ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.279
Committed: Sun Sep 20 17:03:22 2015 UTC (8 years, 8 months ago) by jsr166
Branch: MAIN
Changes since 1.278: +3 -3 lines
Log Message:
Terminate javadoc with a period.

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.58 * http://creativecommons.org/publicdomain/zero/1.0/
5 jsr166 1.1 */
6    
7     package java.util.concurrent;
8    
9 jsr166 1.156 import java.lang.Thread.UncaughtExceptionHandler;
10 jsr166 1.228 import java.security.AccessControlContext;
11     import java.security.Permissions;
12     import java.security.ProtectionDomain;
13 jsr166 1.1 import java.util.ArrayList;
14     import java.util.Arrays;
15     import java.util.Collection;
16     import java.util.Collections;
17     import java.util.List;
18 dl 1.262 import java.util.concurrent.locks.ReentrantLock;
19 dl 1.243 import java.util.concurrent.locks.LockSupport;
20 jsr166 1.1
21     /**
22 jsr166 1.4 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
23 jsr166 1.8 * A {@code ForkJoinPool} provides the entry point for submissions
24 dl 1.18 * from non-{@code ForkJoinTask} clients, as well as management and
25 jsr166 1.11 * monitoring operations.
26 jsr166 1.1 *
27 jsr166 1.9 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
28     * ExecutorService} mainly by virtue of employing
29     * <em>work-stealing</em>: all threads in the pool attempt to find and
30 dl 1.78 * execute tasks submitted to the pool and/or created by other active
31     * tasks (eventually blocking waiting for work if none exist). This
32     * enables efficient processing when most tasks spawn other subtasks
33     * (as do most {@code ForkJoinTask}s), as well as when many small
34     * tasks are submitted to the pool from external clients. Especially
35     * when setting <em>asyncMode</em> to true in constructors, {@code
36     * ForkJoinPool}s may also be appropriate for use with event-style
37     * tasks that are never joined.
38 jsr166 1.1 *
39 dl 1.112 * <p>A static {@link #commonPool()} is available and appropriate for
40 dl 1.101 * most applications. The common pool is used by any ForkJoinTask that
41     * is not explicitly submitted to a specified pool. Using the common
42     * pool normally reduces resource usage (its threads are slowly
43     * reclaimed during periods of non-use, and reinstated upon subsequent
44 dl 1.105 * use).
45 dl 1.100 *
46     * <p>For applications that require separate or custom pools, a {@code
47     * ForkJoinPool} may be constructed with a given target parallelism
48 jsr166 1.214 * level; by default, equal to the number of available processors.
49     * The pool attempts to maintain enough active (or available) threads
50     * by dynamically adding, suspending, or resuming internal worker
51 jsr166 1.187 * threads, even if some tasks are stalled waiting to join others.
52     * However, no such adjustments are guaranteed in the face of blocked
53     * I/O or other unmanaged synchronization. The nested {@link
54 dl 1.100 * ManagedBlocker} interface enables extension of the kinds of
55 dl 1.18 * synchronization accommodated.
56 jsr166 1.1 *
57     * <p>In addition to execution and lifecycle control methods, this
58     * class provides status check methods (for example
59 jsr166 1.4 * {@link #getStealCount}) that are intended to aid in developing,
60 jsr166 1.1 * tuning, and monitoring fork/join applications. Also, method
61 jsr166 1.4 * {@link #toString} returns indications of pool state in a
62 jsr166 1.1 * convenient form for informal monitoring.
63     *
64 jsr166 1.109 * <p>As is the case with other ExecutorServices, there are three
65 jsr166 1.84 * main task execution methods summarized in the following table.
66     * These are designed to be used primarily by clients not already
67     * engaged in fork/join computations in the current pool. The main
68     * forms of these methods accept instances of {@code ForkJoinTask},
69     * but overloaded forms also allow mixed execution of plain {@code
70     * Runnable}- or {@code Callable}- based activities as well. However,
71     * tasks that are already executing in a pool should normally instead
72     * use the within-computation forms listed in the table unless using
73     * async event-style tasks that are not usually joined, in which case
74     * there is little difference among choice of methods.
75 dl 1.18 *
76     * <table BORDER CELLPADDING=3 CELLSPACING=1>
77 jsr166 1.159 * <caption>Summary of task execution methods</caption>
78 dl 1.18 * <tr>
79     * <td></td>
80     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
81     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
82     * </tr>
83     * <tr>
84 jsr166 1.153 * <td> <b>Arrange async execution</b></td>
85 dl 1.18 * <td> {@link #execute(ForkJoinTask)}</td>
86     * <td> {@link ForkJoinTask#fork}</td>
87     * </tr>
88     * <tr>
89 jsr166 1.153 * <td> <b>Await and obtain result</b></td>
90 dl 1.18 * <td> {@link #invoke(ForkJoinTask)}</td>
91     * <td> {@link ForkJoinTask#invoke}</td>
92     * </tr>
93     * <tr>
94 jsr166 1.153 * <td> <b>Arrange exec and obtain Future</b></td>
95 dl 1.18 * <td> {@link #submit(ForkJoinTask)}</td>
96     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
97     * </tr>
98     * </table>
99 dl 1.19 *
100 dl 1.105 * <p>The common pool is by default constructed with default
101 jsr166 1.155 * parameters, but these may be controlled by setting three
102 jsr166 1.162 * {@linkplain System#getProperty system properties}:
103     * <ul>
104     * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
105     * - the parallelism level, a non-negative integer
106     * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
107     * - the class name of a {@link ForkJoinWorkerThreadFactory}
108     * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
109     * - the class name of a {@link UncaughtExceptionHandler}
110 dl 1.208 * <li>{@code java.util.concurrent.ForkJoinPool.common.maximumSpares}
111 dl 1.223 * - the maximum number of allowed extra threads to maintain target
112 dl 1.208 * parallelism (default 256).
113 jsr166 1.162 * </ul>
114 dl 1.197 * If a {@link SecurityManager} is present and no factory is
115     * specified, then the default pool uses a factory supplying
116     * threads that have no {@link Permissions} enabled.
117 jsr166 1.165 * The system class loader is used to load these classes.
118 jsr166 1.156 * Upon any error in establishing these settings, default parameters
119 dl 1.160 * are used. It is possible to disable or limit the use of threads in
120     * the common pool by setting the parallelism property to zero, and/or
121 dl 1.193 * using a factory that may return {@code null}. However doing so may
122     * cause unjoined tasks to never be executed.
123 dl 1.105 *
124 jsr166 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
125     * maximum number of running threads to 32767. Attempts to create
126 jsr166 1.11 * pools with greater than the maximum number result in
127 jsr166 1.8 * {@code IllegalArgumentException}.
128 jsr166 1.1 *
129 jsr166 1.11 * <p>This implementation rejects submitted tasks (that is, by throwing
130 dl 1.19 * {@link RejectedExecutionException}) only when the pool is shut down
131 dl 1.20 * or internal resources have been exhausted.
132 jsr166 1.11 *
133 jsr166 1.1 * @since 1.7
134     * @author Doug Lea
135     */
136 jsr166 1.171 @sun.misc.Contended
137 jsr166 1.1 public class ForkJoinPool extends AbstractExecutorService {
138    
139     /*
140 dl 1.14 * Implementation Overview
141     *
142 dl 1.78 * This class and its nested classes provide the main
143     * functionality and control for a set of worker threads:
144 jsr166 1.84 * Submissions from non-FJ threads enter into submission queues.
145     * Workers take these tasks and typically split them into subtasks
146     * that may be stolen by other workers. Preference rules give
147     * first priority to processing tasks from their own queues (LIFO
148     * or FIFO, depending on mode), then to randomized FIFO steals of
149 dl 1.200 * tasks in other queues. This framework began as vehicle for
150     * supporting tree-structured parallelism using work-stealing.
151     * Over time, its scalability advantages led to extensions and
152 dl 1.208 * changes to better support more diverse usage contexts. Because
153     * most internal methods and nested classes are interrelated,
154     * their main rationale and descriptions are presented here;
155     * individual methods and nested classes contain only brief
156     * comments about details.
157 dl 1.78 *
158 jsr166 1.84 * WorkQueues
159 dl 1.78 * ==========
160     *
161     * Most operations occur within work-stealing queues (in nested
162     * class WorkQueue). These are special forms of Deques that
163     * support only three of the four possible end-operations -- push,
164     * pop, and poll (aka steal), under the further constraints that
165     * push and pop are called only from the owning thread (or, as
166     * extended here, under a lock), while poll may be called from
167     * other threads. (If you are unfamiliar with them, you probably
168     * want to read Herlihy and Shavit's book "The Art of
169     * Multiprocessor programming", chapter 16 describing these in
170     * more detail before proceeding.) The main work-stealing queue
171     * design is roughly similar to those in the papers "Dynamic
172     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
173     * (http://research.sun.com/scalable/pubs/index.html) and
174     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
175     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
176 dl 1.200 * The main differences ultimately stem from GC requirements that
177     * we null out taken slots as soon as we can, to maintain as small
178     * a footprint as possible even in programs generating huge
179     * numbers of tasks. To accomplish this, we shift the CAS
180     * arbitrating pop vs poll (steal) from being on the indices
181     * ("base" and "top") to the slots themselves.
182     *
183 dl 1.243 * Adding tasks then takes the form of a classic array push(task)
184     * in a circular buffer:
185     * q.array[q.top++ % length] = task;
186 dl 1.200 *
187     * (The actual code needs to null-check and size-check the array,
188 jsr166 1.247 * uses masking, not mod, for indexing a power-of-two-sized array,
189 dl 1.243 * properly fences accesses, and possibly signals waiting workers
190     * to start scanning -- see below.) Both a successful pop and
191     * poll mainly entail a CAS of a slot from non-null to null.
192 dl 1.200 *
193 jsr166 1.202 * The pop operation (always performed by owner) is:
194 dl 1.243 * if ((the task at top slot is not null) and
195 dl 1.200 * (CAS slot to null))
196     * decrement top and return task;
197     *
198     * And the poll operation (usually by a stealer) is
199 dl 1.243 * if ((the task at base slot is not null) and
200 dl 1.200 * (CAS slot to null))
201     * increment base and return task;
202     *
203 dl 1.243 * There are several variants of each of these; for example most
204 jsr166 1.247 * versions of poll pre-screen the CAS by rechecking that the base
205 dl 1.243 * has not changed since reading the slot, and most methods only
206     * attempt the CAS if base appears not to be equal to top.
207     *
208     * Memory ordering. See "Correct and Efficient Work-Stealing for
209     * Weak Memory Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
210     * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
211     * analysis of memory ordering requirements in work-stealing
212     * algorithms similar to (but different than) the one used here.
213     * Extracting tasks in array slots via (fully fenced) CAS provides
214     * primary synchronization. The base and top indices imprecisely
215     * guide where to extract from. We do not always require strict
216     * orderings of array and index updates, so sometimes let them be
217     * subject to compiler and processor reorderings. However, the
218     * volatile "base" index also serves as a basis for memory
219     * ordering: Slot accesses are preceded by a read of base,
220 jsr166 1.247 * ensuring happens-before ordering with respect to stealers (so
221 dl 1.243 * the slots themselves can be read via plain array reads.) The
222     * only other memory orderings relied on are maintained in the
223     * course of signalling and activation (see below). A check that
224     * base == top indicates (momentary) emptiness, but otherwise may
225     * err on the side of possibly making the queue appear nonempty
226     * when a push, pop, or poll have not fully committed, or making
227     * it appear empty when an update of top has not yet been visibly
228     * written. (Method isEmpty() checks the case of a partially
229 dl 1.211 * completed removal of the last element.) Because of this, the
230     * poll operation, considered individually, is not wait-free. One
231     * thief cannot successfully continue until another in-progress
232 dl 1.243 * one (or, if previously empty, a push) visibly completes.
233     * However, in the aggregate, we ensure at least probabilistic
234     * non-blockingness. If an attempted steal fails, a scanning
235     * thief chooses a different random victim target to try next. So,
236     * in order for one thief to progress, it suffices for any
237 dl 1.205 * in-progress poll or new push on any empty queue to
238     * complete. (This is why we normally use method pollAt and its
239     * variants that try once at the apparent base index, else
240     * consider alternative actions, rather than method poll, which
241     * retries.)
242 dl 1.200 *
243     * This approach also enables support of a user mode in which
244     * local task processing is in FIFO, not LIFO order, simply by
245     * using poll rather than pop. This can be useful in
246     * message-passing frameworks in which tasks are never joined.
247 dl 1.78 *
248     * WorkQueues are also used in a similar way for tasks submitted
249     * to the pool. We cannot mix these tasks in the same queues used
250 dl 1.200 * by workers. Instead, we randomly associate submission queues
251 dl 1.83 * with submitting threads, using a form of hashing. The
252 dl 1.139 * ThreadLocalRandom probe value serves as a hash code for
253     * choosing existing queues, and may be randomly repositioned upon
254     * contention with other submitters. In essence, submitters act
255     * like workers except that they are restricted to executing local
256     * tasks that they submitted (or in the case of CountedCompleters,
257 dl 1.200 * others with the same root task). Insertion of tasks in shared
258 dl 1.243 * mode requires a lock but we use only a simple spinlock (using
259     * field qlock), because submitters encountering a busy queue move
260     * on to try or create other queues -- they block only when
261     * creating and registering new queues. Because it is used only as
262     * a spinlock, unlocking requires only a "releasing" store (using
263     * putOrderedInt). The qlock is also used during termination
264 jsr166 1.247 * detection, in which case it is forced to a negative
265 jsr166 1.269 * non-lockable value.
266 dl 1.78 *
267 jsr166 1.84 * Management
268 dl 1.78 * ==========
269 dl 1.52 *
270     * The main throughput advantages of work-stealing stem from
271     * decentralized control -- workers mostly take tasks from
272 dl 1.200 * themselves or each other, at rates that can exceed a billion
273     * per second. The pool itself creates, activates (enables
274     * scanning for and running tasks), deactivates, blocks, and
275     * terminates threads, all with minimal central information.
276     * There are only a few properties that we can globally track or
277     * maintain, so we pack them into a small number of variables,
278     * often maintaining atomicity without blocking or locking.
279     * Nearly all essentially atomic control state is held in two
280     * volatile variables that are by far most often read (not
281 dl 1.215 * written) as status and consistency checks. (Also, field
282     * "config" holds unchanging configuration state.)
283 dl 1.78 *
284 dl 1.200 * Field "ctl" contains 64 bits holding information needed to
285     * atomically decide to add, inactivate, enqueue (on an event
286 dl 1.78 * queue), dequeue, and/or re-activate workers. To enable this
287     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
288     * far in excess of normal operating range) to allow ids, counts,
289     * and their negations (used for thresholding) to fit into 16bit
290 dl 1.215 * subfields.
291     *
292 dl 1.258 * Field "runState" holds state bits (STARTED, STOP, etc). After
293 dl 1.262 * starting, the field is updated (only during shutdown) under the
294     * auxState lock.
295     *
296     * Field "auxState" is a ReentrantLock subclass that also
297     * opportunistically holds some other bookkeeping fields accessed
298     * only when locked. It is mainly used to lock (infrequent)
299     * updates to runState and workQueues. The auxState instance is
300     * itself lazily constructed (see tryInitialize), requiring a
301 jsr166 1.263 * double-check-style bootstrapping use of field runState, and
302 dl 1.262 * locking a private static.
303 dl 1.258 *
304     * Field "workQueues" holds references to WorkQueues. It is
305 dl 1.262 * updated (only during worker creation and termination) under the
306     * lock, but is otherwise concurrently readable, and accessed
307     * directly. We also ensure that reads of the array reference
308     * itself never become too stale (for example, re-reading before
309     * each scan). To simplify index-based operations, the array size
310     * is always a power of two, and all readers must tolerate null
311     * slots. Worker queues are at odd indices. Shared (submission)
312     * queues are at even indices, up to a maximum of 64 slots, to
313     * limit growth even if array needs to expand to add more
314     * workers. Grouping them together in this way simplifies and
315     * speeds up task scanning.
316 dl 1.86 *
317     * All worker thread creation is on-demand, triggered by task
318     * submissions, replacement of terminated workers, and/or
319 dl 1.78 * compensation for blocked workers. However, all other support
320     * code is set up to work with other policies. To ensure that we
321 jsr166 1.264 * do not hold on to worker references that would prevent GC, all
322 dl 1.78 * accesses to workQueues are via indices into the workQueues
323     * array (which is one source of some of the messy code
324     * constructions here). In essence, the workQueues array serves as
325 dl 1.200 * a weak reference mechanism. Thus for example the stack top
326     * subfield of ctl stores indices, not references.
327     *
328     * Queuing Idle Workers. Unlike HPC work-stealing frameworks, we
329     * cannot let workers spin indefinitely scanning for tasks when
330     * none can be found immediately, and we cannot start/resume
331     * workers unless there appear to be tasks available. On the
332     * other hand, we must quickly prod them into action when new
333     * tasks are submitted or generated. In many usages, ramp-up time
334     * to activate workers is the main limiting factor in overall
335     * performance, which is compounded at program start-up by JIT
336     * compilation and allocation. So we streamline this as much as
337     * possible.
338     *
339     * The "ctl" field atomically maintains active and total worker
340     * counts as well as a queue to place waiting threads so they can
341     * be located for signalling. Active counts also play the role of
342     * quiescence indicators, so are decremented when workers believe
343     * that there are no more tasks to execute. The "queue" is
344     * actually a form of Treiber stack. A stack is ideal for
345     * activating threads in most-recently used order. This improves
346     * performance and locality, outweighing the disadvantages of
347     * being prone to contention and inability to release a worker
348 dl 1.243 * unless it is topmost on stack. We block/unblock workers after
349 dl 1.200 * pushing on the idle worker stack (represented by the lower
350     * 32bit subfield of ctl) when they cannot find work. The top
351     * stack state holds the value of the "scanState" field of the
352     * worker: its index and status, plus a version counter that, in
353     * addition to the count subfields (also serving as version
354     * stamps) provide protection against Treiber stack ABA effects.
355     *
356     * Creating workers. To create a worker, we pre-increment total
357     * count (serving as a reservation), and attempt to construct a
358     * ForkJoinWorkerThread via its factory. Upon construction, the
359     * new thread invokes registerWorker, where it constructs a
360     * WorkQueue and is assigned an index in the workQueues array
361 jsr166 1.266 * (expanding the array if necessary). The thread is then started.
362     * Upon any exception across these steps, or null return from
363     * factory, deregisterWorker adjusts counts and records
364 dl 1.200 * accordingly. If a null return, the pool continues running with
365     * fewer than the target number workers. If exceptional, the
366     * exception is propagated, generally to some external caller.
367     * Worker index assignment avoids the bias in scanning that would
368     * occur if entries were sequentially packed starting at the front
369     * of the workQueues array. We treat the array as a simple
370     * power-of-two hash table, expanding as needed. The seedIndex
371     * increment ensures no collisions until a resize is needed or a
372     * worker is deregistered and replaced, and thereafter keeps
373 jsr166 1.202 * probability of collision low. We cannot use
374 dl 1.200 * ThreadLocalRandom.getProbe() for similar purposes here because
375     * the thread has not started yet, but do so for creating
376 dl 1.243 * submission queues for existing external threads (see
377     * externalPush).
378     *
379     * WorkQueue field scanState is used by both workers and the pool
380     * to manage and track whether a worker is UNSIGNALLED (possibly
381     * blocked waiting for a signal). When a worker is inactivated,
382     * its scanState field is set, and is prevented from executing
383     * tasks, even though it must scan once for them to avoid queuing
384     * races. Note that scanState updates lag queue CAS releases so
385     * usage requires care. When queued, the lower 16 bits of
386     * scanState must hold its pool index. So we place the index there
387     * upon initialization (see registerWorker) and otherwise keep it
388     * there or restore it when necessary.
