ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.294
Committed: Mon Oct 12 13:34:03 2015 UTC (8 years, 7 months ago) by dl
Branch: MAIN
Changes since 1.293: +45 -52 lines
Log Message:
Simplify runState maintenance

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.58 * http://creativecommons.org/publicdomain/zero/1.0/
5 jsr166 1.1 */
6    
7     package java.util.concurrent;
8    
9 jsr166 1.156 import java.lang.Thread.UncaughtExceptionHandler;
10 jsr166 1.228 import java.security.AccessControlContext;
11     import java.security.Permissions;
12     import java.security.ProtectionDomain;
13 jsr166 1.1 import java.util.ArrayList;
14     import java.util.Arrays;
15     import java.util.Collection;
16     import java.util.Collections;
17     import java.util.List;
18 dl 1.262 import java.util.concurrent.locks.ReentrantLock;
19 dl 1.243 import java.util.concurrent.locks.LockSupport;
20 jsr166 1.1
21     /**
22 jsr166 1.4 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
23 jsr166 1.8 * A {@code ForkJoinPool} provides the entry point for submissions
24 dl 1.18 * from non-{@code ForkJoinTask} clients, as well as management and
25 jsr166 1.11 * monitoring operations.
26 jsr166 1.1 *
27 jsr166 1.9 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
28     * ExecutorService} mainly by virtue of employing
29     * <em>work-stealing</em>: all threads in the pool attempt to find and
30 dl 1.78 * execute tasks submitted to the pool and/or created by other active
31     * tasks (eventually blocking waiting for work if none exist). This
32     * enables efficient processing when most tasks spawn other subtasks
33     * (as do most {@code ForkJoinTask}s), as well as when many small
34     * tasks are submitted to the pool from external clients. Especially
35     * when setting <em>asyncMode</em> to true in constructors, {@code
36     * ForkJoinPool}s may also be appropriate for use with event-style
37     * tasks that are never joined.
38 jsr166 1.1 *
39 dl 1.112 * <p>A static {@link #commonPool()} is available and appropriate for
40 dl 1.101 * most applications. The common pool is used by any ForkJoinTask that
41     * is not explicitly submitted to a specified pool. Using the common
42     * pool normally reduces resource usage (its threads are slowly
43     * reclaimed during periods of non-use, and reinstated upon subsequent
44 dl 1.105 * use).
45 dl 1.100 *
46     * <p>For applications that require separate or custom pools, a {@code
47     * ForkJoinPool} may be constructed with a given target parallelism
48 jsr166 1.214 * level; by default, equal to the number of available processors.
49     * The pool attempts to maintain enough active (or available) threads
50     * by dynamically adding, suspending, or resuming internal worker
51 jsr166 1.187 * threads, even if some tasks are stalled waiting to join others.
52     * However, no such adjustments are guaranteed in the face of blocked
53     * I/O or other unmanaged synchronization. The nested {@link
54 dl 1.100 * ManagedBlocker} interface enables extension of the kinds of
55 dl 1.18 * synchronization accommodated.
56 jsr166 1.1 *
57     * <p>In addition to execution and lifecycle control methods, this
58     * class provides status check methods (for example
59 jsr166 1.4 * {@link #getStealCount}) that are intended to aid in developing,
60 jsr166 1.1 * tuning, and monitoring fork/join applications. Also, method
61 jsr166 1.4 * {@link #toString} returns indications of pool state in a
62 jsr166 1.1 * convenient form for informal monitoring.
63     *
64 jsr166 1.109 * <p>As is the case with other ExecutorServices, there are three
65 jsr166 1.84 * main task execution methods summarized in the following table.
66     * These are designed to be used primarily by clients not already
67     * engaged in fork/join computations in the current pool. The main
68     * forms of these methods accept instances of {@code ForkJoinTask},
69     * but overloaded forms also allow mixed execution of plain {@code
70     * Runnable}- or {@code Callable}- based activities as well. However,
71     * tasks that are already executing in a pool should normally instead
72     * use the within-computation forms listed in the table unless using
73     * async event-style tasks that are not usually joined, in which case
74     * there is little difference among choice of methods.
75 dl 1.18 *
76     * <table BORDER CELLPADDING=3 CELLSPACING=1>
77 jsr166 1.159 * <caption>Summary of task execution methods</caption>
78 dl 1.18 * <tr>
79     * <td></td>
80     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
81     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
82     * </tr>
83     * <tr>
84 jsr166 1.153 * <td> <b>Arrange async execution</b></td>
85 dl 1.18 * <td> {@link #execute(ForkJoinTask)}</td>
86     * <td> {@link ForkJoinTask#fork}</td>
87     * </tr>
88     * <tr>
89 jsr166 1.153 * <td> <b>Await and obtain result</b></td>
90 dl 1.18 * <td> {@link #invoke(ForkJoinTask)}</td>
91     * <td> {@link ForkJoinTask#invoke}</td>
92     * </tr>
93     * <tr>
94 jsr166 1.153 * <td> <b>Arrange exec and obtain Future</b></td>
95 dl 1.18 * <td> {@link #submit(ForkJoinTask)}</td>
96     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
97     * </tr>
98     * </table>
99 dl 1.19 *
100 dl 1.105 * <p>The common pool is by default constructed with default
101 jsr166 1.155 * parameters, but these may be controlled by setting three
102 jsr166 1.162 * {@linkplain System#getProperty system properties}:
103     * <ul>
104     * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
105     * - the parallelism level, a non-negative integer
106     * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
107     * - the class name of a {@link ForkJoinWorkerThreadFactory}
108     * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
109     * - the class name of a {@link UncaughtExceptionHandler}
110 dl 1.208 * <li>{@code java.util.concurrent.ForkJoinPool.common.maximumSpares}
111 dl 1.223 * - the maximum number of allowed extra threads to maintain target
112 dl 1.208 * parallelism (default 256).
113 jsr166 1.162 * </ul>
114 dl 1.197 * If a {@link SecurityManager} is present and no factory is
115     * specified, then the default pool uses a factory supplying
116     * threads that have no {@link Permissions} enabled.
117 jsr166 1.165 * The system class loader is used to load these classes.
118 jsr166 1.156 * Upon any error in establishing these settings, default parameters
119 dl 1.160 * are used. It is possible to disable or limit the use of threads in
120     * the common pool by setting the parallelism property to zero, and/or
121 dl 1.193 * using a factory that may return {@code null}. However doing so may
122     * cause unjoined tasks to never be executed.
123 dl 1.105 *
124 jsr166 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
125     * maximum number of running threads to 32767. Attempts to create
126 jsr166 1.11 * pools with greater than the maximum number result in
127 jsr166 1.8 * {@code IllegalArgumentException}.
128 jsr166 1.1 *
129 jsr166 1.11 * <p>This implementation rejects submitted tasks (that is, by throwing
130 dl 1.19 * {@link RejectedExecutionException}) only when the pool is shut down
131 dl 1.20 * or internal resources have been exhausted.
132 jsr166 1.11 *
133 jsr166 1.1 * @since 1.7
134     * @author Doug Lea
135     */
136 jsr166 1.171 @sun.misc.Contended
137 jsr166 1.1 public class ForkJoinPool extends AbstractExecutorService {
138    
139     /*
140 dl 1.14 * Implementation Overview
141     *
142 dl 1.78 * This class and its nested classes provide the main
143     * functionality and control for a set of worker threads:
144 jsr166 1.84 * Submissions from non-FJ threads enter into submission queues.
145     * Workers take these tasks and typically split them into subtasks
146     * that may be stolen by other workers. Preference rules give
147     * first priority to processing tasks from their own queues (LIFO
148     * or FIFO, depending on mode), then to randomized FIFO steals of
149 dl 1.200 * tasks in other queues. This framework began as vehicle for
150     * supporting tree-structured parallelism using work-stealing.
151     * Over time, its scalability advantages led to extensions and
152 dl 1.208 * changes to better support more diverse usage contexts. Because
153     * most internal methods and nested classes are interrelated,
154     * their main rationale and descriptions are presented here;
155     * individual methods and nested classes contain only brief
156     * comments about details.
157 dl 1.78 *
158 jsr166 1.84 * WorkQueues
159 dl 1.78 * ==========
160     *
161     * Most operations occur within work-stealing queues (in nested
162     * class WorkQueue). These are special forms of Deques that
163     * support only three of the four possible end-operations -- push,
164     * pop, and poll (aka steal), under the further constraints that
165     * push and pop are called only from the owning thread (or, as
166     * extended here, under a lock), while poll may be called from
167     * other threads. (If you are unfamiliar with them, you probably
168     * want to read Herlihy and Shavit's book "The Art of
169     * Multiprocessor programming", chapter 16 describing these in
170     * more detail before proceeding.) The main work-stealing queue
171     * design is roughly similar to those in the papers "Dynamic
172     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
173     * (http://research.sun.com/scalable/pubs/index.html) and
174     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
175     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
176 dl 1.200 * The main differences ultimately stem from GC requirements that
177     * we null out taken slots as soon as we can, to maintain as small
178     * a footprint as possible even in programs generating huge
179     * numbers of tasks. To accomplish this, we shift the CAS
180     * arbitrating pop vs poll (steal) from being on the indices
181     * ("base" and "top") to the slots themselves.
182     *
183 dl 1.243 * Adding tasks then takes the form of a classic array push(task)
184     * in a circular buffer:
185     * q.array[q.top++ % length] = task;
186 dl 1.200 *
187     * (The actual code needs to null-check and size-check the array,
188 jsr166 1.247 * uses masking, not mod, for indexing a power-of-two-sized array,
189 dl 1.243 * properly fences accesses, and possibly signals waiting workers
190     * to start scanning -- see below.) Both a successful pop and
191     * poll mainly entail a CAS of a slot from non-null to null.
192 dl 1.200 *
193 jsr166 1.202 * The pop operation (always performed by owner) is:
194 dl 1.243 * if ((the task at top slot is not null) and
195 dl 1.200 * (CAS slot to null))
196     * decrement top and return task;
197     *
198     * And the poll operation (usually by a stealer) is
199 dl 1.243 * if ((the task at base slot is not null) and
200 dl 1.200 * (CAS slot to null))
201     * increment base and return task;
202     *
203 dl 1.243 * There are several variants of each of these; for example most
204 jsr166 1.247 * versions of poll pre-screen the CAS by rechecking that the base
205 dl 1.243 * has not changed since reading the slot, and most methods only
206     * attempt the CAS if base appears not to be equal to top.
207     *
208     * Memory ordering. See "Correct and Efficient Work-Stealing for
209     * Weak Memory Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
210     * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
211     * analysis of memory ordering requirements in work-stealing
212     * algorithms similar to (but different than) the one used here.
213     * Extracting tasks in array slots via (fully fenced) CAS provides
214     * primary synchronization. The base and top indices imprecisely
215     * guide where to extract from. We do not always require strict
216     * orderings of array and index updates, so sometimes let them be
217     * subject to compiler and processor reorderings. However, the
218     * volatile "base" index also serves as a basis for memory
219     * ordering: Slot accesses are preceded by a read of base,
220 jsr166 1.247 * ensuring happens-before ordering with respect to stealers (so
221 dl 1.243 * the slots themselves can be read via plain array reads.) The
222     * only other memory orderings relied on are maintained in the
223     * course of signalling and activation (see below). A check that
224     * base == top indicates (momentary) emptiness, but otherwise may
225     * err on the side of possibly making the queue appear nonempty
226     * when a push, pop, or poll have not fully committed, or making
227     * it appear empty when an update of top has not yet been visibly
228     * written. (Method isEmpty() checks the case of a partially
229 dl 1.211 * completed removal of the last element.) Because of this, the
230     * poll operation, considered individually, is not wait-free. One
231     * thief cannot successfully continue until another in-progress
232 dl 1.243 * one (or, if previously empty, a push) visibly completes.
233     * However, in the aggregate, we ensure at least probabilistic
234     * non-blockingness. If an attempted steal fails, a scanning
235     * thief chooses a different random victim target to try next. So,
236     * in order for one thief to progress, it suffices for any
237 dl 1.205 * in-progress poll or new push on any empty queue to
238     * complete. (This is why we normally use method pollAt and its
239     * variants that try once at the apparent base index, else
240     * consider alternative actions, rather than method poll, which
241     * retries.)
242 dl 1.200 *
243     * This approach also enables support of a user mode in which
244     * local task processing is in FIFO, not LIFO order, simply by
245     * using poll rather than pop. This can be useful in
246     * message-passing frameworks in which tasks are never joined.
247 dl 1.78 *
248     * WorkQueues are also used in a similar way for tasks submitted
249     * to the pool. We cannot mix these tasks in the same queues used
250 dl 1.200 * by workers. Instead, we randomly associate submission queues
251 dl 1.83 * with submitting threads, using a form of hashing. The
252 dl 1.139 * ThreadLocalRandom probe value serves as a hash code for
253     * choosing existing queues, and may be randomly repositioned upon
254     * contention with other submitters. In essence, submitters act
255     * like workers except that they are restricted to executing local
256     * tasks that they submitted (or in the case of CountedCompleters,
257 dl 1.200 * others with the same root task). Insertion of tasks in shared
258 dl 1.243 * mode requires a lock but we use only a simple spinlock (using
259     * field qlock), because submitters encountering a busy queue move
260     * on to try or create other queues -- they block only when
261     * creating and registering new queues. Because it is used only as
262     * a spinlock, unlocking requires only a "releasing" store (using
263     * putOrderedInt). The qlock is also used during termination
264 jsr166 1.247 * detection, in which case it is forced to a negative
265 jsr166 1.269 * non-lockable value.
266 dl 1.78 *
267 jsr166 1.84 * Management
268 dl 1.78 * ==========
269 dl 1.52 *
270     * The main throughput advantages of work-stealing stem from
271     * decentralized control -- workers mostly take tasks from
272 dl 1.200 * themselves or each other, at rates that can exceed a billion
273     * per second. The pool itself creates, activates (enables
274     * scanning for and running tasks), deactivates, blocks, and
275     * terminates threads, all with minimal central information.
276     * There are only a few properties that we can globally track or
277     * maintain, so we pack them into a small number of variables,
278     * often maintaining atomicity without blocking or locking.
279     * Nearly all essentially atomic control state is held in two
280     * volatile variables that are by far most often read (not
281 dl 1.215 * written) as status and consistency checks. (Also, field
282     * "config" holds unchanging configuration state.)
283 dl 1.78 *
284 dl 1.200 * Field "ctl" contains 64 bits holding information needed to
285     * atomically decide to add, inactivate, enqueue (on an event
286 dl 1.78 * queue), dequeue, and/or re-activate workers. To enable this
287     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
288     * far in excess of normal operating range) to allow ids, counts,
289     * and their negations (used for thresholding) to fit into 16bit
290 dl 1.215 * subfields.
291     *
292 dl 1.294 * Field "runState" holds lifetime status, atomically and
293     * monotonically setting STARTED, SHUTDOWN, STOP, and finally
294     * TERMINATED bits.
295 dl 1.262 *
296     * Field "auxState" is a ReentrantLock subclass that also
297     * opportunistically holds some other bookkeeping fields accessed
298     * only when locked. It is mainly used to lock (infrequent)
299 dl 1.294 * updates to workQueues. The auxState instance is itself lazily
300     * constructed (see tryInitialize), requiring a double-check-style
301     * bootstrapping use of field runState, and locking a private
302     * static.
303 dl 1.258 *
304     * Field "workQueues" holds references to WorkQueues. It is
305 dl 1.262 * updated (only during worker creation and termination) under the
306     * lock, but is otherwise concurrently readable, and accessed
307     * directly. We also ensure that reads of the array reference
308     * itself never become too stale (for example, re-reading before
309     * each scan). To simplify index-based operations, the array size
310     * is always a power of two, and all readers must tolerate null
311     * slots. Worker queues are at odd indices. Shared (submission)
312     * queues are at even indices, up to a maximum of 64 slots, to
313     * limit growth even if array needs to expand to add more
314     * workers. Grouping them together in this way simplifies and
315     * speeds up task scanning.
316 dl 1.86 *
317     * All worker thread creation is on-demand, triggered by task
318     * submissions, replacement of terminated workers, and/or
319 dl 1.78 * compensation for blocked workers. However, all other support
320     * code is set up to work with other policies. To ensure that we
321 jsr166 1.264 * do not hold on to worker references that would prevent GC, all
322 dl 1.78 * accesses to workQueues are via indices into the workQueues
323     * array (which is one source of some of the messy code
324     * constructions here). In essence, the workQueues array serves as
325 dl 1.200 * a weak reference mechanism. Thus for example the stack top
326     * subfield of ctl stores indices, not references.
327     *
328     * Queuing Idle Workers. Unlike HPC work-stealing frameworks, we
329     * cannot let workers spin indefinitely scanning for tasks when
330     * none can be found immediately, and we cannot start/resume
331     * workers unless there appear to be tasks available. On the
332     * other hand, we must quickly prod them into action when new
333     * tasks are submitted or generated. In many usages, ramp-up time
334     * to activate workers is the main limiting factor in overall
335     * performance, which is compounded at program start-up by JIT
336     * compilation and allocation. So we streamline this as much as
337     * possible.
338     *
339     * The "ctl" field atomically maintains active and total worker
340     * counts as well as a queue to place waiting threads so they can
341     * be located for signalling. Active counts also play the role of
342     * quiescence indicators, so are decremented when workers believe
343     * that there are no more tasks to execute. The "queue" is
344     * actually a form of Treiber stack. A stack is ideal for
345     * activating threads in most-recently used order. This improves
346     * performance and locality, outweighing the disadvantages of
347     * being prone to contention and inability to release a worker
348 dl 1.243 * unless it is topmost on stack. We block/unblock workers after
349 dl 1.200 * pushing on the idle worker stack (represented by the lower
350     * 32bit subfield of ctl) when they cannot find work. The top
351     * stack state holds the value of the "scanState" field of the
352     * worker: its index and status, plus a version counter that, in
353     * addition to the count subfields (also serving as version
354     * stamps) provide protection against Treiber stack ABA effects.
355     *
356     * Creating workers. To create a worker, we pre-increment total
357     * count (serving as a reservation), and attempt to construct a
358     * ForkJoinWorkerThread via its factory. Upon construction, the
359     * new thread invokes registerWorker, where it constructs a
360     * WorkQueue and is assigned an index in the workQueues array
361 jsr166 1.266 * (expanding the array if necessary). The thread is then started.
362     * Upon any exception across these steps, or null return from
363     * factory, deregisterWorker adjusts counts and records
364 dl 1.200 * accordingly. If a null return, the pool continues running with
365     * fewer than the target number workers. If exceptional, the
366     * exception is propagated, generally to some external caller.
367     * Worker index assignment avoids the bias in scanning that would
368     * occur if entries were sequentially packed starting at the front
369     * of the workQueues array. We treat the array as a simple
370     * power-of-two hash table, expanding as needed. The seedIndex
371     * increment ensures no collisions until a resize is needed or a
372     * worker is deregistered and replaced, and thereafter keeps
373 jsr166 1.202 * probability of collision low. We cannot use
374 dl 1.200 * ThreadLocalRandom.getProbe() for similar purposes here because
375     * the thread has not started yet, but do so for creating
376 dl 1.243 * submission queues for existing external threads (see
377     * externalPush).
378     *
379     * WorkQueue field scanState is used by both workers and the pool
380     * to manage and track whether a worker is UNSIGNALLED (possibly
381     * blocked waiting for a signal). When a worker is inactivated,
382     * its scanState field is set, and is prevented from executing
383     * tasks, even though it must scan once for them to avoid queuing
384     * races. Note that scanState updates lag queue CAS releases so
385     * usage requires care. When queued, the lower 16 bits of
386     * scanState must hold its pool index. So we place the index there
387     * upon initialization (see registerWorker) and otherwise keep it
388     * there or restore it when necessary.
