ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.256
Committed: Thu Aug 6 20:40:42 2015 UTC (8 years, 9 months ago) by dl
Branch: MAIN
Changes since 1.255: +127 -91 lines
Log Message:
Simplify introduction of VarHandles

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.58 * http://creativecommons.org/publicdomain/zero/1.0/
5 jsr166 1.1 */
6    
7     package java.util.concurrent;
8    
9 jsr166 1.156 import java.lang.Thread.UncaughtExceptionHandler;
10 jsr166 1.228 import java.security.AccessControlContext;
11     import java.security.Permissions;
12     import java.security.ProtectionDomain;
13 jsr166 1.1 import java.util.ArrayList;
14     import java.util.Arrays;
15     import java.util.Collection;
16     import java.util.Collections;
17     import java.util.List;
18 dl 1.215 import java.util.concurrent.atomic.AtomicLong;
19 dl 1.243 import java.util.concurrent.locks.LockSupport;
20 jsr166 1.1
21     /**
22 jsr166 1.4 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
23 jsr166 1.8 * A {@code ForkJoinPool} provides the entry point for submissions
24 dl 1.18 * from non-{@code ForkJoinTask} clients, as well as management and
25 jsr166 1.11 * monitoring operations.
26 jsr166 1.1 *
27 jsr166 1.9 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
28     * ExecutorService} mainly by virtue of employing
29     * <em>work-stealing</em>: all threads in the pool attempt to find and
30 dl 1.78 * execute tasks submitted to the pool and/or created by other active
31     * tasks (eventually blocking waiting for work if none exist). This
32     * enables efficient processing when most tasks spawn other subtasks
33     * (as do most {@code ForkJoinTask}s), as well as when many small
34     * tasks are submitted to the pool from external clients. Especially
35     * when setting <em>asyncMode</em> to true in constructors, {@code
36     * ForkJoinPool}s may also be appropriate for use with event-style
37     * tasks that are never joined.
38 jsr166 1.1 *
39 dl 1.112 * <p>A static {@link #commonPool()} is available and appropriate for
40 dl 1.101 * most applications. The common pool is used by any ForkJoinTask that
41     * is not explicitly submitted to a specified pool. Using the common
42     * pool normally reduces resource usage (its threads are slowly
43     * reclaimed during periods of non-use, and reinstated upon subsequent
44 dl 1.105 * use).
45 dl 1.100 *
46     * <p>For applications that require separate or custom pools, a {@code
47     * ForkJoinPool} may be constructed with a given target parallelism
48 jsr166 1.214 * level; by default, equal to the number of available processors.
49     * The pool attempts to maintain enough active (or available) threads
50     * by dynamically adding, suspending, or resuming internal worker
51 jsr166 1.187 * threads, even if some tasks are stalled waiting to join others.
52     * However, no such adjustments are guaranteed in the face of blocked
53     * I/O or other unmanaged synchronization. The nested {@link
54 dl 1.100 * ManagedBlocker} interface enables extension of the kinds of
55 dl 1.18 * synchronization accommodated.
56 jsr166 1.1 *
57     * <p>In addition to execution and lifecycle control methods, this
58     * class provides status check methods (for example
59 jsr166 1.4 * {@link #getStealCount}) that are intended to aid in developing,
60 jsr166 1.1 * tuning, and monitoring fork/join applications. Also, method
61 jsr166 1.4 * {@link #toString} returns indications of pool state in a
62 jsr166 1.1 * convenient form for informal monitoring.
63     *
64 jsr166 1.109 * <p>As is the case with other ExecutorServices, there are three
65 jsr166 1.84 * main task execution methods summarized in the following table.
66     * These are designed to be used primarily by clients not already
67     * engaged in fork/join computations in the current pool. The main
68     * forms of these methods accept instances of {@code ForkJoinTask},
69     * but overloaded forms also allow mixed execution of plain {@code
70     * Runnable}- or {@code Callable}- based activities as well. However,
71     * tasks that are already executing in a pool should normally instead
72     * use the within-computation forms listed in the table unless using
73     * async event-style tasks that are not usually joined, in which case
74     * there is little difference among choice of methods.
75 dl 1.18 *
76     * <table BORDER CELLPADDING=3 CELLSPACING=1>
77 jsr166 1.159 * <caption>Summary of task execution methods</caption>
78 dl 1.18 * <tr>
79     * <td></td>
80     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
81     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
82     * </tr>
83     * <tr>
84 jsr166 1.153 * <td> <b>Arrange async execution</b></td>
85 dl 1.18 * <td> {@link #execute(ForkJoinTask)}</td>
86     * <td> {@link ForkJoinTask#fork}</td>
87     * </tr>
88     * <tr>
89 jsr166 1.153 * <td> <b>Await and obtain result</b></td>
90 dl 1.18 * <td> {@link #invoke(ForkJoinTask)}</td>
91     * <td> {@link ForkJoinTask#invoke}</td>
92     * </tr>
93     * <tr>
94 jsr166 1.153 * <td> <b>Arrange exec and obtain Future</b></td>
95 dl 1.18 * <td> {@link #submit(ForkJoinTask)}</td>
96     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
97     * </tr>
98     * </table>
99 dl 1.19 *
100 dl 1.105 * <p>The common pool is by default constructed with default
101 jsr166 1.155 * parameters, but these may be controlled by setting three
102 jsr166 1.162 * {@linkplain System#getProperty system properties}:
103     * <ul>
104     * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
105     * - the parallelism level, a non-negative integer
106     * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
107     * - the class name of a {@link ForkJoinWorkerThreadFactory}
108     * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
109     * - the class name of a {@link UncaughtExceptionHandler}
110 dl 1.208 * <li>{@code java.util.concurrent.ForkJoinPool.common.maximumSpares}
111 dl 1.223 * - the maximum number of allowed extra threads to maintain target
112 dl 1.208 * parallelism (default 256).
113 jsr166 1.162 * </ul>
114 dl 1.197 * If a {@link SecurityManager} is present and no factory is
115     * specified, then the default pool uses a factory supplying
116     * threads that have no {@link Permissions} enabled.
117 jsr166 1.165 * The system class loader is used to load these classes.
118 jsr166 1.156 * Upon any error in establishing these settings, default parameters
119 dl 1.160 * are used. It is possible to disable or limit the use of threads in
120     * the common pool by setting the parallelism property to zero, and/or
121 dl 1.193 * using a factory that may return {@code null}. However doing so may
122     * cause unjoined tasks to never be executed.
123 dl 1.105 *
124 jsr166 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
125     * maximum number of running threads to 32767. Attempts to create
126 jsr166 1.11 * pools with greater than the maximum number result in
127 jsr166 1.8 * {@code IllegalArgumentException}.
128 jsr166 1.1 *
129 jsr166 1.11 * <p>This implementation rejects submitted tasks (that is, by throwing
130 dl 1.19 * {@link RejectedExecutionException}) only when the pool is shut down
131 dl 1.20 * or internal resources have been exhausted.
132 jsr166 1.11 *
133 jsr166 1.1 * @since 1.7
134     * @author Doug Lea
135     */
136 jsr166 1.171 @sun.misc.Contended
137 jsr166 1.1 public class ForkJoinPool extends AbstractExecutorService {
138    
139     /*
140 dl 1.14 * Implementation Overview
141     *
142 dl 1.78 * This class and its nested classes provide the main
143     * functionality and control for a set of worker threads:
144 jsr166 1.84 * Submissions from non-FJ threads enter into submission queues.
145     * Workers take these tasks and typically split them into subtasks
146     * that may be stolen by other workers. Preference rules give
147     * first priority to processing tasks from their own queues (LIFO
148     * or FIFO, depending on mode), then to randomized FIFO steals of
149 dl 1.200 * tasks in other queues. This framework began as vehicle for
150     * supporting tree-structured parallelism using work-stealing.
151     * Over time, its scalability advantages led to extensions and
152 dl 1.208 * changes to better support more diverse usage contexts. Because
153     * most internal methods and nested classes are interrelated,
154     * their main rationale and descriptions are presented here;
155     * individual methods and nested classes contain only brief
156     * comments about details.
157 dl 1.78 *
158 jsr166 1.84 * WorkQueues
159 dl 1.78 * ==========
160     *
161     * Most operations occur within work-stealing queues (in nested
162     * class WorkQueue). These are special forms of Deques that
163     * support only three of the four possible end-operations -- push,
164     * pop, and poll (aka steal), under the further constraints that
165     * push and pop are called only from the owning thread (or, as
166     * extended here, under a lock), while poll may be called from
167     * other threads. (If you are unfamiliar with them, you probably
168     * want to read Herlihy and Shavit's book "The Art of
169     * Multiprocessor programming", chapter 16 describing these in
170     * more detail before proceeding.) The main work-stealing queue
171     * design is roughly similar to those in the papers "Dynamic
172     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
173     * (http://research.sun.com/scalable/pubs/index.html) and
174     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
175     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
176 dl 1.200 * The main differences ultimately stem from GC requirements that
177     * we null out taken slots as soon as we can, to maintain as small
178     * a footprint as possible even in programs generating huge
179     * numbers of tasks. To accomplish this, we shift the CAS
180     * arbitrating pop vs poll (steal) from being on the indices
181     * ("base" and "top") to the slots themselves.
182     *
183 dl 1.243 * Adding tasks then takes the form of a classic array push(task)
184     * in a circular buffer:
185     * q.array[q.top++ % length] = task;
186 dl 1.200 *
187     * (The actual code needs to null-check and size-check the array,
188 jsr166 1.247 * uses masking, not mod, for indexing a power-of-two-sized array,
189 dl 1.243 * properly fences accesses, and possibly signals waiting workers
190     * to start scanning -- see below.) Both a successful pop and
191     * poll mainly entail a CAS of a slot from non-null to null.
192 dl 1.200 *
193 jsr166 1.202 * The pop operation (always performed by owner) is:
194 dl 1.243 * if ((the task at top slot is not null) and
195 dl 1.200 * (CAS slot to null))
196     * decrement top and return task;
197     *
198     * And the poll operation (usually by a stealer) is
199 dl 1.243 * if ((the task at base slot is not null) and
200 dl 1.200 * (CAS slot to null))
201     * increment base and return task;
202     *
203 dl 1.243 * There are several variants of each of these; for example most
204 jsr166 1.247 * versions of poll pre-screen the CAS by rechecking that the base
205 dl 1.243 * has not changed since reading the slot, and most methods only
206     * attempt the CAS if base appears not to be equal to top.
207     *
208     * Memory ordering. See "Correct and Efficient Work-Stealing for
209     * Weak Memory Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
210     * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
211     * analysis of memory ordering requirements in work-stealing
212     * algorithms similar to (but different than) the one used here.
213     * Extracting tasks in array slots via (fully fenced) CAS provides
214     * primary synchronization. The base and top indices imprecisely
215     * guide where to extract from. We do not always require strict
216     * orderings of array and index updates, so sometimes let them be
217     * subject to compiler and processor reorderings. However, the
218     * volatile "base" index also serves as a basis for memory
219     * ordering: Slot accesses are preceded by a read of base,
220 jsr166 1.247 * ensuring happens-before ordering with respect to stealers (so
221 dl 1.243 * the slots themselves can be read via plain array reads.) The
222     * only other memory orderings relied on are maintained in the
223     * course of signalling and activation (see below). A check that
224     * base == top indicates (momentary) emptiness, but otherwise may
225     * err on the side of possibly making the queue appear nonempty
226     * when a push, pop, or poll have not fully committed, or making
227     * it appear empty when an update of top has not yet been visibly
228     * written. (Method isEmpty() checks the case of a partially
229 dl 1.211 * completed removal of the last element.) Because of this, the
230     * poll operation, considered individually, is not wait-free. One
231     * thief cannot successfully continue until another in-progress
232 dl 1.243 * one (or, if previously empty, a push) visibly completes.
233     * However, in the aggregate, we ensure at least probabilistic
234     * non-blockingness. If an attempted steal fails, a scanning
235     * thief chooses a different random victim target to try next. So,
236     * in order for one thief to progress, it suffices for any
237 dl 1.205 * in-progress poll or new push on any empty queue to
238     * complete. (This is why we normally use method pollAt and its
239     * variants that try once at the apparent base index, else
240     * consider alternative actions, rather than method poll, which
241     * retries.)
242 dl 1.200 *
243     * This approach also enables support of a user mode in which
244     * local task processing is in FIFO, not LIFO order, simply by
245     * using poll rather than pop. This can be useful in
246     * message-passing frameworks in which tasks are never joined.
247 dl 1.78 *
248     * WorkQueues are also used in a similar way for tasks submitted
249     * to the pool. We cannot mix these tasks in the same queues used
250 dl 1.200 * by workers. Instead, we randomly associate submission queues
251 dl 1.83 * with submitting threads, using a form of hashing. The
252 dl 1.139 * ThreadLocalRandom probe value serves as a hash code for
253     * choosing existing queues, and may be randomly repositioned upon
254     * contention with other submitters. In essence, submitters act
255     * like workers except that they are restricted to executing local
256     * tasks that they submitted (or in the case of CountedCompleters,
257 dl 1.200 * others with the same root task). Insertion of tasks in shared
258 dl 1.243 * mode requires a lock but we use only a simple spinlock (using
259     * field qlock), because submitters encountering a busy queue move
260     * on to try or create other queues -- they block only when
261     * creating and registering new queues. Because it is used only as
262     * a spinlock, unlocking requires only a "releasing" store (using
263     * putOrderedInt). The qlock is also used during termination
264 jsr166 1.247 * detection, in which case it is forced to a negative
265 dl 1.243 * nonlockable value.
266 dl 1.78 *
267 jsr166 1.84 * Management
268 dl 1.78 * ==========
269 dl 1.52 *
270     * The main throughput advantages of work-stealing stem from
271     * decentralized control -- workers mostly take tasks from
272 dl 1.200 * themselves or each other, at rates that can exceed a billion
273     * per second. The pool itself creates, activates (enables
274     * scanning for and running tasks), deactivates, blocks, and
275     * terminates threads, all with minimal central information.
276     * There are only a few properties that we can globally track or
277     * maintain, so we pack them into a small number of variables,
278     * often maintaining atomicity without blocking or locking.
279     * Nearly all essentially atomic control state is held in two
280     * volatile variables that are by far most often read (not
281 dl 1.215 * written) as status and consistency checks. (Also, field
282     * "config" holds unchanging configuration state.)
283 dl 1.78 *
284 dl 1.200 * Field "ctl" contains 64 bits holding information needed to
285     * atomically decide to add, inactivate, enqueue (on an event
286 dl 1.78 * queue), dequeue, and/or re-activate workers. To enable this
287     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
288     * far in excess of normal operating range) to allow ids, counts,
289     * and their negations (used for thresholding) to fit into 16bit
290 dl 1.215 * subfields.
291     *
292 dl 1.243 * Field "runState" holds CASed state bits (STARTED, STOP, etc).
293     *
294     * Field "workQueues" holds references to WorkQueues. We need a
295     * lock to create, resize, and install workers in this array. We
296     * opportunistically use the "stealCounter" object as a monitor
297     * protecting access; although it too is lazily initialized (see
298     * tryInitialize) and only exists when runstate is STARTED. The
299     * workQueues array is otherwise concurrently readable, and
300     * accessed directly. We also ensure that reads of the array
301     * reference itself never become too stale (for example,
302     * re-reading before each scan). To simplify index-based
303 dl 1.200 * operations, the array size is always a power of two, and all
304     * readers must tolerate null slots. Worker queues are at odd
305     * indices. Shared (submission) queues are at even indices, up to
306     * a maximum of 64 slots, to limit growth even if array needs to
307     * expand to add more workers. Grouping them together in this way
308     * simplifies and speeds up task scanning.
309 dl 1.86 *
310     * All worker thread creation is on-demand, triggered by task
311     * submissions, replacement of terminated workers, and/or
312 dl 1.78 * compensation for blocked workers. However, all other support
313     * code is set up to work with other policies. To ensure that we
314 dl 1.200 * do not hold on to worker references that would prevent GC, All
315 dl 1.78 * accesses to workQueues are via indices into the workQueues
316     * array (which is one source of some of the messy code
317     * constructions here). In essence, the workQueues array serves as
318 dl 1.200 * a weak reference mechanism. Thus for example the stack top
319     * subfield of ctl stores indices, not references.
320     *
321     * Queuing Idle Workers. Unlike HPC work-stealing frameworks, we
322     * cannot let workers spin indefinitely scanning for tasks when
323     * none can be found immediately, and we cannot start/resume
324     * workers unless there appear to be tasks available. On the
325     * other hand, we must quickly prod them into action when new
326     * tasks are submitted or generated. In many usages, ramp-up time
327     * to activate workers is the main limiting factor in overall
328     * performance, which is compounded at program start-up by JIT
329     * compilation and allocation. So we streamline this as much as
330     * possible.
331     *
332     * The "ctl" field atomically maintains active and total worker
333     * counts as well as a queue to place waiting threads so they can
334     * be located for signalling. Active counts also play the role of
335     * quiescence indicators, so are decremented when workers believe
336     * that there are no more tasks to execute. The "queue" is
337     * actually a form of Treiber stack. A stack is ideal for
338     * activating threads in most-recently used order. This improves
339     * performance and locality, outweighing the disadvantages of
340     * being prone to contention and inability to release a worker
341 dl 1.243 * unless it is topmost on stack. We block/unblock workers after
342 dl 1.200 * pushing on the idle worker stack (represented by the lower
343     * 32bit subfield of ctl) when they cannot find work. The top
344     * stack state holds the value of the "scanState" field of the
345     * worker: its index and status, plus a version counter that, in
346     * addition to the count subfields (also serving as version
347     * stamps) provide protection against Treiber stack ABA effects.
348     *
349     * Creating workers. To create a worker, we pre-increment total
350     * count (serving as a reservation), and attempt to construct a
351     * ForkJoinWorkerThread via its factory. Upon construction, the
352     * new thread invokes registerWorker, where it constructs a
353     * WorkQueue and is assigned an index in the workQueues array
354     * (expanding the array if necessary). The thread is then
355     * started. Upon any exception across these steps, or null return
356     * from factory, deregisterWorker adjusts counts and records
357     * accordingly. If a null return, the pool continues running with
358     * fewer than the target number workers. If exceptional, the
359     * exception is propagated, generally to some external caller.
360     * Worker index assignment avoids the bias in scanning that would
361     * occur if entries were sequentially packed starting at the front
362     * of the workQueues array. We treat the array as a simple
363     * power-of-two hash table, expanding as needed. The seedIndex
364     * increment ensures no collisions until a resize is needed or a
365     * worker is deregistered and replaced, and thereafter keeps
366 jsr166 1.202 * probability of collision low. We cannot use
367 dl 1.200 * ThreadLocalRandom.getProbe() for similar purposes here because
368     * the thread has not started yet, but do so for creating
369 dl 1.243 * submission queues for existing external threads (see
370     * externalPush).
371     *
372     * WorkQueue field scanState is used by both workers and the pool
373     * to manage and track whether a worker is UNSIGNALLED (possibly
374     * blocked waiting for a signal). When a worker is inactivated,
375     * its scanState field is set, and is prevented from executing
376     * tasks, even though it must scan once for them to avoid queuing
377     * races. Note that scanState updates lag queue CAS releases so
378     * usage requires care. When queued, the lower 16 bits of
379     * scanState must hold its pool index. So we place the index there
380     * upon initialization (see registerWorker) and otherwise keep it
381     * there or restore it when necessary.