389     *
390     * The ctl field also serves as the basis for memory
391     * synchronization surrounding activation. This uses a more
392     * efficient version of a Dekker-like rule that task producers and
393     * consumers sync with each other by both writing/CASing ctl (even
394 dl 1.253 * if to its current value). This would be extremely costly. So
395     * we relax it in several ways: (1) Producers only signal when
396     * their queue is empty. Other workers propagate this signal (in
397     * method scan) when they find tasks. (2) Workers only enqueue
398     * after scanning (see below) and not finding any tasks. (3)
399     * Rather than CASing ctl to its current value in the common case
400     * where no action is required, we reduce write contention by
401     * equivalently prefacing signalWork when called by an external
402     * task producer using a memory access with full-volatile
403 dl 1.256 * semantics or a "fullFence". (4) For internal task producers we
404     * rely on the fact that even if no other workers awaken, the
405     * producer itself will eventually see the task and execute it.
406 dl 1.243 *
407 jsr166 1.249 * Almost always, too many signals are issued. A task producer
408 dl 1.243 * cannot in general tell if some existing worker is in the midst
409     * of finishing one task (or already scanning) and ready to take
410     * another without being signalled. So the producer might instead
411     * activate a different worker that does not find any work, and
412     * then inactivates. This scarcely matters in steady-state
413     * computations involving all workers, but can create contention
414 jsr166 1.247 * and bookkeeping bottlenecks during ramp-up, ramp-down, and small
415 dl 1.243 * computations involving only a few workers.
416     *
417     * Scanning. Method scan() performs top-level scanning for tasks.
418     * Each scan traverses (and tries to poll from) each queue in
419     * pseudorandom permutation order by randomly selecting an origin
420     * index and a step value. (The pseudorandom generator need not
421     * have high-quality statistical properties in the long term, but
422     * just within computations; We use 64bit and 32bit Marsaglia
423     * XorShifts, which are cheap and suffice here.) Scanning also
424     * employs contention reduction: When scanning workers fail a CAS
425     * polling for work, they soon restart with a different
426     * pseudorandom scan order (thus likely retrying at different
427     * intervals). This improves throughput when many threads are
428     * trying to take tasks from few queues. Scans do not otherwise
429     * explicitly take into account core affinities, loads, cache
430     * localities, etc, However, they do exploit temporal locality
431 dl 1.253 * (which usually approximates these) by preferring to re-poll (up
432     * to POLL_LIMIT times) from the same queue after a successful
433     * poll before trying others. Restricted forms of scanning occur
434     * in methods helpComplete and findNonEmptyStealQueue, and take
435     * similar but simpler forms.
436 dl 1.200 *
437 jsr166 1.202 * Deactivation and waiting. Queuing encounters several intrinsic
438 jsr166 1.267 * races; most notably that an inactivating scanning worker can
439 dl 1.243 * miss seeing a task produced during a scan. So when a worker
440     * cannot find a task to steal, it inactivates and enqueues, and
441     * then rescans to ensure that it didn't miss one, reactivating
442     * upon seeing one with probability approximately proportional to
443     * probability of a miss. (In most cases, the worker will be
444     * signalled before self-signalling, avoiding cascades of multiple
445     * signals for the same task).
446     *
447     * Workers block (in method awaitWork) using park/unpark;
448     * advertising the need for signallers to unpark by setting their
449     * "parker" fields.
450 dl 1.52 *
451     * Trimming workers. To release resources after periods of lack of
452     * use, a worker starting to wait when the pool is quiescent will
453 dl 1.208 * time out and terminate (see awaitWork) if the pool has remained
454 jsr166 1.268 * quiescent for period given by IDLE_TIMEOUT_MS, increasing the
455     * period as the number of threads decreases, eventually removing
456     * all workers.
457 dl 1.52 *
458 dl 1.210 * Shutdown and Termination. A call to shutdownNow invokes
459     * tryTerminate to atomically set a runState bit. The calling
460     * thread, as well as every other worker thereafter terminating,
461     * helps terminate others by setting their (qlock) status,
462     * cancelling their unprocessed tasks, and waking them up, doing
463     * so repeatedly until stable (but with a loop bounded by the
464     * number of workers). Calls to non-abrupt shutdown() preface
465     * this by checking whether termination should commence. This
466     * relies primarily on the active count bits of "ctl" maintaining
467 jsr166 1.212 * consensus -- tryTerminate is called from awaitWork whenever
468 dl 1.211 * quiescent. However, external submitters do not take part in
469     * this consensus. So, tryTerminate sweeps through queues (until
470     * stable) to ensure lack of in-flight submissions and workers
471 dl 1.210 * about to process them before triggering the "STOP" phase of
472 dl 1.211 * termination. (Note: there is an intrinsic conflict if
473     * helpQuiescePool is called when shutdown is enabled. Both wait
474 jsr166 1.212 * for quiescence, but tryTerminate is biased to not trigger until
475 dl 1.211 * helpQuiescePool completes.)
476     *
477 jsr166 1.84 * Joining Tasks
478     * =============
479 dl 1.78 *
480     * Any of several actions may be taken when one worker is waiting
481 jsr166 1.84 * to join a task stolen (or always held) by another. Because we
482 dl 1.78 * are multiplexing many tasks on to a pool of workers, we can't
483     * just let them block (as in Thread.join). We also cannot just
484     * reassign the joiner's run-time stack with another and replace
485     * it later, which would be a form of "continuation", that even if
486 dl 1.200 * possible is not necessarily a good idea since we may need both
487     * an unblocked task and its continuation to progress. Instead we
488     * combine two tactics:
489 dl 1.19 *
490     * Helping: Arranging for the joiner to execute some task that it
491 dl 1.78 * would be running if the steal had not occurred.
492 dl 1.19 *
493     * Compensating: Unless there are already enough live threads,
494 dl 1.78 * method tryCompensate() may create or re-activate a spare
495     * thread to compensate for blocked joiners until they unblock.
496     *
497 dl 1.105 * A third form (implemented in tryRemoveAndExec) amounts to
498     * helping a hypothetical compensator: If we can readily tell that
499     * a possible action of a compensator is to steal and execute the
500     * task being joined, the joining thread can do so directly,
501     * without the need for a compensation thread (although at the
502     * expense of larger run-time stacks, but the tradeoff is
503     * typically worthwhile).
504 dl 1.52 *
505     * The ManagedBlocker extension API can't use helping so relies
506     * only on compensation in method awaitBlocker.
507 dl 1.19 *
508 dl 1.200 * The algorithm in helpStealer entails a form of "linear
509     * helping". Each worker records (in field currentSteal) the most
510     * recent task it stole from some other worker (or a submission).
511     * It also records (in field currentJoin) the task it is currently
512     * actively joining. Method helpStealer uses these markers to try
513     * to find a worker to help (i.e., steal back a task from and
514     * execute it) that could hasten completion of the actively joined
515     * task. Thus, the joiner executes a task that would be on its
516     * own local deque had the to-be-joined task not been stolen. This
517     * is a conservative variant of the approach described in Wagner &
518 dl 1.78 * Calder "Leapfrogging: a portable technique for implementing
519     * efficient futures" SIGPLAN Notices, 1993
520     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
521     * that: (1) We only maintain dependency links across workers upon
522     * steals, rather than use per-task bookkeeping. This sometimes
523 dl 1.90 * requires a linear scan of workQueues array to locate stealers,
524     * but often doesn't because stealers leave hints (that may become
525 dl 1.112 * stale/wrong) of where to locate them. It is only a hint
526     * because a worker might have had multiple steals and the hint
527     * records only one of them (usually the most current). Hinting
528     * isolates cost to when it is needed, rather than adding to
529     * per-task overhead. (2) It is "shallow", ignoring nesting and
530     * potentially cyclic mutual steals. (3) It is intentionally
531 dl 1.78 * racy: field currentJoin is updated only while actively joining,
532     * which means that we miss links in the chain during long-lived
533     * tasks, GC stalls etc (which is OK since blocking in such cases
534     * is usually a good idea). (4) We bound the number of attempts
535 dl 1.200 * to find work using checksums and fall back to suspending the
536 dl 1.90 * worker and if necessary replacing it with another.
537 dl 1.78 *
538 dl 1.200 * Helping actions for CountedCompleters do not require tracking
539     * currentJoins: Method helpComplete takes and executes any task
540 jsr166 1.202 * with the same root as the task being waited on (preferring
541     * local pops to non-local polls). However, this still entails
542     * some traversal of completer chains, so is less efficient than
543     * using CountedCompleters without explicit joins.
544 dl 1.105 *
545 dl 1.200 * Compensation does not aim to keep exactly the target
546     * parallelism number of unblocked threads running at any given
547     * time. Some previous versions of this class employed immediate
548     * compensations for any blocked join. However, in practice, the
549     * vast majority of blockages are transient byproducts of GC and
550     * other JVM or OS activities that are made worse by replacement.
551     * Currently, compensation is attempted only after validating that
552     * all purportedly active threads are processing tasks by checking
553     * field WorkQueue.scanState, which eliminates most false
554     * positives. Also, compensation is bypassed (tolerating fewer
555     * threads) in the most common case in which it is rarely
556     * beneficial: when a worker with an empty queue (thus no
557     * continuation tasks) blocks on a join and there still remain
558 dl 1.208 * enough threads to ensure liveness.
559 dl 1.105 *
560 dl 1.243 * Spare threads are removed as soon as they notice that the
561     * target parallelism level has been exceeded, in method
562     * tryDropSpare. (Method scan arranges returns for rechecks upon
563 jsr166 1.247 * each probe via the "bound" parameter.)
564 dl 1.243 *
565 dl 1.211 * The compensation mechanism may be bounded. Bounds for the
566 jsr166 1.273 * commonPool (see COMMON_MAX_SPARES) better enable JVMs to cope
567 dl 1.208 * with programming errors and abuse before running out of
568     * resources to do so. In other cases, users may supply factories
569     * that limit thread construction. The effects of bounding in this
570     * pool (like all others) is imprecise. Total worker counts are
571     * decremented when threads deregister, not when they exit and
572     * resources are reclaimed by the JVM and OS. So the number of
573     * simultaneously live threads may transiently exceed bounds.
574 dl 1.205 *
575 dl 1.105 * Common Pool
576     * ===========
577     *
578 jsr166 1.175 * The static common pool always exists after static
579 dl 1.105 * initialization. Since it (or any other created pool) need
580     * never be used, we minimize initial construction overhead and
581     * footprint to the setup of about a dozen fields, with no nested
582     * allocation. Most bootstrapping occurs within method
583 dl 1.200 * externalSubmit during the first submission to the pool.
584 dl 1.105 *
585     * When external threads submit to the common pool, they can
586 dl 1.200 * perform subtask processing (see externalHelpComplete and
587     * related methods) upon joins. This caller-helps policy makes it
588     * sensible to set common pool parallelism level to one (or more)
589     * less than the total number of available cores, or even zero for
590     * pure caller-runs. We do not need to record whether external
591     * submissions are to the common pool -- if not, external help
592     * methods return quickly. These submitters would otherwise be
593     * blocked waiting for completion, so the extra effort (with
594     * liberally sprinkled task status checks) in inapplicable cases
595     * amounts to an odd form of limited spin-wait before blocking in
596     * ForkJoinTask.join.
597 dl 1.105 *
598 dl 1.197 * As a more appropriate default in managed environments, unless
599     * overridden by system properties, we use workers of subclass
600     * InnocuousForkJoinWorkerThread when there is a SecurityManager
601     * present. These workers have no permissions set, do not belong
602     * to any user-defined ThreadGroup, and erase all ThreadLocals
603 dl 1.200 * after executing any top-level task (see WorkQueue.runTask).
604     * The associated mechanics (mainly in ForkJoinWorkerThread) may
605     * be JVM-dependent and must access particular Thread class fields
606     * to achieve this effect.
607 jsr166 1.198 *
608 dl 1.105 * Style notes
609     * ===========
610     *
611 dl 1.200 * Memory ordering relies mainly on Unsafe intrinsics that carry
612     * the further responsibility of explicitly performing null- and
613     * bounds- checks otherwise carried out implicitly by JVMs. This
614     * can be awkward and ugly, but also reflects the need to control
615     * outcomes across the unusual cases that arise in very racy code
616     * with very few invariants. So these explicit checks would exist
617     * in some form anyway. All fields are read into locals before
618     * use, and null-checked if they are references. This is usually
619     * done in a "C"-like style of listing declarations at the heads
620     * of methods or blocks, and using inline assignments on first
621     * encounter. Array bounds-checks are usually performed by
622     * masking with array.length-1, which relies on the invariant that
623     * these arrays are created with positive lengths, which is itself
624     * paranoically checked. Nearly all explicit checks lead to
625     * bypass/return, not exception throws, because they may
626     * legitimately arise due to cancellation/revocation during
627     * shutdown.
628     *
629 dl 1.105 * There is a lot of representation-level coupling among classes
630     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
631     * fields of WorkQueue maintain data structures managed by
632     * ForkJoinPool, so are directly accessed. There is little point
633     * trying to reduce this, since any associated future changes in
634     * representations will need to be accompanied by algorithmic
635     * changes anyway. Several methods intrinsically sprawl because
636 dl 1.200 * they must accumulate sets of consistent reads of fields held in
637     * local variables. There are also other coding oddities
638     * (including several unnecessary-looking hoisted null checks)
639     * that help some methods perform reasonably even when interpreted
640     * (not compiled).
641 dl 1.52 *
642 dl 1.208 * The order of declarations in this file is (with a few exceptions):
643 dl 1.86 * (1) Static utility functions
644     * (2) Nested (static) classes
645     * (3) Static fields
646     * (4) Fields, along with constants used when unpacking some of them
647     * (5) Internal control methods
648     * (6) Callbacks and other support for ForkJoinTask methods
649     * (7) Exported methods
650     * (8) Static block initializing statics in minimally dependent order
651     */
652    
653     // Static utilities
654    
655     /**
656     * If there is a security manager, makes sure caller has
657     * permission to modify threads.
658 jsr166 1.1 */
659 dl 1.86 private static void checkPermission() {
660     SecurityManager security = System.getSecurityManager();
661     if (security != null)
662     security.checkPermission(modifyThreadPermission);
663     }
664    
665     // Nested classes
666 jsr166 1.1
667     /**
668 jsr166 1.8 * Factory for creating new {@link ForkJoinWorkerThread}s.
669     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
670     * for {@code ForkJoinWorkerThread} subclasses that extend base
671     * functionality or initialize threads with different contexts.
672 jsr166 1.1 */
673     public static interface ForkJoinWorkerThreadFactory {
674     /**
675     * Returns a new worker thread operating in the given pool.
676     *
677     * @param pool the pool this thread works in
678 jsr166 1.192 * @return the new worker thread
679 jsr166 1.11 * @throws NullPointerException if the pool is null
680 jsr166 1.1 */
681     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
682     }
683    
684     /**
685     * Default ForkJoinWorkerThreadFactory implementation; creates a
686     * new ForkJoinWorkerThread.
687     */
688 jsr166 1.278 private static final class DefaultForkJoinWorkerThreadFactory
689 jsr166 1.1 implements ForkJoinWorkerThreadFactory {
690 dl 1.112 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
691 dl 1.14 return new ForkJoinWorkerThread(pool);
692 jsr166 1.1 }
693     }
694    
695     /**
696 dl 1.86 * Class for artificial tasks that are used to replace the target
697     * of local joins if they are removed from an interior queue slot
698     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
699     * actually do anything beyond having a unique identity.
700 jsr166 1.1 */
701 jsr166 1.278 private static final class EmptyTask extends ForkJoinTask<Void> {
702 dl 1.105 private static final long serialVersionUID = -7721805057305804111L;
703 dl 1.86 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
704     public final Void getRawResult() { return null; }
705     public final void setRawResult(Void x) {}
706     public final boolean exec() { return true; }
707 jsr166 1.1 }
708    
709 dl 1.262 /**
710     * Additional fields and lock created upon initialization.
711     */
712 jsr166 1.278 private static final class AuxState extends ReentrantLock {
713 dl 1.262 private static final long serialVersionUID = -6001602636862214147L;
714     volatile long stealCount; // cumulative steal count
715     long indexSeed; // index bits for registerWorker
716     AuxState() {}
717     }
718    
719 dl 1.200 // Constants shared across ForkJoinPool and WorkQueue
720    
721     // Bounds
722     static final int SMASK = 0xffff; // short bits == max index
723     static final int MAX_CAP = 0x7fff; // max #workers - 1
724     static final int EVENMASK = 0xfffe; // even short bits
725     static final int SQMASK = 0x007e; // max 64 (even) slots
726    
727     // Masks and units for WorkQueue.scanState and ctl sp subfield
728 dl 1.243 static final int UNSIGNALLED = 1 << 31; // must be negative
729 dl 1.211 static final int SS_SEQ = 1 << 16; // version count
730 dl 1.200
731     // Mode bits for ForkJoinPool.config and WorkQueue.config
732 dl 1.211 static final int MODE_MASK = 0xffff << 16; // top half of int
733 dl 1.243 static final int SPARE_WORKER = 1 << 17; // set if tc > 0 on creation
734     static final int UNREGISTERED = 1 << 18; // to skip some of deregister
735     static final int FIFO_QUEUE = 1 << 31; // must be negative
736     static final int LIFO_QUEUE = 0; // for clarity
737     static final int IS_OWNED = 1; // low bit 0 if shared
738 dl 1.225
739 jsr166 1.1 /**
740 dl 1.253 * The maximum number of task executions from the same queue
741     * before checking other queues, bounding unfairness and impact of
742     * infinite user task recursion. Must be a power of two minus 1.
743     */
744     static final int POLL_LIMIT = (1 << 10) - 1;
745    
746     /**
747 dl 1.78 * Queues supporting work-stealing as well as external task
748 jsr166 1.202 * submission. See above for descriptions and algorithms.
749 dl 1.78 * Performance on most platforms is very sensitive to placement of
750     * instances of both WorkQueues and their arrays -- we absolutely
751     * do not want multiple WorkQueue instances or multiple queue
752 dl 1.200 * arrays sharing cache lines. The @Contended annotation alerts
753     * JVMs to try to keep instances apart.
754 dl 1.78 */
755 jsr166 1.171 @sun.misc.Contended
756 dl 1.78 static final class WorkQueue {
757 dl 1.200
758 dl 1.78 /**
759     * Capacity of work-stealing queue array upon initialization.
760 dl 1.90 * Must be a power of two; at least 4, but should be larger to
761     * reduce or eliminate cacheline sharing among queues.
762     * Currently, it is much larger, as a partial workaround for
763     * the fact that JVMs often place arrays in locations that
764     * share GC bookkeeping (especially cardmarks) such that
765     * per-write accesses encounter serious memory contention.
766 dl 1.78 */
767 dl 1.90 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
768 dl 1.78
769     /**
770     * Maximum size for queue arrays. Must be a power of two less
771     * than or equal to 1 << (31 - width of array entry) to ensure
772     * lack of wraparound of index calculations, but defined to a
773     * value a bit less than this to help users trap runaway
774     * programs before saturating systems.
775     */
776     static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
777    
778 dl 1.200 // Instance fields
779 dl 1.255
780 dl 1.243 volatile int scanState; // versioned, negative if inactive
781 dl 1.200 int stackPred; // pool stack (ctl) predecessor
782 dl 1.178 int nsteals; // number of steals
783 dl 1.200 int hint; // randomization and stealer index hint
784     int config; // pool index and mode
785     volatile int qlock; // 1: locked, < 0: terminate; else 0
786 dl 1.78 volatile int base; // index of next slot for poll
787     int top; // index of next slot for push
788     ForkJoinTask<?>[] array; // the elements (initially unallocated)
789 dl 1.90 final ForkJoinPool pool; // the containing pool (may be null)
790 dl 1.78 final ForkJoinWorkerThread owner; // owning thread or null if shared
791     volatile Thread parker; // == owner during call to park; else null
792 dl 1.95 volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
793 dl 1.255 @sun.misc.Contended("group2") // separate from other fields
794     volatile ForkJoinTask<?> currentSteal; // nonnull when running some task
795 dl 1.112
796 dl 1.200 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner) {
797 dl 1.90 this.pool = pool;
798 dl 1.78 this.owner = owner;
799 dl 1.115 // Place indices in the center of array (that is not yet allocated)
800 dl 1.78 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
801     }
802    
803     /**
804 jsr166 1.220 * Returns an exportable index (used by ForkJoinWorkerThread).
