ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.312
Committed: Tue Apr 19 22:55:30 2016 UTC (8 years, 1 month ago) by jsr166
Branch: MAIN
Changes since 1.311: +7 -7 lines
Log Message:
s~\bsun\.(misc\.Unsafe)\b~jdk.internal.$1~g;
s~\bputOrdered([A-Za-z]+)\b~put${1}Release~g

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.58 * http://creativecommons.org/publicdomain/zero/1.0/
5 jsr166 1.1 */
6 jsr166 1.301
7 jsr166 1.1 package java.util.concurrent;
8    
9 jsr166 1.156 import java.lang.Thread.UncaughtExceptionHandler;
10 jsr166 1.228 import java.security.AccessControlContext;
11     import java.security.Permissions;
12     import java.security.ProtectionDomain;
13 jsr166 1.1 import java.util.ArrayList;
14     import java.util.Arrays;
15     import java.util.Collection;
16     import java.util.Collections;
17     import java.util.List;
18 dl 1.307 import java.util.function.Predicate;
19 dl 1.300 import java.util.concurrent.TimeUnit;
20     import java.util.concurrent.CountedCompleter;
21     import java.util.concurrent.ForkJoinTask;
22     import java.util.concurrent.ForkJoinWorkerThread;
23 dl 1.243 import java.util.concurrent.locks.LockSupport;
24 jsr166 1.1
25     /**
26 jsr166 1.4 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
27 jsr166 1.8 * A {@code ForkJoinPool} provides the entry point for submissions
28 dl 1.18 * from non-{@code ForkJoinTask} clients, as well as management and
29 jsr166 1.11 * monitoring operations.
30 jsr166 1.1 *
31 jsr166 1.9 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
32     * ExecutorService} mainly by virtue of employing
33     * <em>work-stealing</em>: all threads in the pool attempt to find and
34 dl 1.78 * execute tasks submitted to the pool and/or created by other active
35     * tasks (eventually blocking waiting for work if none exist). This
36     * enables efficient processing when most tasks spawn other subtasks
37     * (as do most {@code ForkJoinTask}s), as well as when many small
38     * tasks are submitted to the pool from external clients. Especially
39     * when setting <em>asyncMode</em> to true in constructors, {@code
40     * ForkJoinPool}s may also be appropriate for use with event-style
41     * tasks that are never joined.
42 jsr166 1.1 *
43 dl 1.112 * <p>A static {@link #commonPool()} is available and appropriate for
44 dl 1.101 * most applications. The common pool is used by any ForkJoinTask that
45     * is not explicitly submitted to a specified pool. Using the common
46     * pool normally reduces resource usage (its threads are slowly
47     * reclaimed during periods of non-use, and reinstated upon subsequent
48 dl 1.105 * use).
49 dl 1.100 *
50     * <p>For applications that require separate or custom pools, a {@code
51     * ForkJoinPool} may be constructed with a given target parallelism
52 jsr166 1.214 * level; by default, equal to the number of available processors.
53     * The pool attempts to maintain enough active (or available) threads
54     * by dynamically adding, suspending, or resuming internal worker
55 jsr166 1.187 * threads, even if some tasks are stalled waiting to join others.
56     * However, no such adjustments are guaranteed in the face of blocked
57     * I/O or other unmanaged synchronization. The nested {@link
58 dl 1.100 * ManagedBlocker} interface enables extension of the kinds of
59 dl 1.300 * synchronization accommodated. The default policies may be
60     * overridden using a constructor with parameters corresponding to
61     * those documented in class {@link ThreadPoolExecutor}.
62 jsr166 1.1 *
63     * <p>In addition to execution and lifecycle control methods, this
64     * class provides status check methods (for example
65 jsr166 1.4 * {@link #getStealCount}) that are intended to aid in developing,
66 jsr166 1.1 * tuning, and monitoring fork/join applications. Also, method
67 jsr166 1.4 * {@link #toString} returns indications of pool state in a
68 jsr166 1.1 * convenient form for informal monitoring.
69     *
70 jsr166 1.109 * <p>As is the case with other ExecutorServices, there are three
71 jsr166 1.84 * main task execution methods summarized in the following table.
72     * These are designed to be used primarily by clients not already
73     * engaged in fork/join computations in the current pool. The main
74     * forms of these methods accept instances of {@code ForkJoinTask},
75     * but overloaded forms also allow mixed execution of plain {@code
76     * Runnable}- or {@code Callable}- based activities as well. However,
77     * tasks that are already executing in a pool should normally instead
78     * use the within-computation forms listed in the table unless using
79     * async event-style tasks that are not usually joined, in which case
80     * there is little difference among choice of methods.
81 dl 1.18 *
82     * <table BORDER CELLPADDING=3 CELLSPACING=1>
83 jsr166 1.159 * <caption>Summary of task execution methods</caption>
84 dl 1.18 * <tr>
85     * <td></td>
86     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
87     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
88     * </tr>
89     * <tr>
90 jsr166 1.153 * <td> <b>Arrange async execution</b></td>
91 dl 1.18 * <td> {@link #execute(ForkJoinTask)}</td>
92     * <td> {@link ForkJoinTask#fork}</td>
93     * </tr>
94     * <tr>
95 jsr166 1.153 * <td> <b>Await and obtain result</b></td>
96 dl 1.18 * <td> {@link #invoke(ForkJoinTask)}</td>
97     * <td> {@link ForkJoinTask#invoke}</td>
98     * </tr>
99     * <tr>
100 jsr166 1.153 * <td> <b>Arrange exec and obtain Future</b></td>
101 dl 1.18 * <td> {@link #submit(ForkJoinTask)}</td>
102     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
103     * </tr>
104     * </table>
105 dl 1.19 *
106 dl 1.105 * <p>The common pool is by default constructed with default
107 jsr166 1.155 * parameters, but these may be controlled by setting three
108 jsr166 1.162 * {@linkplain System#getProperty system properties}:
109     * <ul>
110     * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
111     * - the parallelism level, a non-negative integer
112     * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
113     * - the class name of a {@link ForkJoinWorkerThreadFactory}
114     * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
115     * - the class name of a {@link UncaughtExceptionHandler}
116 dl 1.208 * <li>{@code java.util.concurrent.ForkJoinPool.common.maximumSpares}
117 dl 1.223 * - the maximum number of allowed extra threads to maintain target
118 dl 1.208 * parallelism (default 256).
119 jsr166 1.162 * </ul>
120 dl 1.197 * If a {@link SecurityManager} is present and no factory is
121     * specified, then the default pool uses a factory supplying
122     * threads that have no {@link Permissions} enabled.
123 jsr166 1.165 * The system class loader is used to load these classes.
124 jsr166 1.156 * Upon any error in establishing these settings, default parameters
125 dl 1.160 * are used. It is possible to disable or limit the use of threads in
126     * the common pool by setting the parallelism property to zero, and/or
127 dl 1.193 * using a factory that may return {@code null}. However doing so may
128     * cause unjoined tasks to never be executed.
129 dl 1.105 *
130 jsr166 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
131     * maximum number of running threads to 32767. Attempts to create
132 jsr166 1.11 * pools with greater than the maximum number result in
133 jsr166 1.8 * {@code IllegalArgumentException}.
134 jsr166 1.1 *
135 jsr166 1.11 * <p>This implementation rejects submitted tasks (that is, by throwing
136 dl 1.19 * {@link RejectedExecutionException}) only when the pool is shut down
137 dl 1.20 * or internal resources have been exhausted.
138 jsr166 1.11 *
139 jsr166 1.1 * @since 1.7
140     * @author Doug Lea
141     */
142     public class ForkJoinPool extends AbstractExecutorService {
143    
144     /*
145 dl 1.14 * Implementation Overview
146     *
147 dl 1.78 * This class and its nested classes provide the main
148     * functionality and control for a set of worker threads:
149 jsr166 1.84 * Submissions from non-FJ threads enter into submission queues.
150     * Workers take these tasks and typically split them into subtasks
151     * that may be stolen by other workers. Preference rules give
152     * first priority to processing tasks from their own queues (LIFO
153     * or FIFO, depending on mode), then to randomized FIFO steals of
154 dl 1.200 * tasks in other queues. This framework began as vehicle for
155     * supporting tree-structured parallelism using work-stealing.
156     * Over time, its scalability advantages led to extensions and
157 dl 1.208 * changes to better support more diverse usage contexts. Because
158     * most internal methods and nested classes are interrelated,
159     * their main rationale and descriptions are presented here;
160     * individual methods and nested classes contain only brief
161     * comments about details.
162 dl 1.78 *
163 jsr166 1.84 * WorkQueues
164 dl 1.78 * ==========
165     *
166     * Most operations occur within work-stealing queues (in nested
167     * class WorkQueue). These are special forms of Deques that
168     * support only three of the four possible end-operations -- push,
169     * pop, and poll (aka steal), under the further constraints that
170     * push and pop are called only from the owning thread (or, as
171     * extended here, under a lock), while poll may be called from
172     * other threads. (If you are unfamiliar with them, you probably
173     * want to read Herlihy and Shavit's book "The Art of
174     * Multiprocessor programming", chapter 16 describing these in
175     * more detail before proceeding.) The main work-stealing queue
176     * design is roughly similar to those in the papers "Dynamic
177     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
178     * (http://research.sun.com/scalable/pubs/index.html) and
179     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
180     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
181 dl 1.200 * The main differences ultimately stem from GC requirements that
182     * we null out taken slots as soon as we can, to maintain as small
183     * a footprint as possible even in programs generating huge
184     * numbers of tasks. To accomplish this, we shift the CAS
185     * arbitrating pop vs poll (steal) from being on the indices
186     * ("base" and "top") to the slots themselves.
187     *
188 dl 1.243 * Adding tasks then takes the form of a classic array push(task)
189     * in a circular buffer:
190     * q.array[q.top++ % length] = task;
191 dl 1.200 *
192     * (The actual code needs to null-check and size-check the array,
193 jsr166 1.247 * uses masking, not mod, for indexing a power-of-two-sized array,
194 dl 1.243 * properly fences accesses, and possibly signals waiting workers
195     * to start scanning -- see below.) Both a successful pop and
196     * poll mainly entail a CAS of a slot from non-null to null.
197 dl 1.200 *
198 jsr166 1.202 * The pop operation (always performed by owner) is:
199 dl 1.243 * if ((the task at top slot is not null) and
200 dl 1.200 * (CAS slot to null))
201     * decrement top and return task;
202     *
203     * And the poll operation (usually by a stealer) is
204 dl 1.243 * if ((the task at base slot is not null) and
205 dl 1.200 * (CAS slot to null))
206     * increment base and return task;
207     *
208 dl 1.300 * There are several variants of each of these. In particular,
209     * almost all uses of poll occur within scan operations that also
210     * interleave contention tracking (with associated code sprawl.)
211 dl 1.243 *
212     * Memory ordering. See "Correct and Efficient Work-Stealing for
213     * Weak Memory Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
214     * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
215     * analysis of memory ordering requirements in work-stealing
216     * algorithms similar to (but different than) the one used here.
217     * Extracting tasks in array slots via (fully fenced) CAS provides
218     * primary synchronization. The base and top indices imprecisely
219     * guide where to extract from. We do not always require strict
220     * orderings of array and index updates, so sometimes let them be
221     * subject to compiler and processor reorderings. However, the
222     * volatile "base" index also serves as a basis for memory
223     * ordering: Slot accesses are preceded by a read of base,
224 jsr166 1.247 * ensuring happens-before ordering with respect to stealers (so
225 dl 1.243 * the slots themselves can be read via plain array reads.) The
226     * only other memory orderings relied on are maintained in the
227     * course of signalling and activation (see below). A check that
228     * base == top indicates (momentary) emptiness, but otherwise may
229     * err on the side of possibly making the queue appear nonempty
230     * when a push, pop, or poll have not fully committed, or making
231     * it appear empty when an update of top has not yet been visibly
232     * written. (Method isEmpty() checks the case of a partially
233 dl 1.211 * completed removal of the last element.) Because of this, the
234     * poll operation, considered individually, is not wait-free. One
235     * thief cannot successfully continue until another in-progress
236 dl 1.243 * one (or, if previously empty, a push) visibly completes.
237     * However, in the aggregate, we ensure at least probabilistic
238     * non-blockingness. If an attempted steal fails, a scanning
239     * thief chooses a different random victim target to try next. So,
240     * in order for one thief to progress, it suffices for any
241 dl 1.205 * in-progress poll or new push on any empty queue to
242 dl 1.300 * complete.
243 dl 1.200 *
244     * This approach also enables support of a user mode in which
245     * local task processing is in FIFO, not LIFO order, simply by
246     * using poll rather than pop. This can be useful in
247     * message-passing frameworks in which tasks are never joined.
248 dl 1.78 *
249     * WorkQueues are also used in a similar way for tasks submitted
250     * to the pool. We cannot mix these tasks in the same queues used
251 dl 1.200 * by workers. Instead, we randomly associate submission queues
252 dl 1.83 * with submitting threads, using a form of hashing. The
253 dl 1.139 * ThreadLocalRandom probe value serves as a hash code for
254     * choosing existing queues, and may be randomly repositioned upon
255     * contention with other submitters. In essence, submitters act
256     * like workers except that they are restricted to executing local
257 dl 1.300 * tasks that they submitted. Insertion of tasks in shared mode
258     * requires a lock but we use only a simple spinlock (using field
259 jsr166 1.304 * phase), because submitters encountering a busy queue move to a
260     * different position to use or create other queues -- they block
261     * only when creating and registering new queues. Because it is
262     * used only as a spinlock, unlocking requires only a "releasing"
263 jsr166 1.312 * store (using putIntRelease).
264 dl 1.78 *
265 jsr166 1.84 * Management
266 dl 1.78 * ==========
267 dl 1.52 *
268     * The main throughput advantages of work-stealing stem from
269     * decentralized control -- workers mostly take tasks from
270 dl 1.200 * themselves or each other, at rates that can exceed a billion
271     * per second. The pool itself creates, activates (enables
272     * scanning for and running tasks), deactivates, blocks, and
273     * terminates threads, all with minimal central information.