389     *
390     * The ctl field also serves as the basis for memory
391     * synchronization surrounding activation. This uses a more
392     * efficient version of a Dekker-like rule that task producers and
393     * consumers sync with each other by both writing/CASing ctl (even
394 dl 1.253 * if to its current value). This would be extremely costly. So
395     * we relax it in several ways: (1) Producers only signal when
396     * their queue is empty. Other workers propagate this signal (in
397     * method scan) when they find tasks. (2) Workers only enqueue
398     * after scanning (see below) and not finding any tasks. (3)
399     * Rather than CASing ctl to its current value in the common case
400     * where no action is required, we reduce write contention by
401     * equivalently prefacing signalWork when called by an external
402     * task producer using a memory access with full-volatile
403 dl 1.256 * semantics or a "fullFence". (4) For internal task producers we
404     * rely on the fact that even if no other workers awaken, the
405     * producer itself will eventually see the task and execute it.
406 dl 1.243 *
407 jsr166 1.249 * Almost always, too many signals are issued. A task producer
408 dl 1.243 * cannot in general tell if some existing worker is in the midst
409     * of finishing one task (or already scanning) and ready to take
410     * another without being signalled. So the producer might instead
411     * activate a different worker that does not find any work, and
412     * then inactivates. This scarcely matters in steady-state
413     * computations involving all workers, but can create contention
414 jsr166 1.247 * and bookkeeping bottlenecks during ramp-up, ramp-down, and small
415 dl 1.243 * computations involving only a few workers.
416     *
417     * Scanning. Method scan() performs top-level scanning for tasks.
418     * Each scan traverses (and tries to poll from) each queue in
419     * pseudorandom permutation order by randomly selecting an origin
420     * index and a step value. (The pseudorandom generator need not
421     * have high-quality statistical properties in the long term, but
422     * just within computations; We use 64bit and 32bit Marsaglia
423     * XorShifts, which are cheap and suffice here.) Scanning also
424     * employs contention reduction: When scanning workers fail a CAS
425     * polling for work, they soon restart with a different
426     * pseudorandom scan order (thus likely retrying at different
427     * intervals). This improves throughput when many threads are
428     * trying to take tasks from few queues. Scans do not otherwise
429     * explicitly take into account core affinities, loads, cache
430     * localities, etc, However, they do exploit temporal locality
431 dl 1.253 * (which usually approximates these) by preferring to re-poll (up
432     * to POLL_LIMIT times) from the same queue after a successful
433     * poll before trying others. Restricted forms of scanning occur
434     * in methods helpComplete and findNonEmptyStealQueue, and take
435     * similar but simpler forms.
436 dl 1.200 *
437 jsr166 1.202 * Deactivation and waiting. Queuing encounters several intrinsic
438 jsr166 1.267 * races; most notably that an inactivating scanning worker can
439 dl 1.243 * miss seeing a task produced during a scan. So when a worker
440     * cannot find a task to steal, it inactivates and enqueues, and
441     * then rescans to ensure that it didn't miss one, reactivating
442     * upon seeing one with probability approximately proportional to
443     * probability of a miss. (In most cases, the worker will be
444     * signalled before self-signalling, avoiding cascades of multiple
445     * signals for the same task).
446     *
447     * Workers block (in method awaitWork) using park/unpark;
448     * advertising the need for signallers to unpark by setting their
449     * "parker" fields.
450 dl 1.52 *
451     * Trimming workers. To release resources after periods of lack of
452     * use, a worker starting to wait when the pool is quiescent will
453 dl 1.208 * time out and terminate (see awaitWork) if the pool has remained
454 jsr166 1.268 * quiescent for period given by IDLE_TIMEOUT_MS, increasing the
455     * period as the number of threads decreases, eventually removing
456     * all workers.
457 dl 1.52 *
458 dl 1.210 * Shutdown and Termination. A call to shutdownNow invokes
459     * tryTerminate to atomically set a runState bit. The calling
460     * thread, as well as every other worker thereafter terminating,
461     * helps terminate others by setting their (qlock) status,
462     * cancelling their unprocessed tasks, and waking them up, doing
463 dl 1.294 * so repeatedly until stable. Calls to non-abrupt shutdown()
464     * preface this by checking whether termination should
465     * commence. This relies primarily on the active count bits of
466     * "ctl" maintaining consensus -- tryTerminate is called from
467     * awaitWork whenever quiescent. However, external submitters do
468     * not take part in this consensus. So, tryTerminate sweeps
469     * through queues (until stable) to ensure lack of in-flight
470     * submissions and workers about to process them before triggering
471     * the "STOP" phase of termination. (Note: there is an intrinsic
472     * conflict if helpQuiescePool is called when shutdown is
473     * enabled. Both wait for quiescence, but tryTerminate is biased
474     * to not trigger until helpQuiescePool completes.)
475 dl 1.211 *
476 jsr166 1.84 * Joining Tasks
477     * =============
478 dl 1.78 *
479     * Any of several actions may be taken when one worker is waiting
480 jsr166 1.84 * to join a task stolen (or always held) by another. Because we
481 dl 1.78 * are multiplexing many tasks on to a pool of workers, we can't
482     * just let them block (as in Thread.join). We also cannot just
483     * reassign the joiner's run-time stack with another and replace
484     * it later, which would be a form of "continuation", that even if
485 dl 1.200 * possible is not necessarily a good idea since we may need both
486     * an unblocked task and its continuation to progress. Instead we
487     * combine two tactics:
488 dl 1.19 *
489     * Helping: Arranging for the joiner to execute some task that it
490 dl 1.78 * would be running if the steal had not occurred.
491 dl 1.19 *
492     * Compensating: Unless there are already enough live threads,
493 dl 1.78 * method tryCompensate() may create or re-activate a spare
494     * thread to compensate for blocked joiners until they unblock.
495     *
496 dl 1.105 * A third form (implemented in tryRemoveAndExec) amounts to
497     * helping a hypothetical compensator: If we can readily tell that
498     * a possible action of a compensator is to steal and execute the
499     * task being joined, the joining thread can do so directly,
500     * without the need for a compensation thread (although at the
501     * expense of larger run-time stacks, but the tradeoff is
502     * typically worthwhile).
503 dl 1.52 *
504     * The ManagedBlocker extension API can't use helping so relies
505     * only on compensation in method awaitBlocker.
506 dl 1.19 *
507 dl 1.200 * The algorithm in helpStealer entails a form of "linear
508     * helping". Each worker records (in field currentSteal) the most
509     * recent task it stole from some other worker (or a submission).
510     * It also records (in field currentJoin) the task it is currently
511     * actively joining. Method helpStealer uses these markers to try
512     * to find a worker to help (i.e., steal back a task from and
513     * execute it) that could hasten completion of the actively joined
514     * task. Thus, the joiner executes a task that would be on its
515     * own local deque had the to-be-joined task not been stolen. This
516     * is a conservative variant of the approach described in Wagner &
517 dl 1.78 * Calder "Leapfrogging: a portable technique for implementing
518     * efficient futures" SIGPLAN Notices, 1993
519     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
520     * that: (1) We only maintain dependency links across workers upon
521     * steals, rather than use per-task bookkeeping. This sometimes
522 dl 1.90 * requires a linear scan of workQueues array to locate stealers,
523     * but often doesn't because stealers leave hints (that may become
524 dl 1.112 * stale/wrong) of where to locate them. It is only a hint
525     * because a worker might have had multiple steals and the hint
526     * records only one of them (usually the most current). Hinting
527     * isolates cost to when it is needed, rather than adding to
528     * per-task overhead. (2) It is "shallow", ignoring nesting and
529     * potentially cyclic mutual steals. (3) It is intentionally
530 dl 1.78 * racy: field currentJoin is updated only while actively joining,
531     * which means that we miss links in the chain during long-lived
532     * tasks, GC stalls etc (which is OK since blocking in such cases
533     * is usually a good idea). (4) We bound the number of attempts
534 dl 1.200 * to find work using checksums and fall back to suspending the
535 dl 1.90 * worker and if necessary replacing it with another.
536 dl 1.78 *
537 dl 1.200 * Helping actions for CountedCompleters do not require tracking
538     * currentJoins: Method helpComplete takes and executes any task
539 jsr166 1.202 * with the same root as the task being waited on (preferring
540     * local pops to non-local polls). However, this still entails
541     * some traversal of completer chains, so is less efficient than
542     * using CountedCompleters without explicit joins.
543 dl 1.105 *
544 dl 1.200 * Compensation does not aim to keep exactly the target
545     * parallelism number of unblocked threads running at any given
546     * time. Some previous versions of this class employed immediate
547     * compensations for any blocked join. However, in practice, the
548     * vast majority of blockages are transient byproducts of GC and
549     * other JVM or OS activities that are made worse by replacement.
550     * Currently, compensation is attempted only after validating that
551     * all purportedly active threads are processing tasks by checking
552     * field WorkQueue.scanState, which eliminates most false
553     * positives. Also, compensation is bypassed (tolerating fewer
554     * threads) in the most common case in which it is rarely
555     * beneficial: when a worker with an empty queue (thus no
556     * continuation tasks) blocks on a join and there still remain
557 dl 1.208 * enough threads to ensure liveness.
558 dl 1.105 *
559 dl 1.243 * Spare threads are removed as soon as they notice that the
560     * target parallelism level has been exceeded, in method
561     * tryDropSpare. (Method scan arranges returns for rechecks upon
562 jsr166 1.247 * each probe via the "bound" parameter.)
563 dl 1.243 *
564 dl 1.211 * The compensation mechanism may be bounded. Bounds for the
565 jsr166 1.273 * commonPool (see COMMON_MAX_SPARES) better enable JVMs to cope
566 dl 1.208 * with programming errors and abuse before running out of
567     * resources to do so. In other cases, users may supply factories
568     * that limit thread construction. The effects of bounding in this
569     * pool (like all others) is imprecise. Total worker counts are
570     * decremented when threads deregister, not when they exit and
571     * resources are reclaimed by the JVM and OS. So the number of
572     * simultaneously live threads may transiently exceed bounds.
573 dl 1.205 *
574 dl 1.105 * Common Pool
575     * ===========
576     *
577 jsr166 1.175 * The static common pool always exists after static
578 dl 1.105 * initialization. Since it (or any other created pool) need
579     * never be used, we minimize initial construction overhead and
580     * footprint to the setup of about a dozen fields, with no nested
581     * allocation. Most bootstrapping occurs within method
582 dl 1.200 * externalSubmit during the first submission to the pool.
583 dl 1.105 *
584     * When external threads submit to the common pool, they can
585 dl 1.200 * perform subtask processing (see externalHelpComplete and
586     * related methods) upon joins. This caller-helps policy makes it
587     * sensible to set common pool parallelism level to one (or more)
588     * less than the total number of available cores, or even zero for
589     * pure caller-runs. We do not need to record whether external
590     * submissions are to the common pool -- if not, external help
591     * methods return quickly. These submitters would otherwise be
592     * blocked waiting for completion, so the extra effort (with
593     * liberally sprinkled task status checks) in inapplicable cases
594     * amounts to an odd form of limited spin-wait before blocking in
595     * ForkJoinTask.join.
596 dl 1.105 *
597 dl 1.197 * As a more appropriate default in managed environments, unless
598     * overridden by system properties, we use workers of subclass
599     * InnocuousForkJoinWorkerThread when there is a SecurityManager
600     * present. These workers have no permissions set, do not belong
601     * to any user-defined ThreadGroup, and erase all ThreadLocals
602 dl 1.200 * after executing any top-level task (see WorkQueue.runTask).
603     * The associated mechanics (mainly in ForkJoinWorkerThread) may
604     * be JVM-dependent and must access particular Thread class fields
605     * to achieve this effect.
606 jsr166 1.198 *
607 dl 1.105 * Style notes
608     * ===========
609     *
610 dl 1.200 * Memory ordering relies mainly on Unsafe intrinsics that carry
611     * the further responsibility of explicitly performing null- and
612     * bounds- checks otherwise carried out implicitly by JVMs. This
613     * can be awkward and ugly, but also reflects the need to control
614     * outcomes across the unusual cases that arise in very racy code
615     * with very few invariants. So these explicit checks would exist
616     * in some form anyway. All fields are read into locals before
617     * use, and null-checked if they are references. This is usually
618     * done in a "C"-like style of listing declarations at the heads
619     * of methods or blocks, and using inline assignments on first
620     * encounter. Array bounds-checks are usually performed by
621     * masking with array.length-1, which relies on the invariant that
622     * these arrays are created with positive lengths, which is itself
623     * paranoically checked. Nearly all explicit checks lead to
624     * bypass/return, not exception throws, because they may
625     * legitimately arise due to cancellation/revocation during
626     * shutdown.
627     *
628 dl 1.105 * There is a lot of representation-level coupling among classes
629     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
630     * fields of WorkQueue maintain data structures managed by
631     * ForkJoinPool, so are directly accessed. There is little point
632     * trying to reduce this, since any associated future changes in
633     * representations will need to be accompanied by algorithmic
634     * changes anyway. Several methods intrinsically sprawl because
635 dl 1.200 * they must accumulate sets of consistent reads of fields held in
636     * local variables. There are also other coding oddities
637     * (including several unnecessary-looking hoisted null checks)
638     * that help some methods perform reasonably even when interpreted
639     * (not compiled).
640 dl 1.52 *
641 dl 1.208 * The order of declarations in this file is (with a few exceptions):
642 dl 1.86 * (1) Static utility functions
643     * (2) Nested (static) classes
644     * (3) Static fields
645     * (4) Fields, along with constants used when unpacking some of them
646     * (5) Internal control methods
647     * (6) Callbacks and other support for ForkJoinTask methods
648     * (7) Exported methods
649     * (8) Static block initializing statics in minimally dependent order
650     */
651    
652     // Static utilities
653    
654     /**
655     * If there is a security manager, makes sure caller has
656     * permission to modify threads.
657 jsr166 1.1 */
658 dl 1.86 private static void checkPermission() {
659     SecurityManager security = System.getSecurityManager();
660     if (security != null)
661     security.checkPermission(modifyThreadPermission);
662     }
663    
664     // Nested classes
665 jsr166 1.1
666     /**
667 jsr166 1.8 * Factory for creating new {@link ForkJoinWorkerThread}s.
668     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
669     * for {@code ForkJoinWorkerThread} subclasses that extend base
670     * functionality or initialize threads with different contexts.
671 jsr166 1.1 */
672     public static interface ForkJoinWorkerThreadFactory {
673     /**
674     * Returns a new worker thread operating in the given pool.
675     *
676     * @param pool the pool this thread works in
677 jsr166 1.192 * @return the new worker thread
678 jsr166 1.11 * @throws NullPointerException if the pool is null
679 jsr166 1.1 */
680     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
681     }
682    
683     /**
684     * Default ForkJoinWorkerThreadFactory implementation; creates a
685     * new ForkJoinWorkerThread.
686     */
687 jsr166 1.278 private static final class DefaultForkJoinWorkerThreadFactory
688 jsr166 1.1 implements ForkJoinWorkerThreadFactory {
689 dl 1.112 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
690 dl 1.14 return new ForkJoinWorkerThread(pool);
691 jsr166 1.1 }
692     }
693    
694     /**
695 dl 1.86 * Class for artificial tasks that are used to replace the target
696     * of local joins if they are removed from an interior queue slot
697     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
698     * actually do anything beyond having a unique identity.
699 jsr166 1.1 */
700 jsr166 1.278 private static final class EmptyTask extends ForkJoinTask<Void> {
701 dl 1.105 private static final long serialVersionUID = -7721805057305804111L;
702 dl 1.86 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
703     public final Void getRawResult() { return null; }
704     public final void setRawResult(Void x) {}
705     public final boolean exec() { return true; }
706 jsr166 1.1 }
707    
708 dl 1.262 /**
709     * Additional fields and lock created upon initialization.
710     */
711 jsr166 1.278 private static final class AuxState extends ReentrantLock {
712 dl 1.262 private static final long serialVersionUID = -6001602636862214147L;
713     volatile long stealCount; // cumulative steal count
714     long indexSeed; // index bits for registerWorker
715     AuxState() {}
716     }
717    
718 dl 1.200 // Constants shared across ForkJoinPool and WorkQueue
719    
720     // Bounds
721     static final int SMASK = 0xffff; // short bits == max index
722     static final int MAX_CAP = 0x7fff; // max #workers - 1
723     static final int EVENMASK = 0xfffe; // even short bits
724     static final int SQMASK = 0x007e; // max 64 (even) slots
725    
726     // Masks and units for WorkQueue.scanState and ctl sp subfield
727 dl 1.243 static final int UNSIGNALLED = 1 << 31; // must be negative
728 dl 1.211 static final int SS_SEQ = 1 << 16; // version count
729 dl 1.200
730     // Mode bits for ForkJoinPool.config and WorkQueue.config
731 dl 1.211 static final int MODE_MASK = 0xffff << 16; // top half of int
732 dl 1.243 static final int SPARE_WORKER = 1 << 17; // set if tc > 0 on creation
733     static final int UNREGISTERED = 1 << 18; // to skip some of deregister
734     static final int FIFO_QUEUE = 1 << 31; // must be negative
735     static final int LIFO_QUEUE = 0; // for clarity
736     static final int IS_OWNED = 1; // low bit 0 if shared
737 dl 1.225
738 jsr166 1.1 /**
739 dl 1.253 * The maximum number of task executions from the same queue
740     * before checking other queues, bounding unfairness and impact of
741     * infinite user task recursion. Must be a power of two minus 1.
742     */
743     static final int POLL_LIMIT = (1 << 10) - 1;
744    
745     /**
746 dl 1.78 * Queues supporting work-stealing as well as external task
747 jsr166 1.202 * submission. See above for descriptions and algorithms.
748 dl 1.78 * Performance on most platforms is very sensitive to placement of
749     * instances of both WorkQueues and their arrays -- we absolutely
750     * do not want multiple WorkQueue instances or multiple queue
751 dl 1.200 * arrays sharing cache lines. The @Contended annotation alerts
752     * JVMs to try to keep instances apart.
753 dl 1.78 */
754 jsr166 1.171 @sun.misc.Contended
755 dl 1.78 static final class WorkQueue {
756 dl 1.200
757 dl 1.78 /**
758     * Capacity of work-stealing queue array upon initialization.
759 dl 1.90 * Must be a power of two; at least 4, but should be larger to
760     * reduce or eliminate cacheline sharing among queues.
761     * Currently, it is much larger, as a partial workaround for
762     * the fact that JVMs often place arrays in locations that
763     * share GC bookkeeping (especially cardmarks) such that
764     * per-write accesses encounter serious memory contention.
765 dl 1.78 */
766 dl 1.90 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
767 dl 1.78
768     /**
769     * Maximum size for queue arrays. Must be a power of two less
770     * than or equal to 1 << (31 - width of array entry) to ensure
771     * lack of wraparound of index calculations, but defined to a
772     * value a bit less than this to help users trap runaway
773     * programs before saturating systems.
774     */
775     static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
776    
777 dl 1.200 // Instance fields
778 dl 1.255
779 dl 1.243 volatile int scanState; // versioned, negative if inactive
780 dl 1.200 int stackPred; // pool stack (ctl) predecessor
781 dl 1.178 int nsteals; // number of steals
782 dl 1.200 int hint; // randomization and stealer index hint
783     int config; // pool index and mode
784     volatile int qlock; // 1: locked, < 0: terminate; else 0
785 dl 1.78 volatile int base; // index of next slot for poll
786     int top; // index of next slot for push
787     ForkJoinTask<?>[] array; // the elements (initially unallocated)
788 dl 1.90 final ForkJoinPool pool; // the containing pool (may be null)
789 dl 1.78 final ForkJoinWorkerThread owner; // owning thread or null if shared
790     volatile Thread parker; // == owner during call to park; else null
791 dl 1.95 volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
792 dl 1.255 @sun.misc.Contended("group2") // separate from other fields
793     volatile ForkJoinTask<?> currentSteal; // nonnull when running some task
794 dl 1.112
795 dl 1.200 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner) {
796 dl 1.90 this.pool = pool;
797 dl 1.78 this.owner = owner;
798 dl 1.115 // Place indices in the center of array (that is not yet allocated)
799 dl 1.78 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
800     }
801    
802     /**
803 jsr166 1.220 * Returns an exportable index (used by ForkJoinWorkerThread).