805 dl 1.200 */
806     final int getPoolIndex() {
807     return (config & 0xffff) >>> 1; // ignore odd/even tag bit
808     }
809    
810     /**
811 dl 1.115 * Returns the approximate number of tasks in the queue.
812     */
813     final int queueSize() {
814 dl 1.243 int n = base - top; // read base first
815 dl 1.115 return (n >= 0) ? 0 : -n; // ignore transient negative
816     }
817    
818 jsr166 1.180 /**
819 dl 1.115 * Provides a more accurate estimate of whether this queue has
820     * any tasks than does queueSize, by checking whether a
821     * near-empty queue has at least one unclaimed task.
822     */
823     final boolean isEmpty() {
824 dl 1.225 ForkJoinTask<?>[] a; int n, al, s;
825 dl 1.243 return ((n = base - (s = top)) >= 0 || // possibly one task
826     (n == -1 && ((a = array) == null ||
827     (al = a.length) == 0 ||
828     a[(al - 1) & (s - 1)] == null)));
829 dl 1.115 }
830    
831     /**
832 dl 1.256 * Pushes a task. Call only by owner in unshared queues.
833 dl 1.78 *
834     * @param task the task. Caller must ensure non-null.
835 jsr166 1.146 * @throws RejectedExecutionException if array cannot be resized
836 dl 1.78 */
837 dl 1.90 final void push(ForkJoinTask<?> task) {
838 dl 1.243 int b = base, s = top, al, d; ForkJoinTask<?>[] a;
839     if ((a = array) != null && (al = a.length) > 0) {
840     a[(al - 1) & s] = task; // relaxed writes OK
841     top = s + 1;
842     ForkJoinPool p = pool;
843 dl 1.272 U.storeFence(); // ensure fields written
844 dl 1.243 if ((d = b - s) == 0 && p != null)
845 dl 1.253 p.signalWork();
846     else if (al + d == 1)
847 dl 1.243 growArray();
848 dl 1.78 }
849     }
850    
851 dl 1.178 /**
852 dl 1.112 * Initializes or doubles the capacity of array. Call either
853     * by owner or with lock held -- it is OK for base, but not
854     * top, to move while resizings are in progress.
855     */
856     final ForkJoinTask<?>[] growArray() {
857     ForkJoinTask<?>[] oldA = array;
858     int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
859 dl 1.225 if (size < INITIAL_QUEUE_CAPACITY || size > MAXIMUM_QUEUE_CAPACITY)
860 dl 1.112 throw new RejectedExecutionException("Queue capacity exceeded");
861     int oldMask, t, b;
862     ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
863 dl 1.225 if (oldA != null && (oldMask = oldA.length - 1) > 0 &&
864 dl 1.112 (t = top) - (b = base) > 0) {
865     int mask = size - 1;
866 dl 1.200 do { // emulate poll from old array, push to new array
867 dl 1.256 int index = b & oldMask;
868     long offset = ((long)index << ASHIFT) + ABASE;
869 dl 1.243 ForkJoinTask<?> x = (ForkJoinTask<?>)
870     U.getObjectVolatile(oldA, offset);
871     if (x != null &&
872     U.compareAndSwapObject(oldA, offset, x, null))
873     a[b & mask] = x;
874 dl 1.112 } while (++b != t);
875 dl 1.243 U.storeFence();
876 dl 1.78 }
877 dl 1.112 return a;
878 dl 1.78 }
879    
880     /**
881 dl 1.90 * Takes next task, if one exists, in LIFO order. Call only
882 dl 1.102 * by owner in unshared queues.
883 dl 1.90 */
884     final ForkJoinTask<?> pop() {
885 dl 1.243 int b = base, s = top, al, i; ForkJoinTask<?>[] a;
886 dl 1.256 if ((a = array) != null && b != s && (al = a.length) > 0) {
887     int index = (al - 1) & --s;
888     long offset = ((long)index << ASHIFT) + ABASE;
889 dl 1.262 ForkJoinTask<?> t = (ForkJoinTask<?>)
890     U.getObject(a, offset);
891     if (t != null &&
892     U.compareAndSwapObject(a, offset, t, null)) {
893 dl 1.256 top = s;
894 dl 1.243 return t;
895 dl 1.90 }
896     }
897     return null;
898     }
899    
900     /**
901     * Takes a task in FIFO order if b is base of queue and a task
902     * can be claimed without contention. Specialized versions
903 dl 1.200 * appear in ForkJoinPool methods scan and helpStealer.
904 dl 1.78 */
905 dl 1.90 final ForkJoinTask<?> pollAt(int b) {
906 dl 1.243 ForkJoinTask<?>[] a; int al;
907     if ((a = array) != null && (al = a.length) > 0) {
908 dl 1.256 int index = (al - 1) & b;
909     long offset = ((long)index << ASHIFT) + ABASE;
910 dl 1.243 ForkJoinTask<?> t = (ForkJoinTask<?>)
911     U.getObjectVolatile(a, offset);
912     if (t != null && b++ == base &&
913     U.compareAndSwapObject(a, offset, t, null)) {
914     base = b;
915 dl 1.78 return t;
916     }
917     }
918     return null;
919     }
920    
921     /**
922 dl 1.90 * Takes next task, if one exists, in FIFO order.
923 dl 1.78 */
924 dl 1.90 final ForkJoinTask<?> poll() {
925 dl 1.243 for (;;) {
926     int b = base, s = top, d, al; ForkJoinTask<?>[] a;
927     if ((a = array) != null && (d = b - s) < 0 &&
928     (al = a.length) > 0) {
929 dl 1.256 int index = (al - 1) & b;
930     long offset = ((long)index << ASHIFT) + ABASE;
931 dl 1.243 ForkJoinTask<?> t = (ForkJoinTask<?>)
932     U.getObjectVolatile(a, offset);
933     if (b++ == base) {
934     if (t != null) {
935     if (U.compareAndSwapObject(a, offset, t, null)) {
936     base = b;
937     return t;
938     }
939 dl 1.200 }
940 dl 1.243 else if (d == -1)
941     break; // now empty
942 dl 1.78 }
943 dl 1.90 }
944 dl 1.243 else
945     break;
946 dl 1.78 }
947     return null;
948     }
949    
950     /**
951     * Takes next task, if one exists, in order specified by mode.
952     */
953     final ForkJoinTask<?> nextLocalTask() {
954 dl 1.243 return (config < 0) ? poll() : pop();
955 dl 1.78 }
956    
957     /**
958     * Returns next task, if one exists, in order specified by mode.
959     */
960     final ForkJoinTask<?> peek() {
961 dl 1.243 int b = base, al; ForkJoinTask<?>[] a;
962     return ((a = array) != null && (al = a.length) > 0) ?
963     a[(al - 1) & (config < 0 ? b : top - 1)] : null;
964 dl 1.78 }
965    
966     /**
967     * Pops the given task only if it is at the current top.
968 jsr166 1.251 */
969 dl 1.243 final boolean tryUnpush(ForkJoinTask<?> task) {
970 dl 1.256 int b = base, s = top, al; ForkJoinTask<?>[] a;
971     if ((a = array) != null && b != s && (al = a.length) > 0) {
972     int index = (al - 1) & --s;
973     long offset = ((long)index << ASHIFT) + ABASE;
974     if (U.compareAndSwapObject(a, offset, task, null)) {
975 dl 1.243 top = s;
976 dl 1.224 return true;
977     }
978 dl 1.78 }
979     return false;
980     }
981    
982     /**
983 dl 1.256 * Shared version of push. Fails if already locked.
984     *
985     * @return status: > 0 locked, 0 was empty, < 0 was nonempty
986     */
987     final int sharedPush(ForkJoinTask<?> task) {
988     int stat;
989     if (U.compareAndSwapInt(this, QLOCK, 0, 1)) {
990     int b = base, s = top, al, d; ForkJoinTask<?>[] a;
991     if ((a = array) != null && (al = a.length) > 0 &&
992     al - 1 + (d = b - s) > 0) {
993     a[(al - 1) & s] = task;
994     top = s + 1; // relaxed writes OK here
995     U.putOrderedInt(this, QLOCK, 0);
996     if (d < 0)
997     stat = d;
998     else {
999     U.fullFence(); // sync with signallees
1000     stat = 0;
1001     }
1002     }
1003     else {
1004     growAndSharedPush(task);
1005     stat = 0;
1006     }
1007     }
1008     else
1009     stat = 1;
1010     return stat;
1011     }
1012    
1013     /*
1014     * Helper for sharedPush; called only when locked and resize
1015     * needed.
1016     */
1017     private void growAndSharedPush(ForkJoinTask<?> task) {
1018     try {
1019     growArray();
1020     int s = top, al; ForkJoinTask<?>[] a;
1021     if ((a = array) != null && (al = a.length) > 0) {
1022     a[(al - 1) & s] = task;
1023     top = s + 1;
1024     }
1025     } finally {
1026     qlock = 0;
1027     }
1028     }
1029    
1030     /**
1031 jsr166 1.279 * Shared version of pop.
1032 jsr166 1.247 */
1033 dl 1.243 final boolean trySharedUnpush(ForkJoinTask<?> task) {
1034     boolean popped = false;
1035 jsr166 1.271 int s = top - 1, al; ForkJoinTask<?>[] a;
1036 dl 1.243 if ((a = array) != null && (al = a.length) > 0) {
1037 dl 1.256 int index = (al - 1) & s;
1038     long offset = ((long)index << ASHIFT) + ABASE;
1039 jsr166 1.271 ForkJoinTask<?> t = (ForkJoinTask<?>) U.getObject(a, offset);
1040 dl 1.256 if (t == task &&
1041 dl 1.243 U.compareAndSwapInt(this, QLOCK, 0, 1)) {
1042     if (U.compareAndSwapObject(a, offset, task, null)) {
1043     popped = true;
1044     top = s;
1045     }
1046     U.putOrderedInt(this, QLOCK, 0);
1047     }
1048     }
1049     return popped;
1050     }
1051    
1052     /**
1053 jsr166 1.84 * Removes and cancels all known tasks, ignoring any exceptions.
1054 dl 1.78 */
1055     final void cancelAll() {
1056 dl 1.200 ForkJoinTask<?> t;
1057     if ((t = currentJoin) != null) {
1058     currentJoin = null;
1059     ForkJoinTask.cancelIgnoringExceptions(t);
1060     }
1061     if ((t = currentSteal) != null) {
1062     currentSteal = null;
1063     ForkJoinTask.cancelIgnoringExceptions(t);
1064     }
1065     while ((t = poll()) != null)
1066 dl 1.78 ForkJoinTask.cancelIgnoringExceptions(t);
1067     }
1068    
1069 dl 1.104 // Specialized execution methods
1070 dl 1.78
1071     /**
1072 jsr166 1.254 * Pops and executes up to POLL_LIMIT tasks or until empty.
1073 dl 1.253 */
1074     final void localPopAndExec() {
1075     for (int nexec = 0;;) {
1076     int b = base, s = top, al; ForkJoinTask<?>[] a;
1077     if ((a = array) != null && b != s && (al = a.length) > 0) {
1078 dl 1.256 int index = (al - 1) & --s;
1079     long offset = ((long)index << ASHIFT) + ABASE;
1080 dl 1.253 ForkJoinTask<?> t = (ForkJoinTask<?>)
1081     U.getAndSetObject(a, offset, null);
1082     if (t != null) {
1083     top = s;
1084     (currentSteal = t).doExec();
1085     if (++nexec > POLL_LIMIT)
1086     break;
1087     }
1088     else
1089     break;
1090     }
1091     else
1092     break;
1093     }
1094     }
1095    
1096     /**
1097 jsr166 1.254 * Polls and executes up to POLL_LIMIT tasks or until empty.
1098 dl 1.253 */
1099     final void localPollAndExec() {
1100     for (int nexec = 0;;) {
1101     int b = base, s = top, al; ForkJoinTask<?>[] a;
1102     if ((a = array) != null && b != s && (al = a.length) > 0) {
1103 dl 1.256 int index = (al - 1) & b++;
1104     long offset = ((long)index << ASHIFT) + ABASE;
1105 dl 1.253 ForkJoinTask<?> t = (ForkJoinTask<?>)
1106     U.getAndSetObject(a, offset, null);
1107     if (t != null) {
1108     base = b;
1109 dl 1.255 t.doExec();
1110 dl 1.253 if (++nexec > POLL_LIMIT)
1111     break;
1112     }
1113     }
1114     else
1115     break;
1116     }
1117     }
1118    
1119     /**
1120     * Executes the given task and (some) remaining local tasks.
1121 dl 1.94 */
1122 dl 1.178 final void runTask(ForkJoinTask<?> task) {
1123 dl 1.200 if (task != null) {
1124 dl 1.243 task.doExec();
1125 dl 1.253 if (config < 0)
1126     localPollAndExec();
1127     else
1128     localPopAndExec();
1129 dl 1.243 int ns = ++nsteals;
1130 dl 1.200 ForkJoinWorkerThread thread = owner;
1131 dl 1.243 currentSteal = null;
1132     if (ns < 0) // collect on overflow
1133 dl 1.215 transferStealCount(pool);
1134 dl 1.200 if (thread != null)
1135 dl 1.197 thread.afterTopLevelExec();
1136 dl 1.178 }
1137 dl 1.94 }
1138    
1139     /**
1140 dl 1.262 * Adds steal count to pool steal count if it exists, and resets.
1141 dl 1.215 */
1142     final void transferStealCount(ForkJoinPool p) {
1143 dl 1.262 AuxState aux;
1144     if (p != null && (aux = p.auxState) != null) {
1145 dl 1.215 int s = nsteals;
1146     nsteals = 0; // if negative, correct for overflow
1147 dl 1.262 long inc = (long)(s < 0 ? Integer.MAX_VALUE : s);
1148     aux.lock();
1149     try {
1150     aux.stealCount += inc;
1151     } finally {
1152     aux.unlock();
1153     }
1154 dl 1.215 }
1155     }
1156    
1157     /**
1158 dl 1.105 * If present, removes from queue and executes the given task,
1159 jsr166 1.213 * or any other cancelled task. Used only by awaitJoin.
1160 dl 1.94 *
1161 jsr166 1.213 * @return true if queue empty and task not known to be done
1162 dl 1.94 */
1163 dl 1.105 final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
1164 dl 1.243 if (task != null && task.status >= 0) {
1165     int b, s, d, al; ForkJoinTask<?>[] a;
1166     while ((d = (b = base) - (s = top)) < 0 &&
1167     (a = array) != null && (al = a.length) > 0) {
1168     for (;;) { // traverse from s to b
1169 dl 1.256 int index = --s & (al - 1);
1170     long offset = (index << ASHIFT) + ABASE;
1171 dl 1.243 ForkJoinTask<?> t = (ForkJoinTask<?>)
1172     U.getObjectVolatile(a, offset);
1173     if (t == null)
1174     break; // restart
1175 dl 1.200 else if (t == task) {
1176     boolean removed = false;
1177     if (s + 1 == top) { // pop
1178 dl 1.243 if (U.compareAndSwapObject(a, offset, t, null)) {
1179     top = s;
1180 dl 1.200 removed = true;
1181     }
1182     }
1183     else if (base == b) // replace with proxy
1184 dl 1.258 removed = U.compareAndSwapObject(a, offset, t,
1185     new EmptyTask());
1186 dl 1.243 if (removed) {
1187     ForkJoinTask<?> ps = currentSteal;
1188     (currentSteal = task).doExec();
1189     currentSteal = ps;
1190     }
1191 dl 1.200 break;
1192 dl 1.90 }
1193 dl 1.200 else if (t.status < 0 && s + 1 == top) {
1194 dl 1.243 if (U.compareAndSwapObject(a, offset, t, null)) {
1195     top = s;
1196     }
1197 dl 1.200 break; // was cancelled
1198 dl 1.104 }
1199 dl 1.243 else if (++d == 0) {
1200     if (base != b) // rescan
1201     break;
1202 dl 1.200 return false;
1203 dl 1.243 }
1204 dl 1.104 }
1205 dl 1.200 if (task.status < 0)
1206     return false;
1207 dl 1.104 }
1208     }
1209 dl 1.200 return true;
1210 dl 1.104 }
1211    
1212     /**
1213 dl 1.200 * Pops task if in the same CC computation as the given task,
1214     * in either shared or owned mode. Used only by helpComplete.
1215 dl 1.78 */
1216 dl 1.253 final CountedCompleter<?> popCC(CountedCompleter<?> task, int mode) {
1217 dl 1.243 int b = base, s = top, al; ForkJoinTask<?>[] a;
1218     if ((a = array) != null && b != s && (al = a.length) > 0) {
1219 dl 1.256 int index = (al - 1) & (s - 1);
1220     long offset = ((long)index << ASHIFT) + ABASE;
1221     ForkJoinTask<?> o = (ForkJoinTask<?>)
1222     U.getObjectVolatile(a, offset);
1223 dl 1.243 if (o instanceof CountedCompleter) {
1224 dl 1.200 CountedCompleter<?> t = (CountedCompleter<?>)o;
1225     for (CountedCompleter<?> r = t;;) {
1226     if (r == task) {
1227 dl 1.253 if ((mode & IS_OWNED) == 0) {
1228 dl 1.243 boolean popped;
1229 dl 1.200 if (U.compareAndSwapInt(this, QLOCK, 0, 1)) {
1230 dl 1.243 if (popped =
1231     U.compareAndSwapObject(a, offset,
1232     t, null))
1233     top = s - 1;
1234     U.putOrderedInt(this, QLOCK, 0);
1235     if (popped)
1236 dl 1.200 return t;
1237 dl 1.178 }
1238     }
1239 dl 1.243 else if (U.compareAndSwapObject(a, offset,
1240     t, null)) {
1241     top = s - 1;
1242 dl 1.200 return t;
1243     }
1244     break;
1245 dl 1.178 }
1246 dl 1.200 else if ((r = r.completer) == null) // try parent
1247 dl 1.178 break;
1248     }
1249 dl 1.94 }
1250 dl 1.78 }
1251 dl 1.200 return null;
1252 dl 1.78 }
1253    
1254     /**
1255 dl 1.200 * Steals and runs a task in the same CC computation as the
1256     * given task if one exists and can be taken without
1257     * contention. Otherwise returns a checksum/control value for
1258     * use by method helpComplete.
1259     *
1260     * @return 1 if successful, 2 if retryable (lost to another
1261     * stealer), -1 if non-empty but no matching task found, else
1262     * the base index, forced negative.
1263     */
1264     final int pollAndExecCC(CountedCompleter<?> task) {
1265 dl 1.243 ForkJoinTask<?>[] a;
1266     int b = base, s = top, al, h;
1267     if ((a = array) != null && b != s && (al = a.length) > 0) {
1268 dl 1.256 int index = (al - 1) & b;
1269     long offset = ((long)index << ASHIFT) + ABASE;
1270     ForkJoinTask<?> o = (ForkJoinTask<?>)
1271     U.getObjectVolatile(a, offset);
1272 dl 1.243 if (o == null)
1273     h = 2; // retryable
1274     else if (!(o instanceof CountedCompleter))
1275     h = -1; // unmatchable
1276     else {
1277     CountedCompleter<?> t = (CountedCompleter<?>)o;
1278     for (CountedCompleter<?> r = t;;) {
1279     if (r == task) {
1280     if (b++ == base &&
1281     U.compareAndSwapObject(a, offset, t, null)) {
1282     base = b;
1283     t.doExec();
1284     h = 1; // success
1285     }
1286     else
1287     h = 2; // lost CAS
1288     break;
1289     }
1290     else if ((r = r.completer) == null) {
1291     h = -1; // unmatched
1292     break;
1293 dl 1.200 }
1294 dl 1.178 }
1295     }
1296 dl 1.78 }
1297 dl 1.243 else
1298     h = b | Integer.MIN_VALUE; // to sense movement on re-poll
1299 dl 1.200 return h;
1300 dl 1.78 }
1301    
1302     /**
1303 dl 1.86 * Returns true if owned and not known to be blocked.
