ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.288
Committed: Tue Oct 6 23:01:52 2015 UTC (8 years, 7 months ago) by dl
Branch: MAIN
Changes since 1.287: +1 -0 lines
Log Message:
safe publication

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.58 * http://creativecommons.org/publicdomain/zero/1.0/
5 jsr166 1.1 */
6    
7     package java.util.concurrent;
8    
9 jsr166 1.156 import java.lang.Thread.UncaughtExceptionHandler;
10 jsr166 1.228 import java.security.AccessControlContext;
11     import java.security.Permissions;
12     import java.security.ProtectionDomain;
13 jsr166 1.1 import java.util.ArrayList;
14     import java.util.Arrays;
15     import java.util.Collection;
16     import java.util.Collections;
17     import java.util.List;
18 dl 1.262 import java.util.concurrent.locks.ReentrantLock;
19 dl 1.243 import java.util.concurrent.locks.LockSupport;
20 jsr166 1.1
21     /**
22 jsr166 1.4 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
23 jsr166 1.8 * A {@code ForkJoinPool} provides the entry point for submissions
24 dl 1.18 * from non-{@code ForkJoinTask} clients, as well as management and
25 jsr166 1.11 * monitoring operations.
26 jsr166 1.1 *
27 jsr166 1.9 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
28     * ExecutorService} mainly by virtue of employing
29     * <em>work-stealing</em>: all threads in the pool attempt to find and
30 dl 1.78 * execute tasks submitted to the pool and/or created by other active
31     * tasks (eventually blocking waiting for work if none exist). This
32     * enables efficient processing when most tasks spawn other subtasks
33     * (as do most {@code ForkJoinTask}s), as well as when many small
34     * tasks are submitted to the pool from external clients. Especially
35     * when setting <em>asyncMode</em> to true in constructors, {@code
36     * ForkJoinPool}s may also be appropriate for use with event-style
37     * tasks that are never joined.
38 jsr166 1.1 *
39 dl 1.112 * <p>A static {@link #commonPool()} is available and appropriate for
40 dl 1.101 * most applications. The common pool is used by any ForkJoinTask that
41     * is not explicitly submitted to a specified pool. Using the common
42     * pool normally reduces resource usage (its threads are slowly
43     * reclaimed during periods of non-use, and reinstated upon subsequent
44 dl 1.105 * use).
45 dl 1.100 *
46     * <p>For applications that require separate or custom pools, a {@code
47     * ForkJoinPool} may be constructed with a given target parallelism
48 jsr166 1.214 * level; by default, equal to the number of available processors.
49     * The pool attempts to maintain enough active (or available) threads
50     * by dynamically adding, suspending, or resuming internal worker
51 jsr166 1.187 * threads, even if some tasks are stalled waiting to join others.
52     * However, no such adjustments are guaranteed in the face of blocked
53     * I/O or other unmanaged synchronization. The nested {@link
54 dl 1.100 * ManagedBlocker} interface enables extension of the kinds of
55 dl 1.18 * synchronization accommodated.
56 jsr166 1.1 *
57     * <p>In addition to execution and lifecycle control methods, this
58     * class provides status check methods (for example
59 jsr166 1.4 * {@link #getStealCount}) that are intended to aid in developing,
60 jsr166 1.1 * tuning, and monitoring fork/join applications. Also, method
61 jsr166 1.4 * {@link #toString} returns indications of pool state in a
62 jsr166 1.1 * convenient form for informal monitoring.
63     *
64 jsr166 1.109 * <p>As is the case with other ExecutorServices, there are three
65 jsr166 1.84 * main task execution methods summarized in the following table.
66     * These are designed to be used primarily by clients not already
67     * engaged in fork/join computations in the current pool. The main
68     * forms of these methods accept instances of {@code ForkJoinTask},
69     * but overloaded forms also allow mixed execution of plain {@code
70     * Runnable}- or {@code Callable}- based activities as well. However,
71     * tasks that are already executing in a pool should normally instead
72     * use the within-computation forms listed in the table unless using
73     * async event-style tasks that are not usually joined, in which case
74     * there is little difference among choice of methods.
75 dl 1.18 *
76     * <table BORDER CELLPADDING=3 CELLSPACING=1>
77 jsr166 1.159 * <caption>Summary of task execution methods</caption>
78 dl 1.18 * <tr>
79     * <td></td>
80     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
81     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
82     * </tr>
83     * <tr>
84 jsr166 1.153 * <td> <b>Arrange async execution</b></td>
85 dl 1.18 * <td> {@link #execute(ForkJoinTask)}</td>
86     * <td> {@link ForkJoinTask#fork}</td>
87     * </tr>
88     * <tr>
89 jsr166 1.153 * <td> <b>Await and obtain result</b></td>
90 dl 1.18 * <td> {@link #invoke(ForkJoinTask)}</td>
91     * <td> {@link ForkJoinTask#invoke}</td>
92     * </tr>
93     * <tr>
94 jsr166 1.153 * <td> <b>Arrange exec and obtain Future</b></td>
95 dl 1.18 * <td> {@link #submit(ForkJoinTask)}</td>
96     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
97     * </tr>
98     * </table>
99 dl 1.19 *
100 dl 1.105 * <p>The common pool is by default constructed with default
101 jsr166 1.155 * parameters, but these may be controlled by setting three
102 jsr166 1.162 * {@linkplain System#getProperty system properties}:
103     * <ul>
104     * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
105     * - the parallelism level, a non-negative integer
106     * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
107     * - the class name of a {@link ForkJoinWorkerThreadFactory}
108     * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
109     * - the class name of a {@link UncaughtExceptionHandler}
110 dl 1.208 * <li>{@code java.util.concurrent.ForkJoinPool.common.maximumSpares}
111 dl 1.223 * - the maximum number of allowed extra threads to maintain target
112 dl 1.208 * parallelism (default 256).
113 jsr166 1.162 * </ul>
114 dl 1.197 * If a {@link SecurityManager} is present and no factory is
115     * specified, then the default pool uses a factory supplying
116     * threads that have no {@link Permissions} enabled.
117 jsr166 1.165 * The system class loader is used to load these classes.
118 jsr166 1.156 * Upon any error in establishing these settings, default parameters
119 dl 1.160 * are used. It is possible to disable or limit the use of threads in
120     * the common pool by setting the parallelism property to zero, and/or
121 dl 1.193 * using a factory that may return {@code null}. However doing so may
122     * cause unjoined tasks to never be executed.
123 dl 1.105 *
124 jsr166 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
125     * maximum number of running threads to 32767. Attempts to create
126 jsr166 1.11 * pools with greater than the maximum number result in
127 jsr166 1.8 * {@code IllegalArgumentException}.
128 jsr166 1.1 *
129 jsr166 1.11 * <p>This implementation rejects submitted tasks (that is, by throwing
130 dl 1.19 * {@link RejectedExecutionException}) only when the pool is shut down
131 dl 1.20 * or internal resources have been exhausted.
132 jsr166 1.11 *
133 jsr166 1.1 * @since 1.7
134     * @author Doug Lea
135     */
136 jsr166 1.171 @sun.misc.Contended
137 jsr166 1.1 public class ForkJoinPool extends AbstractExecutorService {
138    
139     /*
140 dl 1.14 * Implementation Overview
141     *
142 dl 1.78 * This class and its nested classes provide the main
143     * functionality and control for a set of worker threads:
144 jsr166 1.84 * Submissions from non-FJ threads enter into submission queues.
145     * Workers take these tasks and typically split them into subtasks
146     * that may be stolen by other workers. Preference rules give
147     * first priority to processing tasks from their own queues (LIFO
148     * or FIFO, depending on mode), then to randomized FIFO steals of
149 dl 1.200 * tasks in other queues. This framework began as vehicle for
150     * supporting tree-structured parallelism using work-stealing.
151     * Over time, its scalability advantages led to extensions and
152 dl 1.208 * changes to better support more diverse usage contexts. Because
153     * most internal methods and nested classes are interrelated,
154     * their main rationale and descriptions are presented here;
155     * individual methods and nested classes contain only brief
156     * comments about details.
157 dl 1.78 *
158 jsr166 1.84 * WorkQueues
159 dl 1.78 * ==========
160     *
161     * Most operations occur within work-stealing queues (in nested
162     * class WorkQueue). These are special forms of Deques that
163     * support only three of the four possible end-operations -- push,
164     * pop, and poll (aka steal), under the further constraints that
165     * push and pop are called only from the owning thread (or, as
166     * extended here, under a lock), while poll may be called from
167     * other threads. (If you are unfamiliar with them, you probably
168     * want to read Herlihy and Shavit's book "The Art of
169     * Multiprocessor programming", chapter 16 describing these in
170     * more detail before proceeding.) The main work-stealing queue
171     * design is roughly similar to those in the papers "Dynamic
172     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
173     * (http://research.sun.com/scalable/pubs/index.html) and
174     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
175     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
176 dl 1.200 * The main differences ultimately stem from GC requirements that
177     * we null out taken slots as soon as we can, to maintain as small
178     * a footprint as possible even in programs generating huge
179     * numbers of tasks. To accomplish this, we shift the CAS
180     * arbitrating pop vs poll (steal) from being on the indices
181     * ("base" and "top") to the slots themselves.
182     *
183 dl 1.243 * Adding tasks then takes the form of a classic array push(task)
184     * in a circular buffer:
185     * q.array[q.top++ % length] = task;
186 dl 1.200 *
187     * (The actual code needs to null-check and size-check the array,
188 jsr166 1.247 * uses masking, not mod, for indexing a power-of-two-sized array,
189 dl 1.243 * properly fences accesses, and possibly signals waiting workers
190     * to start scanning -- see below.) Both a successful pop and
191     * poll mainly entail a CAS of a slot from non-null to null.
192 dl 1.200 *
193 jsr166 1.202 * The pop operation (always performed by owner) is:
194 dl 1.243 * if ((the task at top slot is not null) and
195 dl 1.200 * (CAS slot to null))
196     * decrement top and return task;
197     *
198     * And the poll operation (usually by a stealer) is
199 dl 1.243 * if ((the task at base slot is not null) and
200 dl 1.200 * (CAS slot to null))
201     * increment base and return task;
202     *
203 dl 1.243 * There are several variants of each of these; for example most
204 jsr166 1.247 * versions of poll pre-screen the CAS by rechecking that the base
205 dl 1.243 * has not changed since reading the slot, and most methods only
206     * attempt the CAS if base appears not to be equal to top.
207     *
208     * Memory ordering. See "Correct and Efficient Work-Stealing for
209     * Weak Memory Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
210     * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
211     * analysis of memory ordering requirements in work-stealing
212     * algorithms similar to (but different than) the one used here.
213     * Extracting tasks in array slots via (fully fenced) CAS provides
214     * primary synchronization. The base and top indices imprecisely
215     * guide where to extract from. We do not always require strict
216     * orderings of array and index updates, so sometimes let them be
217     * subject to compiler and processor reorderings. However, the
218     * volatile "base" index also serves as a basis for memory
219     * ordering: Slot accesses are preceded by a read of base,
220 jsr166 1.247 * ensuring happens-before ordering with respect to stealers (so
221 dl 1.243 * the slots themselves can be read via plain array reads.) The
222     * only other memory orderings relied on are maintained in the
223     * course of signalling and activation (see below). A check that
224     * base == top indicates (momentary) emptiness, but otherwise may
225     * err on the side of possibly making the queue appear nonempty
226     * when a push, pop, or poll have not fully committed, or making
227     * it appear empty when an update of top has not yet been visibly
228     * written. (Method isEmpty() checks the case of a partially
229 dl 1.211 * completed removal of the last element.) Because of this, the
230     * poll operation, considered individually, is not wait-free. One
231     * thief cannot successfully continue until another in-progress
232 dl 1.243 * one (or, if previously empty, a push) visibly completes.
233     * However, in the aggregate, we ensure at least probabilistic
234     * non-blockingness. If an attempted steal fails, a scanning
235     * thief chooses a different random victim target to try next. So,
236     * in order for one thief to progress, it suffices for any
237 dl 1.205 * in-progress poll or new push on any empty queue to
238     * complete. (This is why we normally use method pollAt and its
239     * variants that try once at the apparent base index, else
240     * consider alternative actions, rather than method poll, which
241     * retries.)
242 dl 1.200 *
243     * This approach also enables support of a user mode in which
244     * local task processing is in FIFO, not LIFO order, simply by
245     * using poll rather than pop. This can be useful in
246     * message-passing frameworks in which tasks are never joined.
247 dl 1.78 *
248     * WorkQueues are also used in a similar way for tasks submitted
249     * to the pool. We cannot mix these tasks in the same queues used
250 dl 1.200 * by workers. Instead, we randomly associate submission queues
251 dl 1.83 * with submitting threads, using a form of hashing. The
252 dl 1.139 * ThreadLocalRandom probe value serves as a hash code for
253     * choosing existing queues, and may be randomly repositioned upon
254     * contention with other submitters. In essence, submitters act
255     * like workers except that they are restricted to executing local
256     * tasks that they submitted (or in the case of CountedCompleters,
257 dl 1.200 * others with the same root task). Insertion of tasks in shared
258 dl 1.243 * mode requires a lock but we use only a simple spinlock (using
259     * field qlock), because submitters encountering a busy queue move
260     * on to try or create other queues -- they block only when
261     * creating and registering new queues. Because it is used only as
262     * a spinlock, unlocking requires only a "releasing" store (using
263     * putOrderedInt). The qlock is also used during termination
264 jsr166 1.247 * detection, in which case it is forced to a negative
265 jsr166 1.269 * non-lockable value.
266 dl 1.78 *
267 jsr166 1.84 * Management
268 dl 1.78 * ==========
269 dl 1.52 *
270     * The main throughput advantages of work-stealing stem from
271     * decentralized control -- workers mostly take tasks from
272 dl 1.200 * themselves or each other, at rates that can exceed a billion
273     * per second. The pool itself creates, activates (enables
274     * scanning for and running tasks), deactivates, blocks, and
275     * terminates threads, all with minimal central information.
276     * There are only a few properties that we can globally track or
277     * maintain, so we pack them into a small number of variables,
278     * often maintaining atomicity without blocking or locking.
279     * Nearly all essentially atomic control state is held in two
280     * volatile variables that are by far most often read (not
281 dl 1.215 * written) as status and consistency checks. (Also, field
282     * "config" holds unchanging configuration state.)
283 dl 1.78 *
284 dl 1.200 * Field "ctl" contains 64 bits holding information needed to
285     * atomically decide to add, inactivate, enqueue (on an event
286 dl 1.78 * queue), dequeue, and/or re-activate workers. To enable this
287     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
288     * far in excess of normal operating range) to allow ids, counts,
289     * and their negations (used for thresholding) to fit into 16bit
290 dl 1.215 * subfields.
291     *
292 dl 1.258 * Field "runState" holds state bits (STARTED, STOP, etc). After
293 dl 1.262 * starting, the field is updated (only during shutdown) under the
294     * auxState lock.
295     *
296     * Field "auxState" is a ReentrantLock subclass that also
297     * opportunistically holds some other bookkeeping fields accessed
298     * only when locked. It is mainly used to lock (infrequent)
299     * updates to runState and workQueues. The auxState instance is
300     * itself lazily constructed (see tryInitialize), requiring a
301 jsr166 1.263 * double-check-style bootstrapping use of field runState, and
302 dl 1.262 * locking a private static.
303 dl 1.258 *
304     * Field "workQueues" holds references to WorkQueues. It is
305 dl 1.262 * updated (only during worker creation and termination) under the
306     * lock, but is otherwise concurrently readable, and accessed
307     * directly. We also ensure that reads of the array reference
308     * itself never become too stale (for example, re-reading before
309     * each scan). To simplify index-based operations, the array size
310     * is always a power of two, and all readers must tolerate null
311     * slots. Worker queues are at odd indices. Shared (submission)
312     * queues are at even indices, up to a maximum of 64 slots, to
313     * limit growth even if array needs to expand to add more
314     * workers. Grouping them together in this way simplifies and
315     * speeds up task scanning.
316 dl 1.86 *
317     * All worker thread creation is on-demand, triggered by task
318     * submissions, replacement of terminated workers, and/or
319 dl 1.78 * compensation for blocked workers. However, all other support
320     * code is set up to work with other policies. To ensure that we
321 jsr166 1.264 * do not hold on to worker references that would prevent GC, all
322 dl 1.78 * accesses to workQueues are via indices into the workQueues
323     * array (which is one source of some of the messy code
324     * constructions here). In essence, the workQueues array serves as
325 dl 1.200 * a weak reference mechanism. Thus for example the stack top
326     * subfield of ctl stores indices, not references.
327     *
328     * Queuing Idle Workers. Unlike HPC work-stealing frameworks, we
329     * cannot let workers spin indefinitely scanning for tasks when
330     * none can be found immediately, and we cannot start/resume
331     * workers unless there appear to be tasks available. On the
332     * other hand, we must quickly prod them into action when new
333     * tasks are submitted or generated. In many usages, ramp-up time
334     * to activate workers is the main limiting factor in overall
335     * performance, which is compounded at program start-up by JIT
336     * compilation and allocation. So we streamline this as much as
337     * possible.
338     *
339     * The "ctl" field atomically maintains active and total worker
340     * counts as well as a queue to place waiting threads so they can
341     * be located for signalling. Active counts also play the role of
342     * quiescence indicators, so are decremented when workers believe
343     * that there are no more tasks to execute. The "queue" is
344     * actually a form of Treiber stack. A stack is ideal for
345     * activating threads in most-recently used order. This improves
346     * performance and locality, outweighing the disadvantages of
347     * being prone to contention and inability to release a worker
348 dl 1.243 * unless it is topmost on stack. We block/unblock workers after
349 dl 1.200 * pushing on the idle worker stack (represented by the lower
350     * 32bit subfield of ctl) when they cannot find work. The top
351     * stack state holds the value of the "scanState" field of the
352     * worker: its index and status, plus a version counter that, in
353     * addition to the count subfields (also serving as version
354     * stamps) provide protection against Treiber stack ABA effects.
355     *
356     * Creating workers. To create a worker, we pre-increment total
357     * count (serving as a reservation), and attempt to construct a
358     * ForkJoinWorkerThread via its factory. Upon construction, the
359     * new thread invokes registerWorker, where it constructs a
360     * WorkQueue and is assigned an index in the workQueues array
361 jsr166 1.266 * (expanding the array if necessary). The thread is then started.
362     * Upon any exception across these steps, or null return from
363     * factory, deregisterWorker adjusts counts and records
364 dl 1.200 * accordingly. If a null return, the pool continues running with
365     * fewer than the target number workers. If exceptional, the
366     * exception is propagated, generally to some external caller.
367     * Worker index assignment avoids the bias in scanning that would
368     * occur if entries were sequentially packed starting at the front
369     * of the workQueues array. We treat the array as a simple
370     * power-of-two hash table, expanding as needed. The seedIndex
371     * increment ensures no collisions until a resize is needed or a
372     * worker is deregistered and replaced, and thereafter keeps
373 jsr166 1.202 * probability of collision low. We cannot use
374 dl 1.200 * ThreadLocalRandom.getProbe() for similar purposes here because
375     * the thread has not started yet, but do so for creating
376 dl 1.243 * submission queues for existing external threads (see
377     * externalPush).
378     *
379     * WorkQueue field scanState is used by both workers and the pool
380     * to manage and track whether a worker is UNSIGNALLED (possibly
381     * blocked waiting for a signal). When a worker is inactivated,
382     * its scanState field is set, and is prevented from executing
383     * tasks, even though it must scan once for them to avoid queuing
384     * races. Note that scanState updates lag queue CAS releases so
385     * usage requires care. When queued, the lower 16 bits of
386     * scanState must hold its pool index. So we place the index there
387     * upon initialization (see registerWorker) and otherwise keep it
388     * there or restore it when necessary.
