkJoinTask methods
642     * (7) Exported methods
643     * (8) Static block initializing statics in minimally dependent order
644     */
645    
646     // Static utilities
647    
648     /**
649     * If there is a security manager, makes sure caller has
650     * permission to modify threads.
651 jsr166 1.1 */
652 dl 1.86 private static void checkPermission() {
653     SecurityManager security = System.getSecurityManager();
654     if (security != null)
655     security.checkPermission(modifyThreadPermission);
656     }
657    
658     // Nested classes
659 jsr166 1.1
660     /**
661 jsr166 1.8 * Factory for creating new {@link ForkJoinWorkerThread}s.
662     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
663     * for {@code ForkJoinWorkerThread} subclasses that extend base
664     * functionality or initialize threads with different contexts.
665 jsr166 1.1 */
666     public static interface ForkJoinWorkerThreadFactory {
667     /**
668     * Returns a new worker thread operating in the given pool.
669     *
670     * @param pool the pool this thread works in
671 jsr166 1.192 * @return the new worker thread
672 jsr166 1.11 * @throws NullPointerException if the pool is null
673 jsr166 1.1 */
674     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
675     }
676    
677     /**
678     * Default ForkJoinWorkerThreadFactory implementation; creates a
679     * new ForkJoinWorkerThread.
680     */
681 dl 1.112 static final class DefaultForkJoinWorkerThreadFactory
682 jsr166 1.1 implements ForkJoinWorkerThreadFactory {
683 dl 1.112 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
684 dl 1.14 return new ForkJoinWorkerThread(pool);
685 jsr166 1.1 }
686     }
687    
688     /**
689 dl 1.86 * Class for artificial tasks that are used to replace the target
690     * of local joins if they are removed from an interior queue slot
691     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
692     * actually do anything beyond having a unique identity.
693 jsr166 1.1 */
694 dl 1.86 static final class EmptyTask extends ForkJoinTask<Void> {
695 dl 1.105 private static final long serialVersionUID = -7721805057305804111L;
696 dl 1.86 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
697     public final Void getRawResult() { return null; }
698     public final void setRawResult(Void x) {}
699     public final boolean exec() { return true; }
700 jsr166 1.1 }
701    
702 dl 1.200 // Constants shared across ForkJoinPool and WorkQueue
703    
704     // Bounds
705     static final int SMASK = 0xffff; // short bits == max index
706     static final int MAX_CAP = 0x7fff; // max #workers - 1
707     static final int EVENMASK = 0xfffe; // even short bits
708     static final int SQMASK = 0x007e; // max 64 (even) slots
709    
710     // Masks and units for WorkQueue.scanState and ctl sp subfield
711 dl 1.243 static final int UNSIGNALLED = 1 << 31; // must be negative
712 dl 1.211 static final int SS_SEQ = 1 << 16; // version count
713 dl 1.200
714     // Mode bits for ForkJoinPool.config and WorkQueue.config
715 dl 1.211 static final int MODE_MASK = 0xffff << 16; // top half of int
716 dl 1.243 static final int SPARE_WORKER = 1 << 17; // set if tc > 0 on creation
717     static final int UNREGISTERED = 1 << 18; // to skip some of deregister
718     static final int FIFO_QUEUE = 1 << 31; // must be negative
719     static final int LIFO_QUEUE = 0; // for clarity
720     static final int IS_OWNED = 1; // low bit 0 if shared
721 dl 1.225
722 jsr166 1.1 /**
723 dl 1.253 * The maximum number of task executions from the same queue
724     * before checking other queues, bounding unfairness and impact of
725     * infinite user task recursion. Must be a power of two minus 1.
726     */
727     static final int POLL_LIMIT = (1 << 10) - 1;
728    
729     /**
730 dl 1.78 * Queues supporting work-stealing as well as external task
731 jsr166 1.202 * submission. See above for descriptions and algorithms.
732 dl 1.78 * Performance on most platforms is very sensitive to placement of
733     * instances of both WorkQueues and their arrays -- we absolutely
734     * do not want multiple WorkQueue instances or multiple queue
735 dl 1.200 * arrays sharing cache lines. The @Contended annotation alerts
736     * JVMs to try to keep instances apart.
737 dl 1.78 */
738 jsr166 1.171 @sun.misc.Contended
739 dl 1.78 static final class WorkQueue {
740 dl 1.200
741 dl 1.78 /**
742     * Capacity of work-stealing queue array upon initialization.
743 dl 1.90 * Must be a power of two; at least 4, but should be larger to
744     * reduce or eliminate cacheline sharing among queues.
745     * Currently, it is much larger, as a partial workaround for
746     * the fact that JVMs often place arrays in locations that
747     * share GC bookkeeping (especially cardmarks) such that
748     * per-write accesses encounter serious memory contention.
749 dl 1.78 */
750 dl 1.90 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
751 dl 1.78
752     /**
753     * Maximum size for queue arrays. Must be a power of two less
754     * than or equal to 1 << (31 - width of array entry) to ensure
755     * lack of wraparound of index calculations, but defined to a
756     * value a bit less than this to help users trap runaway
757     * programs before saturating systems.
758     */
759     static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
760    
761 dl 1.200 // Instance fields
762 dl 1.255
763 dl 1.243 volatile int scanState; // versioned, negative if inactive
764 dl 1.200 int stackPred; // pool stack (ctl) predecessor
765 dl 1.178 int nsteals; // number of steals
766 dl 1.200 int hint; // randomization and stealer index hint
767     int config; // pool index and mode
768     volatile int qlock; // 1: locked, < 0: terminate; else 0
769 dl 1.78 volatile int base; // index of next slot for poll
770     int top; // index of next slot for push
771     ForkJoinTask<?>[] array; // the elements (initially unallocated)
772 dl 1.90 final ForkJoinPool pool; // the containing pool (may be null)
773 dl 1.78 final ForkJoinWorkerThread owner; // owning thread or null if shared
774     volatile Thread parker; // == owner during call to park; else null
775 dl 1.95 volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
776 dl 1.255 @sun.misc.Contended("group2") // separate from other fields
777     volatile ForkJoinTask<?> currentSteal; // nonnull when running some task
778 dl 1.112
779 dl 1.200 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner) {
780 dl 1.90 this.pool = pool;
781 dl 1.78 this.owner = owner;
782 dl 1.115 // Place indices in the center of array (that is not yet allocated)
783 dl 1.78 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
784     }
785    
786     /**
787 jsr166 1.220 * Returns an exportable index (used by ForkJoinWorkerThread).
788 dl 1.200 */
789     final int getPoolIndex() {
790     return (config & 0xffff) >>> 1; // ignore odd/even tag bit
791     }
792    
793     /**
794 dl 1.115 * Returns the approximate number of tasks in the queue.
795     */
796     final int queueSize() {
797 dl 1.243 int n = base - top; // read base first
798 dl 1.115 return (n >= 0) ? 0 : -n; // ignore transient negative
799     }
800    
801 jsr166 1.180 /**
802 dl 1.115 * Provides a more accurate estimate of whether this queue has
803     * any tasks than does queueSize, by checking whether a
804     * near-empty queue has at least one unclaimed task.
805     */
806     final boolean isEmpty() {
807 dl 1.225 ForkJoinTask<?>[] a; int n, al, s;
808 dl 1.243 return ((n = base - (s = top)) >= 0 || // possibly one task
809     (n == -1 && ((a = array) == null ||
810     (al = a.length) == 0 ||
811     a[(al - 1) & (s - 1)] == null)));
812 dl 1.115 }
813    
814     /**
815     * Pushes a task. Call only by owner in unshared queues. (The
816     * shared-queue version is embedded in method externalPush.)
817 dl 1.78 *
818     * @param task the task. Caller must ensure non-null.
819 jsr166 1.146 * @throws RejectedExecutionException if array cannot be resized
820 dl 1.78 */
821 dl 1.90 final void push(ForkJoinTask<?> task) {
822 dl 1.243 int b = base, s = top, al, d; ForkJoinTask<?>[] a;
823     if ((a = array) != null && (al = a.length) > 0) {
824     a[(al - 1) & s] = task; // relaxed writes OK
825     top = s + 1;
826     ForkJoinPool p = pool;
827 dl 1.253 U.storeFence(); // ensure fields written before use
828 dl 1.243 if ((d = b - s) == 0 && p != null)
829 dl 1.253 p.signalWork();
830     else if (al + d == 1)
831 dl 1.243 growArray();
832 dl 1.78 }
833     }
834    
835 dl 1.178 /**
836 dl 1.112 * Initializes or doubles the capacity of array. Call either
837     * by owner or with lock held -- it is OK for base, but not
838     * top, to move while resizings are in progress.
839     */
840     final ForkJoinTask<?>[] growArray() {
841     ForkJoinTask<?>[] oldA = array;
842     int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
843 dl 1.225 if (size < INITIAL_QUEUE_CAPACITY || size > MAXIMUM_QUEUE_CAPACITY)
844 dl 1.112 throw new RejectedExecutionException("Queue capacity exceeded");
845     int oldMask, t, b;
846     ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
847 dl 1.225 if (oldA != null && (oldMask = oldA.length - 1) > 0 &&
848 dl 1.112 (t = top) - (b = base) > 0) {
849     int mask = size - 1;
850 dl 1.200 do { // emulate poll from old array, push to new array
851 dl 1.243 long offset = ((b & oldMask) << ASHIFT) + ABASE;
852     ForkJoinTask<?> x = (ForkJoinTask<?>)
853     U.getObjectVolatile(oldA, offset);
854     if (x != null &&
855     U.compareAndSwapObject(oldA, offset, x, null))
856     a[b & mask] = x;
857 dl 1.112 } while (++b != t);
858 dl 1.243 U.storeFence();
859 dl 1.78 }
860 dl 1.112 return a;
861 dl 1.78 }
862    
863     /**
864 dl 1.90 * Takes next task, if one exists, in LIFO order. Call only
865 dl 1.102 * by owner in unshared queues.
866 dl 1.90 */
867     final ForkJoinTask<?> pop() {
868 dl 1.243 int b = base, s = top, al, i; ForkJoinTask<?>[] a;
869     if ((a = array) != null && s != b && (al = a.length) > 0) {
870     long offset = (((al - 1) & (s - 1)) << ASHIFT) + ABASE;
871     ForkJoinTask<?> t = (ForkJoinTask<?>)U.getObject(a, offset);
872     if (t != null && U.compareAndSwapObject(a, offset, t, null)) {
873     top = s - 1;
874     U.storeFence();
875     return t;
876 dl 1.90 }
877     }
878     return null;
879     }
880    
881     /**
882     * Takes a task in FIFO order if b is base of queue and a task
883     * can be claimed without contention. Specialized versions
884 dl 1.200 * appear in ForkJoinPool methods scan and helpStealer.
885 dl 1.78 */
886 dl 1.90 final ForkJoinTask<?> pollAt(int b) {
887 dl 1.243 ForkJoinTask<?>[] a; int al;
888     if ((a = array) != null && (al = a.length) > 0) {
889     long offset = (((al - 1) & b) << ASHIFT) + ABASE;
890     ForkJoinTask<?> t = (ForkJoinTask<?>)
891     U.getObjectVolatile(a, offset);
892     if (t != null && b++ == base &&
893     U.compareAndSwapObject(a, offset, t, null)) {
894     base = b;
895 dl 1.78 return t;
896     }
897     }
898     return null;
899     }
900    
901     /**
902 dl 1.90 * Takes next task, if one exists, in FIFO order.
903 dl 1.78 */
904 dl 1.90 final ForkJoinTask<?> poll() {
905 dl 1.243 for (;;) {
906     int b = base, s = top, d, al; ForkJoinTask<?>[] a;
907     if ((a = array) != null && (d = b - s) < 0 &&
908     (al = a.length) > 0) {
909     long offset = (((al - 1) & b) << ASHIFT) + ABASE;
910     ForkJoinTask<?> t = (ForkJoinTask<?>)
911     U.getObjectVolatile(a, offset);
912     if (b++ == base) {
913     if (t != null) {
914     if (U.compareAndSwapObject(a, offset, t, null)) {
915     base = b;
916     return t;
917     }
918 dl 1.200 }
919 dl 1.243 else if (d == -1)
920     break; // now empty
921 dl 1.78 }
922 dl 1.90 }
923 dl 1.243 else
924     break;
925 dl 1.78 }
926     return null;
927     }
928    
929     /**
930     * Takes next task, if one exists, in order specified by mode.
931     */
932     final ForkJoinTask<?> nextLocalTask() {
933 dl 1.243 return (config < 0) ? poll() : pop();
934 dl 1.78 }
935    
936     /**
937     * Returns next task, if one exists, in order specified by mode.
938     */
939     final ForkJoinTask<?> peek() {
940 dl 1.243 int b = base, al; ForkJoinTask<?>[] a;
941     return ((a = array) != null && (al = a.length) > 0) ?
942     a[(al - 1) & (config < 0 ? b : top - 1)] : null;
943 dl 1.78 }
944    
945     /**
946     * Pops the given task only if it is at the current top.
947 jsr166 1.251 */
948 dl 1.243 final boolean tryUnpush(ForkJoinTask<?> task) {
949     int s = top - 1, al; ForkJoinTask<?>[] a;
950     if ((a = array) != null && (al = a.length) > 0) {
951     long offset = (((al - 1) & s) << ASHIFT) + ABASE;
952     if (U.getObject(a, offset) == task &&
953     U.compareAndSwapObject(a, offset, task, null)) {
954     top = s;
955     U.storeFence();
956 dl 1.224 return true;
957     }
958 dl 1.78 }
959     return false;
960     }
961    
962     /**
963 dl 1.243 * Shared version of pop
964 jsr166 1.247 */
965 dl 1.243 final boolean trySharedUnpush(ForkJoinTask<?> task) {
966     ForkJoinTask<?> t;
967     boolean popped = false;
968     int s = top - 1, al; ForkJoinTask<?>[] a;
969     if ((a = array) != null && (al = a.length) > 0) {
970     long offset = (((al - 1) & s) << ASHIFT) + ABASE;
971     if (U.getObject(a, offset) == task &&
972     U.compareAndSwapInt(this, QLOCK, 0, 1)) {
973     if (U.compareAndSwapObject(a, offset, task, null)) {
974     popped = true;
975     top = s;
976     }
977     U.putOrderedInt(this, QLOCK, 0);
978     }
979     }
980     return popped;
981     }
982    
983     /**
984 jsr166 1.84 * Removes and cancels all known tasks, ignoring any exceptions.
985 dl 1.78 */
986     final void cancelAll() {
987 dl 1.200 ForkJoinTask<?> t;
988     if ((t = currentJoin) != null) {
989     currentJoin = null;
990     ForkJoinTask.cancelIgnoringExceptions(t);
991     }
992     if ((t = currentSteal) != null) {
993     currentSteal = null;
994     ForkJoinTask.cancelIgnoringExceptions(t);
995     }
996     while ((t = poll()) != null)
997 dl 1.78 ForkJoinTask.cancelIgnoringExceptions(t);
998     }
999    
1000 dl 1.104 // Specialized execution methods
1001 dl 1.78
1002     /**
1003 jsr166 1.254 * Pops and executes up to POLL_LIMIT tasks or until empty.