1304     */
1305     final boolean isApparentlyUnblocked() {
1306     Thread wt; Thread.State s;
1307 dl 1.200 return (scanState >= 0 &&
1308 dl 1.86 (wt = owner) != null &&
1309     (s = wt.getState()) != Thread.State.BLOCKED &&
1310     s != Thread.State.WAITING &&
1311     s != Thread.State.TIMED_WAITING);
1312     }
1313    
1314 dl 1.211 // Unsafe mechanics. Note that some are (and must be) the same as in FJP
1315 jsr166 1.233 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
1316 dl 1.200 private static final int ABASE;
1317     private static final int ASHIFT;
1318 dl 1.105 private static final long QLOCK;
1319 dl 1.78 static {
1320     try {
1321 dl 1.105 QLOCK = U.objectFieldOffset
1322 jsr166 1.233 (WorkQueue.class.getDeclaredField("qlock"));
1323     ABASE = U.arrayBaseOffset(ForkJoinTask[].class);
1324     int scale = U.arrayIndexScale(ForkJoinTask[].class);
1325 jsr166 1.142 if ((scale & (scale - 1)) != 0)
1326 jsr166 1.232 throw new Error("array index scale not a power of two");
1327 jsr166 1.142 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1328 jsr166 1.231 } catch (ReflectiveOperationException e) {
1329 dl 1.78 throw new Error(e);
1330     }
1331     }
1332     }
1333 dl 1.14
1334 dl 1.112 // static fields (initialized in static initializer below)
1335    
1336     /**
1337     * Creates a new ForkJoinWorkerThread. This factory is used unless
1338     * overridden in ForkJoinPool constructors.
1339     */
1340     public static final ForkJoinWorkerThreadFactory
1341     defaultForkJoinWorkerThreadFactory;
1342    
1343 jsr166 1.1 /**
1344 dl 1.115 * Permission required for callers of methods that may start or
1345 jsr166 1.277 * kill threads. Also used as a static lock in tryInitialize.
1346 dl 1.115 */
1347 jsr166 1.276 static final RuntimePermission modifyThreadPermission;
1348 dl 1.115
1349     /**
1350 dl 1.101 * Common (static) pool. Non-null for public use unless a static
1351 dl 1.105 * construction exception, but internal usages null-check on use
1352     * to paranoically avoid potential initialization circularities
1353     * as well as to simplify generated code.
1354 dl 1.101 */
1355 dl 1.134 static final ForkJoinPool common;
1356 dl 1.101
1357     /**
1358 dl 1.160 * Common pool parallelism. To allow simpler use and management
1359     * when common pool threads are disabled, we allow the underlying
1360 dl 1.185 * common.parallelism field to be zero, but in that case still report
1361 dl 1.160 * parallelism as 1 to reflect resulting caller-runs mechanics.
1362 dl 1.90 */
1363 jsr166 1.274 static final int COMMON_PARALLELISM;
1364 dl 1.90
1365     /**
1366 dl 1.208 * Limit on spare thread construction in tryCompensate.
1367     */
1368 jsr166 1.273 private static final int COMMON_MAX_SPARES;
1369 dl 1.208
1370     /**
1371 dl 1.105 * Sequence number for creating workerNamePrefix.
1372 dl 1.86 */
1373 dl 1.105 private static int poolNumberSequence;
1374 dl 1.86
1375 jsr166 1.1 /**
1376 jsr166 1.132 * Returns the next sequence number. We don't expect this to
1377     * ever contend, so use simple builtin sync.
1378 dl 1.83 */
1379 dl 1.105 private static final synchronized int nextPoolId() {
1380     return ++poolNumberSequence;
1381     }
1382 dl 1.86
1383 dl 1.200 // static configuration constants
1384 dl 1.86
1385     /**
1386 dl 1.243 * Initial timeout value (in milliseconds) for the thread
1387 dl 1.105 * triggering quiescence to park waiting for new work. On timeout,
1388 jsr166 1.268 * the thread will instead try to shrink the number of workers.
1389     * The value should be large enough to avoid overly aggressive
1390     * shrinkage during most transient stalls (long GCs etc).
1391 dl 1.86 */
1392 dl 1.243 private static final long IDLE_TIMEOUT_MS = 2000L; // 2sec
1393 dl 1.86
1394     /**
1395 jsr166 1.279 * Tolerance for idle timeouts, to cope with timer undershoots.
1396 dl 1.120 */
1397 dl 1.243 private static final long TIMEOUT_SLOP_MS = 20L; // 20ms
1398 dl 1.200
1399     /**
1400 jsr166 1.273 * The default value for COMMON_MAX_SPARES. Overridable using the
1401     * "java.util.concurrent.ForkJoinPool.common.maximumSpares" system
1402     * property. The default value is far in excess of normal
1403     * requirements, but also far short of MAX_CAP and typical OS
1404     * thread limits, so allows JVMs to catch misuse/abuse before
1405     * running out of resources needed to do so.
1406 dl 1.200 */
1407 dl 1.208 private static final int DEFAULT_COMMON_MAX_SPARES = 256;
1408 dl 1.120
1409     /**
1410 dl 1.90 * Increment for seed generators. See class ThreadLocal for
1411     * explanation.
1412     */
1413 dl 1.193 private static final int SEED_INCREMENT = 0x9e3779b9;
1414 dl 1.83
1415 jsr166 1.163 /*
1416 dl 1.200 * Bits and masks for field ctl, packed with 4 16 bit subfields:
1417     * AC: Number of active running workers minus target parallelism
1418     * TC: Number of total workers minus target parallelism
1419     * SS: version count and status of top waiting thread
1420     * ID: poolIndex of top of Treiber stack of waiters
1421     *
1422     * When convenient, we can extract the lower 32 stack top bits
1423     * (including version bits) as sp=(int)ctl. The offsets of counts
1424     * by the target parallelism and the positionings of fields makes
1425     * it possible to perform the most common checks via sign tests of
1426     * fields: When ac is negative, there are not enough active
1427     * workers, when tc is negative, there are not enough total
1428     * workers. When sp is non-zero, there are waiting workers. To
1429     * deal with possibly negative fields, we use casts in and out of
1430     * "short" and/or signed shifts to maintain signedness.
1431     *
1432     * Because it occupies uppermost bits, we can add one active count
1433     * using getAndAddLong of AC_UNIT, rather than CAS, when returning
1434     * from a blocked join. Other updates entail multiple subfields
1435     * and masking, requiring CAS.
1436     */
1437    
1438     // Lower and upper word masks
1439     private static final long SP_MASK = 0xffffffffL;
1440     private static final long UC_MASK = ~SP_MASK;
1441 dl 1.86
1442 dl 1.200 // Active counts
1443 dl 1.86 private static final int AC_SHIFT = 48;
1444 dl 1.200 private static final long AC_UNIT = 0x0001L << AC_SHIFT;
1445     private static final long AC_MASK = 0xffffL << AC_SHIFT;
1446    
1447     // Total counts
1448 dl 1.86 private static final int TC_SHIFT = 32;
1449 dl 1.200 private static final long TC_UNIT = 0x0001L << TC_SHIFT;
1450     private static final long TC_MASK = 0xffffL << TC_SHIFT;
1451     private static final long ADD_WORKER = 0x0001L << (TC_SHIFT + 15); // sign
1452    
1453 dl 1.205 // runState bits: SHUTDOWN must be negative, others arbitrary powers of two
1454 dl 1.243 private static final int STARTED = 1;
1455     private static final int STOP = 1 << 1;
1456     private static final int TERMINATED = 1 << 2;
1457 dl 1.205 private static final int SHUTDOWN = 1 << 31;
1458 dl 1.86
1459     // Instance fields
1460 dl 1.200 volatile long ctl; // main pool control
1461 dl 1.243 volatile int runState;
1462 dl 1.200 final int config; // parallelism, mode
1463 dl 1.262 AuxState auxState; // lock, steal counts
1464 dl 1.200 volatile WorkQueue[] workQueues; // main registry
1465 dl 1.256 final String workerNamePrefix; // to create worker name string
1466 dl 1.112 final ForkJoinWorkerThreadFactory factory;
1467 dl 1.200 final UncaughtExceptionHandler ueh; // per-worker UEH
1468 dl 1.101
1469 jsr166 1.145 /**
1470 dl 1.258 * Instantiates fields upon first submission, or upon shutdown if
1471     * no submissions. If checkTermination true, also responds to
1472     * termination by external calls submitting tasks.
1473 dl 1.105 */
1474 dl 1.258 private void tryInitialize(boolean checkTermination) {
1475 dl 1.256 if ((runState & STARTED) == 0) { // bootstrap by locking static field
1476     int rs; // create workQueues array with size a power of two
1477     int p = config & SMASK; // ensure at least 2 slots
1478     int n = (p > 1) ? p - 1 : 1;
1479 jsr166 1.270 n |= n >>> 1;
1480     n |= n >>> 2;
1481     n |= n >>> 4;
1482     n |= n >>> 8;
1483     n |= n >>> 16;
1484     n = ((n + 1) << 1) & SMASK;
1485 dl 1.262 AuxState aux = new AuxState();
1486 dl 1.258 WorkQueue[] ws = new WorkQueue[n];
1487 jsr166 1.259 synchronized (modifyThreadPermission) { // double-check
1488 dl 1.258 if (((rs = runState) & STARTED) == 0) {
1489 dl 1.262 rs |= STARTED;
1490 dl 1.258 workQueues = ws;
1491 dl 1.262 auxState = aux;
1492     runState = rs;
1493 dl 1.101 }
1494     }
1495     }
1496 dl 1.258 if (checkTermination && runState < 0) {
1497 jsr166 1.244 tryTerminate(false, false); // help terminate
1498     throw new RejectedExecutionException();
1499     }
1500 dl 1.78 }
1501 jsr166 1.1
1502 dl 1.200 // Creating, registering and deregistering workers
1503    
1504 dl 1.112 /**
1505 dl 1.200 * Tries to construct and start one worker. Assumes that total
1506     * count has already been incremented as a reservation. Invokes
1507     * deregisterWorker on any failure.
1508     *
1509 dl 1.243 * @param isSpare true if this is a spare thread
1510 dl 1.200 * @return true if successful
1511 dl 1.115 */
1512 dl 1.243 private boolean createWorker(boolean isSpare) {
1513 dl 1.200 ForkJoinWorkerThreadFactory fac = factory;
1514     Throwable ex = null;
1515     ForkJoinWorkerThread wt = null;
1516 dl 1.243 WorkQueue q;
1517 dl 1.200 try {
1518     if (fac != null && (wt = fac.newThread(this)) != null) {
1519 dl 1.243 if (isSpare && (q = wt.workQueue) != null)
1520     q.config |= SPARE_WORKER;
1521 dl 1.200 wt.start();
1522     return true;
1523 dl 1.115 }
1524 dl 1.200 } catch (Throwable rex) {
1525     ex = rex;
1526 dl 1.112 }
1527 dl 1.200 deregisterWorker(wt, ex);
1528     return false;
1529 dl 1.112 }
1530    
1531 dl 1.200 /**
1532     * Tries to add one worker, incrementing ctl counts before doing
1533     * so, relying on createWorker to back out on failure.
1534     *
1535     * @param c incoming ctl value, with total count negative and no
1536     * idle workers. On CAS failure, c is refreshed and retried if
1537 jsr166 1.202 * this holds (otherwise, a new worker is not needed).
1538 dl 1.200 */
1539     private void tryAddWorker(long c) {
1540     do {
1541     long nc = ((AC_MASK & (c + AC_UNIT)) |
1542     (TC_MASK & (c + TC_UNIT)));
1543 dl 1.243 if (ctl == c && U.compareAndSwapLong(this, CTL, c, nc)) {
1544     createWorker(false);
1545     break;
1546 dl 1.200 }
1547     } while (((c = ctl) & ADD_WORKER) != 0L && (int)c == 0);
1548     }
1549 dl 1.112
1550     /**
1551 dl 1.200 * Callback from ForkJoinWorkerThread constructor to establish and
1552     * record its WorkQueue.
1553 dl 1.112 *
1554     * @param wt the worker thread
1555 dl 1.115 * @return the worker's queue
1556 dl 1.112 */
1557 dl 1.115 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1558 dl 1.200 UncaughtExceptionHandler handler;
1559 dl 1.262 AuxState aux;
1560 dl 1.200 wt.setDaemon(true); // configure thread
1561 dl 1.115 if ((handler = ueh) != null)
1562     wt.setUncaughtExceptionHandler(handler);
1563 dl 1.200 WorkQueue w = new WorkQueue(this, wt);
1564     int i = 0; // assign a pool index
1565     int mode = config & MODE_MASK;
1566 dl 1.262 int rs = runState;
1567     if ((aux = auxState) != null) {
1568     aux.lock();
1569     try {
1570     int s = (int)(aux.indexSeed += SEED_INCREMENT), n, m;
1571 dl 1.243 WorkQueue[] ws = workQueues;
1572     if (ws != null && (n = ws.length) > 0) {
1573     i = (m = n - 1) & ((s << 1) | 1); // odd-numbered indices
1574     if (ws[i] != null) { // collision
1575     int probes = 0; // step by approx half n
1576     int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1577     while (ws[i = (i + step) & m] != null) {
1578     if (++probes >= n) {
1579     workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1580     m = n - 1;
1581     probes = 0;
1582     }
1583 dl 1.94 }
1584     }
1585 dl 1.243 w.hint = s; // use as random seed
1586     w.config = i | mode;
1587     w.scanState = i | (s & 0x7fff0000); // random seq bits
1588     ws[i] = w;
1589 dl 1.94 }
1590 dl 1.262 } finally {
1591     aux.unlock();
1592 dl 1.78 }
1593     }
1594 dl 1.200 wt.setName(workerNamePrefix.concat(Integer.toString(i >>> 1)));
1595 dl 1.115 return w;
1596 dl 1.78 }
1597 dl 1.19
1598 jsr166 1.1 /**
1599 dl 1.86 * Final callback from terminating worker, as well as upon failure
1600 dl 1.105 * to construct or start a worker. Removes record of worker from
1601     * array, and adjusts counts. If pool is shutting down, tries to
1602     * complete termination.
1603 dl 1.78 *
1604 jsr166 1.151 * @param wt the worker thread, or null if construction failed
1605 dl 1.78 * @param ex the exception causing failure, or null if none
1606 dl 1.45 */
1607 dl 1.78 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1608     WorkQueue w = null;
1609 dl 1.262 int rs = runState;
1610 dl 1.78 if (wt != null && (w = wt.workQueue) != null) {
1611 dl 1.262 AuxState aux; WorkQueue[] ws; // remove index from array
1612 dl 1.200 int idx = w.config & SMASK;
1613 dl 1.262 int ns = w.nsteals;
1614     if ((aux = auxState) != null) {
1615     aux.lock();
1616     try {
1617 dl 1.243 if ((ws = workQueues) != null && ws.length > idx &&
1618     ws[idx] == w)
1619     ws[idx] = null;
1620 dl 1.262 aux.stealCount += ns;
1621     } finally {
1622     aux.unlock();
1623 dl 1.243 }
1624     }
1625     }
1626     if (w == null || (w.config & UNREGISTERED) == 0) { // else pre-adjusted
1627     long c; // decrement counts
1628     do {} while (!U.compareAndSwapLong
1629     (this, CTL, c = ctl, ((AC_MASK & (c - AC_UNIT)) |
1630     (TC_MASK & (c - TC_UNIT)) |
1631     (SP_MASK & c))));
1632     }
1633 dl 1.200 if (w != null) {
1634     w.qlock = -1; // ensure set
1635     w.cancelAll(); // cancel remaining tasks
1636 dl 1.78 }
1637 dl 1.209 for (;;) { // possibly replace
1638 dl 1.243 WorkQueue[] ws; int wl, sp; long c;
1639 dl 1.209 if (tryTerminate(false, false) || w == null || w.array == null ||
1640     (runState & STOP) != 0 || (ws = workQueues) == null ||
1641 dl 1.243 (wl = ws.length) <= 0) // already terminating
1642 dl 1.209 break;
1643 dl 1.243 else if ((sp = (int)(c = ctl)) != 0) { // wake up replacement
1644     if (tryRelease(c, ws[(wl - 1) & sp], AC_UNIT))
1645 dl 1.205 break;
1646 dl 1.120 }
1647 dl 1.209 else if (ex != null && (c & ADD_WORKER) != 0L) {
1648     tryAddWorker(c); // create replacement
1649     break;
1650     }
1651     else // don't need replacement
1652     break;
1653 dl 1.78 }
1654 dl 1.200 if (ex == null) // help clean on way out
1655 dl 1.120 ForkJoinTask.helpExpungeStaleExceptions();
1656 dl 1.200 else // rethrow
1657 dl 1.104 ForkJoinTask.rethrow(ex);
1658 dl 1.78 }
1659 dl 1.52
1660 dl 1.200 // Signalling
1661 dl 1.19
1662     /**
1663 dl 1.115 * Tries to create or activate a worker if too few are active.
1664 dl 1.105 */
1665 dl 1.253 final void signalWork() {
1666 dl 1.243 for (;;) {
1667     long c; int sp, i; WorkQueue v; WorkQueue[] ws;
1668     if ((c = ctl) >= 0L) // enough workers
1669     break;
1670     else if ((sp = (int)c) == 0) { // no idle workers
1671     if ((c & ADD_WORKER) != 0L) // too few workers
1672 dl 1.200 tryAddWorker(c);
1673     break;
1674     }
1675 dl 1.243 else if ((ws = workQueues) == null)
1676     break; // unstarted/terminated
1677     else if (ws.length <= (i = sp & SMASK))
1678     break; // terminated
1679     else if ((v = ws[i]) == null)
1680     break; // terminating
1681     else {
1682     int ns = sp & ~UNSIGNALLED;
1683     int vs = v.scanState;
1684     long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + AC_UNIT));
1685     if (sp == vs && U.compareAndSwapLong(this, CTL, c, nc)) {
1686     v.scanState = ns;
1687     LockSupport.unpark(v.parker);
1688     break;
1689     }
1690 dl 1.174 }
1691 dl 1.52 }
1692 dl 1.14 }
1693    
1694 dl 1.200 /**
1695     * Signals and releases worker v if it is top of idle worker
1696     * stack. This performs a one-shot version of signalWork only if
1697     * there is (apparently) at least one idle worker.
1698     *
1699     * @param c incoming ctl value
1700     * @param v if non-null, a worker
1701     * @param inc the increment to active count (zero when compensating)
1702     * @return true if successful
1703     */
1704     private boolean tryRelease(long c, WorkQueue v, long inc) {
1705 dl 1.243 int sp = (int)c, ns = sp & ~UNSIGNALLED;
1706     if (v != null) {
1707     int vs = v.scanState;
1708     long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + inc));
1709     if (sp == vs && U.compareAndSwapLong(this, CTL, c, nc)) {
1710     v.scanState = ns;
1711     LockSupport.unpark(v.parker);
1712 dl 1.200 return true;
1713     }
1714     }
1715     return false;
1716     }
1717    
1718 dl 1.243 /**
1719     * With approx probability of a missed signal, tries (once) to
1720     * reactivate worker w (or some other worker), failing if stale or
1721     * known to be already active.
1722     *
1723     * @param w the worker
1724     * @param ws the workQueue array to use
1725     * @param r random seed
1726     */
1727     private void tryReactivate(WorkQueue w, WorkQueue[] ws, int r) {
1728 dl 1.272 long c; int sp, wl; WorkQueue v;
1729 dl 1.243 if ((sp = (int)(c = ctl)) != 0 && w != null &&
1730     ws != null && (wl = ws.length) > 0 &&
1731 dl 1.272 ((sp ^ r) & SS_SEQ) == 0 &&
1732     (v = ws[(wl - 1) & sp]) != null) {
1733 dl 1.243 long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + AC_UNIT));
1734     int ns = sp & ~UNSIGNALLED;
1735 dl 1.262 if (w.scanState < 0 &&
1736 dl 1.243 v.scanState == sp &&
1737     U.compareAndSwapLong(this, CTL, c, nc)) {
1738     v.scanState = ns;
1739     LockSupport.unpark(v.parker);
1740     }
1741     }
1742     }
1743 dl 1.90
1744 dl 1.14 /**
1745 dl 1.243 * If worker w exists and is active, enqueues and sets status to inactive.