804 dl 1.200 */
805     final int getPoolIndex() {
806     return (config & 0xffff) >>> 1; // ignore odd/even tag bit
807     }
808    
809     /**
810 dl 1.115 * Returns the approximate number of tasks in the queue.
811     */
812     final int queueSize() {
813 dl 1.243 int n = base - top; // read base first
814 dl 1.115 return (n >= 0) ? 0 : -n; // ignore transient negative
815     }
816    
817 jsr166 1.180 /**
818 dl 1.115 * Provides a more accurate estimate of whether this queue has
819     * any tasks than does queueSize, by checking whether a
820     * near-empty queue has at least one unclaimed task.
821     */
822     final boolean isEmpty() {
823 dl 1.225 ForkJoinTask<?>[] a; int n, al, s;
824 dl 1.243 return ((n = base - (s = top)) >= 0 || // possibly one task
825     (n == -1 && ((a = array) == null ||
826     (al = a.length) == 0 ||
827     a[(al - 1) & (s - 1)] == null)));
828 dl 1.115 }
829    
830     /**
831 dl 1.256 * Pushes a task. Call only by owner in unshared queues.
832 dl 1.78 *
833     * @param task the task. Caller must ensure non-null.
834 jsr166 1.146 * @throws RejectedExecutionException if array cannot be resized
835 dl 1.78 */
836 dl 1.90 final void push(ForkJoinTask<?> task) {
837 dl 1.288 U.storeFence(); // ensure safe publication
838 dl 1.292 int s = top, al, d; ForkJoinTask<?>[] a;
839 dl 1.243 if ((a = array) != null && (al = a.length) > 0) {
840     a[(al - 1) & s] = task; // relaxed writes OK
841     top = s + 1;
842     ForkJoinPool p = pool;
843 dl 1.292 if ((d = base - s) == 0 && p != null) {
844 dl 1.284 U.fullFence();
845 dl 1.253 p.signalWork();
846 dl 1.284 }
847 dl 1.253 else if (al + d == 1)
848 dl 1.243 growArray();
849 dl 1.78 }
850     }
851    
852 dl 1.178 /**
853 dl 1.112 * Initializes or doubles the capacity of array. Call either
854     * by owner or with lock held -- it is OK for base, but not
855     * top, to move while resizings are in progress.
856     */
857     final ForkJoinTask<?>[] growArray() {
858     ForkJoinTask<?>[] oldA = array;
859     int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
860 dl 1.225 if (size < INITIAL_QUEUE_CAPACITY || size > MAXIMUM_QUEUE_CAPACITY)
861 dl 1.112 throw new RejectedExecutionException("Queue capacity exceeded");
862     int oldMask, t, b;
863     ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
864 dl 1.225 if (oldA != null && (oldMask = oldA.length - 1) > 0 &&
865 dl 1.112 (t = top) - (b = base) > 0) {
866     int mask = size - 1;
867 dl 1.200 do { // emulate poll from old array, push to new array
868 dl 1.256 int index = b & oldMask;
869     long offset = ((long)index << ASHIFT) + ABASE;
870 dl 1.243 ForkJoinTask<?> x = (ForkJoinTask<?>)
871     U.getObjectVolatile(oldA, offset);
872     if (x != null &&
873     U.compareAndSwapObject(oldA, offset, x, null))
874     a[b & mask] = x;
875 dl 1.112 } while (++b != t);
876 dl 1.243 U.storeFence();
877 dl 1.78 }
878 dl 1.112 return a;
879 dl 1.78 }
880    
881     /**
882 dl 1.90 * Takes next task, if one exists, in LIFO order. Call only
883 dl 1.102 * by owner in unshared queues.
884 dl 1.90 */
885     final ForkJoinTask<?> pop() {
886 dl 1.243 int b = base, s = top, al, i; ForkJoinTask<?>[] a;
887 dl 1.256 if ((a = array) != null && b != s && (al = a.length) > 0) {
888     int index = (al - 1) & --s;
889     long offset = ((long)index << ASHIFT) + ABASE;
890 dl 1.262 ForkJoinTask<?> t = (ForkJoinTask<?>)
891     U.getObject(a, offset);
892     if (t != null &&
893     U.compareAndSwapObject(a, offset, t, null)) {
894 dl 1.256 top = s;
895 dl 1.243 return t;
896 dl 1.90 }
897     }
898     return null;
899     }
900    
901     /**
902     * Takes a task in FIFO order if b is base of queue and a task
903     * can be claimed without contention. Specialized versions
904 dl 1.200 * appear in ForkJoinPool methods scan and helpStealer.
905 dl 1.78 */
906 dl 1.90 final ForkJoinTask<?> pollAt(int b) {
907 dl 1.243 ForkJoinTask<?>[] a; int al;
908     if ((a = array) != null && (al = a.length) > 0) {
909 dl 1.256 int index = (al - 1) & b;
910     long offset = ((long)index << ASHIFT) + ABASE;
911 dl 1.243 ForkJoinTask<?> t = (ForkJoinTask<?>)
912     U.getObjectVolatile(a, offset);
913     if (t != null && b++ == base &&
914     U.compareAndSwapObject(a, offset, t, null)) {
915     base = b;
916 dl 1.78 return t;
917     }
918     }
919     return null;
920     }
921    
922     /**
923 dl 1.90 * Takes next task, if one exists, in FIFO order.
924 dl 1.78 */
925 dl 1.90 final ForkJoinTask<?> poll() {
926 dl 1.243 for (;;) {
927     int b = base, s = top, d, al; ForkJoinTask<?>[] a;
928     if ((a = array) != null && (d = b - s) < 0 &&
929     (al = a.length) > 0) {
930 dl 1.256 int index = (al - 1) & b;
931     long offset = ((long)index << ASHIFT) + ABASE;
932 dl 1.243 ForkJoinTask<?> t = (ForkJoinTask<?>)
933     U.getObjectVolatile(a, offset);
934     if (b++ == base) {
935     if (t != null) {
936     if (U.compareAndSwapObject(a, offset, t, null)) {
937     base = b;
938     return t;
939     }
940 dl 1.200 }
941 dl 1.243 else if (d == -1)
942     break; // now empty
943 dl 1.78 }
944 dl 1.90 }
945 dl 1.243 else
946     break;
947 dl 1.78 }
948     return null;
949     }
950    
951     /**
952     * Takes next task, if one exists, in order specified by mode.
953     */
954     final ForkJoinTask<?> nextLocalTask() {
955 dl 1.243 return (config < 0) ? poll() : pop();
956 dl 1.78 }
957    
958     /**
959     * Returns next task, if one exists, in order specified by mode.
960     */
961     final ForkJoinTask<?> peek() {
962 dl 1.292 int al; ForkJoinTask<?>[] a;
963 dl 1.243 return ((a = array) != null && (al = a.length) > 0) ?
964 dl 1.292 a[(al - 1) & (config < 0 ? base : top - 1)] : null;
965 dl 1.78 }
966    
967     /**
968     * Pops the given task only if it is at the current top.
969 jsr166 1.251 */
970 dl 1.243 final boolean tryUnpush(ForkJoinTask<?> task) {
971 dl 1.256 int b = base, s = top, al; ForkJoinTask<?>[] a;
972     if ((a = array) != null && b != s && (al = a.length) > 0) {
973     int index = (al - 1) & --s;
974     long offset = ((long)index << ASHIFT) + ABASE;
975     if (U.compareAndSwapObject(a, offset, task, null)) {
976 dl 1.243 top = s;
977 dl 1.224 return true;
978     }
979 dl 1.78 }
980     return false;
981     }
982    
983     /**
984 dl 1.256 * Shared version of push. Fails if already locked.
985     *
986 dl 1.282 * @return status: > 0 locked, 0 possibly was empty, < 0 was nonempty
987 dl 1.256 */
988     final int sharedPush(ForkJoinTask<?> task) {
989     int stat;
990     if (U.compareAndSwapInt(this, QLOCK, 0, 1)) {
991     int b = base, s = top, al, d; ForkJoinTask<?>[] a;
992     if ((a = array) != null && (al = a.length) > 0 &&
993     al - 1 + (d = b - s) > 0) {
994     a[(al - 1) & s] = task;
995     top = s + 1; // relaxed writes OK here
996 dl 1.282 qlock = 0;
997 dl 1.284 stat = (d < 0 && b == base) ? d : 0;
998 dl 1.256 }
999     else {
1000     growAndSharedPush(task);
1001     stat = 0;
1002     }
1003     }
1004     else
1005     stat = 1;
1006     return stat;
1007     }
1008    
1009 jsr166 1.290 /**
1010 dl 1.256 * Helper for sharedPush; called only when locked and resize
1011     * needed.
1012     */
1013     private void growAndSharedPush(ForkJoinTask<?> task) {
1014     try {
1015     growArray();
1016     int s = top, al; ForkJoinTask<?>[] a;
1017     if ((a = array) != null && (al = a.length) > 0) {
1018     a[(al - 1) & s] = task;
1019     top = s + 1;
1020     }
1021     } finally {
1022     qlock = 0;
1023     }
1024     }
1025    
1026     /**
1027 jsr166 1.279 * Shared version of pop.
1028 jsr166 1.247 */
1029 dl 1.243 final boolean trySharedUnpush(ForkJoinTask<?> task) {
1030     boolean popped = false;
1031 jsr166 1.271 int s = top - 1, al; ForkJoinTask<?>[] a;
1032 dl 1.243 if ((a = array) != null && (al = a.length) > 0) {
1033 dl 1.256 int index = (al - 1) & s;
1034     long offset = ((long)index << ASHIFT) + ABASE;
1035 jsr166 1.271 ForkJoinTask<?> t = (ForkJoinTask<?>) U.getObject(a, offset);
1036 dl 1.256 if (t == task &&
1037 dl 1.243 U.compareAndSwapInt(this, QLOCK, 0, 1)) {
1038     if (U.compareAndSwapObject(a, offset, task, null)) {
1039     popped = true;
1040     top = s;
1041     }
1042     U.putOrderedInt(this, QLOCK, 0);
1043     }
1044     }
1045     return popped;
1046     }
1047    
1048     /**
1049 jsr166 1.84 * Removes and cancels all known tasks, ignoring any exceptions.
1050 dl 1.78 */
1051     final void cancelAll() {
1052 dl 1.200 ForkJoinTask<?> t;
1053     if ((t = currentJoin) != null) {
1054     currentJoin = null;
1055     ForkJoinTask.cancelIgnoringExceptions(t);
1056     }
1057     if ((t = currentSteal) != null) {
1058     currentSteal = null;
1059     ForkJoinTask.cancelIgnoringExceptions(t);
1060     }
1061     while ((t = poll()) != null)
1062 dl 1.78 ForkJoinTask.cancelIgnoringExceptions(t);
1063     }
1064    
1065 dl 1.104 // Specialized execution methods
1066 dl 1.78
1067     /**
1068 jsr166 1.254 * Pops and executes up to POLL_LIMIT tasks or until empty.
1069 dl 1.253 */
1070     final void localPopAndExec() {
1071     for (int nexec = 0;;) {
1072     int b = base, s = top, al; ForkJoinTask<?>[] a;
1073     if ((a = array) != null && b != s && (al = a.length) > 0) {
1074 dl 1.256 int index = (al - 1) & --s;
1075     long offset = ((long)index << ASHIFT) + ABASE;
1076 dl 1.253 ForkJoinTask<?> t = (ForkJoinTask<?>)
1077     U.getAndSetObject(a, offset, null);
1078     if (t != null) {
1079     top = s;
1080     (currentSteal = t).doExec();
1081     if (++nexec > POLL_LIMIT)
1082     break;
1083     }
1084     else
1085     break;
1086     }
1087     else
1088     break;
1089     }
1090     }
1091    
1092     /**
1093 jsr166 1.254 * Polls and executes up to POLL_LIMIT tasks or until empty.
1094 dl 1.253 */
1095     final void localPollAndExec() {
1096     for (int nexec = 0;;) {
1097     int b = base, s = top, al; ForkJoinTask<?>[] a;
1098     if ((a = array) != null && b != s && (al = a.length) > 0) {
1099 dl 1.256 int index = (al - 1) & b++;
1100     long offset = ((long)index << ASHIFT) + ABASE;
1101 dl 1.253 ForkJoinTask<?> t = (ForkJoinTask<?>)
1102     U.getAndSetObject(a, offset, null);
1103     if (t != null) {
1104     base = b;
1105 dl 1.255 t.doExec();
1106 dl 1.253 if (++nexec > POLL_LIMIT)
1107     break;
1108     }
1109     }
1110     else
1111     break;
1112     }
1113     }
1114    
1115     /**
1116     * Executes the given task and (some) remaining local tasks.
1117 dl 1.94 */
1118 dl 1.178 final void runTask(ForkJoinTask<?> task) {
1119 dl 1.200 if (task != null) {
1120 dl 1.243 task.doExec();
1121 dl 1.253 if (config < 0)
1122     localPollAndExec();
1123     else
1124     localPopAndExec();
1125 dl 1.243 int ns = ++nsteals;
1126 dl 1.200 ForkJoinWorkerThread thread = owner;
1127 dl 1.243 currentSteal = null;
1128     if (ns < 0) // collect on overflow
1129 dl 1.215 transferStealCount(pool);
1130 dl 1.200 if (thread != null)
1131 dl 1.197 thread.afterTopLevelExec();
1132 dl 1.178 }
1133 dl 1.94 }
1134    
1135     /**
1136 dl 1.262 * Adds steal count to pool steal count if it exists, and resets.
1137 dl 1.215 */
1138     final void transferStealCount(ForkJoinPool p) {
1139 dl 1.262 AuxState aux;
1140     if (p != null && (aux = p.auxState) != null) {
1141 jsr166 1.293 long s = nsteals;
1142 dl 1.215 nsteals = 0; // if negative, correct for overflow
1143 jsr166 1.293 if (s < 0) s = Integer.MAX_VALUE;
1144 dl 1.262 aux.lock();
1145     try {
1146 jsr166 1.293 aux.stealCount += s;
1147 dl 1.262 } finally {
1148     aux.unlock();
1149     }
1150 dl 1.215 }
1151     }
1152    
1153     /**
1154 dl 1.105 * If present, removes from queue and executes the given task,
1155 jsr166 1.213 * or any other cancelled task. Used only by awaitJoin.
1156 dl 1.94 *
1157 jsr166 1.213 * @return true if queue empty and task not known to be done
1158 dl 1.94 */
1159 dl 1.105 final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
1160 dl 1.243 if (task != null && task.status >= 0) {
1161     int b, s, d, al; ForkJoinTask<?>[] a;
1162     while ((d = (b = base) - (s = top)) < 0 &&
1163     (a = array) != null && (al = a.length) > 0) {
1164     for (;;) { // traverse from s to b
1165 dl 1.256 int index = --s & (al - 1);
1166     long offset = (index << ASHIFT) + ABASE;
1167 dl 1.243 ForkJoinTask<?> t = (ForkJoinTask<?>)
1168     U.getObjectVolatile(a, offset);
1169     if (t == null)
1170     break; // restart
1171 dl 1.200 else if (t == task) {
1172     boolean removed = false;
1173     if (s + 1 == top) { // pop
1174 dl 1.243 if (U.compareAndSwapObject(a, offset, t, null)) {
1175     top = s;
1176 dl 1.200 removed = true;
1177     }
1178     }
1179     else if (base == b) // replace with proxy
1180 dl 1.258 removed = U.compareAndSwapObject(a, offset, t,
1181     new EmptyTask());
1182 dl 1.243 if (removed) {
1183     ForkJoinTask<?> ps = currentSteal;
1184     (currentSteal = task).doExec();
1185     currentSteal = ps;
1186     }
1187 dl 1.200 break;
1188 dl 1.90 }
1189 dl 1.200 else if (t.status < 0 && s + 1 == top) {
1190 dl 1.243 if (U.compareAndSwapObject(a, offset, t, null)) {
1191     top = s;
1192     }
1193 dl 1.200 break; // was cancelled
1194 dl 1.104 }
1195 dl 1.243 else if (++d == 0) {
1196     if (base != b) // rescan
1197     break;
1198 dl 1.200 return false;
1199 dl 1.243 }
1200 dl 1.104 }
1201 dl 1.200 if (task.status < 0)
1202     return false;
1203 dl 1.104 }
1204     }
1205 dl 1.200 return true;
1206 dl 1.104 }
1207    
1208     /**
1209 dl 1.200 * Pops task if in the same CC computation as the given task,
1210     * in either shared or owned mode. Used only by helpComplete.
1211 dl 1.78 */
1212 dl 1.253 final CountedCompleter<?> popCC(CountedCompleter<?> task, int mode) {
1213 dl 1.243 int b = base, s = top, al; ForkJoinTask<?>[] a;
1214     if ((a = array) != null && b != s && (al = a.length) > 0) {
1215 dl 1.256 int index = (al - 1) & (s - 1);
1216     long offset = ((long)index << ASHIFT) + ABASE;
1217     ForkJoinTask<?> o = (ForkJoinTask<?>)
1218     U.getObjectVolatile(a, offset);
1219 dl 1.243 if (o instanceof CountedCompleter) {
1220 dl 1.200 CountedCompleter<?> t = (CountedCompleter<?>)o;
1221     for (CountedCompleter<?> r = t;;) {
1222     if (r == task) {
1223 dl 1.253 if ((mode & IS_OWNED) == 0) {
1224 dl 1.243 boolean popped;
1225 dl 1.200 if (U.compareAndSwapInt(this, QLOCK, 0, 1)) {
1226 dl 1.243 if (popped =
1227     U.compareAndSwapObject(a, offset,
1228     t, null))
1229     top = s - 1;
1230     U.putOrderedInt(this, QLOCK, 0);
1231     if (popped)
1232 dl 1.200 return t;
1233 dl 1.178 }
1234     }
1235 dl 1.243 else if (U.compareAndSwapObject(a, offset,
1236     t, null)) {
1237     top = s - 1;
1238 dl 1.200 return t;
1239     }
1240     break;
1241 dl 1.178 }
1242 dl 1.200 else if ((r = r.completer) == null) // try parent
1243 dl 1.178 break;
1244     }
1245 dl 1.94 }
1246 dl 1.78 }
1247 dl 1.200 return null;
1248 dl 1.78 }
1249    
1250     /**
1251 dl 1.200 * Steals and runs a task in the same CC computation as the
1252     * given task if one exists and can be taken without
1253     * contention. Otherwise returns a checksum/control value for
1254     * use by method helpComplete.
1255     *
1256     * @return 1 if successful, 2 if retryable (lost to another
1257     * stealer), -1 if non-empty but no matching task found, else
1258     * the base index, forced negative.
1259     */
1260     final int pollAndExecCC(CountedCompleter<?> task) {
1261 dl 1.243 ForkJoinTask<?>[] a;
1262     int b = base, s = top, al, h;
1263     if ((a = array) != null && b != s && (al = a.length) > 0) {
1264 dl 1.256 int index = (al - 1) & b;
1265     long offset = ((long)index << ASHIFT) + ABASE;
1266     ForkJoinTask<?> o = (ForkJoinTask<?>)
1267     U.getObjectVolatile(a, offset);
1268 dl 1.243 if (o == null)
1269     h = 2; // retryable
1270     else if (!(o instanceof CountedCompleter))
1271     h = -1; // unmatchable
1272     else {
1273     CountedCompleter<?> t = (CountedCompleter<?>)o;
1274     for (CountedCompleter<?> r = t;;) {
1275     if (r == task) {
1276     if (b++ == base &&
1277     U.compareAndSwapObject(a, offset, t, null)) {
1278     base = b;
1279     t.doExec();
1280     h = 1; // success
1281     }
1282     else
1283     h = 2; // lost CAS
1284     break;
1285     }
1286     else if ((r = r.completer) == null) {
1287     h = -1; // unmatched
1288     break;
1289 dl 1.200 }
1290 dl 1.178 }
1291     }
1292 dl 1.78 }
1293 dl 1.243 else
1294     h = b | Integer.MIN_VALUE; // to sense movement on re-poll
1295 dl 1.200 return h;
1296 dl 1.78 }
1297    
1298     /**
1299 dl 1.86 * Returns true if owned and not known to be blocked.