1004 dl 1.253 */
1005     final void localPopAndExec() {
1006     for (int nexec = 0;;) {
1007     int b = base, s = top, al; ForkJoinTask<?>[] a;
1008     if ((a = array) != null && b != s && (al = a.length) > 0) {
1009     long offset = (((al - 1) & --s) << ASHIFT) + ABASE;
1010     ForkJoinTask<?> t = (ForkJoinTask<?>)
1011     U.getAndSetObject(a, offset, null);
1012     if (t != null) {
1013     top = s;
1014     (currentSteal = t).doExec();
1015     if (++nexec > POLL_LIMIT)
1016     break;
1017     }
1018     else
1019     break;
1020     }
1021     else
1022     break;
1023     }
1024     }
1025    
1026     /**
1027 jsr166 1.254 * Polls and executes up to POLL_LIMIT tasks or until empty.
1028 dl 1.253 */
1029     final void localPollAndExec() {
1030     for (int nexec = 0;;) {
1031     int b = base, s = top, al; ForkJoinTask<?>[] a;
1032     if ((a = array) != null && b != s && (al = a.length) > 0) {
1033     long offset = (((al - 1) & b++) << ASHIFT) + ABASE;
1034     ForkJoinTask<?> t = (ForkJoinTask<?>)
1035     U.getAndSetObject(a, offset, null);
1036     if (t != null) {
1037     base = b;
1038 dl 1.255 t.doExec();
1039 dl 1.253 if (++nexec > POLL_LIMIT)
1040     break;
1041     }
1042     }
1043     else
1044     break;
1045     }
1046     }
1047    
1048     /**
1049     * Executes the given task and (some) remaining local tasks.
1050 dl 1.94 */
1051 dl 1.178 final void runTask(ForkJoinTask<?> task) {
1052 dl 1.200 if (task != null) {
1053 dl 1.243 task.doExec();
1054 dl 1.253 if (config < 0)
1055     localPollAndExec();
1056     else
1057     localPopAndExec();
1058 dl 1.243 int ns = ++nsteals;
1059 dl 1.200 ForkJoinWorkerThread thread = owner;
1060 dl 1.243 currentSteal = null;
1061     if (ns < 0) // collect on overflow
1062 dl 1.215 transferStealCount(pool);
1063 dl 1.200 if (thread != null)
1064 dl 1.197 thread.afterTopLevelExec();
1065 dl 1.178 }
1066 dl 1.94 }
1067    
1068     /**
1069 dl 1.215 * Adds steal count to pool stealCounter if it exists, and resets.
1070     */
1071     final void transferStealCount(ForkJoinPool p) {
1072     AtomicLong sc;
1073     if (p != null && (sc = p.stealCounter) != null) {
1074     int s = nsteals;
1075     nsteals = 0; // if negative, correct for overflow
1076     sc.getAndAdd((long)(s < 0 ? Integer.MAX_VALUE : s));
1077     }
1078     }
1079    
1080     /**
1081 dl 1.105 * If present, removes from queue and executes the given task,
1082 jsr166 1.213 * or any other cancelled task. Used only by awaitJoin.
1083 dl 1.94 *
1084 jsr166 1.213 * @return true if queue empty and task not known to be done
1085 dl 1.94 */
1086 dl 1.105 final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
1087 dl 1.243 if (task != null && task.status >= 0) {
1088     int b, s, d, al; ForkJoinTask<?>[] a;
1089     while ((d = (b = base) - (s = top)) < 0 &&
1090     (a = array) != null && (al = a.length) > 0) {
1091     for (;;) { // traverse from s to b
1092     int i = --s & (al - 1);
1093     long offset = (i << ASHIFT) + ABASE;
1094     ForkJoinTask<?> t = (ForkJoinTask<?>)
1095     U.getObjectVolatile(a, offset);
1096     if (t == null)
1097     break; // restart
1098 dl 1.200 else if (t == task) {
1099     boolean removed = false;
1100     if (s + 1 == top) { // pop
1101 dl 1.243 if (U.compareAndSwapObject(a, offset, t, null)) {
1102     top = s;
1103     U.storeFence();
1104 dl 1.200 removed = true;
1105     }
1106     }
1107     else if (base == b) // replace with proxy
1108 dl 1.243 removed =
1109     U.compareAndSwapObject(a, offset, t,
1110     new EmptyTask());
1111     if (removed) {
1112     ForkJoinTask<?> ps = currentSteal;
1113     (currentSteal = task).doExec();
1114     currentSteal = ps;
1115     }
1116 dl 1.200 break;
1117 dl 1.90 }
1118 dl 1.200 else if (t.status < 0 && s + 1 == top) {
1119 dl 1.243 if (U.compareAndSwapObject(a, offset, t, null)) {
1120     top = s;
1121     U.storeFence();
1122     }
1123 dl 1.200 break; // was cancelled
1124 dl 1.104 }
1125 dl 1.243 else if (++d == 0) {
1126     if (base != b) // rescan
1127     break;
1128 dl 1.200 return false;
1129 dl 1.243 }
1130 dl 1.104 }
1131 dl 1.200 if (task.status < 0)
1132     return false;
1133 dl 1.104 }
1134     }
1135 dl 1.200 return true;
1136 dl 1.104 }
1137    
1138     /**
1139 dl 1.200 * Pops task if in the same CC computation as the given task,
1140     * in either shared or owned mode. Used only by helpComplete.
1141 dl 1.78 */
1142 dl 1.253 final CountedCompleter<?> popCC(CountedCompleter<?> task, int mode) {
1143 dl 1.243 int b = base, s = top, al; ForkJoinTask<?>[] a;
1144     if ((a = array) != null && b != s && (al = a.length) > 0) {
1145     long offset = (((al - 1) & (s - 1)) << ASHIFT) + ABASE;
1146     Object o = U.getObjectVolatile(a, offset);
1147     if (o instanceof CountedCompleter) {
1148 dl 1.200 CountedCompleter<?> t = (CountedCompleter<?>)o;
1149     for (CountedCompleter<?> r = t;;) {
1150     if (r == task) {
1151 dl 1.253 if ((mode & IS_OWNED) == 0) {
1152 dl 1.243 boolean popped;
1153 dl 1.200 if (U.compareAndSwapInt(this, QLOCK, 0, 1)) {
1154 dl 1.243 if (popped =
1155     U.compareAndSwapObject(a, offset,
1156     t, null))
1157     top = s - 1;
1158     U.putOrderedInt(this, QLOCK, 0);
1159     if (popped)
1160 dl 1.200 return t;
1161 dl 1.178 }
1162     }
1163 dl 1.243 else if (U.compareAndSwapObject(a, offset,
1164     t, null)) {
1165     top = s - 1;
1166     U.storeFence();
1167 dl 1.200 return t;
1168     }
1169     break;
1170 dl 1.178 }
1171 dl 1.200 else if ((r = r.completer) == null) // try parent
1172 dl 1.178 break;
1173     }
1174 dl 1.94 }
1175 dl 1.78 }
1176 dl 1.200 return null;
1177 dl 1.78 }
1178    
1179     /**
1180 dl 1.200 * Steals and runs a task in the same CC computation as the
1181     * given task if one exists and can be taken without
1182     * contention. Otherwise returns a checksum/control value for
1183     * use by method helpComplete.
1184     *
1185     * @return 1 if successful, 2 if retryable (lost to another
1186     * stealer), -1 if non-empty but no matching task found, else
1187     * the base index, forced negative.
1188     */
1189     final int pollAndExecCC(CountedCompleter<?> task) {
1190 dl 1.243 ForkJoinTask<?>[] a;
1191     int b = base, s = top, al, h;
1192     if ((a = array) != null && b != s && (al = a.length) > 0) {
1193     long offset = (((al - 1) & b) << ASHIFT) + ABASE;
1194     Object o = U.getObjectVolatile(a, offset);
1195     if (o == null)
1196     h = 2; // retryable
1197     else if (!(o instanceof CountedCompleter))
1198     h = -1; // unmatchable
1199     else {
1200     CountedCompleter<?> t = (CountedCompleter<?>)o;
1201     for (CountedCompleter<?> r = t;;) {
1202     if (r == task) {
1203     if (b++ == base &&
1204     U.compareAndSwapObject(a, offset, t, null)) {
1205     base = b;
1206     t.doExec();
1207     h = 1; // success
1208     }
1209     else
1210     h = 2; // lost CAS
1211     break;
1212     }
1213     else if ((r = r.completer) == null) {
1214     h = -1; // unmatched
1215     break;
1216 dl 1.200 }
1217 dl 1.178 }
1218     }
1219 dl 1.78 }
1220 dl 1.243 else
1221     h = b | Integer.MIN_VALUE; // to sense movement on re-poll
1222 dl 1.200 return h;
1223 dl 1.78 }
1224    
1225     /**
1226 dl 1.86 * Returns true if owned and not known to be blocked.
1227     */
1228     final boolean isApparentlyUnblocked() {
1229     Thread wt; Thread.State s;
1230 dl 1.200 return (scanState >= 0 &&
1231 dl 1.86 (wt = owner) != null &&
1232     (s = wt.getState()) != Thread.State.BLOCKED &&
1233     s != Thread.State.WAITING &&
1234     s != Thread.State.TIMED_WAITING);
1235     }
1236    
1237 dl 1.211 // Unsafe mechanics. Note that some are (and must be) the same as in FJP
1238 jsr166 1.233 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
1239 dl 1.200 private static final int ABASE;
1240     private static final int ASHIFT;
1241 dl 1.105 private static final long QLOCK;
1242 dl 1.78 static {
1243     try {
1244 dl 1.105 QLOCK = U.objectFieldOffset
1245 jsr166 1.233 (WorkQueue.class.getDeclaredField("qlock"));
1246     ABASE = U.arrayBaseOffset(ForkJoinTask[].class);
1247     int scale = U.arrayIndexScale(ForkJoinTask[].class);
1248 jsr166 1.142 if ((scale & (scale - 1)) != 0)
1249 jsr166 1.232 throw new Error("array index scale not a power of two");
1250 jsr166 1.142 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1251 jsr166 1.231 } catch (ReflectiveOperationException e) {
1252 dl 1.78 throw new Error(e);
1253     }
1254     }
1255     }
1256 dl 1.14
1257 dl 1.112 // static fields (initialized in static initializer below)
1258    
1259     /**
1260     * Creates a new ForkJoinWorkerThread. This factory is used unless
1261     * overridden in ForkJoinPool constructors.
1262     */
1263     public static final ForkJoinWorkerThreadFactory
1264     defaultForkJoinWorkerThreadFactory;
1265    
1266 jsr166 1.1 /**
1267 dl 1.115 * Permission required for callers of methods that may start or
1268     * kill threads.
1269     */
1270     private static final RuntimePermission modifyThreadPermission;
1271    
1272     /**
1273 dl 1.101 * Common (static) pool. Non-null for public use unless a static
1274 dl 1.105 * construction exception, but internal usages null-check on use
1275     * to paranoically avoid potential initialization circularities
1276     * as well as to simplify generated code.
1277 dl 1.101 */
1278 dl 1.134 static final ForkJoinPool common;
1279 dl 1.101
1280     /**
1281 dl 1.160 * Common pool parallelism. To allow simpler use and management
1282     * when common pool threads are disabled, we allow the underlying
1283 dl 1.185 * common.parallelism field to be zero, but in that case still report
1284 dl 1.160 * parallelism as 1 to reflect resulting caller-runs mechanics.
1285 dl 1.90 */
1286 dl 1.134 static final int commonParallelism;
1287 dl 1.90
1288     /**
1289 dl 1.208 * Limit on spare thread construction in tryCompensate.
1290     */
1291     private static int commonMaxSpares;
1292    
1293     /**
1294 dl 1.105 * Sequence number for creating workerNamePrefix.
1295 dl 1.86 */
1296 dl 1.105 private static int poolNumberSequence;
1297 dl 1.86
1298 jsr166 1.1 /**
1299 jsr166 1.132 * Returns the next sequence number. We don't expect this to
1300     * ever contend, so use simple builtin sync.
1301 dl 1.83 */
1302 dl 1.105 private static final synchronized int nextPoolId() {
1303     return ++poolNumberSequence;
1304     }
1305 dl 1.86
1306 dl 1.200 // static configuration constants
1307 dl 1.86
1308     /**
1309 dl 1.243 * Initial timeout value (in milliseconds) for the thread
1310 dl 1.105 * triggering quiescence to park waiting for new work. On timeout,
1311     * the thread will instead try to shrink the number of
1312     * workers. The value should be large enough to avoid overly
1313     * aggressive shrinkage during most transient stalls (long GCs
1314     * etc).
1315 dl 1.86 */
1316 dl 1.243 private static final long IDLE_TIMEOUT_MS = 2000L; // 2sec
1317 dl 1.86
1318     /**
1319 dl 1.120 * Tolerance for idle timeouts, to cope with timer undershoots
1320     */
1321 dl 1.243 private static final long TIMEOUT_SLOP_MS = 20L; // 20ms
1322 dl 1.200
1323     /**
1324 dl 1.208 * The initial value for commonMaxSpares during static
1325     * initialization unless overridden using System property
1326     * "java.util.concurrent.ForkJoinPool.common.maximumSpares". The
1327     * default value is far in excess of normal requirements, but also
1328 dl 1.200 * far short of MAX_CAP and typical OS thread limits, so allows
1329     * JVMs to catch misuse/abuse before running out of resources
1330     * needed to do so.
1331     */
1332 dl 1.208 private static final int DEFAULT_COMMON_MAX_SPARES = 256;
1333 dl 1.120
1334     /**
1335 dl 1.90 * Increment for seed generators. See class ThreadLocal for
1336     * explanation.
1337     */
1338 dl 1.193 private static final int SEED_INCREMENT = 0x9e3779b9;
1339 dl 1.83
1340 jsr166 1.163 /*
1341 dl 1.200 * Bits and masks for field ctl, packed with 4 16 bit subfields:
1342     * AC: Number of active running workers minus target parallelism
1343     * TC: Number of total workers minus target parallelism
1344     * SS: version count and status of top waiting thread
1345     * ID: poolIndex of top of Treiber stack of waiters
1346     *
1347     * When convenient, we can extract the lower 32 stack top bits
1348     * (including version bits) as sp=(int)ctl. The offsets of counts
1349     * by the target parallelism and the positionings of fields makes
1350     * it possible to perform the most common checks via sign tests of
1351     * fields: When ac is negative, there are not enough active
1352     * workers, when tc is negative, there are not enough total
1353     * workers. When sp is non-zero, there are waiting workers. To
1354     * deal with possibly negative fields, we use casts in and out of
1355     * "short" and/or signed shifts to maintain signedness.
1356     *
1357     * Because it occupies uppermost bits, we can add one active count
1358     * using getAndAddLong of AC_UNIT, rather than CAS, when returning
1359     * from a blocked join. Other updates entail multiple subfields
1360     * and masking, requiring CAS.
1361     */
1362    
1363     // Lower and upper word masks
1364     private static final long SP_MASK = 0xffffffffL;
1365     private static final long UC_MASK = ~SP_MASK;
1366 dl 1.86
1367 dl 1.200 // Active counts
1368 dl 1.86 private static final int AC_SHIFT = 48;
1369 dl 1.200 private static final long AC_UNIT = 0x0001L << AC_SHIFT;
1370     private static final long AC_MASK = 0xffffL << AC_SHIFT;
1371    
1372     // Total counts
1373 dl 1.86 private static final int TC_SHIFT = 32;
1374 dl 1.200 private static final long TC_UNIT = 0x0001L << TC_SHIFT;
1375     private static final long TC_MASK = 0xffffL << TC_SHIFT;
1376     private static final long ADD_WORKER = 0x0001L << (TC_SHIFT + 15); // sign
1377    
1378 dl 1.205 // runState bits: SHUTDOWN must be negative, others arbitrary powers of two
1379 dl 1.243 private static final int STARTED = 1;
1380     private static final int STOP = 1 << 1;
1381     private static final int TERMINATED = 1 << 2;
1382 dl 1.205 private static final int SHUTDOWN = 1 << 31;
1383 dl 1.86
1384     // Instance fields
1385 dl 1.200 volatile long ctl; // main pool control
1386 dl 1.243 volatile int runState;
1387 dl 1.200 final int config; // parallelism, mode
1388     int indexSeed; // to generate worker index
1389     volatile WorkQueue[] workQueues; // main registry
1390 dl 1.112 final ForkJoinWorkerThreadFactory factory;
1391 dl 1.200 final UncaughtExceptionHandler ueh; // per-worker UEH
1392     final String workerNamePrefix; // to create worker name string
1393 dl 1.215 volatile AtomicLong stealCounter; // also used as sync monitor
1394 dl 1.101
1395 jsr166 1.145 /**
1396 dl 1.243 * Instantiates fields upon first submission, and/or throws
1397     * exception if terminating. Called only by externalPush.