382     *
383     * The ctl field also serves as the basis for memory
384     * synchronization surrounding activation. This uses a more
385     * efficient version of a Dekker-like rule that task producers and
386     * consumers sync with each other by both writing/CASing ctl (even
387 dl 1.253 * if to its current value). This would be extremely costly. So
388     * we relax it in several ways: (1) Producers only signal when
389     * their queue is empty. Other workers propagate this signal (in
390     * method scan) when they find tasks. (2) Workers only enqueue
391     * after scanning (see below) and not finding any tasks. (3)
392     * Rather than CASing ctl to its current value in the common case
393     * where no action is required, we reduce write contention by
394     * equivalently prefacing signalWork when called by an external
395     * task producer using a memory access with full-volatile
396 dl 1.256 * semantics or a "fullFence". (4) For internal task producers we
397     * rely on the fact that even if no other workers awaken, the
398     * producer itself will eventually see the task and execute it.
399 dl 1.243 *
400 jsr166 1.249 * Almost always, too many signals are issued. A task producer
401 dl 1.243 * cannot in general tell if some existing worker is in the midst
402     * of finishing one task (or already scanning) and ready to take
403     * another without being signalled. So the producer might instead
404     * activate a different worker that does not find any work, and
405     * then inactivates. This scarcely matters in steady-state
406     * computations involving all workers, but can create contention
407 jsr166 1.247 * and bookkeeping bottlenecks during ramp-up, ramp-down, and small
408 dl 1.243 * computations involving only a few workers.
409     *
410     * Scanning. Method scan() performs top-level scanning for tasks.
411     * Each scan traverses (and tries to poll from) each queue in
412     * pseudorandom permutation order by randomly selecting an origin
413     * index and a step value. (The pseudorandom generator need not
414     * have high-quality statistical properties in the long term, but
415     * just within computations; We use 64bit and 32bit Marsaglia
416     * XorShifts, which are cheap and suffice here.) Scanning also
417     * employs contention reduction: When scanning workers fail a CAS
418     * polling for work, they soon restart with a different
419     * pseudorandom scan order (thus likely retrying at different
420     * intervals). This improves throughput when many threads are
421     * trying to take tasks from few queues. Scans do not otherwise
422     * explicitly take into account core affinities, loads, cache
423     * localities, etc, However, they do exploit temporal locality
424 dl 1.253 * (which usually approximates these) by preferring to re-poll (up
425     * to POLL_LIMIT times) from the same queue after a successful
426     * poll before trying others. Restricted forms of scanning occur
427     * in methods helpComplete and findNonEmptyStealQueue, and take
428     * similar but simpler forms.
429 dl 1.200 *
430 jsr166 1.202 * Deactivation and waiting. Queuing encounters several intrinsic
431 dl 1.243 * races; most notably that a inactivating scanning worker can
432     * miss seeing a task produced during a scan. So when a worker
433     * cannot find a task to steal, it inactivates and enqueues, and
434     * then rescans to ensure that it didn't miss one, reactivating
435     * upon seeing one with probability approximately proportional to
436     * probability of a miss. (In most cases, the worker will be
437     * signalled before self-signalling, avoiding cascades of multiple
438     * signals for the same task).
439     *
440     * Workers block (in method awaitWork) using park/unpark;
441     * advertising the need for signallers to unpark by setting their
442     * "parker" fields.
443 dl 1.52 *
444     * Trimming workers. To release resources after periods of lack of
445     * use, a worker starting to wait when the pool is quiescent will
446 dl 1.208 * time out and terminate (see awaitWork) if the pool has remained
447     * quiescent for period IDLE_TIMEOUT, increasing the period as the
448     * number of threads decreases, eventually removing all workers.
449 dl 1.52 *
450 dl 1.210 * Shutdown and Termination. A call to shutdownNow invokes
451     * tryTerminate to atomically set a runState bit. The calling
452     * thread, as well as every other worker thereafter terminating,
453     * helps terminate others by setting their (qlock) status,
454     * cancelling their unprocessed tasks, and waking them up, doing
455     * so repeatedly until stable (but with a loop bounded by the
456     * number of workers). Calls to non-abrupt shutdown() preface
457     * this by checking whether termination should commence. This
458     * relies primarily on the active count bits of "ctl" maintaining
459 jsr166 1.212 * consensus -- tryTerminate is called from awaitWork whenever
460 dl 1.211 * quiescent. However, external submitters do not take part in
461     * this consensus. So, tryTerminate sweeps through queues (until
462     * stable) to ensure lack of in-flight submissions and workers
463 dl 1.210 * about to process them before triggering the "STOP" phase of
464 dl 1.211 * termination. (Note: there is an intrinsic conflict if
465     * helpQuiescePool is called when shutdown is enabled. Both wait
466 jsr166 1.212 * for quiescence, but tryTerminate is biased to not trigger until
467 dl 1.211 * helpQuiescePool completes.)
468     *
469 jsr166 1.84 * Joining Tasks
470     * =============
471 dl 1.78 *
472     * Any of several actions may be taken when one worker is waiting
473 jsr166 1.84 * to join a task stolen (or always held) by another. Because we
474 dl 1.78 * are multiplexing many tasks on to a pool of workers, we can't
475     * just let them block (as in Thread.join). We also cannot just
476     * reassign the joiner's run-time stack with another and replace
477     * it later, which would be a form of "continuation", that even if
478 dl 1.200 * possible is not necessarily a good idea since we may need both
479     * an unblocked task and its continuation to progress. Instead we
480     * combine two tactics:
481 dl 1.19 *
482     * Helping: Arranging for the joiner to execute some task that it
483 dl 1.78 * would be running if the steal had not occurred.
484 dl 1.19 *
485     * Compensating: Unless there are already enough live threads,
486 dl 1.78 * method tryCompensate() may create or re-activate a spare
487     * thread to compensate for blocked joiners until they unblock.
488     *
489 dl 1.105 * A third form (implemented in tryRemoveAndExec) amounts to
490     * helping a hypothetical compensator: If we can readily tell that
491     * a possible action of a compensator is to steal and execute the
492     * task being joined, the joining thread can do so directly,
493     * without the need for a compensation thread (although at the
494     * expense of larger run-time stacks, but the tradeoff is
495     * typically worthwhile).
496 dl 1.52 *
497     * The ManagedBlocker extension API can't use helping so relies
498     * only on compensation in method awaitBlocker.
499 dl 1.19 *
500 dl 1.200 * The algorithm in helpStealer entails a form of "linear
501     * helping". Each worker records (in field currentSteal) the most
502     * recent task it stole from some other worker (or a submission).
503     * It also records (in field currentJoin) the task it is currently
504     * actively joining. Method helpStealer uses these markers to try
505     * to find a worker to help (i.e., steal back a task from and
506     * execute it) that could hasten completion of the actively joined
507     * task. Thus, the joiner executes a task that would be on its
508     * own local deque had the to-be-joined task not been stolen. This
509     * is a conservative variant of the approach described in Wagner &
510 dl 1.78 * Calder "Leapfrogging: a portable technique for implementing
511     * efficient futures" SIGPLAN Notices, 1993
512     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
513     * that: (1) We only maintain dependency links across workers upon
514     * steals, rather than use per-task bookkeeping. This sometimes
515 dl 1.90 * requires a linear scan of workQueues array to locate stealers,
516     * but often doesn't because stealers leave hints (that may become
517 dl 1.112 * stale/wrong) of where to locate them. It is only a hint
518     * because a worker might have had multiple steals and the hint
519     * records only one of them (usually the most current). Hinting
520     * isolates cost to when it is needed, rather than adding to
521     * per-task overhead. (2) It is "shallow", ignoring nesting and
522     * potentially cyclic mutual steals. (3) It is intentionally
523 dl 1.78 * racy: field currentJoin is updated only while actively joining,
524     * which means that we miss links in the chain during long-lived
525     * tasks, GC stalls etc (which is OK since blocking in such cases
526     * is usually a good idea). (4) We bound the number of attempts
527 dl 1.200 * to find work using checksums and fall back to suspending the
528 dl 1.90 * worker and if necessary replacing it with another.
529 dl 1.78 *
530 dl 1.200 * Helping actions for CountedCompleters do not require tracking
531     * currentJoins: Method helpComplete takes and executes any task
532 jsr166 1.202 * with the same root as the task being waited on (preferring
533     * local pops to non-local polls). However, this still entails
534     * some traversal of completer chains, so is less efficient than
535     * using CountedCompleters without explicit joins.
536 dl 1.105 *
537 dl 1.200 * Compensation does not aim to keep exactly the target
538     * parallelism number of unblocked threads running at any given
539     * time. Some previous versions of this class employed immediate
540     * compensations for any blocked join. However, in practice, the
541     * vast majority of blockages are transient byproducts of GC and
542     * other JVM or OS activities that are made worse by replacement.
543     * Currently, compensation is attempted only after validating that
544     * all purportedly active threads are processing tasks by checking
545     * field WorkQueue.scanState, which eliminates most false
546     * positives. Also, compensation is bypassed (tolerating fewer
547     * threads) in the most common case in which it is rarely
548     * beneficial: when a worker with an empty queue (thus no
549     * continuation tasks) blocks on a join and there still remain
550 dl 1.208 * enough threads to ensure liveness.
551 dl 1.105 *
552 dl 1.243 * Spare threads are removed as soon as they notice that the
553     * target parallelism level has been exceeded, in method
554     * tryDropSpare. (Method scan arranges returns for rechecks upon
555 jsr166 1.247 * each probe via the "bound" parameter.)
556 dl 1.243 *
557 dl 1.211 * The compensation mechanism may be bounded. Bounds for the
558     * commonPool (see commonMaxSpares) better enable JVMs to cope
559 dl 1.208 * with programming errors and abuse before running out of
560     * resources to do so. In other cases, users may supply factories
561     * that limit thread construction. The effects of bounding in this
562     * pool (like all others) is imprecise. Total worker counts are
563     * decremented when threads deregister, not when they exit and
564     * resources are reclaimed by the JVM and OS. So the number of
565     * simultaneously live threads may transiently exceed bounds.
566 dl 1.205 *
567 dl 1.105 * Common Pool
568     * ===========
569     *
570 jsr166 1.175 * The static common pool always exists after static
571 dl 1.105 * initialization. Since it (or any other created pool) need
572     * never be used, we minimize initial construction overhead and
573     * footprint to the setup of about a dozen fields, with no nested
574     * allocation. Most bootstrapping occurs within method
575 dl 1.200 * externalSubmit during the first submission to the pool.
576 dl 1.105 *
577     * When external threads submit to the common pool, they can
578 dl 1.200 * perform subtask processing (see externalHelpComplete and
579     * related methods) upon joins. This caller-helps policy makes it
580     * sensible to set common pool parallelism level to one (or more)
581     * less than the total number of available cores, or even zero for
582     * pure caller-runs. We do not need to record whether external
583     * submissions are to the common pool -- if not, external help
584     * methods return quickly. These submitters would otherwise be
585     * blocked waiting for completion, so the extra effort (with
586     * liberally sprinkled task status checks) in inapplicable cases
587     * amounts to an odd form of limited spin-wait before blocking in
588     * ForkJoinTask.join.
589 dl 1.105 *
590 dl 1.197 * As a more appropriate default in managed environments, unless
591     * overridden by system properties, we use workers of subclass
592     * InnocuousForkJoinWorkerThread when there is a SecurityManager
593     * present. These workers have no permissions set, do not belong
594     * to any user-defined ThreadGroup, and erase all ThreadLocals
595 dl 1.200 * after executing any top-level task (see WorkQueue.runTask).
596     * The associated mechanics (mainly in ForkJoinWorkerThread) may
597     * be JVM-dependent and must access particular Thread class fields
598     * to achieve this effect.
599 jsr166 1.198 *
600 dl 1.105 * Style notes
601     * ===========
602     *
603 dl 1.200 * Memory ordering relies mainly on Unsafe intrinsics that carry
604     * the further responsibility of explicitly performing null- and
605     * bounds- checks otherwise carried out implicitly by JVMs. This
606     * can be awkward and ugly, but also reflects the need to control
607     * outcomes across the unusual cases that arise in very racy code
608     * with very few invariants. So these explicit checks would exist
609     * in some form anyway. All fields are read into locals before
610     * use, and null-checked if they are references. This is usually
611     * done in a "C"-like style of listing declarations at the heads
612     * of methods or blocks, and using inline assignments on first
613     * encounter. Array bounds-checks are usually performed by
614     * masking with array.length-1, which relies on the invariant that
615     * these arrays are created with positive lengths, which is itself
616     * paranoically checked. Nearly all explicit checks lead to
617     * bypass/return, not exception throws, because they may
618     * legitimately arise due to cancellation/revocation during
619     * shutdown.
620     *
621 dl 1.105 * There is a lot of representation-level coupling among classes
622     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
623     * fields of WorkQueue maintain data structures managed by
624     * ForkJoinPool, so are directly accessed. There is little point
625     * trying to reduce this, since any associated future changes in
626     * representations will need to be accompanied by algorithmic
627     * changes anyway. Several methods intrinsically sprawl because
628 dl 1.200 * they must accumulate sets of consistent reads of fields held in
629     * local variables. There are also other coding oddities
630     * (including several unnecessary-looking hoisted null checks)
631     * that help some methods perform reasonably even when interpreted
632     * (not compiled).
633 dl 1.52 *
634 dl 1.208 * The order of declarations in this file is (with a few exceptions):
635 dl 1.86 * (1) Static utility functions
636     * (2) Nested (static) classes
637     * (3) Static fields
638     * (4) Fields, along with constants used when unpacking some of them
639     * (5) Internal control methods
640     * (6) Callbacks and other support for ForkJoinTask methods
641     * (7) Exported methods
642     * (8) Static block initializing statics in minimally dependent order
643     */
644    
645     // Static utilities
646    
647     /**
648     * If there is a security manager, makes sure caller has
649     * permission to modify threads.
650 jsr166 1.1 */
651 dl 1.86 private static void checkPermission() {
652     SecurityManager security = System.getSecurityManager();
653     if (security != null)
654     security.checkPermission(modifyThreadPermission);
655     }
656    
657     // Nested classes
658 jsr166 1.1
659     /**
660 jsr166 1.8 * Factory for creating new {@link ForkJoinWorkerThread}s.
661     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
662     * for {@code ForkJoinWorkerThread} subclasses that extend base
663     * functionality or initialize threads with different contexts.
664 jsr166 1.1 */
665     public static interface ForkJoinWorkerThreadFactory {
666     /**
667     * Returns a new worker thread operating in the given pool.
668     *
669     * @param pool the pool this thread works in
670 jsr166 1.192 * @return the new worker thread
671 jsr166 1.11 * @throws NullPointerException if the pool is null
672 jsr166 1.1 */
673     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
674     }
675    
676     /**
677     * Default ForkJoinWorkerThreadFactory implementation; creates a
678     * new ForkJoinWorkerThread.
679     */
680 dl 1.112 static final class DefaultForkJoinWorkerThreadFactory
681 jsr166 1.1 implements ForkJoinWorkerThreadFactory {
682 dl 1.112 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
683 dl 1.14 return new ForkJoinWorkerThread(pool);
684 jsr166 1.1 }
685     }
686    
687     /**
688 dl 1.86 * Class for artificial tasks that are used to replace the target
689     * of local joins if they are removed from an interior queue slot
690     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
691     * actually do anything beyond having a unique identity.
692 jsr166 1.1 */
693 dl 1.86 static final class EmptyTask extends ForkJoinTask<Void> {
694 dl 1.105 private static final long serialVersionUID = -7721805057305804111L;
695 dl 1.86 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
696     public final Void getRawResult() { return null; }
697     public final void setRawResult(Void x) {}
698     public final boolean exec() { return true; }
699 jsr166 1.1 }
700    
701 dl 1.200 // Constants shared across ForkJoinPool and WorkQueue
702    
703     // Bounds
704     static final int SMASK = 0xffff; // short bits == max index
705     static final int MAX_CAP = 0x7fff; // max #workers - 1
706     static final int EVENMASK = 0xfffe; // even short bits
707     static final int SQMASK = 0x007e; // max 64 (even) slots
708    
709     // Masks and units for WorkQueue.scanState and ctl sp subfield
710 dl 1.243 static final int UNSIGNALLED = 1 << 31; // must be negative
711 dl 1.211 static final int SS_SEQ = 1 << 16; // version count
712 dl 1.200
713     // Mode bits for ForkJoinPool.config and WorkQueue.config
714 dl 1.211 static final int MODE_MASK = 0xffff << 16; // top half of int
715 dl 1.243 static final int SPARE_WORKER = 1 << 17; // set if tc > 0 on creation
716     static final int UNREGISTERED = 1 << 18; // to skip some of deregister
717     static final int FIFO_QUEUE = 1 << 31; // must be negative
718     static final int LIFO_QUEUE = 0; // for clarity
719     static final int IS_OWNED = 1; // low bit 0 if shared
720 dl 1.225
721 jsr166 1.1 /**
722 dl 1.253 * The maximum number of task executions from the same queue
723     * before checking other queues, bounding unfairness and impact of
724     * infinite user task recursion. Must be a power of two minus 1.
725     */
726     static final int POLL_LIMIT = (1 << 10) - 1;
727    
728     /**
729 dl 1.78 * Queues supporting work-stealing as well as external task
730 jsr166 1.202 * submission. See above for descriptions and algorithms.
731 dl 1.78 * Performance on most platforms is very sensitive to placement of
732     * instances of both WorkQueues and their arrays -- we absolutely
733     * do not want multiple WorkQueue instances or multiple queue
734 dl 1.200 * arrays sharing cache lines. The @Contended annotation alerts
735     * JVMs to try to keep instances apart.
736 dl 1.78 */
737 jsr166 1.171 @sun.misc.Contended
738 dl 1.78 static final class WorkQueue {
739 dl 1.200
740 dl 1.78 /**
741     * Capacity of work-stealing queue array upon initialization.
742 dl 1.90 * Must be a power of two; at least 4, but should be larger to
743     * reduce or eliminate cacheline sharing among queues.
744     * Currently, it is much larger, as a partial workaround for
745     * the fact that JVMs often place arrays in locations that
746     * share GC bookkeeping (especially cardmarks) such that
747     * per-write accesses encounter serious memory contention.
748 dl 1.78 */
749 dl 1.90 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
750 dl 1.78
751     /**
752     * Maximum size for queue arrays. Must be a power of two less
753     * than or equal to 1 << (31 - width of array entry) to ensure
754     * lack of wraparound of index calculations, but defined to a
755     * value a bit less than this to help users trap runaway
756     * programs before saturating systems.
757     */
758     static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
759    
760 dl 1.200 // Instance fields
761 dl 1.255
762 dl 1.243 volatile int scanState; // versioned, negative if inactive
763 dl 1.200 int stackPred; // pool stack (ctl) predecessor
764 dl 1.178 int nsteals; // number of steals
765 dl 1.200 int hint; // randomization and stealer index hint
766     int config; // pool index and mode
767     volatile int qlock; // 1: locked, < 0: terminate; else 0
768 dl 1.78 volatile int base; // index of next slot for poll
769     int top; // index of next slot for push
770     ForkJoinTask<?>[] array; // the elements (initially unallocated)
771 dl 1.90 final ForkJoinPool pool; // the containing pool (may be null)
772 dl 1.78 final ForkJoinWorkerThread owner; // owning thread or null if shared
773     volatile Thread parker; // == owner during call to park; else null
774 dl 1.95 volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
775 dl 1.255 @sun.misc.Contended("group2") // separate from other fields
776     volatile ForkJoinTask<?> currentSteal; // nonnull when running some task
777 dl 1.112
778 dl 1.200 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner) {
779 dl 1.90 this.pool = pool;
780 dl 1.78 this.owner = owner;
781 dl 1.115 // Place indices in the center of array (that is not yet allocated)
782 dl 1.78 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
783     }
784    
785     /**
786 jsr166 1.220 * Returns an exportable index (used by ForkJoinWorkerThread).
787 dl 1.200 */
788     final int getPoolIndex() {
789     return (config & 0xffff) >>> 1; // ignore odd/even tag bit
790     }
791    
792     /**
793 dl 1.115 * Returns the approximate number of tasks in the queue.