389     *
390     * The ctl field also serves as the basis for memory
391     * synchronization surrounding activation. This uses a more
392     * efficient version of a Dekker-like rule that task producers and
393     * consumers sync with each other by both writing/CASing ctl (even
394 dl 1.253 * if to its current value). This would be extremely costly. So
395     * we relax it in several ways: (1) Producers only signal when
396     * their queue is empty. Other workers propagate this signal (in
397     * method scan) when they find tasks. (2) Workers only enqueue
398     * after scanning (see below) and not finding any tasks. (3)
399     * Rather than CASing ctl to its current value in the common case
400     * where no action is required, we reduce write contention by
401     * equivalently prefacing signalWork when called by an external
402     * task producer using a memory access with full-volatile
403 dl 1.256 * semantics or a "fullFence". (4) For internal task producers we
404     * rely on the fact that even if no other workers awaken, the
405     * producer itself will eventually see the task and execute it.
406 dl 1.243 *
407 jsr166 1.249 * Almost always, too many signals are issued. A task producer
408 dl 1.243 * cannot in general tell if some existing worker is in the midst
409     * of finishing one task (or already scanning) and ready to take
410     * another without being signalled. So the producer might instead
411     * activate a different worker that does not find any work, and
412     * then inactivates. This scarcely matters in steady-state
413     * computations involving all workers, but can create contention
414 jsr166 1.247 * and bookkeeping bottlenecks during ramp-up, ramp-down, and small
415 dl 1.243 * computations involving only a few workers.
416     *
417     * Scanning. Method scan() performs top-level scanning for tasks.
418     * Each scan traverses (and tries to poll from) each queue in
419     * pseudorandom permutation order by randomly selecting an origin
420     * index and a step value. (The pseudorandom generator need not
421     * have high-quality statistical properties in the long term, but
422     * just within computations; We use 64bit and 32bit Marsaglia
423     * XorShifts, which are cheap and suffice here.) Scanning also
424     * employs contention reduction: When scanning workers fail a CAS
425     * polling for work, they soon restart with a different
426     * pseudorandom scan order (thus likely retrying at different
427     * intervals). This improves throughput when many threads are
428     * trying to take tasks from few queues. Scans do not otherwise
429     * explicitly take into account core affinities, loads, cache
430     * localities, etc, However, they do exploit temporal locality
431 dl 1.253 * (which usually approximates these) by preferring to re-poll (up
432     * to POLL_LIMIT times) from the same queue after a successful
433     * poll before trying others. Restricted forms of scanning occur
434     * in methods helpComplete and findNonEmptyStealQueue, and take
435     * similar but simpler forms.
436 dl 1.200 *
437 jsr166 1.202 * Deactivation and waiting. Queuing encounters several intrinsic
438 jsr166 1.267 * races; most notably that an inactivating scanning worker can
439 dl 1.243 * miss seeing a task produced during a scan. So when a worker
440     * cannot find a task to steal, it inactivates and enqueues, and
441     * then rescans to ensure that it didn't miss one, reactivating
442     * upon seeing one with probability approximately proportional to
443     * probability of a miss. (In most cases, the worker will be
444     * signalled before self-signalling, avoiding cascades of multiple
445     * signals for the same task).
446     *
447     * Workers block (in method awaitWork) using park/unpark;
448     * advertising the need for signallers to unpark by setting their
449     * "parker" fields.
450 dl 1.52 *
451     * Trimming workers. To release resources after periods of lack of
452     * use, a worker starting to wait when the pool is quiescent will
453 dl 1.208 * time out and terminate (see awaitWork) if the pool has remained
454 jsr166 1.268 * quiescent for period given by IDLE_TIMEOUT_MS, increasing the
455     * period as the number of threads decreases, eventually removing
456     * all workers.
457 dl 1.52 *
458 dl 1.210 * Shutdown and Termination. A call to shutdownNow invokes
459     * tryTerminate to atomically set a runState bit. The calling
460     * thread, as well as every other worker thereafter terminating,
461     * helps terminate others by setting their (qlock) status,
462     * cancelling their unprocessed tasks, and waking them up, doing
463     * so repeatedly until stable (but with a loop bounded by the
464     * number of workers). Calls to non-abrupt shutdown() preface
465     * this by checking whether termination should commence. This
466     * relies primarily on the active count bits of "ctl" maintaining
467 jsr166 1.212 * consensus -- tryTerminate is called from awaitWork whenever
468 dl 1.211 * quiescent. However, external submitters do not take part in
469     * this consensus. So, tryTerminate sweeps through queues (until
470     * stable) to ensure lack of in-flight submissions and workers
471 dl 1.210 * about to process them before triggering the "STOP" phase of
472 dl 1.211 * termination. (Note: there is an intrinsic conflict if
473     * helpQuiescePool is called when shutdown is enabled. Both wait
474 jsr166 1.212 * for quiescence, but tryTerminate is biased to not trigger until
475 dl 1.211 * helpQuiescePool completes.)
476     *
477 jsr166 1.84 * Joining Tasks
478     * =============
479 dl 1.78 *
480     * Any of several actions may be taken when one worker is waiting
481 jsr166 1.84 * to join a task stolen (or always held) by another. Because we
482 dl 1.78 * are multiplexing many tasks on to a pool of workers, we can't
483     * just let them block (as in Thread.join). We also cannot just
484     * reassign the joiner's run-time stack with another and replace
485     * it later, which would be a form of "continuation", that even if
486 dl 1.200 * possible is not necessarily a good idea since we may need both
487     * an unblocked task and its continuation to progress. Instead we
488     * combine two tactics:
489 dl 1.19 *
490     * Helping: Arranging for the joiner to execute some task that it
491 dl 1.78 * would be running if the steal had not occurred.
492 dl 1.19 *
493     * Compensating: Unless there are already enough live threads,
494 dl 1.78 * method tryCompensate() may create or re-activate a spare
495     * thread to compensate for blocked joiners until they unblock.
496     *
497 dl 1.105 * A third form (implemented in tryRemoveAndExec) amounts to
498     * helping a hypothetical compensator: If we can readily tell that
499     * a possible action of a compensator is to steal and execute the
500     * task being joined, the joining thread can do so directly,
501     * without the need for a compensation thread (although at the
502     * expense of larger run-time stacks, but the tradeoff is
503     * typically worthwhile).
504 dl 1.52 *
505     * The ManagedBlocker extension API can't use helping so relies
506     * only on compensation in method awaitBlocker.
507 dl 1.19 *
508 dl 1.200 * The algorithm in helpStealer entails a form of "linear
509     * helping". Each worker records (in field currentSteal) the most
510     * recent task it stole from some other worker (or a submission).
511     * It also records (in field currentJoin) the task it is currently
512     * actively joining. Method helpStealer uses these markers to try
513     * to find a worker to help (i.e., steal back a task from and
514     * execute it) that could hasten completion of the actively joined
515     * task. Thus, the joiner executes a task that would be on its
516     * own local deque had the to-be-joined task not been stolen. This
517     * is a conservative variant of the approach described in Wagner &
518 dl 1.78 * Calder "Leapfrogging: a portable technique for implementing
519     * efficient futures" SIGPLAN Notices, 1993
520     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
521     * that: (1) We only maintain dependency links across workers upon
522     * steals, rather than use per-task bookkeeping. This sometimes
523 dl 1.90 * requires a linear scan of workQueues array to locate stealers,
524     * but often doesn't because stealers leave hints (that may become
525 dl 1.112 * stale/wrong) of where to locate them. It is only a hint
526     * because a worker might have had multiple steals and the hint
527     * records only one of them (usually the most current). Hinting
528     * isolates cost to when it is needed, rather than adding to
529     * per-task overhead. (2) It is "shallow", ignoring nesting and
530     * potentially cyclic mutual steals. (3) It is intentionally
531 dl 1.78 * racy: field currentJoin is updated only while actively joining,
532     * which means that we miss links in the chain during long-lived
533     * tasks, GC stalls etc (which is OK since blocking in such cases
534     * is usually a good idea). (4) We bound the number of attempts
535 dl 1.200 * to find work using checksums and fall back to suspending the
536 dl 1.90 * worker and if necessary replacing it with another.
537 dl 1.78 *
538 dl 1.200 * Helping actions for CountedCompleters do not require tracking
539     * currentJoins: Method helpComplete takes and executes any task
540 jsr166 1.202 * with the same root as the task being waited on (preferring
541     * local pops to non-local polls). However, this still entails
542     * some traversal of completer chains, so is less efficient than
543     * using CountedCompleters without explicit joins.
544 dl 1.105 *
545 dl 1.200 * Compensation does not aim to keep exactly the target
546     * parallelism number of unblocked threads running at any given
547     * time. Some previous versions of this class employed immediate
548     * compensations for any blocked join. However, in practice, the
549     * vast majority of blockages are transient byproducts of GC and
550     * other JVM or OS activities that are made worse by replacement.
551     * Currently, compensation is attempted only after validating that
552     * all purportedly active threads are processing tasks by checking
553     * field WorkQueue.scanState, which eliminates most false
554     * positives. Also, compensation is bypassed (tolerating fewer
555     * threads) in the most common case in which it is rarely
556     * beneficial: when a worker with an empty queue (thus no
557     * continuation tasks) blocks on a join and there still remain
558 dl 1.208 * enough threads to ensure liveness.
559 dl 1.105 *
560 dl 1.243 * Spare threads are removed as soon as they notice that the
561     * target parallelism level has been exceeded, in method
562     * tryDropSpare. (Method scan arranges returns for rechecks upon
563 jsr166 1.247 * each probe via the "bound" parameter.)
564 dl 1.243 *
565 dl 1.211 * The compensation mechanism may be bounded. Bounds for the
566 jsr166 1.273 * commonPool (see COMMON_MAX_SPARES) better enable JVMs to cope
567 dl 1.208 * with programming errors and abuse before running out of
568     * resources to do so. In other cases, users may supply factories
569     * that limit thread construction. The effects of bounding in this
570     * pool (like all others) is imprecise. Total worker counts are
571     * decremented when threads deregister, not when they exit and
572     * resources are reclaimed by the JVM and OS. So the number of
573     * simultaneously live threads may transiently exceed bounds.
574 dl 1.205 *
575 dl 1.105 * Common Pool
576     * ===========
577     *
578 jsr166 1.175 * The static common pool always exists after static
579 dl 1.105 * initialization. Since it (or any other created pool) need
580     * never be used, we minimize initial construction overhead and
581     * footprint to the setup of about a dozen fields, with no nested
582     * allocation. Most bootstrapping occurs within method
583 dl 1.200 * externalSubmit during the first submission to the pool.
584 dl 1.105 *
585     * When external threads submit to the common pool, they can
586 dl 1.200 * perform subtask processing (see externalHelpComplete and
587     * related methods) upon joins. This caller-helps policy makes it
588     * sensible to set common pool parallelism level to one (or more)
589     * less than the total number of available cores, or even zero for
590     * pure caller-runs. We do not need to record whether external
591     * submissions are to the common pool -- if not, external help
592     * methods return quickly. These submitters would otherwise be
593     * blocked waiting for completion, so the extra effort (with
594     * liberally sprinkled task status checks) in inapplicable cases
595     * amounts to an odd form of limited spin-wait before blocking in
596     * ForkJoinTask.join.
597 dl 1.105 *
598 dl 1.197 * As a more appropriate default in managed environments, unless
599     * overridden by system properties, we use workers of subclass
600     * InnocuousForkJoinWorkerThread when there is a SecurityManager
601     * present. These workers have no permissions set, do not belong
602     * to any user-defined ThreadGroup, and erase all ThreadLocals
603 dl 1.200 * after executing any top-level task (see WorkQueue.runTask).
604     * The associated mechanics (mainly in ForkJoinWorkerThread) may
605     * be JVM-dependent and must access particular Thread class fields
606     * to achieve this effect.
607 jsr166 1.198 *
608 dl 1.105 * Style notes
609     * ===========
610     *
611 dl 1.200 * Memory ordering relies mainly on Unsafe intrinsics that carry
612     * the further responsibility of explicitly performing null- and
613     * bounds- checks otherwise carried out implicitly by JVMs. This
614     * can be awkward and ugly, but also reflects the need to control
615     * outcomes across the unusual cases that arise in very racy code
616     * with very few invariants. So these explicit checks would exist
617     * in some form anyway. All fields are read into locals before
618     * use, and null-checked if they are references. This is usually
619     * done in a "C"-like style of listing declarations at the heads
620     * of methods or blocks, and using inline assignments on first
621     * encounter. Array bounds-checks are usually performed by
622     * masking with array.length-1, which relies on the invariant that
623     * these arrays are created with positive lengths, which is itself
624     * paranoically checked. Nearly all explicit checks lead to
625     * bypass/return, not exception throws, because they may
626     * legitimately arise due to cancellation/revocation during
627     * shutdown.
628     *
629 dl 1.105 * There is a lot of representation-level coupling among classes
630     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
631     * fields of WorkQueue maintain data structures managed by
632     * ForkJoinPool, so are directly accessed. There is little point
633     * trying to reduce this, since any associated future changes in
634     * representations will need to be accompanied by algorithmic
635     * changes anyway. Several methods intrinsically sprawl because
636 dl 1.200 * they must accumulate sets of consistent reads of fields held in
637     * local variables. There are also other coding oddities
638     * (including several unnecessary-looking hoisted null checks)
639     * that help some methods perform reasonably even when interpreted
640     * (not compiled).
641 dl 1.52 *
642 dl 1.208 * The order of declarations in this file is (with a few exceptions):
643 dl 1.86 * (1) Static utility functions
644     * (2) Nested (static) classes
645     * (3) Static fields
646     * (4) Fields, along with constants used when unpacking some of them
647     * (5) Internal control methods
648     * (6) Callbacks and other support for ForkJoinTask methods
649     * (7) Exported methods
650     * (8) Static block initializing statics in minimally dependent order
651     */
652    
653     // Static utilities
654    
655     /**
656     * If there is a security manager, makes sure caller has
657     * permission to modify threads.
658 jsr166 1.1 */
659 dl 1.86 private static void checkPermission() {
660     SecurityManager security = System.getSecurityManager();
661     if (security != null)
662     security.checkPermission(modifyThreadPermission);
663     }
664    
665     // Nested classes
666 jsr166 1.1
667     /**
668 jsr166 1.8 * Factory for creating new {@link ForkJoinWorkerThread}s.
669     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
670     * for {@code ForkJoinWorkerThread} subclasses that extend base
671     * functionality or initialize threads with different contexts.
672 jsr166 1.1 */
673     public static interface ForkJoinWorkerThreadFactory {
674     /**
675     * Returns a new worker thread operating in the given pool.
676     *
677     * @param pool the pool this thread works in
678 jsr166 1.192 * @return the new worker thread
679 jsr166 1.11 * @throws NullPointerException if the pool is null
680 jsr166 1.1 */
681     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
682     }
683    
684     /**
685     * Default ForkJoinWorkerThreadFactory implementation; creates a
686     * new ForkJoinWorkerThread.
687     */
688 jsr166 1.278 private static final class DefaultForkJoinWorkerThreadFactory
689 jsr166 1.1 implements ForkJoinWorkerThreadFactory {
690 dl 1.112 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
691 dl 1.14 return new ForkJoinWorkerThread(pool);
692 jsr166 1.1 }
693     }
694    
695     /**
696 dl 1.86 * Class for artificial tasks that are used to replace the target
697     * of local joins if they are removed from an interior queue slot
698     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
699     * actually do anything beyond having a unique identity.
700 jsr166 1.1 */
701 jsr166 1.278 private static final class EmptyTask extends ForkJoinTask<Void> {
702 dl 1.105 private static final long serialVersionUID = -7721805057305804111L;
703 dl 1.86 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
704     public final Void getRawResult() { return null; }
705     public final void setRawResult(Void x) {}
706     public final boolean exec() { return true; }
707 jsr166 1.1 }
708    
709 dl 1.262 /**
710     * Additional fields and lock created upon initialization.
711     */
712 jsr166 1.278 private static final class AuxState extends ReentrantLock {
713 dl 1.262 private static final long serialVersionUID = -6001602636862214147L;
714     volatile long stealCount; // cumulative steal count
715     long indexSeed; // index bits for registerWorker
716     AuxState() {}
717     }
718    
719 dl 1.200 // Constants shared across ForkJoinPool and WorkQueue
720    
721     // Bounds
722     static final int SMASK = 0xffff; // short bits == max index
723     static final int MAX_CAP = 0x7fff; // max #workers - 1
724     static final int EVENMASK = 0xfffe; // even short bits
725     static final int SQMASK = 0x007e; // max 64 (even) slots
726    
727     // Masks and units for WorkQueue.scanState and ctl sp subfield
728 dl 1.243 static final int UNSIGNALLED = 1 << 31; // must be negative
729 dl 1.211 static final int SS_SEQ = 1 << 16; // version count
730 dl 1.200
731     // Mode bits for ForkJoinPool.config and WorkQueue.config
732 dl 1.211 static final int MODE_MASK = 0xffff << 16; // top half of int
733 dl 1.243 static final int SPARE_WORKER = 1 << 17; // set if tc > 0 on creation
734     static final int UNREGISTERED = 1 << 18; // to skip some of deregister
735     static final int FIFO_QUEUE = 1 << 31; // must be negative
736     static final int LIFO_QUEUE = 0; // for clarity
737     static final int IS_OWNED = 1; // low bit 0 if shared
738 dl 1.225
739 jsr166 1.1 /**
740 dl 1.253 * The maximum number of task executions from the same queue
741     * before checking other queues, bounding unfairness and impact of
742     * infinite user task recursion. Must be a power of two minus 1.
743     */
744     static final int POLL_LIMIT = (1 << 10) - 1;
745    
746     /**
747 dl 1.78 * Queues supporting work-stealing as well as external task
748 jsr166 1.202 * submission. See above for descriptions and algorithms.
749 dl 1.78 * Performance on most platforms is very sensitive to placement of
750     * instances of both WorkQueues and their arrays -- we absolutely
751     * do not want multiple WorkQueue instances or multiple queue
752 dl 1.200 * arrays sharing cache lines. The @Contended annotation alerts
753     * JVMs to try to keep instances apart.
754 dl 1.78 */
755 jsr166 1.171 @sun.misc.Contended
756 dl 1.78 static final class WorkQueue {
757 dl 1.200
758 dl 1.78 /**
759     * Capacity of work-stealing queue array upon initialization.
760 dl 1.90 * Must be a power of two; at least 4, but should be larger to
761     * reduce or eliminate cacheline sharing among queues.
762     * Currently, it is much larger, as a partial workaround for
763     * the fact that JVMs often place arrays in locations that
764     * share GC bookkeeping (especially cardmarks) such that
765     * per-write accesses encounter serious memory contention.
766 dl 1.78 */
767 dl 1.90 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
768 dl 1.78
769     /**
770     * Maximum size for queue arrays. Must be a power of two less
771     * than or equal to 1 << (31 - width of array entry) to ensure
772     * lack of wraparound of index calculations, but defined to a
773     * value a bit less than this to help users trap runaway
774     * programs before saturating systems.
775     */
776     static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
777    
778 dl 1.200 // Instance fields
779 dl 1.255
780 dl 1.243 volatile int scanState; // versioned, negative if inactive
781 dl 1.200 int stackPred; // pool stack (ctl) predecessor
782 dl 1.178 int nsteals; // number of steals
783 dl 1.200 int hint; // randomization and stealer index hint
784     int config; // pool index and mode
785     volatile int qlock; // 1: locked, < 0: terminate; else 0
786 dl 1.78 volatile int base; // index of next slot for poll
787     int top; // index of next slot for push
788     ForkJoinTask<?>[] array; // the elements (initially unallocated)
789 dl 1.90 final ForkJoinPool pool; // the containing pool (may be null)
790 dl 1.78 final ForkJoinWorkerThread owner; // owning thread or null if shared
791     volatile Thread parker; // == owner during call to park; else null
792 dl 1.95 volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
793 dl 1.255 @sun.misc.Contended("group2") // separate from other fields
794     volatile ForkJoinTask<?> currentSteal; // nonnull when running some task
795 dl 1.112
796 dl 1.200 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner) {
797 dl 1.90 this.pool = pool;
798 dl 1.78 this.owner = owner;
799 dl 1.115 // Place indices in the center of array (that is not yet allocated)
800 dl 1.78 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
801     }
802    
803     /**
804 jsr166 1.220 * Returns an exportable index (used by ForkJoinWorkerThread).