274     * There are only a few properties that we can globally track or
275     * maintain, so we pack them into a small number of variables,
276     * often maintaining atomicity without blocking or locking.
277 dl 1.300 * Nearly all essentially atomic control state is held in a few
278 dl 1.200 * volatile variables that are by far most often read (not
279 dl 1.300 * written) as status and consistency checks. We pack as much
280     * information into them as we can.
281 dl 1.78 *
282 dl 1.200 * Field "ctl" contains 64 bits holding information needed to
283 dl 1.300 * atomically decide to add, enqueue (on an event queue), and
284     * dequeue (and release)-activate workers. To enable this
285 dl 1.78 * packing, we restrict maximum parallelism to (1<<15)-1 (which is
286     * far in excess of normal operating range) to allow ids, counts,
287     * and their negations (used for thresholding) to fit into 16bit
288 dl 1.215 * subfields.
289     *
290 dl 1.300 * Field "mode" holds configuration parameters as well as lifetime
291     * status, atomically and monotonically setting SHUTDOWN, STOP,
292     * and finally TERMINATED bits.
293 dl 1.258 *
294     * Field "workQueues" holds references to WorkQueues. It is
295 dl 1.300 * updated (only during worker creation and termination) under
296     * lock (using field workerNamePrefix as lock), but is otherwise
297     * concurrently readable, and accessed directly. We also ensure
298     * that uses of the array reference itself never become too stale
299     * in case of resizing. To simplify index-based operations, the
300     * array size is always a power of two, and all readers must
301     * tolerate null slots. Worker queues are at odd indices. Shared
302     * (submission) queues are at even indices, up to a maximum of 64
303     * slots, to limit growth even if array needs to expand to add
304     * more workers. Grouping them together in this way simplifies and
305 dl 1.262 * speeds up task scanning.
306 dl 1.86 *
307     * All worker thread creation is on-demand, triggered by task
308     * submissions, replacement of terminated workers, and/or
309 dl 1.78 * compensation for blocked workers. However, all other support
310     * code is set up to work with other policies. To ensure that we
311 jsr166 1.264 * do not hold on to worker references that would prevent GC, all
312 dl 1.78 * accesses to workQueues are via indices into the workQueues
313     * array (which is one source of some of the messy code
314     * constructions here). In essence, the workQueues array serves as
315 dl 1.200 * a weak reference mechanism. Thus for example the stack top
316     * subfield of ctl stores indices, not references.
317     *
318     * Queuing Idle Workers. Unlike HPC work-stealing frameworks, we
319     * cannot let workers spin indefinitely scanning for tasks when
320     * none can be found immediately, and we cannot start/resume
321     * workers unless there appear to be tasks available. On the
322     * other hand, we must quickly prod them into action when new
323     * tasks are submitted or generated. In many usages, ramp-up time
324 dl 1.300 * is the main limiting factor in overall performance, which is
325     * compounded at program start-up by JIT compilation and
326     * allocation. So we streamline this as much as possible.
327     *
328     * The "ctl" field atomically maintains total worker and
329     * "released" worker counts, plus the head of the available worker
330     * queue (actually stack, represented by the lower 32bit subfield
331     * of ctl). Released workers are those known to be scanning for
332     * and/or running tasks. Unreleased ("available") workers are
333     * recorded in the ctl stack. These workers are made available for
334     * signalling by enqueuing in ctl (see method runWorker). The
335     * "queue" is a form of Treiber stack. This is ideal for
336     * activating threads in most-recently used order, and improves
337 dl 1.200 * performance and locality, outweighing the disadvantages of
338     * being prone to contention and inability to release a worker
339 dl 1.300 * unless it is topmost on stack. To avoid missed signal problems
340     * inherent in any wait/signal design, available workers rescan
341     * for (and if found run) tasks after enqueuing. Normally their
342     * release status will be updated while doing so, but the released
343     * worker ctl count may underestimate the number of active
344     * threads. (However, it is still possible to determine quiescence
345     * via a validation traversal -- see isQuiescent). After an
346     * unsuccessful rescan, available workers are blocked until
347     * signalled (see signalWork). The top stack state holds the
348     * value of the "phase" field of the worker: its index and status,
349     * plus a version counter that, in addition to the count subfields
350     * (also serving as version stamps) provide protection against
351     * Treiber stack ABA effects.
352 dl 1.200 *
353 dl 1.300 * Creating workers. To create a worker, we pre-increment counts
354     * (serving as a reservation), and attempt to construct a
355 dl 1.200 * ForkJoinWorkerThread via its factory. Upon construction, the
356     * new thread invokes registerWorker, where it constructs a
357     * WorkQueue and is assigned an index in the workQueues array
358 jsr166 1.266 * (expanding the array if necessary). The thread is then started.
359     * Upon any exception across these steps, or null return from
360     * factory, deregisterWorker adjusts counts and records
361 dl 1.200 * accordingly. If a null return, the pool continues running with
362     * fewer than the target number workers. If exceptional, the
363     * exception is propagated, generally to some external caller.
364     * Worker index assignment avoids the bias in scanning that would
365     * occur if entries were sequentially packed starting at the front
366     * of the workQueues array. We treat the array as a simple
367     * power-of-two hash table, expanding as needed. The seedIndex
368     * increment ensures no collisions until a resize is needed or a
369     * worker is deregistered and replaced, and thereafter keeps
370 jsr166 1.202 * probability of collision low. We cannot use
371 dl 1.200 * ThreadLocalRandom.getProbe() for similar purposes here because
372     * the thread has not started yet, but do so for creating
373 dl 1.243 * submission queues for existing external threads (see
374     * externalPush).
375     *
376 dl 1.300 * WorkQueue field "phase" is used by both workers and the pool to
377     * manage and track whether a worker is UNSIGNALLED (possibly
378     * blocked waiting for a signal). When a worker is enqueued its
379     * phase field is set. Note that phase field updates lag queue CAS
380     * releases so usage requires care -- seeing a negative phase does
381     * not guarantee that the worker is available. When queued, the
382     * lower 16 bits of scanState must hold its pool index. So we
383     * place the index there upon initialization (see registerWorker)
384     * and otherwise keep it there or restore it when necessary.
385 dl 1.243 *
386     * The ctl field also serves as the basis for memory
387     * synchronization surrounding activation. This uses a more
388     * efficient version of a Dekker-like rule that task producers and
389     * consumers sync with each other by both writing/CASing ctl (even
390 dl 1.253 * if to its current value). This would be extremely costly. So
391     * we relax it in several ways: (1) Producers only signal when
392     * their queue is empty. Other workers propagate this signal (in
393 dl 1.300 * method scan) when they find tasks; to further reduce flailing,
394     * each worker signals only one other per activation. (2) Workers
395     * only enqueue after scanning (see below) and not finding any
396     * tasks. (3) Rather than CASing ctl to its current value in the
397     * common case where no action is required, we reduce write
398     * contention by equivalently prefacing signalWork when called by
399     * an external task producer using a memory access with
400     * full-volatile semantics or a "fullFence".
401 dl 1.243 *
402 jsr166 1.249 * Almost always, too many signals are issued. A task producer
403 dl 1.243 * cannot in general tell if some existing worker is in the midst
404     * of finishing one task (or already scanning) and ready to take
405     * another without being signalled. So the producer might instead
406     * activate a different worker that does not find any work, and
407     * then inactivates. This scarcely matters in steady-state
408     * computations involving all workers, but can create contention
409 jsr166 1.247 * and bookkeeping bottlenecks during ramp-up, ramp-down, and small
410 dl 1.243 * computations involving only a few workers.
411     *
412 dl 1.300 * Scanning. Method runWorker performs top-level scanning for
413     * tasks. Each scan traverses and tries to poll from each queue
414     * starting at a random index and circularly stepping. Scans are
415     * not performed in ideal random permutation order, to reduce
416     * cacheline contention. The pseudorandom generator need not have
417     * high-quality statistical properties in the long term, but just
418     * within computations; We use Marsaglia XorShifts (often via
419     * ThreadLocalRandom.nextSecondarySeed), which are cheap and
420     * suffice. Scanning also employs contention reduction: When
421     * scanning workers fail to extract an apparently existing task,
422     * they soon restart at a different pseudorandom index. This
423     * improves throughput when many threads are trying to take tasks
424     * from few queues, which can be common in some usages. Scans do
425     * not otherwise explicitly take into account core affinities,
426     * loads, cache localities, etc, However, they do exploit temporal
427     * locality (which usually approximates these) by preferring to
428     * re-poll (at most #workers times) from the same queue after a
429     * successful poll before trying others.
430 dl 1.52 *
431     * Trimming workers. To release resources after periods of lack of
432     * use, a worker starting to wait when the pool is quiescent will
433 dl 1.300 * time out and terminate (see method scan) if the pool has
434     * remained quiescent for period given by field keepAlive.
435 dl 1.52 *
436 dl 1.210 * Shutdown and Termination. A call to shutdownNow invokes
437     * tryTerminate to atomically set a runState bit. The calling
438     * thread, as well as every other worker thereafter terminating,
439 dl 1.300 * helps terminate others by cancelling their unprocessed tasks,
440     * and waking them up, doing so repeatedly until stable. Calls to
441     * non-abrupt shutdown() preface this by checking whether
442     * termination should commence by sweeping through queues (until
443     * stable) to ensure lack of in-flight submissions and workers
444     * about to process them before triggering the "STOP" phase of
445     * termination.
446 dl 1.211 *
447 jsr166 1.84 * Joining Tasks
448     * =============
449 dl 1.78 *
450     * Any of several actions may be taken when one worker is waiting
451 jsr166 1.84 * to join a task stolen (or always held) by another. Because we
452 dl 1.78 * are multiplexing many tasks on to a pool of workers, we can't
453 dl 1.300 * always just let them block (as in Thread.join). We also cannot
454     * just reassign the joiner's run-time stack with another and
455     * replace it later, which would be a form of "continuation", that
456     * even if possible is not necessarily a good idea since we may
457     * need both an unblocked task and its continuation to progress.
458     * Instead we combine two tactics:
459 dl 1.19 *
460     * Helping: Arranging for the joiner to execute some task that it
461 dl 1.78 * would be running if the steal had not occurred.
462 dl 1.19 *
463     * Compensating: Unless there are already enough live threads,
464 dl 1.78 * method tryCompensate() may create or re-activate a spare
465     * thread to compensate for blocked joiners until they unblock.
466     *
467 dl 1.105 * A third form (implemented in tryRemoveAndExec) amounts to
468     * helping a hypothetical compensator: If we can readily tell that
469     * a possible action of a compensator is to steal and execute the
470     * task being joined, the joining thread can do so directly,
471 dl 1.300 * without the need for a compensation thread.
472 dl 1.52 *
473     * The ManagedBlocker extension API can't use helping so relies
474     * only on compensation in method awaitBlocker.
475 dl 1.19 *
476 dl 1.300 * The algorithm in awaitJoin entails a form of "linear helping".
477     * Each worker records (in field source) the id of the queue from
478     * which it last stole a task. The scan in method awaitJoin uses
479     * these markers to try to find a worker to help (i.e., steal back
480     * a task from and execute it) that could hasten completion of the
481     * actively joined task. Thus, the joiner executes a task that
482     * would be on its own local deque if the to-be-joined task had
483     * not been stolen. This is a conservative variant of the approach
484     * described in Wagner & Calder "Leapfrogging: a portable
485     * technique for implementing efficient futures" SIGPLAN Notices,
486     * 1993 (http://portal.acm.org/citation.cfm?id=155354). It differs
487     * mainly in that we only record queue ids, not full dependency
488     * links. This requires a linear scan of the workQueues array to
489     * locate stealers, but isolates cost to when it is needed, rather
490     * than adding to per-task overhead. Searches can fail to locate
491     * stealers GC stalls and the like delay recording sources.
492     * Further, even when accurately identified, stealers might not
493     * ever produce a task that the joiner can in turn help with. So,
494     * compensation is tried upon failure to find tasks to run.
495 dl 1.105 *
496 dl 1.300 * Compensation does not by default aim to keep exactly the target
497 dl 1.200 * parallelism number of unblocked threads running at any given
498     * time. Some previous versions of this class employed immediate
499     * compensations for any blocked join. However, in practice, the
500     * vast majority of blockages are transient byproducts of GC and
501     * other JVM or OS activities that are made worse by replacement.
502 dl 1.300 * Rather than impose arbitrary policies, we allow users to
503     * override the default of only adding threads upon apparent
504     * starvation. The compensation mechanism may also be bounded.
505     * Bounds for the commonPool (see COMMON_MAX_SPARES) better enable
506     * JVMs to cope with programming errors and abuse before running
507     * out of resources to do so.
508 jsr166 1.301 *
509 dl 1.105 * Common Pool
510     * ===========
511     *
512 jsr166 1.175 * The static common pool always exists after static
513 dl 1.105 * initialization. Since it (or any other created pool) need
514     * never be used, we minimize initial construction overhead and
515 dl 1.300 * footprint to the setup of about a dozen fields.
516 dl 1.105 *
517     * When external threads submit to the common pool, they can
518 dl 1.200 * perform subtask processing (see externalHelpComplete and
519     * related methods) upon joins. This caller-helps policy makes it
520     * sensible to set common pool parallelism level to one (or more)
521     * less than the total number of available cores, or even zero for
522     * pure caller-runs. We do not need to record whether external
523     * submissions are to the common pool -- if not, external help
524     * methods return quickly. These submitters would otherwise be
525     * blocked waiting for completion, so the extra effort (with
526     * liberally sprinkled task status checks) in inapplicable cases
527     * amounts to an odd form of limited spin-wait before blocking in
528     * ForkJoinTask.join.