1300     */
1301     final boolean isApparentlyUnblocked() {
1302     Thread wt; Thread.State s;
1303 dl 1.200 return (scanState >= 0 &&
1304 dl 1.86 (wt = owner) != null &&
1305     (s = wt.getState()) != Thread.State.BLOCKED &&
1306     s != Thread.State.WAITING &&
1307     s != Thread.State.TIMED_WAITING);
1308     }
1309    
1310 dl 1.211 // Unsafe mechanics. Note that some are (and must be) the same as in FJP
1311 jsr166 1.233 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
1312 dl 1.105 private static final long QLOCK;
1313 jsr166 1.291 private static final int ABASE;
1314     private static final int ASHIFT;
1315 dl 1.78 static {
1316     try {
1317 dl 1.105 QLOCK = U.objectFieldOffset
1318 jsr166 1.233 (WorkQueue.class.getDeclaredField("qlock"));
1319     ABASE = U.arrayBaseOffset(ForkJoinTask[].class);
1320     int scale = U.arrayIndexScale(ForkJoinTask[].class);
1321 jsr166 1.142 if ((scale & (scale - 1)) != 0)
1322 jsr166 1.232 throw new Error("array index scale not a power of two");
1323 jsr166 1.142 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1324 jsr166 1.231 } catch (ReflectiveOperationException e) {
1325 dl 1.78 throw new Error(e);
1326     }
1327     }
1328     }
1329 dl 1.14
1330 dl 1.112 // static fields (initialized in static initializer below)
1331    
1332     /**
1333     * Creates a new ForkJoinWorkerThread. This factory is used unless
1334     * overridden in ForkJoinPool constructors.
1335     */
1336     public static final ForkJoinWorkerThreadFactory
1337     defaultForkJoinWorkerThreadFactory;
1338    
1339 jsr166 1.1 /**
1340 dl 1.115 * Permission required for callers of methods that may start or
1341 jsr166 1.277 * kill threads. Also used as a static lock in tryInitialize.
1342 dl 1.115 */
1343 jsr166 1.276 static final RuntimePermission modifyThreadPermission;
1344 dl 1.115
1345     /**
1346 dl 1.101 * Common (static) pool. Non-null for public use unless a static
1347 dl 1.105 * construction exception, but internal usages null-check on use
1348     * to paranoically avoid potential initialization circularities
1349     * as well as to simplify generated code.
1350 dl 1.101 */
1351 dl 1.134 static final ForkJoinPool common;
1352 dl 1.101
1353     /**
1354 dl 1.160 * Common pool parallelism. To allow simpler use and management
1355     * when common pool threads are disabled, we allow the underlying
1356 dl 1.185 * common.parallelism field to be zero, but in that case still report
1357 dl 1.160 * parallelism as 1 to reflect resulting caller-runs mechanics.
1358 dl 1.90 */
1359 jsr166 1.274 static final int COMMON_PARALLELISM;
1360 dl 1.90
1361     /**
1362 dl 1.208 * Limit on spare thread construction in tryCompensate.
1363     */
1364 jsr166 1.273 private static final int COMMON_MAX_SPARES;
1365 dl 1.208
1366     /**
1367 dl 1.105 * Sequence number for creating workerNamePrefix.
1368 dl 1.86 */
1369 dl 1.105 private static int poolNumberSequence;
1370 dl 1.86
1371 jsr166 1.1 /**
1372 jsr166 1.132 * Returns the next sequence number. We don't expect this to
1373     * ever contend, so use simple builtin sync.
1374 dl 1.83 */
1375 dl 1.105 private static final synchronized int nextPoolId() {
1376     return ++poolNumberSequence;
1377     }
1378 dl 1.86
1379 dl 1.200 // static configuration constants
1380 dl 1.86
1381     /**
1382 dl 1.243 * Initial timeout value (in milliseconds) for the thread
1383 dl 1.105 * triggering quiescence to park waiting for new work. On timeout,
1384 jsr166 1.268 * the thread will instead try to shrink the number of workers.
1385     * The value should be large enough to avoid overly aggressive
1386     * shrinkage during most transient stalls (long GCs etc).
1387 dl 1.86 */
1388 dl 1.243 private static final long IDLE_TIMEOUT_MS = 2000L; // 2sec
1389 dl 1.86
1390     /**
1391 jsr166 1.279 * Tolerance for idle timeouts, to cope with timer undershoots.
1392 dl 1.120 */
1393 dl 1.243 private static final long TIMEOUT_SLOP_MS = 20L; // 20ms
1394 dl 1.200
1395     /**
1396 jsr166 1.273 * The default value for COMMON_MAX_SPARES. Overridable using the
1397     * "java.util.concurrent.ForkJoinPool.common.maximumSpares" system
1398     * property. The default value is far in excess of normal
1399     * requirements, but also far short of MAX_CAP and typical OS
1400     * thread limits, so allows JVMs to catch misuse/abuse before
1401     * running out of resources needed to do so.
1402 dl 1.200 */
1403 dl 1.208 private static final int DEFAULT_COMMON_MAX_SPARES = 256;
1404 dl 1.120
1405     /**
1406 dl 1.90 * Increment for seed generators. See class ThreadLocal for
1407     * explanation.
1408     */
1409 dl 1.193 private static final int SEED_INCREMENT = 0x9e3779b9;
1410 dl 1.83
1411 jsr166 1.163 /*
1412 dl 1.200 * Bits and masks for field ctl, packed with 4 16 bit subfields:
1413     * AC: Number of active running workers minus target parallelism
1414     * TC: Number of total workers minus target parallelism
1415     * SS: version count and status of top waiting thread
1416     * ID: poolIndex of top of Treiber stack of waiters
1417     *
1418     * When convenient, we can extract the lower 32 stack top bits
1419     * (including version bits) as sp=(int)ctl. The offsets of counts
1420     * by the target parallelism and the positionings of fields makes
1421     * it possible to perform the most common checks via sign tests of
1422     * fields: When ac is negative, there are not enough active
1423     * workers, when tc is negative, there are not enough total
1424     * workers. When sp is non-zero, there are waiting workers. To
1425     * deal with possibly negative fields, we use casts in and out of
1426     * "short" and/or signed shifts to maintain signedness.
1427     *
1428     * Because it occupies uppermost bits, we can add one active count
1429     * using getAndAddLong of AC_UNIT, rather than CAS, when returning
1430     * from a blocked join. Other updates entail multiple subfields
1431     * and masking, requiring CAS.
1432     */
1433    
1434     // Lower and upper word masks
1435     private static final long SP_MASK = 0xffffffffL;
1436     private static final long UC_MASK = ~SP_MASK;
1437 dl 1.86
1438 dl 1.200 // Active counts
1439 dl 1.86 private static final int AC_SHIFT = 48;
1440 dl 1.200 private static final long AC_UNIT = 0x0001L << AC_SHIFT;
1441     private static final long AC_MASK = 0xffffL << AC_SHIFT;
1442    
1443     // Total counts
1444 dl 1.86 private static final int TC_SHIFT = 32;
1445 dl 1.200 private static final long TC_UNIT = 0x0001L << TC_SHIFT;
1446     private static final long TC_MASK = 0xffffL << TC_SHIFT;
1447     private static final long ADD_WORKER = 0x0001L << (TC_SHIFT + 15); // sign
1448    
1449 dl 1.205 // runState bits: SHUTDOWN must be negative, others arbitrary powers of two
1450 dl 1.243 private static final int STARTED = 1;
1451     private static final int STOP = 1 << 1;
1452     private static final int TERMINATED = 1 << 2;
1453 dl 1.205 private static final int SHUTDOWN = 1 << 31;
1454 dl 1.86
1455     // Instance fields
1456 dl 1.200 volatile long ctl; // main pool control
1457 dl 1.243 volatile int runState;
1458 dl 1.200 final int config; // parallelism, mode
1459 dl 1.262 AuxState auxState; // lock, steal counts
1460 dl 1.200 volatile WorkQueue[] workQueues; // main registry
1461 dl 1.256 final String workerNamePrefix; // to create worker name string
1462 dl 1.112 final ForkJoinWorkerThreadFactory factory;
1463 dl 1.200 final UncaughtExceptionHandler ueh; // per-worker UEH
1464 dl 1.101
1465 jsr166 1.145 /**
1466 dl 1.258 * Instantiates fields upon first submission, or upon shutdown if
1467     * no submissions. If checkTermination true, also responds to
1468     * termination by external calls submitting tasks.
1469 dl 1.105 */
1470 dl 1.258 private void tryInitialize(boolean checkTermination) {
1471 dl 1.294 if (runState == 0) { // bootstrap by locking static field
1472     int p = config & SMASK;
1473     int n = (p > 1) ? p - 1 : 1; // ensure at least 2 slots
1474     n |= n >>> 1; // create workQueues array with size a power of two
1475 jsr166 1.270 n |= n >>> 2;
1476     n |= n >>> 4;
1477     n |= n >>> 8;
1478     n |= n >>> 16;
1479     n = ((n + 1) << 1) & SMASK;
1480 dl 1.262 AuxState aux = new AuxState();
1481 dl 1.258 WorkQueue[] ws = new WorkQueue[n];
1482 jsr166 1.259 synchronized (modifyThreadPermission) { // double-check
1483 dl 1.294 if (runState == 0) {
1484 dl 1.258 workQueues = ws;
1485 dl 1.262 auxState = aux;
1486 dl 1.294 runState = STARTED;
1487 dl 1.101 }
1488     }
1489     }
1490 dl 1.258 if (checkTermination && runState < 0) {
1491 jsr166 1.244 tryTerminate(false, false); // help terminate
1492     throw new RejectedExecutionException();
1493     }
1494 dl 1.78 }
1495 jsr166 1.1
1496 dl 1.200 // Creating, registering and deregistering workers
1497    
1498 dl 1.112 /**
1499 dl 1.200 * Tries to construct and start one worker. Assumes that total
1500     * count has already been incremented as a reservation. Invokes
1501     * deregisterWorker on any failure.
1502     *
1503 dl 1.243 * @param isSpare true if this is a spare thread
1504 dl 1.200 * @return true if successful
1505 dl 1.115 */
1506 dl 1.243 private boolean createWorker(boolean isSpare) {
1507 dl 1.200 ForkJoinWorkerThreadFactory fac = factory;
1508     Throwable ex = null;
1509     ForkJoinWorkerThread wt = null;
1510 dl 1.243 WorkQueue q;
1511 dl 1.200 try {
1512     if (fac != null && (wt = fac.newThread(this)) != null) {
1513 dl 1.243 if (isSpare && (q = wt.workQueue) != null)
1514     q.config |= SPARE_WORKER;
1515 dl 1.200 wt.start();
1516     return true;
1517 dl 1.115 }
1518 dl 1.200 } catch (Throwable rex) {
1519     ex = rex;
1520 dl 1.112 }
1521 dl 1.200 deregisterWorker(wt, ex);
1522     return false;
1523 dl 1.112 }
1524    
1525 dl 1.200 /**
1526     * Tries to add one worker, incrementing ctl counts before doing
1527     * so, relying on createWorker to back out on failure.
1528     *
1529     * @param c incoming ctl value, with total count negative and no
1530     * idle workers. On CAS failure, c is refreshed and retried if
1531 jsr166 1.202 * this holds (otherwise, a new worker is not needed).
1532 dl 1.200 */
1533     private void tryAddWorker(long c) {
1534     do {
1535     long nc = ((AC_MASK & (c + AC_UNIT)) |
1536     (TC_MASK & (c + TC_UNIT)));
1537 dl 1.243 if (ctl == c && U.compareAndSwapLong(this, CTL, c, nc)) {
1538     createWorker(false);
1539     break;
1540 dl 1.200 }
1541     } while (((c = ctl) & ADD_WORKER) != 0L && (int)c == 0);
1542     }
1543 dl 1.112
1544     /**
1545 dl 1.200 * Callback from ForkJoinWorkerThread constructor to establish and
1546     * record its WorkQueue.
1547 dl 1.112 *
1548     * @param wt the worker thread
1549 dl 1.115 * @return the worker's queue
1550 dl 1.112 */
1551 dl 1.115 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1552 dl 1.200 UncaughtExceptionHandler handler;
1553 dl 1.262 AuxState aux;
1554 dl 1.200 wt.setDaemon(true); // configure thread
1555 dl 1.115 if ((handler = ueh) != null)
1556     wt.setUncaughtExceptionHandler(handler);
1557 dl 1.200 WorkQueue w = new WorkQueue(this, wt);
1558     int i = 0; // assign a pool index
1559     int mode = config & MODE_MASK;
1560 dl 1.262 if ((aux = auxState) != null) {
1561     aux.lock();
1562     try {
1563     int s = (int)(aux.indexSeed += SEED_INCREMENT), n, m;
1564 dl 1.243 WorkQueue[] ws = workQueues;
1565     if (ws != null && (n = ws.length) > 0) {
1566     i = (m = n - 1) & ((s << 1) | 1); // odd-numbered indices
1567     if (ws[i] != null) { // collision
1568     int probes = 0; // step by approx half n
1569     int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1570     while (ws[i = (i + step) & m] != null) {
1571     if (++probes >= n) {
1572     workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1573     m = n - 1;
1574     probes = 0;
1575     }
1576 dl 1.94 }
1577     }
1578 dl 1.243 w.hint = s; // use as random seed
1579     w.config = i | mode;
1580     w.scanState = i | (s & 0x7fff0000); // random seq bits
1581     ws[i] = w;
1582 dl 1.94 }
1583 dl 1.262 } finally {
1584     aux.unlock();
1585 dl 1.78 }
1586     }
1587 dl 1.200 wt.setName(workerNamePrefix.concat(Integer.toString(i >>> 1)));
1588 dl 1.115 return w;
1589 dl 1.78 }
1590 dl 1.19
1591 jsr166 1.1 /**
1592 dl 1.86 * Final callback from terminating worker, as well as upon failure
1593 dl 1.105 * to construct or start a worker. Removes record of worker from
1594     * array, and adjusts counts. If pool is shutting down, tries to
1595     * complete termination.
1596 dl 1.78 *
1597 jsr166 1.151 * @param wt the worker thread, or null if construction failed
1598 dl 1.78 * @param ex the exception causing failure, or null if none
1599 dl 1.45 */
1600 dl 1.78 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1601     WorkQueue w = null;
1602     if (wt != null && (w = wt.workQueue) != null) {
1603 dl 1.262 AuxState aux; WorkQueue[] ws; // remove index from array
1604 dl 1.200 int idx = w.config & SMASK;
1605 dl 1.262 int ns = w.nsteals;
1606     if ((aux = auxState) != null) {
1607     aux.lock();
1608     try {
1609 dl 1.243 if ((ws = workQueues) != null && ws.length > idx &&
1610     ws[idx] == w)
1611     ws[idx] = null;
1612 dl 1.262 aux.stealCount += ns;
1613     } finally {
1614     aux.unlock();
1615 dl 1.243 }
1616     }
1617     }
1618     if (w == null || (w.config & UNREGISTERED) == 0) { // else pre-adjusted
1619     long c; // decrement counts
1620     do {} while (!U.compareAndSwapLong
1621     (this, CTL, c = ctl, ((AC_MASK & (c - AC_UNIT)) |
1622     (TC_MASK & (c - TC_UNIT)) |
1623     (SP_MASK & c))));
1624     }
1625 dl 1.200 if (w != null) {
1626 dl 1.281 w.currentSteal = null;
1627 dl 1.200 w.qlock = -1; // ensure set
1628     w.cancelAll(); // cancel remaining tasks
1629 dl 1.78 }
1630 dl 1.286 while (tryTerminate(false, false) >= 0) { // possibly replace
1631 dl 1.243 WorkQueue[] ws; int wl, sp; long c;
1632 dl 1.286 if (w == null || w.array == null ||
1633 dl 1.289 (ws = workQueues) == null || (wl = ws.length) <= 0)
1634 dl 1.209 break;
1635 dl 1.243 else if ((sp = (int)(c = ctl)) != 0) { // wake up replacement
1636     if (tryRelease(c, ws[(wl - 1) & sp], AC_UNIT))
1637 dl 1.205 break;
1638 dl 1.120 }
1639 dl 1.209 else if (ex != null && (c & ADD_WORKER) != 0L) {
1640     tryAddWorker(c); // create replacement
1641     break;
1642     }
1643     else // don't need replacement
1644     break;
1645 dl 1.78 }
1646 dl 1.200 if (ex == null) // help clean on way out
1647 dl 1.120 ForkJoinTask.helpExpungeStaleExceptions();
1648 dl 1.200 else // rethrow
1649 dl 1.104 ForkJoinTask.rethrow(ex);
1650 dl 1.78 }
1651 dl 1.52
1652 dl 1.200 // Signalling
1653 dl 1.19
1654     /**
1655 dl 1.115 * Tries to create or activate a worker if too few are active.
1656 dl 1.105 */
1657 dl 1.253 final void signalWork() {
1658 dl 1.243 for (;;) {
1659     long c; int sp, i; WorkQueue v; WorkQueue[] ws;
1660     if ((c = ctl) >= 0L) // enough workers
1661     break;
1662     else if ((sp = (int)c) == 0) { // no idle workers
1663     if ((c & ADD_WORKER) != 0L) // too few workers
1664 dl 1.200 tryAddWorker(c);
1665     break;
1666     }
1667 dl 1.243 else if ((ws = workQueues) == null)
1668     break; // unstarted/terminated
1669     else if (ws.length <= (i = sp & SMASK))
1670     break; // terminated
1671     else if ((v = ws[i]) == null)
1672     break; // terminating
1673     else {
1674     int ns = sp & ~UNSIGNALLED;
1675     int vs = v.scanState;
1676     long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + AC_UNIT));
1677     if (sp == vs && U.compareAndSwapLong(this, CTL, c, nc)) {
1678     v.scanState = ns;
1679     LockSupport.unpark(v.parker);
1680     break;
1681     }
1682 dl 1.174 }
1683 dl 1.52 }
1684 dl 1.14 }
1685    
1686 dl 1.200 /**
1687     * Signals and releases worker v if it is top of idle worker
1688     * stack. This performs a one-shot version of signalWork only if
1689     * there is (apparently) at least one idle worker.
1690     *
1691     * @param c incoming ctl value
1692     * @param v if non-null, a worker
1693     * @param inc the increment to active count (zero when compensating)
1694     * @return true if successful
1695     */
1696     private boolean tryRelease(long c, WorkQueue v, long inc) {
1697 dl 1.243 int sp = (int)c, ns = sp & ~UNSIGNALLED;
1698     if (v != null) {
1699     int vs = v.scanState;
1700     long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + inc));
1701     if (sp == vs && U.compareAndSwapLong(this, CTL, c, nc)) {
1702     v.scanState = ns;
1703     LockSupport.unpark(v.parker);
1704 dl 1.200 return true;
1705     }
1706     }
1707     return false;
1708     }
1709    
1710 dl 1.243 /**
1711     * With approx probability of a missed signal, tries (once) to
1712     * reactivate worker w (or some other worker), failing if stale or
1713     * known to be already active.
1714     *
1715     * @param w the worker
1716     * @param ws the workQueue array to use
1717     * @param r random seed
1718     */
1719     private void tryReactivate(WorkQueue w, WorkQueue[] ws, int r) {
1720 dl 1.272 long c; int sp, wl; WorkQueue v;
1721 dl 1.243 if ((sp = (int)(c = ctl)) != 0 && w != null &&
1722     ws != null && (wl = ws.length) > 0 &&
1723 dl 1.272 ((sp ^ r) & SS_SEQ) == 0 &&
1724     (v = ws[(wl - 1) & sp]) != null) {
1725 dl 1.243 long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + AC_UNIT));
1726     int ns = sp & ~UNSIGNALLED;
1727 dl 1.262 if (w.scanState < 0 &&
1728 dl 1.243 v.scanState == sp &&
1729     U.compareAndSwapLong(this, CTL, c, nc)) {
1730     v.scanState = ns;
1731     LockSupport.unpark(v.parker);
1732     }
1733     }
1734     }
1735 dl 1.90
1736 dl 1.14 /**
1737 dl 1.243 * If worker w exists and is active, enqueues and sets status to inactive.