794     */
795     final int queueSize() {
796 dl 1.243 int n = base - top; // read base first
797 dl 1.115 return (n >= 0) ? 0 : -n; // ignore transient negative
798     }
799    
800 jsr166 1.180 /**
801 dl 1.115 * Provides a more accurate estimate of whether this queue has
802     * any tasks than does queueSize, by checking whether a
803     * near-empty queue has at least one unclaimed task.
804     */
805     final boolean isEmpty() {
806 dl 1.225 ForkJoinTask<?>[] a; int n, al, s;
807 dl 1.243 return ((n = base - (s = top)) >= 0 || // possibly one task
808     (n == -1 && ((a = array) == null ||
809     (al = a.length) == 0 ||
810     a[(al - 1) & (s - 1)] == null)));
811 dl 1.115 }
812    
813     /**
814 dl 1.256 * Pushes a task. Call only by owner in unshared queues.
815 dl 1.78 *
816     * @param task the task. Caller must ensure non-null.
817 jsr166 1.146 * @throws RejectedExecutionException if array cannot be resized
818 dl 1.78 */
819 dl 1.90 final void push(ForkJoinTask<?> task) {
820 dl 1.243 int b = base, s = top, al, d; ForkJoinTask<?>[] a;
821     if ((a = array) != null && (al = a.length) > 0) {
822     a[(al - 1) & s] = task; // relaxed writes OK
823     top = s + 1;
824     ForkJoinPool p = pool;
825 dl 1.253 U.storeFence(); // ensure fields written before use
826 dl 1.243 if ((d = b - s) == 0 && p != null)
827 dl 1.253 p.signalWork();
828     else if (al + d == 1)
829 dl 1.243 growArray();
830 dl 1.78 }
831     }
832    
833 dl 1.178 /**
834 dl 1.112 * Initializes or doubles the capacity of array. Call either
835     * by owner or with lock held -- it is OK for base, but not
836     * top, to move while resizings are in progress.
837     */
838     final ForkJoinTask<?>[] growArray() {
839     ForkJoinTask<?>[] oldA = array;
840     int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
841 dl 1.225 if (size < INITIAL_QUEUE_CAPACITY || size > MAXIMUM_QUEUE_CAPACITY)
842 dl 1.112 throw new RejectedExecutionException("Queue capacity exceeded");
843     int oldMask, t, b;
844     ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
845 dl 1.225 if (oldA != null && (oldMask = oldA.length - 1) > 0 &&
846 dl 1.112 (t = top) - (b = base) > 0) {
847     int mask = size - 1;
848 dl 1.200 do { // emulate poll from old array, push to new array
849 dl 1.256 int index = b & oldMask;
850     long offset = ((long)index << ASHIFT) + ABASE;
851 dl 1.243 ForkJoinTask<?> x = (ForkJoinTask<?>)
852     U.getObjectVolatile(oldA, offset);
853     if (x != null &&
854     U.compareAndSwapObject(oldA, offset, x, null))
855     a[b & mask] = x;
856 dl 1.112 } while (++b != t);
857 dl 1.243 U.storeFence();
858 dl 1.78 }
859 dl 1.112 return a;
860 dl 1.78 }
861    
862     /**
863 dl 1.90 * Takes next task, if one exists, in LIFO order. Call only
864 dl 1.102 * by owner in unshared queues.
865 dl 1.90 */
866     final ForkJoinTask<?> pop() {
867 dl 1.243 int b = base, s = top, al, i; ForkJoinTask<?>[] a;
868 dl 1.256 if ((a = array) != null && b != s && (al = a.length) > 0) {
869     int index = (al - 1) & --s;
870     long offset = ((long)index << ASHIFT) + ABASE;
871 dl 1.243 ForkJoinTask<?> t = (ForkJoinTask<?>)U.getObject(a, offset);
872     if (t != null && U.compareAndSwapObject(a, offset, t, null)) {
873 dl 1.256 top = s;
874 dl 1.243 U.storeFence();
875     return t;
876 dl 1.90 }
877     }
878     return null;
879     }
880    
881     /**
882     * Takes a task in FIFO order if b is base of queue and a task
883     * can be claimed without contention. Specialized versions
884 dl 1.200 * appear in ForkJoinPool methods scan and helpStealer.
885 dl 1.78 */
886 dl 1.90 final ForkJoinTask<?> pollAt(int b) {
887 dl 1.243 ForkJoinTask<?>[] a; int al;
888     if ((a = array) != null && (al = a.length) > 0) {
889 dl 1.256 int index = (al - 1) & b;
890     long offset = ((long)index << ASHIFT) + ABASE;
891 dl 1.243 ForkJoinTask<?> t = (ForkJoinTask<?>)
892     U.getObjectVolatile(a, offset);
893     if (t != null && b++ == base &&
894     U.compareAndSwapObject(a, offset, t, null)) {
895     base = b;
896 dl 1.78 return t;
897     }
898     }
899     return null;
900     }
901    
902     /**
903 dl 1.90 * Takes next task, if one exists, in FIFO order.
904 dl 1.78 */
905 dl 1.90 final ForkJoinTask<?> poll() {
906 dl 1.243 for (;;) {
907     int b = base, s = top, d, al; ForkJoinTask<?>[] a;
908     if ((a = array) != null && (d = b - s) < 0 &&
909     (al = a.length) > 0) {
910 dl 1.256 int index = (al - 1) & b;
911     long offset = ((long)index << ASHIFT) + ABASE;
912 dl 1.243 ForkJoinTask<?> t = (ForkJoinTask<?>)
913     U.getObjectVolatile(a, offset);
914     if (b++ == base) {
915     if (t != null) {
916     if (U.compareAndSwapObject(a, offset, t, null)) {
917     base = b;
918     return t;
919     }
920 dl 1.200 }
921 dl 1.243 else if (d == -1)
922     break; // now empty
923 dl 1.78 }
924 dl 1.90 }
925 dl 1.243 else
926     break;
927 dl 1.78 }
928     return null;
929     }
930    
931     /**
932     * Takes next task, if one exists, in order specified by mode.
933     */
934     final ForkJoinTask<?> nextLocalTask() {
935 dl 1.243 return (config < 0) ? poll() : pop();
936 dl 1.78 }
937    
938     /**
939     * Returns next task, if one exists, in order specified by mode.
940     */
941     final ForkJoinTask<?> peek() {
942 dl 1.243 int b = base, al; ForkJoinTask<?>[] a;
943     return ((a = array) != null && (al = a.length) > 0) ?
944     a[(al - 1) & (config < 0 ? b : top - 1)] : null;
945 dl 1.78 }
946    
947     /**
948     * Pops the given task only if it is at the current top.
949 jsr166 1.251 */
950 dl 1.243 final boolean tryUnpush(ForkJoinTask<?> task) {
951 dl 1.256 int b = base, s = top, al; ForkJoinTask<?>[] a;
952     if ((a = array) != null && b != s && (al = a.length) > 0) {
953     int index = (al - 1) & --s;
954     long offset = ((long)index << ASHIFT) + ABASE;
955     if (U.compareAndSwapObject(a, offset, task, null)) {
956 dl 1.243 top = s;
957     U.storeFence();
958 dl 1.224 return true;
959     }
960 dl 1.78 }
961     return false;
962     }
963    
964     /**
965 dl 1.256 * Shared version of push. Fails if already locked.
966     *
967     * @return status: > 0 locked, 0 was empty, < 0 was nonempty
968     */
969     final int sharedPush(ForkJoinTask<?> task) {
970     int stat;
971     if (U.compareAndSwapInt(this, QLOCK, 0, 1)) {
972     int b = base, s = top, al, d; ForkJoinTask<?>[] a;
973     if ((a = array) != null && (al = a.length) > 0 &&
974     al - 1 + (d = b - s) > 0) {
975     a[(al - 1) & s] = task;
976     top = s + 1; // relaxed writes OK here
977     U.putOrderedInt(this, QLOCK, 0);
978     if (d < 0)
979     stat = d;
980     else {
981     U.fullFence(); // sync with signallees
982     stat = 0;
983     }
984     }
985     else {
986     growAndSharedPush(task);
987     stat = 0;
988     }
989     }
990     else
991     stat = 1;
992     return stat;
993     }
994    
995     /*
996     * Helper for sharedPush; called only when locked and resize
997     * needed.
998     */
999     private void growAndSharedPush(ForkJoinTask<?> task) {
1000     try {
1001     growArray();
1002     int s = top, al; ForkJoinTask<?>[] a;
1003     if ((a = array) != null && (al = a.length) > 0) {
1004     a[(al - 1) & s] = task;
1005     top = s + 1;
1006     }
1007     } finally {
1008     qlock = 0;
1009     }
1010     }
1011    
1012     /**
1013 dl 1.243 * Shared version of pop
1014 jsr166 1.247 */
1015 dl 1.243 final boolean trySharedUnpush(ForkJoinTask<?> task) {
1016     boolean popped = false;
1017     int s = top - 1, al; ForkJoinTask<?>[] a;
1018     if ((a = array) != null && (al = a.length) > 0) {
1019 dl 1.256 int index = (al - 1) & s;
1020     long offset = ((long)index << ASHIFT) + ABASE;
1021     ForkJoinTask<?> t = (ForkJoinTask<?>)U.getObject(a, offset);
1022     if (t == task &&
1023 dl 1.243 U.compareAndSwapInt(this, QLOCK, 0, 1)) {
1024     if (U.compareAndSwapObject(a, offset, task, null)) {
1025     popped = true;
1026     top = s;
1027     }
1028     U.putOrderedInt(this, QLOCK, 0);
1029     }
1030     }
1031     return popped;
1032     }
1033    
1034     /**
1035 jsr166 1.84 * Removes and cancels all known tasks, ignoring any exceptions.
1036 dl 1.78 */
1037     final void cancelAll() {
1038 dl 1.200 ForkJoinTask<?> t;
1039     if ((t = currentJoin) != null) {
1040     currentJoin = null;
1041     ForkJoinTask.cancelIgnoringExceptions(t);
1042     }
1043     if ((t = currentSteal) != null) {
1044     currentSteal = null;
1045     ForkJoinTask.cancelIgnoringExceptions(t);
1046     }
1047     while ((t = poll()) != null)
1048 dl 1.78 ForkJoinTask.cancelIgnoringExceptions(t);
1049     }
1050    
1051 dl 1.104 // Specialized execution methods
1052 dl 1.78
1053     /**
1054 jsr166 1.254 * Pops and executes up to POLL_LIMIT tasks or until empty.
1055 dl 1.253 */
1056     final void localPopAndExec() {
1057     for (int nexec = 0;;) {
1058     int b = base, s = top, al; ForkJoinTask<?>[] a;
1059     if ((a = array) != null && b != s && (al = a.length) > 0) {
1060 dl 1.256 int index = (al - 1) & --s;
1061     long offset = ((long)index << ASHIFT) + ABASE;
1062 dl 1.253 ForkJoinTask<?> t = (ForkJoinTask<?>)
1063     U.getAndSetObject(a, offset, null);
1064     if (t != null) {
1065     top = s;
1066     (currentSteal = t).doExec();
1067     if (++nexec > POLL_LIMIT)
1068     break;
1069     }
1070     else
1071     break;
1072     }
1073     else
1074     break;
1075     }
1076     }
1077    
1078     /**
1079 jsr166 1.254 * Polls and executes up to POLL_LIMIT tasks or until empty.
1080 dl 1.253 */
1081     final void localPollAndExec() {
1082     for (int nexec = 0;;) {
1083     int b = base, s = top, al; ForkJoinTask<?>[] a;
1084     if ((a = array) != null && b != s && (al = a.length) > 0) {
1085 dl 1.256 int index = (al - 1) & b++;
1086     long offset = ((long)index << ASHIFT) + ABASE;
1087 dl 1.253 ForkJoinTask<?> t = (ForkJoinTask<?>)
1088     U.getAndSetObject(a, offset, null);
1089     if (t != null) {
1090     base = b;
1091 dl 1.255 t.doExec();
1092 dl 1.253 if (++nexec > POLL_LIMIT)
1093     break;
1094     }
1095     }
1096     else
1097     break;
1098     }
1099     }
1100    
1101     /**
1102     * Executes the given task and (some) remaining local tasks.
1103 dl 1.94 */
1104 dl 1.178 final void runTask(ForkJoinTask<?> task) {
1105 dl 1.200 if (task != null) {
1106 dl 1.243 task.doExec();
1107 dl 1.253 if (config < 0)
1108     localPollAndExec();
1109     else
1110     localPopAndExec();
1111 dl 1.243 int ns = ++nsteals;
1112 dl 1.200 ForkJoinWorkerThread thread = owner;
1113 dl 1.243 currentSteal = null;
1114     if (ns < 0) // collect on overflow
1115 dl 1.215 transferStealCount(pool);
1116 dl 1.200 if (thread != null)
1117 dl 1.197 thread.afterTopLevelExec();
1118 dl 1.178 }
1119 dl 1.94 }
1120    
1121     /**
1122 dl 1.215 * Adds steal count to pool stealCounter if it exists, and resets.
1123     */
1124     final void transferStealCount(ForkJoinPool p) {
1125     AtomicLong sc;
1126     if (p != null && (sc = p.stealCounter) != null) {
1127     int s = nsteals;
1128     nsteals = 0; // if negative, correct for overflow
1129     sc.getAndAdd((long)(s < 0 ? Integer.MAX_VALUE : s));
1130     }
1131     }
1132    
1133     /**
1134 dl 1.105 * If present, removes from queue and executes the given task,
1135 jsr166 1.213 * or any other cancelled task. Used only by awaitJoin.
1136 dl 1.94 *
1137 jsr166 1.213 * @return true if queue empty and task not known to be done
1138 dl 1.94 */
1139 dl 1.105 final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
1140 dl 1.243 if (task != null && task.status >= 0) {
1141     int b, s, d, al; ForkJoinTask<?>[] a;
1142     while ((d = (b = base) - (s = top)) < 0 &&
1143     (a = array) != null && (al = a.length) > 0) {
1144     for (;;) { // traverse from s to b
1145 dl 1.256 int index = --s & (al - 1);
1146     long offset = (index << ASHIFT) + ABASE;
1147 dl 1.243 ForkJoinTask<?> t = (ForkJoinTask<?>)
1148     U.getObjectVolatile(a, offset);
1149     if (t == null)
1150     break; // restart
1151 dl 1.200 else if (t == task) {
1152     boolean removed = false;
1153     if (s + 1 == top) { // pop
1154 dl 1.243 if (U.compareAndSwapObject(a, offset, t, null)) {
1155     top = s;
1156     U.storeFence();
1157 dl 1.200 removed = true;
1158     }
1159     }
1160     else if (base == b) // replace with proxy
1161 dl 1.243 removed =
1162     U.compareAndSwapObject(a, offset, t,
1163     new EmptyTask());
1164     if (removed) {
1165     ForkJoinTask<?> ps = currentSteal;
1166     (currentSteal = task).doExec();
1167     currentSteal = ps;
1168     }
1169 dl 1.200 break;
1170 dl 1.90 }
1171 dl 1.200 else if (t.status < 0 && s + 1 == top) {
1172 dl 1.243 if (U.compareAndSwapObject(a, offset, t, null)) {
1173     top = s;
1174     U.storeFence();
1175     }
1176 dl 1.200 break; // was cancelled
1177 dl 1.104 }
1178 dl 1.243 else if (++d == 0) {
1179     if (base != b) // rescan
1180     break;
1181 dl 1.200 return false;
1182 dl 1.243 }
1183 dl 1.104 }
1184 dl 1.200 if (task.status < 0)
1185     return false;
1186 dl 1.104 }
1187     }
1188 dl 1.200 return true;
1189 dl 1.104 }
1190    
1191     /**
1192 dl 1.200 * Pops task if in the same CC computation as the given task,
1193     * in either shared or owned mode. Used only by helpComplete.
1194 dl 1.78 */
1195 dl 1.253 final CountedCompleter<?> popCC(CountedCompleter<?> task, int mode) {
1196 dl 1.243 int b = base, s = top, al; ForkJoinTask<?>[] a;
1197     if ((a = array) != null && b != s && (al = a.length) > 0) {
1198 dl 1.256 int index = (al - 1) & (s - 1);
1199     long offset = ((long)index << ASHIFT) + ABASE;
1200     ForkJoinTask<?> o = (ForkJoinTask<?>)
1201     U.getObjectVolatile(a, offset);
1202 dl 1.243 if (o instanceof CountedCompleter) {
1203 dl 1.200 CountedCompleter<?> t = (CountedCompleter<?>)o;
1204     for (CountedCompleter<?> r = t;;) {
1205     if (r == task) {
1206 dl 1.253 if ((mode & IS_OWNED) == 0) {
1207 dl 1.243 boolean popped;
1208 dl 1.200 if (U.compareAndSwapInt(this, QLOCK, 0, 1)) {
1209 dl 1.243 if (popped =
1210     U.compareAndSwapObject(a, offset,
1211     t, null))
1212     top = s - 1;
1213     U.putOrderedInt(this, QLOCK, 0);
1214     if (popped)
1215 dl 1.200 return t;
1216 dl 1.178 }
1217     }
1218 dl 1.243 else if (U.compareAndSwapObject(a, offset,
1219     t, null)) {
1220     top = s - 1;
1221     U.storeFence();
1222 dl 1.200 return t;
1223     }
1224     break;
1225 dl 1.178 }
1226 dl 1.200 else if ((r = r.completer) == null) // try parent
1227 dl 1.178 break;
1228     }
1229 dl 1.94 }
1230 dl 1.78 }
1231 dl 1.200 return null;
1232 dl 1.78 }
1233    
1234     /**
1235 dl 1.200 * Steals and runs a task in the same CC computation as the
1236     * given task if one exists and can be taken without
1237     * contention. Otherwise returns a checksum/control value for
1238     * use by method helpComplete.
1239     *
1240     * @return 1 if successful, 2 if retryable (lost to another
1241     * stealer), -1 if non-empty but no matching task found, else
1242     * the base index, forced negative.
1243     */
1244     final int pollAndExecCC(CountedCompleter<?> task) {
1245 dl 1.243 ForkJoinTask<?>[] a;
1246     int b = base, s = top, al, h;
1247     if ((a = array) != null && b != s && (al = a.length) > 0) {
1248 dl 1.256 int index = (al - 1) & b;
1249     long offset = ((long)index << ASHIFT) + ABASE;
1250     ForkJoinTask<?> o = (ForkJoinTask<?>)
1251     U.getObjectVolatile(a, offset);
1252 dl 1.243 if (o == null)
1253     h = 2; // retryable
1254     else if (!(o instanceof CountedCompleter))
1255     h = -1; // unmatchable
1256     else {
1257     CountedCompleter<?> t = (CountedCompleter<?>)o;
1258     for (CountedCompleter<?> r = t;;) {
1259     if (r == task) {
1260     if (b++ == base &&
1261     U.compareAndSwapObject(a, offset, t, null)) {
1262     base = b;
1263     t.doExec();
1264     h = 1; // success
1265     }
1266     else
1267     h = 2; // lost CAS
1268     break;
1269     }
1270     else if ((r = r.completer) == null) {
1271     h = -1; // unmatched
1272     break;
1273 dl 1.200 }
1274 dl 1.178 }
1275     }
1276 dl 1.78 }
1277 dl 1.243 else
1278     h = b | Integer.MIN_VALUE; // to sense movement on re-poll
1279 dl 1.200 return h;
1280 dl 1.78 }
1281    
1282     /**
1283 dl 1.86 * Returns true if owned and not known to be blocked.