529 dl 1.105 *
530 dl 1.197 * As a more appropriate default in managed environments, unless
531     * overridden by system properties, we use workers of subclass
532     * InnocuousForkJoinWorkerThread when there is a SecurityManager
533     * present. These workers have no permissions set, do not belong
534     * to any user-defined ThreadGroup, and erase all ThreadLocals
535 dl 1.300 * after executing any top-level task (see
536     * WorkQueue.afterTopLevelExec). The associated mechanics (mainly
537     * in ForkJoinWorkerThread) may be JVM-dependent and must access
538     * particular Thread class fields to achieve this effect.
539 jsr166 1.198 *
540 dl 1.105 * Style notes
541     * ===========
542     *
543 dl 1.200 * Memory ordering relies mainly on Unsafe intrinsics that carry
544     * the further responsibility of explicitly performing null- and
545     * bounds- checks otherwise carried out implicitly by JVMs. This
546     * can be awkward and ugly, but also reflects the need to control
547     * outcomes across the unusual cases that arise in very racy code
548     * with very few invariants. So these explicit checks would exist
549     * in some form anyway. All fields are read into locals before
550     * use, and null-checked if they are references. This is usually
551     * done in a "C"-like style of listing declarations at the heads
552     * of methods or blocks, and using inline assignments on first
553     * encounter. Array bounds-checks are usually performed by
554     * masking with array.length-1, which relies on the invariant that
555     * these arrays are created with positive lengths, which is itself
556     * paranoically checked. Nearly all explicit checks lead to
557     * bypass/return, not exception throws, because they may
558     * legitimately arise due to cancellation/revocation during
559     * shutdown.
560     *
561 dl 1.105 * There is a lot of representation-level coupling among classes
562     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
563     * fields of WorkQueue maintain data structures managed by
564     * ForkJoinPool, so are directly accessed. There is little point
565     * trying to reduce this, since any associated future changes in
566     * representations will need to be accompanied by algorithmic
567     * changes anyway. Several methods intrinsically sprawl because
568 dl 1.200 * they must accumulate sets of consistent reads of fields held in
569     * local variables. There are also other coding oddities
570     * (including several unnecessary-looking hoisted null checks)
571     * that help some methods perform reasonably even when interpreted
572     * (not compiled).
573 dl 1.52 *
574 dl 1.208 * The order of declarations in this file is (with a few exceptions):
575 dl 1.86 * (1) Static utility functions
576     * (2) Nested (static) classes
577     * (3) Static fields
578     * (4) Fields, along with constants used when unpacking some of them
579     * (5) Internal control methods
580     * (6) Callbacks and other support for ForkJoinTask methods
581     * (7) Exported methods
582     * (8) Static block initializing statics in minimally dependent order
583     */
584    
585     // Static utilities
586    
587     /**
588     * If there is a security manager, makes sure caller has
589     * permission to modify threads.
590 jsr166 1.1 */
591 dl 1.86 private static void checkPermission() {
592     SecurityManager security = System.getSecurityManager();
593     if (security != null)
594     security.checkPermission(modifyThreadPermission);
595     }
596    
597     // Nested classes
598 jsr166 1.1
599     /**
600 jsr166 1.8 * Factory for creating new {@link ForkJoinWorkerThread}s.
601     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
602     * for {@code ForkJoinWorkerThread} subclasses that extend base
603     * functionality or initialize threads with different contexts.
604 jsr166 1.1 */
605     public static interface ForkJoinWorkerThreadFactory {
606     /**
607     * Returns a new worker thread operating in the given pool.
608 dl 1.300 * Returning null or throwing an exception may result in tasks
609     * never being executed. If this method throws an exception,
610     * it is relayed to the caller of the method (for example
611     * {@code execute}) causing attempted thread creation. If this
612     * method returns null or throws an exception, it is not
613     * retried until the next attempted creation (for example
614     * another call to {@code execute}).
615 jsr166 1.1 *
616     * @param pool the pool this thread works in
617 jsr166 1.296 * @return the new worker thread, or {@code null} if the request
618 dl 1.300 * to create a thread is rejected.
619 jsr166 1.11 * @throws NullPointerException if the pool is null
620 jsr166 1.1 */
621     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
622     }
623    
624     /**
625     * Default ForkJoinWorkerThreadFactory implementation; creates a
626     * new ForkJoinWorkerThread.
627     */
628 jsr166 1.278 private static final class DefaultForkJoinWorkerThreadFactory
629 jsr166 1.1 implements ForkJoinWorkerThreadFactory {
630 dl 1.112 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
631 dl 1.14 return new ForkJoinWorkerThread(pool);
632 jsr166 1.1 }
633     }
634    
635 dl 1.200 // Constants shared across ForkJoinPool and WorkQueue
636    
637     // Bounds
638 dl 1.300 static final int SWIDTH = 16; // width of short
639 dl 1.200 static final int SMASK = 0xffff; // short bits == max index
640     static final int MAX_CAP = 0x7fff; // max #workers - 1
641     static final int SQMASK = 0x007e; // max 64 (even) slots
642    
643 dl 1.300 // Masks and units for WorkQueue.phase and ctl sp subfield
644 dl 1.243 static final int UNSIGNALLED = 1 << 31; // must be negative
645 dl 1.211 static final int SS_SEQ = 1 << 16; // version count
646 dl 1.300 static final int QLOCK = 1; // must be 1
647 dl 1.200
648 dl 1.300 // Mode bits and sentinels, some also used in WorkQueue id and.source fields
649     static final int OWNED = 1; // queue has owner thread
650     static final int FIFO = 1 << 16; // fifo queue or access mode
651     static final int SHUTDOWN = 1 << 18;
652     static final int TERMINATED = 1 << 19;
653     static final int STOP = 1 << 31; // must be negative
654     static final int QUIET = 1 << 30; // not scanning or working
655     static final int DORMANT = QUIET | UNSIGNALLED;
656    
657     /**
658     * The maximum number of local polls from the same queue before
659     * checking others. This is a safeguard against infinitely unfair
660     * looping under unbounded user task recursion, and must be larger
661     * than plausible cases of intentional bounded task recursion.
662 dl 1.253 */
663 dl 1.300 static final int POLL_LIMIT = 1 << 10;
664 dl 1.253
665     /**
666 dl 1.78 * Queues supporting work-stealing as well as external task
667 jsr166 1.202 * submission. See above for descriptions and algorithms.
668 dl 1.78 * Performance on most platforms is very sensitive to placement of
669     * instances of both WorkQueues and their arrays -- we absolutely
670     * do not want multiple WorkQueue instances or multiple queue
671 dl 1.200 * arrays sharing cache lines. The @Contended annotation alerts
672     * JVMs to try to keep instances apart.
673 dl 1.78 */
674 dl 1.308 @jdk.internal.vm.annotation.Contended
675 dl 1.78 static final class WorkQueue {
676 dl 1.200
677 dl 1.78 /**
678     * Capacity of work-stealing queue array upon initialization.
679 dl 1.90 * Must be a power of two; at least 4, but should be larger to
680     * reduce or eliminate cacheline sharing among queues.
681     * Currently, it is much larger, as a partial workaround for
682     * the fact that JVMs often place arrays in locations that
683     * share GC bookkeeping (especially cardmarks) such that
684     * per-write accesses encounter serious memory contention.
685 dl 1.78 */
686 dl 1.90 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
687 dl 1.78
688     /**
689     * Maximum size for queue arrays. Must be a power of two less
690     * than or equal to 1 << (31 - width of array entry) to ensure
691     * lack of wraparound of index calculations, but defined to a
692     * value a bit less than this to help users trap runaway
693     * programs before saturating systems.
694     */
695     static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
696    
697 dl 1.200 // Instance fields
698 dl 1.300 volatile int phase; // versioned, negative: queued, 1: locked
699     int stackPred; // pool stack (ctl) predecessor link
700 dl 1.178 int nsteals; // number of steals
701 dl 1.300 int id; // index, mode, tag
702     volatile int source; // source queue id, or sentinel
703 dl 1.78 volatile int base; // index of next slot for poll
704     int top; // index of next slot for push
705     ForkJoinTask<?>[] array; // the elements (initially unallocated)
706 dl 1.90 final ForkJoinPool pool; // the containing pool (may be null)
707 dl 1.78 final ForkJoinWorkerThread owner; // owning thread or null if shared
708 dl 1.112
709 dl 1.200 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner) {
710 dl 1.90 this.pool = pool;
711 dl 1.78 this.owner = owner;
712 dl 1.115 // Place indices in the center of array (that is not yet allocated)
713 dl 1.78 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
714     }
715    
716     /**
717 jsr166 1.220 * Returns an exportable index (used by ForkJoinWorkerThread).
718 dl 1.200 */
719     final int getPoolIndex() {
720 dl 1.300 return (id & 0xffff) >>> 1; // ignore odd/even tag bit
721 dl 1.200 }
722    
723     /**
724 dl 1.115 * Returns the approximate number of tasks in the queue.
725     */
726     final int queueSize() {
727 dl 1.243 int n = base - top; // read base first
728 dl 1.115 return (n >= 0) ? 0 : -n; // ignore transient negative
729     }
730    
731 jsr166 1.180 /**
732 dl 1.115 * Provides a more accurate estimate of whether this queue has
733     * any tasks than does queueSize, by checking whether a
734     * near-empty queue has at least one unclaimed task.
735     */
736     final boolean isEmpty() {
737 dl 1.300 ForkJoinTask<?>[] a; int n, al, b;
738     return ((n = (b = base) - top) >= 0 || // possibly one task
739 dl 1.243 (n == -1 && ((a = array) == null ||
740     (al = a.length) == 0 ||
741 dl 1.300 a[(al - 1) & b] == null)));
742 dl 1.115 }
743    
744 dl 1.300
745 dl 1.115 /**
746 dl 1.256 * Pushes a task. Call only by owner in unshared queues.
747 dl 1.78 *
748     * @param task the task. Caller must ensure non-null.
749 jsr166 1.146 * @throws RejectedExecutionException if array cannot be resized
750 dl 1.78 */
751 dl 1.90 final void push(ForkJoinTask<?> task) {
752 dl 1.300 int s = top; ForkJoinTask<?>[] a; int al, d;
753 dl 1.243 if ((a = array) != null && (al = a.length) > 0) {
754 dl 1.300 int index = (al - 1) & s;
755     long offset = ((long)index << ASHIFT) + ABASE;
756     ForkJoinPool p = pool;
757 dl 1.243 top = s + 1;
758 jsr166 1.312 U.putObjectRelease(a, offset, task);
759 dl 1.292 if ((d = base - s) == 0 && p != null) {
760 dl 1.284 U.fullFence();
761 dl 1.253 p.signalWork();
762 dl 1.284 }
763 dl 1.300 else if (d + al == 1)
764 dl 1.243 growArray();
765 dl 1.78 }
766     }
767    
768 dl 1.178 /**
769 dl 1.112 * Initializes or doubles the capacity of array. Call either
770     * by owner or with lock held -- it is OK for base, but not
771     * top, to move while resizings are in progress.
772     */
773     final ForkJoinTask<?>[] growArray() {
774     ForkJoinTask<?>[] oldA = array;
775 dl 1.300 int oldSize = oldA != null ? oldA.length : 0;
776     int size = oldSize > 0 ? oldSize << 1 : INITIAL_QUEUE_CAPACITY;
777 dl 1.225 if (size < INITIAL_QUEUE_CAPACITY || size > MAXIMUM_QUEUE_CAPACITY)
778 dl 1.112 throw new RejectedExecutionException("Queue capacity exceeded");
779     int oldMask, t, b;
780     ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
781 dl 1.300 if (oldA != null && (oldMask = oldSize - 1) > 0 &&
782 dl 1.112 (t = top) - (b = base) > 0) {
783     int mask = size - 1;
784 dl 1.200 do { // emulate poll from old array, push to new array
785 dl 1.256 int index = b & oldMask;
786     long offset = ((long)index << ASHIFT) + ABASE;
787 dl 1.243 ForkJoinTask<?> x = (ForkJoinTask<?>)
788     U.getObjectVolatile(oldA, offset);
789     if (x != null &&
790     U.compareAndSwapObject(oldA, offset, x, null))
791     a[b & mask] = x;
792 dl 1.112 } while (++b != t);
793 dl 1.243 U.storeFence();
794 dl 1.78 }
795 dl 1.112 return a;
796 dl 1.78 }
797    
798     /**
799 dl 1.90 * Takes next task, if one exists, in LIFO order. Call only
800 dl 1.102 * by owner in unshared queues.
801 dl 1.90 */
802     final ForkJoinTask<?> pop() {
803 dl 1.243 int b = base, s = top, al, i; ForkJoinTask<?>[] a;
804 dl 1.256 if ((a = array) != null && b != s && (al = a.length) > 0) {
805     int index = (al - 1) & --s;
806     long offset = ((long)index << ASHIFT) + ABASE;
807 dl 1.262 ForkJoinTask<?> t = (ForkJoinTask<?>)
808     U.getObject(a, offset);
809     if (t != null &&
810     U.compareAndSwapObject(a, offset, t, null)) {
811 dl 1.256 top = s;
812 dl 1.300 U.storeFence();
813 dl 1.78 return t;
814     }
815     }
816     return null;
817     }
818    
819     /**
820 dl 1.90 * Takes next task, if one exists, in FIFO order.
821 dl 1.78 */
822 dl 1.90 final ForkJoinTask<?> poll() {
823 dl 1.243 for (;;) {
824     int b = base, s = top, d, al; ForkJoinTask<?>[] a;
825     if ((a = array) != null && (d = b - s) < 0 &&
826     (al = a.length) > 0) {
827 dl 1.256 int index = (al - 1) & b;
828     long offset = ((long)index << ASHIFT) + ABASE;
829 dl 1.243 ForkJoinTask<?> t = (ForkJoinTask<?>)
830     U.getObjectVolatile(a, offset);
831     if (b++ == base) {
832     if (t != null) {
833     if (U.compareAndSwapObject(a, offset, t, null)) {
834     base = b;
835     return t;
836     }
837 dl 1.200 }
838 dl 1.243 else if (d == -1)
839     break; // now empty
840 dl 1.78 }
841 dl 1.90 }
842 dl 1.243 else
843     break;
844 dl 1.78 }
845     return null;
846     }
847    
848     /**
849     * Takes next task, if one exists, in order specified by mode.