1738     *
1739     * @param w the worker
1740     * @param ss current (non-negative) scanState
1741 dl 1.14 */
1742 dl 1.243 private void inactivate(WorkQueue w, int ss) {
1743     int ns = (ss + SS_SEQ) | UNSIGNALLED;
1744     long lc = ns & SP_MASK, nc, c;
1745     if (w != null) {
1746     w.scanState = ns;
1747     do {
1748     nc = lc | (UC_MASK & ((c = ctl) - AC_UNIT));
1749     w.stackPred = (int)c;
1750     } while (!U.compareAndSwapLong(this, CTL, c, nc));
1751 dl 1.178 }
1752 dl 1.14 }
1753    
1754     /**
1755 dl 1.243 * Possibly blocks worker w waiting for signal, or returns
1756     * negative status if the worker should terminate. May return
1757     * without status change if multiple stale unparks and/or
1758     * interrupts occur.
1759 dl 1.78 *
1760 dl 1.243 * @param w the calling worker
1761     * @return negative if w should terminate
1762 dl 1.78 */
1763 dl 1.243 private int awaitWork(WorkQueue w) {
1764     int stat = 0;
1765     if (w != null && w.scanState < 0) {
1766     long c = ctl;
1767     if ((int)(c >> AC_SHIFT) + (config & SMASK) <= 0)
1768     stat = timedAwaitWork(w, c); // possibly quiescent
1769     else if ((runState & STOP) != 0)
1770     stat = w.qlock = -1; // pool terminating
1771 dl 1.289 else if (w.scanState < 0) {
1772 dl 1.243 w.parker = Thread.currentThread();
1773 dl 1.289 if (w.scanState < 0) // recheck after write
1774 dl 1.243 LockSupport.park(this);
1775     w.parker = null;
1776 dl 1.289 if ((runState & STOP) != 0)
1777     stat = w.qlock = -1; // recheck
1778     else if (w.scanState < 0)
1779     Thread.interrupted(); // clear status
1780 dl 1.115 }
1781 dl 1.52 }
1782 dl 1.243 return stat;
1783 dl 1.14 }
1784    
1785     /**
1786 dl 1.243 * Possibly triggers shutdown and tries (once) to block worker
1787     * when pool is (or may be) quiescent. Waits up to a duration
1788     * determined by number of workers. On timeout, if ctl has not
1789 dl 1.200 * changed, terminates the worker, which will in turn wake up
1790 dl 1.178 * another worker to possibly repeat this process.
1791 dl 1.52 *
1792 dl 1.78 * @param w the calling worker
1793 dl 1.243 * @return negative if w should terminate
1794 dl 1.14 */
1795 dl 1.243 private int timedAwaitWork(WorkQueue w, long c) {
1796     int stat = 0;
1797     int scale = 1 - (short)(c >>> TC_SHIFT);
1798     long deadline = (((scale <= 0) ? 1 : scale) * IDLE_TIMEOUT_MS +
1799     System.currentTimeMillis());
1800 dl 1.289 if ((runState >= 0 || (stat = tryTerminate(false, false)) > 0) &&
1801     w != null && w.scanState < 0) {
1802 dl 1.262 int ss; AuxState aux;
1803 dl 1.289 w.parker = Thread.currentThread();
1804     if (w.scanState < 0)
1805     LockSupport.parkUntil(this, deadline);
1806     w.parker = null;
1807     if ((runState & STOP) != 0)
1808     stat = w.qlock = -1; // pool terminating
1809     else if ((ss = w.scanState) < 0 && !Thread.interrupted() &&
1810     (int)c == ss && (aux = auxState) != null && ctl == c &&
1811     deadline - System.currentTimeMillis() <= TIMEOUT_SLOP_MS) {
1812     aux.lock();
1813     try { // pre-deregister
1814     WorkQueue[] ws;
1815     int cfg = w.config, idx = cfg & SMASK;
1816     long nc = ((UC_MASK & (c - TC_UNIT)) |
1817     (SP_MASK & w.stackPred));
1818     if ((runState & STOP) == 0 &&
1819     (ws = workQueues) != null &&
1820     idx < ws.length && idx >= 0 && ws[idx] == w &&
1821     U.compareAndSwapLong(this, CTL, c, nc)) {
1822     ws[idx] = null;
1823     w.config = cfg | UNREGISTERED;
1824     stat = w.qlock = -1;
1825 dl 1.243 }
1826 dl 1.289 } finally {
1827     aux.unlock();
1828 dl 1.243 }
1829     }
1830     }
1831     return stat;
1832     }
1833    
1834     /**
1835     * If the given worker is a spare with no queued tasks, and there
1836     * are enough existing workers, drops it from ctl counts and sets
1837 jsr166 1.248 * its state to terminated.
1838 dl 1.243 *
1839     * @param w the calling worker -- must be a spare
1840     * @return true if dropped (in which case it must not process more tasks)
1841     */
1842     private boolean tryDropSpare(WorkQueue w) {
1843     if (w != null && w.isEmpty()) { // no local tasks
1844     long c; int sp, wl; WorkQueue[] ws; WorkQueue v;
1845     while ((short)((c = ctl) >> TC_SHIFT) > 0 &&
1846     ((sp = (int)c) != 0 || (int)(c >> AC_SHIFT) > 0) &&
1847     (ws = workQueues) != null && (wl = ws.length) > 0) {
1848     boolean dropped, canDrop;
1849     if (sp == 0) { // no queued workers
1850     long nc = ((AC_MASK & (c - AC_UNIT)) |
1851     (TC_MASK & (c - TC_UNIT)) | (SP_MASK & c));
1852     dropped = U.compareAndSwapLong(this, CTL, c, nc);
1853     }
1854     else if (
1855     (v = ws[(wl - 1) & sp]) == null || v.scanState != sp)
1856     dropped = false; // stale; retry
1857     else {
1858     long nc = v.stackPred & SP_MASK;
1859     if (w == v || w.scanState >= 0) {
1860     canDrop = true; // w unqueued or topmost
1861     nc |= ((AC_MASK & c) | // ensure replacement
1862     (TC_MASK & (c - TC_UNIT)));
1863     }
1864     else { // w may be queued
1865     canDrop = false; // help uncover
1866     nc |= ((AC_MASK & (c + AC_UNIT)) |
1867     (TC_MASK & c));
1868     }
1869     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1870     v.scanState = sp & ~UNSIGNALLED;
1871     LockSupport.unpark(v.parker);
1872     dropped = canDrop;
1873     }
1874     else
1875     dropped = false;
1876     }
1877     if (dropped) { // pre-deregister
1878     int cfg = w.config, idx = cfg & SMASK;
1879     if (idx >= 0 && idx < ws.length && ws[idx] == w)
1880     ws[idx] = null;
1881     w.config = cfg | UNREGISTERED;
1882     w.qlock = -1;
1883     return true;
1884 dl 1.200 }
1885 dl 1.177 }
1886 dl 1.243 }
1887     return false;
1888     }
1889    
1890     /**
1891     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1892     */
1893     final void runWorker(WorkQueue w) {
1894     w.growArray(); // allocate queue
1895 dl 1.253 int bound = (w.config & SPARE_WORKER) != 0 ? 0 : POLL_LIMIT;
1896 dl 1.243 long seed = w.hint * 0xdaba0b6eb09322e3L; // initial random seed
1897 dl 1.289 if ((runState & STOP) == 0) {
1898     for (long r = (seed == 0L) ? 1L : seed;;) { // ensure nonzero
1899     if (bound == 0 && tryDropSpare(w))
1900     break;
1901     // high bits of prev seed for step; current low bits for idx
1902     int step = (int)(r >>> 48) | 1;
1903     r ^= r >>> 12; r ^= r << 25; r ^= r >>> 27; // xorshift
1904     if (scan(w, bound, step, (int)r) < 0 && awaitWork(w) < 0)
1905     break;
1906     }
1907 dl 1.243 }
1908     }
1909    
1910     // Scanning for tasks
1911    
1912     /**
1913     * Repeatedly scans for and tries to steal and execute (via
1914     * workQueue.runTask) a queued task. Each scan traverses queues in
1915     * pseudorandom permutation. Upon finding a non-empty queue, makes
1916 dl 1.253 * at most the given bound attempts to re-poll (fewer if
1917     * contended) on the same queue before returning (impossible
1918     * scanState value) 0 to restart scan. Else returns after at least
1919     * 1 and at most 32 full scans.
1920 dl 1.243 *
1921     * @param w the worker (via its WorkQueue)
1922 dl 1.253 * @param bound repoll bound as bitmask (0 if spare)
1923 dl 1.243 * @param step (circular) index increment per iteration (must be odd)
1924     * @param r a random seed for origin index
1925     * @return negative if should await signal
1926     */
1927 dl 1.253 private int scan(WorkQueue w, int bound, int step, int r) {
1928 dl 1.243 int stat = 0, wl; WorkQueue[] ws;
1929 dl 1.250 if ((ws = workQueues) != null && w != null && (wl = ws.length) > 0) {
1930 dl 1.243 for (int m = wl - 1,
1931 dl 1.250 origin = m & r, idx = origin,
1932 dl 1.243 npolls = 0,
1933     ss = w.scanState;;) { // negative if inactive
1934 dl 1.289 WorkQueue q; ForkJoinTask<?>[] a; int b, al;
1935     if ((q = ws[idx]) != null && (b = q.base) - q.top < 0 &&
1936 dl 1.243 (a = q.array) != null && (al = a.length) > 0) {
1937 dl 1.256 int index = (al - 1) & b;
1938     long offset = ((long)index << ASHIFT) + ABASE;
1939 dl 1.243 ForkJoinTask<?> t = (ForkJoinTask<?>)
1940     U.getObjectVolatile(a, offset);
1941 dl 1.262 if (t == null)
1942     break; // empty or busy
1943     else if (b++ != q.base)
1944     break; // busy
1945 dl 1.253 else if (ss < 0) {
1946 dl 1.258 tryReactivate(w, ws, r);
1947     break; // retry upon rescan
1948 dl 1.253 }
1949     else if (!U.compareAndSwapObject(a, offset, t, null))
1950     break; // contended
1951     else {
1952     q.base = b;
1953     w.currentSteal = t;
1954 dl 1.289 if (b != q.top) // propagate signal
1955 dl 1.253 signalWork();
1956     w.runTask(t);
1957     if (++npolls > bound)
1958     break;
1959 dl 1.243 }
1960 dl 1.178 }
1961 dl 1.243 else if (npolls != 0) // rescan
1962     break;
1963 dl 1.250 else if ((idx = (idx + step) & m) == origin) {
1964     if (ss < 0) { // await signal
1965     stat = ss;
1966     break;
1967     }
1968     else if (r >= 0) {
1969 dl 1.243 inactivate(w, ss);
1970 dl 1.250 break;
1971     }
1972     else
1973     r <<= 1; // at most 31 rescans
1974 dl 1.243 }
1975 dl 1.120 }
1976     }
1977 dl 1.243 return stat;
1978 dl 1.178 }
1979    
1980 dl 1.200 // Joining tasks
1981    
1982 dl 1.178 /**
1983 dl 1.200 * Tries to steal and run tasks within the target's computation.
1984     * Uses a variant of the top-level algorithm, restricted to tasks
1985     * with the given task as ancestor: It prefers taking and running
1986     * eligible tasks popped from the worker's own queue (via
1987     * popCC). Otherwise it scans others, randomly moving on
1988     * contention or execution, deciding to give up based on a
1989 dl 1.243 * checksum (via return codes from pollAndExecCC). The maxTasks
1990 dl 1.200 * argument supports external usages; internal calls use zero,
1991     * allowing unbounded steps (external calls trap non-positive
1992     * values).
1993     *
1994     * @param w caller
1995 jsr166 1.202 * @param maxTasks if non-zero, the maximum number of other tasks to run
1996 dl 1.200 * @return task status on exit
1997     */
1998     final int helpComplete(WorkQueue w, CountedCompleter<?> task,
1999     int maxTasks) {
2000 dl 1.243 WorkQueue[] ws; int s = 0, wl;
2001     if ((ws = workQueues) != null && (wl = ws.length) > 1 &&
2002 dl 1.200 task != null && w != null) {
2003 dl 1.253 for (int m = wl - 1,
2004     mode = w.config,
2005     r = ~mode, // scanning seed
2006     origin = r & m, k = origin, // first queue to scan
2007     step = 3, // first scan step
2008     h = 1, // 1:ran, >1:contended, <0:hash
2009     oldSum = 0, checkSum = 0;;) {
2010 dl 1.243 CountedCompleter<?> p; WorkQueue q; int i;
2011 dl 1.200 if ((s = task.status) < 0)
2012     break;
2013 dl 1.253 if (h == 1 && (p = w.popCC(task, mode)) != null) {
2014 dl 1.200 p.doExec(); // run local task
2015     if (maxTasks != 0 && --maxTasks == 0)
2016     break;
2017     origin = k; // reset
2018     oldSum = checkSum = 0;
2019     }
2020 dl 1.243 else { // poll other worker queues
2021     if ((i = k | 1) < 0 || i > m || (q = ws[i]) == null)
2022 dl 1.200 h = 0;
2023     else if ((h = q.pollAndExecCC(task)) < 0)
2024     checkSum += h;
2025     if (h > 0) {
2026     if (h == 1 && maxTasks != 0 && --maxTasks == 0)
2027     break;
2028 dl 1.253 step = (r >>> 16) | 3;
2029 dl 1.200 r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
2030 dl 1.243 k = origin = r & m; // move and restart
2031 dl 1.200 oldSum = checkSum = 0;
2032     }
2033 dl 1.243 else if ((k = (k + step) & m) == origin) {
2034 dl 1.200 if (oldSum == (oldSum = checkSum))
2035     break;
2036     checkSum = 0;
2037     }
2038     }
2039 dl 1.178 }
2040     }
2041 dl 1.200 return s;
2042 dl 1.120 }
2043    
2044     /**
2045 dl 1.78 * Tries to locate and execute tasks for a stealer of the given
2046 jsr166 1.265 * task, or in turn one of its stealers. Traces currentSteal ->
2047 dl 1.78 * currentJoin links looking for a thread working on a descendant
2048     * of the given task and with a non-empty queue to steal back and
2049     * execute tasks from. The first call to this method upon a
2050     * waiting join will often entail scanning/search, (which is OK
2051     * because the joiner has nothing better to do), but this method
2052 dl 1.200 * leaves hints in workers to speed up subsequent calls.
2053 dl 1.78 *
2054 dl 1.200 * @param w caller
2055 dl 1.78 * @param task the task to join
2056     */
2057 dl 1.200 private void helpStealer(WorkQueue w, ForkJoinTask<?> task) {
2058 dl 1.243 if (task != null && w != null) {
2059     ForkJoinTask<?> ps = w.currentSteal;
2060     WorkQueue[] ws; int wl, oldSum = 0;
2061     outer: while (w.tryRemoveAndExec(task) && task.status >= 0 &&
2062     (ws = workQueues) != null && (wl = ws.length) > 0) {
2063 dl 1.200 ForkJoinTask<?> subtask;
2064 dl 1.243 int m = wl - 1, checkSum = 0; // for stability check
2065 dl 1.200 WorkQueue j = w, v; // v is subtask stealer
2066     descent: for (subtask = task; subtask.status >= 0; ) {
2067 dl 1.243 for (int h = j.hint | 1, k = 0, i;;) {
2068     if ((v = ws[i = (h + (k << 1)) & m]) != null) {
2069 dl 1.200 if (v.currentSteal == subtask) {
2070     j.hint = i;
2071 dl 1.95 break;
2072     }
2073 dl 1.200 checkSum += v.base;
2074 dl 1.78 }
2075 dl 1.243 if (++k > m) // can't find stealer
2076     break outer;
2077 dl 1.78 }
2078 dl 1.243
2079 dl 1.200 for (;;) { // help v or descend
2080 dl 1.243 ForkJoinTask<?>[] a; int b, al;
2081     if (subtask.status < 0) // too late to help
2082     break descent;
2083 dl 1.200 checkSum += (b = v.base);
2084     ForkJoinTask<?> next = v.currentJoin;
2085 dl 1.243 ForkJoinTask<?> t = null;
2086     if ((a = v.array) != null && (al = a.length) > 0) {
2087 dl 1.256 int index = (al - 1) & b;
2088     long offset = ((long)index << ASHIFT) + ABASE;
2089 dl 1.262 t = (ForkJoinTask<?>)
2090     U.getObjectVolatile(a, offset);
2091 dl 1.243 if (t != null && b++ == v.base) {
2092     if (j.currentJoin != subtask ||
2093     v.currentSteal != subtask ||
2094     subtask.status < 0)
2095     break descent; // stale
2096     if (U.compareAndSwapObject(a, offset, t, null)) {
2097     v.base = b;
2098     w.currentSteal = t;
2099     for (int top = w.top;;) {
2100     t.doExec(); // help
2101     w.currentSteal = ps;
2102     if (task.status < 0)
2103     break outer;
2104     if (w.top == top)
2105     break; // run local tasks
2106     if ((t = w.pop()) == null)
2107     break descent;
2108     w.currentSteal = t;
2109     }
2110     }
2111     }
2112     }
2113     if (t == null && b == v.base && b - v.top >= 0) {
2114     if ((subtask = next) == null) { // try to descend
2115     if (next == v.currentJoin &&
2116     oldSum == (oldSum = checkSum))
2117     break outer;
2118 dl 1.200 break descent;
2119 dl 1.243 }
2120 dl 1.200 j = v;
2121     break;
2122 dl 1.95 }
2123 dl 1.52 }
2124 dl 1.19 }
2125 dl 1.243 }
2126 dl 1.14 }
2127 dl 1.22 }
2128    
2129 dl 1.52 /**
2130 dl 1.200 * Tries to decrement active count (sometimes implicitly) and
2131     * possibly release or create a compensating worker in preparation
2132     * for blocking. Returns false (retryable by caller), on
2133 dl 1.208 * contention, detected staleness, instability, or termination.
2134 dl 1.105 *
2135 dl 1.200 * @param w caller
2136 dl 1.19 */
2137 dl 1.200 private boolean tryCompensate(WorkQueue w) {
2138 dl 1.243 boolean canBlock; int wl;
2139     long c = ctl;
2140     WorkQueue[] ws = workQueues;
2141     int pc = config & SMASK;
2142     int ac = pc + (int)(c >> AC_SHIFT);
2143     int tc = pc + (short)(c >> TC_SHIFT);
2144     if (w == null || w.qlock < 0 || pc == 0 || // terminating or disabled
2145     ws == null || (wl = ws.length) <= 0)
2146 dl 1.200 canBlock = false;
2147     else {
2148 dl 1.243 int m = wl - 1, sp;
2149     boolean busy = true; // validate ac
2150     for (int i = 0; i <= m; ++i) {
2151     int k; WorkQueue v;
2152     if ((k = (i << 1) | 1) <= m && k >= 0 && (v = ws[k]) != null &&
2153     v.scanState >= 0 && v.currentSteal == null) {
2154     busy = false;
2155     break;
2156 dl 1.178 }
2157 dl 1.52 }
2158 dl 1.243 if (!busy || ctl != c)
2159     canBlock = false; // unstable or stale
2160     else if ((sp = (int)c) != 0) // release idle worker
2161     canBlock = tryRelease(c, ws[m & sp], 0L);
2162 dl 1.200 else if (tc >= pc && ac > 1 && w.isEmpty()) {
2163     long nc = ((AC_MASK & (c - AC_UNIT)) |
2164 dl 1.243 (~AC_MASK & c)); // uncompensated
2165 dl 1.200 canBlock = U.compareAndSwapLong(this, CTL, c, nc);
2166 dl 1.105 }
2167 dl 1.208 else if (tc >= MAX_CAP ||
2168 jsr166 1.273 (this == common && tc >= pc + COMMON_MAX_SPARES))
2169 dl 1.200 throw new RejectedExecutionException(
2170     "Thread limit exceeded replacing blocked worker");
2171 dl 1.243 else { // similar to tryAddWorker
2172     boolean isSpare = (tc >= pc);
2173     long nc = (AC_MASK & c) | (TC_MASK & (c + TC_UNIT));
2174     canBlock = (U.compareAndSwapLong(this, CTL, c, nc) &&
2175     createWorker(isSpare)); // throws on exception
2176 dl 1.90 }
2177     }
2178 dl 1.200 return canBlock;
2179 dl 1.90 }
2180    
2181     /**
2182 dl 1.200 * Helps and/or blocks until the given task is done or timeout.