1284     */
1285     final boolean isApparentlyUnblocked() {
1286     Thread wt; Thread.State s;
1287 dl 1.200 return (scanState >= 0 &&
1288 dl 1.86 (wt = owner) != null &&
1289     (s = wt.getState()) != Thread.State.BLOCKED &&
1290     s != Thread.State.WAITING &&
1291     s != Thread.State.TIMED_WAITING);
1292     }
1293    
1294 dl 1.211 // Unsafe mechanics. Note that some are (and must be) the same as in FJP
1295 jsr166 1.233 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
1296 dl 1.200 private static final int ABASE;
1297     private static final int ASHIFT;
1298 dl 1.105 private static final long QLOCK;
1299 dl 1.78 static {
1300     try {
1301 dl 1.105 QLOCK = U.objectFieldOffset
1302 jsr166 1.233 (WorkQueue.class.getDeclaredField("qlock"));
1303     ABASE = U.arrayBaseOffset(ForkJoinTask[].class);
1304     int scale = U.arrayIndexScale(ForkJoinTask[].class);
1305 jsr166 1.142 if ((scale & (scale - 1)) != 0)
1306 jsr166 1.232 throw new Error("array index scale not a power of two");
1307 jsr166 1.142 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1308 jsr166 1.231 } catch (ReflectiveOperationException e) {
1309 dl 1.78 throw new Error(e);
1310     }
1311     }
1312     }
1313 dl 1.14
1314 dl 1.112 // static fields (initialized in static initializer below)
1315    
1316     /**
1317     * Creates a new ForkJoinWorkerThread. This factory is used unless
1318     * overridden in ForkJoinPool constructors.
1319     */
1320     public static final ForkJoinWorkerThreadFactory
1321     defaultForkJoinWorkerThreadFactory;
1322    
1323 jsr166 1.1 /**
1324 dl 1.115 * Permission required for callers of methods that may start or
1325 dl 1.256 * kill threads. Also used as a private static lock in tryInitialize.
1326 dl 1.115 */
1327     private static final RuntimePermission modifyThreadPermission;
1328    
1329     /**
1330 dl 1.101 * Common (static) pool. Non-null for public use unless a static
1331 dl 1.105 * construction exception, but internal usages null-check on use
1332     * to paranoically avoid potential initialization circularities
1333     * as well as to simplify generated code.
1334 dl 1.101 */
1335 dl 1.134 static final ForkJoinPool common;
1336 dl 1.101
1337     /**
1338 dl 1.160 * Common pool parallelism. To allow simpler use and management
1339     * when common pool threads are disabled, we allow the underlying
1340 dl 1.185 * common.parallelism field to be zero, but in that case still report
1341 dl 1.160 * parallelism as 1 to reflect resulting caller-runs mechanics.
1342 dl 1.90 */
1343 dl 1.134 static final int commonParallelism;
1344 dl 1.90
1345     /**
1346 dl 1.208 * Limit on spare thread construction in tryCompensate.
1347     */
1348     private static int commonMaxSpares;
1349    
1350     /**
1351 dl 1.105 * Sequence number for creating workerNamePrefix.
1352 dl 1.86 */
1353 dl 1.105 private static int poolNumberSequence;
1354 dl 1.86
1355 jsr166 1.1 /**
1356 jsr166 1.132 * Returns the next sequence number. We don't expect this to
1357     * ever contend, so use simple builtin sync.
1358 dl 1.83 */
1359 dl 1.105 private static final synchronized int nextPoolId() {
1360     return ++poolNumberSequence;
1361     }
1362 dl 1.86
1363 dl 1.200 // static configuration constants
1364 dl 1.86
1365     /**
1366 dl 1.243 * Initial timeout value (in milliseconds) for the thread
1367 dl 1.105 * triggering quiescence to park waiting for new work. On timeout,
1368     * the thread will instead try to shrink the number of
1369     * workers. The value should be large enough to avoid overly
1370     * aggressive shrinkage during most transient stalls (long GCs
1371     * etc).
1372 dl 1.86 */
1373 dl 1.243 private static final long IDLE_TIMEOUT_MS = 2000L; // 2sec
1374 dl 1.86
1375     /**
1376 dl 1.120 * Tolerance for idle timeouts, to cope with timer undershoots
1377     */
1378 dl 1.243 private static final long TIMEOUT_SLOP_MS = 20L; // 20ms
1379 dl 1.200
1380     /**
1381 dl 1.208 * The initial value for commonMaxSpares during static
1382     * initialization unless overridden using System property
1383     * "java.util.concurrent.ForkJoinPool.common.maximumSpares". The
1384     * default value is far in excess of normal requirements, but also
1385 dl 1.200 * far short of MAX_CAP and typical OS thread limits, so allows
1386     * JVMs to catch misuse/abuse before running out of resources
1387     * needed to do so.
1388     */
1389 dl 1.208 private static final int DEFAULT_COMMON_MAX_SPARES = 256;
1390 dl 1.120
1391     /**
1392 dl 1.90 * Increment for seed generators. See class ThreadLocal for
1393     * explanation.
1394     */
1395 dl 1.193 private static final int SEED_INCREMENT = 0x9e3779b9;
1396 dl 1.83
1397 jsr166 1.163 /*
1398 dl 1.200 * Bits and masks for field ctl, packed with 4 16 bit subfields:
1399     * AC: Number of active running workers minus target parallelism
1400     * TC: Number of total workers minus target parallelism
1401     * SS: version count and status of top waiting thread
1402     * ID: poolIndex of top of Treiber stack of waiters
1403     *
1404     * When convenient, we can extract the lower 32 stack top bits
1405     * (including version bits) as sp=(int)ctl. The offsets of counts
1406     * by the target parallelism and the positionings of fields makes
1407     * it possible to perform the most common checks via sign tests of
1408     * fields: When ac is negative, there are not enough active
1409     * workers, when tc is negative, there are not enough total
1410     * workers. When sp is non-zero, there are waiting workers. To
1411     * deal with possibly negative fields, we use casts in and out of
1412     * "short" and/or signed shifts to maintain signedness.
1413     *
1414     * Because it occupies uppermost bits, we can add one active count
1415     * using getAndAddLong of AC_UNIT, rather than CAS, when returning
1416     * from a blocked join. Other updates entail multiple subfields
1417     * and masking, requiring CAS.
1418     */
1419    
1420     // Lower and upper word masks
1421     private static final long SP_MASK = 0xffffffffL;
1422     private static final long UC_MASK = ~SP_MASK;
1423 dl 1.86
1424 dl 1.200 // Active counts
1425 dl 1.86 private static final int AC_SHIFT = 48;
1426 dl 1.200 private static final long AC_UNIT = 0x0001L << AC_SHIFT;
1427     private static final long AC_MASK = 0xffffL << AC_SHIFT;
1428    
1429     // Total counts
1430 dl 1.86 private static final int TC_SHIFT = 32;
1431 dl 1.200 private static final long TC_UNIT = 0x0001L << TC_SHIFT;
1432     private static final long TC_MASK = 0xffffL << TC_SHIFT;
1433     private static final long ADD_WORKER = 0x0001L << (TC_SHIFT + 15); // sign
1434    
1435 dl 1.205 // runState bits: SHUTDOWN must be negative, others arbitrary powers of two
1436 dl 1.243 private static final int STARTED = 1;
1437     private static final int STOP = 1 << 1;
1438     private static final int TERMINATED = 1 << 2;
1439 dl 1.205 private static final int SHUTDOWN = 1 << 31;
1440 dl 1.86
1441     // Instance fields
1442 dl 1.200 volatile long ctl; // main pool control
1443 dl 1.243 volatile int runState;
1444 dl 1.200 final int config; // parallelism, mode
1445     int indexSeed; // to generate worker index
1446 dl 1.256 volatile AtomicLong stealCounter; // also used as sync monitor
1447 dl 1.200 volatile WorkQueue[] workQueues; // main registry
1448 dl 1.256 final String workerNamePrefix; // to create worker name string
1449 dl 1.112 final ForkJoinWorkerThreadFactory factory;
1450 dl 1.200 final UncaughtExceptionHandler ueh; // per-worker UEH
1451 dl 1.101
1452 jsr166 1.145 /**
1453 dl 1.243 * Instantiates fields upon first submission, and/or throws
1454     * exception if terminating. Called only by externalPush.
1455 dl 1.105 */
1456 dl 1.243 private void tryInitialize() {
1457 dl 1.256 if ((runState & STARTED) == 0) { // bootstrap by locking static field
1458     int rs; // create workQueues array with size a power of two
1459     int p = config & SMASK; // ensure at least 2 slots
1460     int n = (p > 1) ? p - 1 : 1;
1461     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4;
1462     n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1;
1463     synchronized(modifyThreadPermission) {
1464     if ((runState & STARTED) == 0) {
1465     stealCounter = new AtomicLong();
1466     workQueues = new WorkQueue[n];
1467     do {} while (!U.compareAndSwapInt(this, RUNSTATE,
1468     rs = runState,
1469     rs | STARTED));
1470 dl 1.101 }
1471     }
1472     }
1473 dl 1.256 if (runState < 0) {
1474 jsr166 1.244 tryTerminate(false, false); // help terminate
1475     throw new RejectedExecutionException();
1476     }
1477 dl 1.78 }
1478 jsr166 1.1
1479 dl 1.200 // Creating, registering and deregistering workers
1480    
1481 dl 1.112 /**
1482 dl 1.200 * Tries to construct and start one worker. Assumes that total
1483     * count has already been incremented as a reservation. Invokes
1484     * deregisterWorker on any failure.
1485     *
1486 dl 1.243 * @param isSpare true if this is a spare thread
1487 dl 1.200 * @return true if successful
1488 dl 1.115 */
1489 dl 1.243 private boolean createWorker(boolean isSpare) {
1490 dl 1.200 ForkJoinWorkerThreadFactory fac = factory;
1491     Throwable ex = null;
1492     ForkJoinWorkerThread wt = null;
1493 dl 1.243 WorkQueue q;
1494 dl 1.200 try {
1495     if (fac != null && (wt = fac.newThread(this)) != null) {
1496 dl 1.243 if (isSpare && (q = wt.workQueue) != null)
1497     q.config |= SPARE_WORKER;
1498 dl 1.200 wt.start();
1499     return true;
1500 dl 1.115 }
1501 dl 1.200 } catch (Throwable rex) {
1502     ex = rex;
1503 dl 1.112 }
1504 dl 1.200 deregisterWorker(wt, ex);
1505     return false;
1506 dl 1.112 }
1507    
1508 dl 1.200 /**
1509     * Tries to add one worker, incrementing ctl counts before doing
1510     * so, relying on createWorker to back out on failure.
1511     *
1512     * @param c incoming ctl value, with total count negative and no
1513     * idle workers. On CAS failure, c is refreshed and retried if
1514 jsr166 1.202 * this holds (otherwise, a new worker is not needed).
1515 dl 1.200 */
1516     private void tryAddWorker(long c) {
1517     do {
1518     long nc = ((AC_MASK & (c + AC_UNIT)) |
1519     (TC_MASK & (c + TC_UNIT)));
1520 dl 1.243 if (ctl == c && U.compareAndSwapLong(this, CTL, c, nc)) {
1521     createWorker(false);
1522     break;
1523 dl 1.200 }
1524     } while (((c = ctl) & ADD_WORKER) != 0L && (int)c == 0);
1525     }
1526 dl 1.112
1527     /**
1528 dl 1.200 * Callback from ForkJoinWorkerThread constructor to establish and
1529     * record its WorkQueue.
1530 dl 1.112 *
1531     * @param wt the worker thread
1532 dl 1.115 * @return the worker's queue
1533 dl 1.112 */
1534 dl 1.115 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1535 dl 1.200 UncaughtExceptionHandler handler;
1536 dl 1.243 Object lock = stealCounter;
1537 dl 1.200 wt.setDaemon(true); // configure thread
1538 dl 1.115 if ((handler = ueh) != null)
1539     wt.setUncaughtExceptionHandler(handler);
1540 dl 1.200 WorkQueue w = new WorkQueue(this, wt);
1541     int i = 0; // assign a pool index
1542     int mode = config & MODE_MASK;
1543 dl 1.243 if (lock != null) {
1544 jsr166 1.244 synchronized (lock) {
1545 dl 1.243 WorkQueue[] ws = workQueues;
1546     int s = indexSeed += SEED_INCREMENT, n, m;
1547     if (ws != null && (n = ws.length) > 0) {
1548     i = (m = n - 1) & ((s << 1) | 1); // odd-numbered indices
1549     if (ws[i] != null) { // collision
1550     int probes = 0; // step by approx half n
1551     int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1552     while (ws[i = (i + step) & m] != null) {
1553     if (++probes >= n) {
1554     workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1555     m = n - 1;
1556     probes = 0;
1557     }
1558 dl 1.94 }
1559     }
1560 dl 1.243 w.hint = s; // use as random seed
1561     w.config = i | mode;
1562     w.scanState = i | (s & 0x7fff0000); // random seq bits
1563     ws[i] = w;
1564 dl 1.94 }
1565 dl 1.78 }
1566     }
1567 dl 1.200 wt.setName(workerNamePrefix.concat(Integer.toString(i >>> 1)));
1568 dl 1.115 return w;
1569 dl 1.78 }
1570 dl 1.19
1571 jsr166 1.1 /**
1572 dl 1.86 * Final callback from terminating worker, as well as upon failure
1573 dl 1.105 * to construct or start a worker. Removes record of worker from
1574     * array, and adjusts counts. If pool is shutting down, tries to
1575     * complete termination.
1576 dl 1.78 *
1577 jsr166 1.151 * @param wt the worker thread, or null if construction failed
1578 dl 1.78 * @param ex the exception causing failure, or null if none
1579 dl 1.45 */
1580 dl 1.78 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1581     WorkQueue w = null;
1582     if (wt != null && (w = wt.workQueue) != null) {
1583 dl 1.243 Object lock; WorkQueue[] ws; // remove index from array
1584 dl 1.200 int idx = w.config & SMASK;
1585 dl 1.243 if ((lock = stealCounter) != null) {
1586 jsr166 1.244 synchronized (lock) {
1587 dl 1.243 if ((ws = workQueues) != null && ws.length > idx &&
1588     ws[idx] == w)
1589     ws[idx] = null;
1590     }
1591     }
1592     }
1593     if (w == null || (w.config & UNREGISTERED) == 0) { // else pre-adjusted
1594     long c; // decrement counts
1595     do {} while (!U.compareAndSwapLong
1596     (this, CTL, c = ctl, ((AC_MASK & (c - AC_UNIT)) |
1597     (TC_MASK & (c - TC_UNIT)) |
1598     (SP_MASK & c))));
1599     }
1600 dl 1.200 if (w != null) {
1601     w.qlock = -1; // ensure set
1602 dl 1.215 w.transferStealCount(this);
1603 dl 1.200 w.cancelAll(); // cancel remaining tasks
1604 dl 1.78 }
1605 dl 1.209 for (;;) { // possibly replace
1606 dl 1.243 WorkQueue[] ws; int wl, sp; long c;
1607 dl 1.209 if (tryTerminate(false, false) || w == null || w.array == null ||
1608     (runState & STOP) != 0 || (ws = workQueues) == null ||
1609 dl 1.243 (wl = ws.length) <= 0) // already terminating
1610 dl 1.209 break;
1611 dl 1.243 else if ((sp = (int)(c = ctl)) != 0) { // wake up replacement
1612     if (tryRelease(c, ws[(wl - 1) & sp], AC_UNIT))
1613 dl 1.205 break;
1614 dl 1.120 }
1615 dl 1.209 else if (ex != null && (c & ADD_WORKER) != 0L) {
1616     tryAddWorker(c); // create replacement
1617     break;
1618     }
1619     else // don't need replacement
1620     break;
1621 dl 1.78 }
1622 dl 1.200 if (ex == null) // help clean on way out
1623 dl 1.120 ForkJoinTask.helpExpungeStaleExceptions();
1624 dl 1.200 else // rethrow
1625 dl 1.104 ForkJoinTask.rethrow(ex);
1626 dl 1.78 }
1627 dl 1.52
1628 dl 1.200 // Signalling
1629 dl 1.19
1630     /**
1631 dl 1.115 * Tries to create or activate a worker if too few are active.
1632 dl 1.105 */
1633 dl 1.253 final void signalWork() {
1634 dl 1.243 for (;;) {
1635     long c; int sp, i; WorkQueue v; WorkQueue[] ws;
1636     if ((c = ctl) >= 0L) // enough workers
1637     break;
1638     else if ((sp = (int)c) == 0) { // no idle workers
1639     if ((c & ADD_WORKER) != 0L) // too few workers
1640 dl 1.200 tryAddWorker(c);
1641     break;
1642     }
1643 dl 1.243 else if ((ws = workQueues) == null)
1644     break; // unstarted/terminated
1645     else if (ws.length <= (i = sp & SMASK))
1646     break; // terminated
1647     else if ((v = ws[i]) == null)
1648     break; // terminating
1649     else {
1650     int ns = sp & ~UNSIGNALLED;
1651     int vs = v.scanState;
1652     long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + AC_UNIT));
1653     if (sp == vs && U.compareAndSwapLong(this, CTL, c, nc)) {
1654     v.scanState = ns;
1655     LockSupport.unpark(v.parker);
1656     break;
1657     }
1658 dl 1.174 }
1659 dl 1.52 }
1660 dl 1.14 }
1661    
1662 dl 1.200 /**
1663     * Signals and releases worker v if it is top of idle worker
1664     * stack. This performs a one-shot version of signalWork only if
1665     * there is (apparently) at least one idle worker.
1666     *
1667     * @param c incoming ctl value
1668     * @param v if non-null, a worker
1669     * @param inc the increment to active count (zero when compensating)
1670     * @return true if successful
1671     */
1672     private boolean tryRelease(long c, WorkQueue v, long inc) {
1673 dl 1.243 int sp = (int)c, ns = sp & ~UNSIGNALLED;
1674     if (v != null) {
1675     int vs = v.scanState;
1676     long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + inc));
1677     if (sp == vs && U.compareAndSwapLong(this, CTL, c, nc)) {
1678     v.scanState = ns;
1679     LockSupport.unpark(v.parker);
1680 dl 1.200 return true;
1681     }
1682     }
1683     return false;
1684     }
1685    
1686 dl 1.243 /**
1687     * With approx probability of a missed signal, tries (once) to
1688     * reactivate worker w (or some other worker), failing if stale or
1689     * known to be already active.
1690     *
1691     * @param w the worker
1692     * @param ws the workQueue array to use
1693     * @param r random seed
1694     */
1695     private void tryReactivate(WorkQueue w, WorkQueue[] ws, int r) {
1696     long c; int sp, wl, m; WorkQueue v;
1697     if ((sp = (int)(c = ctl)) != 0 && w != null &&
1698     ws != null && (wl = ws.length) > 0 &&
1699 dl 1.255 ((m = wl - 1) & ((sp ^ r) >>> 16)) <= 1 &&
1700 dl 1.243 (v = ws[m & sp]) != null) {
1701     long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + AC_UNIT));
1702     int ns = sp & ~UNSIGNALLED;
1703     if ((w == v || w.scanState < 0) &&
1704     v.scanState == sp &&
1705     U.compareAndSwapLong(this, CTL, c, nc)) {
1706     v.scanState = ns;
1707     LockSupport.unpark(v.parker);
1708     }
1709     }
1710     }
1711 dl 1.90
1712 dl 1.14 /**
1713 dl 1.243 * If worker w exists and is active, enqueues and sets status to inactive.
1714     *
1715     * @param w the worker
1716     * @param ss current (non-negative) scanState
1717 dl 1.14 */
1718 dl 1.243 private void inactivate(WorkQueue w, int ss) {
1719     int ns = (ss + SS_SEQ) | UNSIGNALLED;
1720     long lc = ns & SP_MASK, nc, c;
1721     if (w != null) {
1722     w.scanState = ns;
1723     do {
1724     nc = lc | (UC_MASK & ((c = ctl) - AC_UNIT));
1725     w.stackPred = (int)c;
1726     } while (!U.compareAndSwapLong(this, CTL, c, nc));
1727 dl 1.178 }
1728 dl 1.14 }
1729    
1730     /**
1731 dl 1.243 * Possibly blocks worker w waiting for signal, or returns
1732     * negative status if the worker should terminate. May return
1733     * without status change if multiple stale unparks and/or
1734     * interrupts occur.