850     */
851     final ForkJoinTask<?> nextLocalTask() {
852 dl 1.300 return ((id & FIFO) != 0) ? poll() : pop();
853 dl 1.78 }
854    
855     /**
856     * Returns next task, if one exists, in order specified by mode.
857     */
858     final ForkJoinTask<?> peek() {
859 dl 1.292 int al; ForkJoinTask<?>[] a;
860 dl 1.243 return ((a = array) != null && (al = a.length) > 0) ?
861 dl 1.300 a[(al - 1) &
862     ((id & FIFO) != 0 ? base : top - 1)] : null;
863 dl 1.78 }
864    
865     /**
866     * Pops the given task only if it is at the current top.
867 jsr166 1.251 */
868 dl 1.243 final boolean tryUnpush(ForkJoinTask<?> task) {
869 dl 1.256 int b = base, s = top, al; ForkJoinTask<?>[] a;
870     if ((a = array) != null && b != s && (al = a.length) > 0) {
871     int index = (al - 1) & --s;
872     long offset = ((long)index << ASHIFT) + ABASE;
873     if (U.compareAndSwapObject(a, offset, task, null)) {
874 dl 1.243 top = s;
875 dl 1.300 U.storeFence();
876 dl 1.224 return true;
877     }
878 dl 1.78 }
879     return false;
880     }
881    
882     /**
883 jsr166 1.84 * Removes and cancels all known tasks, ignoring any exceptions.
884 dl 1.78 */
885     final void cancelAll() {
886 dl 1.300 for (ForkJoinTask<?> t; (t = poll()) != null; )
887 dl 1.78 ForkJoinTask.cancelIgnoringExceptions(t);
888     }
889    
890 dl 1.104 // Specialized execution methods
891 dl 1.78
892     /**
893 dl 1.300 * Pops and executes up to limit consecutive tasks or until empty.
894     *
895     * @param limit max runs, or zero for no limit
896 dl 1.253 */
897 dl 1.300 final void localPopAndExec(int limit) {
898     for (;;) {
899 dl 1.253 int b = base, s = top, al; ForkJoinTask<?>[] a;
900     if ((a = array) != null && b != s && (al = a.length) > 0) {
901 dl 1.256 int index = (al - 1) & --s;
902     long offset = ((long)index << ASHIFT) + ABASE;
903 dl 1.253 ForkJoinTask<?> t = (ForkJoinTask<?>)
904     U.getAndSetObject(a, offset, null);
905     if (t != null) {
906     top = s;
907 dl 1.300 U.storeFence();
908     t.doExec();
909     if (limit != 0 && --limit == 0)
910 dl 1.253 break;
911     }
912     else
913     break;
914     }
915     else
916     break;
917     }
918     }
919    
920     /**
921 dl 1.300 * Polls and executes up to limit consecutive tasks or until empty.
922     *
923     * @param limit, or zero for no limit
924 dl 1.253 */
925 dl 1.300 final void localPollAndExec(int limit) {
926     for (int polls = 0;;) {
927     int b = base, s = top, d, al; ForkJoinTask<?>[] a;
928     if ((a = array) != null && (d = b - s) < 0 &&
929     (al = a.length) > 0) {
930 dl 1.256 int index = (al - 1) & b++;
931     long offset = ((long)index << ASHIFT) + ABASE;
932 dl 1.253 ForkJoinTask<?> t = (ForkJoinTask<?>)
933     U.getAndSetObject(a, offset, null);
934     if (t != null) {
935     base = b;
936 dl 1.255 t.doExec();
937 dl 1.300 if (limit != 0 && ++polls == limit)
938 dl 1.253 break;
939     }
940 dl 1.300 else if (d == -1)
941     break; // now empty
942     else
943     polls = 0; // stolen; reset
944 dl 1.253 }
945     else
946     break;
947     }
948     }
949    
950     /**
951 jsr166 1.302 * If present, removes task from queue and executes it.
952 dl 1.94 */
953 dl 1.300 final void tryRemoveAndExec(ForkJoinTask<?> task) {
954     ForkJoinTask<?>[] wa; int s, wal;
955     if (base - (s = top) < 0 && // traverse from top
956     (wa = array) != null && (wal = wa.length) > 0) {
957     for (int m = wal - 1, ns = s - 1, i = ns; ; --i) {
958     int index = i & m;
959     long offset = (index << ASHIFT) + ABASE;
960     ForkJoinTask<?> t = (ForkJoinTask<?>)
961     U.getObject(wa, offset);
962     if (t == null)
963     break;
964     else if (t == task) {
965     if (U.compareAndSwapObject(wa, offset, t, null)) {
966     top = ns; // safely shift down
967     for (int j = i; j != ns; ++j) {
968     ForkJoinTask<?> f;
969     int pindex = (j + 1) & m;
970     long pOffset = (pindex << ASHIFT) + ABASE;
971     f = (ForkJoinTask<?>)U.getObject(wa, pOffset);
972     U.putObjectVolatile(wa, pOffset, null);
973    
974     int jindex = j & m;
975     long jOffset = (jindex << ASHIFT) + ABASE;
976 jsr166 1.312 U.putObjectRelease(wa, jOffset, f);
977 dl 1.300 }
978     U.storeFence();
979     t.doExec();
980     }
981     break;
982     }
983 dl 1.262 }
984 dl 1.215 }
985     }
986    
987     /**
988 dl 1.300 * Tries to steal and run tasks within the target's
989 jsr166 1.302 * computation until done, not found, or limit exceeded.
990 dl 1.94 *
991 dl 1.300 * @param task root of CountedCompleter computation
992     * @param limit max runs, or zero for no limit
993     * @return task status on exit
994     */
995     final int localHelpCC(CountedCompleter<?> task, int limit) {
996     int status = 0;
997     if (task != null && (status = task.status) >= 0) {
998     for (;;) {
999     boolean help = false;
1000     int b = base, s = top, al; ForkJoinTask<?>[] a;
1001     if ((a = array) != null && b != s && (al = a.length) > 0) {
1002     int index = (al - 1) & (s - 1);
1003     long offset = ((long)index << ASHIFT) + ABASE;
1004     ForkJoinTask<?> o = (ForkJoinTask<?>)
1005     U.getObject(a, offset);
1006     if (o instanceof CountedCompleter) {
1007     CountedCompleter<?> t = (CountedCompleter<?>)o;
1008     for (CountedCompleter<?> f = t;;) {
1009     if (f != task) {
1010     if ((f = f.completer) == null) // try parent
1011     break;
1012     }
1013     else {
1014     if (U.compareAndSwapObject(a, offset,
1015     t, null)) {
1016     top = s - 1;
1017     U.storeFence();
1018     t.doExec();
1019     help = true;
1020     }
1021     break;
1022 dl 1.200 }
1023     }
1024 dl 1.243 }
1025 dl 1.104 }
1026 dl 1.300 if ((status = task.status) < 0 || !help ||
1027     (limit != 0 && --limit == 0))
1028     break;
1029 dl 1.104 }
1030     }
1031 dl 1.300 return status;
1032     }
1033    
1034     // Operations on shared queues
1035    
1036     /**
1037 jsr166 1.302 * Tries to lock shared queue by CASing phase field.
1038 dl 1.300 */
1039     final boolean tryLockSharedQueue() {
1040     return U.compareAndSwapInt(this, PHASE, 0, QLOCK);
1041 dl 1.104 }
1042    
1043     /**
1044 dl 1.300 * Shared version of tryUnpush.
1045 dl 1.78 */
1046 dl 1.300 final boolean trySharedUnpush(ForkJoinTask<?> task) {
1047     boolean popped = false;
1048     int s = top - 1, al; ForkJoinTask<?>[] a;
1049     if ((a = array) != null && (al = a.length) > 0) {
1050     int index = (al - 1) & s;
1051 dl 1.256 long offset = ((long)index << ASHIFT) + ABASE;
1052 dl 1.300 ForkJoinTask<?> t = (ForkJoinTask<?>) U.getObject(a, offset);
1053     if (t == task &&
1054     U.compareAndSwapInt(this, PHASE, 0, QLOCK)) {
1055     if (top == s + 1 && array == a &&
1056     U.compareAndSwapObject(a, offset, task, null)) {
1057     popped = true;
1058     top = s;
1059 dl 1.178 }
1060 jsr166 1.312 U.putIntRelease(this, PHASE, 0);
1061 dl 1.94 }
1062 dl 1.78 }
1063 dl 1.300 return popped;
1064 dl 1.78 }
1065    
1066     /**
1067 dl 1.300 * Shared version of localHelpCC.
1068     */
1069     final int sharedHelpCC(CountedCompleter<?> task, int limit) {
1070     int status = 0;
1071     if (task != null && (status = task.status) >= 0) {
1072     for (;;) {
1073     boolean help = false;
1074     int b = base, s = top, al; ForkJoinTask<?>[] a;
1075     if ((a = array) != null && b != s && (al = a.length) > 0) {
1076     int index = (al - 1) & (s - 1);
1077     long offset = ((long)index << ASHIFT) + ABASE;
1078     ForkJoinTask<?> o = (ForkJoinTask<?>)
1079     U.getObject(a, offset);
1080     if (o instanceof CountedCompleter) {
1081     CountedCompleter<?> t = (CountedCompleter<?>)o;
1082     for (CountedCompleter<?> f = t;;) {
1083     if (f != task) {
1084     if ((f = f.completer) == null)
1085     break;
1086     }
1087     else {
1088     if (U.compareAndSwapInt(this, PHASE,
1089     0, QLOCK)) {
1090     if (top == s && array == a &&
1091     U.compareAndSwapObject(a, offset,
1092     t, null)) {
1093     help = true;
1094     top = s - 1;
1095     }
1096 jsr166 1.312 U.putIntRelease(this, PHASE, 0);
1097 dl 1.300 if (help)
1098     t.doExec();
1099     }
1100     break;
1101     }
1102 dl 1.243 }
1103 dl 1.200 }
1104 dl 1.178 }
1105 dl 1.300 if ((status = task.status) < 0 || !help ||
1106     (limit != 0 && --limit == 0))
1107     break;
1108 dl 1.178 }
1109 dl 1.78 }
1110 dl 1.300 return status;
1111 dl 1.78 }
1112    
1113     /**
1114 dl 1.86 * Returns true if owned and not known to be blocked.
1115     */
1116     final boolean isApparentlyUnblocked() {
1117     Thread wt; Thread.State s;
1118 dl 1.300 return ((wt = owner) != null &&
1119 dl 1.86 (s = wt.getState()) != Thread.State.BLOCKED &&
1120     s != Thread.State.WAITING &&
1121     s != Thread.State.TIMED_WAITING);
1122     }
1123    
1124 dl 1.211 // Unsafe mechanics. Note that some are (and must be) the same as in FJP
1125 jsr166 1.312 private static final jdk.internal.misc.Unsafe U = jdk.internal.misc.Unsafe.getUnsafe();
1126 dl 1.300 private static final long PHASE;
1127 jsr166 1.291 private static final int ABASE;
1128     private static final int ASHIFT;
1129 dl 1.78 static {
1130     try {
1131 dl 1.300 PHASE = U.objectFieldOffset
1132     (WorkQueue.class.getDeclaredField("phase"));
1133 jsr166 1.233 ABASE = U.arrayBaseOffset(ForkJoinTask[].class);
1134     int scale = U.arrayIndexScale(ForkJoinTask[].class);
1135 jsr166 1.142 if ((scale & (scale - 1)) != 0)
1136 jsr166 1.232 throw new Error("array index scale not a power of two");
1137 jsr166 1.142 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1138 jsr166 1.231 } catch (ReflectiveOperationException e) {
1139 dl 1.78 throw new Error(e);
1140     }
1141     }
1142     }
1143 dl 1.14
1144 dl 1.112 // static fields (initialized in static initializer below)
1145    
1146     /**
1147     * Creates a new ForkJoinWorkerThread. This factory is used unless
1148     * overridden in ForkJoinPool constructors.
1149     */
1150     public static final ForkJoinWorkerThreadFactory
1151     defaultForkJoinWorkerThreadFactory;
1152    
1153 jsr166 1.1 /**
1154 dl 1.115 * Permission required for callers of methods that may start or
1155 dl 1.300 * kill threads.
1156 dl 1.115 */
1157 jsr166 1.276 static final RuntimePermission modifyThreadPermission;
1158 dl 1.115
1159     /**
1160 dl 1.101 * Common (static) pool. Non-null for public use unless a static
1161 dl 1.105 * construction exception, but internal usages null-check on use
1162     * to paranoically avoid potential initialization circularities
1163     * as well as to simplify generated code.
1164 dl 1.101 */
1165 dl 1.134 static final ForkJoinPool common;
1166 dl 1.101
1167     /**
1168 dl 1.160 * Common pool parallelism. To allow simpler use and management
1169     * when common pool threads are disabled, we allow the underlying
1170 dl 1.185 * common.parallelism field to be zero, but in that case still report
1171 dl 1.160 * parallelism as 1 to reflect resulting caller-runs mechanics.
1172 dl 1.90 */
1173 jsr166 1.274 static final int COMMON_PARALLELISM;
1174 dl 1.90
1175     /**
1176 dl 1.208 * Limit on spare thread construction in tryCompensate.
1177     */
1178 jsr166 1.273 private static final int COMMON_MAX_SPARES;
1179 dl 1.208
1180     /**
1181 dl 1.105 * Sequence number for creating workerNamePrefix.
1182 dl 1.86 */
1183 dl 1.105 private static int poolNumberSequence;
1184 dl 1.86
1185 jsr166 1.1 /**
1186 jsr166 1.132 * Returns the next sequence number. We don't expect this to
1187     * ever contend, so use simple builtin sync.