805 dl 1.200 */
806     final int getPoolIndex() {
807     return (config & 0xffff) >>> 1; // ignore odd/even tag bit
808     }
809    
810     /**
811 dl 1.115 * Returns the approximate number of tasks in the queue.
812     */
813     final int queueSize() {
814 dl 1.243 int n = base - top; // read base first
815 dl 1.115 return (n >= 0) ? 0 : -n; // ignore transient negative
816     }
817    
818 jsr166 1.180 /**
819 dl 1.115 * Provides a more accurate estimate of whether this queue has
820     * any tasks than does queueSize, by checking whether a
821     * near-empty queue has at least one unclaimed task.
822     */
823     final boolean isEmpty() {
824 dl 1.225 ForkJoinTask<?>[] a; int n, al, s;
825 dl 1.243 return ((n = base - (s = top)) >= 0 || // possibly one task
826     (n == -1 && ((a = array) == null ||
827     (al = a.length) == 0 ||
828     a[(al - 1) & (s - 1)] == null)));
829 dl 1.115 }
830    
831     /**
832 dl 1.256 * Pushes a task. Call only by owner in unshared queues.
833 dl 1.78 *
834     * @param task the task. Caller must ensure non-null.
835 jsr166 1.146 * @throws RejectedExecutionException if array cannot be resized
836 dl 1.78 */
837 dl 1.90 final void push(ForkJoinTask<?> task) {
838 dl 1.288 U.storeFence(); // ensure safe publication
839 dl 1.243 int b = base, s = top, al, d; ForkJoinTask<?>[] a;
840     if ((a = array) != null && (al = a.length) > 0) {
841     a[(al - 1) & s] = task; // relaxed writes OK
842     top = s + 1;
843     ForkJoinPool p = pool;
844 dl 1.272 U.storeFence(); // ensure fields written
845 dl 1.284 if (((d = b - s) == 0 || b != base) && p != null) {
846     U.fullFence();
847 dl 1.253 p.signalWork();
848 dl 1.284 }
849 dl 1.253 else if (al + d == 1)
850 dl 1.243 growArray();
851 dl 1.78 }
852     }
853    
854 dl 1.178 /**
855 dl 1.112 * Initializes or doubles the capacity of array. Call either
856     * by owner or with lock held -- it is OK for base, but not
857     * top, to move while resizings are in progress.
858     */
859     final ForkJoinTask<?>[] growArray() {
860     ForkJoinTask<?>[] oldA = array;
861     int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
862 dl 1.225 if (size < INITIAL_QUEUE_CAPACITY || size > MAXIMUM_QUEUE_CAPACITY)
863 dl 1.112 throw new RejectedExecutionException("Queue capacity exceeded");
864     int oldMask, t, b;
865     ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
866 dl 1.225 if (oldA != null && (oldMask = oldA.length - 1) > 0 &&
867 dl 1.112 (t = top) - (b = base) > 0) {
868     int mask = size - 1;
869 dl 1.200 do { // emulate poll from old array, push to new array
870 dl 1.256 int index = b & oldMask;
871     long offset = ((long)index << ASHIFT) + ABASE;
872 dl 1.243 ForkJoinTask<?> x = (ForkJoinTask<?>)
873     U.getObjectVolatile(oldA, offset);
874     if (x != null &&
875     U.compareAndSwapObject(oldA, offset, x, null))
876     a[b & mask] = x;
877 dl 1.112 } while (++b != t);
878 dl 1.243 U.storeFence();
879 dl 1.78 }
880 dl 1.112 return a;
881 dl 1.78 }
882    
883     /**
884 dl 1.90 * Takes next task, if one exists, in LIFO order. Call only
885 dl 1.102 * by owner in unshared queues.
886 dl 1.90 */
887     final ForkJoinTask<?> pop() {
888 dl 1.243 int b = base, s = top, al, i; ForkJoinTask<?>[] a;
889 dl 1.256 if ((a = array) != null && b != s && (al = a.length) > 0) {
890     int index = (al - 1) & --s;
891     long offset = ((long)index << ASHIFT) + ABASE;
892 dl 1.262 ForkJoinTask<?> t = (ForkJoinTask<?>)
893     U.getObject(a, offset);
894     if (t != null &&
895     U.compareAndSwapObject(a, offset, t, null)) {
896 dl 1.256 top = s;
897 dl 1.243 return t;
898 dl 1.90 }
899     }
900     return null;
901     }
902    
903     /**
904     * Takes a task in FIFO order if b is base of queue and a task
905     * can be claimed without contention. Specialized versions
906 dl 1.200 * appear in ForkJoinPool methods scan and helpStealer.
907 dl 1.78 */
908 dl 1.90 final ForkJoinTask<?> pollAt(int b) {
909 dl 1.243 ForkJoinTask<?>[] a; int al;
910     if ((a = array) != null && (al = a.length) > 0) {
911 dl 1.256 int index = (al - 1) & b;
912     long offset = ((long)index << ASHIFT) + ABASE;
913 dl 1.243 ForkJoinTask<?> t = (ForkJoinTask<?>)
914     U.getObjectVolatile(a, offset);
915     if (t != null && b++ == base &&
916     U.compareAndSwapObject(a, offset, t, null)) {
917     base = b;
918 dl 1.78 return t;
919     }
920     }
921     return null;
922     }
923    
924     /**
925 dl 1.90 * Takes next task, if one exists, in FIFO order.
926 dl 1.78 */
927 dl 1.90 final ForkJoinTask<?> poll() {
928 dl 1.243 for (;;) {
929     int b = base, s = top, d, al; ForkJoinTask<?>[] a;
930     if ((a = array) != null && (d = b - s) < 0 &&
931     (al = a.length) > 0) {
932 dl 1.256 int index = (al - 1) & b;
933     long offset = ((long)index << ASHIFT) + ABASE;
934 dl 1.243 ForkJoinTask<?> t = (ForkJoinTask<?>)
935     U.getObjectVolatile(a, offset);
936     if (b++ == base) {
937     if (t != null) {
938     if (U.compareAndSwapObject(a, offset, t, null)) {
939     base = b;
940     return t;
941     }
942 dl 1.200 }
943 dl 1.243 else if (d == -1)
944     break; // now empty
945 dl 1.78 }
946 dl 1.90 }
947 dl 1.243 else
948     break;
949 dl 1.78 }
950     return null;
951     }
952    
953     /**
954     * Takes next task, if one exists, in order specified by mode.
955     */
956     final ForkJoinTask<?> nextLocalTask() {
957 dl 1.243 return (config < 0) ? poll() : pop();
958 dl 1.78 }
959    
960     /**
961     * Returns next task, if one exists, in order specified by mode.
962     */
963     final ForkJoinTask<?> peek() {
964 dl 1.243 int b = base, al; ForkJoinTask<?>[] a;
965     return ((a = array) != null && (al = a.length) > 0) ?
966     a[(al - 1) & (config < 0 ? b : top - 1)] : null;
967 dl 1.78 }
968    
969     /**
970     * Pops the given task only if it is at the current top.
971 jsr166 1.251 */
972 dl 1.243 final boolean tryUnpush(ForkJoinTask<?> task) {
973 dl 1.256 int b = base, s = top, al; ForkJoinTask<?>[] a;
974     if ((a = array) != null && b != s && (al = a.length) > 0) {
975     int index = (al - 1) & --s;
976     long offset = ((long)index << ASHIFT) + ABASE;
977     if (U.compareAndSwapObject(a, offset, task, null)) {
978 dl 1.243 top = s;
979 dl 1.224 return true;
980     }
981 dl 1.78 }
982     return false;
983     }
984    
985     /**
986 dl 1.256 * Shared version of push. Fails if already locked.
987     *
988 dl 1.282 * @return status: > 0 locked, 0 possibly was empty, < 0 was nonempty
989 dl 1.256 */
990     final int sharedPush(ForkJoinTask<?> task) {
991     int stat;
992     if (U.compareAndSwapInt(this, QLOCK, 0, 1)) {
993     int b = base, s = top, al, d; ForkJoinTask<?>[] a;
994     if ((a = array) != null && (al = a.length) > 0 &&
995     al - 1 + (d = b - s) > 0) {
996     a[(al - 1) & s] = task;
997     top = s + 1; // relaxed writes OK here
998 dl 1.282 qlock = 0;
999 dl 1.284 stat = (d < 0 && b == base) ? d : 0;
1000 dl 1.256 }
1001     else {
1002     growAndSharedPush(task);
1003     stat = 0;
1004     }
1005     }
1006     else
1007     stat = 1;
1008     return stat;
1009     }
1010    
1011     /*
1012     * Helper for sharedPush; called only when locked and resize
1013     * needed.
1014     */
1015     private void growAndSharedPush(ForkJoinTask<?> task) {
1016     try {
1017     growArray();
1018     int s = top, al; ForkJoinTask<?>[] a;
1019     if ((a = array) != null && (al = a.length) > 0) {
1020     a[(al - 1) & s] = task;
1021     top = s + 1;
1022     }
1023     } finally {
1024     qlock = 0;
1025     }
1026     }
1027    
1028     /**
1029 jsr166 1.279 * Shared version of pop.
1030 jsr166 1.247 */
1031 dl 1.243 final boolean trySharedUnpush(ForkJoinTask<?> task) {
1032     boolean popped = false;
1033 jsr166 1.271 int s = top - 1, al; ForkJoinTask<?>[] a;
1034 dl 1.243 if ((a = array) != null && (al = a.length) > 0) {
1035 dl 1.256 int index = (al - 1) & s;
1036     long offset = ((long)index << ASHIFT) + ABASE;
1037 jsr166 1.271 ForkJoinTask<?> t = (ForkJoinTask<?>) U.getObject(a, offset);
1038 dl 1.256 if (t == task &&
1039 dl 1.243 U.compareAndSwapInt(this, QLOCK, 0, 1)) {
1040     if (U.compareAndSwapObject(a, offset, task, null)) {
1041     popped = true;
1042     top = s;
1043     }
1044     U.putOrderedInt(this, QLOCK, 0);
1045     }
1046     }
1047     return popped;
1048     }
1049    
1050     /**
1051 jsr166 1.84 * Removes and cancels all known tasks, ignoring any exceptions.
1052 dl 1.78 */
1053     final void cancelAll() {
1054 dl 1.200 ForkJoinTask<?> t;
1055     if ((t = currentJoin) != null) {
1056     currentJoin = null;
1057     ForkJoinTask.cancelIgnoringExceptions(t);
1058     }
1059     if ((t = currentSteal) != null) {
1060     currentSteal = null;
1061     ForkJoinTask.cancelIgnoringExceptions(t);
1062     }
1063     while ((t = poll()) != null)
1064 dl 1.78 ForkJoinTask.cancelIgnoringExceptions(t);
1065     }
1066    
1067 dl 1.104 // Specialized execution methods
1068 dl 1.78
1069     /**
1070 jsr166 1.254 * Pops and executes up to POLL_LIMIT tasks or until empty.
1071 dl 1.253 */
1072     final void localPopAndExec() {
1073     for (int nexec = 0;;) {
1074     int b = base, s = top, al; ForkJoinTask<?>[] a;
1075     if ((a = array) != null && b != s && (al = a.length) > 0) {
1076 dl 1.256 int index = (al - 1) & --s;
1077     long offset = ((long)index << ASHIFT) + ABASE;
1078 dl 1.253 ForkJoinTask<?> t = (ForkJoinTask<?>)
1079     U.getAndSetObject(a, offset, null);
1080     if (t != null) {
1081     top = s;
1082     (currentSteal = t).doExec();
1083     if (++nexec > POLL_LIMIT)
1084     break;
1085     }
1086     else
1087     break;
1088     }
1089     else
1090     break;
1091     }
1092     }
1093    
1094     /**
1095 jsr166 1.254 * Polls and executes up to POLL_LIMIT tasks or until empty.
1096 dl 1.253 */
1097     final void localPollAndExec() {
1098     for (int nexec = 0;;) {
1099     int b = base, s = top, al; ForkJoinTask<?>[] a;
1100     if ((a = array) != null && b != s && (al = a.length) > 0) {
1101 dl 1.256 int index = (al - 1) & b++;
1102     long offset = ((long)index << ASHIFT) + ABASE;
1103 dl 1.253 ForkJoinTask<?> t = (ForkJoinTask<?>)
1104     U.getAndSetObject(a, offset, null);
1105     if (t != null) {
1106     base = b;
1107 dl 1.255 t.doExec();
1108 dl 1.253 if (++nexec > POLL_LIMIT)
1109     break;
1110     }
1111     }
1112     else
1113     break;
1114     }
1115     }
1116    
1117     /**
1118     * Executes the given task and (some) remaining local tasks.
1119 dl 1.94 */
1120 dl 1.178 final void runTask(ForkJoinTask<?> task) {
1121 dl 1.200 if (task != null) {
1122 dl 1.243 task.doExec();
1123 dl 1.253 if (config < 0)
1124     localPollAndExec();
1125     else
1126     localPopAndExec();
1127 dl 1.243 int ns = ++nsteals;
1128 dl 1.200 ForkJoinWorkerThread thread = owner;
1129 dl 1.243 currentSteal = null;
1130     if (ns < 0) // collect on overflow
1131 dl 1.215 transferStealCount(pool);
1132 dl 1.200 if (thread != null)
1133 dl 1.197 thread.afterTopLevelExec();
1134 dl 1.178 }
1135 dl 1.94 }
1136    
1137     /**
1138 dl 1.262 * Adds steal count to pool steal count if it exists, and resets.
1139 dl 1.215 */
1140     final void transferStealCount(ForkJoinPool p) {
1141 dl 1.262 AuxState aux;
1142     if (p != null && (aux = p.auxState) != null) {
1143 dl 1.215 int s = nsteals;
1144     nsteals = 0; // if negative, correct for overflow
1145 dl 1.262 long inc = (long)(s < 0 ? Integer.MAX_VALUE : s);
1146     aux.lock();
1147     try {
1148     aux.stealCount += inc;
1149     } finally {
1150     aux.unlock();
1151     }
1152 dl 1.215 }
1153     }
1154    
1155     /**
1156 dl 1.105 * If present, removes from queue and executes the given task,
1157 jsr166 1.213 * or any other cancelled task. Used only by awaitJoin.
1158 dl 1.94 *
1159 jsr166 1.213 * @return true if queue empty and task not known to be done
1160 dl 1.94 */
1161 dl 1.105 final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
1162 dl 1.243 if (task != null && task.status >= 0) {
1163     int b, s, d, al; ForkJoinTask<?>[] a;
1164     while ((d = (b = base) - (s = top)) < 0 &&
1165     (a = array) != null && (al = a.length) > 0) {
1166     for (;;) { // traverse from s to b
1167 dl 1.256 int index = --s & (al - 1);
1168     long offset = (index << ASHIFT) + ABASE;
1169 dl 1.243 ForkJoinTask<?> t = (ForkJoinTask<?>)
1170     U.getObjectVolatile(a, offset);
1171     if (t == null)
1172     break; // restart
1173 dl 1.200 else if (t == task) {
1174     boolean removed = false;
1175     if (s + 1 == top) { // pop
1176 dl 1.243 if (U.compareAndSwapObject(a, offset, t, null)) {
1177     top = s;
1178 dl 1.200 removed = true;
1179     }
1180     }
1181     else if (base == b) // replace with proxy
1182 dl 1.258 removed = U.compareAndSwapObject(a, offset, t,
1183     new EmptyTask());
1184 dl 1.243 if (removed) {
1185     ForkJoinTask<?> ps = currentSteal;
1186     (currentSteal = task).doExec();
1187     currentSteal = ps;
1188     }
1189 dl 1.200 break;
1190 dl 1.90 }
1191 dl 1.200 else if (t.status < 0 && s + 1 == top) {
1192 dl 1.243 if (U.compareAndSwapObject(a, offset, t, null)) {
1193     top = s;
1194     }
1195 dl 1.200 break; // was cancelled
1196 dl 1.104 }
1197 dl 1.243 else if (++d == 0) {
1198     if (base != b) // rescan
1199     break;
1200 dl 1.200 return false;
1201 dl 1.243 }
1202 dl 1.104 }
1203 dl 1.200 if (task.status < 0)
1204     return false;
1205 dl 1.104 }
1206     }
1207 dl 1.200 return true;
1208 dl 1.104 }
1209    
1210     /**
1211 dl 1.200 * Pops task if in the same CC computation as the given task,
1212     * in either shared or owned mode. Used only by helpComplete.
1213 dl 1.78 */
1214 dl 1.253 final CountedCompleter<?> popCC(CountedCompleter<?> task, int mode) {
1215 dl 1.243 int b = base, s = top, al; ForkJoinTask<?>[] a;
1216     if ((a = array) != null && b != s && (al = a.length) > 0) {
1217 dl 1.256 int index = (al - 1) & (s - 1);
1218     long offset = ((long)index << ASHIFT) + ABASE;
1219     ForkJoinTask<?> o = (ForkJoinTask<?>)
1220     U.getObjectVolatile(a, offset);
1221 dl 1.243 if (o instanceof CountedCompleter) {
1222 dl 1.200 CountedCompleter<?> t = (CountedCompleter<?>)o;
1223     for (CountedCompleter<?> r = t;;) {
1224     if (r == task) {
1225 dl 1.253 if ((mode & IS_OWNED) == 0) {
1226 dl 1.243 boolean popped;
1227 dl 1.200 if (U.compareAndSwapInt(this, QLOCK, 0, 1)) {
1228 dl 1.243 if (popped =
1229     U.compareAndSwapObject(a, offset,
1230     t, null))
1231     top = s - 1;
1232     U.putOrderedInt(this, QLOCK, 0);
1233     if (popped)
1234 dl 1.200 return t;
1235 dl 1.178 }
1236     }
1237 dl 1.243 else if (U.compareAndSwapObject(a, offset,
1238     t, null)) {
1239     top = s - 1;
1240 dl 1.200 return t;
1241     }
1242     break;
1243 dl 1.178 }
1244 dl 1.200 else if ((r = r.completer) == null) // try parent
1245 dl 1.178 break;
1246     }
1247 dl 1.94 }
1248 dl 1.78 }
1249 dl 1.200 return null;
1250 dl 1.78 }
1251    
1252     /**
1253 dl 1.200 * Steals and runs a task in the same CC computation as the
1254     * given task if one exists and can be taken without
1255     * contention. Otherwise returns a checksum/control value for
1256     * use by method helpComplete.
1257     *
1258     * @return 1 if successful, 2 if retryable (lost to another
1259     * stealer), -1 if non-empty but no matching task found, else
1260     * the base index, forced negative.
1261     */
1262     final int pollAndExecCC(CountedCompleter<?> task) {
1263 dl 1.243 ForkJoinTask<?>[] a;
1264     int b = base, s = top, al, h;
1265     if ((a = array) != null && b != s && (al = a.length) > 0) {
1266 dl 1.256 int index = (al - 1) & b;
1267     long offset = ((long)index << ASHIFT) + ABASE;
1268     ForkJoinTask<?> o = (ForkJoinTask<?>)
1269     U.getObjectVolatile(a, offset);
1270 dl 1.243 if (o == null)
1271     h = 2; // retryable
1272     else if (!(o instanceof CountedCompleter))
1273     h = -1; // unmatchable
1274     else {
1275     CountedCompleter<?> t = (CountedCompleter<?>)o;
1276     for (CountedCompleter<?> r = t;;) {
1277     if (r == task) {
1278     if (b++ == base &&
1279     U.compareAndSwapObject(a, offset, t, null)) {
1280     base = b;
1281     t.doExec();
1282     h = 1; // success
1283     }
1284     else
1285     h = 2; // lost CAS
1286     break;
1287     }
1288     else if ((r = r.completer) == null) {
1289     h = -1; // unmatched
1290     break;
1291 dl 1.200 }
1292 dl 1.178 }
1293     }
1294 dl 1.78 }
1295 dl 1.243 else
1296     h = b | Integer.MIN_VALUE; // to sense movement on re-poll
1297 dl 1.200 return h;
1298 dl 1.78 }
1299    
1300     /**
1301 dl 1.86 * Returns true if owned and not known to be blocked.