2183 dl 1.90 *
2184 dl 1.200 * @param w caller
2185 dl 1.90 * @param task the task
2186 dl 1.219 * @param deadline for timed waits, if nonzero
2187 dl 1.90 * @return task status on exit
2188     */
2189 dl 1.200 final int awaitJoin(WorkQueue w, ForkJoinTask<?> task, long deadline) {
2190 dl 1.105 int s = 0;
2191 dl 1.243 if (w != null) {
2192 dl 1.200 ForkJoinTask<?> prevJoin = w.currentJoin;
2193 dl 1.243 if (task != null && (s = task.status) >= 0) {
2194     w.currentJoin = task;
2195     CountedCompleter<?> cc = (task instanceof CountedCompleter) ?
2196     (CountedCompleter<?>)task : null;
2197     for (;;) {
2198     if (cc != null)
2199     helpComplete(w, cc, 0);
2200     else
2201     helpStealer(w, task);
2202     if ((s = task.status) < 0)
2203     break;
2204     long ms, ns;
2205     if (deadline == 0L)
2206     ms = 0L;
2207     else if ((ns = deadline - System.nanoTime()) <= 0L)
2208     break;
2209     else if ((ms = TimeUnit.NANOSECONDS.toMillis(ns)) <= 0L)
2210     ms = 1L;
2211     if (tryCompensate(w)) {
2212     task.internalWait(ms);
2213     U.getAndAddLong(this, CTL, AC_UNIT);
2214     }
2215     if ((s = task.status) < 0)
2216     break;
2217 dl 1.90 }
2218 dl 1.243 w.currentJoin = prevJoin;
2219 dl 1.90 }
2220     }
2221 dl 1.94 return s;
2222 dl 1.90 }
2223    
2224 dl 1.200 // Specialized scanning
2225 dl 1.90
2226     /**
2227     * Returns a (probably) non-empty steal queue, if one is found
2228 dl 1.131 * during a scan, else null. This method must be retried by
2229     * caller if, by the time it tries to use the queue, it is empty.
2230 dl 1.78 */
2231 dl 1.178 private WorkQueue findNonEmptyStealQueue() {
2232 dl 1.243 WorkQueue[] ws; int wl; // one-shot version of scan loop
2233 dl 1.211 int r = ThreadLocalRandom.nextSecondarySeed();
2234 dl 1.243 if ((ws = workQueues) != null && (wl = ws.length) > 0) {
2235     int m = wl - 1, origin = r & m;
2236     for (int k = origin, oldSum = 0, checkSum = 0;;) {
2237 dl 1.211 WorkQueue q; int b;
2238     if ((q = ws[k]) != null) {
2239     if ((b = q.base) - q.top < 0)
2240     return q;
2241     checkSum += b;
2242     }
2243     if ((k = (k + 1) & m) == origin) {
2244     if (oldSum == (oldSum = checkSum))
2245     break;
2246     checkSum = 0;
2247 dl 1.52 }
2248     }
2249 dl 1.211 }
2250 dl 1.200 return null;
2251 dl 1.22 }
2252    
2253     /**
2254 dl 1.78 * Runs tasks until {@code isQuiescent()}. We piggyback on
2255     * active count ctl maintenance, but rather than blocking
2256     * when tasks cannot be found, we rescan until all others cannot
2257     * find tasks either.
2258     */
2259     final void helpQuiescePool(WorkQueue w) {
2260 dl 1.211 ForkJoinTask<?> ps = w.currentSteal; // save context
2261 dl 1.243 int wc = w.config;
2262 dl 1.78 for (boolean active = true;;) {
2263 dl 1.243 long c; WorkQueue q; ForkJoinTask<?> t;
2264     if (wc >= 0 && (t = w.pop()) != null) { // run locals if LIFO
2265     (w.currentSteal = t).doExec();
2266     w.currentSteal = ps;
2267     }
2268     else if ((q = findNonEmptyStealQueue()) != null) {
2269 dl 1.78 if (!active) { // re-establish active count
2270     active = true;
2271 dl 1.200 U.getAndAddLong(this, CTL, AC_UNIT);
2272     }
2273 dl 1.243 if ((t = q.pollAt(q.base)) != null) {
2274     (w.currentSteal = t).doExec();
2275     w.currentSteal = ps;
2276 dl 1.215 if (++w.nsteals < 0)
2277     w.transferStealCount(this);
2278 dl 1.178 }
2279 dl 1.78 }
2280 jsr166 1.194 else if (active) { // decrement active count without queuing
2281 dl 1.200 long nc = (AC_MASK & ((c = ctl) - AC_UNIT)) | (~AC_MASK & c);
2282 dl 1.131 if (U.compareAndSwapLong(this, CTL, c, nc))
2283 dl 1.78 active = false;
2284 dl 1.22 }
2285 dl 1.200 else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) <= 0 &&
2286     U.compareAndSwapLong(this, CTL, c, c + AC_UNIT))
2287 dl 1.185 break;
2288 dl 1.22 }
2289     }
2290    
2291     /**
2292 jsr166 1.84 * Gets and removes a local or stolen task for the given worker.
2293 dl 1.78 *
2294     * @return a task, if available
2295 dl 1.22 */
2296 dl 1.78 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2297     for (ForkJoinTask<?> t;;) {
2298 dl 1.243 WorkQueue q;
2299 dl 1.78 if ((t = w.nextLocalTask()) != null)
2300     return t;
2301 dl 1.178 if ((q = findNonEmptyStealQueue()) == null)
2302 dl 1.78 return null;
2303 dl 1.243 if ((t = q.pollAt(q.base)) != null)
2304 dl 1.78 return t;
2305 dl 1.52 }
2306 dl 1.14 }
2307    
2308     /**
2309 dl 1.105 * Returns a cheap heuristic guide for task partitioning when
2310     * programmers, frameworks, tools, or languages have little or no
2311 jsr166 1.222 * idea about task granularity. In essence, by offering this
2312 dl 1.105 * method, we ask users only about tradeoffs in overhead vs
2313     * expected throughput and its variance, rather than how finely to
2314     * partition tasks.
2315     *
2316     * In a steady state strict (tree-structured) computation, each
2317     * thread makes available for stealing enough tasks for other
2318     * threads to remain active. Inductively, if all threads play by
2319     * the same rules, each thread should make available only a
2320     * constant number of tasks.
2321     *
2322     * The minimum useful constant is just 1. But using a value of 1
2323     * would require immediate replenishment upon each steal to
2324     * maintain enough tasks, which is infeasible. Further,
2325     * partitionings/granularities of offered tasks should minimize
2326     * steal rates, which in general means that threads nearer the top
2327     * of computation tree should generate more than those nearer the
2328     * bottom. In perfect steady state, each thread is at
2329     * approximately the same level of computation tree. However,
2330     * producing extra tasks amortizes the uncertainty of progress and
2331     * diffusion assumptions.
2332     *
2333 jsr166 1.161 * So, users will want to use values larger (but not much larger)
2334 dl 1.105 * than 1 to both smooth over transient shortages and hedge
2335     * against uneven progress; as traded off against the cost of
2336     * extra task overhead. We leave the user to pick a threshold
2337     * value to compare with the results of this call to guide
2338     * decisions, but recommend values such as 3.
2339     *
2340     * When all threads are active, it is on average OK to estimate
2341     * surplus strictly locally. In steady-state, if one thread is
2342     * maintaining say 2 surplus tasks, then so are others. So we can
2343     * just use estimated queue length. However, this strategy alone
2344     * leads to serious mis-estimates in some non-steady-state
2345     * conditions (ramp-up, ramp-down, other stalls). We can detect
2346     * many of these by further considering the number of "idle"
2347     * threads, that are known to have zero queued tasks, so
2348     * compensate by a factor of (#idle/#active) threads.
2349     */
2350     static int getSurplusQueuedTaskCount() {
2351     Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2352 jsr166 1.229 if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) {
2353 dl 1.243 int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2354 dl 1.112 int n = (q = wt.workQueue).top - q.base;
2355 dl 1.105 int a = (int)(pool.ctl >> AC_SHIFT) + p;
2356 dl 1.112 return n - (a > (p >>>= 1) ? 0 :
2357     a > (p >>>= 1) ? 1 :
2358     a > (p >>>= 1) ? 2 :
2359     a > (p >>>= 1) ? 4 :
2360     8);
2361 dl 1.105 }
2362     return 0;
2363 dl 1.100 }
2364    
2365 dl 1.86 // Termination
2366 dl 1.14
2367     /**
2368 dl 1.210 * Possibly initiates and/or completes termination.
2369 dl 1.14 *
2370     * @param now if true, unconditionally terminate, else only
2371 dl 1.78 * if no work and no active workers
2372 dl 1.243 * @param enable if true, terminate when next possible
2373 dl 1.294 * @return -1: terminating/terminated, 0: retry if internal caller, else 1
2374 jsr166 1.1 */
2375 dl 1.286 private int tryTerminate(boolean now, boolean enable) {
2376 dl 1.294 int rs; // 3 phases: try to set SHUTDOWN, then STOP, then TERMINATED
2377 dl 1.289
2378 dl 1.294 while ((rs = runState) >= 0) {
2379     if (!enable || this == common) // cannot shutdown
2380 dl 1.289 return 1;
2381 dl 1.294 else if (rs == 0)
2382     tryInitialize(false); // ensure initialized
2383     else
2384     U.compareAndSwapInt(this, RUNSTATE, rs, rs | SHUTDOWN);
2385 dl 1.289 }
2386    
2387 dl 1.294 if ((rs & STOP) == 0) { // try to initiate termination
2388 dl 1.210 if (!now) { // check quiescence
2389 dl 1.211 for (long oldSum = 0L;;) { // repeat until stable
2390 dl 1.289 WorkQueue[] ws; WorkQueue w; int b;
2391 dl 1.210 long checkSum = ctl;
2392     if ((int)(checkSum >> AC_SHIFT) + (config & SMASK) > 0)
2393 dl 1.286 return 0; // still active workers
2394 dl 1.289 if ((ws = workQueues) != null) {
2395     for (int i = 0; i < ws.length; ++i) {
2396     if ((w = ws[i]) != null) {
2397     checkSum += (b = w.base);
2398     if (w.currentSteal != null || b != w.top)
2399     return 0; // retry if internal caller
2400     }
2401 dl 1.206 }
2402 dl 1.203 }
2403 dl 1.286 if (oldSum == (oldSum = checkSum))
2404 dl 1.210 break;
2405 dl 1.203 }
2406     }
2407 dl 1.294 do {} while (!U.compareAndSwapInt(this, RUNSTATE,
2408     rs = runState, rs | STOP));
2409 dl 1.200 }
2410 dl 1.210
2411 dl 1.289 for (long oldSum = 0L;;) { // repeat until stable
2412     WorkQueue[] ws; WorkQueue w; ForkJoinWorkerThread wt;
2413 dl 1.210 long checkSum = ctl;
2414 dl 1.289 if ((ws = workQueues) != null) { // help terminate others
2415     for (int i = 0; i < ws.length; ++i) {
2416     if ((w = ws[i]) != null) {
2417     w.cancelAll(); // clear queues
2418     checkSum += w.base;
2419     if (w.qlock >= 0) {
2420     w.qlock = -1; // racy set OK
2421     if ((wt = w.owner) != null) {
2422     try { // unblock join or park
2423 dl 1.210 wt.interrupt();
2424     } catch (Throwable ignore) {
2425 dl 1.200 }
2426     }
2427     }
2428 dl 1.101 }
2429 dl 1.78 }
2430     }
2431 dl 1.289 if (oldSum == (oldSum = checkSum))
2432 dl 1.210 break;
2433 dl 1.289 }
2434    
2435     if ((short)(ctl >>> TC_SHIFT) + (config & SMASK) <= 0) {
2436 dl 1.294 runState = (STARTED | SHUTDOWN | STOP | TERMINATED); // final write
2437 dl 1.289 synchronized (this) {
2438     notifyAll(); // for awaitTermination
2439 dl 1.200 }
2440     }
2441 dl 1.289
2442 dl 1.286 return -1;
2443 dl 1.200 }
2444    
2445     // External operations
2446    
2447     /**
2448 dl 1.243 * Constructs and tries to install a new external queue,
2449     * failing if the workQueues array already has a queue at
2450 jsr166 1.245 * the given index.
2451 dl 1.243 *
2452     * @param index the index of the new queue
2453     */
2454     private void tryCreateExternalQueue(int index) {
2455 dl 1.262 AuxState aux;
2456     if ((aux = auxState) != null && index >= 0) {
2457 dl 1.243 WorkQueue q = new WorkQueue(this, null);
2458     q.config = index;
2459     q.scanState = ~UNSIGNALLED;
2460 dl 1.256 q.qlock = 1; // lock queue
2461     boolean installed = false;
2462 dl 1.262 aux.lock();
2463 dl 1.294 try { // lock pool to install
2464 dl 1.243 WorkQueue[] ws;
2465     if ((ws = workQueues) != null && index < ws.length &&
2466     ws[index] == null) {
2467 dl 1.256 ws[index] = q; // else throw away
2468     installed = true;
2469     }
2470 dl 1.262 } finally {
2471     aux.unlock();
2472 dl 1.256 }
2473     if (installed) {
2474     try {
2475     q.growArray();
2476     } finally {
2477     q.qlock = 0;
2478 dl 1.243 }
2479     }
2480     }
2481     }
2482    
2483     /**
2484     * Adds the given task to a submission queue at submitter's
2485     * current queue. Also performs secondary initialization upon the
2486     * first submission of the first task to the pool, and detects
2487 dl 1.200 * first submission by an external thread and creates a new shared
2488     * queue if the one at index if empty or contended.
2489     *
2490     * @param task the task. Caller must ensure non-null.
2491     */
2492 dl 1.243 final void externalPush(ForkJoinTask<?> task) {
2493 dl 1.256 int r; // initialize caller's probe
2494 dl 1.200 if ((r = ThreadLocalRandom.getProbe()) == 0) {
2495     ThreadLocalRandom.localInit();
2496     r = ThreadLocalRandom.getProbe();
2497     }
2498     for (;;) {
2499 dl 1.256 WorkQueue q; int wl, k, stat;
2500 dl 1.243 int rs = runState;
2501     WorkQueue[] ws = workQueues;
2502     if (rs <= 0 || ws == null || (wl = ws.length) <= 0)
2503 dl 1.258 tryInitialize(true);
2504 dl 1.243 else if ((q = ws[k = (wl - 1) & r & SQMASK]) == null)
2505     tryCreateExternalQueue(k);
2506 dl 1.294 else if ((stat = q.sharedPush(task)) < 0)
2507     break;
2508     else if (stat == 0) {
2509     signalWork();
2510 dl 1.256 break;
2511 dl 1.200 }
2512 dl 1.256 else // move if busy
2513 dl 1.200 r = ThreadLocalRandom.advanceProbe(r);
2514 dl 1.52 }
2515     }
2516 jsr166 1.283
2517 dl 1.200 /**
2518 jsr166 1.237 * Pushes a possibly-external submission.
2519 dl 1.236 */
2520 dl 1.243 private <T> ForkJoinTask<T> externalSubmit(ForkJoinTask<T> task) {
2521     Thread t; ForkJoinWorkerThread w; WorkQueue q;
2522 dl 1.236 if (task == null)
2523     throw new NullPointerException();
2524     if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) &&
2525 dl 1.243 (w = (ForkJoinWorkerThread)t).pool == this &&
2526     (q = w.workQueue) != null)
2527     q.push(task);
2528 jsr166 1.238 else
2529 dl 1.236 externalPush(task);
2530     return task;
2531     }
2532    
2533     /**
2534 jsr166 1.213 * Returns common pool queue for an external thread.
2535 dl 1.105 */
2536     static WorkQueue commonSubmitterQueue() {
2537 dl 1.200 ForkJoinPool p = common;
2538     int r = ThreadLocalRandom.getProbe();
2539 dl 1.243 WorkQueue[] ws; int wl;
2540 dl 1.200 return (p != null && (ws = p.workQueues) != null &&
2541 dl 1.243 (wl = ws.length) > 0) ?
2542     ws[(wl - 1) & r & SQMASK] : null;
2543 dl 1.105 }
2544    
2545     /**
2546 jsr166 1.246 * Performs tryUnpush for an external submitter.
2547 dl 1.105 */
2548 dl 1.178 final boolean tryExternalUnpush(ForkJoinTask<?> task) {
2549 dl 1.200 int r = ThreadLocalRandom.getProbe();
2550 dl 1.243 WorkQueue[] ws; WorkQueue w; int wl;
2551     return ((ws = workQueues) != null &&
2552     (wl = ws.length) > 0 &&
2553     (w = ws[(wl - 1) & r & SQMASK]) != null &&
2554     w.trySharedUnpush(task));
2555 dl 1.105 }
2556    
2557 dl 1.200 /**
2558 jsr166 1.213 * Performs helpComplete for an external submitter.
2559 dl 1.200 */
2560 dl 1.190 final int externalHelpComplete(CountedCompleter<?> task, int maxTasks) {
2561 dl 1.243 WorkQueue[] ws; int wl;
2562 dl 1.200 int r = ThreadLocalRandom.getProbe();
2563 dl 1.243 return ((ws = workQueues) != null && (wl = ws.length) > 0) ?
2564     helpComplete(ws[(wl - 1) & r & SQMASK], task, maxTasks) : 0;
2565 dl 1.105 }
2566    
2567 dl 1.52 // Exported methods
2568 jsr166 1.1
2569     // Constructors
2570    
2571     /**
2572 jsr166 1.9 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2573 dl 1.18 * java.lang.Runtime#availableProcessors}, using the {@linkplain
2574     * #defaultForkJoinWorkerThreadFactory default thread factory},
2575     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2576 jsr166 1.1 *
2577     * @throws SecurityException if a security manager exists and
2578     * the caller is not permitted to modify threads
2579     * because it does not hold {@link
2580     * java.lang.RuntimePermission}{@code ("modifyThread")}
2581     */
2582     public ForkJoinPool() {
2583 jsr166 1.148 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2584     defaultForkJoinWorkerThreadFactory, null, false);
2585 jsr166 1.1 }
2586    
2587     /**
2588 jsr166 1.9 * Creates a {@code ForkJoinPool} with the indicated parallelism
2589 dl 1.18 * level, the {@linkplain
2590     * #defaultForkJoinWorkerThreadFactory default thread factory},
2591     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2592 jsr166 1.1 *
2593 jsr166 1.9 * @param parallelism the parallelism level
2594 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
2595 jsr166 1.11 * equal to zero, or greater than implementation limit
2596 jsr166 1.1 * @throws SecurityException if a security manager exists and
2597     * the caller is not permitted to modify threads
2598     * because it does not hold {@link
2599     * java.lang.RuntimePermission}{@code ("modifyThread")}
2600     */
2601     public ForkJoinPool(int parallelism) {
2602 dl 1.18 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2603 jsr166 1.1 }
2604    
2605     /**
2606 dl 1.18 * Creates a {@code ForkJoinPool} with the given parameters.