1398 dl 1.105 */
1399 dl 1.243 private void tryInitialize() {
1400 dl 1.200 int rs;
1401 dl 1.243 while (((rs = runState) & STARTED) == 0) {
1402     AtomicLong sc = new AtomicLong();
1403     if (U.compareAndSwapObject(this, STEALCOUNTER, null, sc)) {
1404     // create workQueues array with size a power of two
1405 dl 1.253 int p = config & SMASK; // ensure at least 2 slots
1406     int n = (p > 1) ? p - 1 : 1;
1407 dl 1.243 n |= n >>> 1; n |= n >>> 2; n |= n >>> 4;
1408     n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1;
1409     workQueues = new WorkQueue[n];
1410     while (!U.compareAndSwapInt(this, RUNSTATE, rs, rs | STARTED))
1411     rs = runState;
1412 jsr166 1.244 synchronized (sc) { sc.notifyAll(); }
1413 dl 1.243 break;
1414 dl 1.200 }
1415 dl 1.243 else if ((sc = stealCounter) != null) { // wait for initialization
1416 jsr166 1.244 synchronized (sc) {
1417 dl 1.243 try {
1418     if ((runState & STARTED) == 0)
1419     sc.wait();
1420     } catch (InterruptedException ie) {
1421     Thread.currentThread().interrupt();
1422 dl 1.101 }
1423     }
1424     }
1425     }
1426 jsr166 1.244 if ((rs = runState) < 0) {
1427     tryTerminate(false, false); // help terminate
1428     throw new RejectedExecutionException();
1429     }
1430 dl 1.78 }
1431 jsr166 1.1
1432 dl 1.200 // Creating, registering and deregistering workers
1433    
1434 dl 1.112 /**
1435 dl 1.200 * Tries to construct and start one worker. Assumes that total
1436     * count has already been incremented as a reservation. Invokes
1437     * deregisterWorker on any failure.
1438     *
1439 dl 1.243 * @param isSpare true if this is a spare thread
1440 dl 1.200 * @return true if successful
1441 dl 1.115 */
1442 dl 1.243 private boolean createWorker(boolean isSpare) {
1443 dl 1.200 ForkJoinWorkerThreadFactory fac = factory;
1444     Throwable ex = null;
1445     ForkJoinWorkerThread wt = null;
1446 dl 1.243 WorkQueue q;
1447 dl 1.200 try {
1448     if (fac != null && (wt = fac.newThread(this)) != null) {
1449 dl 1.243 if (isSpare && (q = wt.workQueue) != null)
1450     q.config |= SPARE_WORKER;
1451 dl 1.200 wt.start();
1452     return true;
1453 dl 1.115 }
1454 dl 1.200 } catch (Throwable rex) {
1455     ex = rex;
1456 dl 1.112 }
1457 dl 1.200 deregisterWorker(wt, ex);
1458     return false;
1459 dl 1.112 }
1460    
1461 dl 1.200 /**
1462     * Tries to add one worker, incrementing ctl counts before doing
1463     * so, relying on createWorker to back out on failure.
1464     *
1465     * @param c incoming ctl value, with total count negative and no
1466     * idle workers. On CAS failure, c is refreshed and retried if
1467 jsr166 1.202 * this holds (otherwise, a new worker is not needed).
1468 dl 1.200 */
1469     private void tryAddWorker(long c) {
1470     do {
1471     long nc = ((AC_MASK & (c + AC_UNIT)) |
1472     (TC_MASK & (c + TC_UNIT)));
1473 dl 1.243 if (ctl == c && U.compareAndSwapLong(this, CTL, c, nc)) {
1474     createWorker(false);
1475     break;
1476 dl 1.200 }
1477     } while (((c = ctl) & ADD_WORKER) != 0L && (int)c == 0);
1478     }
1479 dl 1.112
1480     /**
1481 dl 1.200 * Callback from ForkJoinWorkerThread constructor to establish and
1482     * record its WorkQueue.
1483 dl 1.112 *
1484     * @param wt the worker thread
1485 dl 1.115 * @return the worker's queue
1486 dl 1.112 */
1487 dl 1.115 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1488 dl 1.200 UncaughtExceptionHandler handler;
1489 dl 1.243 Object lock = stealCounter;
1490 dl 1.200 wt.setDaemon(true); // configure thread
1491 dl 1.115 if ((handler = ueh) != null)
1492     wt.setUncaughtExceptionHandler(handler);
1493 dl 1.200 WorkQueue w = new WorkQueue(this, wt);
1494     int i = 0; // assign a pool index
1495     int mode = config & MODE_MASK;
1496 dl 1.243 if (lock != null) {
1497 jsr166 1.244 synchronized (lock) {
1498 dl 1.243 WorkQueue[] ws = workQueues;
1499     int s = indexSeed += SEED_INCREMENT, n, m;
1500     if (ws != null && (n = ws.length) > 0) {
1501     i = (m = n - 1) & ((s << 1) | 1); // odd-numbered indices
1502     if (ws[i] != null) { // collision
1503     int probes = 0; // step by approx half n
1504     int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1505     while (ws[i = (i + step) & m] != null) {
1506     if (++probes >= n) {
1507     workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1508     m = n - 1;
1509     probes = 0;
1510     }
1511 dl 1.94 }
1512     }
1513 dl 1.243 w.hint = s; // use as random seed
1514     w.config = i | mode;
1515     w.scanState = i | (s & 0x7fff0000); // random seq bits
1516     ws[i] = w;
1517 dl 1.94 }
1518 dl 1.78 }
1519     }
1520 dl 1.200 wt.setName(workerNamePrefix.concat(Integer.toString(i >>> 1)));
1521 dl 1.115 return w;
1522 dl 1.78 }
1523 dl 1.19
1524 jsr166 1.1 /**
1525 dl 1.86 * Final callback from terminating worker, as well as upon failure
1526 dl 1.105 * to construct or start a worker. Removes record of worker from
1527     * array, and adjusts counts. If pool is shutting down, tries to
1528     * complete termination.
1529 dl 1.78 *
1530 jsr166 1.151 * @param wt the worker thread, or null if construction failed
1531 dl 1.78 * @param ex the exception causing failure, or null if none
1532 dl 1.45 */
1533 dl 1.78 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1534     WorkQueue w = null;
1535     if (wt != null && (w = wt.workQueue) != null) {
1536 dl 1.243 Object lock; WorkQueue[] ws; // remove index from array
1537 dl 1.200 int idx = w.config & SMASK;
1538 dl 1.243 if ((lock = stealCounter) != null) {
1539 jsr166 1.244 synchronized (lock) {
1540 dl 1.243 if ((ws = workQueues) != null && ws.length > idx &&
1541     ws[idx] == w)
1542     ws[idx] = null;
1543     }
1544     }
1545     }
1546     if (w == null || (w.config & UNREGISTERED) == 0) { // else pre-adjusted
1547     long c; // decrement counts
1548     do {} while (!U.compareAndSwapLong
1549     (this, CTL, c = ctl, ((AC_MASK & (c - AC_UNIT)) |
1550     (TC_MASK & (c - TC_UNIT)) |
1551     (SP_MASK & c))));
1552     }
1553 dl 1.200 if (w != null) {
1554     w.qlock = -1; // ensure set
1555 dl 1.215 w.transferStealCount(this);
1556 dl 1.200 w.cancelAll(); // cancel remaining tasks
1557 dl 1.78 }
1558 dl 1.209 for (;;) { // possibly replace
1559 dl 1.243 WorkQueue[] ws; int wl, sp; long c;
1560 dl 1.209 if (tryTerminate(false, false) || w == null || w.array == null ||
1561     (runState & STOP) != 0 || (ws = workQueues) == null ||
1562 dl 1.243 (wl = ws.length) <= 0) // already terminating
1563 dl 1.209 break;
1564 dl 1.243 else if ((sp = (int)(c = ctl)) != 0) { // wake up replacement
1565     if (tryRelease(c, ws[(wl - 1) & sp], AC_UNIT))
1566 dl 1.205 break;
1567 dl 1.120 }
1568 dl 1.209 else if (ex != null && (c & ADD_WORKER) != 0L) {
1569     tryAddWorker(c); // create replacement
1570     break;
1571     }
1572     else // don't need replacement
1573     break;
1574 dl 1.78 }
1575 dl 1.200 if (ex == null) // help clean on way out
1576 dl 1.120 ForkJoinTask.helpExpungeStaleExceptions();
1577 dl 1.200 else // rethrow
1578 dl 1.104 ForkJoinTask.rethrow(ex);
1579 dl 1.78 }
1580 dl 1.52
1581 dl 1.200 // Signalling
1582 dl 1.19
1583     /**
1584 dl 1.115 * Tries to create or activate a worker if too few are active.
1585 dl 1.105 */
1586 dl 1.253 final void signalWork() {
1587 dl 1.243 for (;;) {
1588     long c; int sp, i; WorkQueue v; WorkQueue[] ws;
1589     if ((c = ctl) >= 0L) // enough workers
1590     break;
1591     else if ((sp = (int)c) == 0) { // no idle workers
1592     if ((c & ADD_WORKER) != 0L) // too few workers
1593 dl 1.200 tryAddWorker(c);
1594     break;
1595     }
1596 dl 1.243 else if ((ws = workQueues) == null)
1597     break; // unstarted/terminated
1598     else if (ws.length <= (i = sp & SMASK))
1599     break; // terminated
1600     else if ((v = ws[i]) == null)
1601     break; // terminating
1602     else {
1603     int ns = sp & ~UNSIGNALLED;
1604     int vs = v.scanState;
1605     long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + AC_UNIT));
1606     if (sp == vs && U.compareAndSwapLong(this, CTL, c, nc)) {
1607     v.scanState = ns;
1608     LockSupport.unpark(v.parker);
1609     break;
1610     }
1611 dl 1.174 }
1612 dl 1.52 }
1613 dl 1.14 }
1614    
1615 dl 1.200 /**
1616     * Signals and releases worker v if it is top of idle worker
1617     * stack. This performs a one-shot version of signalWork only if
1618     * there is (apparently) at least one idle worker.
1619     *
1620     * @param c incoming ctl value
1621     * @param v if non-null, a worker
1622     * @param inc the increment to active count (zero when compensating)
1623     * @return true if successful
1624     */
1625     private boolean tryRelease(long c, WorkQueue v, long inc) {
1626 dl 1.243 int sp = (int)c, ns = sp & ~UNSIGNALLED;
1627     if (v != null) {
1628     int vs = v.scanState;
1629     long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + inc));
1630     if (sp == vs && U.compareAndSwapLong(this, CTL, c, nc)) {
1631     v.scanState = ns;
1632     LockSupport.unpark(v.parker);
1633 dl 1.200 return true;
1634     }
1635     }
1636     return false;
1637     }
1638    
1639 dl 1.243 /**
1640     * With approx probability of a missed signal, tries (once) to
1641     * reactivate worker w (or some other worker), failing if stale or
1642     * known to be already active.
1643     *
1644     * @param w the worker
1645     * @param ws the workQueue array to use
1646     * @param r random seed
1647     */
1648     private void tryReactivate(WorkQueue w, WorkQueue[] ws, int r) {
1649     long c; int sp, wl, m; WorkQueue v;
1650     if ((sp = (int)(c = ctl)) != 0 && w != null &&
1651     ws != null && (wl = ws.length) > 0 &&
1652 dl 1.255 ((m = wl - 1) & ((sp ^ r) >>> 16)) <= 1 &&
1653 dl 1.243 (v = ws[m & sp]) != null) {
1654     long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + AC_UNIT));
1655     int ns = sp & ~UNSIGNALLED;
1656     if ((w == v || w.scanState < 0) &&
1657     v.scanState == sp &&
1658     U.compareAndSwapLong(this, CTL, c, nc)) {
1659     v.scanState = ns;
1660     LockSupport.unpark(v.parker);
1661     }
1662     }
1663     }
1664 dl 1.90
1665 dl 1.14 /**
1666 dl 1.243 * If worker w exists and is active, enqueues and sets status to inactive.
1667     *
1668     * @param w the worker
1669     * @param ss current (non-negative) scanState
1670 dl 1.14 */
1671 dl 1.243 private void inactivate(WorkQueue w, int ss) {
1672     int ns = (ss + SS_SEQ) | UNSIGNALLED;
1673     long lc = ns & SP_MASK, nc, c;
1674     if (w != null) {
1675     w.scanState = ns;
1676     do {
1677     nc = lc | (UC_MASK & ((c = ctl) - AC_UNIT));
1678     w.stackPred = (int)c;
1679     } while (!U.compareAndSwapLong(this, CTL, c, nc));
1680 dl 1.178 }
1681 dl 1.14 }
1682    
1683     /**
1684 dl 1.243 * Possibly blocks worker w waiting for signal, or returns
1685     * negative status if the worker should terminate. May return
1686     * without status change if multiple stale unparks and/or
1687     * interrupts occur.
1688 dl 1.78 *
1689 dl 1.243 * @param w the calling worker
1690     * @return negative if w should terminate
1691 dl 1.78 */
1692 dl 1.243 private int awaitWork(WorkQueue w) {
1693     int stat = 0;
1694     if (w != null && w.scanState < 0) {
1695     long c = ctl;
1696     if ((int)(c >> AC_SHIFT) + (config & SMASK) <= 0)
1697     stat = timedAwaitWork(w, c); // possibly quiescent
1698     else if ((runState & STOP) != 0)
1699     stat = w.qlock = -1; // pool terminating
1700     else if ((stat = w.qlock) >= 0 && w.scanState < 0) {
1701     w.parker = Thread.currentThread();
1702     if (w.scanState < 0) { // recheck after write
1703     LockSupport.park(this);
1704     if ((stat = w.qlock) >= 0 && w.scanState < 0) {
1705     Thread.interrupted(); // clear status
1706     LockSupport.park(this); // retry once
1707 dl 1.200 }
1708 dl 1.115 }
1709 dl 1.243 w.parker = null;
1710 dl 1.115 }
1711 dl 1.52 }
1712 dl 1.243 return stat;
1713 dl 1.14 }
1714    
1715     /**
1716 dl 1.243 * Possibly triggers shutdown and tries (once) to block worker
1717     * when pool is (or may be) quiescent. Waits up to a duration
1718     * determined by number of workers. On timeout, if ctl has not
1719 dl 1.200 * changed, terminates the worker, which will in turn wake up
1720 dl 1.178 * another worker to possibly repeat this process.