1302     */
1303     final boolean isApparentlyUnblocked() {
1304     Thread wt; Thread.State s;
1305 dl 1.200 return (scanState >= 0 &&
1306 dl 1.86 (wt = owner) != null &&
1307     (s = wt.getState()) != Thread.State.BLOCKED &&
1308     s != Thread.State.WAITING &&
1309     s != Thread.State.TIMED_WAITING);
1310     }
1311    
1312 dl 1.211 // Unsafe mechanics. Note that some are (and must be) the same as in FJP
1313 jsr166 1.233 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
1314 dl 1.200 private static final int ABASE;
1315     private static final int ASHIFT;
1316 dl 1.105 private static final long QLOCK;
1317 dl 1.78 static {
1318     try {
1319 dl 1.105 QLOCK = U.objectFieldOffset
1320 jsr166 1.233 (WorkQueue.class.getDeclaredField("qlock"));
1321     ABASE = U.arrayBaseOffset(ForkJoinTask[].class);
1322     int scale = U.arrayIndexScale(ForkJoinTask[].class);
1323 jsr166 1.142 if ((scale & (scale - 1)) != 0)
1324 jsr166 1.232 throw new Error("array index scale not a power of two");
1325 jsr166 1.142 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1326 jsr166 1.231 } catch (ReflectiveOperationException e) {
1327 dl 1.78 throw new Error(e);
1328     }
1329     }
1330     }
1331 dl 1.14
1332 dl 1.112 // static fields (initialized in static initializer below)
1333    
1334     /**
1335     * Creates a new ForkJoinWorkerThread. This factory is used unless
1336     * overridden in ForkJoinPool constructors.
1337     */
1338     public static final ForkJoinWorkerThreadFactory
1339     defaultForkJoinWorkerThreadFactory;
1340    
1341 jsr166 1.1 /**
1342 dl 1.115 * Permission required for callers of methods that may start or
1343 jsr166 1.277 * kill threads. Also used as a static lock in tryInitialize.
1344 dl 1.115 */
1345 jsr166 1.276 static final RuntimePermission modifyThreadPermission;
1346 dl 1.115
1347     /**
1348 dl 1.101 * Common (static) pool. Non-null for public use unless a static
1349 dl 1.105 * construction exception, but internal usages null-check on use
1350     * to paranoically avoid potential initialization circularities
1351     * as well as to simplify generated code.
1352 dl 1.101 */
1353 dl 1.134 static final ForkJoinPool common;
1354 dl 1.101
1355     /**
1356 dl 1.160 * Common pool parallelism. To allow simpler use and management
1357     * when common pool threads are disabled, we allow the underlying
1358 dl 1.185 * common.parallelism field to be zero, but in that case still report
1359 dl 1.160 * parallelism as 1 to reflect resulting caller-runs mechanics.
1360 dl 1.90 */
1361 jsr166 1.274 static final int COMMON_PARALLELISM;
1362 dl 1.90
1363     /**
1364 dl 1.208 * Limit on spare thread construction in tryCompensate.
1365     */
1366 jsr166 1.273 private static final int COMMON_MAX_SPARES;
1367 dl 1.208
1368     /**
1369 dl 1.105 * Sequence number for creating workerNamePrefix.
1370 dl 1.86 */
1371 dl 1.105 private static int poolNumberSequence;
1372 dl 1.86
1373 jsr166 1.1 /**
1374 jsr166 1.132 * Returns the next sequence number. We don't expect this to
1375     * ever contend, so use simple builtin sync.
1376 dl 1.83 */
1377 dl 1.105 private static final synchronized int nextPoolId() {
1378     return ++poolNumberSequence;
1379     }
1380 dl 1.86
1381 dl 1.200 // static configuration constants
1382 dl 1.86
1383     /**
1384 dl 1.243 * Initial timeout value (in milliseconds) for the thread
1385 dl 1.105 * triggering quiescence to park waiting for new work. On timeout,
1386 jsr166 1.268 * the thread will instead try to shrink the number of workers.
1387     * The value should be large enough to avoid overly aggressive
1388     * shrinkage during most transient stalls (long GCs etc).
1389 dl 1.86 */
1390 dl 1.243 private static final long IDLE_TIMEOUT_MS = 2000L; // 2sec
1391 dl 1.86
1392     /**
1393 jsr166 1.279 * Tolerance for idle timeouts, to cope with timer undershoots.
1394 dl 1.120 */
1395 dl 1.243 private static final long TIMEOUT_SLOP_MS = 20L; // 20ms
1396 dl 1.200
1397     /**
1398 jsr166 1.273 * The default value for COMMON_MAX_SPARES. Overridable using the
1399     * "java.util.concurrent.ForkJoinPool.common.maximumSpares" system
1400     * property. The default value is far in excess of normal
1401     * requirements, but also far short of MAX_CAP and typical OS
1402     * thread limits, so allows JVMs to catch misuse/abuse before
1403     * running out of resources needed to do so.
1404 dl 1.200 */
1405 dl 1.208 private static final int DEFAULT_COMMON_MAX_SPARES = 256;
1406 dl 1.120
1407     /**
1408 dl 1.90 * Increment for seed generators. See class ThreadLocal for
1409     * explanation.
1410     */
1411 dl 1.193 private static final int SEED_INCREMENT = 0x9e3779b9;
1412 dl 1.83
1413 jsr166 1.163 /*
1414 dl 1.200 * Bits and masks for field ctl, packed with 4 16 bit subfields:
1415     * AC: Number of active running workers minus target parallelism
1416     * TC: Number of total workers minus target parallelism
1417     * SS: version count and status of top waiting thread
1418     * ID: poolIndex of top of Treiber stack of waiters
1419     *
1420     * When convenient, we can extract the lower 32 stack top bits
1421     * (including version bits) as sp=(int)ctl. The offsets of counts
1422     * by the target parallelism and the positionings of fields makes
1423     * it possible to perform the most common checks via sign tests of
1424     * fields: When ac is negative, there are not enough active
1425     * workers, when tc is negative, there are not enough total
1426     * workers. When sp is non-zero, there are waiting workers. To
1427     * deal with possibly negative fields, we use casts in and out of
1428     * "short" and/or signed shifts to maintain signedness.
1429     *
1430     * Because it occupies uppermost bits, we can add one active count
1431     * using getAndAddLong of AC_UNIT, rather than CAS, when returning
1432     * from a blocked join. Other updates entail multiple subfields
1433     * and masking, requiring CAS.
1434     */
1435    
1436     // Lower and upper word masks
1437     private static final long SP_MASK = 0xffffffffL;
1438     private static final long UC_MASK = ~SP_MASK;
1439 dl 1.86
1440 dl 1.200 // Active counts
1441 dl 1.86 private static final int AC_SHIFT = 48;
1442 dl 1.200 private static final long AC_UNIT = 0x0001L << AC_SHIFT;
1443     private static final long AC_MASK = 0xffffL << AC_SHIFT;
1444    
1445     // Total counts
1446 dl 1.86 private static final int TC_SHIFT = 32;
1447 dl 1.200 private static final long TC_UNIT = 0x0001L << TC_SHIFT;
1448     private static final long TC_MASK = 0xffffL << TC_SHIFT;
1449     private static final long ADD_WORKER = 0x0001L << (TC_SHIFT + 15); // sign
1450    
1451 dl 1.205 // runState bits: SHUTDOWN must be negative, others arbitrary powers of two
1452 dl 1.243 private static final int STARTED = 1;
1453     private static final int STOP = 1 << 1;
1454     private static final int TERMINATED = 1 << 2;
1455 dl 1.205 private static final int SHUTDOWN = 1 << 31;
1456 dl 1.86
1457     // Instance fields
1458 dl 1.200 volatile long ctl; // main pool control
1459 dl 1.243 volatile int runState;
1460 dl 1.200 final int config; // parallelism, mode
1461 dl 1.262 AuxState auxState; // lock, steal counts
1462 dl 1.200 volatile WorkQueue[] workQueues; // main registry
1463 dl 1.256 final String workerNamePrefix; // to create worker name string
1464 dl 1.112 final ForkJoinWorkerThreadFactory factory;
1465 dl 1.200 final UncaughtExceptionHandler ueh; // per-worker UEH
1466 dl 1.101
1467 jsr166 1.145 /**
1468 dl 1.258 * Instantiates fields upon first submission, or upon shutdown if
1469     * no submissions. If checkTermination true, also responds to
1470     * termination by external calls submitting tasks.
1471 dl 1.105 */
1472 dl 1.258 private void tryInitialize(boolean checkTermination) {
1473 dl 1.256 if ((runState & STARTED) == 0) { // bootstrap by locking static field
1474     int rs; // create workQueues array with size a power of two
1475     int p = config & SMASK; // ensure at least 2 slots
1476     int n = (p > 1) ? p - 1 : 1;
1477 jsr166 1.270 n |= n >>> 1;
1478     n |= n >>> 2;
1479     n |= n >>> 4;
1480     n |= n >>> 8;
1481     n |= n >>> 16;
1482     n = ((n + 1) << 1) & SMASK;
1483 dl 1.262 AuxState aux = new AuxState();
1484 dl 1.258 WorkQueue[] ws = new WorkQueue[n];
1485 jsr166 1.259 synchronized (modifyThreadPermission) { // double-check
1486 dl 1.258 if (((rs = runState) & STARTED) == 0) {
1487 dl 1.262 rs |= STARTED;
1488 dl 1.258 workQueues = ws;
1489 dl 1.262 auxState = aux;
1490     runState = rs;
1491 dl 1.101 }
1492     }
1493     }
1494 dl 1.258 if (checkTermination && runState < 0) {
1495 jsr166 1.244 tryTerminate(false, false); // help terminate
1496     throw new RejectedExecutionException();
1497     }
1498 dl 1.78 }
1499 jsr166 1.1
1500 dl 1.200 // Creating, registering and deregistering workers
1501    
1502 dl 1.112 /**
1503 dl 1.200 * Tries to construct and start one worker. Assumes that total
1504     * count has already been incremented as a reservation. Invokes
1505     * deregisterWorker on any failure.
1506     *
1507 dl 1.243 * @param isSpare true if this is a spare thread
1508 dl 1.200 * @return true if successful
1509 dl 1.115 */
1510 dl 1.243 private boolean createWorker(boolean isSpare) {
1511 dl 1.200 ForkJoinWorkerThreadFactory fac = factory;
1512     Throwable ex = null;
1513     ForkJoinWorkerThread wt = null;
1514 dl 1.243 WorkQueue q;
1515 dl 1.200 try {
1516     if (fac != null && (wt = fac.newThread(this)) != null) {
1517 dl 1.243 if (isSpare && (q = wt.workQueue) != null)
1518     q.config |= SPARE_WORKER;
1519 dl 1.200 wt.start();
1520     return true;
1521 dl 1.115 }
1522 dl 1.200 } catch (Throwable rex) {
1523     ex = rex;
1524 dl 1.112 }
1525 dl 1.200 deregisterWorker(wt, ex);
1526     return false;
1527 dl 1.112 }
1528    
1529 dl 1.200 /**
1530     * Tries to add one worker, incrementing ctl counts before doing
1531     * so, relying on createWorker to back out on failure.
1532     *
1533     * @param c incoming ctl value, with total count negative and no
1534     * idle workers. On CAS failure, c is refreshed and retried if
1535 jsr166 1.202 * this holds (otherwise, a new worker is not needed).
1536 dl 1.200 */
1537     private void tryAddWorker(long c) {
1538     do {
1539     long nc = ((AC_MASK & (c + AC_UNIT)) |
1540     (TC_MASK & (c + TC_UNIT)));
1541 dl 1.243 if (ctl == c && U.compareAndSwapLong(this, CTL, c, nc)) {
1542     createWorker(false);
1543     break;
1544 dl 1.200 }
1545     } while (((c = ctl) & ADD_WORKER) != 0L && (int)c == 0);
1546     }
1547 dl 1.112
1548     /**
1549 dl 1.200 * Callback from ForkJoinWorkerThread constructor to establish and
1550     * record its WorkQueue.
1551 dl 1.112 *
1552     * @param wt the worker thread
1553 dl 1.115 * @return the worker's queue
1554 dl 1.112 */
1555 dl 1.115 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1556 dl 1.200 UncaughtExceptionHandler handler;
1557 dl 1.262 AuxState aux;
1558 dl 1.200 wt.setDaemon(true); // configure thread
1559 dl 1.115 if ((handler = ueh) != null)
1560     wt.setUncaughtExceptionHandler(handler);
1561 dl 1.200 WorkQueue w = new WorkQueue(this, wt);
1562     int i = 0; // assign a pool index
1563     int mode = config & MODE_MASK;
1564 dl 1.262 int rs = runState;
1565     if ((aux = auxState) != null) {
1566     aux.lock();
1567     try {
1568     int s = (int)(aux.indexSeed += SEED_INCREMENT), n, m;
1569 dl 1.243 WorkQueue[] ws = workQueues;
1570     if (ws != null && (n = ws.length) > 0) {
1571     i = (m = n - 1) & ((s << 1) | 1); // odd-numbered indices
1572     if (ws[i] != null) { // collision
1573     int probes = 0; // step by approx half n
1574     int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1575     while (ws[i = (i + step) & m] != null) {
1576     if (++probes >= n) {
1577     workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1578     m = n - 1;
1579     probes = 0;
1580     }
1581 dl 1.94 }
1582     }
1583 dl 1.243 w.hint = s; // use as random seed
1584     w.config = i | mode;
1585     w.scanState = i | (s & 0x7fff0000); // random seq bits
1586     ws[i] = w;
1587 dl 1.94 }
1588 dl 1.262 } finally {
1589     aux.unlock();
1590 dl 1.78 }
1591     }
1592 dl 1.200 wt.setName(workerNamePrefix.concat(Integer.toString(i >>> 1)));
1593 dl 1.115 return w;
1594 dl 1.78 }
1595 dl 1.19
1596 jsr166 1.1 /**
1597 dl 1.86 * Final callback from terminating worker, as well as upon failure
1598 dl 1.105 * to construct or start a worker. Removes record of worker from
1599     * array, and adjusts counts. If pool is shutting down, tries to
1600     * complete termination.
1601 dl 1.78 *
1602 jsr166 1.151 * @param wt the worker thread, or null if construction failed
1603 dl 1.78 * @param ex the exception causing failure, or null if none
1604 dl 1.45 */
1605 dl 1.78 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1606     WorkQueue w = null;
1607 dl 1.262 int rs = runState;
1608 dl 1.78 if (wt != null && (w = wt.workQueue) != null) {
1609 dl 1.262 AuxState aux; WorkQueue[] ws; // remove index from array
1610 dl 1.200 int idx = w.config & SMASK;
1611 dl 1.262 int ns = w.nsteals;
1612     if ((aux = auxState) != null) {
1613     aux.lock();
1614     try {
1615 dl 1.243 if ((ws = workQueues) != null && ws.length > idx &&
1616     ws[idx] == w)
1617     ws[idx] = null;
1618 dl 1.262 aux.stealCount += ns;
1619     } finally {
1620     aux.unlock();
1621 dl 1.243 }
1622     }
1623     }
1624     if (w == null || (w.config & UNREGISTERED) == 0) { // else pre-adjusted
1625     long c; // decrement counts
1626     do {} while (!U.compareAndSwapLong
1627     (this, CTL, c = ctl, ((AC_MASK & (c - AC_UNIT)) |
1628     (TC_MASK & (c - TC_UNIT)) |
1629     (SP_MASK & c))));
1630     }
1631 dl 1.200 if (w != null) {
1632 dl 1.281 w.currentSteal = null;
1633 dl 1.200 w.qlock = -1; // ensure set
1634     w.cancelAll(); // cancel remaining tasks
1635 dl 1.78 }
1636 dl 1.286 while (tryTerminate(false, false) >= 0) { // possibly replace
1637 dl 1.243 WorkQueue[] ws; int wl, sp; long c;
1638 dl 1.286 if (w == null || w.array == null ||
1639 dl 1.209 (runState & STOP) != 0 || (ws = workQueues) == null ||
1640 dl 1.243 (wl = ws.length) <= 0) // already terminating
1641 dl 1.209 break;
1642 dl 1.243 else if ((sp = (int)(c = ctl)) != 0) { // wake up replacement
1643     if (tryRelease(c, ws[(wl - 1) & sp], AC_UNIT))
1644 dl 1.205 break;
1645 dl 1.120 }
1646 dl 1.209 else if (ex != null && (c & ADD_WORKER) != 0L) {
1647     tryAddWorker(c); // create replacement
1648     break;
1649     }
1650     else // don't need replacement
1651     break;
1652 dl 1.78 }
1653 dl 1.200 if (ex == null) // help clean on way out
1654 dl 1.120 ForkJoinTask.helpExpungeStaleExceptions();
1655 dl 1.200 else // rethrow
1656 dl 1.104 ForkJoinTask.rethrow(ex);
1657 dl 1.78 }
1658 dl 1.52
1659 dl 1.200 // Signalling
1660 dl 1.19
1661     /**
1662 dl 1.115 * Tries to create or activate a worker if too few are active.
1663 dl 1.105 */
1664 dl 1.253 final void signalWork() {
1665 dl 1.243 for (;;) {
1666     long c; int sp, i; WorkQueue v; WorkQueue[] ws;
1667     if ((c = ctl) >= 0L) // enough workers
1668     break;
1669     else if ((sp = (int)c) == 0) { // no idle workers
1670     if ((c & ADD_WORKER) != 0L) // too few workers
1671 dl 1.200 tryAddWorker(c);
1672     break;
1673     }
1674 dl 1.243 else if ((ws = workQueues) == null)
1675     break; // unstarted/terminated
1676     else if (ws.length <= (i = sp & SMASK))
1677     break; // terminated
1678     else if ((v = ws[i]) == null)
1679     break; // terminating
1680     else {
1681     int ns = sp & ~UNSIGNALLED;
1682     int vs = v.scanState;
1683     long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + AC_UNIT));
1684     if (sp == vs && U.compareAndSwapLong(this, CTL, c, nc)) {
1685     v.scanState = ns;
1686     LockSupport.unpark(v.parker);
1687     break;
1688     }
1689 dl 1.174 }
1690 dl 1.52 }
1691 dl 1.14 }
1692    
1693 dl 1.200 /**
1694     * Signals and releases worker v if it is top of idle worker
1695     * stack. This performs a one-shot version of signalWork only if
1696     * there is (apparently) at least one idle worker.
1697     *
1698     * @param c incoming ctl value
1699     * @param v if non-null, a worker
1700     * @param inc the increment to active count (zero when compensating)
1701     * @return true if successful
1702     */
1703     private boolean tryRelease(long c, WorkQueue v, long inc) {
1704 dl 1.243 int sp = (int)c, ns = sp & ~UNSIGNALLED;
1705     if (v != null) {
1706     int vs = v.scanState;
1707     long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + inc));
1708     if (sp == vs && U.compareAndSwapLong(this, CTL, c, nc)) {
1709     v.scanState = ns;
1710     LockSupport.unpark(v.parker);
1711 dl 1.200 return true;
1712     }
1713     }
1714     return false;
1715     }
1716    
1717 dl 1.243 /**
1718     * With approx probability of a missed signal, tries (once) to
1719     * reactivate worker w (or some other worker), failing if stale or
1720     * known to be already active.
1721     *
1722     * @param w the worker
1723     * @param ws the workQueue array to use
1724     * @param r random seed
1725     */
1726     private void tryReactivate(WorkQueue w, WorkQueue[] ws, int r) {
1727 dl 1.272 long c; int sp, wl; WorkQueue v;
1728 dl 1.243 if ((sp = (int)(c = ctl)) != 0 && w != null &&
1729     ws != null && (wl = ws.length) > 0 &&
1730 dl 1.272 ((sp ^ r) & SS_SEQ) == 0 &&
1731     (v = ws[(wl - 1) & sp]) != null) {
1732 dl 1.243 long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + AC_UNIT));
1733     int ns = sp & ~UNSIGNALLED;
1734 dl 1.262 if (w.scanState < 0 &&
1735 dl 1.243 v.scanState == sp &&
1736     U.compareAndSwapLong(this, CTL, c, nc)) {
1737     v.scanState = ns;
1738     LockSupport.unpark(v.parker);
1739     }
1740     }
1741     }
1742 dl 1.90
1743 dl 1.14 /**
1744 dl 1.243 * If worker w exists and is active, enqueues and sets status to inactive.