2607 jsr166 1.1 *
2608 dl 1.18 * @param parallelism the parallelism level. For default value,
2609     * use {@link java.lang.Runtime#availableProcessors}.
2610     * @param factory the factory for creating new threads. For default value,
2611     * use {@link #defaultForkJoinWorkerThreadFactory}.
2612 dl 1.19 * @param handler the handler for internal worker threads that
2613     * terminate due to unrecoverable errors encountered while executing
2614 jsr166 1.31 * tasks. For default value, use {@code null}.
2615 dl 1.19 * @param asyncMode if true,
2616 dl 1.18 * establishes local first-in-first-out scheduling mode for forked
2617     * tasks that are never joined. This mode may be more appropriate
2618     * than default locally stack-based mode in applications in which
2619     * worker threads only process event-style asynchronous tasks.
2620 jsr166 1.31 * For default value, use {@code false}.
2621 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
2622 jsr166 1.11 * equal to zero, or greater than implementation limit
2623     * @throws NullPointerException if the factory is null
2624 jsr166 1.1 * @throws SecurityException if a security manager exists and
2625     * the caller is not permitted to modify threads
2626     * because it does not hold {@link
2627     * java.lang.RuntimePermission}{@code ("modifyThread")}
2628     */
2629 dl 1.19 public ForkJoinPool(int parallelism,
2630 dl 1.18 ForkJoinWorkerThreadFactory factory,
2631 jsr166 1.156 UncaughtExceptionHandler handler,
2632 dl 1.18 boolean asyncMode) {
2633 dl 1.152 this(checkParallelism(parallelism),
2634     checkFactory(factory),
2635     handler,
2636 jsr166 1.201 asyncMode ? FIFO_QUEUE : LIFO_QUEUE,
2637 dl 1.152 "ForkJoinPool-" + nextPoolId() + "-worker-");
2638 dl 1.14 checkPermission();
2639 dl 1.152 }
2640    
2641     private static int checkParallelism(int parallelism) {
2642     if (parallelism <= 0 || parallelism > MAX_CAP)
2643     throw new IllegalArgumentException();
2644     return parallelism;
2645     }
2646    
2647     private static ForkJoinWorkerThreadFactory checkFactory
2648     (ForkJoinWorkerThreadFactory factory) {
2649 dl 1.14 if (factory == null)
2650     throw new NullPointerException();
2651 dl 1.152 return factory;
2652     }
2653    
2654     /**
2655     * Creates a {@code ForkJoinPool} with the given parameters, without
2656     * any security checks or parameter validation. Invoked directly by
2657     * makeCommonPool.
2658     */
2659     private ForkJoinPool(int parallelism,
2660     ForkJoinWorkerThreadFactory factory,
2661 jsr166 1.156 UncaughtExceptionHandler handler,
2662 dl 1.185 int mode,
2663 dl 1.152 String workerNamePrefix) {
2664     this.workerNamePrefix = workerNamePrefix;
2665 jsr166 1.1 this.factory = factory;
2666 dl 1.18 this.ueh = handler;
2667 dl 1.200 this.config = (parallelism & SMASK) | mode;
2668 dl 1.52 long np = (long)(-parallelism); // offset ctl counts
2669     this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2670 dl 1.101 }
2671    
2672     /**
2673 dl 1.128 * Returns the common pool instance. This pool is statically
2674 dl 1.134 * constructed; its run state is unaffected by attempts to {@link
2675     * #shutdown} or {@link #shutdownNow}. However this pool and any
2676     * ongoing processing are automatically terminated upon program
2677     * {@link System#exit}. Any program that relies on asynchronous
2678     * task processing to complete before program termination should
2679 jsr166 1.158 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2680     * before exit.
2681 dl 1.100 *
2682     * @return the common pool instance
2683 jsr166 1.138 * @since 1.8
2684 dl 1.100 */
2685     public static ForkJoinPool commonPool() {
2686 dl 1.134 // assert common != null : "static init error";
2687     return common;
2688 dl 1.100 }
2689    
2690 jsr166 1.1 // Execution methods
2691    
2692     /**
2693     * Performs the given task, returning its result upon completion.
2694 dl 1.52 * If the computation encounters an unchecked Exception or Error,
2695     * it is rethrown as the outcome of this invocation. Rethrown
2696     * exceptions behave in the same way as regular exceptions, but,
2697     * when possible, contain stack traces (as displayed for example
2698     * using {@code ex.printStackTrace()}) of both the current thread
2699     * as well as the thread actually encountering the exception;
2700     * minimally only the latter.
2701 jsr166 1.1 *
2702     * @param task the task
2703 jsr166 1.191 * @param <T> the type of the task's result
2704 jsr166 1.1 * @return the task's result
2705 jsr166 1.11 * @throws NullPointerException if the task is null
2706     * @throws RejectedExecutionException if the task cannot be
2707     * scheduled for execution
2708 jsr166 1.1 */
2709     public <T> T invoke(ForkJoinTask<T> task) {
2710 dl 1.90 if (task == null)
2711     throw new NullPointerException();
2712 dl 1.243 externalSubmit(task);
2713 dl 1.78 return task.join();
2714 jsr166 1.1 }
2715    
2716     /**
2717     * Arranges for (asynchronous) execution of the given task.
2718     *
2719     * @param task the task
2720 jsr166 1.11 * @throws NullPointerException if the task is null
2721     * @throws RejectedExecutionException if the task cannot be
2722     * scheduled for execution
2723 jsr166 1.1 */
2724 jsr166 1.8 public void execute(ForkJoinTask<?> task) {
2725 dl 1.243 externalSubmit(task);
2726 jsr166 1.1 }
2727    
2728     // AbstractExecutorService methods
2729    
2730 jsr166 1.11 /**
2731     * @throws NullPointerException if the task is null
2732     * @throws RejectedExecutionException if the task cannot be
2733     * scheduled for execution
2734     */
2735 jsr166 1.1 public void execute(Runnable task) {
2736 dl 1.41 if (task == null)
2737     throw new NullPointerException();
2738 jsr166 1.2 ForkJoinTask<?> job;
2739 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2740     job = (ForkJoinTask<?>) task;
2741 jsr166 1.2 else
2742 dl 1.152 job = new ForkJoinTask.RunnableExecuteAction(task);
2743 dl 1.243 externalSubmit(job);
2744 jsr166 1.1 }
2745    
2746 jsr166 1.11 /**
2747 dl 1.18 * Submits a ForkJoinTask for execution.
2748     *
2749     * @param task the task to submit
2750 jsr166 1.191 * @param <T> the type of the task's result
2751 dl 1.18 * @return the task
2752     * @throws NullPointerException if the task is null
2753     * @throws RejectedExecutionException if the task cannot be
2754     * scheduled for execution
2755     */
2756     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2757 dl 1.243 return externalSubmit(task);
2758 dl 1.18 }
2759    
2760     /**
2761 jsr166 1.11 * @throws NullPointerException if the task is null
2762     * @throws RejectedExecutionException if the task cannot be
2763     * scheduled for execution
2764     */
2765 jsr166 1.1 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2766 dl 1.243 return externalSubmit(new ForkJoinTask.AdaptedCallable<T>(task));
2767 jsr166 1.1 }
2768    
2769 jsr166 1.11 /**
2770     * @throws NullPointerException if the task is null
2771     * @throws RejectedExecutionException if the task cannot be
2772     * scheduled for execution
2773     */
2774 jsr166 1.1 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2775 dl 1.243 return externalSubmit(new ForkJoinTask.AdaptedRunnable<T>(task, result));
2776 jsr166 1.1 }
2777    
2778 jsr166 1.11 /**
2779     * @throws NullPointerException if the task is null
2780     * @throws RejectedExecutionException if the task cannot be
2781     * scheduled for execution
2782     */
2783 jsr166 1.1 public ForkJoinTask<?> submit(Runnable task) {
2784 dl 1.41 if (task == null)
2785     throw new NullPointerException();
2786 jsr166 1.2 ForkJoinTask<?> job;
2787 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2788     job = (ForkJoinTask<?>) task;
2789 jsr166 1.2 else
2790 dl 1.90 job = new ForkJoinTask.AdaptedRunnableAction(task);
2791 dl 1.243 return externalSubmit(job);
2792 jsr166 1.1 }
2793    
2794     /**
2795 jsr166 1.11 * @throws NullPointerException {@inheritDoc}
2796     * @throws RejectedExecutionException {@inheritDoc}
2797     */
2798 jsr166 1.1 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2799 dl 1.86 // In previous versions of this class, this method constructed
2800     // a task to run ForkJoinTask.invokeAll, but now external
2801     // invocation of multiple tasks is at least as efficient.
2802 jsr166 1.199 ArrayList<Future<T>> futures = new ArrayList<>(tasks.size());
2803 jsr166 1.1
2804 dl 1.86 try {
2805     for (Callable<T> t : tasks) {
2806 dl 1.90 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2807 jsr166 1.144 futures.add(f);
2808 dl 1.243 externalSubmit(f);
2809 dl 1.86 }
2810 jsr166 1.143 for (int i = 0, size = futures.size(); i < size; i++)
2811     ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2812 dl 1.86 return futures;
2813 jsr166 1.226 } catch (Throwable t) {
2814     for (int i = 0, size = futures.size(); i < size; i++)
2815     futures.get(i).cancel(false);
2816     throw t;
2817 jsr166 1.1 }
2818     }
2819    
2820     /**
2821     * Returns the factory used for constructing new workers.
2822     *
2823     * @return the factory used for constructing new workers
2824     */
2825     public ForkJoinWorkerThreadFactory getFactory() {
2826     return factory;
2827     }
2828    
2829     /**
2830     * Returns the handler for internal worker threads that terminate
2831     * due to unrecoverable errors encountered while executing tasks.
2832     *
2833 jsr166 1.4 * @return the handler, or {@code null} if none
2834 jsr166 1.1 */
2835 jsr166 1.156 public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2836 dl 1.14 return ueh;
2837 jsr166 1.1 }
2838    
2839     /**
2840 jsr166 1.9 * Returns the targeted parallelism level of this pool.
2841 jsr166 1.1 *
2842 jsr166 1.9 * @return the targeted parallelism level of this pool
2843 jsr166 1.1 */
2844     public int getParallelism() {
2845 dl 1.185 int par;
2846 dl 1.200 return ((par = config & SMASK) > 0) ? par : 1;
2847 jsr166 1.1 }
2848    
2849     /**
2850 dl 1.100 * Returns the targeted parallelism level of the common pool.
2851     *
2852     * @return the targeted parallelism level of the common pool
2853 jsr166 1.138 * @since 1.8
2854 dl 1.100 */
2855     public static int getCommonPoolParallelism() {
2856 jsr166 1.274 return COMMON_PARALLELISM;
2857 dl 1.100 }
2858    
2859     /**
2860 jsr166 1.1 * Returns the number of worker threads that have started but not
2861 jsr166 1.34 * yet terminated. The result returned by this method may differ
2862 jsr166 1.4 * from {@link #getParallelism} when threads are created to
2863 jsr166 1.1 * maintain parallelism when others are cooperatively blocked.
2864     *
2865     * @return the number of worker threads
2866     */
2867     public int getPoolSize() {
2868 dl 1.200 return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2869 jsr166 1.1 }
2870    
2871     /**
2872 jsr166 1.4 * Returns {@code true} if this pool uses local first-in-first-out
2873 jsr166 1.1 * scheduling mode for forked tasks that are never joined.
2874     *
2875 jsr166 1.4 * @return {@code true} if this pool uses async mode
2876 jsr166 1.1 */
2877     public boolean getAsyncMode() {
2878 dl 1.200 return (config & FIFO_QUEUE) != 0;
2879 jsr166 1.1 }
2880    
2881     /**
2882     * Returns an estimate of the number of worker threads that are
2883     * not blocked waiting to join tasks or for other managed
2884 dl 1.14 * synchronization. This method may overestimate the
2885     * number of running threads.
2886 jsr166 1.1 *
2887     * @return the number of worker threads
2888     */
2889     public int getRunningThreadCount() {
2890 dl 1.78 int rc = 0;
2891     WorkQueue[] ws; WorkQueue w;
2892     if ((ws = workQueues) != null) {
2893 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2894     if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2895 dl 1.78 ++rc;
2896     }
2897     }
2898     return rc;
2899 jsr166 1.1 }
2900    
2901     /**
2902     * Returns an estimate of the number of threads that are currently
2903     * stealing or executing tasks. This method may overestimate the
2904     * number of active threads.
2905     *
2906     * @return the number of active threads
2907     */
2908     public int getActiveThreadCount() {
2909 dl 1.200 int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2910 jsr166 1.63 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2911 jsr166 1.1 }
2912    
2913     /**
2914 jsr166 1.4 * Returns {@code true} if all worker threads are currently idle.
2915     * An idle worker is one that cannot obtain a task to execute
2916     * because none are available to steal from other threads, and
2917     * there are no pending submissions to the pool. This method is
2918     * conservative; it might not return {@code true} immediately upon
2919     * idleness of all threads, but will eventually become true if
2920     * threads remain inactive.
2921 jsr166 1.1 *
2922 jsr166 1.4 * @return {@code true} if all threads are currently idle
2923 jsr166 1.1 */
2924     public boolean isQuiescent() {
2925 dl 1.200 return (config & SMASK) + (int)(ctl >> AC_SHIFT) <= 0;
2926 jsr166 1.1 }
2927    
2928     /**
2929     * Returns an estimate of the total number of tasks stolen from
2930     * one thread's work queue by another. The reported value
2931     * underestimates the actual total number of steals when the pool
2932     * is not quiescent. This value may be useful for monitoring and
2933     * tuning fork/join programs: in general, steal counts should be
2934     * high enough to keep threads busy, but low enough to avoid
2935     * overhead and contention across threads.
2936     *
2937     * @return the number of steals
2938     */
2939     public long getStealCount() {
2940 dl 1.262 AuxState sc = auxState;
2941     long count = (sc == null) ? 0L : sc.stealCount;
2942 dl 1.78 WorkQueue[] ws; WorkQueue w;
2943     if ((ws = workQueues) != null) {
2944 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2945 dl 1.78 if ((w = ws[i]) != null)
2946 dl 1.105 count += w.nsteals;
2947 dl 1.78 }
2948     }
2949     return count;
2950 jsr166 1.1 }
2951    
2952     /**
2953     * Returns an estimate of the total number of tasks currently held
2954     * in queues by worker threads (but not including tasks submitted
2955     * to the pool that have not begun executing). This value is only
2956     * an approximation, obtained by iterating across all threads in
2957     * the pool. This method may be useful for tuning task
2958     * granularities.
2959     *
2960     * @return the number of queued tasks
2961     */
2962     public long getQueuedTaskCount() {
2963     long count = 0;
2964 dl 1.78 WorkQueue[] ws; WorkQueue w;
2965     if ((ws = workQueues) != null) {
2966 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2967 dl 1.78 if ((w = ws[i]) != null)
2968     count += w.queueSize();
2969     }
2970 dl 1.52 }
2971 jsr166 1.1 return count;
2972     }
2973    
2974     /**
2975 jsr166 1.8 * Returns an estimate of the number of tasks submitted to this
2976 dl 1.55 * pool that have not yet begun executing. This method may take
2977 dl 1.52 * time proportional to the number of submissions.
2978 jsr166 1.1 *
2979     * @return the number of queued submissions
2980     */
2981     public int getQueuedSubmissionCount() {
2982 dl 1.78 int count = 0;
2983     WorkQueue[] ws; WorkQueue w;
2984     if ((ws = workQueues) != null) {
2985 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2986 dl 1.78 if ((w = ws[i]) != null)
2987     count += w.queueSize();
2988     }
2989     }
2990     return count;
2991 jsr166 1.1 }
2992    
2993     /**
2994 jsr166 1.4 * Returns {@code true} if there are any tasks submitted to this
2995     * pool that have not yet begun executing.
2996 jsr166 1.1 *
2997     * @return {@code true} if there are any queued submissions
2998     */
2999     public boolean hasQueuedSubmissions() {
3000 dl 1.78 WorkQueue[] ws; WorkQueue w;
3001     if ((ws = workQueues) != null) {
3002 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
3003 dl 1.115 if ((w = ws[i]) != null && !w.isEmpty())
3004 dl 1.78 return true;
3005     }
3006     }
3007     return false;
3008 jsr166 1.1 }
3009    
3010     /**
3011     * Removes and returns the next unexecuted submission if one is
3012     * available. This method may be useful in extensions to this
3013     * class that re-assign work in systems with multiple pools.
3014     *
3015 jsr166 1.4 * @return the next submission, or {@code null} if none
3016 jsr166 1.1 */
3017     protected ForkJoinTask<?> pollSubmission() {
3018 dl 1.253 WorkQueue[] ws; int wl; WorkQueue w; ForkJoinTask<?> t;
3019     int r = ThreadLocalRandom.nextSecondarySeed();
3020     if ((ws = workQueues) != null && (wl = ws.length) > 0) {
3021     for (int m = wl - 1, i = 0; i < wl; ++i) {
3022     if ((w = ws[(i << 1) & m]) != null && (t = w.poll()) != null)
3023 dl 1.78 return t;
3024 dl 1.52 }
3025     }
3026     return null;
3027 jsr166 1.1 }
3028    
3029     /**
3030     * Removes all available unexecuted submitted and forked tasks
3031     * from scheduling queues and adds them to the given collection,
3032     * without altering their execution status. These may include
3033 jsr166 1.8 * artificially generated or wrapped tasks. This method is
3034     * designed to be invoked only when the pool is known to be
3035 jsr166 1.1 * quiescent. Invocations at other times may not remove all
3036     * tasks. A failure encountered while attempting to add elements
3037     * to collection {@code c} may result in elements being in
3038     * neither, either or both collections when the associated
3039     * exception is thrown. The behavior of this operation is
3040     * undefined if the specified collection is modified while the
3041     * operation is in progress.
3042     *
3043     * @param c the collection to transfer elements into
3044     * @return the number of elements transferred
3045     */
3046 jsr166 1.5 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
3047 dl 1.52 int count = 0;
3048 dl 1.78 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
3049     if ((ws = workQueues) != null) {
3050 dl 1.86 for (int i = 0; i < ws.length; ++i) {
3051 dl 1.78 if ((w = ws[i]) != null) {
3052     while ((t = w.poll()) != null) {
3053     c.add(t);
3054     ++count;
3055     }
3056     }
3057 dl 1.52 }
3058     }
3059 dl 1.18 return count;
3060     }
3061    
3062     /**
3063 jsr166 1.1 * Returns a string identifying this pool, as well as its state,
3064     * including indications of run state, parallelism level, and
3065     * worker and task counts.
3066     *
3067     * @return a string identifying this pool, as well as its state
3068     */
3069     public String toString() {
3070 dl 1.86 // Use a single pass through workQueues to collect counts
3071     long qt = 0L, qs = 0L; int rc = 0;
3072 dl 1.262 AuxState sc = auxState;
3073     long st = (sc == null) ? 0L : sc.stealCount;
3074 dl 1.86 long c = ctl;
3075     WorkQueue[] ws; WorkQueue w;
3076     if ((ws = workQueues) != null) {
3077     for (int i = 0; i < ws.length; ++i) {
3078     if ((w = ws[i]) != null) {
3079     int size = w.queueSize();
3080     if ((i & 1) == 0)
3081     qs += size;
3082     else {
3083     qt += size;
3084 dl 1.105 st += w.nsteals;
3085 dl 1.86 if (w.isApparentlyUnblocked())
3086     ++rc;
3087     }
3088     }
3089     }
3090     }
3091 dl 1.200 int pc = (config & SMASK);
3092 dl 1.52 int tc = pc + (short)(c >>> TC_SHIFT);
3093 dl 1.78 int ac = pc + (int)(c >> AC_SHIFT);
3094     if (ac < 0) // ignore transient negative
3095     ac = 0;
3096 dl 1.200 int rs = runState;
3097     String level = ((rs & TERMINATED) != 0 ? "Terminated" :
3098     (rs & STOP) != 0 ? "Terminating" :
3099     (rs & SHUTDOWN) != 0 ? "Shutting down" :
3100     "Running");
3101 jsr166 1.1 return super.toString() +
3102 dl 1.52 "[" + level +
3103 dl 1.14 ", parallelism = " + pc +
3104     ", size = " + tc +
3105     ", active = " + ac +
3106     ", running = " + rc +
3107 jsr166 1.1 ", steals = " + st +
3108     ", tasks = " + qt +
3109     ", submissions = " + qs +
3110     "]";
3111     }
3112    
3113     /**
3114 dl 1.100 * Possibly initiates an orderly shutdown in which previously
3115     * submitted tasks are executed, but no new tasks will be
3116     * accepted. Invocation has no effect on execution state if this
3117 jsr166 1.137 * is the {@link #commonPool()}, and no additional effect if
3118 dl 1.100 * already shut down. Tasks that are in the process of being
3119     * submitted concurrently during the course of this method may or
3120     * may not be rejected.