1721 dl 1.52 *
1722 dl 1.78 * @param w the calling worker
1723 dl 1.243 * @return negative if w should terminate
1724 dl 1.14 */
1725 dl 1.243 private int timedAwaitWork(WorkQueue w, long c) {
1726     int stat = 0;
1727     int scale = 1 - (short)(c >>> TC_SHIFT);
1728     long deadline = (((scale <= 0) ? 1 : scale) * IDLE_TIMEOUT_MS +
1729     System.currentTimeMillis());
1730     if (w != null && w.scanState < 0) {
1731     int ss; Object lock;
1732     if (runState < 0 && tryTerminate(false, false))
1733     stat = w.qlock = -1; // help terminate
1734     else if ((stat = w.qlock) >= 0 && w.scanState < 0) {
1735     w.parker = Thread.currentThread();
1736     if (w.scanState < 0)
1737     LockSupport.parkUntil(this, deadline);
1738     w.parker = null;
1739     if ((stat = w.qlock) >= 0 && (ss = w.scanState) < 0 &&
1740     !Thread.interrupted() && (int)c == ss &&
1741     (lock = stealCounter) != null && ctl == c &&
1742     deadline - System.currentTimeMillis() <= TIMEOUT_SLOP_MS) {
1743 jsr166 1.244 synchronized (lock) { // pre-deregister
1744 dl 1.243 WorkQueue[] ws;
1745     int cfg = w.config, idx = cfg & SMASK;
1746     long nc = ((UC_MASK & (c - TC_UNIT)) |
1747     (SP_MASK & w.stackPred));
1748     if ((ws = workQueues) != null &&
1749     idx < ws.length && idx >= 0 && ws[idx] == w &&
1750     U.compareAndSwapLong(this, CTL, c, nc)) {
1751     ws[idx] = null;
1752     w.config = cfg | UNREGISTERED;
1753     stat = w.qlock = -1;
1754     }
1755     }
1756     }
1757     }
1758     }
1759     return stat;
1760     }
1761    
1762     /**
1763     * If the given worker is a spare with no queued tasks, and there
1764     * are enough existing workers, drops it from ctl counts and sets
1765 jsr166 1.248 * its state to terminated.
1766 dl 1.243 *
1767     * @param w the calling worker -- must be a spare
1768     * @return true if dropped (in which case it must not process more tasks)
1769     */
1770     private boolean tryDropSpare(WorkQueue w) {
1771     if (w != null && w.isEmpty()) { // no local tasks
1772     long c; int sp, wl; WorkQueue[] ws; WorkQueue v;
1773     while ((short)((c = ctl) >> TC_SHIFT) > 0 &&
1774     ((sp = (int)c) != 0 || (int)(c >> AC_SHIFT) > 0) &&
1775     (ws = workQueues) != null && (wl = ws.length) > 0) {
1776     boolean dropped, canDrop;
1777     if (sp == 0) { // no queued workers
1778     long nc = ((AC_MASK & (c - AC_UNIT)) |
1779     (TC_MASK & (c - TC_UNIT)) | (SP_MASK & c));
1780     dropped = U.compareAndSwapLong(this, CTL, c, nc);
1781     }
1782     else if (
1783     (v = ws[(wl - 1) & sp]) == null || v.scanState != sp)
1784     dropped = false; // stale; retry
1785     else {
1786     long nc = v.stackPred & SP_MASK;
1787     if (w == v || w.scanState >= 0) {
1788     canDrop = true; // w unqueued or topmost
1789     nc |= ((AC_MASK & c) | // ensure replacement
1790     (TC_MASK & (c - TC_UNIT)));
1791     }
1792     else { // w may be queued
1793     canDrop = false; // help uncover
1794     nc |= ((AC_MASK & (c + AC_UNIT)) |
1795     (TC_MASK & c));
1796     }
1797     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1798     v.scanState = sp & ~UNSIGNALLED;
1799     LockSupport.unpark(v.parker);
1800     dropped = canDrop;
1801     }
1802     else
1803     dropped = false;
1804     }
1805     if (dropped) { // pre-deregister
1806     int cfg = w.config, idx = cfg & SMASK;
1807     if (idx >= 0 && idx < ws.length && ws[idx] == w)
1808     ws[idx] = null;
1809     w.config = cfg | UNREGISTERED;
1810     w.qlock = -1;
1811     return true;
1812 dl 1.200 }
1813 dl 1.177 }
1814 dl 1.243 }
1815     return false;
1816     }
1817    
1818     /**
1819     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1820     */
1821     final void runWorker(WorkQueue w) {
1822     w.growArray(); // allocate queue
1823 dl 1.253 int bound = (w.config & SPARE_WORKER) != 0 ? 0 : POLL_LIMIT;
1824 dl 1.243 long seed = w.hint * 0xdaba0b6eb09322e3L; // initial random seed
1825     for (long r = (seed == 0L) ? 1L : seed;;) { // ensure nonzero
1826     if (bound == 0 && tryDropSpare(w))
1827     break;
1828 dl 1.253 // high bits of prev seed for step; current low bits for idx
1829     int step = (int)(r >>> 48) | 1;
1830 dl 1.243 r ^= r >>> 12; r ^= r << 25; r ^= r >>> 27; // xorshift
1831 dl 1.253 if (scan(w, bound, step, (int)r) < 0 && awaitWork(w) < 0)
1832 dl 1.243 break;
1833     }
1834     }
1835    
1836     // Scanning for tasks
1837    
1838     /**
1839     * Repeatedly scans for and tries to steal and execute (via
1840     * workQueue.runTask) a queued task. Each scan traverses queues in
1841     * pseudorandom permutation. Upon finding a non-empty queue, makes
1842 dl 1.253 * at most the given bound attempts to re-poll (fewer if
1843     * contended) on the same queue before returning (impossible
1844     * scanState value) 0 to restart scan. Else returns after at least
1845     * 1 and at most 32 full scans.
1846 dl 1.243 *
1847     * @param w the worker (via its WorkQueue)
1848 dl 1.253 * @param bound repoll bound as bitmask (0 if spare)
1849 dl 1.243 * @param step (circular) index increment per iteration (must be odd)
1850     * @param r a random seed for origin index
1851     * @return negative if should await signal
1852     */
1853 dl 1.253 private int scan(WorkQueue w, int bound, int step, int r) {
1854 dl 1.243 int stat = 0, wl; WorkQueue[] ws;
1855 dl 1.250 if ((ws = workQueues) != null && w != null && (wl = ws.length) > 0) {
1856 dl 1.243 for (int m = wl - 1,
1857 dl 1.250 origin = m & r, idx = origin,
1858 dl 1.243 npolls = 0,
1859     ss = w.scanState;;) { // negative if inactive
1860     WorkQueue q; ForkJoinTask<?>[] a; int b, d, al;
1861     if ((q = ws[idx]) != null && (d = (b = q.base) - q.top) < 0 &&
1862     (a = q.array) != null && (al = a.length) > 0) {
1863     long offset = (((al - 1) & b) << ASHIFT) + ABASE;
1864     ForkJoinTask<?> t = (ForkJoinTask<?>)
1865     U.getObjectVolatile(a, offset);
1866 dl 1.253 if (t == null || b++ != q.base)
1867     break; // busy or empty
1868     else if (ss < 0) {
1869 dl 1.255 if ((ss = w.scanState) >= 0) {
1870     tryReactivate(w, ws, r);
1871     break; // retry upon rescan
1872     }
1873     r |= (1 << 31); // ensure full scan
1874 dl 1.253 }
1875     else if (!U.compareAndSwapObject(a, offset, t, null))
1876     break; // contended
1877     else {
1878     q.base = b;
1879     w.currentSteal = t;
1880     if (d != -1) // propagate signal
1881     signalWork();
1882     w.runTask(t);
1883     if (++npolls > bound)
1884     break;
1885 dl 1.243 }
1886 dl 1.178 }
1887 dl 1.243 else if (npolls != 0) // rescan
1888     break;
1889 dl 1.250 else if ((idx = (idx + step) & m) == origin) {
1890     if (ss < 0) { // await signal
1891     stat = ss;
1892     break;
1893     }
1894     else if (r >= 0) {
1895 dl 1.243 inactivate(w, ss);
1896 dl 1.250 break;
1897     }
1898     else
1899     r <<= 1; // at most 31 rescans
1900 dl 1.243 }
1901 dl 1.120 }
1902     }
1903 dl 1.243 return stat;
1904 dl 1.178 }
1905    
1906 dl 1.200 // Joining tasks
1907    
1908 dl 1.178 /**
1909 dl 1.200 * Tries to steal and run tasks within the target's computation.
1910     * Uses a variant of the top-level algorithm, restricted to tasks
1911     * with the given task as ancestor: It prefers taking and running
1912     * eligible tasks popped from the worker's own queue (via
1913     * popCC). Otherwise it scans others, randomly moving on
1914     * contention or execution, deciding to give up based on a
1915 dl 1.243 * checksum (via return codes from pollAndExecCC). The maxTasks
1916 dl 1.200 * argument supports external usages; internal calls use zero,
1917     * allowing unbounded steps (external calls trap non-positive
1918     * values).
1919     *
1920     * @param w caller
1921 jsr166 1.202 * @param maxTasks if non-zero, the maximum number of other tasks to run
1922 dl 1.200 * @return task status on exit
1923     */
1924     final int helpComplete(WorkQueue w, CountedCompleter<?> task,
1925     int maxTasks) {
1926 dl 1.243 WorkQueue[] ws; int s = 0, wl;
1927     if ((ws = workQueues) != null && (wl = ws.length) > 1 &&
1928 dl 1.200 task != null && w != null) {
1929 dl 1.253 for (int m = wl - 1,
1930     mode = w.config,
1931     r = ~mode, // scanning seed
1932     origin = r & m, k = origin, // first queue to scan
1933     step = 3, // first scan step
1934     h = 1, // 1:ran, >1:contended, <0:hash
1935     oldSum = 0, checkSum = 0;;) {
1936 dl 1.243 CountedCompleter<?> p; WorkQueue q; int i;
1937 dl 1.200 if ((s = task.status) < 0)
1938     break;
1939 dl 1.253 if (h == 1 && (p = w.popCC(task, mode)) != null) {
1940 dl 1.200 p.doExec(); // run local task
1941     if (maxTasks != 0 && --maxTasks == 0)
1942     break;
1943     origin = k; // reset
1944     oldSum = checkSum = 0;
1945     }
1946 dl 1.243 else { // poll other worker queues
1947     if ((i = k | 1) < 0 || i > m || (q = ws[i]) == null)
1948 dl 1.200 h = 0;
1949     else if ((h = q.pollAndExecCC(task)) < 0)
1950     checkSum += h;
1951     if (h > 0) {
1952     if (h == 1 && maxTasks != 0 && --maxTasks == 0)
1953     break;
1954 dl 1.253 step = (r >>> 16) | 3;
1955 dl 1.200 r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
1956 dl 1.243 k = origin = r & m; // move and restart
1957 dl 1.200 oldSum = checkSum = 0;
1958     }
1959 dl 1.243 else if ((k = (k + step) & m) == origin) {
1960 dl 1.200 if (oldSum == (oldSum = checkSum))
1961     break;
1962     checkSum = 0;
1963     }
1964     }
1965 dl 1.178 }
1966     }
1967 dl 1.200 return s;
1968 dl 1.120 }
1969    
1970     /**
1971 dl 1.78 * Tries to locate and execute tasks for a stealer of the given
1972     * task, or in turn one of its stealers, Traces currentSteal ->
1973     * currentJoin links looking for a thread working on a descendant
1974     * of the given task and with a non-empty queue to steal back and
1975     * execute tasks from. The first call to this method upon a
1976     * waiting join will often entail scanning/search, (which is OK
1977     * because the joiner has nothing better to do), but this method
1978 dl 1.200 * leaves hints in workers to speed up subsequent calls.
1979 dl 1.78 *
1980 dl 1.200 * @param w caller
1981 dl 1.78 * @param task the task to join
1982     */
1983 dl 1.200 private void helpStealer(WorkQueue w, ForkJoinTask<?> task) {
1984 dl 1.243 if (task != null && w != null) {
1985     ForkJoinTask<?> ps = w.currentSteal;
1986     WorkQueue[] ws; int wl, oldSum = 0;
1987     outer: while (w.tryRemoveAndExec(task) && task.status >= 0 &&
1988     (ws = workQueues) != null && (wl = ws.length) > 0) {
1989 dl 1.200 ForkJoinTask<?> subtask;
1990 dl 1.243 int m = wl - 1, checkSum = 0; // for stability check
1991 dl 1.200 WorkQueue j = w, v; // v is subtask stealer
1992     descent: for (subtask = task; subtask.status >= 0; ) {
1993 dl 1.243 for (int h = j.hint | 1, k = 0, i;;) {
1994     if ((v = ws[i = (h + (k << 1)) & m]) != null) {
1995 dl 1.200 if (v.currentSteal == subtask) {
1996     j.hint = i;
1997 dl 1.95 break;
1998     }
1999 dl 1.200 checkSum += v.base;
2000 dl 1.78 }
2001 dl 1.243 if (++k > m) // can't find stealer
2002     break outer;
2003 dl 1.78 }
2004 dl 1.243
2005 dl 1.200 for (;;) { // help v or descend
2006 dl 1.243 ForkJoinTask<?>[] a; int b, al;
2007     if (subtask.status < 0) // too late to help
2008     break descent;
2009 dl 1.200 checkSum += (b = v.base);
2010     ForkJoinTask<?> next = v.currentJoin;
2011 dl 1.243 ForkJoinTask<?> t = null;
2012     if ((a = v.array) != null && (al = a.length) > 0) {
2013     long offset = (((al - 1) & b) << ASHIFT) + ABASE;
2014     t = (ForkJoinTask<?>)U.getObjectVolatile(a, offset);
2015     if (t != null && b++ == v.base) {
2016     if (j.currentJoin != subtask ||
2017     v.currentSteal != subtask ||
2018     subtask.status < 0)
2019     break descent; // stale
2020     if (U.compareAndSwapObject(a, offset, t, null)) {
2021     v.base = b;
2022     w.currentSteal = t;
2023     for (int top = w.top;;) {
2024     t.doExec(); // help
2025     w.currentSteal = ps;
2026     if (task.status < 0)
2027     break outer;
2028     if (w.top == top)
2029     break; // run local tasks
2030     if ((t = w.pop()) == null)
2031     break descent;
2032     w.currentSteal = t;
2033     }
2034     }
2035     }
2036     }
2037     if (t == null && b == v.base && b - v.top >= 0) {
2038     if ((subtask = next) == null) { // try to descend
2039     if (next == v.currentJoin &&
2040     oldSum == (oldSum = checkSum))
2041     break outer;
2042 dl 1.200 break descent;
2043 dl 1.243 }
2044 dl 1.200 j = v;
2045     break;
2046 dl 1.95 }
2047 dl 1.52 }
2048 dl 1.19 }
2049 dl 1.243 }
2050 dl 1.14 }
2051 dl 1.22 }
2052    
2053 dl 1.52 /**
2054 dl 1.200 * Tries to decrement active count (sometimes implicitly) and
2055     * possibly release or create a compensating worker in preparation
2056     * for blocking. Returns false (retryable by caller), on
2057 dl 1.208 * contention, detected staleness, instability, or termination.