1735 dl 1.78 *
1736 dl 1.243 * @param w the calling worker
1737     * @return negative if w should terminate
1738 dl 1.78 */
1739 dl 1.243 private int awaitWork(WorkQueue w) {
1740     int stat = 0;
1741     if (w != null && w.scanState < 0) {
1742     long c = ctl;
1743     if ((int)(c >> AC_SHIFT) + (config & SMASK) <= 0)
1744     stat = timedAwaitWork(w, c); // possibly quiescent
1745     else if ((runState & STOP) != 0)
1746     stat = w.qlock = -1; // pool terminating
1747     else if ((stat = w.qlock) >= 0 && w.scanState < 0) {
1748     w.parker = Thread.currentThread();
1749     if (w.scanState < 0) { // recheck after write
1750     LockSupport.park(this);
1751     if ((stat = w.qlock) >= 0 && w.scanState < 0) {
1752     Thread.interrupted(); // clear status
1753     LockSupport.park(this); // retry once
1754 dl 1.200 }
1755 dl 1.115 }
1756 dl 1.243 w.parker = null;
1757 dl 1.115 }
1758 dl 1.52 }
1759 dl 1.243 return stat;
1760 dl 1.14 }
1761    
1762     /**
1763 dl 1.243 * Possibly triggers shutdown and tries (once) to block worker
1764     * when pool is (or may be) quiescent. Waits up to a duration
1765     * determined by number of workers. On timeout, if ctl has not
1766 dl 1.200 * changed, terminates the worker, which will in turn wake up
1767 dl 1.178 * another worker to possibly repeat this process.
1768 dl 1.52 *
1769 dl 1.78 * @param w the calling worker
1770 dl 1.243 * @return negative if w should terminate
1771 dl 1.14 */
1772 dl 1.243 private int timedAwaitWork(WorkQueue w, long c) {
1773     int stat = 0;
1774     int scale = 1 - (short)(c >>> TC_SHIFT);
1775     long deadline = (((scale <= 0) ? 1 : scale) * IDLE_TIMEOUT_MS +
1776     System.currentTimeMillis());
1777     if (w != null && w.scanState < 0) {
1778     int ss; Object lock;
1779     if (runState < 0 && tryTerminate(false, false))
1780     stat = w.qlock = -1; // help terminate
1781     else if ((stat = w.qlock) >= 0 && w.scanState < 0) {
1782     w.parker = Thread.currentThread();
1783     if (w.scanState < 0)
1784     LockSupport.parkUntil(this, deadline);
1785     w.parker = null;
1786     if ((stat = w.qlock) >= 0 && (ss = w.scanState) < 0 &&
1787     !Thread.interrupted() && (int)c == ss &&
1788     (lock = stealCounter) != null && ctl == c &&
1789     deadline - System.currentTimeMillis() <= TIMEOUT_SLOP_MS) {
1790 jsr166 1.244 synchronized (lock) { // pre-deregister
1791 dl 1.243 WorkQueue[] ws;
1792     int cfg = w.config, idx = cfg & SMASK;
1793     long nc = ((UC_MASK & (c - TC_UNIT)) |
1794     (SP_MASK & w.stackPred));
1795     if ((ws = workQueues) != null &&
1796     idx < ws.length && idx >= 0 && ws[idx] == w &&
1797     U.compareAndSwapLong(this, CTL, c, nc)) {
1798     ws[idx] = null;
1799     w.config = cfg | UNREGISTERED;
1800     stat = w.qlock = -1;
1801     }
1802     }
1803     }
1804     }
1805     }
1806     return stat;
1807     }
1808    
1809     /**
1810     * If the given worker is a spare with no queued tasks, and there
1811     * are enough existing workers, drops it from ctl counts and sets
1812 jsr166 1.248 * its state to terminated.
1813 dl 1.243 *
1814     * @param w the calling worker -- must be a spare
1815     * @return true if dropped (in which case it must not process more tasks)
1816     */
1817     private boolean tryDropSpare(WorkQueue w) {
1818     if (w != null && w.isEmpty()) { // no local tasks
1819     long c; int sp, wl; WorkQueue[] ws; WorkQueue v;
1820     while ((short)((c = ctl) >> TC_SHIFT) > 0 &&
1821     ((sp = (int)c) != 0 || (int)(c >> AC_SHIFT) > 0) &&
1822     (ws = workQueues) != null && (wl = ws.length) > 0) {
1823     boolean dropped, canDrop;
1824     if (sp == 0) { // no queued workers
1825     long nc = ((AC_MASK & (c - AC_UNIT)) |
1826     (TC_MASK & (c - TC_UNIT)) | (SP_MASK & c));
1827     dropped = U.compareAndSwapLong(this, CTL, c, nc);
1828     }
1829     else if (
1830     (v = ws[(wl - 1) & sp]) == null || v.scanState != sp)
1831     dropped = false; // stale; retry
1832     else {
1833     long nc = v.stackPred & SP_MASK;
1834     if (w == v || w.scanState >= 0) {
1835     canDrop = true; // w unqueued or topmost
1836     nc |= ((AC_MASK & c) | // ensure replacement
1837     (TC_MASK & (c - TC_UNIT)));
1838     }
1839     else { // w may be queued
1840     canDrop = false; // help uncover
1841     nc |= ((AC_MASK & (c + AC_UNIT)) |
1842     (TC_MASK & c));
1843     }
1844     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1845     v.scanState = sp & ~UNSIGNALLED;
1846     LockSupport.unpark(v.parker);
1847     dropped = canDrop;
1848     }
1849     else
1850     dropped = false;
1851     }
1852     if (dropped) { // pre-deregister
1853     int cfg = w.config, idx = cfg & SMASK;
1854     if (idx >= 0 && idx < ws.length && ws[idx] == w)
1855     ws[idx] = null;
1856     w.config = cfg | UNREGISTERED;
1857     w.qlock = -1;
1858     return true;
1859 dl 1.200 }
1860 dl 1.177 }
1861 dl 1.243 }
1862     return false;
1863     }
1864    
1865     /**
1866     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1867     */
1868     final void runWorker(WorkQueue w) {
1869     w.growArray(); // allocate queue
1870 dl 1.253 int bound = (w.config & SPARE_WORKER) != 0 ? 0 : POLL_LIMIT;
1871 dl 1.243 long seed = w.hint * 0xdaba0b6eb09322e3L; // initial random seed
1872     for (long r = (seed == 0L) ? 1L : seed;;) { // ensure nonzero
1873     if (bound == 0 && tryDropSpare(w))
1874     break;
1875 dl 1.253 // high bits of prev seed for step; current low bits for idx
1876     int step = (int)(r >>> 48) | 1;
1877 dl 1.243 r ^= r >>> 12; r ^= r << 25; r ^= r >>> 27; // xorshift
1878 dl 1.253 if (scan(w, bound, step, (int)r) < 0 && awaitWork(w) < 0)
1879 dl 1.243 break;
1880     }
1881     }
1882    
1883     // Scanning for tasks
1884    
1885     /**
1886     * Repeatedly scans for and tries to steal and execute (via
1887     * workQueue.runTask) a queued task. Each scan traverses queues in
1888     * pseudorandom permutation. Upon finding a non-empty queue, makes
1889 dl 1.253 * at most the given bound attempts to re-poll (fewer if
1890     * contended) on the same queue before returning (impossible
1891     * scanState value) 0 to restart scan. Else returns after at least
1892     * 1 and at most 32 full scans.
1893 dl 1.243 *
1894     * @param w the worker (via its WorkQueue)
1895 dl 1.253 * @param bound repoll bound as bitmask (0 if spare)
1896 dl 1.243 * @param step (circular) index increment per iteration (must be odd)
1897     * @param r a random seed for origin index
1898     * @return negative if should await signal
1899     */
1900 dl 1.253 private int scan(WorkQueue w, int bound, int step, int r) {
1901 dl 1.243 int stat = 0, wl; WorkQueue[] ws;
1902 dl 1.250 if ((ws = workQueues) != null && w != null && (wl = ws.length) > 0) {
1903 dl 1.243 for (int m = wl - 1,
1904 dl 1.250 origin = m & r, idx = origin,
1905 dl 1.243 npolls = 0,
1906     ss = w.scanState;;) { // negative if inactive
1907     WorkQueue q; ForkJoinTask<?>[] a; int b, d, al;
1908     if ((q = ws[idx]) != null && (d = (b = q.base) - q.top) < 0 &&
1909     (a = q.array) != null && (al = a.length) > 0) {
1910 dl 1.256 int index = (al - 1) & b;
1911     long offset = ((long)index << ASHIFT) + ABASE;
1912 dl 1.243 ForkJoinTask<?> t = (ForkJoinTask<?>)
1913     U.getObjectVolatile(a, offset);
1914 dl 1.253 if (t == null || b++ != q.base)
1915     break; // busy or empty
1916     else if (ss < 0) {
1917 dl 1.255 if ((ss = w.scanState) >= 0) {
1918     tryReactivate(w, ws, r);
1919     break; // retry upon rescan
1920     }
1921     r |= (1 << 31); // ensure full scan
1922 dl 1.253 }
1923     else if (!U.compareAndSwapObject(a, offset, t, null))
1924     break; // contended
1925     else {
1926     q.base = b;
1927     w.currentSteal = t;
1928     if (d != -1) // propagate signal
1929     signalWork();
1930     w.runTask(t);
1931     if (++npolls > bound)
1932     break;
1933 dl 1.243 }
1934 dl 1.178 }
1935 dl 1.243 else if (npolls != 0) // rescan
1936     break;
1937 dl 1.250 else if ((idx = (idx + step) & m) == origin) {
1938     if (ss < 0) { // await signal
1939     stat = ss;
1940     break;
1941     }
1942     else if (r >= 0) {
1943 dl 1.243 inactivate(w, ss);
1944 dl 1.250 break;
1945     }
1946     else
1947     r <<= 1; // at most 31 rescans
1948 dl 1.243 }
1949 dl 1.120 }
1950     }
1951 dl 1.243 return stat;
1952 dl 1.178 }
1953    
1954 dl 1.200 // Joining tasks
1955    
1956 dl 1.178 /**
1957 dl 1.200 * Tries to steal and run tasks within the target's computation.
1958     * Uses a variant of the top-level algorithm, restricted to tasks
1959     * with the given task as ancestor: It prefers taking and running
1960     * eligible tasks popped from the worker's own queue (via
1961     * popCC). Otherwise it scans others, randomly moving on
1962     * contention or execution, deciding to give up based on a
1963 dl 1.243 * checksum (via return codes from pollAndExecCC). The maxTasks
1964 dl 1.200 * argument supports external usages; internal calls use zero,
1965     * allowing unbounded steps (external calls trap non-positive
1966     * values).
1967     *
1968     * @param w caller
1969 jsr166 1.202 * @param maxTasks if non-zero, the maximum number of other tasks to run
1970 dl 1.200 * @return task status on exit
1971     */
1972     final int helpComplete(WorkQueue w, CountedCompleter<?> task,
1973     int maxTasks) {
1974 dl 1.243 WorkQueue[] ws; int s = 0, wl;
1975     if ((ws = workQueues) != null && (wl = ws.length) > 1 &&
1976 dl 1.200 task != null && w != null) {
1977 dl 1.253 for (int m = wl - 1,
1978     mode = w.config,
1979     r = ~mode, // scanning seed
1980     origin = r & m, k = origin, // first queue to scan
1981     step = 3, // first scan step
1982     h = 1, // 1:ran, >1:contended, <0:hash
1983     oldSum = 0, checkSum = 0;;) {
1984 dl 1.243 CountedCompleter<?> p; WorkQueue q; int i;
1985 dl 1.200 if ((s = task.status) < 0)
1986     break;
1987 dl 1.253 if (h == 1 && (p = w.popCC(task, mode)) != null) {
1988 dl 1.200 p.doExec(); // run local task
1989     if (maxTasks != 0 && --maxTasks == 0)
1990     break;
1991     origin = k; // reset
1992     oldSum = checkSum = 0;
1993     }
1994 dl 1.243 else { // poll other worker queues
1995     if ((i = k | 1) < 0 || i > m || (q = ws[i]) == null)
1996 dl 1.200 h = 0;
1997     else if ((h = q.pollAndExecCC(task)) < 0)
1998     checkSum += h;
1999     if (h > 0) {
2000     if (h == 1 && maxTasks != 0 && --maxTasks == 0)
2001     break;
2002 dl 1.253 step = (r >>> 16) | 3;
2003 dl 1.200 r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
2004 dl 1.243 k = origin = r & m; // move and restart
2005 dl 1.200 oldSum = checkSum = 0;
2006     }
2007 dl 1.243 else if ((k = (k + step) & m) == origin) {
2008 dl 1.200 if (oldSum == (oldSum = checkSum))
2009     break;
2010     checkSum = 0;
2011     }
2012     }
2013 dl 1.178 }
2014     }
2015 dl 1.200 return s;
2016 dl 1.120 }
2017    
2018     /**
2019 dl 1.78 * Tries to locate and execute tasks for a stealer of the given
2020     * task, or in turn one of its stealers, Traces currentSteal ->
2021     * currentJoin links looking for a thread working on a descendant
2022     * of the given task and with a non-empty queue to steal back and
2023     * execute tasks from. The first call to this method upon a
2024     * waiting join will often entail scanning/search, (which is OK
2025     * because the joiner has nothing better to do), but this method
2026 dl 1.200 * leaves hints in workers to speed up subsequent calls.
2027 dl 1.78 *
2028 dl 1.200 * @param w caller
2029 dl 1.78 * @param task the task to join
2030     */
2031 dl 1.200 private void helpStealer(WorkQueue w, ForkJoinTask<?> task) {
2032 dl 1.243 if (task != null && w != null) {
2033     ForkJoinTask<?> ps = w.currentSteal;
2034     WorkQueue[] ws; int wl, oldSum = 0;
2035     outer: while (w.tryRemoveAndExec(task) && task.status >= 0 &&
2036     (ws = workQueues) != null && (wl = ws.length) > 0) {
2037 dl 1.200 ForkJoinTask<?> subtask;
2038 dl 1.243 int m = wl - 1, checkSum = 0; // for stability check
2039 dl 1.200 WorkQueue j = w, v; // v is subtask stealer
2040     descent: for (subtask = task; subtask.status >= 0; ) {
2041 dl 1.243 for (int h = j.hint | 1, k = 0, i;;) {
2042     if ((v = ws[i = (h + (k << 1)) & m]) != null) {
2043 dl 1.200 if (v.currentSteal == subtask) {
2044     j.hint = i;
2045 dl 1.95 break;
2046     }
2047 dl 1.200 checkSum += v.base;
2048 dl 1.78 }
2049 dl 1.243 if (++k > m) // can't find stealer
2050     break outer;
2051 dl 1.78 }
2052 dl 1.243
2053 dl 1.200 for (;;) { // help v or descend
2054 dl 1.243 ForkJoinTask<?>[] a; int b, al;
2055     if (subtask.status < 0) // too late to help
2056     break descent;
2057 dl 1.200 checkSum += (b = v.base);
2058     ForkJoinTask<?> next = v.currentJoin;
2059 dl 1.243 ForkJoinTask<?> t = null;
2060     if ((a = v.array) != null && (al = a.length) > 0) {
2061 dl 1.256 int index = (al - 1) & b;
2062     long offset = ((long)index << ASHIFT) + ABASE;
2063 dl 1.243 t = (ForkJoinTask<?>)U.getObjectVolatile(a, offset);
2064     if (t != null && b++ == v.base) {
2065     if (j.currentJoin != subtask ||
2066     v.currentSteal != subtask ||
2067     subtask.status < 0)
2068     break descent; // stale
2069     if (U.compareAndSwapObject(a, offset, t, null)) {
2070     v.base = b;
2071     w.currentSteal = t;
2072     for (int top = w.top;;) {
2073     t.doExec(); // help
2074     w.currentSteal = ps;
2075     if (task.status < 0)
2076     break outer;
2077     if (w.top == top)
2078     break; // run local tasks
2079     if ((t = w.pop()) == null)
2080     break descent;
2081     w.currentSteal = t;
2082     }
2083     }
2084     }
2085     }
2086     if (t == null && b == v.base && b - v.top >= 0) {
2087     if ((subtask = next) == null) { // try to descend
2088     if (next == v.currentJoin &&
2089     oldSum == (oldSum = checkSum))
2090     break outer;
2091 dl 1.200 break descent;
2092 dl 1.243 }
2093 dl 1.200 j = v;
2094     break;
2095 dl 1.95 }
2096 dl 1.52 }
2097 dl 1.19 }
2098 dl 1.243 }
2099 dl 1.14 }
2100 dl 1.22 }
2101    
2102 dl 1.52 /**
2103 dl 1.200 * Tries to decrement active count (sometimes implicitly) and
2104     * possibly release or create a compensating worker in preparation
2105     * for blocking. Returns false (retryable by caller), on
2106 dl 1.208 * contention, detected staleness, instability, or termination.
2107 dl 1.105 *
2108 dl 1.200 * @param w caller
2109 dl 1.19 */
2110 dl 1.200 private boolean tryCompensate(WorkQueue w) {
2111 dl 1.243 boolean canBlock; int wl;
2112     long c = ctl;
2113     WorkQueue[] ws = workQueues;
2114     int pc = config & SMASK;
2115     int ac = pc + (int)(c >> AC_SHIFT);
2116     int tc = pc + (short)(c >> TC_SHIFT);
2117     if (w == null || w.qlock < 0 || pc == 0 || // terminating or disabled
2118     ws == null || (wl = ws.length) <= 0)
2119 dl 1.200 canBlock = false;
2120     else {
2121 dl 1.243 int m = wl - 1, sp;
2122     boolean busy = true; // validate ac
2123     for (int i = 0; i <= m; ++i) {
2124     int k; WorkQueue v;
2125     if ((k = (i << 1) | 1) <= m && k >= 0 && (v = ws[k]) != null &&
2126     v.scanState >= 0 && v.currentSteal == null) {
2127     busy = false;
2128     break;
2129 dl 1.178 }
2130 dl 1.52 }
2131 dl 1.243 if (!busy || ctl != c)
2132     canBlock = false; // unstable or stale
2133     else if ((sp = (int)c) != 0) // release idle worker
2134     canBlock = tryRelease(c, ws[m & sp], 0L);
2135 dl 1.200 else if (tc >= pc && ac > 1 && w.isEmpty()) {
2136     long nc = ((AC_MASK & (c - AC_UNIT)) |
2137 dl 1.243 (~AC_MASK & c)); // uncompensated
2138 dl 1.200 canBlock = U.compareAndSwapLong(this, CTL, c, nc);
2139 dl 1.105 }
2140 dl 1.208 else if (tc >= MAX_CAP ||
2141     (this == common && tc >= pc + commonMaxSpares))
2142 dl 1.200 throw new RejectedExecutionException(
2143     "Thread limit exceeded replacing blocked worker");
2144 dl 1.243 else { // similar to tryAddWorker
2145     boolean isSpare = (tc >= pc);
2146     long nc = (AC_MASK & c) | (TC_MASK & (c + TC_UNIT));
2147     canBlock = (U.compareAndSwapLong(this, CTL, c, nc) &&
2148     createWorker(isSpare)); // throws on exception
2149 dl 1.90 }
2150     }
2151 dl 1.200 return canBlock;
2152 dl 1.90 }
2153    
2154     /**
2155 dl 1.200 * Helps and/or blocks until the given task is done or timeout.