1745     *
1746     * @param w the worker
1747     * @param ss current (non-negative) scanState
1748 dl 1.14 */
1749 dl 1.243 private void inactivate(WorkQueue w, int ss) {
1750     int ns = (ss + SS_SEQ) | UNSIGNALLED;
1751     long lc = ns & SP_MASK, nc, c;
1752     if (w != null) {
1753     w.scanState = ns;
1754     do {
1755     nc = lc | (UC_MASK & ((c = ctl) - AC_UNIT));
1756     w.stackPred = (int)c;
1757     } while (!U.compareAndSwapLong(this, CTL, c, nc));
1758 dl 1.178 }
1759 dl 1.14 }
1760    
1761     /**
1762 dl 1.243 * Possibly blocks worker w waiting for signal, or returns
1763     * negative status if the worker should terminate. May return
1764     * without status change if multiple stale unparks and/or
1765     * interrupts occur.
1766 dl 1.78 *
1767 dl 1.243 * @param w the calling worker
1768     * @return negative if w should terminate
1769 dl 1.78 */
1770 dl 1.243 private int awaitWork(WorkQueue w) {
1771     int stat = 0;
1772     if (w != null && w.scanState < 0) {
1773     long c = ctl;
1774     if ((int)(c >> AC_SHIFT) + (config & SMASK) <= 0)
1775     stat = timedAwaitWork(w, c); // possibly quiescent
1776     else if ((runState & STOP) != 0)
1777     stat = w.qlock = -1; // pool terminating
1778     else if ((stat = w.qlock) >= 0 && w.scanState < 0) {
1779     w.parker = Thread.currentThread();
1780     if (w.scanState < 0) { // recheck after write
1781     LockSupport.park(this);
1782     if ((stat = w.qlock) >= 0 && w.scanState < 0) {
1783 dl 1.280 Thread.interrupted(); // clear status and retry once
1784     if ((runState & STOP) != 0)
1785     stat = w.qlock = -1;
1786     else
1787     LockSupport.park(this);
1788 dl 1.200 }
1789 dl 1.115 }
1790 dl 1.243 w.parker = null;
1791 dl 1.115 }
1792 dl 1.52 }
1793 dl 1.243 return stat;
1794 dl 1.14 }
1795    
1796     /**
1797 dl 1.243 * Possibly triggers shutdown and tries (once) to block worker
1798     * when pool is (or may be) quiescent. Waits up to a duration
1799     * determined by number of workers. On timeout, if ctl has not
1800 dl 1.200 * changed, terminates the worker, which will in turn wake up
1801 dl 1.178 * another worker to possibly repeat this process.
1802 dl 1.52 *
1803 dl 1.78 * @param w the calling worker
1804 dl 1.243 * @return negative if w should terminate
1805 dl 1.14 */
1806 dl 1.243 private int timedAwaitWork(WorkQueue w, long c) {
1807     int stat = 0;
1808     int scale = 1 - (short)(c >>> TC_SHIFT);
1809     long deadline = (((scale <= 0) ? 1 : scale) * IDLE_TIMEOUT_MS +
1810     System.currentTimeMillis());
1811     if (w != null && w.scanState < 0) {
1812 dl 1.262 int ss; AuxState aux;
1813 dl 1.286 if ((runState >= 0 ||
1814     (stat = tryTerminate(false, false)) > 0) &&
1815     ((stat = w.qlock) >= 0 && w.scanState < 0)) {
1816 dl 1.243 w.parker = Thread.currentThread();
1817     if (w.scanState < 0)
1818     LockSupport.parkUntil(this, deadline);
1819     w.parker = null;
1820     if ((stat = w.qlock) >= 0 && (ss = w.scanState) < 0 &&
1821     !Thread.interrupted() && (int)c == ss &&
1822 dl 1.262 (aux = auxState) != null && ctl == c &&
1823 dl 1.243 deadline - System.currentTimeMillis() <= TIMEOUT_SLOP_MS) {
1824 dl 1.262 aux.lock();
1825     try { // pre-deregister
1826 dl 1.243 WorkQueue[] ws;
1827     int cfg = w.config, idx = cfg & SMASK;
1828     long nc = ((UC_MASK & (c - TC_UNIT)) |
1829     (SP_MASK & w.stackPred));
1830 dl 1.280 if ((runState & STOP) == 0 &&
1831     (ws = workQueues) != null &&
1832 dl 1.243 idx < ws.length && idx >= 0 && ws[idx] == w &&
1833     U.compareAndSwapLong(this, CTL, c, nc)) {
1834     ws[idx] = null;
1835     w.config = cfg | UNREGISTERED;
1836     stat = w.qlock = -1;
1837     }
1838 dl 1.262 } finally {
1839     aux.unlock();
1840 dl 1.243 }
1841     }
1842     }
1843     }
1844     return stat;
1845     }
1846    
1847     /**
1848     * If the given worker is a spare with no queued tasks, and there
1849     * are enough existing workers, drops it from ctl counts and sets
1850 jsr166 1.248 * its state to terminated.
1851 dl 1.243 *
1852     * @param w the calling worker -- must be a spare
1853     * @return true if dropped (in which case it must not process more tasks)
1854     */
1855     private boolean tryDropSpare(WorkQueue w) {
1856     if (w != null && w.isEmpty()) { // no local tasks
1857     long c; int sp, wl; WorkQueue[] ws; WorkQueue v;
1858     while ((short)((c = ctl) >> TC_SHIFT) > 0 &&
1859     ((sp = (int)c) != 0 || (int)(c >> AC_SHIFT) > 0) &&
1860     (ws = workQueues) != null && (wl = ws.length) > 0) {
1861     boolean dropped, canDrop;
1862     if (sp == 0) { // no queued workers
1863     long nc = ((AC_MASK & (c - AC_UNIT)) |
1864     (TC_MASK & (c - TC_UNIT)) | (SP_MASK & c));
1865     dropped = U.compareAndSwapLong(this, CTL, c, nc);
1866     }
1867     else if (
1868     (v = ws[(wl - 1) & sp]) == null || v.scanState != sp)
1869     dropped = false; // stale; retry
1870     else {
1871     long nc = v.stackPred & SP_MASK;
1872     if (w == v || w.scanState >= 0) {
1873     canDrop = true; // w unqueued or topmost
1874     nc |= ((AC_MASK & c) | // ensure replacement
1875     (TC_MASK & (c - TC_UNIT)));
1876     }
1877     else { // w may be queued
1878     canDrop = false; // help uncover
1879     nc |= ((AC_MASK & (c + AC_UNIT)) |
1880     (TC_MASK & c));
1881     }
1882     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1883     v.scanState = sp & ~UNSIGNALLED;
1884     LockSupport.unpark(v.parker);
1885     dropped = canDrop;
1886     }
1887     else
1888     dropped = false;
1889     }
1890     if (dropped) { // pre-deregister
1891     int cfg = w.config, idx = cfg & SMASK;
1892     if (idx >= 0 && idx < ws.length && ws[idx] == w)
1893     ws[idx] = null;
1894     w.config = cfg | UNREGISTERED;
1895     w.qlock = -1;
1896     return true;
1897 dl 1.200 }
1898 dl 1.177 }
1899 dl 1.243 }
1900     return false;
1901     }
1902    
1903     /**
1904     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1905     */
1906     final void runWorker(WorkQueue w) {
1907     w.growArray(); // allocate queue
1908 dl 1.253 int bound = (w.config & SPARE_WORKER) != 0 ? 0 : POLL_LIMIT;
1909 dl 1.243 long seed = w.hint * 0xdaba0b6eb09322e3L; // initial random seed
1910     for (long r = (seed == 0L) ? 1L : seed;;) { // ensure nonzero
1911     if (bound == 0 && tryDropSpare(w))
1912     break;
1913 dl 1.253 // high bits of prev seed for step; current low bits for idx
1914     int step = (int)(r >>> 48) | 1;
1915 dl 1.243 r ^= r >>> 12; r ^= r << 25; r ^= r >>> 27; // xorshift
1916 dl 1.253 if (scan(w, bound, step, (int)r) < 0 && awaitWork(w) < 0)
1917 dl 1.243 break;
1918     }
1919     }
1920    
1921     // Scanning for tasks
1922    
1923     /**
1924     * Repeatedly scans for and tries to steal and execute (via
1925     * workQueue.runTask) a queued task. Each scan traverses queues in
1926     * pseudorandom permutation. Upon finding a non-empty queue, makes
1927 dl 1.253 * at most the given bound attempts to re-poll (fewer if
1928     * contended) on the same queue before returning (impossible
1929     * scanState value) 0 to restart scan. Else returns after at least
1930     * 1 and at most 32 full scans.
1931 dl 1.243 *
1932     * @param w the worker (via its WorkQueue)
1933 dl 1.253 * @param bound repoll bound as bitmask (0 if spare)
1934 dl 1.243 * @param step (circular) index increment per iteration (must be odd)
1935     * @param r a random seed for origin index
1936     * @return negative if should await signal
1937     */
1938 dl 1.253 private int scan(WorkQueue w, int bound, int step, int r) {
1939 dl 1.243 int stat = 0, wl; WorkQueue[] ws;
1940 dl 1.250 if ((ws = workQueues) != null && w != null && (wl = ws.length) > 0) {
1941 dl 1.243 for (int m = wl - 1,
1942 dl 1.250 origin = m & r, idx = origin,
1943 dl 1.243 npolls = 0,
1944     ss = w.scanState;;) { // negative if inactive
1945     WorkQueue q; ForkJoinTask<?>[] a; int b, d, al;
1946     if ((q = ws[idx]) != null && (d = (b = q.base) - q.top) < 0 &&
1947     (a = q.array) != null && (al = a.length) > 0) {
1948 dl 1.256 int index = (al - 1) & b;
1949     long offset = ((long)index << ASHIFT) + ABASE;
1950 dl 1.243 ForkJoinTask<?> t = (ForkJoinTask<?>)
1951     U.getObjectVolatile(a, offset);
1952 dl 1.262 if (t == null)
1953     break; // empty or busy
1954     else if (b++ != q.base)
1955     break; // busy
1956 dl 1.253 else if (ss < 0) {
1957 dl 1.258 tryReactivate(w, ws, r);
1958     break; // retry upon rescan
1959 dl 1.253 }
1960     else if (!U.compareAndSwapObject(a, offset, t, null))
1961     break; // contended
1962     else {
1963     q.base = b;
1964     w.currentSteal = t;
1965 dl 1.285 if (d != -1 || b != q.top) // propagate signal
1966 dl 1.253 signalWork();
1967     w.runTask(t);
1968     if (++npolls > bound)
1969     break;
1970 dl 1.243 }
1971 dl 1.178 }
1972 dl 1.243 else if (npolls != 0) // rescan
1973     break;
1974 dl 1.250 else if ((idx = (idx + step) & m) == origin) {
1975     if (ss < 0) { // await signal
1976     stat = ss;
1977     break;
1978     }
1979     else if (r >= 0) {
1980 dl 1.243 inactivate(w, ss);
1981 dl 1.250 break;
1982     }
1983     else
1984     r <<= 1; // at most 31 rescans
1985 dl 1.243 }
1986 dl 1.120 }
1987     }
1988 dl 1.243 return stat;
1989 dl 1.178 }
1990    
1991 dl 1.200 // Joining tasks
1992    
1993 dl 1.178 /**
1994 dl 1.200 * Tries to steal and run tasks within the target's computation.
1995     * Uses a variant of the top-level algorithm, restricted to tasks
1996     * with the given task as ancestor: It prefers taking and running
1997     * eligible tasks popped from the worker's own queue (via
1998     * popCC). Otherwise it scans others, randomly moving on
1999     * contention or execution, deciding to give up based on a
2000 dl 1.243 * checksum (via return codes from pollAndExecCC). The maxTasks
2001 dl 1.200 * argument supports external usages; internal calls use zero,
2002     * allowing unbounded steps (external calls trap non-positive
2003     * values).
2004     *
2005     * @param w caller
2006 jsr166 1.202 * @param maxTasks if non-zero, the maximum number of other tasks to run
2007 dl 1.200 * @return task status on exit
2008     */
2009     final int helpComplete(WorkQueue w, CountedCompleter<?> task,
2010     int maxTasks) {
2011 dl 1.243 WorkQueue[] ws; int s = 0, wl;
2012     if ((ws = workQueues) != null && (wl = ws.length) > 1 &&
2013 dl 1.200 task != null && w != null) {
2014 dl 1.253 for (int m = wl - 1,
2015     mode = w.config,
2016     r = ~mode, // scanning seed
2017     origin = r & m, k = origin, // first queue to scan
2018     step = 3, // first scan step
2019     h = 1, // 1:ran, >1:contended, <0:hash
2020     oldSum = 0, checkSum = 0;;) {
2021 dl 1.243 CountedCompleter<?> p; WorkQueue q; int i;
2022 dl 1.200 if ((s = task.status) < 0)
2023     break;
2024 dl 1.253 if (h == 1 && (p = w.popCC(task, mode)) != null) {
2025 dl 1.200 p.doExec(); // run local task
2026     if (maxTasks != 0 && --maxTasks == 0)
2027     break;
2028     origin = k; // reset
2029     oldSum = checkSum = 0;
2030     }
2031 dl 1.243 else { // poll other worker queues
2032     if ((i = k | 1) < 0 || i > m || (q = ws[i]) == null)
2033 dl 1.200 h = 0;
2034     else if ((h = q.pollAndExecCC(task)) < 0)
2035     checkSum += h;
2036     if (h > 0) {
2037     if (h == 1 && maxTasks != 0 && --maxTasks == 0)
2038     break;
2039 dl 1.253 step = (r >>> 16) | 3;
2040 dl 1.200 r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
2041 dl 1.243 k = origin = r & m; // move and restart
2042 dl 1.200 oldSum = checkSum = 0;
2043     }
2044 dl 1.243 else if ((k = (k + step) & m) == origin) {
2045 dl 1.200 if (oldSum == (oldSum = checkSum))
2046     break;
2047     checkSum = 0;
2048     }
2049     }
2050 dl 1.178 }
2051     }
2052 dl 1.200 return s;
2053 dl 1.120 }
2054    
2055     /**
2056 dl 1.78 * Tries to locate and execute tasks for a stealer of the given
2057 jsr166 1.265 * task, or in turn one of its stealers. Traces currentSteal ->
2058 dl 1.78 * currentJoin links looking for a thread working on a descendant
2059     * of the given task and with a non-empty queue to steal back and
2060     * execute tasks from. The first call to this method upon a
2061     * waiting join will often entail scanning/search, (which is OK
2062     * because the joiner has nothing better to do), but this method
2063 dl 1.200 * leaves hints in workers to speed up subsequent calls.
2064 dl 1.78 *
2065 dl 1.200 * @param w caller
2066 dl 1.78 * @param task the task to join
2067     */
2068 dl 1.200 private void helpStealer(WorkQueue w, ForkJoinTask<?> task) {
2069 dl 1.243 if (task != null && w != null) {
2070     ForkJoinTask<?> ps = w.currentSteal;
2071     WorkQueue[] ws; int wl, oldSum = 0;
2072     outer: while (w.tryRemoveAndExec(task) && task.status >= 0 &&
2073     (ws = workQueues) != null && (wl = ws.length) > 0) {
2074 dl 1.200 ForkJoinTask<?> subtask;
2075 dl 1.243 int m = wl - 1, checkSum = 0; // for stability check
2076 dl 1.200 WorkQueue j = w, v; // v is subtask stealer
2077     descent: for (subtask = task; subtask.status >= 0; ) {
2078 dl 1.243 for (int h = j.hint | 1, k = 0, i;;) {
2079     if ((v = ws[i = (h + (k << 1)) & m]) != null) {
2080 dl 1.200 if (v.currentSteal == subtask) {
2081     j.hint = i;
2082 dl 1.95 break;
2083     }
2084 dl 1.200 checkSum += v.base;
2085 dl 1.78 }
2086 dl 1.243 if (++k > m) // can't find stealer
2087     break outer;
2088 dl 1.78 }
2089 dl 1.243
2090 dl 1.200 for (;;) { // help v or descend
2091 dl 1.243 ForkJoinTask<?>[] a; int b, al;
2092     if (subtask.status < 0) // too late to help
2093     break descent;
2094 dl 1.200 checkSum += (b = v.base);
2095     ForkJoinTask<?> next = v.currentJoin;
2096 dl 1.243 ForkJoinTask<?> t = null;
2097     if ((a = v.array) != null && (al = a.length) > 0) {
2098 dl 1.256 int index = (al - 1) & b;
2099     long offset = ((long)index << ASHIFT) + ABASE;
2100 dl 1.262 t = (ForkJoinTask<?>)
2101     U.getObjectVolatile(a, offset);
2102 dl 1.243 if (t != null && b++ == v.base) {
2103     if (j.currentJoin != subtask ||
2104     v.currentSteal != subtask ||
2105     subtask.status < 0)
2106     break descent; // stale
2107     if (U.compareAndSwapObject(a, offset, t, null)) {
2108     v.base = b;
2109     w.currentSteal = t;
2110     for (int top = w.top;;) {
2111     t.doExec(); // help
2112     w.currentSteal = ps;
2113     if (task.status < 0)
2114     break outer;
2115     if (w.top == top)
2116     break; // run local tasks
2117     if ((t = w.pop()) == null)
2118     break descent;
2119     w.currentSteal = t;
2120     }
2121     }
2122     }
2123     }
2124     if (t == null && b == v.base && b - v.top >= 0) {
2125     if ((subtask = next) == null) { // try to descend
2126     if (next == v.currentJoin &&
2127     oldSum == (oldSum = checkSum))
2128     break outer;
2129 dl 1.200 break descent;
2130 dl 1.243 }
2131 dl 1.200 j = v;
2132     break;
2133 dl 1.95 }
2134 dl 1.52 }
2135 dl 1.19 }
2136 dl 1.243 }
2137 dl 1.14 }
2138 dl 1.22 }
2139    
2140 dl 1.52 /**
2141 dl 1.200 * Tries to decrement active count (sometimes implicitly) and
2142     * possibly release or create a compensating worker in preparation
2143     * for blocking. Returns false (retryable by caller), on
2144 dl 1.208 * contention, detected staleness, instability, or termination.
2145 dl 1.105 *
2146 dl 1.200 * @param w caller
2147 dl 1.19 */
2148 dl 1.200 private boolean tryCompensate(WorkQueue w) {
2149 dl 1.243 boolean canBlock; int wl;
2150     long c = ctl;
2151     WorkQueue[] ws = workQueues;
2152     int pc = config & SMASK;
2153     int ac = pc + (int)(c >> AC_SHIFT);
2154     int tc = pc + (short)(c >> TC_SHIFT);
2155     if (w == null || w.qlock < 0 || pc == 0 || // terminating or disabled
2156     ws == null || (wl = ws.length) <= 0)
2157 dl 1.200 canBlock = false;
2158     else {
2159 dl 1.243 int m = wl - 1, sp;
2160     boolean busy = true; // validate ac
2161     for (int i = 0; i <= m; ++i) {
2162     int k; WorkQueue v;
2163     if ((k = (i << 1) | 1) <= m && k >= 0 && (v = ws[k]) != null &&
2164     v.scanState >= 0 && v.currentSteal == null) {
2165     busy = false;
2166     break;
2167 dl 1.178 }
2168 dl 1.52 }
2169 dl 1.243 if (!busy || ctl != c)
2170     canBlock = false; // unstable or stale
2171     else if ((sp = (int)c) != 0) // release idle worker
2172     canBlock = tryRelease(c, ws[m & sp], 0L);
2173 dl 1.200 else if (tc >= pc && ac > 1 && w.isEmpty()) {
2174     long nc = ((AC_MASK & (c - AC_UNIT)) |
2175 dl 1.243 (~AC_MASK & c)); // uncompensated
2176 dl 1.200 canBlock = U.compareAndSwapLong(this, CTL, c, nc);
2177 dl 1.105 }
2178 dl 1.208 else if (tc >= MAX_CAP ||
2179 jsr166 1.273 (this == common && tc >= pc + COMMON_MAX_SPARES))
2180 dl 1.200 throw new RejectedExecutionException(
2181     "Thread limit exceeded replacing blocked worker");
2182 dl 1.243 else { // similar to tryAddWorker
2183     boolean isSpare = (tc >= pc);
2184     long nc = (AC_MASK & c) | (TC_MASK & (c + TC_UNIT));
2185     canBlock = (U.compareAndSwapLong(this, CTL, c, nc) &&
2186     createWorker(isSpare)); // throws on exception
2187 dl 1.90 }
2188     }
2189 dl 1.200 return canBlock;
2190 dl 1.90 }
2191    
2192     /**
2193 dl 1.200 * Helps and/or blocks until the given task is done or timeout.