2058 dl 1.105 *
2059 dl 1.200 * @param w caller
2060 dl 1.19 */
2061 dl 1.200 private boolean tryCompensate(WorkQueue w) {
2062 dl 1.243 boolean canBlock; int wl;
2063     long c = ctl;
2064     WorkQueue[] ws = workQueues;
2065     int pc = config & SMASK;
2066     int ac = pc + (int)(c >> AC_SHIFT);
2067     int tc = pc + (short)(c >> TC_SHIFT);
2068     if (w == null || w.qlock < 0 || pc == 0 || // terminating or disabled
2069     ws == null || (wl = ws.length) <= 0)
2070 dl 1.200 canBlock = false;
2071     else {
2072 dl 1.243 int m = wl - 1, sp;
2073     boolean busy = true; // validate ac
2074     for (int i = 0; i <= m; ++i) {
2075     int k; WorkQueue v;
2076     if ((k = (i << 1) | 1) <= m && k >= 0 && (v = ws[k]) != null &&
2077     v.scanState >= 0 && v.currentSteal == null) {
2078     busy = false;
2079     break;
2080 dl 1.178 }
2081 dl 1.52 }
2082 dl 1.243 if (!busy || ctl != c)
2083     canBlock = false; // unstable or stale
2084     else if ((sp = (int)c) != 0) // release idle worker
2085     canBlock = tryRelease(c, ws[m & sp], 0L);
2086 dl 1.200 else if (tc >= pc && ac > 1 && w.isEmpty()) {
2087     long nc = ((AC_MASK & (c - AC_UNIT)) |
2088 dl 1.243 (~AC_MASK & c)); // uncompensated
2089 dl 1.200 canBlock = U.compareAndSwapLong(this, CTL, c, nc);
2090 dl 1.105 }
2091 dl 1.208 else if (tc >= MAX_CAP ||
2092     (this == common && tc >= pc + commonMaxSpares))
2093 dl 1.200 throw new RejectedExecutionException(
2094     "Thread limit exceeded replacing blocked worker");
2095 dl 1.243 else { // similar to tryAddWorker
2096     boolean isSpare = (tc >= pc);
2097     long nc = (AC_MASK & c) | (TC_MASK & (c + TC_UNIT));
2098     canBlock = (U.compareAndSwapLong(this, CTL, c, nc) &&
2099     createWorker(isSpare)); // throws on exception
2100 dl 1.90 }
2101     }
2102 dl 1.200 return canBlock;
2103 dl 1.90 }
2104    
2105     /**
2106 dl 1.200 * Helps and/or blocks until the given task is done or timeout.
2107 dl 1.90 *
2108 dl 1.200 * @param w caller
2109 dl 1.90 * @param task the task
2110 dl 1.219 * @param deadline for timed waits, if nonzero
2111 dl 1.90 * @return task status on exit
2112     */
2113 dl 1.200 final int awaitJoin(WorkQueue w, ForkJoinTask<?> task, long deadline) {
2114 dl 1.105 int s = 0;
2115 dl 1.243 if (w != null) {
2116 dl 1.200 ForkJoinTask<?> prevJoin = w.currentJoin;
2117 dl 1.243 if (task != null && (s = task.status) >= 0) {
2118     w.currentJoin = task;
2119     CountedCompleter<?> cc = (task instanceof CountedCompleter) ?
2120     (CountedCompleter<?>)task : null;
2121     for (;;) {
2122     if (cc != null)
2123     helpComplete(w, cc, 0);
2124     else
2125     helpStealer(w, task);
2126     if ((s = task.status) < 0)
2127     break;
2128     long ms, ns;
2129     if (deadline == 0L)
2130     ms = 0L;
2131     else if ((ns = deadline - System.nanoTime()) <= 0L)
2132     break;
2133     else if ((ms = TimeUnit.NANOSECONDS.toMillis(ns)) <= 0L)
2134     ms = 1L;
2135     if (tryCompensate(w)) {
2136     task.internalWait(ms);
2137     U.getAndAddLong(this, CTL, AC_UNIT);
2138     }
2139     if ((s = task.status) < 0)
2140     break;
2141 dl 1.90 }
2142 dl 1.243 w.currentJoin = prevJoin;
2143 dl 1.90 }
2144     }
2145 dl 1.94 return s;
2146 dl 1.90 }
2147    
2148 dl 1.200 // Specialized scanning
2149 dl 1.90
2150     /**
2151     * Returns a (probably) non-empty steal queue, if one is found
2152 dl 1.131 * during a scan, else null. This method must be retried by
2153     * caller if, by the time it tries to use the queue, it is empty.
2154 dl 1.78 */
2155 dl 1.178 private WorkQueue findNonEmptyStealQueue() {
2156 dl 1.243 WorkQueue[] ws; int wl; // one-shot version of scan loop
2157 dl 1.211 int r = ThreadLocalRandom.nextSecondarySeed();
2158 dl 1.243 if ((ws = workQueues) != null && (wl = ws.length) > 0) {
2159     int m = wl - 1, origin = r & m;
2160     for (int k = origin, oldSum = 0, checkSum = 0;;) {
2161 dl 1.211 WorkQueue q; int b;
2162     if ((q = ws[k]) != null) {
2163     if ((b = q.base) - q.top < 0)
2164     return q;
2165     checkSum += b;
2166     }
2167     if ((k = (k + 1) & m) == origin) {
2168     if (oldSum == (oldSum = checkSum))
2169     break;
2170     checkSum = 0;
2171 dl 1.52 }
2172     }
2173 dl 1.211 }
2174 dl 1.200 return null;
2175 dl 1.22 }
2176    
2177     /**
2178 dl 1.78 * Runs tasks until {@code isQuiescent()}. We piggyback on
2179     * active count ctl maintenance, but rather than blocking
2180     * when tasks cannot be found, we rescan until all others cannot
2181     * find tasks either.
2182     */
2183     final void helpQuiescePool(WorkQueue w) {
2184 dl 1.211 ForkJoinTask<?> ps = w.currentSteal; // save context
2185 dl 1.243 int wc = w.config;
2186 dl 1.78 for (boolean active = true;;) {
2187 dl 1.243 long c; WorkQueue q; ForkJoinTask<?> t;
2188     if (wc >= 0 && (t = w.pop()) != null) { // run locals if LIFO
2189     (w.currentSteal = t).doExec();
2190     w.currentSteal = ps;
2191     }
2192     else if ((q = findNonEmptyStealQueue()) != null) {
2193 dl 1.78 if (!active) { // re-establish active count
2194     active = true;
2195 dl 1.200 U.getAndAddLong(this, CTL, AC_UNIT);
2196     }
2197 dl 1.243 if ((t = q.pollAt(q.base)) != null) {
2198     (w.currentSteal = t).doExec();
2199     w.currentSteal = ps;
2200 dl 1.215 if (++w.nsteals < 0)
2201     w.transferStealCount(this);
2202 dl 1.178 }
2203 dl 1.78 }
2204 jsr166 1.194 else if (active) { // decrement active count without queuing
2205 dl 1.200 long nc = (AC_MASK & ((c = ctl) - AC_UNIT)) | (~AC_MASK & c);
2206 dl 1.131 if (U.compareAndSwapLong(this, CTL, c, nc))
2207 dl 1.78 active = false;
2208 dl 1.22 }
2209 dl 1.200 else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) <= 0 &&
2210     U.compareAndSwapLong(this, CTL, c, c + AC_UNIT))
2211 dl 1.185 break;
2212 dl 1.22 }
2213     }
2214    
2215     /**
2216 jsr166 1.84 * Gets and removes a local or stolen task for the given worker.
2217 dl 1.78 *
2218     * @return a task, if available
2219 dl 1.22 */
2220 dl 1.78 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2221     for (ForkJoinTask<?> t;;) {
2222 dl 1.243 WorkQueue q;
2223 dl 1.78 if ((t = w.nextLocalTask()) != null)
2224     return t;
2225 dl 1.178 if ((q = findNonEmptyStealQueue()) == null)
2226 dl 1.78 return null;
2227 dl 1.243 if ((t = q.pollAt(q.base)) != null)
2228 dl 1.78 return t;
2229 dl 1.52 }
2230 dl 1.14 }
2231    
2232     /**
2233 dl 1.105 * Returns a cheap heuristic guide for task partitioning when
2234     * programmers, frameworks, tools, or languages have little or no
2235 jsr166 1.222 * idea about task granularity. In essence, by offering this
2236 dl 1.105 * method, we ask users only about tradeoffs in overhead vs
2237     * expected throughput and its variance, rather than how finely to
2238     * partition tasks.
2239     *
2240     * In a steady state strict (tree-structured) computation, each
2241     * thread makes available for stealing enough tasks for other
2242     * threads to remain active. Inductively, if all threads play by
2243     * the same rules, each thread should make available only a
2244     * constant number of tasks.
2245     *
2246     * The minimum useful constant is just 1. But using a value of 1
2247     * would require immediate replenishment upon each steal to
2248     * maintain enough tasks, which is infeasible. Further,
2249     * partitionings/granularities of offered tasks should minimize
2250     * steal rates, which in general means that threads nearer the top
2251     * of computation tree should generate more than those nearer the
2252     * bottom. In perfect steady state, each thread is at
2253     * approximately the same level of computation tree. However,
2254     * producing extra tasks amortizes the uncertainty of progress and
2255     * diffusion assumptions.
2256     *
2257 jsr166 1.161 * So, users will want to use values larger (but not much larger)
2258 dl 1.105 * than 1 to both smooth over transient shortages and hedge
2259     * against uneven progress; as traded off against the cost of
2260     * extra task overhead. We leave the user to pick a threshold
2261     * value to compare with the results of this call to guide
2262     * decisions, but recommend values such as 3.
2263     *
2264     * When all threads are active, it is on average OK to estimate
2265     * surplus strictly locally. In steady-state, if one thread is
2266     * maintaining say 2 surplus tasks, then so are others. So we can
2267     * just use estimated queue length. However, this strategy alone
2268     * leads to serious mis-estimates in some non-steady-state
2269     * conditions (ramp-up, ramp-down, other stalls). We can detect
2270     * many of these by further considering the number of "idle"
2271     * threads, that are known to have zero queued tasks, so
2272     * compensate by a factor of (#idle/#active) threads.
2273     */
2274     static int getSurplusQueuedTaskCount() {
2275     Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2276 jsr166 1.229 if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) {
2277 dl 1.243 int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2278 dl 1.112 int n = (q = wt.workQueue).top - q.base;
2279 dl 1.105 int a = (int)(pool.ctl >> AC_SHIFT) + p;
2280 dl 1.112 return n - (a > (p >>>= 1) ? 0 :
2281     a > (p >>>= 1) ? 1 :
2282     a > (p >>>= 1) ? 2 :
2283     a > (p >>>= 1) ? 4 :
2284     8);
2285 dl 1.105 }
2286     return 0;
2287 dl 1.100 }
2288    
2289 dl 1.86 // Termination
2290 dl 1.14
2291     /**
2292 dl 1.210 * Possibly initiates and/or completes termination.
2293 dl 1.14 *
2294     * @param now if true, unconditionally terminate, else only
2295 dl 1.78 * if no work and no active workers
2296 dl 1.243 * @param enable if true, terminate when next possible
2297 dl 1.14 * @return true if now terminating or terminated
2298 jsr166 1.1 */
2299 dl 1.86 private boolean tryTerminate(boolean now, boolean enable) {
2300 dl 1.200 int rs;
2301 dl 1.243 for (;;) {
2302     if ((rs = runState) < 0) // already shut down
2303     break;
2304     if (!enable || this == common)
2305 dl 1.131 return false;
2306 dl 1.243 if (U.compareAndSwapInt(this, RUNSTATE, rs, rs | SHUTDOWN))
2307     break;
2308 dl 1.200 }
2309 dl 1.210
2310 jsr166 1.204 if ((rs & STOP) == 0) {
2311 dl 1.210 if (!now) { // check quiescence
2312 dl 1.211 for (long oldSum = 0L;;) { // repeat until stable
2313 dl 1.243 WorkQueue[] ws; WorkQueue w; int m, b, sp; long c;
2314 dl 1.210 long checkSum = ctl;
2315     if ((int)(checkSum >> AC_SHIFT) + (config & SMASK) > 0)
2316     return false; // still active workers
2317 dl 1.243 if ((ws = workQueues) == null || (m = ws.length - 1) < 0)
2318 dl 1.210 break; // check queues
2319 dl 1.209 for (int i = 0; i <= m; ++i) {
2320     if ((w = ws[i]) != null) {
2321 dl 1.243 if ((b = w.base) != w.top ||
2322 dl 1.210 w.currentSteal != null) {
2323 dl 1.243 while ((sp = (int)(c = ctl)) != 0 &&
2324     !tryRelease(c, ws[m & sp], AC_UNIT))
2325     ;
2326 dl 1.211 return false; // arrange for recheck
2327 dl 1.210 }
2328     checkSum += b;
2329 dl 1.209 if ((i & 1) == 0)
2330 dl 1.210 w.qlock = -1; // try to disable external
2331 dl 1.206 }
2332 dl 1.203 }
2333 dl 1.209 if (oldSum == (oldSum = checkSum))
2334 dl 1.210 break;
2335 dl 1.203 }
2336     }
2337 dl 1.243 while (((rs = runState) & STOP) == 0) // enter STOP phase
2338     U.compareAndSwapInt(this, RUNSTATE, rs, rs | STOP);
2339 dl 1.200 }
2340 dl 1.210
2341     int pass = 0; // 3 passes to help terminate
2342     for (long oldSum = 0L;;) { // or until done or stable
2343     WorkQueue[] ws; WorkQueue w; ForkJoinWorkerThread wt; int m;
2344     long checkSum = ctl;
2345     if ((short)(checkSum >>> TC_SHIFT) + (config & SMASK) <= 0 ||
2346 dl 1.243 (ws = workQueues) == null || (m = ws.length - 1) < 0) {
2347     while (((rs = runState) & TERMINATED) == 0) {
2348     if (U.compareAndSwapInt(this, RUNSTATE, rs,
2349     rs | TERMINATED)) {
2350     synchronized (this) {
2351     notifyAll(); // for awaitTermination
2352     }
2353     break;
2354     }
2355 dl 1.210 }
2356     break;
2357     }
2358     for (int i = 0; i <= m; ++i) {
2359     if ((w = ws[i]) != null) {
2360     checkSum += w.base;
2361     w.qlock = -1; // try to disable
2362     if (pass > 0) {
2363     w.cancelAll(); // clear queue
2364     if (pass > 1 && (wt = w.owner) != null) {
2365     if (!wt.isInterrupted()) {
2366     try { // unblock join
2367     wt.interrupt();
2368     } catch (Throwable ignore) {
2369 dl 1.200 }
2370     }
2371 dl 1.243 LockSupport.unpark(wt);
2372 dl 1.200 }
2373 dl 1.101 }
2374 dl 1.78 }
2375     }
2376 dl 1.210 if (checkSum != oldSum) { // unstable
2377     oldSum = checkSum;
2378     pass = 0;
2379     }
2380     else if (pass > 3 && pass > m) // can't further help
2381     break;
2382     else if (++pass > 1) { // try to dequeue
2383     long c; int j = 0, sp; // bound attempts
2384     while (j++ <= m && (sp = (int)(c = ctl)) != 0)
2385     tryRelease(c, ws[sp & m], AC_UNIT);
2386 dl 1.200 }
2387     }
2388     return true;
2389     }
2390    
2391     // External operations
2392    
2393     /**
2394 dl 1.243 * Constructs and tries to install a new external queue,
2395     * failing if the workQueues array already has a queue at
2396 jsr166 1.245 * the given index.
2397 dl 1.243 *
2398     * @param index the index of the new queue
2399     */
2400     private void tryCreateExternalQueue(int index) {
2401     Object lock;
2402     if ((lock = stealCounter) != null && index >= 0) {
2403     WorkQueue q = new WorkQueue(this, null);
2404     q.config = index;
2405     q.scanState = ~UNSIGNALLED;
2406 jsr166 1.244 synchronized (lock) { // lock to install
2407 dl 1.243 WorkQueue[] ws;
2408     if ((ws = workQueues) != null && index < ws.length &&
2409     ws[index] == null) {
2410     ws[index] = q; // else throw away
2411     }
2412     }
2413     }
2414     }
2415    
2416     /**
2417     * Adds the given task to a submission queue at submitter's
2418     * current queue. Also performs secondary initialization upon the
2419     * first submission of the first task to the pool, and detects
2420 dl 1.200 * first submission by an external thread and creates a new shared
2421     * queue if the one at index if empty or contended.