2156 dl 1.90 *
2157 dl 1.200 * @param w caller
2158 dl 1.90 * @param task the task
2159 dl 1.219 * @param deadline for timed waits, if nonzero
2160 dl 1.90 * @return task status on exit
2161     */
2162 dl 1.200 final int awaitJoin(WorkQueue w, ForkJoinTask<?> task, long deadline) {
2163 dl 1.105 int s = 0;
2164 dl 1.243 if (w != null) {
2165 dl 1.200 ForkJoinTask<?> prevJoin = w.currentJoin;
2166 dl 1.243 if (task != null && (s = task.status) >= 0) {
2167     w.currentJoin = task;
2168     CountedCompleter<?> cc = (task instanceof CountedCompleter) ?
2169     (CountedCompleter<?>)task : null;
2170     for (;;) {
2171     if (cc != null)
2172     helpComplete(w, cc, 0);
2173     else
2174     helpStealer(w, task);
2175     if ((s = task.status) < 0)
2176     break;
2177     long ms, ns;
2178     if (deadline == 0L)
2179     ms = 0L;
2180     else if ((ns = deadline - System.nanoTime()) <= 0L)
2181     break;
2182     else if ((ms = TimeUnit.NANOSECONDS.toMillis(ns)) <= 0L)
2183     ms = 1L;
2184     if (tryCompensate(w)) {
2185     task.internalWait(ms);
2186     U.getAndAddLong(this, CTL, AC_UNIT);
2187     }
2188     if ((s = task.status) < 0)
2189     break;
2190 dl 1.90 }
2191 dl 1.243 w.currentJoin = prevJoin;
2192 dl 1.90 }
2193     }
2194 dl 1.94 return s;
2195 dl 1.90 }
2196    
2197 dl 1.200 // Specialized scanning
2198 dl 1.90
2199     /**
2200     * Returns a (probably) non-empty steal queue, if one is found
2201 dl 1.131 * during a scan, else null. This method must be retried by
2202     * caller if, by the time it tries to use the queue, it is empty.
2203 dl 1.78 */
2204 dl 1.178 private WorkQueue findNonEmptyStealQueue() {
2205 dl 1.243 WorkQueue[] ws; int wl; // one-shot version of scan loop
2206 dl 1.211 int r = ThreadLocalRandom.nextSecondarySeed();
2207 dl 1.243 if ((ws = workQueues) != null && (wl = ws.length) > 0) {
2208     int m = wl - 1, origin = r & m;
2209     for (int k = origin, oldSum = 0, checkSum = 0;;) {
2210 dl 1.211 WorkQueue q; int b;
2211     if ((q = ws[k]) != null) {
2212     if ((b = q.base) - q.top < 0)
2213     return q;
2214     checkSum += b;
2215     }
2216     if ((k = (k + 1) & m) == origin) {
2217     if (oldSum == (oldSum = checkSum))
2218     break;
2219     checkSum = 0;
2220 dl 1.52 }
2221     }
2222 dl 1.211 }
2223 dl 1.200 return null;
2224 dl 1.22 }
2225    
2226     /**
2227 dl 1.78 * Runs tasks until {@code isQuiescent()}. We piggyback on
2228     * active count ctl maintenance, but rather than blocking
2229     * when tasks cannot be found, we rescan until all others cannot
2230     * find tasks either.
2231     */
2232     final void helpQuiescePool(WorkQueue w) {
2233 dl 1.211 ForkJoinTask<?> ps = w.currentSteal; // save context
2234 dl 1.243 int wc = w.config;
2235 dl 1.78 for (boolean active = true;;) {
2236 dl 1.243 long c; WorkQueue q; ForkJoinTask<?> t;
2237     if (wc >= 0 && (t = w.pop()) != null) { // run locals if LIFO
2238     (w.currentSteal = t).doExec();
2239     w.currentSteal = ps;
2240     }
2241     else if ((q = findNonEmptyStealQueue()) != null) {
2242 dl 1.78 if (!active) { // re-establish active count
2243     active = true;
2244 dl 1.200 U.getAndAddLong(this, CTL, AC_UNIT);
2245     }
2246 dl 1.243 if ((t = q.pollAt(q.base)) != null) {
2247     (w.currentSteal = t).doExec();
2248     w.currentSteal = ps;
2249 dl 1.215 if (++w.nsteals < 0)
2250     w.transferStealCount(this);
2251 dl 1.178 }
2252 dl 1.78 }
2253 jsr166 1.194 else if (active) { // decrement active count without queuing
2254 dl 1.200 long nc = (AC_MASK & ((c = ctl) - AC_UNIT)) | (~AC_MASK & c);
2255 dl 1.131 if (U.compareAndSwapLong(this, CTL, c, nc))
2256 dl 1.78 active = false;
2257 dl 1.22 }
2258 dl 1.200 else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) <= 0 &&
2259     U.compareAndSwapLong(this, CTL, c, c + AC_UNIT))
2260 dl 1.185 break;
2261 dl 1.22 }
2262     }
2263    
2264     /**
2265 jsr166 1.84 * Gets and removes a local or stolen task for the given worker.
2266 dl 1.78 *
2267     * @return a task, if available
2268 dl 1.22 */
2269 dl 1.78 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2270     for (ForkJoinTask<?> t;;) {
2271 dl 1.243 WorkQueue q;
2272 dl 1.78 if ((t = w.nextLocalTask()) != null)
2273     return t;
2274 dl 1.178 if ((q = findNonEmptyStealQueue()) == null)
2275 dl 1.78 return null;
2276 dl 1.243 if ((t = q.pollAt(q.base)) != null)
2277 dl 1.78 return t;
2278 dl 1.52 }
2279 dl 1.14 }
2280    
2281     /**
2282 dl 1.105 * Returns a cheap heuristic guide for task partitioning when
2283     * programmers, frameworks, tools, or languages have little or no
2284 jsr166 1.222 * idea about task granularity. In essence, by offering this
2285 dl 1.105 * method, we ask users only about tradeoffs in overhead vs
2286     * expected throughput and its variance, rather than how finely to
2287     * partition tasks.
2288     *
2289     * In a steady state strict (tree-structured) computation, each
2290     * thread makes available for stealing enough tasks for other
2291     * threads to remain active. Inductively, if all threads play by
2292     * the same rules, each thread should make available only a
2293     * constant number of tasks.
2294     *
2295     * The minimum useful constant is just 1. But using a value of 1
2296     * would require immediate replenishment upon each steal to
2297     * maintain enough tasks, which is infeasible. Further,
2298     * partitionings/granularities of offered tasks should minimize
2299     * steal rates, which in general means that threads nearer the top
2300     * of computation tree should generate more than those nearer the
2301     * bottom. In perfect steady state, each thread is at
2302     * approximately the same level of computation tree. However,
2303     * producing extra tasks amortizes the uncertainty of progress and
2304     * diffusion assumptions.
2305     *
2306 jsr166 1.161 * So, users will want to use values larger (but not much larger)
2307 dl 1.105 * than 1 to both smooth over transient shortages and hedge
2308     * against uneven progress; as traded off against the cost of
2309     * extra task overhead. We leave the user to pick a threshold
2310     * value to compare with the results of this call to guide
2311     * decisions, but recommend values such as 3.
2312     *
2313     * When all threads are active, it is on average OK to estimate
2314     * surplus strictly locally. In steady-state, if one thread is
2315     * maintaining say 2 surplus tasks, then so are others. So we can
2316     * just use estimated queue length. However, this strategy alone
2317     * leads to serious mis-estimates in some non-steady-state
2318     * conditions (ramp-up, ramp-down, other stalls). We can detect
2319     * many of these by further considering the number of "idle"
2320     * threads, that are known to have zero queued tasks, so
2321     * compensate by a factor of (#idle/#active) threads.
2322     */
2323     static int getSurplusQueuedTaskCount() {
2324     Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2325 jsr166 1.229 if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) {
2326 dl 1.243 int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2327 dl 1.112 int n = (q = wt.workQueue).top - q.base;
2328 dl 1.105 int a = (int)(pool.ctl >> AC_SHIFT) + p;
2329 dl 1.112 return n - (a > (p >>>= 1) ? 0 :
2330     a > (p >>>= 1) ? 1 :
2331     a > (p >>>= 1) ? 2 :
2332     a > (p >>>= 1) ? 4 :
2333     8);
2334 dl 1.105 }
2335     return 0;
2336 dl 1.100 }
2337    
2338 dl 1.86 // Termination
2339 dl 1.14
2340     /**
2341 dl 1.210 * Possibly initiates and/or completes termination.
2342 dl 1.14 *
2343     * @param now if true, unconditionally terminate, else only
2344 dl 1.78 * if no work and no active workers
2345 dl 1.243 * @param enable if true, terminate when next possible
2346 dl 1.14 * @return true if now terminating or terminated
2347 jsr166 1.1 */
2348 dl 1.86 private boolean tryTerminate(boolean now, boolean enable) {
2349 dl 1.200 int rs;
2350 dl 1.243 for (;;) {
2351     if ((rs = runState) < 0) // already shut down
2352     break;
2353     if (!enable || this == common)
2354 dl 1.131 return false;
2355 dl 1.243 if (U.compareAndSwapInt(this, RUNSTATE, rs, rs | SHUTDOWN))
2356     break;
2357 dl 1.200 }
2358 dl 1.210
2359 jsr166 1.204 if ((rs & STOP) == 0) {
2360 dl 1.210 if (!now) { // check quiescence
2361 dl 1.211 for (long oldSum = 0L;;) { // repeat until stable
2362 dl 1.243 WorkQueue[] ws; WorkQueue w; int m, b, sp; long c;
2363 dl 1.210 long checkSum = ctl;
2364     if ((int)(checkSum >> AC_SHIFT) + (config & SMASK) > 0)
2365     return false; // still active workers
2366 dl 1.243 if ((ws = workQueues) == null || (m = ws.length - 1) < 0)
2367 dl 1.210 break; // check queues
2368 dl 1.209 for (int i = 0; i <= m; ++i) {
2369     if ((w = ws[i]) != null) {
2370 dl 1.243 if ((b = w.base) != w.top ||
2371 dl 1.210 w.currentSteal != null) {
2372 dl 1.243 while ((sp = (int)(c = ctl)) != 0 &&
2373     !tryRelease(c, ws[m & sp], AC_UNIT))
2374     ;
2375 dl 1.211 return false; // arrange for recheck
2376 dl 1.210 }
2377     checkSum += b;
2378 dl 1.209 if ((i & 1) == 0)
2379 dl 1.210 w.qlock = -1; // try to disable external
2380 dl 1.206 }
2381 dl 1.203 }
2382 dl 1.209 if (oldSum == (oldSum = checkSum))
2383 dl 1.210 break;
2384 dl 1.203 }
2385     }
2386 dl 1.243 while (((rs = runState) & STOP) == 0) // enter STOP phase
2387     U.compareAndSwapInt(this, RUNSTATE, rs, rs | STOP);
2388 dl 1.200 }
2389 dl 1.210
2390     int pass = 0; // 3 passes to help terminate
2391     for (long oldSum = 0L;;) { // or until done or stable
2392     WorkQueue[] ws; WorkQueue w; ForkJoinWorkerThread wt; int m;
2393     long checkSum = ctl;
2394     if ((short)(checkSum >>> TC_SHIFT) + (config & SMASK) <= 0 ||
2395 dl 1.243 (ws = workQueues) == null || (m = ws.length - 1) < 0) {
2396     while (((rs = runState) & TERMINATED) == 0) {
2397     if (U.compareAndSwapInt(this, RUNSTATE, rs,
2398     rs | TERMINATED)) {
2399     synchronized (this) {
2400     notifyAll(); // for awaitTermination
2401     }
2402     break;
2403     }
2404 dl 1.210 }
2405     break;
2406     }
2407     for (int i = 0; i <= m; ++i) {
2408     if ((w = ws[i]) != null) {
2409     checkSum += w.base;
2410     w.qlock = -1; // try to disable
2411     if (pass > 0) {
2412     w.cancelAll(); // clear queue
2413     if (pass > 1 && (wt = w.owner) != null) {
2414     if (!wt.isInterrupted()) {
2415     try { // unblock join
2416     wt.interrupt();
2417     } catch (Throwable ignore) {
2418 dl 1.200 }
2419     }
2420 dl 1.243 LockSupport.unpark(wt);
2421 dl 1.200 }
2422 dl 1.101 }
2423 dl 1.78 }
2424     }
2425 dl 1.210 if (checkSum != oldSum) { // unstable
2426     oldSum = checkSum;
2427     pass = 0;
2428     }
2429     else if (pass > 3 && pass > m) // can't further help
2430     break;
2431     else if (++pass > 1) { // try to dequeue
2432     long c; int j = 0, sp; // bound attempts
2433     while (j++ <= m && (sp = (int)(c = ctl)) != 0)
2434     tryRelease(c, ws[sp & m], AC_UNIT);
2435 dl 1.200 }
2436     }
2437     return true;
2438     }
2439    
2440     // External operations
2441    
2442     /**
2443 dl 1.243 * Constructs and tries to install a new external queue,
2444     * failing if the workQueues array already has a queue at
2445 jsr166 1.245 * the given index.
2446 dl 1.243 *
2447     * @param index the index of the new queue
2448     */
2449     private void tryCreateExternalQueue(int index) {
2450     Object lock;
2451     if ((lock = stealCounter) != null && index >= 0) {
2452     WorkQueue q = new WorkQueue(this, null);
2453     q.config = index;
2454     q.scanState = ~UNSIGNALLED;
2455 dl 1.256 q.qlock = 1; // lock queue
2456     boolean installed = false;
2457     synchronized (lock) { // lock pool to install
2458 dl 1.243 WorkQueue[] ws;
2459     if ((ws = workQueues) != null && index < ws.length &&
2460     ws[index] == null) {
2461 dl 1.256 ws[index] = q; // else throw away
2462     installed = true;
2463     }
2464     }
2465     if (installed) {
2466     try {
2467     q.growArray();
2468     } finally {
2469     q.qlock = 0;
2470 dl 1.243 }
2471     }
2472     }
2473     }
2474    
2475     /**
2476     * Adds the given task to a submission queue at submitter's
2477     * current queue. Also performs secondary initialization upon the
2478     * first submission of the first task to the pool, and detects
2479 dl 1.200 * first submission by an external thread and creates a new shared
2480     * queue if the one at index if empty or contended.
2481     *
2482     * @param task the task. Caller must ensure non-null.
2483     */
2484 dl 1.243 final void externalPush(ForkJoinTask<?> task) {
2485 dl 1.256 int r; // initialize caller's probe
2486 dl 1.200 if ((r = ThreadLocalRandom.getProbe()) == 0) {
2487     ThreadLocalRandom.localInit();
2488     r = ThreadLocalRandom.getProbe();
2489     }
2490     for (;;) {
2491 dl 1.256 WorkQueue q; int wl, k, stat;
2492 dl 1.243 int rs = runState;
2493     WorkQueue[] ws = workQueues;
2494     if (rs <= 0 || ws == null || (wl = ws.length) <= 0)
2495 jsr166 1.244 tryInitialize();
2496 dl 1.243 else if ((q = ws[k = (wl - 1) & r & SQMASK]) == null)
2497     tryCreateExternalQueue(k);
2498 dl 1.256 else if ((stat = q.sharedPush(task)) < 0)
2499     break;
2500     else if (stat == 0) {
2501     signalWork();
2502     break;
2503 dl 1.200 }
2504 dl 1.256 else // move if busy
2505 dl 1.200 r = ThreadLocalRandom.advanceProbe(r);
2506 dl 1.52 }
2507     }
2508    
2509 dl 1.200 /**
2510 jsr166 1.237 * Pushes a possibly-external submission.
2511 dl 1.236 */
2512 dl 1.243 private <T> ForkJoinTask<T> externalSubmit(ForkJoinTask<T> task) {
2513     Thread t; ForkJoinWorkerThread w; WorkQueue q;
2514 dl 1.236 if (task == null)
2515     throw new NullPointerException();
2516     if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) &&
2517 dl 1.243 (w = (ForkJoinWorkerThread)t).pool == this &&
2518     (q = w.workQueue) != null)
2519     q.push(task);
2520 jsr166 1.238 else
2521 dl 1.236 externalPush(task);
2522     return task;
2523     }
2524    
2525     /**
2526 jsr166 1.213 * Returns common pool queue for an external thread.
2527 dl 1.105 */
2528     static WorkQueue commonSubmitterQueue() {
2529 dl 1.200 ForkJoinPool p = common;
2530     int r = ThreadLocalRandom.getProbe();
2531 dl 1.243 WorkQueue[] ws; int wl;
2532 dl 1.200 return (p != null && (ws = p.workQueues) != null &&
2533 dl 1.243 (wl = ws.length) > 0) ?
2534     ws[(wl - 1) & r & SQMASK] : null;
2535 dl 1.105 }
2536    
2537     /**
2538 jsr166 1.246 * Performs tryUnpush for an external submitter.
2539 dl 1.105 */
2540 dl 1.178 final boolean tryExternalUnpush(ForkJoinTask<?> task) {
2541 dl 1.200 int r = ThreadLocalRandom.getProbe();
2542 dl 1.243 WorkQueue[] ws; WorkQueue w; int wl;
2543     return ((ws = workQueues) != null &&
2544     (wl = ws.length) > 0 &&
2545     (w = ws[(wl - 1) & r & SQMASK]) != null &&
2546     w.trySharedUnpush(task));
2547 dl 1.105 }
2548    
2549 dl 1.256
2550 dl 1.200 /**
2551 jsr166 1.213 * Performs helpComplete for an external submitter.
2552 dl 1.200 */
2553 dl 1.190 final int externalHelpComplete(CountedCompleter<?> task, int maxTasks) {
2554 dl 1.243 WorkQueue[] ws; int wl;
2555 dl 1.200 int r = ThreadLocalRandom.getProbe();
2556 dl 1.243 return ((ws = workQueues) != null && (wl = ws.length) > 0) ?
2557     helpComplete(ws[(wl - 1) & r & SQMASK], task, maxTasks) : 0;
2558 dl 1.105 }
2559    
2560 dl 1.52 // Exported methods
2561 jsr166 1.1
2562     // Constructors
2563    
2564     /**
2565 jsr166 1.9 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2566 dl 1.18 * java.lang.Runtime#availableProcessors}, using the {@linkplain
2567     * #defaultForkJoinWorkerThreadFactory default thread factory},
2568     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2569 jsr166 1.1 *
2570     * @throws SecurityException if a security manager exists and
2571     * the caller is not permitted to modify threads
2572     * because it does not hold {@link
2573     * java.lang.RuntimePermission}{@code ("modifyThread")}
2574     */
2575     public ForkJoinPool() {
2576 jsr166 1.148 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2577     defaultForkJoinWorkerThreadFactory, null, false);
2578 jsr166 1.1 }
2579    
2580     /**
2581 jsr166 1.9 * Creates a {@code ForkJoinPool} with the indicated parallelism
2582 dl 1.18 * level, the {@linkplain
2583     * #defaultForkJoinWorkerThreadFactory default thread factory},
2584     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2585 jsr166 1.1 *
2586 jsr166 1.9 * @param parallelism the parallelism level
2587 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
2588 jsr166 1.11 * equal to zero, or greater than implementation limit
2589 jsr166 1.1 * @throws SecurityException if a security manager exists and
2590     * the caller is not permitted to modify threads
2591     * because it does not hold {@link
2592     * java.lang.RuntimePermission}{@code ("modifyThread")}
2593     */
2594     public ForkJoinPool(int parallelism) {
2595 dl 1.18 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2596 jsr166 1.1 }
2597    
2598     /**
2599 dl 1.18 * Creates a {@code ForkJoinPool} with the given parameters.
2600 jsr166 1.1 *
2601 dl 1.18 * @param parallelism the parallelism level. For default value,
2602     * use {@link java.lang.Runtime#availableProcessors}.