1188 dl 1.83 */
1189 dl 1.105 private static final synchronized int nextPoolId() {
1190     return ++poolNumberSequence;
1191     }
1192 dl 1.86
1193 dl 1.200 // static configuration constants
1194 dl 1.86
1195     /**
1196 dl 1.300 * Default idle timeout value (in milliseconds) for the thread
1197     * triggering quiescence to park waiting for new work
1198 dl 1.86 */
1199 dl 1.300 private static final long DEFAULT_KEEPALIVE = 60000L;
1200 dl 1.86
1201     /**
1202 dl 1.300 * Undershoot tolerance for idle timeouts
1203 dl 1.120 */
1204 dl 1.300 private static final long TIMEOUT_SLOP = 20L;
1205 dl 1.200
1206     /**
1207 jsr166 1.273 * The default value for COMMON_MAX_SPARES. Overridable using the
1208     * "java.util.concurrent.ForkJoinPool.common.maximumSpares" system
1209     * property. The default value is far in excess of normal
1210     * requirements, but also far short of MAX_CAP and typical OS
1211     * thread limits, so allows JVMs to catch misuse/abuse before
1212     * running out of resources needed to do so.
1213 dl 1.200 */
1214 dl 1.208 private static final int DEFAULT_COMMON_MAX_SPARES = 256;
1215 dl 1.120
1216     /**
1217 dl 1.90 * Increment for seed generators. See class ThreadLocal for
1218     * explanation.
1219     */
1220 dl 1.193 private static final int SEED_INCREMENT = 0x9e3779b9;
1221 dl 1.83
1222 jsr166 1.163 /*
1223 dl 1.200 * Bits and masks for field ctl, packed with 4 16 bit subfields:
1224 dl 1.300 * RC: Number of released (unqueued) workers minus target parallelism
1225 dl 1.200 * TC: Number of total workers minus target parallelism
1226     * SS: version count and status of top waiting thread
1227     * ID: poolIndex of top of Treiber stack of waiters
1228     *
1229     * When convenient, we can extract the lower 32 stack top bits
1230     * (including version bits) as sp=(int)ctl. The offsets of counts
1231     * by the target parallelism and the positionings of fields makes
1232     * it possible to perform the most common checks via sign tests of
1233 dl 1.300 * fields: When ac is negative, there are not enough unqueued
1234 dl 1.200 * workers, when tc is negative, there are not enough total
1235     * workers. When sp is non-zero, there are waiting workers. To
1236     * deal with possibly negative fields, we use casts in and out of
1237     * "short" and/or signed shifts to maintain signedness.
1238     *
1239 dl 1.300 * Because it occupies uppermost bits, we can add one release count
1240     * using getAndAddLong of RC_UNIT, rather than CAS, when returning
1241 dl 1.200 * from a blocked join. Other updates entail multiple subfields
1242     * and masking, requiring CAS.
1243 dl 1.300 *
1244     * The limits packed in field "bounds" are also offset by the
1245     * parallelism level to make them comparable to the ctl rc and tc
1246     * fields.
1247 dl 1.200 */
1248    
1249     // Lower and upper word masks
1250     private static final long SP_MASK = 0xffffffffL;
1251     private static final long UC_MASK = ~SP_MASK;
1252 dl 1.86
1253 dl 1.300 // Release counts
1254     private static final int RC_SHIFT = 48;
1255     private static final long RC_UNIT = 0x0001L << RC_SHIFT;
1256     private static final long RC_MASK = 0xffffL << RC_SHIFT;
1257 dl 1.200
1258     // Total counts
1259 dl 1.86 private static final int TC_SHIFT = 32;
1260 dl 1.200 private static final long TC_UNIT = 0x0001L << TC_SHIFT;
1261     private static final long TC_MASK = 0xffffL << TC_SHIFT;
1262     private static final long ADD_WORKER = 0x0001L << (TC_SHIFT + 15); // sign
1263    
1264 dl 1.300 // Instance fields
1265 dl 1.86
1266 dl 1.300 volatile long stealCount; // collects worker nsteals
1267     final long keepAlive; // milliseconds before dropping if idle
1268     int indexSeed; // next worker index
1269     final int bounds; // min, max threads packed as shorts
1270     volatile int mode; // parallelism, runstate, queue mode
1271     WorkQueue[] workQueues; // main registry
1272     final String workerNamePrefix; // for worker thread string; sync lock
1273 dl 1.112 final ForkJoinWorkerThreadFactory factory;
1274 dl 1.200 final UncaughtExceptionHandler ueh; // per-worker UEH
1275 dl 1.307 final Predicate<? super ForkJoinPool> saturate;
1276 dl 1.101
1277 dl 1.308 @jdk.internal.vm.annotation.Contended("fjpctl") // segregate
1278     volatile long ctl; // main pool control
1279 jsr166 1.309
1280 dl 1.200 // Creating, registering and deregistering workers
1281    
1282 dl 1.112 /**
1283 dl 1.200 * Tries to construct and start one worker. Assumes that total
1284     * count has already been incremented as a reservation. Invokes
1285     * deregisterWorker on any failure.
1286     *
1287     * @return true if successful
1288 dl 1.115 */
1289 dl 1.300 private boolean createWorker() {
1290 dl 1.200 ForkJoinWorkerThreadFactory fac = factory;
1291     Throwable ex = null;
1292     ForkJoinWorkerThread wt = null;
1293     try {
1294     if (fac != null && (wt = fac.newThread(this)) != null) {
1295     wt.start();
1296     return true;
1297 dl 1.115 }
1298 dl 1.200 } catch (Throwable rex) {
1299     ex = rex;
1300 dl 1.112 }
1301 dl 1.200 deregisterWorker(wt, ex);
1302     return false;
1303 dl 1.112 }
1304    
1305 dl 1.200 /**
1306     * Tries to add one worker, incrementing ctl counts before doing
1307     * so, relying on createWorker to back out on failure.
1308     *
1309     * @param c incoming ctl value, with total count negative and no
1310     * idle workers. On CAS failure, c is refreshed and retried if
1311 jsr166 1.202 * this holds (otherwise, a new worker is not needed).
1312 dl 1.200 */
1313     private void tryAddWorker(long c) {
1314     do {
1315 dl 1.300 long nc = ((RC_MASK & (c + RC_UNIT)) |
1316 dl 1.200 (TC_MASK & (c + TC_UNIT)));
1317 dl 1.243 if (ctl == c && U.compareAndSwapLong(this, CTL, c, nc)) {
1318 dl 1.300 createWorker();
1319 dl 1.243 break;
1320 dl 1.200 }
1321     } while (((c = ctl) & ADD_WORKER) != 0L && (int)c == 0);
1322     }
1323 dl 1.112
1324     /**
1325 dl 1.200 * Callback from ForkJoinWorkerThread constructor to establish and
1326     * record its WorkQueue.
1327 dl 1.112 *
1328     * @param wt the worker thread
1329 dl 1.115 * @return the worker's queue
1330 dl 1.112 */
1331 dl 1.115 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1332 dl 1.200 UncaughtExceptionHandler handler;
1333 dl 1.300 wt.setDaemon(true); // configure thread
1334 dl 1.115 if ((handler = ueh) != null)
1335     wt.setUncaughtExceptionHandler(handler);
1336 dl 1.200 WorkQueue w = new WorkQueue(this, wt);
1337 dl 1.300 int tid = 0; // for thread name
1338     int fifo = mode & FIFO;
1339     String prefix = workerNamePrefix;
1340     if (prefix != null) {
1341 jsr166 1.301 synchronized (prefix) {
1342 dl 1.300 WorkQueue[] ws = workQueues; int n;
1343     int s = indexSeed += SEED_INCREMENT;
1344     if (ws != null && (n = ws.length) > 1) {
1345     int m = n - 1;
1346     tid = s & m;
1347     int i = m & ((s << 1) | 1); // odd-numbered indices
1348     for (int probes = n >>> 1;;) { // find empty slot
1349     WorkQueue q;
1350     if ((q = ws[i]) == null || q.phase == QUIET)
1351     break;
1352     else if (--probes == 0) {
1353     i = n | 1; // resize below
1354     break;
1355     }
1356     else
1357     i = (i + 2) & m;
1358     }
1359    
1360     int id = i | fifo | (s & ~(SMASK | FIFO | DORMANT));
1361     w.phase = w.id = id; // now publishable
1362    
1363     if (i < n)
1364     ws[i] = w;
1365     else { // expand array
1366     int an = n << 1;
1367     WorkQueue[] as = new WorkQueue[an];
1368     as[i] = w;
1369     int am = an - 1;
1370     for (int j = 0; j < n; ++j) {
1371     WorkQueue v; // copy external queue
1372     if ((v = ws[j]) != null) // position may change
1373     as[v.id & am & SQMASK] = v;
1374     if (++j >= n)
1375     break;
1376     as[j] = ws[j]; // copy worker
1377 dl 1.94 }
1378 dl 1.300 workQueues = as;
1379 dl 1.94 }
1380     }
1381 dl 1.78 }
1382 dl 1.300 wt.setName(prefix.concat(Integer.toString(tid)));
1383 dl 1.78 }
1384 dl 1.115 return w;
1385 dl 1.78 }
1386 dl 1.19
1387 jsr166 1.1 /**
1388 dl 1.86 * Final callback from terminating worker, as well as upon failure
1389 dl 1.105 * to construct or start a worker. Removes record of worker from
1390     * array, and adjusts counts. If pool is shutting down, tries to
1391     * complete termination.
1392 dl 1.78 *
1393 jsr166 1.151 * @param wt the worker thread, or null if construction failed
1394 dl 1.78 * @param ex the exception causing failure, or null if none
1395 dl 1.45 */
1396 dl 1.78 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1397     WorkQueue w = null;
1398 dl 1.300 int phase = 0;
1399 dl 1.78 if (wt != null && (w = wt.workQueue) != null) {
1400 dl 1.300 Object lock = workerNamePrefix;
1401     long ns = (long)w.nsteals & 0xffffffffL;
1402     int idx = w.id & SMASK;
1403     if (lock != null) {
1404     WorkQueue[] ws; // remove index from array
1405 jsr166 1.301 synchronized (lock) {
1406 dl 1.243 if ((ws = workQueues) != null && ws.length > idx &&
1407     ws[idx] == w)
1408     ws[idx] = null;
1409 dl 1.300 stealCount += ns;
1410 dl 1.243 }
1411     }
1412 dl 1.300 phase = w.phase;
1413 dl 1.243 }
1414 dl 1.300 if (phase != QUIET) { // else pre-adjusted
1415 dl 1.243 long c; // decrement counts
1416     do {} while (!U.compareAndSwapLong
1417 dl 1.300 (this, CTL, c = ctl, ((RC_MASK & (c - RC_UNIT)) |
1418 dl 1.243 (TC_MASK & (c - TC_UNIT)) |
1419     (SP_MASK & c))));
1420     }
1421 dl 1.300 if (w != null)
1422 dl 1.200 w.cancelAll(); // cancel remaining tasks
1423 dl 1.300
1424     if (!tryTerminate(false, false) && // possibly replace worker
1425     w != null && w.array != null) // avoid repeated failures
1426     signalWork();
1427    
1428 dl 1.200 if (ex == null) // help clean on way out
1429 dl 1.120 ForkJoinTask.helpExpungeStaleExceptions();
1430 dl 1.200 else // rethrow
1431 dl 1.104 ForkJoinTask.rethrow(ex);
1432 dl 1.78 }
1433 dl 1.52
1434 dl 1.19 /**
1435 dl 1.300 * Tries to create or release a worker if too few are running.
1436 dl 1.105 */
1437 dl 1.253 final void signalWork() {
1438 dl 1.243 for (;;) {
1439 dl 1.300 long c; int sp; WorkQueue[] ws; int i; WorkQueue v;
1440 dl 1.243 if ((c = ctl) >= 0L) // enough workers
1441     break;
1442     else if ((sp = (int)c) == 0) { // no idle workers
1443     if ((c & ADD_WORKER) != 0L) // too few workers
1444 dl 1.200 tryAddWorker(c);
1445     break;
1446     }
1447 dl 1.243 else if ((ws = workQueues) == null)
1448     break; // unstarted/terminated
1449     else if (ws.length <= (i = sp & SMASK))
1450     break; // terminated
1451     else if ((v = ws[i]) == null)
1452     break; // terminating
1453     else {
1454 dl 1.300 int np = sp & ~UNSIGNALLED;
1455     int vp = v.phase;
1456     long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + RC_UNIT));
1457     Thread vt = v.owner;
1458     if (sp == vp && U.compareAndSwapLong(this, CTL, c, nc)) {
1459     v.phase = np;
1460     if (v.source < 0)
1461     LockSupport.unpark(vt);
1462 dl 1.243 break;
1463     }
1464 dl 1.174 }
1465 dl 1.52 }
1466 dl 1.14 }
1467    
1468 dl 1.200 /**
1469 dl 1.300 * Tries to decrement counts (sometimes implicitly) and possibly
1470     * arrange for a compensating worker in preparation for blocking:
1471     * If not all core workers yet exist, creates one, else if any are
1472     * unreleased (possibly including caller) releases one, else if
1473     * fewer than the minimum allowed number of workers running,
1474     * checks to see that they are all active, and if so creates an
1475     * extra worker unless over maximum limit and policy is to
1476     * saturate. Most of these steps can fail due to interference, in
1477     * which case 0 is returned so caller will retry. A negative
1478     * return value indicates that the caller doesn't need to
1479     * re-adjust counts when later unblocked.