2194 dl 1.90 *
2195 dl 1.200 * @param w caller
2196 dl 1.90 * @param task the task
2197 dl 1.219 * @param deadline for timed waits, if nonzero
2198 dl 1.90 * @return task status on exit
2199     */
2200 dl 1.200 final int awaitJoin(WorkQueue w, ForkJoinTask<?> task, long deadline) {
2201 dl 1.105 int s = 0;
2202 dl 1.243 if (w != null) {
2203 dl 1.200 ForkJoinTask<?> prevJoin = w.currentJoin;
2204 dl 1.243 if (task != null && (s = task.status) >= 0) {
2205     w.currentJoin = task;
2206     CountedCompleter<?> cc = (task instanceof CountedCompleter) ?
2207     (CountedCompleter<?>)task : null;
2208     for (;;) {
2209     if (cc != null)
2210     helpComplete(w, cc, 0);
2211     else
2212     helpStealer(w, task);
2213     if ((s = task.status) < 0)
2214     break;
2215     long ms, ns;
2216     if (deadline == 0L)
2217     ms = 0L;
2218     else if ((ns = deadline - System.nanoTime()) <= 0L)
2219     break;
2220     else if ((ms = TimeUnit.NANOSECONDS.toMillis(ns)) <= 0L)
2221     ms = 1L;
2222     if (tryCompensate(w)) {
2223     task.internalWait(ms);
2224     U.getAndAddLong(this, CTL, AC_UNIT);
2225     }
2226     if ((s = task.status) < 0)
2227     break;
2228 dl 1.90 }
2229 dl 1.243 w.currentJoin = prevJoin;
2230 dl 1.90 }
2231     }
2232 dl 1.94 return s;
2233 dl 1.90 }
2234    
2235 dl 1.200 // Specialized scanning
2236 dl 1.90
2237     /**
2238     * Returns a (probably) non-empty steal queue, if one is found
2239 dl 1.131 * during a scan, else null. This method must be retried by
2240     * caller if, by the time it tries to use the queue, it is empty.
2241 dl 1.78 */
2242 dl 1.178 private WorkQueue findNonEmptyStealQueue() {
2243 dl 1.243 WorkQueue[] ws; int wl; // one-shot version of scan loop
2244 dl 1.211 int r = ThreadLocalRandom.nextSecondarySeed();
2245 dl 1.243 if ((ws = workQueues) != null && (wl = ws.length) > 0) {
2246     int m = wl - 1, origin = r & m;
2247     for (int k = origin, oldSum = 0, checkSum = 0;;) {
2248 dl 1.211 WorkQueue q; int b;
2249     if ((q = ws[k]) != null) {
2250     if ((b = q.base) - q.top < 0)
2251     return q;
2252     checkSum += b;
2253     }
2254     if ((k = (k + 1) & m) == origin) {
2255     if (oldSum == (oldSum = checkSum))
2256     break;
2257     checkSum = 0;
2258 dl 1.52 }
2259     }
2260 dl 1.211 }
2261 dl 1.200 return null;
2262 dl 1.22 }
2263    
2264     /**
2265 dl 1.78 * Runs tasks until {@code isQuiescent()}. We piggyback on
2266     * active count ctl maintenance, but rather than blocking
2267     * when tasks cannot be found, we rescan until all others cannot
2268     * find tasks either.
2269     */
2270     final void helpQuiescePool(WorkQueue w) {
2271 dl 1.211 ForkJoinTask<?> ps = w.currentSteal; // save context
2272 dl 1.243 int wc = w.config;
2273 dl 1.78 for (boolean active = true;;) {
2274 dl 1.243 long c; WorkQueue q; ForkJoinTask<?> t;
2275     if (wc >= 0 && (t = w.pop()) != null) { // run locals if LIFO
2276     (w.currentSteal = t).doExec();
2277     w.currentSteal = ps;
2278     }
2279     else if ((q = findNonEmptyStealQueue()) != null) {
2280 dl 1.78 if (!active) { // re-establish active count
2281     active = true;
2282 dl 1.200 U.getAndAddLong(this, CTL, AC_UNIT);
2283     }
2284 dl 1.243 if ((t = q.pollAt(q.base)) != null) {
2285     (w.currentSteal = t).doExec();
2286     w.currentSteal = ps;
2287 dl 1.215 if (++w.nsteals < 0)
2288     w.transferStealCount(this);
2289 dl 1.178 }
2290 dl 1.78 }
2291 jsr166 1.194 else if (active) { // decrement active count without queuing
2292 dl 1.200 long nc = (AC_MASK & ((c = ctl) - AC_UNIT)) | (~AC_MASK & c);
2293 dl 1.131 if (U.compareAndSwapLong(this, CTL, c, nc))
2294 dl 1.78 active = false;
2295 dl 1.22 }
2296 dl 1.200 else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) <= 0 &&
2297     U.compareAndSwapLong(this, CTL, c, c + AC_UNIT))
2298 dl 1.185 break;
2299 dl 1.22 }
2300     }
2301    
2302     /**
2303 jsr166 1.84 * Gets and removes a local or stolen task for the given worker.
2304 dl 1.78 *
2305     * @return a task, if available
2306 dl 1.22 */
2307 dl 1.78 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2308     for (ForkJoinTask<?> t;;) {
2309 dl 1.243 WorkQueue q;
2310 dl 1.78 if ((t = w.nextLocalTask()) != null)
2311     return t;
2312 dl 1.178 if ((q = findNonEmptyStealQueue()) == null)
2313 dl 1.78 return null;
2314 dl 1.243 if ((t = q.pollAt(q.base)) != null)
2315 dl 1.78 return t;
2316 dl 1.52 }
2317 dl 1.14 }
2318    
2319     /**
2320 dl 1.105 * Returns a cheap heuristic guide for task partitioning when
2321     * programmers, frameworks, tools, or languages have little or no
2322 jsr166 1.222 * idea about task granularity. In essence, by offering this
2323 dl 1.105 * method, we ask users only about tradeoffs in overhead vs
2324     * expected throughput and its variance, rather than how finely to
2325     * partition tasks.
2326     *
2327     * In a steady state strict (tree-structured) computation, each
2328     * thread makes available for stealing enough tasks for other
2329     * threads to remain active. Inductively, if all threads play by
2330     * the same rules, each thread should make available only a
2331     * constant number of tasks.
2332     *
2333     * The minimum useful constant is just 1. But using a value of 1
2334     * would require immediate replenishment upon each steal to
2335     * maintain enough tasks, which is infeasible. Further,
2336     * partitionings/granularities of offered tasks should minimize
2337     * steal rates, which in general means that threads nearer the top
2338     * of computation tree should generate more than those nearer the
2339     * bottom. In perfect steady state, each thread is at
2340     * approximately the same level of computation tree. However,
2341     * producing extra tasks amortizes the uncertainty of progress and
2342     * diffusion assumptions.
2343     *
2344 jsr166 1.161 * So, users will want to use values larger (but not much larger)
2345 dl 1.105 * than 1 to both smooth over transient shortages and hedge
2346     * against uneven progress; as traded off against the cost of
2347     * extra task overhead. We leave the user to pick a threshold
2348     * value to compare with the results of this call to guide
2349     * decisions, but recommend values such as 3.
2350     *
2351     * When all threads are active, it is on average OK to estimate
2352     * surplus strictly locally. In steady-state, if one thread is
2353     * maintaining say 2 surplus tasks, then so are others. So we can
2354     * just use estimated queue length. However, this strategy alone
2355     * leads to serious mis-estimates in some non-steady-state
2356     * conditions (ramp-up, ramp-down, other stalls). We can detect
2357     * many of these by further considering the number of "idle"
2358     * threads, that are known to have zero queued tasks, so
2359     * compensate by a factor of (#idle/#active) threads.
2360     */
2361     static int getSurplusQueuedTaskCount() {
2362     Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2363 jsr166 1.229 if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) {
2364 dl 1.243 int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2365 dl 1.112 int n = (q = wt.workQueue).top - q.base;
2366 dl 1.105 int a = (int)(pool.ctl >> AC_SHIFT) + p;
2367 dl 1.112 return n - (a > (p >>>= 1) ? 0 :
2368     a > (p >>>= 1) ? 1 :
2369     a > (p >>>= 1) ? 2 :
2370     a > (p >>>= 1) ? 4 :
2371     8);
2372 dl 1.105 }
2373     return 0;
2374 dl 1.100 }
2375    
2376 dl 1.86 // Termination
2377 dl 1.14
2378     /**
2379 dl 1.210 * Possibly initiates and/or completes termination.
2380 dl 1.14 *
2381     * @param now if true, unconditionally terminate, else only
2382 dl 1.78 * if no work and no active workers
2383 dl 1.243 * @param enable if true, terminate when next possible
2384 dl 1.286 * @return -1 : terminating or terminated, 0: retry if internal caller, else 1
2385 jsr166 1.1 */
2386 dl 1.286 private int tryTerminate(boolean now, boolean enable) {
2387 dl 1.262 AuxState aux; int rs;
2388 dl 1.258 if ((rs = runState) >= 0 && (!enable || this == common))
2389 dl 1.286 return 1;
2390 dl 1.262 while ((aux = auxState) == null)
2391 dl 1.258 tryInitialize(false);
2392 dl 1.262 aux.lock();
2393     rs = runState = runState | SHUTDOWN;
2394     aux.unlock();
2395 jsr166 1.204 if ((rs & STOP) == 0) {
2396 dl 1.210 if (!now) { // check quiescence
2397 dl 1.211 for (long oldSum = 0L;;) { // repeat until stable
2398 dl 1.287 WorkQueue[] ws; WorkQueue w; int m, b;
2399 dl 1.210 long checkSum = ctl;
2400     if ((int)(checkSum >> AC_SHIFT) + (config & SMASK) > 0)
2401 dl 1.286 return 0; // still active workers
2402 dl 1.243 if ((ws = workQueues) == null || (m = ws.length - 1) < 0)
2403 dl 1.210 break; // check queues
2404 dl 1.209 for (int i = 0; i <= m; ++i) {
2405     if ((w = ws[i]) != null) {
2406 dl 1.282 checkSum += (b = w.base);
2407 dl 1.287 if (w.currentSteal != null || b != w.top)
2408 dl 1.286 return 0; // retry if internal caller
2409 dl 1.206 }
2410 dl 1.203 }
2411 dl 1.286 if (oldSum == (oldSum = checkSum))
2412 dl 1.210 break;
2413 dl 1.203 }
2414     }
2415 dl 1.262 aux.lock();
2416     rs = runState = runState | STOP;
2417     aux.unlock();
2418 dl 1.200 }
2419 dl 1.210
2420     int pass = 0; // 3 passes to help terminate
2421     for (long oldSum = 0L;;) { // or until done or stable
2422     WorkQueue[] ws; WorkQueue w; ForkJoinWorkerThread wt; int m;
2423     long checkSum = ctl;
2424     if ((short)(checkSum >>> TC_SHIFT) + (config & SMASK) <= 0 ||
2425 dl 1.243 (ws = workQueues) == null || (m = ws.length - 1) < 0) {
2426 dl 1.262 aux.lock();
2427     runState |= TERMINATED;
2428     aux.unlock();
2429 dl 1.258 synchronized (this) {
2430 jsr166 1.260 notifyAll(); // for awaitTermination
2431 dl 1.210 }
2432     break;
2433     }
2434     for (int i = 0; i <= m; ++i) {
2435     if ((w = ws[i]) != null) {
2436     checkSum += w.base;
2437     w.qlock = -1; // try to disable
2438     if (pass > 0) {
2439     w.cancelAll(); // clear queue
2440     if (pass > 1 && (wt = w.owner) != null) {
2441     if (!wt.isInterrupted()) {
2442     try { // unblock join
2443     wt.interrupt();
2444     } catch (Throwable ignore) {
2445 dl 1.200 }
2446     }
2447 dl 1.243 LockSupport.unpark(wt);
2448 dl 1.200 }
2449 dl 1.101 }
2450 dl 1.78 }
2451     }
2452 dl 1.210 if (checkSum != oldSum) { // unstable
2453     oldSum = checkSum;
2454     pass = 0;
2455     }
2456     else if (pass > 3 && pass > m) // can't further help
2457     break;
2458     else if (++pass > 1) { // try to dequeue
2459     long c; int j = 0, sp; // bound attempts
2460     while (j++ <= m && (sp = (int)(c = ctl)) != 0)
2461     tryRelease(c, ws[sp & m], AC_UNIT);
2462 dl 1.200 }
2463     }
2464 dl 1.286 return -1;
2465 dl 1.200 }
2466    
2467     // External operations
2468    
2469     /**
2470 dl 1.243 * Constructs and tries to install a new external queue,
2471     * failing if the workQueues array already has a queue at
2472 jsr166 1.245 * the given index.
2473 dl 1.243 *
2474     * @param index the index of the new queue
2475     */
2476     private void tryCreateExternalQueue(int index) {
2477 dl 1.262 AuxState aux;
2478     if ((aux = auxState) != null && index >= 0) {
2479 dl 1.243 WorkQueue q = new WorkQueue(this, null);
2480     q.config = index;
2481     q.scanState = ~UNSIGNALLED;
2482 dl 1.256 q.qlock = 1; // lock queue
2483     boolean installed = false;
2484 dl 1.262 aux.lock();
2485     try { // lock pool to install
2486 dl 1.243 WorkQueue[] ws;
2487     if ((ws = workQueues) != null && index < ws.length &&
2488     ws[index] == null) {
2489 dl 1.256 ws[index] = q; // else throw away
2490     installed = true;
2491     }
2492 dl 1.262 } finally {
2493     aux.unlock();
2494 dl 1.256 }
2495     if (installed) {
2496     try {
2497     q.growArray();
2498     } finally {
2499     q.qlock = 0;
2500 dl 1.243 }
2501     }
2502     }
2503     }
2504    
2505     /**
2506     * Adds the given task to a submission queue at submitter's
2507     * current queue. Also performs secondary initialization upon the
2508     * first submission of the first task to the pool, and detects
2509 dl 1.200 * first submission by an external thread and creates a new shared
2510     * queue if the one at index if empty or contended.
2511     *
2512     * @param task the task. Caller must ensure non-null.
2513     */
2514 dl 1.243 final void externalPush(ForkJoinTask<?> task) {
2515 dl 1.256 int r; // initialize caller's probe
2516 dl 1.200 if ((r = ThreadLocalRandom.getProbe()) == 0) {
2517     ThreadLocalRandom.localInit();
2518     r = ThreadLocalRandom.getProbe();
2519     }
2520     for (;;) {
2521 dl 1.256 WorkQueue q; int wl, k, stat;
2522 dl 1.243 int rs = runState;
2523     WorkQueue[] ws = workQueues;
2524     if (rs <= 0 || ws == null || (wl = ws.length) <= 0)
2525 dl 1.258 tryInitialize(true);
2526 dl 1.243 else if ((q = ws[k = (wl - 1) & r & SQMASK]) == null)
2527     tryCreateExternalQueue(k);
2528 dl 1.256 else if ((stat = q.sharedPush(task)) < 0)
2529     break;
2530     else if (stat == 0) {
2531     signalWork();
2532     break;
2533 dl 1.200 }
2534 dl 1.256 else // move if busy
2535 dl 1.200 r = ThreadLocalRandom.advanceProbe(r);
2536 dl 1.52 }
2537     }
2538 jsr166 1.283
2539 dl 1.200 /**
2540 jsr166 1.237 * Pushes a possibly-external submission.
2541 dl 1.236 */
2542 dl 1.243 private <T> ForkJoinTask<T> externalSubmit(ForkJoinTask<T> task) {
2543     Thread t; ForkJoinWorkerThread w; WorkQueue q;
2544 dl 1.236 if (task == null)
2545     throw new NullPointerException();
2546     if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) &&
2547 dl 1.243 (w = (ForkJoinWorkerThread)t).pool == this &&
2548     (q = w.workQueue) != null)
2549     q.push(task);
2550 jsr166 1.238 else
2551 dl 1.236 externalPush(task);
2552     return task;
2553     }
2554    
2555     /**
2556 jsr166 1.213 * Returns common pool queue for an external thread.
2557 dl 1.105 */
2558     static WorkQueue commonSubmitterQueue() {
2559 dl 1.200 ForkJoinPool p = common;
2560     int r = ThreadLocalRandom.getProbe();
2561 dl 1.243 WorkQueue[] ws; int wl;
2562 dl 1.200 return (p != null && (ws = p.workQueues) != null &&
2563 dl 1.243 (wl = ws.length) > 0) ?
2564     ws[(wl - 1) & r & SQMASK] : null;
2565 dl 1.105 }
2566    
2567     /**
2568 jsr166 1.246 * Performs tryUnpush for an external submitter.
2569 dl 1.105 */
2570 dl 1.178 final boolean tryExternalUnpush(ForkJoinTask<?> task) {
2571 dl 1.200 int r = ThreadLocalRandom.getProbe();
2572 dl 1.243 WorkQueue[] ws; WorkQueue w; int wl;
2573     return ((ws = workQueues) != null &&
2574     (wl = ws.length) > 0 &&
2575     (w = ws[(wl - 1) & r & SQMASK]) != null &&
2576     w.trySharedUnpush(task));
2577 dl 1.105 }
2578    
2579 dl 1.200 /**
2580 jsr166 1.213 * Performs helpComplete for an external submitter.
2581 dl 1.200 */
2582 dl 1.190 final int externalHelpComplete(CountedCompleter<?> task, int maxTasks) {
2583 dl 1.243 WorkQueue[] ws; int wl;
2584 dl 1.200 int r = ThreadLocalRandom.getProbe();
2585 dl 1.243 return ((ws = workQueues) != null && (wl = ws.length) > 0) ?
2586     helpComplete(ws[(wl - 1) & r & SQMASK], task, maxTasks) : 0;
2587 dl 1.105 }
2588    
2589 dl 1.52 // Exported methods
2590 jsr166 1.1
2591     // Constructors
2592    
2593     /**
2594 jsr166 1.9 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2595 dl 1.18 * java.lang.Runtime#availableProcessors}, using the {@linkplain
2596     * #defaultForkJoinWorkerThreadFactory default thread factory},
2597     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2598 jsr166 1.1 *
2599     * @throws SecurityException if a security manager exists and
2600     * the caller is not permitted to modify threads
2601     * because it does not hold {@link
2602     * java.lang.RuntimePermission}{@code ("modifyThread")}
2603     */
2604     public ForkJoinPool() {
2605 jsr166 1.148 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2606     defaultForkJoinWorkerThreadFactory, null, false);
2607 jsr166 1.1 }
2608    
2609     /**
2610 jsr166 1.9 * Creates a {@code ForkJoinPool} with the indicated parallelism
2611 dl 1.18 * level, the {@linkplain
2612     * #defaultForkJoinWorkerThreadFactory default thread factory},
2613     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2614 jsr166 1.1 *
2615 jsr166 1.9 * @param parallelism the parallelism level
2616 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
2617 jsr166 1.11 * equal to zero, or greater than implementation limit
2618 jsr166 1.1 * @throws SecurityException if a security manager exists and
2619     * the caller is not permitted to modify threads
2620     * because it does not hold {@link
2621     * java.lang.RuntimePermission}{@code ("modifyThread")}
2622     */
2623     public ForkJoinPool(int parallelism) {
2624 dl 1.18 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2625 jsr166 1.1 }
2626    
2627     /**
2628 dl 1.18 * Creates a {@code ForkJoinPool} with the given parameters.