2603     * @param factory the factory for creating new threads. For default value,
2604     * use {@link #defaultForkJoinWorkerThreadFactory}.
2605 dl 1.19 * @param handler the handler for internal worker threads that
2606     * terminate due to unrecoverable errors encountered while executing
2607 jsr166 1.31 * tasks. For default value, use {@code null}.
2608 dl 1.19 * @param asyncMode if true,
2609 dl 1.18 * establishes local first-in-first-out scheduling mode for forked
2610     * tasks that are never joined. This mode may be more appropriate
2611     * than default locally stack-based mode in applications in which
2612     * worker threads only process event-style asynchronous tasks.
2613 jsr166 1.31 * For default value, use {@code false}.
2614 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
2615 jsr166 1.11 * equal to zero, or greater than implementation limit
2616     * @throws NullPointerException if the factory is null
2617 jsr166 1.1 * @throws SecurityException if a security manager exists and
2618     * the caller is not permitted to modify threads
2619     * because it does not hold {@link
2620     * java.lang.RuntimePermission}{@code ("modifyThread")}
2621     */
2622 dl 1.19 public ForkJoinPool(int parallelism,
2623 dl 1.18 ForkJoinWorkerThreadFactory factory,
2624 jsr166 1.156 UncaughtExceptionHandler handler,
2625 dl 1.18 boolean asyncMode) {
2626 dl 1.152 this(checkParallelism(parallelism),
2627     checkFactory(factory),
2628     handler,
2629 jsr166 1.201 asyncMode ? FIFO_QUEUE : LIFO_QUEUE,
2630 dl 1.152 "ForkJoinPool-" + nextPoolId() + "-worker-");
2631 dl 1.14 checkPermission();
2632 dl 1.152 }
2633    
2634     private static int checkParallelism(int parallelism) {
2635     if (parallelism <= 0 || parallelism > MAX_CAP)
2636     throw new IllegalArgumentException();
2637     return parallelism;
2638     }
2639    
2640     private static ForkJoinWorkerThreadFactory checkFactory
2641     (ForkJoinWorkerThreadFactory factory) {
2642 dl 1.14 if (factory == null)
2643     throw new NullPointerException();
2644 dl 1.152 return factory;
2645     }
2646    
2647     /**
2648     * Creates a {@code ForkJoinPool} with the given parameters, without
2649     * any security checks or parameter validation. Invoked directly by
2650     * makeCommonPool.
2651     */
2652     private ForkJoinPool(int parallelism,
2653     ForkJoinWorkerThreadFactory factory,
2654 jsr166 1.156 UncaughtExceptionHandler handler,
2655 dl 1.185 int mode,
2656 dl 1.152 String workerNamePrefix) {
2657     this.workerNamePrefix = workerNamePrefix;
2658 jsr166 1.1 this.factory = factory;
2659 dl 1.18 this.ueh = handler;
2660 dl 1.200 this.config = (parallelism & SMASK) | mode;
2661 dl 1.52 long np = (long)(-parallelism); // offset ctl counts
2662     this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2663 dl 1.101 }
2664    
2665     /**
2666 dl 1.128 * Returns the common pool instance. This pool is statically
2667 dl 1.134 * constructed; its run state is unaffected by attempts to {@link
2668     * #shutdown} or {@link #shutdownNow}. However this pool and any
2669     * ongoing processing are automatically terminated upon program
2670     * {@link System#exit}. Any program that relies on asynchronous
2671     * task processing to complete before program termination should
2672 jsr166 1.158 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2673     * before exit.
2674 dl 1.100 *
2675     * @return the common pool instance
2676 jsr166 1.138 * @since 1.8
2677 dl 1.100 */
2678     public static ForkJoinPool commonPool() {
2679 dl 1.134 // assert common != null : "static init error";
2680     return common;
2681 dl 1.100 }
2682    
2683 jsr166 1.1 // Execution methods
2684    
2685     /**
2686     * Performs the given task, returning its result upon completion.
2687 dl 1.52 * If the computation encounters an unchecked Exception or Error,
2688     * it is rethrown as the outcome of this invocation. Rethrown
2689     * exceptions behave in the same way as regular exceptions, but,
2690     * when possible, contain stack traces (as displayed for example
2691     * using {@code ex.printStackTrace()}) of both the current thread
2692     * as well as the thread actually encountering the exception;
2693     * minimally only the latter.
2694 jsr166 1.1 *
2695     * @param task the task
2696 jsr166 1.191 * @param <T> the type of the task's result
2697 jsr166 1.1 * @return the task's result
2698 jsr166 1.11 * @throws NullPointerException if the task is null
2699     * @throws RejectedExecutionException if the task cannot be
2700     * scheduled for execution
2701 jsr166 1.1 */
2702     public <T> T invoke(ForkJoinTask<T> task) {
2703 dl 1.90 if (task == null)
2704     throw new NullPointerException();
2705 dl 1.243 externalSubmit(task);
2706 dl 1.78 return task.join();
2707 jsr166 1.1 }
2708    
2709     /**
2710     * Arranges for (asynchronous) execution of the given task.
2711     *
2712     * @param task the task
2713 jsr166 1.11 * @throws NullPointerException if the task is null
2714     * @throws RejectedExecutionException if the task cannot be
2715     * scheduled for execution
2716 jsr166 1.1 */
2717 jsr166 1.8 public void execute(ForkJoinTask<?> task) {
2718 dl 1.243 externalSubmit(task);
2719 jsr166 1.1 }
2720    
2721     // AbstractExecutorService methods
2722    
2723 jsr166 1.11 /**
2724     * @throws NullPointerException if the task is null
2725     * @throws RejectedExecutionException if the task cannot be
2726     * scheduled for execution
2727     */
2728 jsr166 1.1 public void execute(Runnable task) {
2729 dl 1.41 if (task == null)
2730     throw new NullPointerException();
2731 jsr166 1.2 ForkJoinTask<?> job;
2732 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2733     job = (ForkJoinTask<?>) task;
2734 jsr166 1.2 else
2735 dl 1.152 job = new ForkJoinTask.RunnableExecuteAction(task);
2736 dl 1.243 externalSubmit(job);
2737 jsr166 1.1 }
2738    
2739 jsr166 1.11 /**
2740 dl 1.18 * Submits a ForkJoinTask for execution.
2741     *
2742     * @param task the task to submit
2743 jsr166 1.191 * @param <T> the type of the task's result
2744 dl 1.18 * @return the task
2745     * @throws NullPointerException if the task is null
2746     * @throws RejectedExecutionException if the task cannot be
2747     * scheduled for execution
2748     */
2749     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2750 dl 1.243 return externalSubmit(task);
2751 dl 1.18 }
2752    
2753     /**
2754 jsr166 1.11 * @throws NullPointerException if the task is null
2755     * @throws RejectedExecutionException if the task cannot be
2756     * scheduled for execution
2757     */
2758 jsr166 1.1 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2759 dl 1.243 return externalSubmit(new ForkJoinTask.AdaptedCallable<T>(task));
2760 jsr166 1.1 }
2761    
2762 jsr166 1.11 /**
2763     * @throws NullPointerException if the task is null
2764     * @throws RejectedExecutionException if the task cannot be
2765     * scheduled for execution
2766     */
2767 jsr166 1.1 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2768 dl 1.243 return externalSubmit(new ForkJoinTask.AdaptedRunnable<T>(task, result));
2769 jsr166 1.1 }
2770    
2771 jsr166 1.11 /**
2772     * @throws NullPointerException if the task is null
2773     * @throws RejectedExecutionException if the task cannot be
2774     * scheduled for execution
2775     */
2776 jsr166 1.1 public ForkJoinTask<?> submit(Runnable task) {
2777 dl 1.41 if (task == null)
2778     throw new NullPointerException();
2779 jsr166 1.2 ForkJoinTask<?> job;
2780 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2781     job = (ForkJoinTask<?>) task;
2782 jsr166 1.2 else
2783 dl 1.90 job = new ForkJoinTask.AdaptedRunnableAction(task);
2784 dl 1.243 return externalSubmit(job);
2785 jsr166 1.1 }
2786    
2787     /**
2788 jsr166 1.11 * @throws NullPointerException {@inheritDoc}
2789     * @throws RejectedExecutionException {@inheritDoc}
2790     */
2791 jsr166 1.1 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2792 dl 1.86 // In previous versions of this class, this method constructed
2793     // a task to run ForkJoinTask.invokeAll, but now external
2794     // invocation of multiple tasks is at least as efficient.
2795 jsr166 1.199 ArrayList<Future<T>> futures = new ArrayList<>(tasks.size());
2796 jsr166 1.1
2797 dl 1.86 try {
2798     for (Callable<T> t : tasks) {
2799 dl 1.90 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2800 jsr166 1.144 futures.add(f);
2801 dl 1.243 externalSubmit(f);
2802 dl 1.86 }
2803 jsr166 1.143 for (int i = 0, size = futures.size(); i < size; i++)
2804     ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2805 dl 1.86 return futures;
2806 jsr166 1.226 } catch (Throwable t) {
2807     for (int i = 0, size = futures.size(); i < size; i++)
2808     futures.get(i).cancel(false);
2809     throw t;
2810 jsr166 1.1 }
2811     }
2812    
2813     /**
2814     * Returns the factory used for constructing new workers.
2815     *
2816     * @return the factory used for constructing new workers
2817     */
2818     public ForkJoinWorkerThreadFactory getFactory() {
2819     return factory;
2820     }
2821    
2822     /**
2823     * Returns the handler for internal worker threads that terminate
2824     * due to unrecoverable errors encountered while executing tasks.
2825     *
2826 jsr166 1.4 * @return the handler, or {@code null} if none
2827 jsr166 1.1 */
2828 jsr166 1.156 public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2829 dl 1.14 return ueh;
2830 jsr166 1.1 }
2831    
2832     /**
2833 jsr166 1.9 * Returns the targeted parallelism level of this pool.
2834 jsr166 1.1 *
2835 jsr166 1.9 * @return the targeted parallelism level of this pool
2836 jsr166 1.1 */
2837     public int getParallelism() {
2838 dl 1.185 int par;
2839 dl 1.200 return ((par = config & SMASK) > 0) ? par : 1;
2840 jsr166 1.1 }
2841    
2842     /**
2843 dl 1.100 * Returns the targeted parallelism level of the common pool.
2844     *
2845     * @return the targeted parallelism level of the common pool
2846 jsr166 1.138 * @since 1.8
2847 dl 1.100 */
2848     public static int getCommonPoolParallelism() {
2849 dl 1.134 return commonParallelism;
2850 dl 1.100 }
2851    
2852     /**
2853 jsr166 1.1 * Returns the number of worker threads that have started but not
2854 jsr166 1.34 * yet terminated. The result returned by this method may differ
2855 jsr166 1.4 * from {@link #getParallelism} when threads are created to
2856 jsr166 1.1 * maintain parallelism when others are cooperatively blocked.
2857     *
2858     * @return the number of worker threads
2859     */
2860     public int getPoolSize() {
2861 dl 1.200 return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2862 jsr166 1.1 }
2863    
2864     /**
2865 jsr166 1.4 * Returns {@code true} if this pool uses local first-in-first-out
2866 jsr166 1.1 * scheduling mode for forked tasks that are never joined.
2867     *
2868 jsr166 1.4 * @return {@code true} if this pool uses async mode
2869 jsr166 1.1 */
2870     public boolean getAsyncMode() {
2871 dl 1.200 return (config & FIFO_QUEUE) != 0;
2872 jsr166 1.1 }
2873    
2874     /**
2875     * Returns an estimate of the number of worker threads that are
2876     * not blocked waiting to join tasks or for other managed
2877 dl 1.14 * synchronization. This method may overestimate the
2878     * number of running threads.
2879 jsr166 1.1 *
2880     * @return the number of worker threads
2881     */
2882     public int getRunningThreadCount() {
2883 dl 1.78 int rc = 0;
2884     WorkQueue[] ws; WorkQueue w;
2885     if ((ws = workQueues) != null) {
2886 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2887     if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2888 dl 1.78 ++rc;
2889     }
2890     }
2891     return rc;
2892 jsr166 1.1 }
2893    
2894     /**
2895     * Returns an estimate of the number of threads that are currently
2896     * stealing or executing tasks. This method may overestimate the
2897     * number of active threads.
2898     *
2899     * @return the number of active threads
2900     */
2901     public int getActiveThreadCount() {
2902 dl 1.200 int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2903 jsr166 1.63 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2904 jsr166 1.1 }
2905    
2906     /**
2907 jsr166 1.4 * Returns {@code true} if all worker threads are currently idle.
2908     * An idle worker is one that cannot obtain a task to execute
2909     * because none are available to steal from other threads, and
2910     * there are no pending submissions to the pool. This method is
2911     * conservative; it might not return {@code true} immediately upon
2912     * idleness of all threads, but will eventually become true if
2913     * threads remain inactive.
2914 jsr166 1.1 *
2915 jsr166 1.4 * @return {@code true} if all threads are currently idle
2916 jsr166 1.1 */
2917     public boolean isQuiescent() {
2918 dl 1.200 return (config & SMASK) + (int)(ctl >> AC_SHIFT) <= 0;
2919 jsr166 1.1 }
2920    
2921     /**
2922     * Returns an estimate of the total number of tasks stolen from
2923     * one thread's work queue by another. The reported value
2924     * underestimates the actual total number of steals when the pool
2925     * is not quiescent. This value may be useful for monitoring and
2926     * tuning fork/join programs: in general, steal counts should be
2927     * high enough to keep threads busy, but low enough to avoid
2928     * overhead and contention across threads.
2929     *
2930     * @return the number of steals
2931     */
2932     public long getStealCount() {
2933 dl 1.215 AtomicLong sc = stealCounter;
2934     long count = (sc == null) ? 0L : sc.get();
2935 dl 1.78 WorkQueue[] ws; WorkQueue w;
2936     if ((ws = workQueues) != null) {
2937 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2938 dl 1.78 if ((w = ws[i]) != null)
2939 dl 1.105 count += w.nsteals;
2940 dl 1.78 }
2941     }
2942     return count;
2943 jsr166 1.1 }
2944    
2945     /**
2946     * Returns an estimate of the total number of tasks currently held
2947     * in queues by worker threads (but not including tasks submitted
2948     * to the pool that have not begun executing). This value is only
2949     * an approximation, obtained by iterating across all threads in
2950     * the pool. This method may be useful for tuning task
2951     * granularities.
2952     *
2953     * @return the number of queued tasks
2954     */
2955     public long getQueuedTaskCount() {
2956     long count = 0;
2957 dl 1.78 WorkQueue[] ws; WorkQueue w;
2958     if ((ws = workQueues) != null) {
2959 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2960 dl 1.78 if ((w = ws[i]) != null)
2961     count += w.queueSize();
2962     }
2963 dl 1.52 }
2964 jsr166 1.1 return count;
2965     }
2966    
2967     /**
2968 jsr166 1.8 * Returns an estimate of the number of tasks submitted to this
2969 dl 1.55 * pool that have not yet begun executing. This method may take
2970 dl 1.52 * time proportional to the number of submissions.
2971 jsr166 1.1 *
2972     * @return the number of queued submissions
2973     */
2974     public int getQueuedSubmissionCount() {
2975 dl 1.78 int count = 0;
2976     WorkQueue[] ws; WorkQueue w;
2977     if ((ws = workQueues) != null) {
2978 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2979 dl 1.78 if ((w = ws[i]) != null)
2980     count += w.queueSize();
2981     }
2982     }
2983     return count;
2984 jsr166 1.1 }
2985    
2986     /**
2987 jsr166 1.4 * Returns {@code true} if there are any tasks submitted to this
2988     * pool that have not yet begun executing.
2989 jsr166 1.1 *
2990     * @return {@code true} if there are any queued submissions
2991     */
2992     public boolean hasQueuedSubmissions() {
2993 dl 1.78 WorkQueue[] ws; WorkQueue w;
2994     if ((ws = workQueues) != null) {
2995 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2996 dl 1.115 if ((w = ws[i]) != null && !w.isEmpty())
2997 dl 1.78 return true;
2998     }
2999     }
3000     return false;
3001 jsr166 1.1 }
3002    
3003     /**
3004     * Removes and returns the next unexecuted submission if one is
3005     * available. This method may be useful in extensions to this
3006     * class that re-assign work in systems with multiple pools.
3007     *
3008 jsr166 1.4 * @return the next submission, or {@code null} if none
3009 jsr166 1.1 */
3010     protected ForkJoinTask<?> pollSubmission() {
3011 dl 1.253 WorkQueue[] ws; int wl; WorkQueue w; ForkJoinTask<?> t;
3012     int r = ThreadLocalRandom.nextSecondarySeed();
3013     if ((ws = workQueues) != null && (wl = ws.length) > 0) {
3014     for (int m = wl - 1, i = 0; i < wl; ++i) {
3015     if ((w = ws[(i << 1) & m]) != null && (t = w.poll()) != null)
3016 dl 1.78 return t;
3017 dl 1.52 }
3018     }
3019     return null;
3020 jsr166 1.1 }
3021    
3022     /**
3023     * Removes all available unexecuted submitted and forked tasks
3024     * from scheduling queues and adds them to the given collection,
3025     * without altering their execution status. These may include
3026 jsr166 1.8 * artificially generated or wrapped tasks. This method is
3027     * designed to be invoked only when the pool is known to be
3028 jsr166 1.1 * quiescent. Invocations at other times may not remove all
3029     * tasks. A failure encountered while attempting to add elements
3030     * to collection {@code c} may result in elements being in
3031     * neither, either or both collections when the associated
3032     * exception is thrown. The behavior of this operation is
3033     * undefined if the specified collection is modified while the
3034     * operation is in progress.
3035     *
3036     * @param c the collection to transfer elements into
3037     * @return the number of elements transferred
3038     */
3039 jsr166 1.5 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
3040 dl 1.52 int count = 0;
3041 dl 1.78 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
3042     if ((ws = workQueues) != null) {
3043 dl 1.86 for (int i = 0; i < ws.length; ++i) {
3044 dl 1.78 if ((w = ws[i]) != null) {
3045     while ((t = w.poll()) != null) {
3046     c.add(t);
3047     ++count;
3048     }
3049     }
3050 dl 1.52 }
3051     }
3052 dl 1.18 return count;
3053     }
3054    
3055     /**
3056 jsr166 1.1 * Returns a string identifying this pool, as well as its state,
3057     * including indications of run state, parallelism level, and
3058     * worker and task counts.
3059     *
3060     * @return a string identifying this pool, as well as its state
3061     */
3062     public String toString() {
3063 dl 1.86 // Use a single pass through workQueues to collect counts
3064     long qt = 0L, qs = 0L; int rc = 0;
3065 dl 1.215 AtomicLong sc = stealCounter;
3066     long st = (sc == null) ? 0L : sc.get();
3067 dl 1.86 long c = ctl;
3068     WorkQueue[] ws; WorkQueue w;
3069     if ((ws = workQueues) != null) {
3070     for (int i = 0; i < ws.length; ++i) {
3071     if ((w = ws[i]) != null) {
3072     int size = w.queueSize();
3073     if ((i & 1) == 0)
3074     qs += size;
3075     else {
3076     qt += size;
3077 dl 1.105 st += w.nsteals;
3078 dl 1.86 if (w.isApparentlyUnblocked())
3079     ++rc;
3080     }
3081     }
3082     }
3083     }
3084 dl 1.200 int pc = (config & SMASK);
3085 dl 1.52 int tc = pc + (short)(c >>> TC_SHIFT);
3086 dl 1.78 int ac = pc + (int)(c >> AC_SHIFT);
3087     if (ac < 0) // ignore transient negative
3088     ac = 0;
3089 dl 1.200 int rs = runState;
3090     String level = ((rs & TERMINATED) != 0 ? "Terminated" :
3091     (rs & STOP) != 0 ? "Terminating" :
3092     (rs & SHUTDOWN) != 0 ? "Shutting down" :
3093     "Running");
3094 jsr166 1.1 return super.toString() +
3095 dl 1.52 "[" + level +
3096 dl 1.14 ", parallelism = " + pc +
3097     ", size = " + tc +
3098     ", active = " + ac +
3099     ", running = " + rc +
3100 jsr166 1.1 ", steals = " + st +
3101     ", tasks = " + qt +
3102     ", submissions = " + qs +
3103     "]";
3104     }
3105    
3106     /**
3107 dl 1.100 * Possibly initiates an orderly shutdown in which previously
3108     * submitted tasks are executed, but no new tasks will be
3109     * accepted. Invocation has no effect on execution state if this
3110 jsr166 1.137 * is the {@link #commonPool()}, and no additional effect if
3111 dl 1.100 * already shut down. Tasks that are in the process of being
3112     * submitted concurrently during the course of this method may or
3113     * may not be rejected.