2422     *
2423     * @param task the task. Caller must ensure non-null.
2424     */
2425 dl 1.243 final void externalPush(ForkJoinTask<?> task) {
2426 dl 1.200 int r; // initialize caller's probe
2427     if ((r = ThreadLocalRandom.getProbe()) == 0) {
2428     ThreadLocalRandom.localInit();
2429     r = ThreadLocalRandom.getProbe();
2430     }
2431     for (;;) {
2432 dl 1.243 WorkQueue q; int wl, k;
2433     int rs = runState;
2434     WorkQueue[] ws = workQueues;
2435     if (rs <= 0 || ws == null || (wl = ws.length) <= 0)
2436 jsr166 1.244 tryInitialize();
2437 dl 1.243 else if ((q = ws[k = (wl - 1) & r & SQMASK]) == null)
2438     tryCreateExternalQueue(k);
2439     else if (U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2440     int b = q.base, s = q.top, al, d; ForkJoinTask<?>[] a;
2441     if ((a = q.array) != null && (al = a.length) > 0 &&
2442     al - 1 + (d = b - s) > 0) {
2443     a[(al - 1) & s] = task; // push
2444     q.top = s + 1; // relaxed writes OK here
2445 dl 1.253 if (d != 0)
2446     U.putOrderedInt(q, QLOCK, 0);
2447     else { // sync with signallees
2448     U.putIntVolatile(q, QLOCK, 0);
2449     signalWork();
2450     }
2451 dl 1.243 break;
2452     }
2453     else { // grow then retry
2454     try {
2455     q.growArray();
2456 dl 1.200 } finally {
2457 dl 1.243 q.qlock = 0;
2458 dl 1.200 }
2459 dl 1.243 }
2460 dl 1.200 }
2461 dl 1.243 else // move if cannot lock
2462 dl 1.200 r = ThreadLocalRandom.advanceProbe(r);
2463 dl 1.52 }
2464     }
2465    
2466 dl 1.200 /**
2467 jsr166 1.237 * Pushes a possibly-external submission.
2468 dl 1.236 */
2469 dl 1.243 private <T> ForkJoinTask<T> externalSubmit(ForkJoinTask<T> task) {
2470     Thread t; ForkJoinWorkerThread w; WorkQueue q;
2471 dl 1.236 if (task == null)
2472     throw new NullPointerException();
2473     if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) &&
2474 dl 1.243 (w = (ForkJoinWorkerThread)t).pool == this &&
2475     (q = w.workQueue) != null)
2476     q.push(task);
2477 jsr166 1.238 else
2478 dl 1.236 externalPush(task);
2479     return task;
2480     }
2481    
2482     /**
2483 jsr166 1.213 * Returns common pool queue for an external thread.
2484 dl 1.105 */
2485     static WorkQueue commonSubmitterQueue() {
2486 dl 1.200 ForkJoinPool p = common;
2487     int r = ThreadLocalRandom.getProbe();
2488 dl 1.243 WorkQueue[] ws; int wl;
2489 dl 1.200 return (p != null && (ws = p.workQueues) != null &&
2490 dl 1.243 (wl = ws.length) > 0) ?
2491     ws[(wl - 1) & r & SQMASK] : null;
2492 dl 1.105 }
2493    
2494     /**
2495 jsr166 1.246 * Performs tryUnpush for an external submitter.
2496 dl 1.105 */
2497 dl 1.178 final boolean tryExternalUnpush(ForkJoinTask<?> task) {
2498 dl 1.200 int r = ThreadLocalRandom.getProbe();
2499 dl 1.243 WorkQueue[] ws; WorkQueue w; int wl;
2500     return ((ws = workQueues) != null &&
2501     (wl = ws.length) > 0 &&
2502     (w = ws[(wl - 1) & r & SQMASK]) != null &&
2503     w.trySharedUnpush(task));
2504 dl 1.105 }
2505    
2506 dl 1.200 /**
2507 jsr166 1.213 * Performs helpComplete for an external submitter.
2508 dl 1.200 */
2509 dl 1.190 final int externalHelpComplete(CountedCompleter<?> task, int maxTasks) {
2510 dl 1.243 WorkQueue[] ws; int wl;
2511 dl 1.200 int r = ThreadLocalRandom.getProbe();
2512 dl 1.243 return ((ws = workQueues) != null && (wl = ws.length) > 0) ?
2513     helpComplete(ws[(wl - 1) & r & SQMASK], task, maxTasks) : 0;
2514 dl 1.105 }
2515    
2516 dl 1.52 // Exported methods
2517 jsr166 1.1
2518     // Constructors
2519    
2520     /**
2521 jsr166 1.9 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2522 dl 1.18 * java.lang.Runtime#availableProcessors}, using the {@linkplain
2523     * #defaultForkJoinWorkerThreadFactory default thread factory},
2524     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2525 jsr166 1.1 *
2526     * @throws SecurityException if a security manager exists and
2527     * the caller is not permitted to modify threads
2528     * because it does not hold {@link
2529     * java.lang.RuntimePermission}{@code ("modifyThread")}
2530     */
2531     public ForkJoinPool() {
2532 jsr166 1.148 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2533     defaultForkJoinWorkerThreadFactory, null, false);
2534 jsr166 1.1 }
2535    
2536     /**
2537 jsr166 1.9 * Creates a {@code ForkJoinPool} with the indicated parallelism
2538 dl 1.18 * level, the {@linkplain
2539     * #defaultForkJoinWorkerThreadFactory default thread factory},
2540     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2541 jsr166 1.1 *
2542 jsr166 1.9 * @param parallelism the parallelism level
2543 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
2544 jsr166 1.11 * equal to zero, or greater than implementation limit
2545 jsr166 1.1 * @throws SecurityException if a security manager exists and
2546     * the caller is not permitted to modify threads
2547     * because it does not hold {@link
2548     * java.lang.RuntimePermission}{@code ("modifyThread")}
2549     */
2550     public ForkJoinPool(int parallelism) {
2551 dl 1.18 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2552 jsr166 1.1 }
2553    
2554     /**
2555 dl 1.18 * Creates a {@code ForkJoinPool} with the given parameters.
2556 jsr166 1.1 *
2557 dl 1.18 * @param parallelism the parallelism level. For default value,
2558     * use {@link java.lang.Runtime#availableProcessors}.
2559     * @param factory the factory for creating new threads. For default value,
2560     * use {@link #defaultForkJoinWorkerThreadFactory}.
2561 dl 1.19 * @param handler the handler for internal worker threads that
2562     * terminate due to unrecoverable errors encountered while executing
2563 jsr166 1.31 * tasks. For default value, use {@code null}.
2564 dl 1.19 * @param asyncMode if true,
2565 dl 1.18 * establishes local first-in-first-out scheduling mode for forked
2566     * tasks that are never joined. This mode may be more appropriate
2567     * than default locally stack-based mode in applications in which
2568     * worker threads only process event-style asynchronous tasks.
2569 jsr166 1.31 * For default value, use {@code false}.
2570 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
2571 jsr166 1.11 * equal to zero, or greater than implementation limit
2572     * @throws NullPointerException if the factory is null
2573 jsr166 1.1 * @throws SecurityException if a security manager exists and
2574     * the caller is not permitted to modify threads
2575     * because it does not hold {@link
2576     * java.lang.RuntimePermission}{@code ("modifyThread")}
2577     */
2578 dl 1.19 public ForkJoinPool(int parallelism,
2579 dl 1.18 ForkJoinWorkerThreadFactory factory,
2580 jsr166 1.156 UncaughtExceptionHandler handler,
2581 dl 1.18 boolean asyncMode) {
2582 dl 1.152 this(checkParallelism(parallelism),
2583     checkFactory(factory),
2584     handler,
2585 jsr166 1.201 asyncMode ? FIFO_QUEUE : LIFO_QUEUE,
2586 dl 1.152 "ForkJoinPool-" + nextPoolId() + "-worker-");
2587 dl 1.14 checkPermission();
2588 dl 1.152 }
2589    
2590     private static int checkParallelism(int parallelism) {
2591     if (parallelism <= 0 || parallelism > MAX_CAP)
2592     throw new IllegalArgumentException();
2593     return parallelism;
2594     }
2595    
2596     private static ForkJoinWorkerThreadFactory checkFactory
2597     (ForkJoinWorkerThreadFactory factory) {
2598 dl 1.14 if (factory == null)
2599     throw new NullPointerException();
2600 dl 1.152 return factory;
2601     }
2602    
2603     /**
2604     * Creates a {@code ForkJoinPool} with the given parameters, without
2605     * any security checks or parameter validation. Invoked directly by
2606     * makeCommonPool.
2607     */
2608     private ForkJoinPool(int parallelism,
2609     ForkJoinWorkerThreadFactory factory,
2610 jsr166 1.156 UncaughtExceptionHandler handler,
2611 dl 1.185 int mode,
2612 dl 1.152 String workerNamePrefix) {
2613     this.workerNamePrefix = workerNamePrefix;
2614 jsr166 1.1 this.factory = factory;
2615 dl 1.18 this.ueh = handler;
2616 dl 1.200 this.config = (parallelism & SMASK) | mode;
2617 dl 1.52 long np = (long)(-parallelism); // offset ctl counts
2618     this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2619 dl 1.101 }
2620    
2621     /**
2622 dl 1.128 * Returns the common pool instance. This pool is statically
2623 dl 1.134 * constructed; its run state is unaffected by attempts to {@link
2624     * #shutdown} or {@link #shutdownNow}. However this pool and any
2625     * ongoing processing are automatically terminated upon program
2626     * {@link System#exit}. Any program that relies on asynchronous
2627     * task processing to complete before program termination should
2628 jsr166 1.158 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2629     * before exit.
2630 dl 1.100 *
2631     * @return the common pool instance
2632 jsr166 1.138 * @since 1.8
2633 dl 1.100 */
2634     public static ForkJoinPool commonPool() {
2635 dl 1.134 // assert common != null : "static init error";
2636     return common;
2637 dl 1.100 }
2638    
2639 jsr166 1.1 // Execution methods
2640    
2641     /**
2642     * Performs the given task, returning its result upon completion.
2643 dl 1.52 * If the computation encounters an unchecked Exception or Error,
2644     * it is rethrown as the outcome of this invocation. Rethrown
2645     * exceptions behave in the same way as regular exceptions, but,
2646     * when possible, contain stack traces (as displayed for example
2647     * using {@code ex.printStackTrace()}) of both the current thread
2648     * as well as the thread actually encountering the exception;
2649     * minimally only the latter.
2650 jsr166 1.1 *
2651     * @param task the task
2652 jsr166 1.191 * @param <T> the type of the task's result
2653 jsr166 1.1 * @return the task's result
2654 jsr166 1.11 * @throws NullPointerException if the task is null
2655     * @throws RejectedExecutionException if the task cannot be
2656     * scheduled for execution
2657 jsr166 1.1 */
2658     public <T> T invoke(ForkJoinTask<T> task) {
2659 dl 1.90 if (task == null)
2660     throw new NullPointerException();
2661 dl 1.243 externalSubmit(task);
2662 dl 1.78 return task.join();
2663 jsr166 1.1 }
2664    
2665     /**
2666     * Arranges for (asynchronous) execution of the given task.
2667     *
2668     * @param task the task
2669 jsr166 1.11 * @throws NullPointerException if the task is null
2670     * @throws RejectedExecutionException if the task cannot be
2671     * scheduled for execution
2672 jsr166 1.1 */
2673 jsr166 1.8 public void execute(ForkJoinTask<?> task) {
2674 dl 1.243 externalSubmit(task);
2675 jsr166 1.1 }
2676    
2677     // AbstractExecutorService methods
2678    
2679 jsr166 1.11 /**
2680     * @throws NullPointerException if the task is null
2681     * @throws RejectedExecutionException if the task cannot be
2682     * scheduled for execution
2683     */
2684 jsr166 1.1 public void execute(Runnable task) {
2685 dl 1.41 if (task == null)
2686     throw new NullPointerException();
2687 jsr166 1.2 ForkJoinTask<?> job;
2688 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2689     job = (ForkJoinTask<?>) task;
2690 jsr166 1.2 else
2691 dl 1.152 job = new ForkJoinTask.RunnableExecuteAction(task);
2692 dl 1.243 externalSubmit(job);
2693 jsr166 1.1 }
2694    
2695 jsr166 1.11 /**
2696 dl 1.18 * Submits a ForkJoinTask for execution.
2697     *
2698     * @param task the task to submit
2699 jsr166 1.191 * @param <T> the type of the task's result
2700 dl 1.18 * @return the task
2701     * @throws NullPointerException if the task is null
2702     * @throws RejectedExecutionException if the task cannot be
2703     * scheduled for execution
2704     */
2705     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2706 dl 1.243 return externalSubmit(task);
2707 dl 1.18 }
2708    
2709     /**
2710 jsr166 1.11 * @throws NullPointerException if the task is null
2711     * @throws RejectedExecutionException if the task cannot be
2712     * scheduled for execution
2713     */
2714 jsr166 1.1 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2715 dl 1.243 return externalSubmit(new ForkJoinTask.AdaptedCallable<T>(task));
2716 jsr166 1.1 }
2717    
2718 jsr166 1.11 /**
2719     * @throws NullPointerException if the task is null
2720     * @throws RejectedExecutionException if the task cannot be
2721     * scheduled for execution
2722     */
2723 jsr166 1.1 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2724 dl 1.243 return externalSubmit(new ForkJoinTask.AdaptedRunnable<T>(task, result));
2725 jsr166 1.1 }
2726    
2727 jsr166 1.11 /**
2728     * @throws NullPointerException if the task is null
2729     * @throws RejectedExecutionException if the task cannot be
2730     * scheduled for execution
2731     */
2732 jsr166 1.1 public ForkJoinTask<?> submit(Runnable task) {
2733 dl 1.41 if (task == null)
2734     throw new NullPointerException();
2735 jsr166 1.2 ForkJoinTask<?> job;
2736 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2737     job = (ForkJoinTask<?>) task;
2738 jsr166 1.2 else
2739 dl 1.90 job = new ForkJoinTask.AdaptedRunnableAction(task);
2740 dl 1.243 return externalSubmit(job);
2741 jsr166 1.1 }
2742    
2743     /**
2744 jsr166 1.11 * @throws NullPointerException {@inheritDoc}
2745     * @throws RejectedExecutionException {@inheritDoc}
2746     */
2747 jsr166 1.1 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2748 dl 1.86 // In previous versions of this class, this method constructed
2749     // a task to run ForkJoinTask.invokeAll, but now external
2750     // invocation of multiple tasks is at least as efficient.
2751 jsr166 1.199 ArrayList<Future<T>> futures = new ArrayList<>(tasks.size());
2752 jsr166 1.1
2753 dl 1.86 try {
2754     for (Callable<T> t : tasks) {
2755 dl 1.90 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2756 jsr166 1.144 futures.add(f);
2757 dl 1.243 externalSubmit(f);
2758 dl 1.86 }
2759 jsr166 1.143 for (int i = 0, size = futures.size(); i < size; i++)
2760     ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2761 dl 1.86 return futures;
2762 jsr166 1.226 } catch (Throwable t) {
2763     for (int i = 0, size = futures.size(); i < size; i++)
2764     futures.get(i).cancel(false);
2765     throw t;
2766 jsr166 1.1 }
2767     }
2768    
2769     /**
2770     * Returns the factory used for constructing new workers.