1480 dl 1.243 *
1481 dl 1.300 * @return 1: block then adjust, -1: block without adjust, 0 : retry
1482 dl 1.243 */
1483 dl 1.300 private int tryCompensate(WorkQueue w) {
1484     int t, n, sp;
1485     long c = ctl;
1486     WorkQueue[] ws = workQueues;
1487 dl 1.310 if ((t = (short)(c >>> TC_SHIFT)) >= 0) {
1488 dl 1.300 if (ws == null || (n = ws.length) <= 0 || w == null)
1489     return 0; // disabled
1490     else if ((sp = (int)c) != 0) { // replace or release
1491     WorkQueue v = ws[sp & (n - 1)];
1492     int wp = w.phase;
1493     long uc = UC_MASK & ((wp < 0) ? c + RC_UNIT : c);
1494     int np = sp & ~UNSIGNALLED;
1495     if (v != null) {
1496     int vp = v.phase;
1497     Thread vt = v.owner;
1498     long nc = ((long)v.stackPred & SP_MASK) | uc;
1499     if (vp == sp && U.compareAndSwapLong(this, CTL, c, nc)) {
1500     v.phase = np;
1501     if (v.source < 0)
1502     LockSupport.unpark(vt);
1503     return (wp < 0) ? -1 : 1;
1504     }
1505     }
1506     return 0;
1507     }
1508     else if ((int)(c >> RC_SHIFT) - // reduce parallelism
1509     (short)(bounds & SMASK) > 0) {
1510     long nc = ((RC_MASK & (c - RC_UNIT)) | (~RC_MASK & c));
1511     return U.compareAndSwapLong(this, CTL, c, nc) ? 1 : 0;
1512     }
1513     else { // validate
1514     int md = mode, pc = md & SMASK, tc = pc + t, bc = 0;
1515     boolean unstable = false;
1516     for (int i = 1; i < n; i += 2) {
1517     WorkQueue q; Thread wt; Thread.State ts;
1518     if ((q = ws[i]) != null) {
1519     if (q.source == 0) {
1520     unstable = true;
1521     break;
1522     }
1523     else {
1524     --tc;
1525     if ((wt = q.owner) != null &&
1526     ((ts = wt.getState()) == Thread.State.BLOCKED ||
1527     ts == Thread.State.WAITING))
1528     ++bc; // worker is blocking
1529     }
1530 dl 1.243 }
1531     }
1532 dl 1.300 if (unstable || tc != 0 || ctl != c)
1533     return 0; // inconsistent
1534     else if (t + pc >= MAX_CAP || t >= (bounds >>> SWIDTH)) {
1535 dl 1.307 Predicate<? super ForkJoinPool> sat;
1536     if ((sat = saturate) != null && sat.test(this))
1537 dl 1.300 return -1;
1538     else if (bc < pc) { // lagging
1539     Thread.yield(); // for retry spins
1540     return 0;
1541 dl 1.243 }
1542     else
1543 dl 1.300 throw new RejectedExecutionException(
1544     "Thread limit exceeded replacing blocked worker");
1545 dl 1.200 }
1546 dl 1.177 }
1547 dl 1.243 }
1548 dl 1.300
1549     long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK); // expand pool
1550     return U.compareAndSwapLong(this, CTL, c, nc) && createWorker() ? 1 : 0;
1551 dl 1.243 }
1552    
1553     /**
1554     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1555 dl 1.300 * See above for explanation.
1556 dl 1.243 */
1557     final void runWorker(WorkQueue w) {
1558 dl 1.300 WorkQueue[] ws;
1559 dl 1.243 w.growArray(); // allocate queue
1560 dl 1.300 int r = w.id ^ ThreadLocalRandom.nextSecondarySeed();
1561     if (r == 0) // initial nonzero seed
1562     r = 1;
1563     int lastSignalId = 0; // avoid unneeded signals
1564     while ((ws = workQueues) != null) {
1565     boolean nonempty = false; // scan
1566     for (int n = ws.length, j = n, m = n - 1; j > 0; --j) {
1567     WorkQueue q; int i, b, al; ForkJoinTask<?>[] a;
1568     if ((i = r & m) >= 0 && i < n && // always true
1569     (q = ws[i]) != null && (b = q.base) - q.top < 0 &&
1570 dl 1.243 (a = q.array) != null && (al = a.length) > 0) {
1571 dl 1.300 int qid = q.id; // (never zero)
1572 dl 1.256 int index = (al - 1) & b;
1573     long offset = ((long)index << ASHIFT) + ABASE;
1574 dl 1.243 ForkJoinTask<?> t = (ForkJoinTask<?>)
1575     U.getObjectVolatile(a, offset);
1576 dl 1.300 if (t != null && b++ == q.base &&
1577     U.compareAndSwapObject(a, offset, t, null)) {
1578     if ((q.base = b) - q.top < 0 && qid != lastSignalId)
1579     signalWork(); // propagate signal
1580     w.source = lastSignalId = qid;
1581     t.doExec();
1582     if ((w.id & FIFO) != 0) // run remaining locals
1583     w.localPollAndExec(POLL_LIMIT);
1584     else
1585     w.localPopAndExec(POLL_LIMIT);
1586     ForkJoinWorkerThread thread = w.owner;
1587     ++w.nsteals;
1588     w.source = 0; // now idle
1589     if (thread != null)
1590     thread.afterTopLevelExec();
1591 dl 1.243 }
1592 dl 1.300 nonempty = true;
1593 dl 1.178 }
1594 dl 1.300 else if (nonempty)
1595 dl 1.243 break;
1596 dl 1.300 else
1597     ++r;
1598 dl 1.120 }
1599 dl 1.178
1600 dl 1.300 if (nonempty) { // move (xorshift)
1601     r ^= r << 13; r ^= r >>> 17; r ^= r << 5;
1602     }
1603     else {
1604     int phase;
1605     lastSignalId = 0; // clear for next scan
1606     if ((phase = w.phase) >= 0) { // enqueue
1607     int np = w.phase = (phase + SS_SEQ) | UNSIGNALLED;
1608     long c, nc;
1609     do {
1610     w.stackPred = (int)(c = ctl);
1611     nc = ((c - RC_UNIT) & UC_MASK) | (SP_MASK & np);
1612     } while (!U.compareAndSwapLong(this, CTL, c, nc));
1613     }
1614     else { // already queued
1615     int pred = w.stackPred;
1616     w.source = DORMANT; // enable signal
1617     for (int steps = 0;;) {
1618     int md, rc; long c;
1619     if (w.phase >= 0) {
1620     w.source = 0;
1621     break;
1622     }
1623     else if ((md = mode) < 0) // shutting down
1624     return;
1625     else if ((rc = ((md & SMASK) + // possibly quiescent
1626     (int)((c = ctl) >> RC_SHIFT))) <= 0 &&
1627     (md & SHUTDOWN) != 0 &&
1628     tryTerminate(false, false))
1629     return; // help terminate
1630     else if ((++steps & 1) == 0)
1631     Thread.interrupted(); // clear between parks
1632     else if (rc <= 0 && pred != 0 && phase == (int)c) {
1633     long d = keepAlive + System.currentTimeMillis();
1634     LockSupport.parkUntil(this, d);
1635     if (ctl == c &&
1636     d - System.currentTimeMillis() <= TIMEOUT_SLOP) {
1637     long nc = ((UC_MASK & (c - TC_UNIT)) |
1638     (SP_MASK & pred));
1639     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1640     w.phase = QUIET;
1641     return; // drop on timeout
1642     }
1643     }
1644     }
1645     else
1646     LockSupport.park(this);
1647     }
1648     }
1649     }
1650     }
1651     }
1652 dl 1.200
1653 dl 1.305 /**
1654     * Helps and/or blocks until the given task is done or timeout.
1655     * First tries locally helping, then scans other queues for a task
1656     * produced by one of w's stealers; compensating and blocking if
1657     * none are found (rescanning if tryCompensate fails).
1658     *
1659     * @param w caller
1660     * @param task the task
1661     * @param deadline for timed waits, if nonzero
1662     * @return task status on exit
1663     */
1664 dl 1.300 final int awaitJoin(WorkQueue w, ForkJoinTask<?> task, long deadline) {
1665     int s = 0;
1666     if (w != null && task != null &&
1667     (!(task instanceof CountedCompleter) ||
1668     (s = w.localHelpCC((CountedCompleter<?>)task, 0)) >= 0)) {
1669     w.tryRemoveAndExec(task);
1670     int src = w.source, id = w.id;
1671     s = task.status;
1672     while (s >= 0) {
1673     WorkQueue[] ws;
1674     boolean nonempty = false;
1675     int r = ThreadLocalRandom.nextSecondarySeed() | 1; // odd indices
1676     if ((ws = workQueues) != null) { // scan for matching id
1677     for (int n = ws.length, m = n - 1, j = -n; j < n; j += 2) {
1678     WorkQueue q; int i, b, al; ForkJoinTask<?>[] a;
1679     if ((i = (r + j) & m) >= 0 && i < n &&
1680     (q = ws[i]) != null && q.source == id &&
1681     (b = q.base) - q.top < 0 &&
1682     (a = q.array) != null && (al = a.length) > 0) {
1683     int qid = q.id;
1684     int index = (al - 1) & b;
1685     long offset = ((long)index << ASHIFT) + ABASE;
1686     ForkJoinTask<?> t = (ForkJoinTask<?>)
1687     U.getObjectVolatile(a, offset);
1688     if (t != null && b++ == q.base && id == q.source &&
1689     U.compareAndSwapObject(a, offset, t, null)) {
1690     q.base = b;
1691     w.source = qid;
1692     t.doExec();
1693     w.source = src;
1694     }
1695     nonempty = true;
1696 dl 1.200 break;
1697 dl 1.300 }
1698 dl 1.200 }
1699 dl 1.300 }
1700     if ((s = task.status) < 0)
1701     break;
1702     else if (!nonempty) {
1703     long ms, ns; int block;
1704     if (deadline == 0L)
1705     ms = 0L; // untimed
1706     else if ((ns = deadline - System.nanoTime()) <= 0L)
1707     break; // timeout
1708     else if ((ms = TimeUnit.NANOSECONDS.toMillis(ns)) <= 0L)
1709     ms = 1L; // avoid 0 for timed wait
1710     if ((block = tryCompensate(w)) != 0) {
1711     task.internalWait(ms);
1712     U.getAndAddLong(this, CTL, (block > 0) ? RC_UNIT : 0L);
1713 dl 1.200 }
1714 dl 1.300 s = task.status;
1715 dl 1.200 }
1716 dl 1.178 }
1717     }
1718 dl 1.200 return s;
1719 dl 1.120 }
1720    
1721     /**
1722 dl 1.300 * Runs tasks until {@code isQuiescent()}. Rather than blocking
1723     * when tasks cannot be found, rescans until all others cannot
1724     * find tasks either.
1725 dl 1.78 */
1726 dl 1.300 final void helpQuiescePool(WorkQueue w) {
1727     int prevSrc = w.source, fifo = w.id & FIFO;
1728     for (int source = prevSrc, released = -1;;) { // -1 until known
1729     WorkQueue[] ws;
1730     if (fifo != 0)
1731     w.localPollAndExec(0);
1732     else
1733     w.localPopAndExec(0);
1734     if (released == -1 && w.phase >= 0)
1735     released = 1;
1736     boolean quiet = true, empty = true;
1737     int r = ThreadLocalRandom.nextSecondarySeed();
1738     if ((ws = workQueues) != null) {
1739     for (int n = ws.length, j = n, m = n - 1; j > 0; --j) {
1740     WorkQueue q; int i, b, al; ForkJoinTask<?>[] a;
1741     if ((i = (r - j) & m) >= 0 && i < n && (q = ws[i]) != null) {
1742     if ((b = q.base) - q.top < 0 &&
1743     (a = q.array) != null && (al = a.length) > 0) {
1744     int qid = q.id;
1745     if (released == 0) { // increment
1746     released = 1;
1747     U.getAndAddLong(this, CTL, RC_UNIT);
1748 dl 1.95 }
1749 dl 1.256 int index = (al - 1) & b;
1750     long offset = ((long)index << ASHIFT) + ABASE;
1751 dl 1.300 ForkJoinTask<?> t = (ForkJoinTask<?>)
1752 dl 1.262 U.getObjectVolatile(a, offset);
1753 dl 1.300 if (t != null && b++ == q.base &&
1754     U.compareAndSwapObject(a, offset, t, null)) {
1755     q.base = b;
1756     w.source = source = q.id;
1757     t.doExec();
1758     w.source = source = prevSrc;
1759 dl 1.243 }
1760 dl 1.300 quiet = empty = false;
1761 dl 1.200 break;
1762 dl 1.95 }
1763 dl 1.300 else if ((q.source & QUIET) == 0)
1764     quiet = false;
1765 dl 1.52 }
1766 dl 1.19 }
1767 dl 1.243 }
1768 dl 1.300 if (quiet) {
1769     if (released == 0)
1770     U.getAndAddLong(this, CTL, RC_UNIT);
1771     w.source = prevSrc;
1772     break;
1773     }
1774     else if (empty) {
1775     if (source != QUIET)
1776     w.source = source = QUIET;
1777     if (released == 1) { // decrement
1778     released = 0;
1779     U.getAndAddLong(this, CTL, RC_MASK & -RC_UNIT);
1780     }
1781     }
1782 dl 1.14 }
1783 dl 1.22 }
1784    
1785 dl 1.52 /**
1786 dl 1.300 * Scans for and returns a polled task, if available.
1787     * Used only for untracked polls.
1788 dl 1.105 *
1789 dl 1.300 * @param submissionsOnly if true, only scan submission queues
1790 dl 1.19 */
1791 dl 1.300 private ForkJoinTask<?> pollScan(boolean submissionsOnly) {
1792     WorkQueue[] ws; int n;
1793     rescan: while ((mode & STOP) == 0 && (ws = workQueues) != null &&
1794     (n = ws.length) > 0) {
1795     int m = n - 1;
1796     int r = ThreadLocalRandom.nextSecondarySeed();
1797     int h = r >>> 16;
1798     int origin, step;
1799     if (submissionsOnly) {
1800     origin = (r & ~1) & m; // even indices and steps
1801     step = (h & ~1) | 2;
1802     }
1803     else {
1804     origin = r & m;
1805     step = h | 1;
1806     }
1807     for (int k = origin, oldSum = 0, checkSum = 0;;) {
1808     WorkQueue q; int b, al; ForkJoinTask<?>[] a;
1809     if ((q = ws[k]) != null) {
1810     checkSum += b = q.base;
1811     if (b - q.top < 0 &&
1812     (a = q.array) != null && (al = a.length) > 0) {
1813     int index = (al - 1) & b;
1814     long offset = ((long)index << ASHIFT) + ABASE;
1815     ForkJoinTask<?> t = (ForkJoinTask<?>)
1816     U.getObjectVolatile(a, offset);
1817     if (t != null && b++ == q.base &&
1818     U.compareAndSwapObject(a, offset, t, null)) {
1819     q.base = b;
1820     return t;
1821     }
1822     else
1823     break; // restart
1824     }
1825     }
1826     if ((k = (k + step) & m) == origin) {
1827     if (oldSum == (oldSum = checkSum))
1828     break rescan;
1829     checkSum = 0;
1830 dl 1.178 }
1831 dl 1.52 }
1832 dl 1.90 }
1833 dl 1.300 return null;
1834     }
1835    
1836     /**
1837     * Gets and removes a local or stolen task for the given worker.