1746     *
1747     * @param w the worker
1748     * @param ss current (non-negative) scanState
1749 dl 1.14 */
1750 dl 1.243 private void inactivate(WorkQueue w, int ss) {
1751     int ns = (ss + SS_SEQ) | UNSIGNALLED;
1752     long lc = ns & SP_MASK, nc, c;
1753     if (w != null) {
1754     w.scanState = ns;
1755     do {
1756     nc = lc | (UC_MASK & ((c = ctl) - AC_UNIT));
1757     w.stackPred = (int)c;
1758     } while (!U.compareAndSwapLong(this, CTL, c, nc));
1759 dl 1.178 }
1760 dl 1.14 }
1761    
1762     /**
1763 dl 1.243 * Possibly blocks worker w waiting for signal, or returns
1764     * negative status if the worker should terminate. May return
1765     * without status change if multiple stale unparks and/or
1766     * interrupts occur.
1767 dl 1.78 *
1768 dl 1.243 * @param w the calling worker
1769     * @return negative if w should terminate
1770 dl 1.78 */
1771 dl 1.243 private int awaitWork(WorkQueue w) {
1772     int stat = 0;
1773     if (w != null && w.scanState < 0) {
1774     long c = ctl;
1775     if ((int)(c >> AC_SHIFT) + (config & SMASK) <= 0)
1776     stat = timedAwaitWork(w, c); // possibly quiescent
1777     else if ((runState & STOP) != 0)
1778     stat = w.qlock = -1; // pool terminating
1779     else if ((stat = w.qlock) >= 0 && w.scanState < 0) {
1780     w.parker = Thread.currentThread();
1781     if (w.scanState < 0) { // recheck after write
1782     LockSupport.park(this);
1783     if ((stat = w.qlock) >= 0 && w.scanState < 0) {
1784     Thread.interrupted(); // clear status
1785     LockSupport.park(this); // retry once
1786 dl 1.200 }
1787 dl 1.115 }
1788 dl 1.243 w.parker = null;
1789 dl 1.115 }
1790 dl 1.52 }
1791 dl 1.243 return stat;
1792 dl 1.14 }
1793    
1794     /**
1795 dl 1.243 * Possibly triggers shutdown and tries (once) to block worker
1796     * when pool is (or may be) quiescent. Waits up to a duration
1797     * determined by number of workers. On timeout, if ctl has not
1798 dl 1.200 * changed, terminates the worker, which will in turn wake up
1799 dl 1.178 * another worker to possibly repeat this process.
1800 dl 1.52 *
1801 dl 1.78 * @param w the calling worker
1802 dl 1.243 * @return negative if w should terminate
1803 dl 1.14 */
1804 dl 1.243 private int timedAwaitWork(WorkQueue w, long c) {
1805     int stat = 0;
1806     int scale = 1 - (short)(c >>> TC_SHIFT);
1807     long deadline = (((scale <= 0) ? 1 : scale) * IDLE_TIMEOUT_MS +
1808     System.currentTimeMillis());
1809     if (w != null && w.scanState < 0) {
1810 dl 1.262 int ss; AuxState aux;
1811 dl 1.243 if (runState < 0 && tryTerminate(false, false))
1812     stat = w.qlock = -1; // help terminate
1813     else if ((stat = w.qlock) >= 0 && w.scanState < 0) {
1814     w.parker = Thread.currentThread();
1815     if (w.scanState < 0)
1816     LockSupport.parkUntil(this, deadline);
1817     w.parker = null;
1818     if ((stat = w.qlock) >= 0 && (ss = w.scanState) < 0 &&
1819     !Thread.interrupted() && (int)c == ss &&
1820 dl 1.262 (aux = auxState) != null && ctl == c &&
1821 dl 1.243 deadline - System.currentTimeMillis() <= TIMEOUT_SLOP_MS) {
1822 dl 1.262 aux.lock();
1823     try { // pre-deregister
1824 dl 1.243 WorkQueue[] ws;
1825     int cfg = w.config, idx = cfg & SMASK;
1826     long nc = ((UC_MASK & (c - TC_UNIT)) |
1827     (SP_MASK & w.stackPred));
1828     if ((ws = workQueues) != null &&
1829     idx < ws.length && idx >= 0 && ws[idx] == w &&
1830     U.compareAndSwapLong(this, CTL, c, nc)) {
1831     ws[idx] = null;
1832     w.config = cfg | UNREGISTERED;
1833     stat = w.qlock = -1;
1834     }
1835 dl 1.262 } finally {
1836     aux.unlock();
1837 dl 1.243 }
1838     }
1839     }
1840     }
1841     return stat;
1842     }
1843    
1844     /**
1845     * If the given worker is a spare with no queued tasks, and there
1846     * are enough existing workers, drops it from ctl counts and sets
1847 jsr166 1.248 * its state to terminated.
1848 dl 1.243 *
1849     * @param w the calling worker -- must be a spare
1850     * @return true if dropped (in which case it must not process more tasks)
1851     */
1852     private boolean tryDropSpare(WorkQueue w) {
1853     if (w != null && w.isEmpty()) { // no local tasks
1854     long c; int sp, wl; WorkQueue[] ws; WorkQueue v;
1855     while ((short)((c = ctl) >> TC_SHIFT) > 0 &&
1856     ((sp = (int)c) != 0 || (int)(c >> AC_SHIFT) > 0) &&
1857     (ws = workQueues) != null && (wl = ws.length) > 0) {
1858     boolean dropped, canDrop;
1859     if (sp == 0) { // no queued workers
1860     long nc = ((AC_MASK & (c - AC_UNIT)) |
1861     (TC_MASK & (c - TC_UNIT)) | (SP_MASK & c));
1862     dropped = U.compareAndSwapLong(this, CTL, c, nc);
1863     }
1864     else if (
1865     (v = ws[(wl - 1) & sp]) == null || v.scanState != sp)
1866     dropped = false; // stale; retry
1867     else {
1868     long nc = v.stackPred & SP_MASK;
1869     if (w == v || w.scanState >= 0) {
1870     canDrop = true; // w unqueued or topmost
1871     nc |= ((AC_MASK & c) | // ensure replacement
1872     (TC_MASK & (c - TC_UNIT)));
1873     }
1874     else { // w may be queued
1875     canDrop = false; // help uncover
1876     nc |= ((AC_MASK & (c + AC_UNIT)) |
1877     (TC_MASK & c));
1878     }
1879     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1880     v.scanState = sp & ~UNSIGNALLED;
1881     LockSupport.unpark(v.parker);
1882     dropped = canDrop;
1883     }
1884     else
1885     dropped = false;
1886     }
1887     if (dropped) { // pre-deregister
1888     int cfg = w.config, idx = cfg & SMASK;
1889     if (idx >= 0 && idx < ws.length && ws[idx] == w)
1890     ws[idx] = null;
1891     w.config = cfg | UNREGISTERED;
1892     w.qlock = -1;
1893     return true;
1894 dl 1.200 }
1895 dl 1.177 }
1896 dl 1.243 }
1897     return false;
1898     }
1899    
1900     /**
1901     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1902     */
1903     final void runWorker(WorkQueue w) {
1904     w.growArray(); // allocate queue
1905 dl 1.253 int bound = (w.config & SPARE_WORKER) != 0 ? 0 : POLL_LIMIT;
1906 dl 1.243 long seed = w.hint * 0xdaba0b6eb09322e3L; // initial random seed
1907     for (long r = (seed == 0L) ? 1L : seed;;) { // ensure nonzero
1908     if (bound == 0 && tryDropSpare(w))
1909     break;
1910 dl 1.253 // high bits of prev seed for step; current low bits for idx
1911     int step = (int)(r >>> 48) | 1;
1912 dl 1.243 r ^= r >>> 12; r ^= r << 25; r ^= r >>> 27; // xorshift
1913 dl 1.253 if (scan(w, bound, step, (int)r) < 0 && awaitWork(w) < 0)
1914 dl 1.243 break;
1915     }
1916     }
1917    
1918     // Scanning for tasks
1919    
1920     /**
1921     * Repeatedly scans for and tries to steal and execute (via
1922     * workQueue.runTask) a queued task. Each scan traverses queues in
1923     * pseudorandom permutation. Upon finding a non-empty queue, makes
1924 dl 1.253 * at most the given bound attempts to re-poll (fewer if
1925     * contended) on the same queue before returning (impossible
1926     * scanState value) 0 to restart scan. Else returns after at least
1927     * 1 and at most 32 full scans.
1928 dl 1.243 *
1929     * @param w the worker (via its WorkQueue)
1930 dl 1.253 * @param bound repoll bound as bitmask (0 if spare)
1931 dl 1.243 * @param step (circular) index increment per iteration (must be odd)
1932     * @param r a random seed for origin index
1933     * @return negative if should await signal
1934     */
1935 dl 1.253 private int scan(WorkQueue w, int bound, int step, int r) {
1936 dl 1.243 int stat = 0, wl; WorkQueue[] ws;
1937 dl 1.250 if ((ws = workQueues) != null && w != null && (wl = ws.length) > 0) {
1938 dl 1.243 for (int m = wl - 1,
1939 dl 1.250 origin = m & r, idx = origin,
1940 dl 1.243 npolls = 0,
1941     ss = w.scanState;;) { // negative if inactive
1942     WorkQueue q; ForkJoinTask<?>[] a; int b, d, al;
1943     if ((q = ws[idx]) != null && (d = (b = q.base) - q.top) < 0 &&
1944     (a = q.array) != null && (al = a.length) > 0) {
1945 dl 1.256 int index = (al - 1) & b;
1946     long offset = ((long)index << ASHIFT) + ABASE;
1947 dl 1.243 ForkJoinTask<?> t = (ForkJoinTask<?>)
1948     U.getObjectVolatile(a, offset);
1949 dl 1.262 if (t == null)
1950     break; // empty or busy
1951     else if (b++ != q.base)
1952     break; // busy
1953 dl 1.253 else if (ss < 0) {
1954 dl 1.258 tryReactivate(w, ws, r);
1955     break; // retry upon rescan
1956 dl 1.253 }
1957     else if (!U.compareAndSwapObject(a, offset, t, null))
1958     break; // contended
1959     else {
1960     q.base = b;
1961     w.currentSteal = t;
1962     if (d != -1) // propagate signal
1963     signalWork();
1964     w.runTask(t);
1965     if (++npolls > bound)
1966     break;
1967 dl 1.243 }
1968 dl 1.178 }
1969 dl 1.243 else if (npolls != 0) // rescan
1970     break;
1971 dl 1.250 else if ((idx = (idx + step) & m) == origin) {
1972     if (ss < 0) { // await signal
1973     stat = ss;
1974     break;
1975     }
1976     else if (r >= 0) {
1977 dl 1.243 inactivate(w, ss);
1978 dl 1.250 break;
1979     }
1980     else
1981     r <<= 1; // at most 31 rescans
1982 dl 1.243 }
1983 dl 1.120 }
1984     }
1985 dl 1.243 return stat;
1986 dl 1.178 }
1987    
1988 dl 1.200 // Joining tasks
1989    
1990 dl 1.178 /**
1991 dl 1.200 * Tries to steal and run tasks within the target's computation.
1992     * Uses a variant of the top-level algorithm, restricted to tasks
1993     * with the given task as ancestor: It prefers taking and running
1994     * eligible tasks popped from the worker's own queue (via
1995     * popCC). Otherwise it scans others, randomly moving on
1996     * contention or execution, deciding to give up based on a
1997 dl 1.243 * checksum (via return codes from pollAndExecCC). The maxTasks
1998 dl 1.200 * argument supports external usages; internal calls use zero,
1999     * allowing unbounded steps (external calls trap non-positive
2000     * values).
2001     *
2002     * @param w caller
2003 jsr166 1.202 * @param maxTasks if non-zero, the maximum number of other tasks to run
2004 dl 1.200 * @return task status on exit
2005     */
2006     final int helpComplete(WorkQueue w, CountedCompleter<?> task,
2007     int maxTasks) {
2008 dl 1.243 WorkQueue[] ws; int s = 0, wl;
2009     if ((ws = workQueues) != null && (wl = ws.length) > 1 &&
2010 dl 1.200 task != null && w != null) {
2011 dl 1.253 for (int m = wl - 1,
2012     mode = w.config,
2013     r = ~mode, // scanning seed
2014     origin = r & m, k = origin, // first queue to scan
2015     step = 3, // first scan step
2016     h = 1, // 1:ran, >1:contended, <0:hash
2017     oldSum = 0, checkSum = 0;;) {
2018 dl 1.243 CountedCompleter<?> p; WorkQueue q; int i;
2019 dl 1.200 if ((s = task.status) < 0)
2020     break;
2021 dl 1.253 if (h == 1 && (p = w.popCC(task, mode)) != null) {
2022 dl 1.200 p.doExec(); // run local task
2023     if (maxTasks != 0 && --maxTasks == 0)
2024     break;
2025     origin = k; // reset
2026     oldSum = checkSum = 0;
2027     }
2028 dl 1.243 else { // poll other worker queues
2029     if ((i = k | 1) < 0 || i > m || (q = ws[i]) == null)
2030 dl 1.200 h = 0;
2031     else if ((h = q.pollAndExecCC(task)) < 0)
2032     checkSum += h;
2033     if (h > 0) {
2034     if (h == 1 && maxTasks != 0 && --maxTasks == 0)
2035     break;
2036 dl 1.253 step = (r >>> 16) | 3;
2037 dl 1.200 r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
2038 dl 1.243 k = origin = r & m; // move and restart
2039 dl 1.200 oldSum = checkSum = 0;
2040     }
2041 dl 1.243 else if ((k = (k + step) & m) == origin) {
2042 dl 1.200 if (oldSum == (oldSum = checkSum))
2043     break;
2044     checkSum = 0;
2045     }
2046     }
2047 dl 1.178 }
2048     }
2049 dl 1.200 return s;
2050 dl 1.120 }
2051    
2052     /**
2053 dl 1.78 * Tries to locate and execute tasks for a stealer of the given
2054 jsr166 1.265 * task, or in turn one of its stealers. Traces currentSteal ->
2055 dl 1.78 * currentJoin links looking for a thread working on a descendant
2056     * of the given task and with a non-empty queue to steal back and
2057     * execute tasks from. The first call to this method upon a
2058     * waiting join will often entail scanning/search, (which is OK
2059     * because the joiner has nothing better to do), but this method
2060 dl 1.200 * leaves hints in workers to speed up subsequent calls.
2061 dl 1.78 *
2062 dl 1.200 * @param w caller
2063 dl 1.78 * @param task the task to join
2064     */
2065 dl 1.200 private void helpStealer(WorkQueue w, ForkJoinTask<?> task) {
2066 dl 1.243 if (task != null && w != null) {
2067     ForkJoinTask<?> ps = w.currentSteal;
2068     WorkQueue[] ws; int wl, oldSum = 0;
2069     outer: while (w.tryRemoveAndExec(task) && task.status >= 0 &&
2070     (ws = workQueues) != null && (wl = ws.length) > 0) {
2071 dl 1.200 ForkJoinTask<?> subtask;
2072 dl 1.243 int m = wl - 1, checkSum = 0; // for stability check
2073 dl 1.200 WorkQueue j = w, v; // v is subtask stealer
2074     descent: for (subtask = task; subtask.status >= 0; ) {
2075 dl 1.243 for (int h = j.hint | 1, k = 0, i;;) {
2076     if ((v = ws[i = (h + (k << 1)) & m]) != null) {
2077 dl 1.200 if (v.currentSteal == subtask) {
2078     j.hint = i;
2079 dl 1.95 break;
2080     }
2081 dl 1.200 checkSum += v.base;
2082 dl 1.78 }
2083 dl 1.243 if (++k > m) // can't find stealer
2084     break outer;
2085 dl 1.78 }
2086 dl 1.243
2087 dl 1.200 for (;;) { // help v or descend
2088 dl 1.243 ForkJoinTask<?>[] a; int b, al;
2089     if (subtask.status < 0) // too late to help
2090     break descent;
2091 dl 1.200 checkSum += (b = v.base);
2092     ForkJoinTask<?> next = v.currentJoin;
2093 dl 1.243 ForkJoinTask<?> t = null;
2094     if ((a = v.array) != null && (al = a.length) > 0) {
2095 dl 1.256 int index = (al - 1) & b;
2096     long offset = ((long)index << ASHIFT) + ABASE;
2097 dl 1.262 t = (ForkJoinTask<?>)
2098     U.getObjectVolatile(a, offset);
2099 dl 1.243 if (t != null && b++ == v.base) {
2100     if (j.currentJoin != subtask ||
2101     v.currentSteal != subtask ||
2102     subtask.status < 0)
2103     break descent; // stale
2104     if (U.compareAndSwapObject(a, offset, t, null)) {
2105     v.base = b;
2106     w.currentSteal = t;
2107     for (int top = w.top;;) {
2108     t.doExec(); // help
2109     w.currentSteal = ps;
2110     if (task.status < 0)
2111     break outer;
2112     if (w.top == top)
2113     break; // run local tasks
2114     if ((t = w.pop()) == null)
2115     break descent;
2116     w.currentSteal = t;
2117     }
2118     }
2119     }
2120     }
2121     if (t == null && b == v.base && b - v.top >= 0) {
2122     if ((subtask = next) == null) { // try to descend
2123     if (next == v.currentJoin &&
2124     oldSum == (oldSum = checkSum))
2125     break outer;
2126 dl 1.200 break descent;
2127 dl 1.243 }
2128 dl 1.200 j = v;
2129     break;
2130 dl 1.95 }
2131 dl 1.52 }
2132 dl 1.19 }
2133 dl 1.243 }
2134 dl 1.14 }
2135 dl 1.22 }
2136    
2137 dl 1.52 /**
2138 dl 1.200 * Tries to decrement active count (sometimes implicitly) and
2139     * possibly release or create a compensating worker in preparation
2140     * for blocking. Returns false (retryable by caller), on
2141 dl 1.208 * contention, detected staleness, instability, or termination.
2142 dl 1.105 *
2143 dl 1.200 * @param w caller
2144 dl 1.19 */
2145 dl 1.200 private boolean tryCompensate(WorkQueue w) {
2146 dl 1.243 boolean canBlock; int wl;
2147     long c = ctl;
2148     WorkQueue[] ws = workQueues;
2149     int pc = config & SMASK;
2150     int ac = pc + (int)(c >> AC_SHIFT);
2151     int tc = pc + (short)(c >> TC_SHIFT);
2152     if (w == null || w.qlock < 0 || pc == 0 || // terminating or disabled
2153     ws == null || (wl = ws.length) <= 0)
2154 dl 1.200 canBlock = false;
2155     else {
2156 dl 1.243 int m = wl - 1, sp;
2157     boolean busy = true; // validate ac
2158     for (int i = 0; i <= m; ++i) {
2159     int k; WorkQueue v;
2160     if ((k = (i << 1) | 1) <= m && k >= 0 && (v = ws[k]) != null &&
2161     v.scanState >= 0 && v.currentSteal == null) {
2162     busy = false;
2163     break;
2164 dl 1.178 }
2165 dl 1.52 }
2166 dl 1.243 if (!busy || ctl != c)
2167     canBlock = false; // unstable or stale
2168     else if ((sp = (int)c) != 0) // release idle worker
2169     canBlock = tryRelease(c, ws[m & sp], 0L);
2170 dl 1.200 else if (tc >= pc && ac > 1 && w.isEmpty()) {
2171     long nc = ((AC_MASK & (c - AC_UNIT)) |
2172 dl 1.243 (~AC_MASK & c)); // uncompensated
2173 dl 1.200 canBlock = U.compareAndSwapLong(this, CTL, c, nc);
2174 dl 1.105 }
2175 dl 1.208 else if (tc >= MAX_CAP ||
2176 jsr166 1.273 (this == common && tc >= pc + COMMON_MAX_SPARES))
2177 dl 1.200 throw new RejectedExecutionException(
2178     "Thread limit exceeded replacing blocked worker");
2179 dl 1.243 else { // similar to tryAddWorker
2180     boolean isSpare = (tc >= pc);
2181     long nc = (AC_MASK & c) | (TC_MASK & (c + TC_UNIT));
2182     canBlock = (U.compareAndSwapLong(this, CTL, c, nc) &&
2183     createWorker(isSpare)); // throws on exception
2184 dl 1.90 }
2185     }
2186 dl 1.200 return canBlock;
2187 dl 1.90 }
2188    
2189     /**
2190 dl 1.200 * Helps and/or blocks until the given task is done or timeout.