2771     *
2772     * @return the factory used for constructing new workers
2773     */
2774     public ForkJoinWorkerThreadFactory getFactory() {
2775     return factory;
2776     }
2777    
2778     /**
2779     * Returns the handler for internal worker threads that terminate
2780     * due to unrecoverable errors encountered while executing tasks.
2781     *
2782 jsr166 1.4 * @return the handler, or {@code null} if none
2783 jsr166 1.1 */
2784 jsr166 1.156 public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2785 dl 1.14 return ueh;
2786 jsr166 1.1 }
2787    
2788     /**
2789 jsr166 1.9 * Returns the targeted parallelism level of this pool.
2790 jsr166 1.1 *
2791 jsr166 1.9 * @return the targeted parallelism level of this pool
2792 jsr166 1.1 */
2793     public int getParallelism() {
2794 dl 1.185 int par;
2795 dl 1.200 return ((par = config & SMASK) > 0) ? par : 1;
2796 jsr166 1.1 }
2797    
2798     /**
2799 dl 1.100 * Returns the targeted parallelism level of the common pool.
2800     *
2801     * @return the targeted parallelism level of the common pool
2802 jsr166 1.138 * @since 1.8
2803 dl 1.100 */
2804     public static int getCommonPoolParallelism() {
2805 dl 1.134 return commonParallelism;
2806 dl 1.100 }
2807    
2808     /**
2809 jsr166 1.1 * Returns the number of worker threads that have started but not
2810 jsr166 1.34 * yet terminated. The result returned by this method may differ
2811 jsr166 1.4 * from {@link #getParallelism} when threads are created to
2812 jsr166 1.1 * maintain parallelism when others are cooperatively blocked.
2813     *
2814     * @return the number of worker threads
2815     */
2816     public int getPoolSize() {
2817 dl 1.200 return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2818 jsr166 1.1 }
2819    
2820     /**
2821 jsr166 1.4 * Returns {@code true} if this pool uses local first-in-first-out
2822 jsr166 1.1 * scheduling mode for forked tasks that are never joined.
2823     *
2824 jsr166 1.4 * @return {@code true} if this pool uses async mode
2825 jsr166 1.1 */
2826     public boolean getAsyncMode() {
2827 dl 1.200 return (config & FIFO_QUEUE) != 0;
2828 jsr166 1.1 }
2829    
2830     /**
2831     * Returns an estimate of the number of worker threads that are
2832     * not blocked waiting to join tasks or for other managed
2833 dl 1.14 * synchronization. This method may overestimate the
2834     * number of running threads.
2835 jsr166 1.1 *
2836     * @return the number of worker threads
2837     */
2838     public int getRunningThreadCount() {
2839 dl 1.78 int rc = 0;
2840     WorkQueue[] ws; WorkQueue w;
2841     if ((ws = workQueues) != null) {
2842 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2843     if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2844 dl 1.78 ++rc;
2845     }
2846     }
2847     return rc;
2848 jsr166 1.1 }
2849    
2850     /**
2851     * Returns an estimate of the number of threads that are currently
2852     * stealing or executing tasks. This method may overestimate the
2853     * number of active threads.
2854     *
2855     * @return the number of active threads
2856     */
2857     public int getActiveThreadCount() {
2858 dl 1.200 int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2859 jsr166 1.63 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2860 jsr166 1.1 }
2861    
2862     /**
2863 jsr166 1.4 * Returns {@code true} if all worker threads are currently idle.
2864     * An idle worker is one that cannot obtain a task to execute
2865     * because none are available to steal from other threads, and
2866     * there are no pending submissions to the pool. This method is
2867     * conservative; it might not return {@code true} immediately upon
2868     * idleness of all threads, but will eventually become true if
2869     * threads remain inactive.
2870 jsr166 1.1 *
2871 jsr166 1.4 * @return {@code true} if all threads are currently idle
2872 jsr166 1.1 */
2873     public boolean isQuiescent() {
2874 dl 1.200 return (config & SMASK) + (int)(ctl >> AC_SHIFT) <= 0;
2875 jsr166 1.1 }
2876    
2877     /**
2878     * Returns an estimate of the total number of tasks stolen from
2879     * one thread's work queue by another. The reported value
2880     * underestimates the actual total number of steals when the pool
2881     * is not quiescent. This value may be useful for monitoring and
2882     * tuning fork/join programs: in general, steal counts should be
2883     * high enough to keep threads busy, but low enough to avoid
2884     * overhead and contention across threads.
2885     *
2886     * @return the number of steals
2887     */
2888     public long getStealCount() {
2889 dl 1.215 AtomicLong sc = stealCounter;
2890     long count = (sc == null) ? 0L : sc.get();
2891 dl 1.78 WorkQueue[] ws; WorkQueue w;
2892     if ((ws = workQueues) != null) {
2893 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2894 dl 1.78 if ((w = ws[i]) != null)
2895 dl 1.105 count += w.nsteals;
2896 dl 1.78 }
2897     }
2898     return count;
2899 jsr166 1.1 }
2900    
2901     /**
2902     * Returns an estimate of the total number of tasks currently held
2903     * in queues by worker threads (but not including tasks submitted
2904     * to the pool that have not begun executing). This value is only
2905     * an approximation, obtained by iterating across all threads in
2906     * the pool. This method may be useful for tuning task
2907     * granularities.
2908     *
2909     * @return the number of queued tasks
2910     */
2911     public long getQueuedTaskCount() {
2912     long count = 0;
2913 dl 1.78 WorkQueue[] ws; WorkQueue w;
2914     if ((ws = workQueues) != null) {
2915 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2916 dl 1.78 if ((w = ws[i]) != null)
2917     count += w.queueSize();
2918     }
2919 dl 1.52 }
2920 jsr166 1.1 return count;
2921     }
2922    
2923     /**
2924 jsr166 1.8 * Returns an estimate of the number of tasks submitted to this
2925 dl 1.55 * pool that have not yet begun executing. This method may take
2926 dl 1.52 * time proportional to the number of submissions.
2927 jsr166 1.1 *
2928     * @return the number of queued submissions
2929     */
2930     public int getQueuedSubmissionCount() {
2931 dl 1.78 int count = 0;
2932     WorkQueue[] ws; WorkQueue w;
2933     if ((ws = workQueues) != null) {
2934 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2935 dl 1.78 if ((w = ws[i]) != null)
2936     count += w.queueSize();
2937     }
2938     }
2939     return count;
2940 jsr166 1.1 }
2941    
2942     /**
2943 jsr166 1.4 * Returns {@code true} if there are any tasks submitted to this
2944     * pool that have not yet begun executing.
2945 jsr166 1.1 *
2946     * @return {@code true} if there are any queued submissions
2947     */
2948     public boolean hasQueuedSubmissions() {
2949 dl 1.78 WorkQueue[] ws; WorkQueue w;
2950     if ((ws = workQueues) != null) {
2951 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2952 dl 1.115 if ((w = ws[i]) != null && !w.isEmpty())
2953 dl 1.78 return true;
2954     }
2955     }
2956     return false;
2957 jsr166 1.1 }
2958    
2959     /**
2960     * Removes and returns the next unexecuted submission if one is
2961     * available. This method may be useful in extensions to this
2962     * class that re-assign work in systems with multiple pools.
2963     *
2964 jsr166 1.4 * @return the next submission, or {@code null} if none
2965 jsr166 1.1 */
2966     protected ForkJoinTask<?> pollSubmission() {
2967 dl 1.253 WorkQueue[] ws; int wl; WorkQueue w; ForkJoinTask<?> t;
2968     int r = ThreadLocalRandom.nextSecondarySeed();
2969     if ((ws = workQueues) != null && (wl = ws.length) > 0) {
2970     for (int m = wl - 1, i = 0; i < wl; ++i) {
2971     if ((w = ws[(i << 1) & m]) != null && (t = w.poll()) != null)
2972 dl 1.78 return t;
2973 dl 1.52 }
2974     }
2975     return null;
2976 jsr166 1.1 }
2977    
2978     /**
2979     * Removes all available unexecuted submitted and forked tasks
2980     * from scheduling queues and adds them to the given collection,
2981     * without altering their execution status. These may include
2982 jsr166 1.8 * artificially generated or wrapped tasks. This method is
2983     * designed to be invoked only when the pool is known to be
2984 jsr166 1.1 * quiescent. Invocations at other times may not remove all
2985     * tasks. A failure encountered while attempting to add elements
2986     * to collection {@code c} may result in elements being in
2987     * neither, either or both collections when the associated
2988     * exception is thrown. The behavior of this operation is
2989     * undefined if the specified collection is modified while the
2990     * operation is in progress.
2991     *
2992     * @param c the collection to transfer elements into
2993     * @return the number of elements transferred
2994     */
2995 jsr166 1.5 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2996 dl 1.52 int count = 0;
2997 dl 1.78 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2998     if ((ws = workQueues) != null) {
2999 dl 1.86 for (int i = 0; i < ws.length; ++i) {
3000 dl 1.78 if ((w = ws[i]) != null) {
3001     while ((t = w.poll()) != null) {
3002     c.add(t);
3003     ++count;
3004     }
3005     }
3006 dl 1.52 }
3007     }
3008 dl 1.18 return count;
3009     }
3010    
3011     /**
3012 jsr166 1.1 * Returns a string identifying this pool, as well as its state,
3013     * including indications of run state, parallelism level, and
3014     * worker and task counts.
3015     *
3016     * @return a string identifying this pool, as well as its state
3017     */
3018     public String toString() {
3019 dl 1.86 // Use a single pass through workQueues to collect counts
3020     long qt = 0L, qs = 0L; int rc = 0;
3021 dl 1.215 AtomicLong sc = stealCounter;
3022     long st = (sc == null) ? 0L : sc.get();
3023 dl 1.86 long c = ctl;
3024     WorkQueue[] ws; WorkQueue w;
3025     if ((ws = workQueues) != null) {
3026     for (int i = 0; i < ws.length; ++i) {
3027     if ((w = ws[i]) != null) {
3028     int size = w.queueSize();
3029     if ((i & 1) == 0)
3030     qs += size;
3031     else {
3032     qt += size;
3033 dl 1.105 st += w.nsteals;
3034 dl 1.86 if (w.isApparentlyUnblocked())
3035     ++rc;
3036     }
3037     }
3038     }
3039     }
3040 dl 1.200 int pc = (config & SMASK);
3041 dl 1.52 int tc = pc + (short)(c >>> TC_SHIFT);
3042 dl 1.78 int ac = pc + (int)(c >> AC_SHIFT);
3043     if (ac < 0) // ignore transient negative
3044     ac = 0;
3045 dl 1.200 int rs = runState;
3046     String level = ((rs & TERMINATED) != 0 ? "Terminated" :
3047     (rs & STOP) != 0 ? "Terminating" :
3048     (rs & SHUTDOWN) != 0 ? "Shutting down" :
3049     "Running");
3050 jsr166 1.1 return super.toString() +
3051 dl 1.52 "[" + level +
3052 dl 1.14 ", parallelism = " + pc +
3053     ", size = " + tc +
3054     ", active = " + ac +
3055     ", running = " + rc +
3056 jsr166 1.1 ", steals = " + st +
3057     ", tasks = " + qt +
3058     ", submissions = " + qs +
3059     "]";
3060     }
3061    
3062     /**
3063 dl 1.100 * Possibly initiates an orderly shutdown in which previously
3064     * submitted tasks are executed, but no new tasks will be
3065     * accepted. Invocation has no effect on execution state if this
3066 jsr166 1.137 * is the {@link #commonPool()}, and no additional effect if
3067 dl 1.100 * already shut down. Tasks that are in the process of being
3068     * submitted concurrently during the course of this method may or
3069     * may not be rejected.
3070 jsr166 1.1 *
3071     * @throws SecurityException if a security manager exists and
3072     * the caller is not permitted to modify threads
3073     * because it does not hold {@link
3074     * java.lang.RuntimePermission}{@code ("modifyThread")}
3075     */
3076     public void shutdown() {
3077     checkPermission();
3078 dl 1.105 tryTerminate(false, true);
3079 jsr166 1.1 }
3080    
3081     /**
3082 dl 1.100 * Possibly attempts to cancel and/or stop all tasks, and reject
3083     * all subsequently submitted tasks. Invocation has no effect on
3084 jsr166 1.137 * execution state if this is the {@link #commonPool()}, and no
3085 dl 1.100 * additional effect if already shut down. Otherwise, tasks that
3086     * are in the process of being submitted or executed concurrently
3087     * during the course of this method may or may not be
3088     * rejected. This method cancels both existing and unexecuted
3089     * tasks, in order to permit termination in the presence of task
3090     * dependencies. So the method always returns an empty list
3091     * (unlike the case for some other Executors).
3092 jsr166 1.1 *
3093     * @return an empty list
3094     * @throws SecurityException if a security manager exists and
3095     * the caller is not permitted to modify threads
3096     * because it does not hold {@link
3097     * java.lang.RuntimePermission}{@code ("modifyThread")}
3098     */
3099     public List<Runnable> shutdownNow() {
3100     checkPermission();
3101 dl 1.105 tryTerminate(true, true);
3102 jsr166 1.1 return Collections.emptyList();
3103     }
3104    
3105     /**
3106     * Returns {@code true} if all tasks have completed following shut down.
3107     *
3108     * @return {@code true} if all tasks have completed following shut down
3109     */
3110     public boolean isTerminated() {
3111 dl 1.200 return (runState & TERMINATED) != 0;
3112 jsr166 1.1 }
3113    
3114     /**
3115     * Returns {@code true} if the process of termination has
3116 jsr166 1.9 * commenced but not yet completed. This method may be useful for
3117     * debugging. A return of {@code true} reported a sufficient
3118     * period after shutdown may indicate that submitted tasks have
3119 jsr166 1.119 * ignored or suppressed interruption, or are waiting for I/O,
3120 dl 1.49 * causing this executor not to properly terminate. (See the
3121     * advisory notes for class {@link ForkJoinTask} stating that
3122     * tasks should not normally entail blocking operations. But if
3123     * they do, they must abort them on interrupt.)
3124 jsr166 1.1 *
3125 jsr166 1.9 * @return {@code true} if terminating but not yet terminated
3126 jsr166 1.1 */
3127     public boolean isTerminating() {
3128 dl 1.200 int rs = runState;
3129     return (rs & STOP) != 0 && (rs & TERMINATED) == 0;
3130 jsr166 1.1 }
3131    
3132     /**
3133     * Returns {@code true} if this pool has been shut down.