3121 jsr166 1.1 *
3122     * @throws SecurityException if a security manager exists and
3123     * the caller is not permitted to modify threads
3124     * because it does not hold {@link
3125     * java.lang.RuntimePermission}{@code ("modifyThread")}
3126     */
3127     public void shutdown() {
3128     checkPermission();
3129 dl 1.105 tryTerminate(false, true);
3130 jsr166 1.1 }
3131    
3132     /**
3133 dl 1.100 * Possibly attempts to cancel and/or stop all tasks, and reject
3134     * all subsequently submitted tasks. Invocation has no effect on
3135 jsr166 1.137 * execution state if this is the {@link #commonPool()}, and no
3136 dl 1.100 * additional effect if already shut down. Otherwise, tasks that
3137     * are in the process of being submitted or executed concurrently
3138     * during the course of this method may or may not be
3139     * rejected. This method cancels both existing and unexecuted
3140     * tasks, in order to permit termination in the presence of task
3141     * dependencies. So the method always returns an empty list
3142     * (unlike the case for some other Executors).
3143 jsr166 1.1 *
3144     * @return an empty list
3145     * @throws SecurityException if a security manager exists and
3146     * the caller is not permitted to modify threads
3147     * because it does not hold {@link
3148     * java.lang.RuntimePermission}{@code ("modifyThread")}
3149     */
3150     public List<Runnable> shutdownNow() {
3151     checkPermission();
3152 dl 1.105 tryTerminate(true, true);
3153 jsr166 1.1 return Collections.emptyList();
3154     }
3155    
3156     /**
3157     * Returns {@code true} if all tasks have completed following shut down.
3158     *
3159     * @return {@code true} if all tasks have completed following shut down
3160     */
3161     public boolean isTerminated() {
3162 dl 1.200 return (runState & TERMINATED) != 0;
3163 jsr166 1.1 }
3164    
3165     /**
3166     * Returns {@code true} if the process of termination has
3167 jsr166 1.9 * commenced but not yet completed. This method may be useful for
3168     * debugging. A return of {@code true} reported a sufficient
3169     * period after shutdown may indicate that submitted tasks have
3170 jsr166 1.119 * ignored or suppressed interruption, or are waiting for I/O,
3171 dl 1.49 * causing this executor not to properly terminate. (See the
3172     * advisory notes for class {@link ForkJoinTask} stating that
3173     * tasks should not normally entail blocking operations. But if
3174     * they do, they must abort them on interrupt.)
3175 jsr166 1.1 *
3176 jsr166 1.9 * @return {@code true} if terminating but not yet terminated
3177 jsr166 1.1 */
3178     public boolean isTerminating() {
3179 dl 1.200 int rs = runState;
3180     return (rs & STOP) != 0 && (rs & TERMINATED) == 0;
3181 jsr166 1.1 }
3182    
3183     /**
3184     * Returns {@code true} if this pool has been shut down.
3185     *
3186     * @return {@code true} if this pool has been shut down
3187     */
3188     public boolean isShutdown() {
3189 dl 1.200 return (runState & SHUTDOWN) != 0;
3190 jsr166 1.9 }
3191    
3192     /**
3193 dl 1.105 * Blocks until all tasks have completed execution after a
3194     * shutdown request, or the timeout occurs, or the current thread
3195 dl 1.134 * is interrupted, whichever happens first. Because the {@link
3196     * #commonPool()} never terminates until program shutdown, when
3197     * applied to the common pool, this method is equivalent to {@link
3198 jsr166 1.158 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
3199 jsr166 1.1 *
3200     * @param timeout the maximum time to wait
3201     * @param unit the time unit of the timeout argument
3202     * @return {@code true} if this executor terminated and
3203     * {@code false} if the timeout elapsed before termination
3204     * @throws InterruptedException if interrupted while waiting
3205     */
3206     public boolean awaitTermination(long timeout, TimeUnit unit)
3207     throws InterruptedException {
3208 dl 1.134 if (Thread.interrupted())
3209     throw new InterruptedException();
3210     if (this == common) {
3211     awaitQuiescence(timeout, unit);
3212     return false;
3213     }
3214 dl 1.52 long nanos = unit.toNanos(timeout);
3215 dl 1.101 if (isTerminated())
3216     return true;
3217 dl 1.183 if (nanos <= 0L)
3218     return false;
3219     long deadline = System.nanoTime() + nanos;
3220 jsr166 1.103 synchronized (this) {
3221 jsr166 1.184 for (;;) {
3222 dl 1.183 if (isTerminated())
3223     return true;
3224     if (nanos <= 0L)
3225     return false;
3226     long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
3227     wait(millis > 0L ? millis : 1L);
3228     nanos = deadline - System.nanoTime();
3229 dl 1.52 }
3230 dl 1.18 }
3231 jsr166 1.1 }
3232    
3233     /**
3234 dl 1.134 * If called by a ForkJoinTask operating in this pool, equivalent
3235     * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3236     * waits and/or attempts to assist performing tasks until this
3237     * pool {@link #isQuiescent} or the indicated timeout elapses.
3238     *
3239     * @param timeout the maximum time to wait
3240     * @param unit the time unit of the timeout argument
3241     * @return {@code true} if quiescent; {@code false} if the
3242     * timeout elapsed.
3243     */
3244     public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3245     long nanos = unit.toNanos(timeout);
3246     ForkJoinWorkerThread wt;
3247     Thread thread = Thread.currentThread();
3248     if ((thread instanceof ForkJoinWorkerThread) &&
3249     (wt = (ForkJoinWorkerThread)thread).pool == this) {
3250     helpQuiescePool(wt.workQueue);
3251     return true;
3252     }
3253     long startTime = System.nanoTime();
3254     WorkQueue[] ws;
3255 dl 1.243 int r = 0, wl;
3256 dl 1.134 boolean found = true;
3257     while (!isQuiescent() && (ws = workQueues) != null &&
3258 dl 1.243 (wl = ws.length) > 0) {
3259 dl 1.134 if (!found) {
3260     if ((System.nanoTime() - startTime) > nanos)
3261     return false;
3262     Thread.yield(); // cannot block
3263     }
3264     found = false;
3265 dl 1.243 for (int m = wl - 1, j = (m + 1) << 2; j >= 0; --j) {
3266 dl 1.200 ForkJoinTask<?> t; WorkQueue q; int b, k;
3267     if ((k = r++ & m) <= m && k >= 0 && (q = ws[k]) != null &&
3268     (b = q.base) - q.top < 0) {
3269 dl 1.134 found = true;
3270 dl 1.172 if ((t = q.pollAt(b)) != null)
3271 dl 1.134 t.doExec();
3272     break;
3273     }
3274     }
3275     }
3276     return true;
3277     }
3278    
3279     /**
3280     * Waits and/or attempts to assist performing tasks indefinitely
3281 jsr166 1.141 * until the {@link #commonPool()} {@link #isQuiescent}.
3282 dl 1.134 */
3283 dl 1.136 static void quiesceCommonPool() {
3284 dl 1.134 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3285     }
3286    
3287     /**
3288 jsr166 1.1 * Interface for extending managed parallelism for tasks running
3289 jsr166 1.8 * in {@link ForkJoinPool}s.
3290     *
3291 dl 1.19 * <p>A {@code ManagedBlocker} provides two methods. Method
3292 jsr166 1.218 * {@link #isReleasable} must return {@code true} if blocking is
3293     * not necessary. Method {@link #block} blocks the current thread
3294 dl 1.19 * if necessary (perhaps internally invoking {@code isReleasable}
3295 dl 1.54 * before actually blocking). These actions are performed by any
3296 jsr166 1.157 * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
3297     * The unusual methods in this API accommodate synchronizers that
3298     * may, but don't usually, block for long periods. Similarly, they
3299 dl 1.54 * allow more efficient internal handling of cases in which
3300     * additional workers may be, but usually are not, needed to
3301     * ensure sufficient parallelism. Toward this end,
3302     * implementations of method {@code isReleasable} must be amenable
3303     * to repeated invocation.
3304 jsr166 1.1 *
3305     * <p>For example, here is a ManagedBlocker based on a
3306     * ReentrantLock:
3307 jsr166 1.239 * <pre> {@code
3308 jsr166 1.1 * class ManagedLocker implements ManagedBlocker {
3309     * final ReentrantLock lock;
3310     * boolean hasLock = false;
3311     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3312     * public boolean block() {
3313     * if (!hasLock)
3314     * lock.lock();
3315     * return true;
3316     * }
3317     * public boolean isReleasable() {
3318     * return hasLock || (hasLock = lock.tryLock());
3319     * }
3320     * }}</pre>
3321 dl 1.19 *
3322     * <p>Here is a class that possibly blocks waiting for an
3323     * item on a given queue:
3324 jsr166 1.239 * <pre> {@code
3325 dl 1.19 * class QueueTaker<E> implements ManagedBlocker {
3326     * final BlockingQueue<E> queue;
3327     * volatile E item = null;
3328     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3329     * public boolean block() throws InterruptedException {
3330     * if (item == null)
3331 dl 1.23 * item = queue.take();
3332 dl 1.19 * return true;
3333     * }
3334     * public boolean isReleasable() {
3335 dl 1.23 * return item != null || (item = queue.poll()) != null;
3336 dl 1.19 * }
3337     * public E getItem() { // call after pool.managedBlock completes
3338     * return item;
3339     * }
3340     * }}</pre>
3341 jsr166 1.1 */
3342     public static interface ManagedBlocker {
3343     /**
3344     * Possibly blocks the current thread, for example waiting for
3345     * a lock or condition.
3346     *
3347 jsr166 1.4 * @return {@code true} if no additional blocking is necessary
3348     * (i.e., if isReleasable would return true)
3349 jsr166 1.1 * @throws InterruptedException if interrupted while waiting
3350     * (the method is not required to do so, but is allowed to)
3351     */
3352     boolean block() throws InterruptedException;
3353    
3354     /**
3355 jsr166 1.4 * Returns {@code true} if blocking is unnecessary.
3356 jsr166 1.154 * @return {@code true} if blocking is unnecessary
3357 jsr166 1.1 */
3358     boolean isReleasable();
3359     }
3360    
3361     /**
3362 jsr166 1.217 * Runs the given possibly blocking task. When {@linkplain
3363     * ForkJoinTask#inForkJoinPool() running in a ForkJoinPool}, this
3364     * method possibly arranges for a spare thread to be activated if
3365     * necessary to ensure sufficient parallelism while the current
3366     * thread is blocked in {@link ManagedBlocker#block blocker.block()}.
3367 jsr166 1.1 *
3368 jsr166 1.217 * <p>This method repeatedly calls {@code blocker.isReleasable()} and
3369     * {@code blocker.block()} until either method returns {@code true}.
3370     * Every call to {@code blocker.block()} is preceded by a call to
3371     * {@code blocker.isReleasable()} that returned {@code false}.
3372     *
3373     * <p>If not running in a ForkJoinPool, this method is
3374 jsr166 1.8 * behaviorally equivalent to
3375 jsr166 1.239 * <pre> {@code
3376 jsr166 1.1 * while (!blocker.isReleasable())
3377     * if (blocker.block())
3378 jsr166 1.217 * break;}</pre>
3379 jsr166 1.8 *
3380 jsr166 1.217 * If running in a ForkJoinPool, the pool may first be expanded to
3381     * ensure sufficient parallelism available during the call to
3382     * {@code blocker.block()}.
3383 jsr166 1.1 *
3384 jsr166 1.217 * @param blocker the blocker task
3385     * @throws InterruptedException if {@code blocker.block()} did so
3386 jsr166 1.1 */
3387 dl 1.18 public static void managedBlock(ManagedBlocker blocker)
3388 jsr166 1.1 throws InterruptedException {
3389 dl 1.200 ForkJoinPool p;
3390     ForkJoinWorkerThread wt;
3391 jsr166 1.1 Thread t = Thread.currentThread();
3392 dl 1.200 if ((t instanceof ForkJoinWorkerThread) &&
3393     (p = (wt = (ForkJoinWorkerThread)t).pool) != null) {
3394     WorkQueue w = wt.workQueue;
3395 dl 1.172 while (!blocker.isReleasable()) {
3396 dl 1.200 if (p.tryCompensate(w)) {
3397 dl 1.105 try {
3398     do {} while (!blocker.isReleasable() &&
3399     !blocker.block());
3400     } finally {
3401 dl 1.200 U.getAndAddLong(p, CTL, AC_UNIT);
3402 dl 1.105 }
3403     break;
3404 dl 1.78 }
3405     }
3406 dl 1.18 }
3407 dl 1.105 else {
3408     do {} while (!blocker.isReleasable() &&
3409     !blocker.block());
3410     }
3411 jsr166 1.1 }
3412    
3413 jsr166 1.7 // AbstractExecutorService overrides. These rely on undocumented
3414     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3415     // implement RunnableFuture.
3416 jsr166 1.1
3417     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3418 dl 1.90 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3419 jsr166 1.1 }
3420    
3421     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3422 dl 1.90 return new ForkJoinTask.AdaptedCallable<T>(callable);
3423 jsr166 1.1 }
3424    
3425     // Unsafe mechanics
3426 jsr166 1.233 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
3427 dl 1.78 private static final long CTL;
3428 dl 1.294 private static final long RUNSTATE;
3429 jsr166 1.291 private static final int ABASE;
3430     private static final int ASHIFT;
3431 dl 1.52
3432     static {
3433 jsr166 1.3 try {
3434 dl 1.78 CTL = U.objectFieldOffset
3435 jsr166 1.233 (ForkJoinPool.class.getDeclaredField("ctl"));
3436 dl 1.294 RUNSTATE = U.objectFieldOffset
3437     (ForkJoinPool.class.getDeclaredField("runState"));
3438 jsr166 1.233 ABASE = U.arrayBaseOffset(ForkJoinTask[].class);
3439     int scale = U.arrayIndexScale(ForkJoinTask[].class);
3440 jsr166 1.142 if ((scale & (scale - 1)) != 0)
3441 jsr166 1.232 throw new Error("array index scale not a power of two");
3442 jsr166 1.142 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3443 jsr166 1.231 } catch (ReflectiveOperationException e) {
3444 dl 1.52 throw new Error(e);
3445     }
3446 dl 1.105
3447 dl 1.243 // Reduce the risk of rare disastrous classloading in first call to
3448     // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
3449     Class<?> ensureLoaded = LockSupport.class;
3450    
3451 jsr166 1.273 int commonMaxSpares = DEFAULT_COMMON_MAX_SPARES;
3452     try {
3453     String p = System.getProperty
3454     ("java.util.concurrent.ForkJoinPool.common.maximumSpares");
3455     if (p != null)
3456     commonMaxSpares = Integer.parseInt(p);
3457     } catch (Exception ignore) {}
3458     COMMON_MAX_SPARES = commonMaxSpares;
3459    
3460 dl 1.152 defaultForkJoinWorkerThreadFactory =
3461 dl 1.112 new DefaultForkJoinWorkerThreadFactory();
3462 dl 1.115 modifyThreadPermission = new RuntimePermission("modifyThread");
3463    
3464 dl 1.152 common = java.security.AccessController.doPrivileged
3465     (new java.security.PrivilegedAction<ForkJoinPool>() {
3466     public ForkJoinPool run() { return makeCommonPool(); }});
3467 jsr166 1.275
3468 jsr166 1.274 // report 1 even if threads disabled
3469     COMMON_PARALLELISM = Math.max(common.config & SMASK, 1);
3470 dl 1.152 }
3471 dl 1.112
3472 dl 1.152 /**
3473     * Creates and returns the common pool, respecting user settings
3474     * specified via system properties.
3475     */
3476 jsr166 1.278 static ForkJoinPool makeCommonPool() {
3477 dl 1.160 int parallelism = -1;
3478 dl 1.197 ForkJoinWorkerThreadFactory factory = null;
3479 jsr166 1.156 UncaughtExceptionHandler handler = null;
3480 jsr166 1.189 try { // ignore exceptions in accessing/parsing properties
3481 dl 1.112 String pp = System.getProperty
3482     ("java.util.concurrent.ForkJoinPool.common.parallelism");
3483 dl 1.152 String fp = System.getProperty
3484     ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3485 dl 1.112 String hp = System.getProperty
3486     ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3487 dl 1.152 if (pp != null)
3488     parallelism = Integer.parseInt(pp);
3489 dl 1.112 if (fp != null)
3490 dl 1.152 factory = ((ForkJoinWorkerThreadFactory)ClassLoader.
3491     getSystemClassLoader().loadClass(fp).newInstance());
3492 dl 1.112 if (hp != null)
3493 jsr166 1.156 handler = ((UncaughtExceptionHandler)ClassLoader.
3494 dl 1.112 getSystemClassLoader().loadClass(hp).newInstance());
3495     } catch (Exception ignore) {
3496     }
3497 dl 1.197 if (factory == null) {
3498     if (System.getSecurityManager() == null)
3499     factory = defaultForkJoinWorkerThreadFactory;
3500     else // use security-managed default
3501     factory = new InnocuousForkJoinWorkerThreadFactory();
3502     }
3503 dl 1.167 if (parallelism < 0 && // default 1 less than #cores
3504 dl 1.193 (parallelism = Runtime.getRuntime().availableProcessors() - 1) <= 0)
3505     parallelism = 1;
3506 dl 1.152 if (parallelism > MAX_CAP)
3507     parallelism = MAX_CAP;
3508 dl 1.185 return new ForkJoinPool(parallelism, factory, handler, LIFO_QUEUE,
3509 dl 1.152 "ForkJoinPool.commonPool-worker-");
3510 jsr166 1.3 }
3511 dl 1.52
3512 dl 1.197 /**
3513 jsr166 1.279 * Factory for innocuous worker threads.
3514 dl 1.197 */
3515 jsr166 1.278 private static final class InnocuousForkJoinWorkerThreadFactory
3516 dl 1.197 implements ForkJoinWorkerThreadFactory {
3517    
3518     /**
3519     * An ACC to restrict permissions for the factory itself.
3520     * The constructed workers have no permissions set.
3521     */
3522     private static final AccessControlContext innocuousAcc;
3523     static {
3524     Permissions innocuousPerms = new Permissions();
3525     innocuousPerms.add(modifyThreadPermission);
3526     innocuousPerms.add(new RuntimePermission(
3527     "enableContextClassLoaderOverride"));
3528     innocuousPerms.add(new RuntimePermission(
3529     "modifyThreadGroup"));
3530     innocuousAcc = new AccessControlContext(new ProtectionDomain[] {
3531     new ProtectionDomain(null, innocuousPerms)
3532     });
3533     }
3534    
3535     public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
3536 jsr166 1.227 return java.security.AccessController.doPrivileged(
3537     new java.security.PrivilegedAction<ForkJoinWorkerThread>() {
3538 dl 1.197 public ForkJoinWorkerThread run() {
3539     return new ForkJoinWorkerThread.
3540     InnocuousForkJoinWorkerThread(pool);
3541     }}, innocuousAcc);
3542     }
3543     }
3544    
3545 jsr166 1.1 }