2629 jsr166 1.1 *
2630 dl 1.18 * @param parallelism the parallelism level. For default value,
2631     * use {@link java.lang.Runtime#availableProcessors}.
2632     * @param factory the factory for creating new threads. For default value,
2633     * use {@link #defaultForkJoinWorkerThreadFactory}.
2634 dl 1.19 * @param handler the handler for internal worker threads that
2635     * terminate due to unrecoverable errors encountered while executing
2636 jsr166 1.31 * tasks. For default value, use {@code null}.
2637 dl 1.19 * @param asyncMode if true,
2638 dl 1.18 * establishes local first-in-first-out scheduling mode for forked
2639     * tasks that are never joined. This mode may be more appropriate
2640     * than default locally stack-based mode in applications in which
2641     * worker threads only process event-style asynchronous tasks.
2642 jsr166 1.31 * For default value, use {@code false}.
2643 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
2644 jsr166 1.11 * equal to zero, or greater than implementation limit
2645     * @throws NullPointerException if the factory is null
2646 jsr166 1.1 * @throws SecurityException if a security manager exists and
2647     * the caller is not permitted to modify threads
2648     * because it does not hold {@link
2649     * java.lang.RuntimePermission}{@code ("modifyThread")}
2650     */
2651 dl 1.19 public ForkJoinPool(int parallelism,
2652 dl 1.18 ForkJoinWorkerThreadFactory factory,
2653 jsr166 1.156 UncaughtExceptionHandler handler,
2654 dl 1.18 boolean asyncMode) {
2655 dl 1.152 this(checkParallelism(parallelism),
2656     checkFactory(factory),
2657     handler,
2658 jsr166 1.201 asyncMode ? FIFO_QUEUE : LIFO_QUEUE,
2659 dl 1.152 "ForkJoinPool-" + nextPoolId() + "-worker-");
2660 dl 1.14 checkPermission();
2661 dl 1.152 }
2662    
2663     private static int checkParallelism(int parallelism) {
2664     if (parallelism <= 0 || parallelism > MAX_CAP)
2665     throw new IllegalArgumentException();
2666     return parallelism;
2667     }
2668    
2669     private static ForkJoinWorkerThreadFactory checkFactory
2670     (ForkJoinWorkerThreadFactory factory) {
2671 dl 1.14 if (factory == null)
2672     throw new NullPointerException();
2673 dl 1.152 return factory;
2674     }
2675    
2676     /**
2677     * Creates a {@code ForkJoinPool} with the given parameters, without
2678     * any security checks or parameter validation. Invoked directly by
2679     * makeCommonPool.
2680     */
2681     private ForkJoinPool(int parallelism,
2682     ForkJoinWorkerThreadFactory factory,
2683 jsr166 1.156 UncaughtExceptionHandler handler,
2684 dl 1.185 int mode,
2685 dl 1.152 String workerNamePrefix) {
2686     this.workerNamePrefix = workerNamePrefix;
2687 jsr166 1.1 this.factory = factory;
2688 dl 1.18 this.ueh = handler;
2689 dl 1.200 this.config = (parallelism & SMASK) | mode;
2690 dl 1.52 long np = (long)(-parallelism); // offset ctl counts
2691     this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2692 dl 1.101 }
2693    
2694     /**
2695 dl 1.128 * Returns the common pool instance. This pool is statically
2696 dl 1.134 * constructed; its run state is unaffected by attempts to {@link
2697     * #shutdown} or {@link #shutdownNow}. However this pool and any
2698     * ongoing processing are automatically terminated upon program
2699     * {@link System#exit}. Any program that relies on asynchronous
2700     * task processing to complete before program termination should
2701 jsr166 1.158 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2702     * before exit.
2703 dl 1.100 *
2704     * @return the common pool instance
2705 jsr166 1.138 * @since 1.8
2706 dl 1.100 */
2707     public static ForkJoinPool commonPool() {
2708 dl 1.134 // assert common != null : "static init error";
2709     return common;
2710 dl 1.100 }
2711    
2712 jsr166 1.1 // Execution methods
2713    
2714     /**
2715     * Performs the given task, returning its result upon completion.
2716 dl 1.52 * If the computation encounters an unchecked Exception or Error,
2717     * it is rethrown as the outcome of this invocation. Rethrown
2718     * exceptions behave in the same way as regular exceptions, but,
2719     * when possible, contain stack traces (as displayed for example
2720     * using {@code ex.printStackTrace()}) of both the current thread
2721     * as well as the thread actually encountering the exception;
2722     * minimally only the latter.
2723 jsr166 1.1 *
2724     * @param task the task
2725 jsr166 1.191 * @param <T> the type of the task's result
2726 jsr166 1.1 * @return the task's result
2727 jsr166 1.11 * @throws NullPointerException if the task is null
2728     * @throws RejectedExecutionException if the task cannot be
2729     * scheduled for execution
2730 jsr166 1.1 */
2731     public <T> T invoke(ForkJoinTask<T> task) {
2732 dl 1.90 if (task == null)
2733     throw new NullPointerException();
2734 dl 1.243 externalSubmit(task);
2735 dl 1.78 return task.join();
2736 jsr166 1.1 }
2737    
2738     /**
2739     * Arranges for (asynchronous) execution of the given task.
2740     *
2741     * @param task the task
2742 jsr166 1.11 * @throws NullPointerException if the task is null
2743     * @throws RejectedExecutionException if the task cannot be
2744     * scheduled for execution
2745 jsr166 1.1 */
2746 jsr166 1.8 public void execute(ForkJoinTask<?> task) {
2747 dl 1.243 externalSubmit(task);
2748 jsr166 1.1 }
2749    
2750     // AbstractExecutorService methods
2751    
2752 jsr166 1.11 /**
2753     * @throws NullPointerException if the task is null
2754     * @throws RejectedExecutionException if the task cannot be
2755     * scheduled for execution
2756     */
2757 jsr166 1.1 public void execute(Runnable task) {
2758 dl 1.41 if (task == null)
2759     throw new NullPointerException();
2760 jsr166 1.2 ForkJoinTask<?> job;
2761 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2762     job = (ForkJoinTask<?>) task;
2763 jsr166 1.2 else
2764 dl 1.152 job = new ForkJoinTask.RunnableExecuteAction(task);
2765 dl 1.243 externalSubmit(job);
2766 jsr166 1.1 }
2767    
2768 jsr166 1.11 /**
2769 dl 1.18 * Submits a ForkJoinTask for execution.
2770     *
2771     * @param task the task to submit
2772 jsr166 1.191 * @param <T> the type of the task's result
2773 dl 1.18 * @return the task
2774     * @throws NullPointerException if the task is null
2775     * @throws RejectedExecutionException if the task cannot be
2776     * scheduled for execution
2777     */
2778     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2779 dl 1.243 return externalSubmit(task);
2780 dl 1.18 }
2781    
2782     /**
2783 jsr166 1.11 * @throws NullPointerException if the task is null
2784     * @throws RejectedExecutionException if the task cannot be
2785     * scheduled for execution
2786     */
2787 jsr166 1.1 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2788 dl 1.243 return externalSubmit(new ForkJoinTask.AdaptedCallable<T>(task));
2789 jsr166 1.1 }
2790    
2791 jsr166 1.11 /**
2792     * @throws NullPointerException if the task is null
2793     * @throws RejectedExecutionException if the task cannot be
2794     * scheduled for execution
2795     */
2796 jsr166 1.1 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2797 dl 1.243 return externalSubmit(new ForkJoinTask.AdaptedRunnable<T>(task, result));
2798 jsr166 1.1 }
2799    
2800 jsr166 1.11 /**
2801     * @throws NullPointerException if the task is null
2802     * @throws RejectedExecutionException if the task cannot be
2803     * scheduled for execution
2804     */
2805 jsr166 1.1 public ForkJoinTask<?> submit(Runnable task) {
2806 dl 1.41 if (task == null)
2807     throw new NullPointerException();
2808 jsr166 1.2 ForkJoinTask<?> job;
2809 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2810     job = (ForkJoinTask<?>) task;
2811 jsr166 1.2 else
2812 dl 1.90 job = new ForkJoinTask.AdaptedRunnableAction(task);
2813 dl 1.243 return externalSubmit(job);
2814 jsr166 1.1 }
2815    
2816     /**
2817 jsr166 1.11 * @throws NullPointerException {@inheritDoc}
2818     * @throws RejectedExecutionException {@inheritDoc}
2819     */
2820 jsr166 1.1 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2821 dl 1.86 // In previous versions of this class, this method constructed
2822     // a task to run ForkJoinTask.invokeAll, but now external
2823     // invocation of multiple tasks is at least as efficient.
2824 jsr166 1.199 ArrayList<Future<T>> futures = new ArrayList<>(tasks.size());
2825 jsr166 1.1
2826 dl 1.86 try {
2827     for (Callable<T> t : tasks) {
2828 dl 1.90 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2829 jsr166 1.144 futures.add(f);
2830 dl 1.243 externalSubmit(f);
2831 dl 1.86 }
2832 jsr166 1.143 for (int i = 0, size = futures.size(); i < size; i++)
2833     ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2834 dl 1.86 return futures;
2835 jsr166 1.226 } catch (Throwable t) {
2836     for (int i = 0, size = futures.size(); i < size; i++)
2837     futures.get(i).cancel(false);
2838     throw t;
2839 jsr166 1.1 }
2840     }
2841    
2842     /**
2843     * Returns the factory used for constructing new workers.
2844     *
2845     * @return the factory used for constructing new workers
2846     */
2847     public ForkJoinWorkerThreadFactory getFactory() {
2848     return factory;
2849     }
2850    
2851     /**
2852     * Returns the handler for internal worker threads that terminate
2853     * due to unrecoverable errors encountered while executing tasks.
2854     *
2855 jsr166 1.4 * @return the handler, or {@code null} if none
2856 jsr166 1.1 */
2857 jsr166 1.156 public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2858 dl 1.14 return ueh;
2859 jsr166 1.1 }
2860    
2861     /**
2862 jsr166 1.9 * Returns the targeted parallelism level of this pool.
2863 jsr166 1.1 *
2864 jsr166 1.9 * @return the targeted parallelism level of this pool
2865 jsr166 1.1 */
2866     public int getParallelism() {
2867 dl 1.185 int par;
2868 dl 1.200 return ((par = config & SMASK) > 0) ? par : 1;
2869 jsr166 1.1 }
2870    
2871     /**
2872 dl 1.100 * Returns the targeted parallelism level of the common pool.
2873     *
2874     * @return the targeted parallelism level of the common pool
2875 jsr166 1.138 * @since 1.8
2876 dl 1.100 */
2877     public static int getCommonPoolParallelism() {
2878 jsr166 1.274 return COMMON_PARALLELISM;
2879 dl 1.100 }
2880    
2881     /**
2882 jsr166 1.1 * Returns the number of worker threads that have started but not
2883 jsr166 1.34 * yet terminated. The result returned by this method may differ
2884 jsr166 1.4 * from {@link #getParallelism} when threads are created to
2885 jsr166 1.1 * maintain parallelism when others are cooperatively blocked.
2886     *
2887     * @return the number of worker threads
2888     */
2889     public int getPoolSize() {
2890 dl 1.200 return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2891 jsr166 1.1 }
2892    
2893     /**
2894 jsr166 1.4 * Returns {@code true} if this pool uses local first-in-first-out
2895 jsr166 1.1 * scheduling mode for forked tasks that are never joined.
2896     *
2897 jsr166 1.4 * @return {@code true} if this pool uses async mode
2898 jsr166 1.1 */
2899     public boolean getAsyncMode() {
2900 dl 1.200 return (config & FIFO_QUEUE) != 0;
2901 jsr166 1.1 }
2902    
2903     /**
2904     * Returns an estimate of the number of worker threads that are
2905     * not blocked waiting to join tasks or for other managed
2906 dl 1.14 * synchronization. This method may overestimate the
2907     * number of running threads.
2908 jsr166 1.1 *
2909     * @return the number of worker threads
2910     */
2911     public int getRunningThreadCount() {
2912 dl 1.78 int rc = 0;
2913     WorkQueue[] ws; WorkQueue w;
2914     if ((ws = workQueues) != null) {
2915 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2916     if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2917 dl 1.78 ++rc;
2918     }
2919     }
2920     return rc;
2921 jsr166 1.1 }
2922    
2923     /**
2924     * Returns an estimate of the number of threads that are currently
2925     * stealing or executing tasks. This method may overestimate the
2926     * number of active threads.
2927     *
2928     * @return the number of active threads
2929     */
2930     public int getActiveThreadCount() {
2931 dl 1.200 int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2932 jsr166 1.63 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2933 jsr166 1.1 }
2934    
2935     /**
2936 jsr166 1.4 * Returns {@code true} if all worker threads are currently idle.
2937     * An idle worker is one that cannot obtain a task to execute
2938     * because none are available to steal from other threads, and
2939     * there are no pending submissions to the pool. This method is
2940     * conservative; it might not return {@code true} immediately upon
2941     * idleness of all threads, but will eventually become true if
2942     * threads remain inactive.
2943 jsr166 1.1 *
2944 jsr166 1.4 * @return {@code true} if all threads are currently idle
2945 jsr166 1.1 */
2946     public boolean isQuiescent() {
2947 dl 1.200 return (config & SMASK) + (int)(ctl >> AC_SHIFT) <= 0;
2948 jsr166 1.1 }
2949    
2950     /**
2951     * Returns an estimate of the total number of tasks stolen from
2952     * one thread's work queue by another. The reported value
2953     * underestimates the actual total number of steals when the pool
2954     * is not quiescent. This value may be useful for monitoring and
2955     * tuning fork/join programs: in general, steal counts should be
2956     * high enough to keep threads busy, but low enough to avoid
2957     * overhead and contention across threads.
2958     *
2959     * @return the number of steals
2960     */
2961     public long getStealCount() {
2962 dl 1.262 AuxState sc = auxState;
2963     long count = (sc == null) ? 0L : sc.stealCount;
2964 dl 1.78 WorkQueue[] ws; WorkQueue w;
2965     if ((ws = workQueues) != null) {
2966 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2967 dl 1.78 if ((w = ws[i]) != null)
2968 dl 1.105 count += w.nsteals;
2969 dl 1.78 }
2970     }
2971     return count;
2972 jsr166 1.1 }
2973    
2974     /**
2975     * Returns an estimate of the total number of tasks currently held
2976     * in queues by worker threads (but not including tasks submitted
2977     * to the pool that have not begun executing). This value is only
2978     * an approximation, obtained by iterating across all threads in
2979     * the pool. This method may be useful for tuning task
2980     * granularities.
2981     *
2982     * @return the number of queued tasks
2983     */
2984     public long getQueuedTaskCount() {
2985     long count = 0;
2986 dl 1.78 WorkQueue[] ws; WorkQueue w;
2987     if ((ws = workQueues) != null) {
2988 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2989 dl 1.78 if ((w = ws[i]) != null)
2990     count += w.queueSize();
2991     }
2992 dl 1.52 }
2993 jsr166 1.1 return count;
2994     }
2995    
2996     /**
2997 jsr166 1.8 * Returns an estimate of the number of tasks submitted to this
2998 dl 1.55 * pool that have not yet begun executing. This method may take
2999 dl 1.52 * time proportional to the number of submissions.
3000 jsr166 1.1 *
3001     * @return the number of queued submissions
3002     */
3003     public int getQueuedSubmissionCount() {
3004 dl 1.78 int count = 0;
3005     WorkQueue[] ws; WorkQueue w;
3006     if ((ws = workQueues) != null) {
3007 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
3008 dl 1.78 if ((w = ws[i]) != null)
3009     count += w.queueSize();
3010     }
3011     }
3012     return count;
3013 jsr166 1.1 }
3014    
3015     /**
3016 jsr166 1.4 * Returns {@code true} if there are any tasks submitted to this
3017     * pool that have not yet begun executing.
3018 jsr166 1.1 *
3019     * @return {@code true} if there are any queued submissions
3020     */
3021     public boolean hasQueuedSubmissions() {
3022 dl 1.78 WorkQueue[] ws; WorkQueue w;
3023     if ((ws = workQueues) != null) {
3024 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
3025 dl 1.115 if ((w = ws[i]) != null && !w.isEmpty())
3026 dl 1.78 return true;
3027     }
3028     }
3029     return false;
3030 jsr166 1.1 }
3031    
3032     /**
3033     * Removes and returns the next unexecuted submission if one is
3034     * available. This method may be useful in extensions to this
3035     * class that re-assign work in systems with multiple pools.
3036     *
3037 jsr166 1.4 * @return the next submission, or {@code null} if none
3038 jsr166 1.1 */
3039     protected ForkJoinTask<?> pollSubmission() {
3040 dl 1.253 WorkQueue[] ws; int wl; WorkQueue w; ForkJoinTask<?> t;
3041     int r = ThreadLocalRandom.nextSecondarySeed();
3042     if ((ws = workQueues) != null && (wl = ws.length) > 0) {
3043     for (int m = wl - 1, i = 0; i < wl; ++i) {
3044     if ((w = ws[(i << 1) & m]) != null && (t = w.poll()) != null)
3045 dl 1.78 return t;
3046 dl 1.52 }
3047     }
3048     return null;
3049 jsr166 1.1 }
3050    
3051     /**
3052     * Removes all available unexecuted submitted and forked tasks
3053     * from scheduling queues and adds them to the given collection,
3054     * without altering their execution status. These may include
3055 jsr166 1.8 * artificially generated or wrapped tasks. This method is
3056     * designed to be invoked only when the pool is known to be
3057 jsr166 1.1 * quiescent. Invocations at other times may not remove all
3058     * tasks. A failure encountered while attempting to add elements
3059     * to collection {@code c} may result in elements being in
3060     * neither, either or both collections when the associated
3061     * exception is thrown. The behavior of this operation is
3062     * undefined if the specified collection is modified while the
3063     * operation is in progress.
3064     *
3065     * @param c the collection to transfer elements into
3066     * @return the number of elements transferred
3067     */
3068 jsr166 1.5 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
3069 dl 1.52 int count = 0;
3070 dl 1.78 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
3071     if ((ws = workQueues) != null) {
3072 dl 1.86 for (int i = 0; i < ws.length; ++i) {
3073 dl 1.78 if ((w = ws[i]) != null) {
3074     while ((t = w.poll()) != null) {
3075     c.add(t);
3076     ++count;
3077     }
3078     }
3079 dl 1.52 }
3080     }
3081 dl 1.18 return count;
3082     }
3083    
3084     /**
3085 jsr166 1.1 * Returns a string identifying this pool, as well as its state,
3086     * including indications of run state, parallelism level, and
3087     * worker and task counts.