3134     *
3135     * @return {@code true} if this pool has been shut down
3136     */
3137     public boolean isShutdown() {
3138 dl 1.200 return (runState & SHUTDOWN) != 0;
3139 jsr166 1.9 }
3140    
3141     /**
3142 dl 1.105 * Blocks until all tasks have completed execution after a
3143     * shutdown request, or the timeout occurs, or the current thread
3144 dl 1.134 * is interrupted, whichever happens first. Because the {@link
3145     * #commonPool()} never terminates until program shutdown, when
3146     * applied to the common pool, this method is equivalent to {@link
3147 jsr166 1.158 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
3148 jsr166 1.1 *
3149     * @param timeout the maximum time to wait
3150     * @param unit the time unit of the timeout argument
3151     * @return {@code true} if this executor terminated and
3152     * {@code false} if the timeout elapsed before termination
3153     * @throws InterruptedException if interrupted while waiting
3154     */
3155     public boolean awaitTermination(long timeout, TimeUnit unit)
3156     throws InterruptedException {
3157 dl 1.134 if (Thread.interrupted())
3158     throw new InterruptedException();
3159     if (this == common) {
3160     awaitQuiescence(timeout, unit);
3161     return false;
3162     }
3163 dl 1.52 long nanos = unit.toNanos(timeout);
3164 dl 1.101 if (isTerminated())
3165     return true;
3166 dl 1.183 if (nanos <= 0L)
3167     return false;
3168     long deadline = System.nanoTime() + nanos;
3169 jsr166 1.103 synchronized (this) {
3170 jsr166 1.184 for (;;) {
3171 dl 1.183 if (isTerminated())
3172     return true;
3173     if (nanos <= 0L)
3174     return false;
3175     long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
3176     wait(millis > 0L ? millis : 1L);
3177     nanos = deadline - System.nanoTime();
3178 dl 1.52 }
3179 dl 1.18 }
3180 jsr166 1.1 }
3181    
3182     /**
3183 dl 1.134 * If called by a ForkJoinTask operating in this pool, equivalent
3184     * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3185     * waits and/or attempts to assist performing tasks until this
3186     * pool {@link #isQuiescent} or the indicated timeout elapses.
3187     *
3188     * @param timeout the maximum time to wait
3189     * @param unit the time unit of the timeout argument
3190     * @return {@code true} if quiescent; {@code false} if the
3191     * timeout elapsed.
3192     */
3193     public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3194     long nanos = unit.toNanos(timeout);
3195     ForkJoinWorkerThread wt;
3196     Thread thread = Thread.currentThread();
3197     if ((thread instanceof ForkJoinWorkerThread) &&
3198     (wt = (ForkJoinWorkerThread)thread).pool == this) {
3199     helpQuiescePool(wt.workQueue);
3200     return true;
3201     }
3202     long startTime = System.nanoTime();
3203     WorkQueue[] ws;
3204 dl 1.243 int r = 0, wl;
3205 dl 1.134 boolean found = true;
3206     while (!isQuiescent() && (ws = workQueues) != null &&
3207 dl 1.243 (wl = ws.length) > 0) {
3208 dl 1.134 if (!found) {
3209     if ((System.nanoTime() - startTime) > nanos)
3210     return false;
3211     Thread.yield(); // cannot block
3212     }
3213     found = false;
3214 dl 1.243 for (int m = wl - 1, j = (m + 1) << 2; j >= 0; --j) {
3215 dl 1.200 ForkJoinTask<?> t; WorkQueue q; int b, k;
3216     if ((k = r++ & m) <= m && k >= 0 && (q = ws[k]) != null &&
3217     (b = q.base) - q.top < 0) {
3218 dl 1.134 found = true;
3219 dl 1.172 if ((t = q.pollAt(b)) != null)
3220 dl 1.134 t.doExec();
3221     break;
3222     }
3223     }
3224     }
3225     return true;
3226     }
3227    
3228     /**
3229     * Waits and/or attempts to assist performing tasks indefinitely
3230 jsr166 1.141 * until the {@link #commonPool()} {@link #isQuiescent}.
3231 dl 1.134 */
3232 dl 1.136 static void quiesceCommonPool() {
3233 dl 1.134 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3234     }
3235    
3236     /**
3237 jsr166 1.1 * Interface for extending managed parallelism for tasks running
3238 jsr166 1.8 * in {@link ForkJoinPool}s.
3239     *
3240 dl 1.19 * <p>A {@code ManagedBlocker} provides two methods. Method
3241 jsr166 1.218 * {@link #isReleasable} must return {@code true} if blocking is
3242     * not necessary. Method {@link #block} blocks the current thread
3243 dl 1.19 * if necessary (perhaps internally invoking {@code isReleasable}
3244 dl 1.54 * before actually blocking). These actions are performed by any
3245 jsr166 1.157 * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
3246     * The unusual methods in this API accommodate synchronizers that
3247     * may, but don't usually, block for long periods. Similarly, they
3248 dl 1.54 * allow more efficient internal handling of cases in which
3249     * additional workers may be, but usually are not, needed to
3250     * ensure sufficient parallelism. Toward this end,
3251     * implementations of method {@code isReleasable} must be amenable
3252     * to repeated invocation.
3253 jsr166 1.1 *
3254     * <p>For example, here is a ManagedBlocker based on a
3255     * ReentrantLock:
3256 jsr166 1.239 * <pre> {@code
3257 jsr166 1.1 * class ManagedLocker implements ManagedBlocker {
3258     * final ReentrantLock lock;
3259     * boolean hasLock = false;
3260     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3261     * public boolean block() {
3262     * if (!hasLock)
3263     * lock.lock();
3264     * return true;
3265     * }
3266     * public boolean isReleasable() {
3267     * return hasLock || (hasLock = lock.tryLock());
3268     * }
3269     * }}</pre>
3270 dl 1.19 *
3271     * <p>Here is a class that possibly blocks waiting for an
3272     * item on a given queue:
3273 jsr166 1.239 * <pre> {@code
3274 dl 1.19 * class QueueTaker<E> implements ManagedBlocker {
3275     * final BlockingQueue<E> queue;
3276     * volatile E item = null;
3277     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3278     * public boolean block() throws InterruptedException {
3279     * if (item == null)
3280 dl 1.23 * item = queue.take();
3281 dl 1.19 * return true;
3282     * }
3283     * public boolean isReleasable() {
3284 dl 1.23 * return item != null || (item = queue.poll()) != null;
3285 dl 1.19 * }
3286     * public E getItem() { // call after pool.managedBlock completes
3287     * return item;
3288     * }
3289     * }}</pre>
3290 jsr166 1.1 */
3291     public static interface ManagedBlocker {
3292     /**
3293     * Possibly blocks the current thread, for example waiting for
3294     * a lock or condition.
3295     *
3296 jsr166 1.4 * @return {@code true} if no additional blocking is necessary
3297     * (i.e., if isReleasable would return true)
3298 jsr166 1.1 * @throws InterruptedException if interrupted while waiting
3299     * (the method is not required to do so, but is allowed to)
3300     */
3301     boolean block() throws InterruptedException;
3302    
3303     /**
3304 jsr166 1.4 * Returns {@code true} if blocking is unnecessary.
3305 jsr166 1.154 * @return {@code true} if blocking is unnecessary
3306 jsr166 1.1 */
3307     boolean isReleasable();
3308     }
3309    
3310     /**
3311 jsr166 1.217 * Runs the given possibly blocking task. When {@linkplain
3312     * ForkJoinTask#inForkJoinPool() running in a ForkJoinPool}, this
3313     * method possibly arranges for a spare thread to be activated if
3314     * necessary to ensure sufficient parallelism while the current
3315     * thread is blocked in {@link ManagedBlocker#block blocker.block()}.
3316 jsr166 1.1 *
3317 jsr166 1.217 * <p>This method repeatedly calls {@code blocker.isReleasable()} and
3318     * {@code blocker.block()} until either method returns {@code true}.
3319     * Every call to {@code blocker.block()} is preceded by a call to
3320     * {@code blocker.isReleasable()} that returned {@code false}.
3321     *
3322     * <p>If not running in a ForkJoinPool, this method is
3323 jsr166 1.8 * behaviorally equivalent to
3324 jsr166 1.239 * <pre> {@code
3325 jsr166 1.1 * while (!blocker.isReleasable())
3326     * if (blocker.block())
3327 jsr166 1.217 * break;}</pre>
3328 jsr166 1.8 *
3329 jsr166 1.217 * If running in a ForkJoinPool, the pool may first be expanded to
3330     * ensure sufficient parallelism available during the call to
3331     * {@code blocker.block()}.
3332 jsr166 1.1 *
3333 jsr166 1.217 * @param blocker the blocker task
3334     * @throws InterruptedException if {@code blocker.block()} did so
3335 jsr166 1.1 */
3336 dl 1.18 public static void managedBlock(ManagedBlocker blocker)
3337 jsr166 1.1 throws InterruptedException {
3338 dl 1.200 ForkJoinPool p;
3339     ForkJoinWorkerThread wt;
3340 jsr166 1.1 Thread t = Thread.currentThread();
3341 dl 1.200 if ((t instanceof ForkJoinWorkerThread) &&
3342     (p = (wt = (ForkJoinWorkerThread)t).pool) != null) {
3343     WorkQueue w = wt.workQueue;
3344 dl 1.172 while (!blocker.isReleasable()) {
3345 dl 1.200 if (p.tryCompensate(w)) {
3346 dl 1.105 try {
3347     do {} while (!blocker.isReleasable() &&
3348     !blocker.block());
3349     } finally {
3350 dl 1.200 U.getAndAddLong(p, CTL, AC_UNIT);
3351 dl 1.105 }
3352     break;
3353 dl 1.78 }
3354     }
3355 dl 1.18 }
3356 dl 1.105 else {
3357     do {} while (!blocker.isReleasable() &&
3358     !blocker.block());
3359     }
3360 jsr166 1.1 }
3361    
3362 jsr166 1.7 // AbstractExecutorService overrides. These rely on undocumented
3363     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3364     // implement RunnableFuture.
3365 jsr166 1.1
3366     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3367 dl 1.90 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3368 jsr166 1.1 }
3369    
3370     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3371 dl 1.90 return new ForkJoinTask.AdaptedCallable<T>(callable);
3372 jsr166 1.1 }
3373    
3374     // Unsafe mechanics
3375 jsr166 1.233 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
3376 dl 1.78 private static final long CTL;
3377 dl 1.211 private static final long RUNSTATE;
3378 dl 1.215 private static final long STEALCOUNTER;
3379 dl 1.105 private static final long QLOCK;
3380 dl 1.243 private static final int ABASE;
3381     private static final int ASHIFT;
3382 dl 1.52
3383     static {
3384 jsr166 1.3 try {
3385 dl 1.78 CTL = U.objectFieldOffset
3386 jsr166 1.233 (ForkJoinPool.class.getDeclaredField("ctl"));
3387 dl 1.211 RUNSTATE = U.objectFieldOffset
3388 jsr166 1.233 (ForkJoinPool.class.getDeclaredField("runState"));
3389 dl 1.215 STEALCOUNTER = U.objectFieldOffset
3390 jsr166 1.233 (ForkJoinPool.class.getDeclaredField("stealCounter"));
3391    
3392 dl 1.105 QLOCK = U.objectFieldOffset
3393 jsr166 1.233 (WorkQueue.class.getDeclaredField("qlock"));
3394    
3395     ABASE = U.arrayBaseOffset(ForkJoinTask[].class);
3396     int scale = U.arrayIndexScale(ForkJoinTask[].class);
3397 jsr166 1.142 if ((scale & (scale - 1)) != 0)
3398 jsr166 1.232 throw new Error("array index scale not a power of two");
3399 jsr166 1.142 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3400 dl 1.243
3401 jsr166 1.231 } catch (ReflectiveOperationException e) {
3402 dl 1.52 throw new Error(e);
3403     }
3404 dl 1.105
3405 dl 1.243 // Reduce the risk of rare disastrous classloading in first call to
3406     // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
3407     Class<?> ensureLoaded = LockSupport.class;
3408    
3409 dl 1.208 commonMaxSpares = DEFAULT_COMMON_MAX_SPARES;
3410 dl 1.152 defaultForkJoinWorkerThreadFactory =
3411 dl 1.112 new DefaultForkJoinWorkerThreadFactory();
3412 dl 1.115 modifyThreadPermission = new RuntimePermission("modifyThread");
3413    
3414 dl 1.152 common = java.security.AccessController.doPrivileged
3415     (new java.security.PrivilegedAction<ForkJoinPool>() {
3416     public ForkJoinPool run() { return makeCommonPool(); }});
3417 dl 1.200 int par = common.config & SMASK; // report 1 even if threads disabled
3418 dl 1.160 commonParallelism = par > 0 ? par : 1;
3419 dl 1.152 }
3420 dl 1.112
3421 dl 1.152 /**
3422     * Creates and returns the common pool, respecting user settings
3423     * specified via system properties.
3424     */
3425     private static ForkJoinPool makeCommonPool() {
3426 dl 1.160 int parallelism = -1;
3427 dl 1.197 ForkJoinWorkerThreadFactory factory = null;
3428 jsr166 1.156 UncaughtExceptionHandler handler = null;
3429 jsr166 1.189 try { // ignore exceptions in accessing/parsing properties
3430 dl 1.112 String pp = System.getProperty
3431     ("java.util.concurrent.ForkJoinPool.common.parallelism");
3432 dl 1.152 String fp = System.getProperty
3433     ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3434 dl 1.112 String hp = System.getProperty
3435     ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3436 dl 1.208 String mp = System.getProperty
3437     ("java.util.concurrent.ForkJoinPool.common.maximumSpares");
3438 dl 1.152 if (pp != null)
3439     parallelism = Integer.parseInt(pp);
3440 dl 1.112 if (fp != null)
3441 dl 1.152 factory = ((ForkJoinWorkerThreadFactory)ClassLoader.
3442     getSystemClassLoader().loadClass(fp).newInstance());
3443 dl 1.112 if (hp != null)
3444 jsr166 1.156 handler = ((UncaughtExceptionHandler)ClassLoader.
3445 dl 1.112 getSystemClassLoader().loadClass(hp).newInstance());
3446 dl 1.208 if (mp != null)
3447     commonMaxSpares = Integer.parseInt(mp);
3448 dl 1.112 } catch (Exception ignore) {
3449     }
3450 dl 1.197 if (factory == null) {
3451     if (System.getSecurityManager() == null)
3452     factory = defaultForkJoinWorkerThreadFactory;
3453     else // use security-managed default
3454     factory = new InnocuousForkJoinWorkerThreadFactory();
3455     }
3456 dl 1.167 if (parallelism < 0 && // default 1 less than #cores
3457 dl 1.193 (parallelism = Runtime.getRuntime().availableProcessors() - 1) <= 0)
3458     parallelism = 1;
3459 dl 1.152 if (parallelism > MAX_CAP)
3460     parallelism = MAX_CAP;
3461 dl 1.185 return new ForkJoinPool(parallelism, factory, handler, LIFO_QUEUE,
3462 dl 1.152 "ForkJoinPool.commonPool-worker-");
3463 jsr166 1.3 }
3464 dl 1.52
3465 dl 1.197 /**
3466     * Factory for innocuous worker threads
3467     */
3468     static final class InnocuousForkJoinWorkerThreadFactory
3469     implements ForkJoinWorkerThreadFactory {
3470    
3471     /**
3472     * An ACC to restrict permissions for the factory itself.
3473     * The constructed workers have no permissions set.
3474     */
3475     private static final AccessControlContext innocuousAcc;
3476     static {
3477     Permissions innocuousPerms = new Permissions();
3478     innocuousPerms.add(modifyThreadPermission);
3479     innocuousPerms.add(new RuntimePermission(
3480     "enableContextClassLoaderOverride"));
3481     innocuousPerms.add(new RuntimePermission(
3482     "modifyThreadGroup"));
3483     innocuousAcc = new AccessControlContext(new ProtectionDomain[] {
3484     new ProtectionDomain(null, innocuousPerms)
3485     });
3486     }
3487    
3488     public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
3489 jsr166 1.227 return java.security.AccessController.doPrivileged(
3490     new java.security.PrivilegedAction<ForkJoinWorkerThread>() {
3491 dl 1.197 public ForkJoinWorkerThread run() {
3492     return new ForkJoinWorkerThread.
3493     InnocuousForkJoinWorkerThread(pool);
3494     }}, innocuousAcc);
3495     }
3496     }
3497    
3498 jsr166 1.1 }