1838     *
1839     * @return a task, if available
1840     */
1841     final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
1842     ForkJoinTask<?> t;
1843     if (w != null &&
1844     (t = (w.id & FIFO) != 0 ? w.poll() : w.pop()) != null)
1845     return t;
1846     else
1847     return pollScan(false);
1848 dl 1.90 }
1849    
1850 dl 1.300 // External operations
1851    
1852 dl 1.90 /**
1853 dl 1.300 * Adds the given task to a submission queue at submitter's
1854     * current queue, creating one if null or contended.
1855 dl 1.90 *
1856 dl 1.300 * @param task the task. Caller must ensure non-null.
1857 dl 1.90 */
1858 dl 1.300 final void externalPush(ForkJoinTask<?> task) {
1859     int r; // initialize caller's probe
1860     if ((r = ThreadLocalRandom.getProbe()) == 0) {
1861     ThreadLocalRandom.localInit();
1862     r = ThreadLocalRandom.getProbe();
1863     }
1864     for (;;) {
1865     int md = mode, n;
1866     WorkQueue[] ws = workQueues;
1867     if ((md & SHUTDOWN) != 0 || ws == null || (n = ws.length) <= 0)
1868     throw new RejectedExecutionException();
1869     else {
1870     WorkQueue q;
1871     boolean push = false, grow = false;
1872     if ((q = ws[(n - 1) & r & SQMASK]) == null) {
1873     Object lock = workerNamePrefix;
1874     int qid = (r | QUIET) & ~(FIFO | OWNED);
1875     q = new WorkQueue(this, null);
1876     q.id = qid;
1877     q.source = QUIET;
1878     q.phase = QLOCK; // lock queue
1879     if (lock != null) {
1880 jsr166 1.301 synchronized (lock) { // lock pool to install
1881 dl 1.300 int i;
1882     if ((ws = workQueues) != null &&
1883     (n = ws.length) > 0 &&
1884     ws[i = qid & (n - 1) & SQMASK] == null) {
1885     ws[i] = q;
1886     push = grow = true;
1887     }
1888     }
1889     }
1890     }
1891     else if (q.tryLockSharedQueue()) {
1892     int b = q.base, s = q.top, al, d; ForkJoinTask<?>[] a;
1893     if ((a = q.array) != null && (al = a.length) > 0 &&
1894     al - 1 + (d = b - s) > 0) {
1895     a[(al - 1) & s] = task;
1896     q.top = s + 1; // relaxed writes OK here
1897     q.phase = 0;
1898 dl 1.311 if (d < 0 && q.base - s < -1)
1899 dl 1.300 break; // no signal needed
1900     }
1901 dl 1.243 else
1902 dl 1.300 grow = true;
1903     push = true;
1904     }
1905     if (push) {
1906     if (grow) {
1907     try {
1908     q.growArray();
1909     int s = q.top, al; ForkJoinTask<?>[] a;
1910     if ((a = q.array) != null && (al = a.length) > 0) {
1911     a[(al - 1) & s] = task;
1912     q.top = s + 1;
1913     }
1914     } finally {
1915     q.phase = 0;
1916     }
1917 dl 1.243 }
1918 dl 1.300 signalWork();
1919     break;
1920 dl 1.90 }
1921 dl 1.300 else // move if busy
1922     r = ThreadLocalRandom.advanceProbe(r);
1923 dl 1.90 }
1924     }
1925     }
1926    
1927 dl 1.300 /**
1928     * Pushes a possibly-external submission.
1929     */
1930     private <T> ForkJoinTask<T> externalSubmit(ForkJoinTask<T> task) {
1931     Thread t; ForkJoinWorkerThread w; WorkQueue q;
1932     if (task == null)
1933     throw new NullPointerException();
1934     if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) &&
1935     (w = (ForkJoinWorkerThread)t).pool == this &&
1936     (q = w.workQueue) != null)
1937     q.push(task);
1938     else
1939     externalPush(task);
1940     return task;
1941     }
1942    
1943     /**
1944     * Returns common pool queue for an external thread.
1945     */
1946     static WorkQueue commonSubmitterQueue() {
1947     ForkJoinPool p = common;
1948     int r = ThreadLocalRandom.getProbe();
1949     WorkQueue[] ws; int n;
1950     return (p != null && (ws = p.workQueues) != null &&
1951     (n = ws.length) > 0) ?
1952     ws[(n - 1) & r & SQMASK] : null;
1953     }
1954 dl 1.90
1955     /**
1956 dl 1.300 * Performs tryUnpush for an external submitter.
1957     */
1958     final boolean tryExternalUnpush(ForkJoinTask<?> task) {
1959     int r = ThreadLocalRandom.getProbe();
1960     WorkQueue[] ws; WorkQueue w; int n;
1961     return ((ws = workQueues) != null &&
1962     (n = ws.length) > 0 &&
1963     (w = ws[(n - 1) & r & SQMASK]) != null &&
1964     w.trySharedUnpush(task));
1965 dl 1.22 }
1966    
1967     /**
1968 dl 1.300 * Performs helpComplete for an external submitter.
1969 dl 1.78 */
1970 dl 1.300 final int externalHelpComplete(CountedCompleter<?> task, int maxTasks) {
1971     int r = ThreadLocalRandom.getProbe();
1972     WorkQueue[] ws; WorkQueue w; int n;
1973     return ((ws = workQueues) != null && (n = ws.length) > 0 &&
1974     (w = ws[(n - 1) & r & SQMASK]) != null) ?
1975     w.sharedHelpCC(task, maxTasks) : 0;
1976 dl 1.22 }
1977    
1978     /**
1979 dl 1.300 * Tries to steal and run tasks within the target's computation.
1980     * The maxTasks argument supports external usages; internal calls
1981     * use zero, allowing unbounded steps (external calls trap
1982     * non-positive values).
1983 dl 1.78 *
1984 dl 1.300 * @param w caller
1985     * @param maxTasks if non-zero, the maximum number of other tasks to run
1986     * @return task status on exit
1987 dl 1.22 */
1988 dl 1.300 final int helpComplete(WorkQueue w, CountedCompleter<?> task,
1989     int maxTasks) {
1990     return (w == null) ? 0 : w.localHelpCC(task, maxTasks);
1991 dl 1.14 }
1992    
1993     /**
1994 dl 1.105 * Returns a cheap heuristic guide for task partitioning when
1995     * programmers, frameworks, tools, or languages have little or no
1996 jsr166 1.222 * idea about task granularity. In essence, by offering this
1997 dl 1.105 * method, we ask users only about tradeoffs in overhead vs
1998     * expected throughput and its variance, rather than how finely to
1999     * partition tasks.
2000     *
2001     * In a steady state strict (tree-structured) computation, each
2002     * thread makes available for stealing enough tasks for other
2003     * threads to remain active. Inductively, if all threads play by
2004     * the same rules, each thread should make available only a
2005     * constant number of tasks.
2006     *
2007     * The minimum useful constant is just 1. But using a value of 1
2008     * would require immediate replenishment upon each steal to
2009     * maintain enough tasks, which is infeasible. Further,
2010     * partitionings/granularities of offered tasks should minimize
2011     * steal rates, which in general means that threads nearer the top
2012     * of computation tree should generate more than those nearer the
2013     * bottom. In perfect steady state, each thread is at
2014     * approximately the same level of computation tree. However,
2015     * producing extra tasks amortizes the uncertainty of progress and
2016     * diffusion assumptions.
2017     *
2018 jsr166 1.161 * So, users will want to use values larger (but not much larger)
2019 dl 1.105 * than 1 to both smooth over transient shortages and hedge
2020     * against uneven progress; as traded off against the cost of
2021     * extra task overhead. We leave the user to pick a threshold
2022     * value to compare with the results of this call to guide
2023     * decisions, but recommend values such as 3.
2024     *
2025     * When all threads are active, it is on average OK to estimate
2026     * surplus strictly locally. In steady-state, if one thread is
2027     * maintaining say 2 surplus tasks, then so are others. So we can
2028     * just use estimated queue length. However, this strategy alone
2029     * leads to serious mis-estimates in some non-steady-state
2030     * conditions (ramp-up, ramp-down, other stalls). We can detect
2031     * many of these by further considering the number of "idle"
2032     * threads, that are known to have zero queued tasks, so
2033     * compensate by a factor of (#idle/#active) threads.
2034     */
2035     static int getSurplusQueuedTaskCount() {
2036     Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2037 dl 1.300 if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) &&
2038     (pool = (wt = (ForkJoinWorkerThread)t).pool) != null &&
2039     (q = wt.workQueue) != null) {
2040     int p = pool.mode & SMASK;
2041     int a = p + (int)(pool.ctl >> RC_SHIFT);
2042     int n = q.top - q.base;
2043 dl 1.112 return n - (a > (p >>>= 1) ? 0 :
2044     a > (p >>>= 1) ? 1 :
2045     a > (p >>>= 1) ? 2 :
2046     a > (p >>>= 1) ? 4 :
2047     8);
2048 dl 1.105 }
2049     return 0;
2050 dl 1.100 }
2051    
2052 dl 1.300 // Termination
2053 dl 1.14
2054     /**
2055 dl 1.210 * Possibly initiates and/or completes termination.
2056 dl 1.14 *
2057     * @param now if true, unconditionally terminate, else only
2058 dl 1.78 * if no work and no active workers
2059 dl 1.243 * @param enable if true, terminate when next possible
2060 dl 1.300 * @return true if terminating or terminated
2061 jsr166 1.1 */
2062 dl 1.300 private boolean tryTerminate(boolean now, boolean enable) {
2063     int md; // 3 phases: try to set SHUTDOWN, then STOP, then TERMINATED
2064 dl 1.289
2065 dl 1.300 while (((md = mode) & SHUTDOWN) == 0) {
2066 dl 1.294 if (!enable || this == common) // cannot shutdown
2067 dl 1.300 return false;
2068 dl 1.294 else
2069 dl 1.300 U.compareAndSwapInt(this, MODE, md, md | SHUTDOWN);
2070 dl 1.289 }
2071    
2072 dl 1.300 while (((md = mode) & STOP) == 0) { // try to initiate termination
2073     if (!now) { // check if quiescent & empty
2074 dl 1.211 for (long oldSum = 0L;;) { // repeat until stable
2075 dl 1.300 boolean running = false;
2076 dl 1.210 long checkSum = ctl;
2077 dl 1.300 WorkQueue[] ws = workQueues;
2078     if ((md & SMASK) + (int)(checkSum >> RC_SHIFT) > 0)
2079     running = true;
2080     else if (ws != null) {
2081     WorkQueue w; int b;
2082 dl 1.289 for (int i = 0; i < ws.length; ++i) {
2083     if ((w = ws[i]) != null) {
2084 dl 1.300 checkSum += (b = w.base) + w.id;
2085     if (b != w.top ||
2086     ((i & 1) == 1 && w.source >= 0)) {
2087     running = true;
2088     break;
2089     }
2090 dl 1.289 }
2091 dl 1.206 }
2092 dl 1.203 }
2093 dl 1.300 if (((md = mode) & STOP) != 0)
2094     break; // already triggered
2095     else if (running)
2096     return false;
2097     else if (workQueues == ws && oldSum == (oldSum = checkSum))
2098 dl 1.210 break;
2099 dl 1.203 }
2100     }
2101 dl 1.300 if ((md & STOP) == 0)
2102     U.compareAndSwapInt(this, MODE, md, md | STOP);
2103 dl 1.200 }
2104 dl 1.210
2105 dl 1.300 while (((md = mode) & TERMINATED) == 0) { // help terminate others
2106     for (long oldSum = 0L;;) { // repeat until stable
2107     WorkQueue[] ws; WorkQueue w;
2108     long checkSum = ctl;
2109     if ((ws = workQueues) != null) {
2110     for (int i = 0; i < ws.length; ++i) {
2111     if ((w = ws[i]) != null) {
2112     ForkJoinWorkerThread wt = w.owner;
2113     w.cancelAll(); // clear queues
2114     if (wt != null) {
2115 dl 1.289 try { // unblock join or park
2116 dl 1.210 wt.interrupt();
2117     } catch (Throwable ignore) {
2118 dl 1.200 }
2119     }
2120 dl 1.300 checkSum += w.base + w.id;
2121 dl 1.200 }
2122 dl 1.101 }
2123 dl 1.78 }
2124 dl 1.300 if (((md = mode) & TERMINATED) != 0 ||
2125     (workQueues == ws && oldSum == (oldSum = checkSum)))
2126     break;
2127 dl 1.78 }
2128 dl 1.300 if ((md & TERMINATED) != 0)
2129     break;
2130     else if ((md & SMASK) + (short)(ctl >>> TC_SHIFT) > 0)
2131 dl 1.210 break;
2132 dl 1.300 else if (U.compareAndSwapInt(this, MODE, md, md | TERMINATED)) {
2133     synchronized (this) {
2134     notifyAll(); // for awaitTermination
2135 dl 1.243 }
2136 dl 1.256 break;
2137 dl 1.200 }
2138 dl 1.52 }
2139 dl 1.300 return true;
2140 dl 1.105 }
2141    
2142 dl 1.52 // Exported methods
2143 jsr166 1.1
2144     // Constructors
2145    
2146     /**
2147 jsr166 1.9 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2148 dl 1.300 * java.lang.Runtime#availableProcessors}, using defaults for all
2149     * other parameters.