2191 dl 1.90 *
2192 dl 1.200 * @param w caller
2193 dl 1.90 * @param task the task
2194 dl 1.219 * @param deadline for timed waits, if nonzero
2195 dl 1.90 * @return task status on exit
2196     */
2197 dl 1.200 final int awaitJoin(WorkQueue w, ForkJoinTask<?> task, long deadline) {
2198 dl 1.105 int s = 0;
2199 dl 1.243 if (w != null) {
2200 dl 1.200 ForkJoinTask<?> prevJoin = w.currentJoin;
2201 dl 1.243 if (task != null && (s = task.status) >= 0) {
2202     w.currentJoin = task;
2203     CountedCompleter<?> cc = (task instanceof CountedCompleter) ?
2204     (CountedCompleter<?>)task : null;
2205     for (;;) {
2206     if (cc != null)
2207     helpComplete(w, cc, 0);
2208     else
2209     helpStealer(w, task);
2210     if ((s = task.status) < 0)
2211     break;
2212     long ms, ns;
2213     if (deadline == 0L)
2214     ms = 0L;
2215     else if ((ns = deadline - System.nanoTime()) <= 0L)
2216     break;
2217     else if ((ms = TimeUnit.NANOSECONDS.toMillis(ns)) <= 0L)
2218     ms = 1L;
2219     if (tryCompensate(w)) {
2220     task.internalWait(ms);
2221     U.getAndAddLong(this, CTL, AC_UNIT);
2222     }
2223     if ((s = task.status) < 0)
2224     break;
2225 dl 1.90 }
2226 dl 1.243 w.currentJoin = prevJoin;
2227 dl 1.90 }
2228     }
2229 dl 1.94 return s;
2230 dl 1.90 }
2231    
2232 dl 1.200 // Specialized scanning
2233 dl 1.90
2234     /**
2235     * Returns a (probably) non-empty steal queue, if one is found
2236 dl 1.131 * during a scan, else null. This method must be retried by
2237     * caller if, by the time it tries to use the queue, it is empty.
2238 dl 1.78 */
2239 dl 1.178 private WorkQueue findNonEmptyStealQueue() {
2240 dl 1.243 WorkQueue[] ws; int wl; // one-shot version of scan loop
2241 dl 1.211 int r = ThreadLocalRandom.nextSecondarySeed();
2242 dl 1.243 if ((ws = workQueues) != null && (wl = ws.length) > 0) {
2243     int m = wl - 1, origin = r & m;
2244     for (int k = origin, oldSum = 0, checkSum = 0;;) {
2245 dl 1.211 WorkQueue q; int b;
2246     if ((q = ws[k]) != null) {
2247     if ((b = q.base) - q.top < 0)
2248     return q;
2249     checkSum += b;
2250     }
2251     if ((k = (k + 1) & m) == origin) {
2252     if (oldSum == (oldSum = checkSum))
2253     break;
2254     checkSum = 0;
2255 dl 1.52 }
2256     }
2257 dl 1.211 }
2258 dl 1.200 return null;
2259 dl 1.22 }
2260    
2261     /**
2262 dl 1.78 * Runs tasks until {@code isQuiescent()}. We piggyback on
2263     * active count ctl maintenance, but rather than blocking
2264     * when tasks cannot be found, we rescan until all others cannot
2265     * find tasks either.
2266     */
2267     final void helpQuiescePool(WorkQueue w) {
2268 dl 1.211 ForkJoinTask<?> ps = w.currentSteal; // save context
2269 dl 1.243 int wc = w.config;
2270 dl 1.78 for (boolean active = true;;) {
2271 dl 1.243 long c; WorkQueue q; ForkJoinTask<?> t;
2272     if (wc >= 0 && (t = w.pop()) != null) { // run locals if LIFO
2273     (w.currentSteal = t).doExec();
2274     w.currentSteal = ps;
2275     }
2276     else if ((q = findNonEmptyStealQueue()) != null) {
2277 dl 1.78 if (!active) { // re-establish active count
2278     active = true;
2279 dl 1.200 U.getAndAddLong(this, CTL, AC_UNIT);
2280     }
2281 dl 1.243 if ((t = q.pollAt(q.base)) != null) {
2282     (w.currentSteal = t).doExec();
2283     w.currentSteal = ps;
2284 dl 1.215 if (++w.nsteals < 0)
2285     w.transferStealCount(this);
2286 dl 1.178 }
2287 dl 1.78 }
2288 jsr166 1.194 else if (active) { // decrement active count without queuing
2289 dl 1.200 long nc = (AC_MASK & ((c = ctl) - AC_UNIT)) | (~AC_MASK & c);
2290 dl 1.131 if (U.compareAndSwapLong(this, CTL, c, nc))
2291 dl 1.78 active = false;
2292 dl 1.22 }
2293 dl 1.200 else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) <= 0 &&
2294     U.compareAndSwapLong(this, CTL, c, c + AC_UNIT))
2295 dl 1.185 break;
2296 dl 1.22 }
2297     }
2298    
2299     /**
2300 jsr166 1.84 * Gets and removes a local or stolen task for the given worker.
2301 dl 1.78 *
2302     * @return a task, if available
2303 dl 1.22 */
2304 dl 1.78 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2305     for (ForkJoinTask<?> t;;) {
2306 dl 1.243 WorkQueue q;
2307 dl 1.78 if ((t = w.nextLocalTask()) != null)
2308     return t;
2309 dl 1.178 if ((q = findNonEmptyStealQueue()) == null)
2310 dl 1.78 return null;
2311 dl 1.243 if ((t = q.pollAt(q.base)) != null)
2312 dl 1.78 return t;
2313 dl 1.52 }
2314 dl 1.14 }
2315    
2316     /**
2317 dl 1.105 * Returns a cheap heuristic guide for task partitioning when
2318     * programmers, frameworks, tools, or languages have little or no
2319 jsr166 1.222 * idea about task granularity. In essence, by offering this
2320 dl 1.105 * method, we ask users only about tradeoffs in overhead vs
2321     * expected throughput and its variance, rather than how finely to
2322     * partition tasks.
2323     *
2324     * In a steady state strict (tree-structured) computation, each
2325     * thread makes available for stealing enough tasks for other
2326     * threads to remain active. Inductively, if all threads play by
2327     * the same rules, each thread should make available only a
2328     * constant number of tasks.
2329     *
2330     * The minimum useful constant is just 1. But using a value of 1
2331     * would require immediate replenishment upon each steal to
2332     * maintain enough tasks, which is infeasible. Further,
2333     * partitionings/granularities of offered tasks should minimize
2334     * steal rates, which in general means that threads nearer the top
2335     * of computation tree should generate more than those nearer the
2336     * bottom. In perfect steady state, each thread is at
2337     * approximately the same level of computation tree. However,
2338     * producing extra tasks amortizes the uncertainty of progress and
2339     * diffusion assumptions.
2340     *
2341 jsr166 1.161 * So, users will want to use values larger (but not much larger)
2342 dl 1.105 * than 1 to both smooth over transient shortages and hedge
2343     * against uneven progress; as traded off against the cost of
2344     * extra task overhead. We leave the user to pick a threshold
2345     * value to compare with the results of this call to guide
2346     * decisions, but recommend values such as 3.
2347     *
2348     * When all threads are active, it is on average OK to estimate
2349     * surplus strictly locally. In steady-state, if one thread is
2350     * maintaining say 2 surplus tasks, then so are others. So we can
2351     * just use estimated queue length. However, this strategy alone
2352     * leads to serious mis-estimates in some non-steady-state
2353     * conditions (ramp-up, ramp-down, other stalls). We can detect
2354     * many of these by further considering the number of "idle"
2355     * threads, that are known to have zero queued tasks, so
2356     * compensate by a factor of (#idle/#active) threads.
2357     */
2358     static int getSurplusQueuedTaskCount() {
2359     Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2360 jsr166 1.229 if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) {
2361 dl 1.243 int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2362 dl 1.112 int n = (q = wt.workQueue).top - q.base;
2363 dl 1.105 int a = (int)(pool.ctl >> AC_SHIFT) + p;
2364 dl 1.112 return n - (a > (p >>>= 1) ? 0 :
2365     a > (p >>>= 1) ? 1 :
2366     a > (p >>>= 1) ? 2 :
2367     a > (p >>>= 1) ? 4 :
2368     8);
2369 dl 1.105 }
2370     return 0;
2371 dl 1.100 }
2372    
2373 dl 1.86 // Termination
2374 dl 1.14
2375     /**
2376 dl 1.210 * Possibly initiates and/or completes termination.
2377 dl 1.14 *
2378     * @param now if true, unconditionally terminate, else only
2379 dl 1.78 * if no work and no active workers
2380 dl 1.243 * @param enable if true, terminate when next possible
2381 dl 1.14 * @return true if now terminating or terminated
2382 jsr166 1.1 */
2383 dl 1.86 private boolean tryTerminate(boolean now, boolean enable) {
2384 dl 1.262 AuxState aux; int rs;
2385 dl 1.258 if ((rs = runState) >= 0 && (!enable || this == common))
2386     return false;
2387 dl 1.262 while ((aux = auxState) == null)
2388 dl 1.258 tryInitialize(false);
2389 dl 1.262 aux.lock();
2390     rs = runState = runState | SHUTDOWN;
2391     aux.unlock();
2392 jsr166 1.204 if ((rs & STOP) == 0) {
2393 dl 1.210 if (!now) { // check quiescence
2394 dl 1.211 for (long oldSum = 0L;;) { // repeat until stable
2395 dl 1.243 WorkQueue[] ws; WorkQueue w; int m, b, sp; long c;
2396 dl 1.210 long checkSum = ctl;
2397     if ((int)(checkSum >> AC_SHIFT) + (config & SMASK) > 0)
2398     return false; // still active workers
2399 dl 1.243 if ((ws = workQueues) == null || (m = ws.length - 1) < 0)
2400 dl 1.210 break; // check queues
2401 dl 1.209 for (int i = 0; i <= m; ++i) {
2402     if ((w = ws[i]) != null) {
2403 dl 1.243 if ((b = w.base) != w.top ||
2404 dl 1.210 w.currentSteal != null) {
2405 dl 1.243 while ((sp = (int)(c = ctl)) != 0 &&
2406     !tryRelease(c, ws[m & sp], AC_UNIT))
2407     ;
2408 dl 1.211 return false; // arrange for recheck
2409 dl 1.210 }
2410     checkSum += b;
2411 dl 1.209 if ((i & 1) == 0)
2412 dl 1.210 w.qlock = -1; // try to disable external
2413 dl 1.206 }
2414 dl 1.203 }
2415 dl 1.209 if (oldSum == (oldSum = checkSum))
2416 dl 1.210 break;
2417 dl 1.203 }
2418     }
2419 dl 1.262 aux.lock();
2420     rs = runState = runState | STOP;
2421     aux.unlock();
2422 dl 1.200 }
2423 dl 1.210
2424     int pass = 0; // 3 passes to help terminate
2425     for (long oldSum = 0L;;) { // or until done or stable
2426     WorkQueue[] ws; WorkQueue w; ForkJoinWorkerThread wt; int m;
2427     long checkSum = ctl;
2428     if ((short)(checkSum >>> TC_SHIFT) + (config & SMASK) <= 0 ||
2429 dl 1.243 (ws = workQueues) == null || (m = ws.length - 1) < 0) {
2430 dl 1.262 aux.lock();
2431     runState |= TERMINATED;
2432     aux.unlock();
2433 dl 1.258 synchronized (this) {
2434 jsr166 1.260 notifyAll(); // for awaitTermination
2435 dl 1.210 }
2436     break;
2437     }
2438     for (int i = 0; i <= m; ++i) {
2439     if ((w = ws[i]) != null) {
2440     checkSum += w.base;
2441     w.qlock = -1; // try to disable
2442     if (pass > 0) {
2443     w.cancelAll(); // clear queue
2444     if (pass > 1 && (wt = w.owner) != null) {
2445     if (!wt.isInterrupted()) {
2446     try { // unblock join
2447     wt.interrupt();
2448     } catch (Throwable ignore) {
2449 dl 1.200 }
2450     }
2451 dl 1.243 LockSupport.unpark(wt);
2452 dl 1.200 }
2453 dl 1.101 }
2454 dl 1.78 }
2455     }
2456 dl 1.210 if (checkSum != oldSum) { // unstable
2457     oldSum = checkSum;
2458     pass = 0;
2459     }
2460     else if (pass > 3 && pass > m) // can't further help
2461     break;
2462     else if (++pass > 1) { // try to dequeue
2463     long c; int j = 0, sp; // bound attempts
2464     while (j++ <= m && (sp = (int)(c = ctl)) != 0)
2465     tryRelease(c, ws[sp & m], AC_UNIT);
2466 dl 1.200 }
2467     }
2468     return true;
2469     }
2470    
2471     // External operations
2472    
2473     /**
2474 dl 1.243 * Constructs and tries to install a new external queue,
2475     * failing if the workQueues array already has a queue at
2476 jsr166 1.245 * the given index.
2477 dl 1.243 *
2478     * @param index the index of the new queue
2479     */
2480     private void tryCreateExternalQueue(int index) {
2481 dl 1.262 AuxState aux;
2482     if ((aux = auxState) != null && index >= 0) {
2483 dl 1.243 WorkQueue q = new WorkQueue(this, null);
2484     q.config = index;
2485     q.scanState = ~UNSIGNALLED;
2486 dl 1.256 q.qlock = 1; // lock queue
2487     boolean installed = false;
2488 dl 1.262 aux.lock();
2489     try { // lock pool to install
2490 dl 1.243 WorkQueue[] ws;
2491     if ((ws = workQueues) != null && index < ws.length &&
2492     ws[index] == null) {
2493 dl 1.256 ws[index] = q; // else throw away
2494     installed = true;
2495     }
2496 dl 1.262 } finally {
2497     aux.unlock();
2498 dl 1.256 }
2499     if (installed) {
2500     try {
2501     q.growArray();
2502     } finally {
2503     q.qlock = 0;
2504 dl 1.243 }
2505     }
2506     }
2507     }
2508    
2509     /**
2510     * Adds the given task to a submission queue at submitter's
2511     * current queue. Also performs secondary initialization upon the
2512     * first submission of the first task to the pool, and detects
2513 dl 1.200 * first submission by an external thread and creates a new shared
2514     * queue if the one at index if empty or contended.
2515     *
2516     * @param task the task. Caller must ensure non-null.
2517     */
2518 dl 1.243 final void externalPush(ForkJoinTask<?> task) {
2519 dl 1.256 int r; // initialize caller's probe
2520 dl 1.200 if ((r = ThreadLocalRandom.getProbe()) == 0) {
2521     ThreadLocalRandom.localInit();
2522     r = ThreadLocalRandom.getProbe();
2523     }
2524     for (;;) {
2525 dl 1.256 WorkQueue q; int wl, k, stat;
2526 dl 1.243 int rs = runState;
2527     WorkQueue[] ws = workQueues;
2528     if (rs <= 0 || ws == null || (wl = ws.length) <= 0)
2529 dl 1.258 tryInitialize(true);
2530 dl 1.243 else if ((q = ws[k = (wl - 1) & r & SQMASK]) == null)
2531     tryCreateExternalQueue(k);
2532 dl 1.256 else if ((stat = q.sharedPush(task)) < 0)
2533     break;
2534     else if (stat == 0) {
2535     signalWork();
2536     break;
2537 dl 1.200 }
2538 dl 1.256 else // move if busy
2539 dl 1.200 r = ThreadLocalRandom.advanceProbe(r);
2540 dl 1.52 }
2541     }
2542    
2543 dl 1.200 /**
2544 jsr166 1.237 * Pushes a possibly-external submission.
2545 dl 1.236 */
2546 dl 1.243 private <T> ForkJoinTask<T> externalSubmit(ForkJoinTask<T> task) {
2547     Thread t; ForkJoinWorkerThread w; WorkQueue q;
2548 dl 1.236 if (task == null)
2549     throw new NullPointerException();
2550     if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) &&
2551 dl 1.243 (w = (ForkJoinWorkerThread)t).pool == this &&
2552     (q = w.workQueue) != null)
2553     q.push(task);
2554 jsr166 1.238 else
2555 dl 1.236 externalPush(task);
2556     return task;
2557     }
2558    
2559     /**
2560 jsr166 1.213 * Returns common pool queue for an external thread.
2561 dl 1.105 */
2562     static WorkQueue commonSubmitterQueue() {
2563 dl 1.200 ForkJoinPool p = common;
2564     int r = ThreadLocalRandom.getProbe();
2565 dl 1.243 WorkQueue[] ws; int wl;
2566 dl 1.200 return (p != null && (ws = p.workQueues) != null &&
2567 dl 1.243 (wl = ws.length) > 0) ?
2568     ws[(wl - 1) & r & SQMASK] : null;
2569 dl 1.105 }
2570    
2571     /**
2572 jsr166 1.246 * Performs tryUnpush for an external submitter.
2573 dl 1.105 */
2574 dl 1.178 final boolean tryExternalUnpush(ForkJoinTask<?> task) {
2575 dl 1.200 int r = ThreadLocalRandom.getProbe();
2576 dl 1.243 WorkQueue[] ws; WorkQueue w; int wl;
2577     return ((ws = workQueues) != null &&
2578     (wl = ws.length) > 0 &&
2579     (w = ws[(wl - 1) & r & SQMASK]) != null &&
2580     w.trySharedUnpush(task));
2581 dl 1.105 }
2582    
2583 dl 1.200 /**
2584 jsr166 1.213 * Performs helpComplete for an external submitter.
2585 dl 1.200 */
2586 dl 1.190 final int externalHelpComplete(CountedCompleter<?> task, int maxTasks) {
2587 dl 1.243 WorkQueue[] ws; int wl;
2588 dl 1.200 int r = ThreadLocalRandom.getProbe();
2589 dl 1.243 return ((ws = workQueues) != null && (wl = ws.length) > 0) ?
2590     helpComplete(ws[(wl - 1) & r & SQMASK], task, maxTasks) : 0;
2591 dl 1.105 }
2592    
2593 dl 1.52 // Exported methods
2594 jsr166 1.1
2595     // Constructors
2596    
2597     /**
2598 jsr166 1.9 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2599 dl 1.18 * java.lang.Runtime#availableProcessors}, using the {@linkplain
2600     * #defaultForkJoinWorkerThreadFactory default thread factory},
2601     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2602 jsr166 1.1 *
2603     * @throws SecurityException if a security manager exists and
2604     * the caller is not permitted to modify threads
2605     * because it does not hold {@link
2606     * java.lang.RuntimePermission}{@code ("modifyThread")}
2607     */
2608     public ForkJoinPool() {
2609 jsr166 1.148 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2610     defaultForkJoinWorkerThreadFactory, null, false);
2611 jsr166 1.1 }
2612    
2613     /**
2614 jsr166 1.9 * Creates a {@code ForkJoinPool} with the indicated parallelism
2615 dl 1.18 * level, the {@linkplain
2616     * #defaultForkJoinWorkerThreadFactory default thread factory},
2617     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2618 jsr166 1.1 *
2619 jsr166 1.9 * @param parallelism the parallelism level
2620 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
2621 jsr166 1.11 * equal to zero, or greater than implementation limit
2622 jsr166 1.1 * @throws SecurityException if a security manager exists and
2623     * the caller is not permitted to modify threads
2624     * because it does not hold {@link
2625     * java.lang.RuntimePermission}{@code ("modifyThread")}
2626     */
2627     public ForkJoinPool(int parallelism) {
2628 dl 1.18 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2629 jsr166 1.1 }
2630    
2631     /**
2632 dl 1.18 * Creates a {@code ForkJoinPool} with the given parameters.