3114 jsr166 1.1 *
3115     * @throws SecurityException if a security manager exists and
3116     * the caller is not permitted to modify threads
3117     * because it does not hold {@link
3118     * java.lang.RuntimePermission}{@code ("modifyThread")}
3119     */
3120     public void shutdown() {
3121     checkPermission();
3122 dl 1.105 tryTerminate(false, true);
3123 jsr166 1.1 }
3124    
3125     /**
3126 dl 1.100 * Possibly attempts to cancel and/or stop all tasks, and reject
3127     * all subsequently submitted tasks. Invocation has no effect on
3128 jsr166 1.137 * execution state if this is the {@link #commonPool()}, and no
3129 dl 1.100 * additional effect if already shut down. Otherwise, tasks that
3130     * are in the process of being submitted or executed concurrently
3131     * during the course of this method may or may not be
3132     * rejected. This method cancels both existing and unexecuted
3133     * tasks, in order to permit termination in the presence of task
3134     * dependencies. So the method always returns an empty list
3135     * (unlike the case for some other Executors).
3136 jsr166 1.1 *
3137     * @return an empty list
3138     * @throws SecurityException if a security manager exists and
3139     * the caller is not permitted to modify threads
3140     * because it does not hold {@link
3141     * java.lang.RuntimePermission}{@code ("modifyThread")}
3142     */
3143     public List<Runnable> shutdownNow() {
3144     checkPermission();
3145 dl 1.105 tryTerminate(true, true);
3146 jsr166 1.1 return Collections.emptyList();
3147     }
3148    
3149     /**
3150     * Returns {@code true} if all tasks have completed following shut down.
3151     *
3152     * @return {@code true} if all tasks have completed following shut down
3153     */
3154     public boolean isTerminated() {
3155 dl 1.200 return (runState & TERMINATED) != 0;
3156 jsr166 1.1 }
3157    
3158     /**
3159     * Returns {@code true} if the process of termination has
3160 jsr166 1.9 * commenced but not yet completed. This method may be useful for
3161     * debugging. A return of {@code true} reported a sufficient
3162     * period after shutdown may indicate that submitted tasks have
3163 jsr166 1.119 * ignored or suppressed interruption, or are waiting for I/O,
3164 dl 1.49 * causing this executor not to properly terminate. (See the
3165     * advisory notes for class {@link ForkJoinTask} stating that
3166     * tasks should not normally entail blocking operations. But if
3167     * they do, they must abort them on interrupt.)
3168 jsr166 1.1 *
3169 jsr166 1.9 * @return {@code true} if terminating but not yet terminated
3170 jsr166 1.1 */
3171     public boolean isTerminating() {
3172 dl 1.200 int rs = runState;
3173     return (rs & STOP) != 0 && (rs & TERMINATED) == 0;
3174 jsr166 1.1 }
3175    
3176     /**
3177     * Returns {@code true} if this pool has been shut down.
3178     *
3179     * @return {@code true} if this pool has been shut down
3180     */
3181     public boolean isShutdown() {
3182 dl 1.200 return (runState & SHUTDOWN) != 0;
3183 jsr166 1.9 }
3184    
3185     /**
3186 dl 1.105 * Blocks until all tasks have completed execution after a
3187     * shutdown request, or the timeout occurs, or the current thread
3188 dl 1.134 * is interrupted, whichever happens first. Because the {@link
3189     * #commonPool()} never terminates until program shutdown, when
3190     * applied to the common pool, this method is equivalent to {@link
3191 jsr166 1.158 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
3192 jsr166 1.1 *
3193     * @param timeout the maximum time to wait
3194     * @param unit the time unit of the timeout argument
3195     * @return {@code true} if this executor terminated and
3196     * {@code false} if the timeout elapsed before termination
3197     * @throws InterruptedException if interrupted while waiting
3198     */
3199     public boolean awaitTermination(long timeout, TimeUnit unit)
3200     throws InterruptedException {
3201 dl 1.134 if (Thread.interrupted())
3202     throw new InterruptedException();
3203     if (this == common) {
3204     awaitQuiescence(timeout, unit);
3205     return false;
3206     }
3207 dl 1.52 long nanos = unit.toNanos(timeout);
3208 dl 1.101 if (isTerminated())
3209     return true;
3210 dl 1.183 if (nanos <= 0L)
3211     return false;
3212     long deadline = System.nanoTime() + nanos;
3213 jsr166 1.103 synchronized (this) {
3214 jsr166 1.184 for (;;) {
3215 dl 1.183 if (isTerminated())
3216     return true;
3217     if (nanos <= 0L)
3218     return false;
3219     long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
3220     wait(millis > 0L ? millis : 1L);
3221     nanos = deadline - System.nanoTime();
3222 dl 1.52 }
3223 dl 1.18 }
3224 jsr166 1.1 }
3225    
3226     /**
3227 dl 1.134 * If called by a ForkJoinTask operating in this pool, equivalent
3228     * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3229     * waits and/or attempts to assist performing tasks until this
3230     * pool {@link #isQuiescent} or the indicated timeout elapses.
3231     *
3232     * @param timeout the maximum time to wait
3233     * @param unit the time unit of the timeout argument
3234     * @return {@code true} if quiescent; {@code false} if the
3235     * timeout elapsed.
3236     */
3237     public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3238     long nanos = unit.toNanos(timeout);
3239     ForkJoinWorkerThread wt;
3240     Thread thread = Thread.currentThread();
3241     if ((thread instanceof ForkJoinWorkerThread) &&
3242     (wt = (ForkJoinWorkerThread)thread).pool == this) {
3243     helpQuiescePool(wt.workQueue);
3244     return true;
3245     }
3246     long startTime = System.nanoTime();
3247     WorkQueue[] ws;
3248 dl 1.243 int r = 0, wl;
3249 dl 1.134 boolean found = true;
3250     while (!isQuiescent() && (ws = workQueues) != null &&
3251 dl 1.243 (wl = ws.length) > 0) {
3252 dl 1.134 if (!found) {
3253     if ((System.nanoTime() - startTime) > nanos)
3254     return false;
3255     Thread.yield(); // cannot block
3256     }
3257     found = false;
3258 dl 1.243 for (int m = wl - 1, j = (m + 1) << 2; j >= 0; --j) {
3259 dl 1.200 ForkJoinTask<?> t; WorkQueue q; int b, k;
3260     if ((k = r++ & m) <= m && k >= 0 && (q = ws[k]) != null &&
3261     (b = q.base) - q.top < 0) {
3262 dl 1.134 found = true;
3263 dl 1.172 if ((t = q.pollAt(b)) != null)
3264 dl 1.134 t.doExec();
3265     break;
3266     }
3267     }
3268     }
3269     return true;
3270     }
3271    
3272     /**
3273     * Waits and/or attempts to assist performing tasks indefinitely
3274 jsr166 1.141 * until the {@link #commonPool()} {@link #isQuiescent}.
3275 dl 1.134 */
3276 dl 1.136 static void quiesceCommonPool() {
3277 dl 1.134 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3278     }
3279    
3280     /**
3281 jsr166 1.1 * Interface for extending managed parallelism for tasks running
3282 jsr166 1.8 * in {@link ForkJoinPool}s.
3283     *
3284 dl 1.19 * <p>A {@code ManagedBlocker} provides two methods. Method
3285 jsr166 1.218 * {@link #isReleasable} must return {@code true} if blocking is
3286     * not necessary. Method {@link #block} blocks the current thread
3287 dl 1.19 * if necessary (perhaps internally invoking {@code isReleasable}
3288 dl 1.54 * before actually blocking). These actions are performed by any
3289 jsr166 1.157 * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
3290     * The unusual methods in this API accommodate synchronizers that
3291     * may, but don't usually, block for long periods. Similarly, they
3292 dl 1.54 * allow more efficient internal handling of cases in which
3293     * additional workers may be, but usually are not, needed to
3294     * ensure sufficient parallelism. Toward this end,
3295     * implementations of method {@code isReleasable} must be amenable
3296     * to repeated invocation.
3297 jsr166 1.1 *
3298     * <p>For example, here is a ManagedBlocker based on a
3299     * ReentrantLock:
3300 jsr166 1.239 * <pre> {@code
3301 jsr166 1.1 * class ManagedLocker implements ManagedBlocker {
3302     * final ReentrantLock lock;
3303     * boolean hasLock = false;
3304     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3305     * public boolean block() {
3306     * if (!hasLock)
3307     * lock.lock();
3308     * return true;
3309     * }
3310     * public boolean isReleasable() {
3311     * return hasLock || (hasLock = lock.tryLock());
3312     * }
3313     * }}</pre>
3314 dl 1.19 *
3315     * <p>Here is a class that possibly blocks waiting for an
3316     * item on a given queue:
3317 jsr166 1.239 * <pre> {@code
3318 dl 1.19 * class QueueTaker<E> implements ManagedBlocker {
3319     * final BlockingQueue<E> queue;
3320     * volatile E item = null;
3321     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3322     * public boolean block() throws InterruptedException {
3323     * if (item == null)
3324 dl 1.23 * item = queue.take();
3325 dl 1.19 * return true;
3326     * }
3327     * public boolean isReleasable() {
3328 dl 1.23 * return item != null || (item = queue.poll()) != null;
3329 dl 1.19 * }
3330     * public E getItem() { // call after pool.managedBlock completes
3331     * return item;
3332     * }
3333     * }}</pre>
3334 jsr166 1.1 */
3335     public static interface ManagedBlocker {
3336     /**
3337     * Possibly blocks the current thread, for example waiting for
3338     * a lock or condition.
3339     *
3340 jsr166 1.4 * @return {@code true} if no additional blocking is necessary
3341     * (i.e., if isReleasable would return true)
3342 jsr166 1.1 * @throws InterruptedException if interrupted while waiting
3343     * (the method is not required to do so, but is allowed to)
3344     */
3345     boolean block() throws InterruptedException;
3346    
3347     /**
3348 jsr166 1.4 * Returns {@code true} if blocking is unnecessary.
3349 jsr166 1.154 * @return {@code true} if blocking is unnecessary
3350 jsr166 1.1 */
3351     boolean isReleasable();
3352     }
3353    
3354     /**
3355 jsr166 1.217 * Runs the given possibly blocking task. When {@linkplain
3356     * ForkJoinTask#inForkJoinPool() running in a ForkJoinPool}, this
3357     * method possibly arranges for a spare thread to be activated if
3358     * necessary to ensure sufficient parallelism while the current
3359     * thread is blocked in {@link ManagedBlocker#block blocker.block()}.
3360 jsr166 1.1 *
3361 jsr166 1.217 * <p>This method repeatedly calls {@code blocker.isReleasable()} and
3362     * {@code blocker.block()} until either method returns {@code true}.
3363     * Every call to {@code blocker.block()} is preceded by a call to
3364     * {@code blocker.isReleasable()} that returned {@code false}.
3365     *
3366     * <p>If not running in a ForkJoinPool, this method is
3367 jsr166 1.8 * behaviorally equivalent to
3368 jsr166 1.239 * <pre> {@code
3369 jsr166 1.1 * while (!blocker.isReleasable())
3370     * if (blocker.block())
3371 jsr166 1.217 * break;}</pre>
3372 jsr166 1.8 *
3373 jsr166 1.217 * If running in a ForkJoinPool, the pool may first be expanded to
3374     * ensure sufficient parallelism available during the call to
3375     * {@code blocker.block()}.
3376 jsr166 1.1 *
3377 jsr166 1.217 * @param blocker the blocker task
3378     * @throws InterruptedException if {@code blocker.block()} did so
3379 jsr166 1.1 */
3380 dl 1.18 public static void managedBlock(ManagedBlocker blocker)
3381 jsr166 1.1 throws InterruptedException {
3382 dl 1.200 ForkJoinPool p;
3383     ForkJoinWorkerThread wt;
3384 jsr166 1.1 Thread t = Thread.currentThread();
3385 dl 1.200 if ((t instanceof ForkJoinWorkerThread) &&
3386     (p = (wt = (ForkJoinWorkerThread)t).pool) != null) {
3387     WorkQueue w = wt.workQueue;
3388 dl 1.172 while (!blocker.isReleasable()) {
3389 dl 1.200 if (p.tryCompensate(w)) {
3390 dl 1.105 try {
3391     do {} while (!blocker.isReleasable() &&
3392     !blocker.block());
3393     } finally {
3394 dl 1.200 U.getAndAddLong(p, CTL, AC_UNIT);
3395 dl 1.105 }
3396     break;
3397 dl 1.78 }
3398     }
3399 dl 1.18 }
3400 dl 1.105 else {
3401     do {} while (!blocker.isReleasable() &&
3402     !blocker.block());
3403     }
3404 jsr166 1.1 }
3405    
3406 jsr166 1.7 // AbstractExecutorService overrides. These rely on undocumented
3407     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3408     // implement RunnableFuture.
3409 jsr166 1.1
3410     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3411 dl 1.90 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3412 jsr166 1.1 }
3413    
3414     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3415 dl 1.90 return new ForkJoinTask.AdaptedCallable<T>(callable);
3416 jsr166 1.1 }
3417    
3418     // Unsafe mechanics
3419 jsr166 1.233 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
3420 dl 1.78 private static final long CTL;
3421 dl 1.211 private static final long RUNSTATE;
3422 dl 1.243 private static final int ABASE;
3423     private static final int ASHIFT;
3424 dl 1.52
3425     static {
3426 jsr166 1.3 try {
3427 dl 1.78 CTL = U.objectFieldOffset
3428 jsr166 1.233 (ForkJoinPool.class.getDeclaredField("ctl"));
3429 dl 1.211 RUNSTATE = U.objectFieldOffset
3430 jsr166 1.233 (ForkJoinPool.class.getDeclaredField("runState"));
3431    
3432     ABASE = U.arrayBaseOffset(ForkJoinTask[].class);
3433     int scale = U.arrayIndexScale(ForkJoinTask[].class);
3434 jsr166 1.142 if ((scale & (scale - 1)) != 0)
3435 jsr166 1.232 throw new Error("array index scale not a power of two");
3436 jsr166 1.142 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3437 jsr166 1.231 } catch (ReflectiveOperationException e) {
3438 dl 1.52 throw new Error(e);
3439     }
3440 dl 1.105
3441 dl 1.243 // Reduce the risk of rare disastrous classloading in first call to
3442     // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
3443     Class<?> ensureLoaded = LockSupport.class;
3444    
3445 dl 1.208 commonMaxSpares = DEFAULT_COMMON_MAX_SPARES;
3446 dl 1.152 defaultForkJoinWorkerThreadFactory =
3447 dl 1.112 new DefaultForkJoinWorkerThreadFactory();
3448 dl 1.115 modifyThreadPermission = new RuntimePermission("modifyThread");
3449    
3450 dl 1.152 common = java.security.AccessController.doPrivileged
3451     (new java.security.PrivilegedAction<ForkJoinPool>() {
3452     public ForkJoinPool run() { return makeCommonPool(); }});
3453 dl 1.200 int par = common.config & SMASK; // report 1 even if threads disabled
3454 dl 1.160 commonParallelism = par > 0 ? par : 1;
3455 dl 1.152 }
3456 dl 1.112
3457 dl 1.152 /**
3458     * Creates and returns the common pool, respecting user settings
3459     * specified via system properties.
3460     */
3461     private static ForkJoinPool makeCommonPool() {
3462 dl 1.160 int parallelism = -1;
3463 dl 1.197 ForkJoinWorkerThreadFactory factory = null;
3464 jsr166 1.156 UncaughtExceptionHandler handler = null;
3465 jsr166 1.189 try { // ignore exceptions in accessing/parsing properties
3466 dl 1.112 String pp = System.getProperty
3467     ("java.util.concurrent.ForkJoinPool.common.parallelism");
3468 dl 1.152 String fp = System.getProperty
3469     ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3470 dl 1.112 String hp = System.getProperty
3471     ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3472 dl 1.208 String mp = System.getProperty
3473     ("java.util.concurrent.ForkJoinPool.common.maximumSpares");
3474 dl 1.152 if (pp != null)
3475     parallelism = Integer.parseInt(pp);
3476 dl 1.112 if (fp != null)
3477 dl 1.152 factory = ((ForkJoinWorkerThreadFactory)ClassLoader.
3478     getSystemClassLoader().loadClass(fp).newInstance());
3479 dl 1.112 if (hp != null)
3480 jsr166 1.156 handler = ((UncaughtExceptionHandler)ClassLoader.
3481 dl 1.112 getSystemClassLoader().loadClass(hp).newInstance());
3482 dl 1.208 if (mp != null)
3483     commonMaxSpares = Integer.parseInt(mp);
3484 dl 1.112 } catch (Exception ignore) {
3485     }
3486 dl 1.197 if (factory == null) {
3487     if (System.getSecurityManager() == null)
3488     factory = defaultForkJoinWorkerThreadFactory;
3489     else // use security-managed default
3490     factory = new InnocuousForkJoinWorkerThreadFactory();
3491     }
3492 dl 1.167 if (parallelism < 0 && // default 1 less than #cores
3493 dl 1.193 (parallelism = Runtime.getRuntime().availableProcessors() - 1) <= 0)
3494     parallelism = 1;
3495 dl 1.152 if (parallelism > MAX_CAP)
3496     parallelism = MAX_CAP;
3497 dl 1.185 return new ForkJoinPool(parallelism, factory, handler, LIFO_QUEUE,
3498 dl 1.152 "ForkJoinPool.commonPool-worker-");
3499 jsr166 1.3 }
3500 dl 1.52
3501 dl 1.197 /**
3502     * Factory for innocuous worker threads
3503     */
3504     static final class InnocuousForkJoinWorkerThreadFactory
3505     implements ForkJoinWorkerThreadFactory {
3506    
3507     /**
3508     * An ACC to restrict permissions for the factory itself.
3509     * The constructed workers have no permissions set.
3510     */
3511     private static final AccessControlContext innocuousAcc;
3512     static {
3513     Permissions innocuousPerms = new Permissions();
3514     innocuousPerms.add(modifyThreadPermission);
3515     innocuousPerms.add(new RuntimePermission(
3516     "enableContextClassLoaderOverride"));
3517     innocuousPerms.add(new RuntimePermission(
3518     "modifyThreadGroup"));
3519     innocuousAcc = new AccessControlContext(new ProtectionDomain[] {
3520     new ProtectionDomain(null, innocuousPerms)
3521     });
3522     }
3523    
3524     public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
3525 jsr166 1.227 return java.security.AccessController.doPrivileged(
3526     new java.security.PrivilegedAction<ForkJoinWorkerThread>() {
3527 dl 1.197 public ForkJoinWorkerThread run() {
3528     return new ForkJoinWorkerThread.
3529     InnocuousForkJoinWorkerThread(pool);
3530     }}, innocuousAcc);
3531     }
3532     }
3533    
3534 jsr166 1.1 }