3088     *
3089     * @return a string identifying this pool, as well as its state
3090     */
3091     public String toString() {
3092 dl 1.86 // Use a single pass through workQueues to collect counts
3093     long qt = 0L, qs = 0L; int rc = 0;
3094 dl 1.262 AuxState sc = auxState;
3095     long st = (sc == null) ? 0L : sc.stealCount;
3096 dl 1.86 long c = ctl;
3097     WorkQueue[] ws; WorkQueue w;
3098     if ((ws = workQueues) != null) {
3099     for (int i = 0; i < ws.length; ++i) {
3100     if ((w = ws[i]) != null) {
3101     int size = w.queueSize();
3102     if ((i & 1) == 0)
3103     qs += size;
3104     else {
3105     qt += size;
3106 dl 1.105 st += w.nsteals;
3107 dl 1.86 if (w.isApparentlyUnblocked())
3108     ++rc;
3109     }
3110     }
3111     }
3112     }
3113 dl 1.200 int pc = (config & SMASK);
3114 dl 1.52 int tc = pc + (short)(c >>> TC_SHIFT);
3115 dl 1.78 int ac = pc + (int)(c >> AC_SHIFT);
3116     if (ac < 0) // ignore transient negative
3117     ac = 0;
3118 dl 1.200 int rs = runState;
3119     String level = ((rs & TERMINATED) != 0 ? "Terminated" :
3120     (rs & STOP) != 0 ? "Terminating" :
3121     (rs & SHUTDOWN) != 0 ? "Shutting down" :
3122     "Running");
3123 jsr166 1.1 return super.toString() +
3124 dl 1.52 "[" + level +
3125 dl 1.14 ", parallelism = " + pc +
3126     ", size = " + tc +
3127     ", active = " + ac +
3128     ", running = " + rc +
3129 jsr166 1.1 ", steals = " + st +
3130     ", tasks = " + qt +
3131     ", submissions = " + qs +
3132     "]";
3133     }
3134    
3135     /**
3136 dl 1.100 * Possibly initiates an orderly shutdown in which previously
3137     * submitted tasks are executed, but no new tasks will be
3138     * accepted. Invocation has no effect on execution state if this
3139 jsr166 1.137 * is the {@link #commonPool()}, and no additional effect if
3140 dl 1.100 * already shut down. Tasks that are in the process of being
3141     * submitted concurrently during the course of this method may or
3142     * may not be rejected.
3143 jsr166 1.1 *
3144     * @throws SecurityException if a security manager exists and
3145     * the caller is not permitted to modify threads
3146     * because it does not hold {@link
3147     * java.lang.RuntimePermission}{@code ("modifyThread")}
3148     */
3149     public void shutdown() {
3150     checkPermission();
3151 dl 1.105 tryTerminate(false, true);
3152 jsr166 1.1 }
3153    
3154     /**
3155 dl 1.100 * Possibly attempts to cancel and/or stop all tasks, and reject
3156     * all subsequently submitted tasks. Invocation has no effect on
3157 jsr166 1.137 * execution state if this is the {@link #commonPool()}, and no
3158 dl 1.100 * additional effect if already shut down. Otherwise, tasks that
3159     * are in the process of being submitted or executed concurrently
3160     * during the course of this method may or may not be
3161     * rejected. This method cancels both existing and unexecuted
3162     * tasks, in order to permit termination in the presence of task
3163     * dependencies. So the method always returns an empty list
3164     * (unlike the case for some other Executors).
3165 jsr166 1.1 *
3166     * @return an empty list
3167     * @throws SecurityException if a security manager exists and
3168     * the caller is not permitted to modify threads
3169     * because it does not hold {@link
3170     * java.lang.RuntimePermission}{@code ("modifyThread")}
3171     */
3172     public List<Runnable> shutdownNow() {
3173     checkPermission();
3174 dl 1.105 tryTerminate(true, true);
3175 jsr166 1.1 return Collections.emptyList();
3176     }
3177    
3178     /**
3179     * Returns {@code true} if all tasks have completed following shut down.
3180     *
3181     * @return {@code true} if all tasks have completed following shut down
3182     */
3183     public boolean isTerminated() {
3184 dl 1.200 return (runState & TERMINATED) != 0;
3185 jsr166 1.1 }
3186    
3187     /**
3188     * Returns {@code true} if the process of termination has
3189 jsr166 1.9 * commenced but not yet completed. This method may be useful for
3190     * debugging. A return of {@code true} reported a sufficient
3191     * period after shutdown may indicate that submitted tasks have
3192 jsr166 1.119 * ignored or suppressed interruption, or are waiting for I/O,
3193 dl 1.49 * causing this executor not to properly terminate. (See the
3194     * advisory notes for class {@link ForkJoinTask} stating that
3195     * tasks should not normally entail blocking operations. But if
3196     * they do, they must abort them on interrupt.)
3197 jsr166 1.1 *
3198 jsr166 1.9 * @return {@code true} if terminating but not yet terminated
3199 jsr166 1.1 */
3200     public boolean isTerminating() {
3201 dl 1.200 int rs = runState;
3202     return (rs & STOP) != 0 && (rs & TERMINATED) == 0;
3203 jsr166 1.1 }
3204    
3205     /**
3206     * Returns {@code true} if this pool has been shut down.
3207     *
3208     * @return {@code true} if this pool has been shut down
3209     */
3210     public boolean isShutdown() {
3211 dl 1.200 return (runState & SHUTDOWN) != 0;
3212 jsr166 1.9 }
3213    
3214     /**
3215 dl 1.105 * Blocks until all tasks have completed execution after a
3216     * shutdown request, or the timeout occurs, or the current thread
3217 dl 1.134 * is interrupted, whichever happens first. Because the {@link
3218     * #commonPool()} never terminates until program shutdown, when
3219     * applied to the common pool, this method is equivalent to {@link
3220 jsr166 1.158 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
3221 jsr166 1.1 *
3222     * @param timeout the maximum time to wait
3223     * @param unit the time unit of the timeout argument
3224     * @return {@code true} if this executor terminated and
3225     * {@code false} if the timeout elapsed before termination
3226     * @throws InterruptedException if interrupted while waiting
3227     */
3228     public boolean awaitTermination(long timeout, TimeUnit unit)
3229     throws InterruptedException {
3230 dl 1.134 if (Thread.interrupted())
3231     throw new InterruptedException();
3232     if (this == common) {
3233     awaitQuiescence(timeout, unit);
3234     return false;
3235     }
3236 dl 1.52 long nanos = unit.toNanos(timeout);
3237 dl 1.101 if (isTerminated())
3238     return true;
3239 dl 1.183 if (nanos <= 0L)
3240     return false;
3241     long deadline = System.nanoTime() + nanos;
3242 jsr166 1.103 synchronized (this) {
3243 jsr166 1.184 for (;;) {
3244 dl 1.183 if (isTerminated())
3245     return true;
3246     if (nanos <= 0L)
3247     return false;
3248     long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
3249     wait(millis > 0L ? millis : 1L);
3250     nanos = deadline - System.nanoTime();
3251 dl 1.52 }
3252 dl 1.18 }
3253 jsr166 1.1 }
3254    
3255     /**
3256 dl 1.134 * If called by a ForkJoinTask operating in this pool, equivalent
3257     * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3258     * waits and/or attempts to assist performing tasks until this
3259     * pool {@link #isQuiescent} or the indicated timeout elapses.
3260     *
3261     * @param timeout the maximum time to wait
3262     * @param unit the time unit of the timeout argument
3263     * @return {@code true} if quiescent; {@code false} if the
3264     * timeout elapsed.
3265     */
3266     public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3267     long nanos = unit.toNanos(timeout);
3268     ForkJoinWorkerThread wt;
3269     Thread thread = Thread.currentThread();
3270     if ((thread instanceof ForkJoinWorkerThread) &&
3271     (wt = (ForkJoinWorkerThread)thread).pool == this) {
3272     helpQuiescePool(wt.workQueue);
3273     return true;
3274     }
3275     long startTime = System.nanoTime();
3276     WorkQueue[] ws;
3277 dl 1.243 int r = 0, wl;
3278 dl 1.134 boolean found = true;
3279     while (!isQuiescent() && (ws = workQueues) != null &&
3280 dl 1.243 (wl = ws.length) > 0) {
3281 dl 1.134 if (!found) {
3282     if ((System.nanoTime() - startTime) > nanos)
3283     return false;
3284     Thread.yield(); // cannot block
3285     }
3286     found = false;
3287 dl 1.243 for (int m = wl - 1, j = (m + 1) << 2; j >= 0; --j) {
3288 dl 1.200 ForkJoinTask<?> t; WorkQueue q; int b, k;
3289     if ((k = r++ & m) <= m && k >= 0 && (q = ws[k]) != null &&
3290     (b = q.base) - q.top < 0) {
3291 dl 1.134 found = true;
3292 dl 1.172 if ((t = q.pollAt(b)) != null)
3293 dl 1.134 t.doExec();
3294     break;
3295     }
3296     }
3297     }
3298     return true;
3299     }
3300    
3301     /**
3302     * Waits and/or attempts to assist performing tasks indefinitely
3303 jsr166 1.141 * until the {@link #commonPool()} {@link #isQuiescent}.
3304 dl 1.134 */
3305 dl 1.136 static void quiesceCommonPool() {
3306 dl 1.134 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3307     }
3308    
3309     /**
3310 jsr166 1.1 * Interface for extending managed parallelism for tasks running
3311 jsr166 1.8 * in {@link ForkJoinPool}s.
3312     *
3313 dl 1.19 * <p>A {@code ManagedBlocker} provides two methods. Method
3314 jsr166 1.218 * {@link #isReleasable} must return {@code true} if blocking is
3315     * not necessary. Method {@link #block} blocks the current thread
3316 dl 1.19 * if necessary (perhaps internally invoking {@code isReleasable}
3317 dl 1.54 * before actually blocking). These actions are performed by any
3318 jsr166 1.157 * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
3319     * The unusual methods in this API accommodate synchronizers that
3320     * may, but don't usually, block for long periods. Similarly, they
3321 dl 1.54 * allow more efficient internal handling of cases in which
3322     * additional workers may be, but usually are not, needed to
3323     * ensure sufficient parallelism. Toward this end,
3324     * implementations of method {@code isReleasable} must be amenable
3325     * to repeated invocation.
3326 jsr166 1.1 *
3327     * <p>For example, here is a ManagedBlocker based on a
3328     * ReentrantLock:
3329 jsr166 1.239 * <pre> {@code
3330 jsr166 1.1 * class ManagedLocker implements ManagedBlocker {
3331     * final ReentrantLock lock;
3332     * boolean hasLock = false;
3333     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3334     * public boolean block() {
3335     * if (!hasLock)
3336     * lock.lock();
3337     * return true;
3338     * }
3339     * public boolean isReleasable() {
3340     * return hasLock || (hasLock = lock.tryLock());
3341     * }
3342     * }}</pre>
3343 dl 1.19 *
3344     * <p>Here is a class that possibly blocks waiting for an
3345     * item on a given queue:
3346 jsr166 1.239 * <pre> {@code
3347 dl 1.19 * class QueueTaker<E> implements ManagedBlocker {
3348     * final BlockingQueue<E> queue;
3349     * volatile E item = null;
3350     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3351     * public boolean block() throws InterruptedException {
3352     * if (item == null)
3353 dl 1.23 * item = queue.take();
3354 dl 1.19 * return true;
3355     * }
3356     * public boolean isReleasable() {
3357 dl 1.23 * return item != null || (item = queue.poll()) != null;
3358 dl 1.19 * }
3359     * public E getItem() { // call after pool.managedBlock completes
3360     * return item;
3361     * }
3362     * }}</pre>
3363 jsr166 1.1 */
3364     public static interface ManagedBlocker {
3365     /**
3366     * Possibly blocks the current thread, for example waiting for
3367     * a lock or condition.
3368     *
3369 jsr166 1.4 * @return {@code true} if no additional blocking is necessary
3370     * (i.e., if isReleasable would return true)
3371 jsr166 1.1 * @throws InterruptedException if interrupted while waiting
3372     * (the method is not required to do so, but is allowed to)
3373     */
3374     boolean block() throws InterruptedException;
3375    
3376     /**
3377 jsr166 1.4 * Returns {@code true} if blocking is unnecessary.
3378 jsr166 1.154 * @return {@code true} if blocking is unnecessary
3379 jsr166 1.1 */
3380     boolean isReleasable();
3381     }
3382    
3383     /**
3384 jsr166 1.217 * Runs the given possibly blocking task. When {@linkplain
3385     * ForkJoinTask#inForkJoinPool() running in a ForkJoinPool}, this
3386     * method possibly arranges for a spare thread to be activated if
3387     * necessary to ensure sufficient parallelism while the current
3388     * thread is blocked in {@link ManagedBlocker#block blocker.block()}.
3389 jsr166 1.1 *
3390 jsr166 1.217 * <p>This method repeatedly calls {@code blocker.isReleasable()} and
3391     * {@code blocker.block()} until either method returns {@code true}.
3392     * Every call to {@code blocker.block()} is preceded by a call to
3393     * {@code blocker.isReleasable()} that returned {@code false}.
3394     *
3395     * <p>If not running in a ForkJoinPool, this method is
3396 jsr166 1.8 * behaviorally equivalent to
3397 jsr166 1.239 * <pre> {@code
3398 jsr166 1.1 * while (!blocker.isReleasable())
3399     * if (blocker.block())
3400 jsr166 1.217 * break;}</pre>
3401 jsr166 1.8 *
3402 jsr166 1.217 * If running in a ForkJoinPool, the pool may first be expanded to
3403     * ensure sufficient parallelism available during the call to
3404     * {@code blocker.block()}.
3405 jsr166 1.1 *
3406 jsr166 1.217 * @param blocker the blocker task
3407     * @throws InterruptedException if {@code blocker.block()} did so
3408 jsr166 1.1 */
3409 dl 1.18 public static void managedBlock(ManagedBlocker blocker)
3410 jsr166 1.1 throws InterruptedException {
3411 dl 1.200 ForkJoinPool p;
3412     ForkJoinWorkerThread wt;
3413 jsr166 1.1 Thread t = Thread.currentThread();
3414 dl 1.200 if ((t instanceof ForkJoinWorkerThread) &&
3415     (p = (wt = (ForkJoinWorkerThread)t).pool) != null) {
3416     WorkQueue w = wt.workQueue;
3417 dl 1.172 while (!blocker.isReleasable()) {
3418 dl 1.200 if (p.tryCompensate(w)) {
3419 dl 1.105 try {
3420     do {} while (!blocker.isReleasable() &&
3421     !blocker.block());
3422     } finally {
3423 dl 1.200 U.getAndAddLong(p, CTL, AC_UNIT);
3424 dl 1.105 }
3425     break;
3426 dl 1.78 }
3427     }
3428 dl 1.18 }
3429 dl 1.105 else {
3430     do {} while (!blocker.isReleasable() &&
3431     !blocker.block());
3432     }
3433 jsr166 1.1 }
3434    
3435 jsr166 1.7 // AbstractExecutorService overrides. These rely on undocumented
3436     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3437     // implement RunnableFuture.
3438 jsr166 1.1
3439     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3440 dl 1.90 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3441 jsr166 1.1 }
3442    
3443     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3444 dl 1.90 return new ForkJoinTask.AdaptedCallable<T>(callable);
3445 jsr166 1.1 }
3446    
3447     // Unsafe mechanics
3448 jsr166 1.233 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
3449 dl 1.78 private static final long CTL;
3450 dl 1.243 private static final int ABASE;
3451     private static final int ASHIFT;
3452 dl 1.52
3453     static {
3454 jsr166 1.3 try {
3455 dl 1.78 CTL = U.objectFieldOffset
3456 jsr166 1.233 (ForkJoinPool.class.getDeclaredField("ctl"));
3457     ABASE = U.arrayBaseOffset(ForkJoinTask[].class);
3458     int scale = U.arrayIndexScale(ForkJoinTask[].class);
3459 jsr166 1.142 if ((scale & (scale - 1)) != 0)
3460 jsr166 1.232 throw new Error("array index scale not a power of two");
3461 jsr166 1.142 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3462 jsr166 1.231 } catch (ReflectiveOperationException e) {
3463 dl 1.52 throw new Error(e);
3464     }
3465 dl 1.105
3466 dl 1.243 // Reduce the risk of rare disastrous classloading in first call to
3467     // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
3468     Class<?> ensureLoaded = LockSupport.class;
3469    
3470 jsr166 1.273 int commonMaxSpares = DEFAULT_COMMON_MAX_SPARES;
3471     try {
3472     String p = System.getProperty
3473     ("java.util.concurrent.ForkJoinPool.common.maximumSpares");
3474     if (p != null)
3475     commonMaxSpares = Integer.parseInt(p);
3476     } catch (Exception ignore) {}
3477     COMMON_MAX_SPARES = commonMaxSpares;
3478    
3479 dl 1.152 defaultForkJoinWorkerThreadFactory =
3480 dl 1.112 new DefaultForkJoinWorkerThreadFactory();
3481 dl 1.115 modifyThreadPermission = new RuntimePermission("modifyThread");
3482    
3483 dl 1.152 common = java.security.AccessController.doPrivileged
3484     (new java.security.PrivilegedAction<ForkJoinPool>() {
3485     public ForkJoinPool run() { return makeCommonPool(); }});
3486 jsr166 1.275
3487 jsr166 1.274 // report 1 even if threads disabled
3488     COMMON_PARALLELISM = Math.max(common.config & SMASK, 1);
3489 dl 1.152 }
3490 dl 1.112
3491 dl 1.152 /**
3492     * Creates and returns the common pool, respecting user settings
3493     * specified via system properties.
3494     */
3495 jsr166 1.278 static ForkJoinPool makeCommonPool() {
3496 dl 1.160 int parallelism = -1;
3497 dl 1.197 ForkJoinWorkerThreadFactory factory = null;
3498 jsr166 1.156 UncaughtExceptionHandler handler = null;
3499 jsr166 1.189 try { // ignore exceptions in accessing/parsing properties
3500 dl 1.112 String pp = System.getProperty
3501     ("java.util.concurrent.ForkJoinPool.common.parallelism");
3502 dl 1.152 String fp = System.getProperty
3503     ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3504 dl 1.112 String hp = System.getProperty
3505     ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3506 dl 1.152 if (pp != null)
3507     parallelism = Integer.parseInt(pp);
3508 dl 1.112 if (fp != null)
3509 dl 1.152 factory = ((ForkJoinWorkerThreadFactory)ClassLoader.
3510     getSystemClassLoader().loadClass(fp).newInstance());
3511 dl 1.112 if (hp != null)
3512 jsr166 1.156 handler = ((UncaughtExceptionHandler)ClassLoader.
3513 dl 1.112 getSystemClassLoader().loadClass(hp).newInstance());
3514     } catch (Exception ignore) {
3515     }
3516 dl 1.197 if (factory == null) {
3517     if (System.getSecurityManager() == null)
3518     factory = defaultForkJoinWorkerThreadFactory;
3519     else // use security-managed default
3520     factory = new InnocuousForkJoinWorkerThreadFactory();
3521     }
3522 dl 1.167 if (parallelism < 0 && // default 1 less than #cores
3523 dl 1.193 (parallelism = Runtime.getRuntime().availableProcessors() - 1) <= 0)
3524     parallelism = 1;
3525 dl 1.152 if (parallelism > MAX_CAP)
3526     parallelism = MAX_CAP;
3527 dl 1.185 return new ForkJoinPool(parallelism, factory, handler, LIFO_QUEUE,
3528 dl 1.152 "ForkJoinPool.commonPool-worker-");
3529 jsr166 1.3 }
3530 dl 1.52
3531 dl 1.197 /**
3532 jsr166 1.279 * Factory for innocuous worker threads.
3533 dl 1.197 */
3534 jsr166 1.278 private static final class InnocuousForkJoinWorkerThreadFactory
3535 dl 1.197 implements ForkJoinWorkerThreadFactory {
3536    
3537     /**
3538     * An ACC to restrict permissions for the factory itself.
3539     * The constructed workers have no permissions set.
3540     */
3541     private static final AccessControlContext innocuousAcc;
3542     static {
3543     Permissions innocuousPerms = new Permissions();
3544     innocuousPerms.add(modifyThreadPermission);
3545     innocuousPerms.add(new RuntimePermission(
3546     "enableContextClassLoaderOverride"));
3547     innocuousPerms.add(new RuntimePermission(
3548     "modifyThreadGroup"));
3549     innocuousAcc = new AccessControlContext(new ProtectionDomain[] {
3550     new ProtectionDomain(null, innocuousPerms)
3551     });
3552     }
3553    
3554     public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
3555 jsr166 1.227 return java.security.AccessController.doPrivileged(
3556     new java.security.PrivilegedAction<ForkJoinWorkerThread>() {
3557 dl 1.197 public ForkJoinWorkerThread run() {
3558     return new ForkJoinWorkerThread.
3559     InnocuousForkJoinWorkerThread(pool);
3560     }}, innocuousAcc);
3561     }
3562     }
3563    
3564 jsr166 1.1 }