2633 jsr166 1.1 *
2634 dl 1.18 * @param parallelism the parallelism level. For default value,
2635     * use {@link java.lang.Runtime#availableProcessors}.
2636     * @param factory the factory for creating new threads. For default value,
2637     * use {@link #defaultForkJoinWorkerThreadFactory}.
2638 dl 1.19 * @param handler the handler for internal worker threads that
2639     * terminate due to unrecoverable errors encountered while executing
2640 jsr166 1.31 * tasks. For default value, use {@code null}.
2641 dl 1.19 * @param asyncMode if true,
2642 dl 1.18 * establishes local first-in-first-out scheduling mode for forked
2643     * tasks that are never joined. This mode may be more appropriate
2644     * than default locally stack-based mode in applications in which
2645     * worker threads only process event-style asynchronous tasks.
2646 jsr166 1.31 * For default value, use {@code false}.
2647 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
2648 jsr166 1.11 * equal to zero, or greater than implementation limit
2649     * @throws NullPointerException if the factory is null
2650 jsr166 1.1 * @throws SecurityException if a security manager exists and
2651     * the caller is not permitted to modify threads
2652     * because it does not hold {@link
2653     * java.lang.RuntimePermission}{@code ("modifyThread")}
2654     */
2655 dl 1.19 public ForkJoinPool(int parallelism,
2656 dl 1.18 ForkJoinWorkerThreadFactory factory,
2657 jsr166 1.156 UncaughtExceptionHandler handler,
2658 dl 1.18 boolean asyncMode) {
2659 dl 1.152 this(checkParallelism(parallelism),
2660     checkFactory(factory),
2661     handler,
2662 jsr166 1.201 asyncMode ? FIFO_QUEUE : LIFO_QUEUE,
2663 dl 1.152 "ForkJoinPool-" + nextPoolId() + "-worker-");
2664 dl 1.14 checkPermission();
2665 dl 1.152 }
2666    
2667     private static int checkParallelism(int parallelism) {
2668     if (parallelism <= 0 || parallelism > MAX_CAP)
2669     throw new IllegalArgumentException();
2670     return parallelism;
2671     }
2672    
2673     private static ForkJoinWorkerThreadFactory checkFactory
2674     (ForkJoinWorkerThreadFactory factory) {
2675 dl 1.14 if (factory == null)
2676     throw new NullPointerException();
2677 dl 1.152 return factory;
2678     }
2679    
2680     /**
2681     * Creates a {@code ForkJoinPool} with the given parameters, without
2682     * any security checks or parameter validation. Invoked directly by
2683     * makeCommonPool.
2684     */
2685     private ForkJoinPool(int parallelism,
2686     ForkJoinWorkerThreadFactory factory,
2687 jsr166 1.156 UncaughtExceptionHandler handler,
2688 dl 1.185 int mode,
2689 dl 1.152 String workerNamePrefix) {
2690     this.workerNamePrefix = workerNamePrefix;
2691 jsr166 1.1 this.factory = factory;
2692 dl 1.18 this.ueh = handler;
2693 dl 1.200 this.config = (parallelism & SMASK) | mode;
2694 dl 1.52 long np = (long)(-parallelism); // offset ctl counts
2695     this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2696 dl 1.101 }
2697    
2698     /**
2699 dl 1.128 * Returns the common pool instance. This pool is statically
2700 dl 1.134 * constructed; its run state is unaffected by attempts to {@link
2701     * #shutdown} or {@link #shutdownNow}. However this pool and any
2702     * ongoing processing are automatically terminated upon program
2703     * {@link System#exit}. Any program that relies on asynchronous
2704     * task processing to complete before program termination should
2705 jsr166 1.158 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2706     * before exit.
2707 dl 1.100 *
2708     * @return the common pool instance
2709 jsr166 1.138 * @since 1.8
2710 dl 1.100 */
2711     public static ForkJoinPool commonPool() {
2712 dl 1.134 // assert common != null : "static init error";
2713     return common;
2714 dl 1.100 }
2715    
2716 jsr166 1.1 // Execution methods
2717    
2718     /**
2719     * Performs the given task, returning its result upon completion.
2720 dl 1.52 * If the computation encounters an unchecked Exception or Error,
2721     * it is rethrown as the outcome of this invocation. Rethrown
2722     * exceptions behave in the same way as regular exceptions, but,
2723     * when possible, contain stack traces (as displayed for example
2724     * using {@code ex.printStackTrace()}) of both the current thread
2725     * as well as the thread actually encountering the exception;
2726     * minimally only the latter.
2727 jsr166 1.1 *
2728     * @param task the task
2729 jsr166 1.191 * @param <T> the type of the task's result
2730 jsr166 1.1 * @return the task's result
2731 jsr166 1.11 * @throws NullPointerException if the task is null
2732     * @throws RejectedExecutionException if the task cannot be
2733     * scheduled for execution
2734 jsr166 1.1 */
2735     public <T> T invoke(ForkJoinTask<T> task) {
2736 dl 1.90 if (task == null)
2737     throw new NullPointerException();
2738 dl 1.243 externalSubmit(task);
2739 dl 1.78 return task.join();
2740 jsr166 1.1 }
2741    
2742     /**
2743     * Arranges for (asynchronous) execution of the given task.
2744     *
2745     * @param task the task
2746 jsr166 1.11 * @throws NullPointerException if the task is null
2747     * @throws RejectedExecutionException if the task cannot be
2748     * scheduled for execution
2749 jsr166 1.1 */
2750 jsr166 1.8 public void execute(ForkJoinTask<?> task) {
2751 dl 1.243 externalSubmit(task);
2752 jsr166 1.1 }
2753    
2754     // AbstractExecutorService methods
2755    
2756 jsr166 1.11 /**
2757     * @throws NullPointerException if the task is null
2758     * @throws RejectedExecutionException if the task cannot be
2759     * scheduled for execution
2760     */
2761 jsr166 1.1 public void execute(Runnable task) {
2762 dl 1.41 if (task == null)
2763     throw new NullPointerException();
2764 jsr166 1.2 ForkJoinTask<?> job;
2765 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2766     job = (ForkJoinTask<?>) task;
2767 jsr166 1.2 else
2768 dl 1.152 job = new ForkJoinTask.RunnableExecuteAction(task);
2769 dl 1.243 externalSubmit(job);
2770 jsr166 1.1 }
2771    
2772 jsr166 1.11 /**
2773 dl 1.18 * Submits a ForkJoinTask for execution.
2774     *
2775     * @param task the task to submit
2776 jsr166 1.191 * @param <T> the type of the task's result
2777 dl 1.18 * @return the task
2778     * @throws NullPointerException if the task is null
2779     * @throws RejectedExecutionException if the task cannot be
2780     * scheduled for execution
2781     */
2782     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2783 dl 1.243 return externalSubmit(task);
2784 dl 1.18 }
2785    
2786     /**
2787 jsr166 1.11 * @throws NullPointerException if the task is null
2788     * @throws RejectedExecutionException if the task cannot be
2789     * scheduled for execution
2790     */
2791 jsr166 1.1 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2792 dl 1.243 return externalSubmit(new ForkJoinTask.AdaptedCallable<T>(task));
2793 jsr166 1.1 }
2794    
2795 jsr166 1.11 /**
2796     * @throws NullPointerException if the task is null
2797     * @throws RejectedExecutionException if the task cannot be
2798     * scheduled for execution
2799     */
2800 jsr166 1.1 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2801 dl 1.243 return externalSubmit(new ForkJoinTask.AdaptedRunnable<T>(task, result));
2802 jsr166 1.1 }
2803    
2804 jsr166 1.11 /**
2805     * @throws NullPointerException if the task is null
2806     * @throws RejectedExecutionException if the task cannot be
2807     * scheduled for execution
2808     */
2809 jsr166 1.1 public ForkJoinTask<?> submit(Runnable task) {
2810 dl 1.41 if (task == null)
2811     throw new NullPointerException();
2812 jsr166 1.2 ForkJoinTask<?> job;
2813 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2814     job = (ForkJoinTask<?>) task;
2815 jsr166 1.2 else
2816 dl 1.90 job = new ForkJoinTask.AdaptedRunnableAction(task);
2817 dl 1.243 return externalSubmit(job);
2818 jsr166 1.1 }
2819    
2820     /**
2821 jsr166 1.11 * @throws NullPointerException {@inheritDoc}
2822     * @throws RejectedExecutionException {@inheritDoc}
2823     */
2824 jsr166 1.1 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2825 dl 1.86 // In previous versions of this class, this method constructed
2826     // a task to run ForkJoinTask.invokeAll, but now external
2827     // invocation of multiple tasks is at least as efficient.
2828 jsr166 1.199 ArrayList<Future<T>> futures = new ArrayList<>(tasks.size());
2829 jsr166 1.1
2830 dl 1.86 try {
2831     for (Callable<T> t : tasks) {
2832 dl 1.90 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2833 jsr166 1.144 futures.add(f);
2834 dl 1.243 externalSubmit(f);
2835 dl 1.86 }
2836 jsr166 1.143 for (int i = 0, size = futures.size(); i < size; i++)
2837     ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2838 dl 1.86 return futures;
2839 jsr166 1.226 } catch (Throwable t) {
2840     for (int i = 0, size = futures.size(); i < size; i++)
2841     futures.get(i).cancel(false);
2842     throw t;
2843 jsr166 1.1 }
2844     }
2845    
2846     /**
2847     * Returns the factory used for constructing new workers.
2848     *
2849     * @return the factory used for constructing new workers
2850     */
2851     public ForkJoinWorkerThreadFactory getFactory() {
2852     return factory;
2853     }
2854    
2855     /**
2856     * Returns the handler for internal worker threads that terminate
2857     * due to unrecoverable errors encountered while executing tasks.
2858     *
2859 jsr166 1.4 * @return the handler, or {@code null} if none
2860 jsr166 1.1 */
2861 jsr166 1.156 public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2862 dl 1.14 return ueh;
2863 jsr166 1.1 }
2864    
2865     /**
2866 jsr166 1.9 * Returns the targeted parallelism level of this pool.
2867 jsr166 1.1 *
2868 jsr166 1.9 * @return the targeted parallelism level of this pool
2869 jsr166 1.1 */
2870     public int getParallelism() {
2871 dl 1.185 int par;
2872 dl 1.200 return ((par = config & SMASK) > 0) ? par : 1;
2873 jsr166 1.1 }
2874    
2875     /**
2876 dl 1.100 * Returns the targeted parallelism level of the common pool.
2877     *
2878     * @return the targeted parallelism level of the common pool
2879 jsr166 1.138 * @since 1.8
2880 dl 1.100 */
2881     public static int getCommonPoolParallelism() {
2882 jsr166 1.274 return COMMON_PARALLELISM;
2883 dl 1.100 }
2884    
2885     /**
2886 jsr166 1.1 * Returns the number of worker threads that have started but not
2887 jsr166 1.34 * yet terminated. The result returned by this method may differ
2888 jsr166 1.4 * from {@link #getParallelism} when threads are created to
2889 jsr166 1.1 * maintain parallelism when others are cooperatively blocked.
2890     *
2891     * @return the number of worker threads
2892     */
2893     public int getPoolSize() {
2894 dl 1.200 return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2895 jsr166 1.1 }
2896    
2897     /**
2898 jsr166 1.4 * Returns {@code true} if this pool uses local first-in-first-out
2899 jsr166 1.1 * scheduling mode for forked tasks that are never joined.
2900     *
2901 jsr166 1.4 * @return {@code true} if this pool uses async mode
2902 jsr166 1.1 */
2903     public boolean getAsyncMode() {
2904 dl 1.200 return (config & FIFO_QUEUE) != 0;
2905 jsr166 1.1 }
2906    
2907     /**
2908     * Returns an estimate of the number of worker threads that are
2909     * not blocked waiting to join tasks or for other managed
2910 dl 1.14 * synchronization. This method may overestimate the
2911     * number of running threads.
2912 jsr166 1.1 *
2913     * @return the number of worker threads
2914     */
2915     public int getRunningThreadCount() {
2916 dl 1.78 int rc = 0;
2917     WorkQueue[] ws; WorkQueue w;
2918     if ((ws = workQueues) != null) {
2919 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2920     if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2921 dl 1.78 ++rc;
2922     }
2923     }
2924     return rc;
2925 jsr166 1.1 }
2926    
2927     /**
2928     * Returns an estimate of the number of threads that are currently
2929     * stealing or executing tasks. This method may overestimate the
2930     * number of active threads.
2931     *
2932     * @return the number of active threads
2933     */
2934     public int getActiveThreadCount() {
2935 dl 1.200 int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2936 jsr166 1.63 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2937 jsr166 1.1 }
2938    
2939     /**
2940 jsr166 1.4 * Returns {@code true} if all worker threads are currently idle.
2941     * An idle worker is one that cannot obtain a task to execute
2942     * because none are available to steal from other threads, and
2943     * there are no pending submissions to the pool. This method is
2944     * conservative; it might not return {@code true} immediately upon
2945     * idleness of all threads, but will eventually become true if
2946     * threads remain inactive.
2947 jsr166 1.1 *
2948 jsr166 1.4 * @return {@code true} if all threads are currently idle
2949 jsr166 1.1 */
2950     public boolean isQuiescent() {
2951 dl 1.200 return (config & SMASK) + (int)(ctl >> AC_SHIFT) <= 0;
2952 jsr166 1.1 }
2953    
2954     /**
2955     * Returns an estimate of the total number of tasks stolen from
2956     * one thread's work queue by another. The reported value
2957     * underestimates the actual total number of steals when the pool
2958     * is not quiescent. This value may be useful for monitoring and
2959     * tuning fork/join programs: in general, steal counts should be
2960     * high enough to keep threads busy, but low enough to avoid
2961     * overhead and contention across threads.
2962     *
2963     * @return the number of steals
2964     */
2965     public long getStealCount() {
2966 dl 1.262 AuxState sc = auxState;
2967     long count = (sc == null) ? 0L : sc.stealCount;
2968 dl 1.78 WorkQueue[] ws; WorkQueue w;
2969     if ((ws = workQueues) != null) {
2970 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2971 dl 1.78 if ((w = ws[i]) != null)
2972 dl 1.105 count += w.nsteals;
2973 dl 1.78 }
2974     }
2975     return count;
2976 jsr166 1.1 }
2977    
2978     /**
2979     * Returns an estimate of the total number of tasks currently held
2980     * in queues by worker threads (but not including tasks submitted
2981     * to the pool that have not begun executing). This value is only
2982     * an approximation, obtained by iterating across all threads in
2983     * the pool. This method may be useful for tuning task
2984     * granularities.
2985     *
2986     * @return the number of queued tasks
2987     */
2988     public long getQueuedTaskCount() {
2989     long count = 0;
2990 dl 1.78 WorkQueue[] ws; WorkQueue w;
2991     if ((ws = workQueues) != null) {
2992 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2993 dl 1.78 if ((w = ws[i]) != null)
2994     count += w.queueSize();
2995     }
2996 dl 1.52 }
2997 jsr166 1.1 return count;
2998     }
2999    
3000     /**
3001 jsr166 1.8 * Returns an estimate of the number of tasks submitted to this
3002 dl 1.55 * pool that have not yet begun executing. This method may take
3003 dl 1.52 * time proportional to the number of submissions.
3004 jsr166 1.1 *
3005     * @return the number of queued submissions
3006     */
3007     public int getQueuedSubmissionCount() {
3008 dl 1.78 int count = 0;
3009     WorkQueue[] ws; WorkQueue w;
3010     if ((ws = workQueues) != null) {
3011 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
3012 dl 1.78 if ((w = ws[i]) != null)
3013     count += w.queueSize();
3014     }
3015     }
3016     return count;
3017 jsr166 1.1 }
3018    
3019     /**
3020 jsr166 1.4 * Returns {@code true} if there are any tasks submitted to this
3021     * pool that have not yet begun executing.
3022 jsr166 1.1 *
3023     * @return {@code true} if there are any queued submissions
3024     */
3025     public boolean hasQueuedSubmissions() {
3026 dl 1.78 WorkQueue[] ws; WorkQueue w;
3027     if ((ws = workQueues) != null) {
3028 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
3029 dl 1.115 if ((w = ws[i]) != null && !w.isEmpty())
3030 dl 1.78 return true;
3031     }
3032     }
3033     return false;
3034 jsr166 1.1 }
3035    
3036     /**
3037     * Removes and returns the next unexecuted submission if one is
3038     * available. This method may be useful in extensions to this
3039     * class that re-assign work in systems with multiple pools.
3040     *
3041 jsr166 1.4 * @return the next submission, or {@code null} if none
3042 jsr166 1.1 */
3043     protected ForkJoinTask<?> pollSubmission() {
3044 dl 1.253 WorkQueue[] ws; int wl; WorkQueue w; ForkJoinTask<?> t;
3045     int r = ThreadLocalRandom.nextSecondarySeed();
3046     if ((ws = workQueues) != null && (wl = ws.length) > 0) {
3047     for (int m = wl - 1, i = 0; i < wl; ++i) {
3048     if ((w = ws[(i << 1) & m]) != null && (t = w.poll()) != null)
3049 dl 1.78 return t;
3050 dl 1.52 }
3051     }
3052     return null;
3053 jsr166 1.1 }
3054    
3055     /**
3056     * Removes all available unexecuted submitted and forked tasks
3057     * from scheduling queues and adds them to the given collection,
3058     * without altering their execution status. These may include
3059 jsr166 1.8 * artificially generated or wrapped tasks. This method is
3060     * designed to be invoked only when the pool is known to be
3061 jsr166 1.1 * quiescent. Invocations at other times may not remove all
3062     * tasks. A failure encountered while attempting to add elements
3063     * to collection {@code c} may result in elements being in
3064     * neither, either or both collections when the associated
3065     * exception is thrown. The behavior of this operation is
3066     * undefined if the specified collection is modified while the
3067     * operation is in progress.
3068     *
3069     * @param c the collection to transfer elements into
3070     * @return the number of elements transferred
3071     */
3072 jsr166 1.5 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
3073 dl 1.52 int count = 0;
3074 dl 1.78 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
3075     if ((ws = workQueues) != null) {
3076 dl 1.86 for (int i = 0; i < ws.length; ++i) {
3077 dl 1.78 if ((w = ws[i]) != null) {
3078     while ((t = w.poll()) != null) {
3079     c.add(t);
3080     ++count;
3081     }
3082     }
3083 dl 1.52 }
3084     }
3085 dl 1.18 return count;
3086     }
3087    
3088     /**
3089 jsr166 1.1 * Returns a string identifying this pool, as well as its state,
3090     * including indications of run state, parallelism level, and
3091     * worker and task counts.
3092     *
3093     * @return a string identifying this pool, as well as its state
3094     */
3095     public String toString() {
3096 dl 1.86 // Use a single pass through workQueues to collect counts
3097     long qt = 0L, qs = 0L; int rc = 0;
3098 dl 1.262 AuxState sc = auxState;
3099     long st = (sc == null) ? 0L : sc.stealCount;
3100 dl 1.86 long c = ctl;
3101     WorkQueue[] ws; WorkQueue w;
3102     if ((ws = workQueues) != null) {
3103     for (int i = 0; i < ws.length; ++i) {
3104     if ((w = ws[i]) != null) {
3105     int size = w.queueSize();
3106     if ((i & 1) == 0)
3107     qs += size;
3108     else {
3109     qt += size;
3110 dl 1.105 st += w.nsteals;
3111 dl 1.86 if (w.isApparentlyUnblocked())
3112     ++rc;
3113     }
3114     }
3115     }
3116     }
3117 dl 1.200 int pc = (config & SMASK);
3118 dl 1.52 int tc = pc + (short)(c >>> TC_SHIFT);
3119 dl 1.78 int ac = pc + (int)(c >> AC_SHIFT);
3120     if (ac < 0) // ignore transient negative
3121     ac = 0;
3122 dl 1.200 int rs = runState;
3123     String level = ((rs & TERMINATED) != 0 ? "Terminated" :
3124     (rs & STOP) != 0 ? "Terminating" :
3125     (rs & SHUTDOWN) != 0 ? "Shutting down" :
3126     "Running");
3127 jsr166 1.1 return super.toString() +
3128 dl 1.52 "[" + level +
3129 dl 1.14 ", parallelism = " + pc +
3130     ", size = " + tc +
3131     ", active = " + ac +
3132     ", running = " + rc +
3133 jsr166 1.1 ", steals = " + st +
3134     ", tasks = " + qt +
3135     ", submissions = " + qs +
3136     "]";
3137     }
3138    
3139     /**
3140 dl 1.100 * Possibly initiates an orderly shutdown in which previously
3141     * submitted tasks are executed, but no new tasks will be
3142     * accepted. Invocation has no effect on execution state if this
3143 jsr166 1.137 * is the {@link #commonPool()}, and no additional effect if
3144 dl 1.100 * already shut down. Tasks that are in the process of being
3145     * submitted concurrently during the course of this method may or
3146     * may not be rejected.
3147 jsr166 1.1 *
3148     * @throws SecurityException if a security manager exists and
3149     * the caller is not permitted to modify threads
3150     * because it does not hold {@link
3151     * java.lang.RuntimePermission}{@code ("modifyThread")}
3152     */
3153     public void shutdown() {
3154     checkPermission();
3155 dl 1.105 tryTerminate(false, true);
3156 jsr166 1.1 }
3157    
3158     /**
3159 dl 1.100 * Possibly attempts to cancel and/or stop all tasks, and reject
3160     * all subsequently submitted tasks. Invocation has no effect on
3161 jsr166 1.137 * execution state if this is the {@link #commonPool()}, and no
3162 dl 1.100 * additional effect if already shut down. Otherwise, tasks that
3163     * are in the process of being submitted or executed concurrently
3164     * during the course of this method may or may not be
3165     * rejected. This method cancels both existing and unexecuted
3166     * tasks, in order to permit termination in the presence of task
3167     * dependencies. So the method always returns an empty list
3168     * (unlike the case for some other Executors).
3169 jsr166 1.1 *
3170     * @return an empty list
3171     * @throws SecurityException if a security manager exists and
3172     * the caller is not permitted to modify threads
3173     * because it does not hold {@link
3174     * java.lang.RuntimePermission}{@code ("modifyThread")}
3175     */
3176     public List<Runnable> shutdownNow() {
3177     checkPermission();
3178 dl 1.105 tryTerminate(true, true);
3179 jsr166 1.1 return Collections.emptyList();
3180     }
3181    
3182     /**
3183     * Returns {@code true} if all tasks have completed following shut down.
3184     *
3185     * @return {@code true} if all tasks have completed following shut down
3186     */
3187     public boolean isTerminated() {
3188 dl 1.200 return (runState & TERMINATED) != 0;
3189 jsr166 1.1 }
3190    
3191     /**
3192     * Returns {@code true} if the process of termination has
3193 jsr166 1.9 * commenced but not yet completed. This method may be useful for
3194     * debugging. A return of {@code true} reported a sufficient
3195     * period after shutdown may indicate that submitted tasks have
3196 jsr166 1.119 * ignored or suppressed interruption, or are waiting for I/O,
3197 dl 1.49 * causing this executor not to properly terminate. (See the
3198     * advisory notes for class {@link ForkJoinTask} stating that
3199     * tasks should not normally entail blocking operations. But if
3200     * they do, they must abort them on interrupt.)
3201 jsr166 1.1 *
3202 jsr166 1.9 * @return {@code true} if terminating but not yet terminated
3203 jsr166 1.1 */
3204     public boolean isTerminating() {
3205 dl 1.200 int rs = runState;
3206     return (rs & STOP) != 0 && (rs & TERMINATED) == 0;
3207 jsr166 1.1 }
3208    
3209     /**
3210     * Returns {@code true} if this pool has been shut down.
3211     *
3212     * @return {@code true} if this pool has been shut down
3213     */
3214     public boolean isShutdown() {
3215 dl 1.200 return (runState & SHUTDOWN) != 0;
3216 jsr166 1.9 }
3217    
3218     /**
3219 dl 1.105 * Blocks until all tasks have completed execution after a
3220     * shutdown request, or the timeout occurs, or the current thread
3221 dl 1.134 * is interrupted, whichever happens first. Because the {@link
3222     * #commonPool()} never terminates until program shutdown, when
3223     * applied to the common pool, this method is equivalent to {@link
3224 jsr166 1.158 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
3225 jsr166 1.1 *
3226     * @param timeout the maximum time to wait
3227     * @param unit the time unit of the timeout argument
3228     * @return {@code true} if this executor terminated and
3229     * {@code false} if the timeout elapsed before termination
3230     * @throws InterruptedException if interrupted while waiting
3231     */
3232     public boolean awaitTermination(long timeout, TimeUnit unit)
3233     throws InterruptedException {
3234 dl 1.134 if (Thread.interrupted())
3235     throw new InterruptedException();
3236     if (this == common) {
3237     awaitQuiescence(timeout, unit);
3238     return false;
3239     }
3240 dl 1.52 long nanos = unit.toNanos(timeout);
3241 dl 1.101 if (isTerminated())
3242     return true;
3243 dl 1.183 if (nanos <= 0L)
3244     return false;
3245     long deadline = System.nanoTime() + nanos;
3246 jsr166 1.103 synchronized (this) {
3247 jsr166 1.184 for (;;) {
3248 dl 1.183 if (isTerminated())
3249     return true;
3250     if (nanos <= 0L)
3251     return false;
3252     long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
3253     wait(millis > 0L ? millis : 1L);
3254     nanos = deadline - System.nanoTime();
3255 dl 1.52 }
3256 dl 1.18 }
3257 jsr166 1.1 }
3258    
3259     /**
3260 dl 1.134 * If called by a ForkJoinTask operating in this pool, equivalent
3261     * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3262     * waits and/or attempts to assist performing tasks until this
3263     * pool {@link #isQuiescent} or the indicated timeout elapses.
3264     *
3265     * @param timeout the maximum time to wait
3266     * @param unit the time unit of the timeout argument
3267     * @return {@code true} if quiescent; {@code false} if the
3268     * timeout elapsed.
3269     */
3270     public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3271     long nanos = unit.toNanos(timeout);
3272     ForkJoinWorkerThread wt;
3273     Thread thread = Thread.currentThread();
3274     if ((thread instanceof ForkJoinWorkerThread) &&
3275     (wt = (ForkJoinWorkerThread)thread).pool == this) {
3276     helpQuiescePool(wt.workQueue);
3277     return true;
3278     }
3279     long startTime = System.nanoTime();
3280     WorkQueue[] ws;
3281 dl 1.243 int r = 0, wl;
3282 dl 1.134 boolean found = true;
3283     while (!isQuiescent() && (ws = workQueues) != null &&
3284 dl 1.243 (wl = ws.length) > 0) {
3285 dl 1.134 if (!found) {
3286     if ((System.nanoTime() - startTime) > nanos)
3287     return false;
3288     Thread.yield(); // cannot block
3289     }
3290     found = false;
3291 dl 1.243 for (int m = wl - 1, j = (m + 1) << 2; j >= 0; --j) {
3292 dl 1.200 ForkJoinTask<?> t; WorkQueue q; int b, k;
3293     if ((k = r++ & m) <= m && k >= 0 && (q = ws[k]) != null &&
3294     (b = q.base) - q.top < 0) {
3295 dl 1.134 found = true;
3296 dl 1.172 if ((t = q.pollAt(b)) != null)
3297 dl 1.134 t.doExec();
3298     break;
3299     }
3300     }
3301     }
3302     return true;
3303     }
3304    
3305     /**
3306     * Waits and/or attempts to assist performing tasks indefinitely
3307 jsr166 1.141 * until the {@link #commonPool()} {@link #isQuiescent}.
3308 dl 1.134 */
3309 dl 1.136 static void quiesceCommonPool() {
3310 dl 1.134 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3311     }
3312    
3313     /**
3314 jsr166 1.1 * Interface for extending managed parallelism for tasks running
3315 jsr166 1.8 * in {@link ForkJoinPool}s.
3316     *
3317 dl 1.19 * <p>A {@code ManagedBlocker} provides two methods. Method
3318 jsr166 1.218 * {@link #isReleasable} must return {@code true} if blocking is
3319     * not necessary. Method {@link #block} blocks the current thread
3320 dl 1.19 * if necessary (perhaps internally invoking {@code isReleasable}
3321 dl 1.54 * before actually blocking). These actions are performed by any
3322 jsr166 1.157 * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
3323     * The unusual methods in this API accommodate synchronizers that
3324     * may, but don't usually, block for long periods. Similarly, they
3325 dl 1.54 * allow more efficient internal handling of cases in which
3326     * additional workers may be, but usually are not, needed to
3327     * ensure sufficient parallelism. Toward this end,
3328     * implementations of method {@code isReleasable} must be amenable
3329     * to repeated invocation.
3330 jsr166 1.1 *
3331     * <p>For example, here is a ManagedBlocker based on a
3332     * ReentrantLock:
3333 jsr166 1.239 * <pre> {@code
3334 jsr166 1.1 * class ManagedLocker implements ManagedBlocker {
3335     * final ReentrantLock lock;
3336     * boolean hasLock = false;
3337     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3338     * public boolean block() {
3339     * if (!hasLock)
3340     * lock.lock();
3341     * return true;
3342     * }
3343     * public boolean isReleasable() {
3344     * return hasLock || (hasLock = lock.tryLock());
3345     * }
3346     * }}</pre>
3347 dl 1.19 *
3348     * <p>Here is a class that possibly blocks waiting for an
3349     * item on a given queue:
3350 jsr166 1.239 * <pre> {@code
3351 dl 1.19 * class QueueTaker<E> implements ManagedBlocker {
3352     * final BlockingQueue<E> queue;
3353     * volatile E item = null;
3354     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3355     * public boolean block() throws InterruptedException {
3356     * if (item == null)
3357 dl 1.23 * item = queue.take();
3358 dl 1.19 * return true;
3359     * }
3360     * public boolean isReleasable() {
3361 dl 1.23 * return item != null || (item = queue.poll()) != null;
3362 dl 1.19 * }
3363     * public E getItem() { // call after pool.managedBlock completes
3364     * return item;
3365     * }
3366     * }}</pre>
3367 jsr166 1.1 */
3368     public static interface ManagedBlocker {
3369     /**
3370     * Possibly blocks the current thread, for example waiting for
3371     * a lock or condition.
3372     *
3373 jsr166 1.4 * @return {@code true} if no additional blocking is necessary
3374     * (i.e., if isReleasable would return true)
3375 jsr166 1.1 * @throws InterruptedException if interrupted while waiting
3376     * (the method is not required to do so, but is allowed to)
3377     */
3378     boolean block() throws InterruptedException;
3379    
3380     /**
3381 jsr166 1.4 * Returns {@code true} if blocking is unnecessary.
3382 jsr166 1.154 * @return {@code true} if blocking is unnecessary
3383 jsr166 1.1 */
3384     boolean isReleasable();
3385     }
3386    
3387     /**
3388 jsr166 1.217 * Runs the given possibly blocking task. When {@linkplain
3389     * ForkJoinTask#inForkJoinPool() running in a ForkJoinPool}, this
3390     * method possibly arranges for a spare thread to be activated if
3391     * necessary to ensure sufficient parallelism while the current
3392     * thread is blocked in {@link ManagedBlocker#block blocker.block()}.
3393 jsr166 1.1 *
3394 jsr166 1.217 * <p>This method repeatedly calls {@code blocker.isReleasable()} and
3395     * {@code blocker.block()} until either method returns {@code true}.
3396     * Every call to {@code blocker.block()} is preceded by a call to
3397     * {@code blocker.isReleasable()} that returned {@code false}.
3398     *
3399     * <p>If not running in a ForkJoinPool, this method is
3400 jsr166 1.8 * behaviorally equivalent to
3401 jsr166 1.239 * <pre> {@code
3402 jsr166 1.1 * while (!blocker.isReleasable())
3403     * if (blocker.block())
3404 jsr166 1.217 * break;}</pre>
3405 jsr166 1.8 *
3406 jsr166 1.217 * If running in a ForkJoinPool, the pool may first be expanded to
3407     * ensure sufficient parallelism available during the call to
3408     * {@code blocker.block()}.
3409 jsr166 1.1 *
3410 jsr166 1.217 * @param blocker the blocker task
3411     * @throws InterruptedException if {@code blocker.block()} did so
3412 jsr166 1.1 */
3413 dl 1.18 public static void managedBlock(ManagedBlocker blocker)
3414 jsr166 1.1 throws InterruptedException {
3415 dl 1.200 ForkJoinPool p;
3416     ForkJoinWorkerThread wt;
3417 jsr166 1.1 Thread t = Thread.currentThread();
3418 dl 1.200 if ((t instanceof ForkJoinWorkerThread) &&
3419     (p = (wt = (ForkJoinWorkerThread)t).pool) != null) {
3420     WorkQueue w = wt.workQueue;
3421 dl 1.172 while (!blocker.isReleasable()) {
3422 dl 1.200 if (p.tryCompensate(w)) {
3423 dl 1.105 try {
3424     do {} while (!blocker.isReleasable() &&
3425     !blocker.block());
3426     } finally {
3427 dl 1.200 U.getAndAddLong(p, CTL, AC_UNIT);
3428 dl 1.105 }
3429     break;
3430 dl 1.78 }
3431     }
3432 dl 1.18 }
3433 dl 1.105 else {
3434     do {} while (!blocker.isReleasable() &&
3435     !blocker.block());
3436     }
3437 jsr166 1.1 }
3438    
3439 jsr166 1.7 // AbstractExecutorService overrides. These rely on undocumented
3440     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3441     // implement RunnableFuture.
3442 jsr166 1.1
3443     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3444 dl 1.90 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3445 jsr166 1.1 }
3446    
3447     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3448 dl 1.90 return new ForkJoinTask.AdaptedCallable<T>(callable);
3449 jsr166 1.1 }
3450    
3451     // Unsafe mechanics
3452 jsr166 1.233 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
3453 dl 1.78 private static final long CTL;
3454 dl 1.243 private static final int ABASE;
3455     private static final int ASHIFT;
3456 dl 1.52
3457     static {
3458 jsr166 1.3 try {
3459 dl 1.78 CTL = U.objectFieldOffset
3460 jsr166 1.233 (ForkJoinPool.class.getDeclaredField("ctl"));
3461     ABASE = U.arrayBaseOffset(ForkJoinTask[].class);
3462     int scale = U.arrayIndexScale(ForkJoinTask[].class);
3463 jsr166 1.142 if ((scale & (scale - 1)) != 0)
3464 jsr166 1.232 throw new Error("array index scale not a power of two");
3465 jsr166 1.142 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3466 jsr166 1.231 } catch (ReflectiveOperationException e) {
3467 dl 1.52 throw new Error(e);
3468     }
3469 dl 1.105
3470 dl 1.243 // Reduce the risk of rare disastrous classloading in first call to
3471     // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
3472     Class<?> ensureLoaded = LockSupport.class;
3473    
3474 jsr166 1.273 int commonMaxSpares = DEFAULT_COMMON_MAX_SPARES;
3475     try {
3476     String p = System.getProperty
3477     ("java.util.concurrent.ForkJoinPool.common.maximumSpares");
3478     if (p != null)
3479     commonMaxSpares = Integer.parseInt(p);
3480     } catch (Exception ignore) {}
3481     COMMON_MAX_SPARES = commonMaxSpares;
3482    
3483 dl 1.152 defaultForkJoinWorkerThreadFactory =
3484 dl 1.112 new DefaultForkJoinWorkerThreadFactory();
3485 dl 1.115 modifyThreadPermission = new RuntimePermission("modifyThread");
3486    
3487 dl 1.152 common = java.security.AccessController.doPrivileged
3488     (new java.security.PrivilegedAction<ForkJoinPool>() {
3489     public ForkJoinPool run() { return makeCommonPool(); }});
3490 jsr166 1.275
3491 jsr166 1.274 // report 1 even if threads disabled
3492     COMMON_PARALLELISM = Math.max(common.config & SMASK, 1);
3493 dl 1.152 }
3494 dl 1.112
3495 dl 1.152 /**
3496     * Creates and returns the common pool, respecting user settings
3497     * specified via system properties.
3498     */
3499 jsr166 1.278 static ForkJoinPool makeCommonPool() {
3500 dl 1.160 int parallelism = -1;
3501 dl 1.197 ForkJoinWorkerThreadFactory factory = null;
3502 jsr166 1.156 UncaughtExceptionHandler handler = null;
3503 jsr166 1.189 try { // ignore exceptions in accessing/parsing properties
3504 dl 1.112 String pp = System.getProperty
3505     ("java.util.concurrent.ForkJoinPool.common.parallelism");
3506 dl 1.152 String fp = System.getProperty
3507     ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3508 dl 1.112 String hp = System.getProperty
3509     ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3510 dl 1.152 if (pp != null)
3511     parallelism = Integer.parseInt(pp);
3512 dl 1.112 if (fp != null)
3513 dl 1.152 factory = ((ForkJoinWorkerThreadFactory)ClassLoader.
3514     getSystemClassLoader().loadClass(fp).newInstance());
3515 dl 1.112 if (hp != null)
3516 jsr166 1.156 handler = ((UncaughtExceptionHandler)ClassLoader.
3517 dl 1.112 getSystemClassLoader().loadClass(hp).newInstance());
3518     } catch (Exception ignore) {
3519     }
3520 dl 1.197 if (factory == null) {
3521     if (System.getSecurityManager() == null)
3522     factory = defaultForkJoinWorkerThreadFactory;
3523     else // use security-managed default
3524     factory = new InnocuousForkJoinWorkerThreadFactory();
3525     }
3526 dl 1.167 if (parallelism < 0 && // default 1 less than #cores
3527 dl 1.193 (parallelism = Runtime.getRuntime().availableProcessors() - 1) <= 0)
3528     parallelism = 1;
3529 dl 1.152 if (parallelism > MAX_CAP)
3530     parallelism = MAX_CAP;
3531 dl 1.185 return new ForkJoinPool(parallelism, factory, handler, LIFO_QUEUE,
3532 dl 1.152 "ForkJoinPool.commonPool-worker-");
3533 jsr166 1.3 }
3534 dl 1.52
3535 dl 1.197 /**
3536 jsr166 1.279 * Factory for innocuous worker threads.
3537 dl 1.197 */
3538 jsr166 1.278 private static final class InnocuousForkJoinWorkerThreadFactory
3539 dl 1.197 implements ForkJoinWorkerThreadFactory {
3540    
3541     /**
3542     * An ACC to restrict permissions for the factory itself.
3543     * The constructed workers have no permissions set.
3544     */
3545     private static final AccessControlContext innocuousAcc;
3546     static {
3547     Permissions innocuousPerms = new Permissions();
3548     innocuousPerms.add(modifyThreadPermission);
3549     innocuousPerms.add(new RuntimePermission(
3550     "enableContextClassLoaderOverride"));
3551     innocuousPerms.add(new RuntimePermission(
3552     "modifyThreadGroup"));
3553     innocuousAcc = new AccessControlContext(new ProtectionDomain[] {
3554     new ProtectionDomain(null, innocuousPerms)
3555     });
3556     }
3557    
3558     public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
3559 jsr166 1.227 return java.security.AccessController.doPrivileged(
3560     new java.security.PrivilegedAction<ForkJoinWorkerThread>() {
3561 dl 1.197 public ForkJoinWorkerThread run() {
3562     return new ForkJoinWorkerThread.
3563     InnocuousForkJoinWorkerThread(pool);
3564     }}, innocuousAcc);
3565     }
3566     }
3567    
3568 jsr166 1.1 }