2150 jsr166 1.1 *
2151     * @throws SecurityException if a security manager exists and
2152     * the caller is not permitted to modify threads
2153     * because it does not hold {@link
2154     * java.lang.RuntimePermission}{@code ("modifyThread")}
2155     */
2156     public ForkJoinPool() {
2157 jsr166 1.148 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2158 dl 1.300 defaultForkJoinWorkerThreadFactory, null, false,
2159 dl 1.307 0, MAX_CAP, 1, null, DEFAULT_KEEPALIVE, TimeUnit.MILLISECONDS);
2160 jsr166 1.1 }
2161    
2162     /**
2163 jsr166 1.9 * Creates a {@code ForkJoinPool} with the indicated parallelism
2164 dl 1.300 * level, using defaults for all other parameters.
2165 jsr166 1.1 *
2166 jsr166 1.9 * @param parallelism the parallelism level
2167 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
2168 jsr166 1.11 * equal to zero, or greater than implementation limit
2169 jsr166 1.1 * @throws SecurityException if a security manager exists and
2170     * the caller is not permitted to modify threads
2171     * because it does not hold {@link
2172     * java.lang.RuntimePermission}{@code ("modifyThread")}
2173     */
2174     public ForkJoinPool(int parallelism) {
2175 dl 1.300 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false,
2176 dl 1.307 0, MAX_CAP, 1, null, DEFAULT_KEEPALIVE, TimeUnit.MILLISECONDS);
2177 jsr166 1.1 }
2178    
2179     /**
2180 dl 1.300 * Creates a {@code ForkJoinPool} with the given parameters (using
2181     * defaults for others).
2182 jsr166 1.1 *
2183 dl 1.18 * @param parallelism the parallelism level. For default value,
2184     * use {@link java.lang.Runtime#availableProcessors}.
2185     * @param factory the factory for creating new threads. For default value,
2186     * use {@link #defaultForkJoinWorkerThreadFactory}.
2187 dl 1.19 * @param handler the handler for internal worker threads that
2188     * terminate due to unrecoverable errors encountered while executing
2189 jsr166 1.31 * tasks. For default value, use {@code null}.
2190 dl 1.19 * @param asyncMode if true,
2191 dl 1.18 * establishes local first-in-first-out scheduling mode for forked
2192     * tasks that are never joined. This mode may be more appropriate
2193     * than default locally stack-based mode in applications in which
2194     * worker threads only process event-style asynchronous tasks.
2195 jsr166 1.31 * For default value, use {@code false}.
2196 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
2197 jsr166 1.11 * equal to zero, or greater than implementation limit
2198     * @throws NullPointerException if the factory is null
2199 jsr166 1.1 * @throws SecurityException if a security manager exists and
2200     * the caller is not permitted to modify threads
2201     * because it does not hold {@link
2202     * java.lang.RuntimePermission}{@code ("modifyThread")}
2203     */
2204 dl 1.19 public ForkJoinPool(int parallelism,
2205 dl 1.18 ForkJoinWorkerThreadFactory factory,
2206 jsr166 1.156 UncaughtExceptionHandler handler,
2207 dl 1.18 boolean asyncMode) {
2208 dl 1.300 this(parallelism, factory, handler, asyncMode,
2209 dl 1.307 0, MAX_CAP, 1, null, DEFAULT_KEEPALIVE, TimeUnit.MILLISECONDS);
2210 dl 1.152 }
2211    
2212 dl 1.300 /**
2213     * Creates a {@code ForkJoinPool} with the given parameters.
2214     *
2215     * @param parallelism the parallelism level. For default value,
2216     * use {@link java.lang.Runtime#availableProcessors}.
2217     *
2218     * @param factory the factory for creating new threads. For
2219     * default value, use {@link #defaultForkJoinWorkerThreadFactory}.
2220     *
2221     * @param handler the handler for internal worker threads that
2222     * terminate due to unrecoverable errors encountered while
2223     * executing tasks. For default value, use {@code null}.
2224     *
2225     * @param asyncMode if true, establishes local first-in-first-out
2226     * scheduling mode for forked tasks that are never joined. This
2227     * mode may be more appropriate than default locally stack-based
2228     * mode in applications in which worker threads only process
2229     * event-style asynchronous tasks. For default value, use {@code
2230     * false}.
2231     *
2232     * @param corePoolSize the number of threads to keep in the pool
2233     * (unless timed out after an elapsed keep-alive). Normally (and
2234     * by default) this is the same value as the parallelism level,
2235     * but may be set to a larger value to reduce dynamic overhead if
2236     * tasks regularly block. Using a smaller value (for example
2237     * {@code 0}) has the same effect as the default.
2238     *
2239     * @param maximumPoolSize the maximum number of threads allowed.
2240     * When the maximum is reached, attempts to replace blocked
2241     * threads fail. (However, because creation and termination of
2242     * different threads may overlap, and may be managed by the given
2243 dl 1.307 * thread factory, this value may be transiently exceeded.) To
2244     * arrange the same value as is used by default for the common
2245     * pool, use {@code 256} plus the parallelism level. Using a value
2246     * (for example {@code Integer.MAX_VALUE}) larger than the
2247     * implementation's total thread limit has the same effect as
2248     * using this limit (which is the default).
2249 dl 1.300 *
2250     * @param minimumRunnable the minimum allowed number of core
2251     * threads not blocked by a join or {@link ManagedBlocker}. To
2252     * ensure progress, when too few unblocked threads exist and
2253     * unexecuted tasks may exist, new threads are constructed, up to
2254     * the given maximumPoolSize. For the default value, use {@code
2255     * 1}, that ensures liveness. A larger value might improve
2256     * throughput in the presence of blocked activities, but might
2257     * not, due to increased overhead. A value of zero may be
2258     * acceptable when submitted tasks cannot have dependencies
2259     * requiring additional threads.
2260     *
2261 dl 1.307 * @param saturate if nonnull, a predicate invoked upon attempts
2262     * to create more than the maximum total allowed threads. By
2263     * default, when a thread is about to block on a join or {@link
2264     * ManagedBlocker}, but cannot be replaced because the
2265     * maximumPoolSize would be exceeded, a {@link
2266     * RejectedExecutionException} is thrown. But if this predicate
2267     * returns {@code true}, then no exception is thrown, so the pool
2268     * continues to operate with fewer than the target number of
2269     * runnable threads, which might not ensure progress.
2270 dl 1.300 *
2271     * @param keepAliveTime the elapsed time since last use before
2272     * a thread is terminated (and then later replaced if needed).
2273     * For the default value, use {@code 60, TimeUnit.SECONDS}.
2274     *
2275     * @param unit the time unit for the {@code keepAliveTime} argument
2276     *
2277     * @throws IllegalArgumentException if parallelism is less than or
2278     * equal to zero, or is greater than implementation limit,
2279     * or if maximumPoolSize is less than parallelism,
2280     * of if the keepAliveTime is less than or equal to zero.
2281     * @throws NullPointerException if the factory is null
2282     * @throws SecurityException if a security manager exists and
2283     * the caller is not permitted to modify threads
2284     * because it does not hold {@link
2285     * java.lang.RuntimePermission}{@code ("modifyThread")}
2286 jsr166 1.306 * @since 9
2287 dl 1.300 */
2288     public ForkJoinPool(int parallelism,
2289     ForkJoinWorkerThreadFactory factory,
2290     UncaughtExceptionHandler handler,
2291     boolean asyncMode,
2292     int corePoolSize,
2293     int maximumPoolSize,
2294     int minimumRunnable,
2295 dl 1.307 Predicate<? super ForkJoinPool> saturate,
2296 dl 1.300 long keepAliveTime,
2297     TimeUnit unit) {
2298     // check, encode, pack parameters
2299     if (parallelism <= 0 || parallelism > MAX_CAP ||
2300     maximumPoolSize < parallelism || keepAliveTime <= 0L)
2301 dl 1.152 throw new IllegalArgumentException();
2302 dl 1.14 if (factory == null)
2303     throw new NullPointerException();
2304 dl 1.300 long ms = Math.max(unit.toMillis(keepAliveTime), TIMEOUT_SLOP);
2305    
2306     String prefix = "ForkJoinPool-" + nextPoolId() + "-worker-";
2307     int corep = Math.min(Math.max(corePoolSize, parallelism), MAX_CAP);
2308     long c = ((((long)(-corep) << TC_SHIFT) & TC_MASK) |
2309     (((long)(-parallelism) << RC_SHIFT) & RC_MASK));
2310 dl 1.307 int m = parallelism | (asyncMode ? FIFO : 0);
2311 dl 1.300 int maxSpares = Math.min(maximumPoolSize, MAX_CAP) - parallelism;
2312     int minAvail = Math.min(Math.max(minimumRunnable, 0), MAX_CAP);
2313     int b = ((minAvail - parallelism) & SMASK) | (maxSpares << SWIDTH);
2314     int n = (parallelism > 1) ? parallelism - 1 : 1; // at least 2 slots
2315     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
2316     n = (n + 1) << 1; // power of two, including space for submission queues
2317    
2318     this.workQueues = new WorkQueue[n];
2319     this.workerNamePrefix = prefix;
2320     this.factory = factory;
2321     this.ueh = handler;
2322 dl 1.307 this.saturate = saturate;
2323 dl 1.300 this.keepAlive = ms;
2324     this.bounds = b;
2325     this.mode = m;
2326     this.ctl = c;
2327     checkPermission();
2328 dl 1.152 }
2329    
2330     /**
2331 dl 1.300 * Constructor for common pool using parameters possibly
2332     * overridden by system properties
2333     */
2334     private ForkJoinPool(byte forCommonPoolOnly) {
2335     int parallelism = -1;
2336     ForkJoinWorkerThreadFactory fac = null;
2337     UncaughtExceptionHandler handler = null;
2338     try { // ignore exceptions in accessing/parsing properties
2339     String pp = System.getProperty
2340     ("java.util.concurrent.ForkJoinPool.common.parallelism");
2341     String fp = System.getProperty
2342     ("java.util.concurrent.ForkJoinPool.common.threadFactory");
2343     String hp = System.getProperty
2344     ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
2345     if (pp != null)
2346     parallelism = Integer.parseInt(pp);
2347     if (fp != null)
2348     fac = ((ForkJoinWorkerThreadFactory)ClassLoader.
2349     getSystemClassLoader().loadClass(fp).newInstance());
2350     if (hp != null)
2351     handler = ((UncaughtExceptionHandler)ClassLoader.
2352     getSystemClassLoader().loadClass(hp).newInstance());
2353     } catch (Exception ignore) {
2354     }
2355    
2356     if (fac == null) {
2357     if (System.getSecurityManager() == null)
2358     fac = defaultForkJoinWorkerThreadFactory;
2359     else // use security-managed default
2360     fac = new InnocuousForkJoinWorkerThreadFactory();
2361     }
2362     if (parallelism < 0 && // default 1 less than #cores
2363     (parallelism = Runtime.getRuntime().availableProcessors() - 1) <= 0)
2364     parallelism = 1;
2365     if (parallelism > MAX_CAP)
2366     parallelism = MAX_CAP;
2367    
2368     long c = ((((long)(-parallelism) << TC_SHIFT) & TC_MASK) |
2369     (((long)(-parallelism) << RC_SHIFT) & RC_MASK));
2370     int b = ((1 - parallelism) & SMASK) | (COMMON_MAX_SPARES << SWIDTH);
2371     int n = (parallelism > 1) ? parallelism - 1 : 1;
2372     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
2373     n = (n + 1) << 1;
2374    
2375     this.workQueues = new WorkQueue[n];
2376     this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2377     this.factory = fac;
2378 dl 1.18 this.ueh = handler;
2379 dl 1.307 this.saturate = null;
2380 dl 1.300 this.keepAlive = DEFAULT_KEEPALIVE;
2381     this.bounds = b;
2382 dl 1.310 this.mode = parallelism;
2383 dl 1.300 this.ctl = c;
2384 dl 1.101 }
2385    
2386     /**
2387 dl 1.128 * Returns the common pool instance. This pool is statically
2388 dl 1.134 * constructed; its run state is unaffected by attempts to {@link
2389     * #shutdown} or {@link #shutdownNow}. However this pool and any
2390     * ongoing processing are automatically terminated upon program
2391     * {@link System#exit}. Any program that relies on asynchronous
2392     * task processing to complete before program termination should
2393 jsr166 1.158 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2394     * before exit.
2395 dl 1.100 *
2396     * @return the common pool instance
2397 jsr166 1.138 * @since 1.8
2398 dl 1.100 */
2399     public static ForkJoinPool commonPool() {
2400 dl 1.134 // assert common != null : "static init error";
2401     return common;
2402 dl 1.100 }
2403    
2404 jsr166 1.1 // Execution methods
2405    
2406     /**
2407     * Performs the given task, returning its result upon completion.
2408 dl 1.52 * If the computation encounters an unchecked Exception or Error,
2409     * it is rethrown as the outcome of this invocation. Rethrown
2410     * exceptions behave in the same way as regular exceptions, but,
2411     * when possible, contain stack traces (as displayed for example
2412     * using {@code ex.printStackTrace()}) of both the current thread
2413     * as well as the thread actually encountering the exception;
2414     * minimally only the latter.
2415 jsr166 1.1 *
2416     * @param task the task
2417 jsr166 1.191 * @param <T> the type of the task's result
2418 jsr166 1.1 * @return the task's result
2419 jsr166 1.11 * @throws NullPointerException if the task is null
2420     * @throws RejectedExecutionException if the task cannot be
2421     * scheduled for execution
2422 jsr166 1.1 */
2423     public <T> T invoke(ForkJoinTask<T> task) {
2424 dl 1.90 if (task == null)
2425     throw new NullPointerException();
2426 dl 1.243 externalSubmit(task);
2427 dl 1.78 return task.join();
2428 jsr166 1.1 }
2429    
2430     /**
2431     * Arranges for (asynchronous) execution of the given task.
2432     *
2433     * @param task the task
2434 jsr166 1.11 * @throws NullPointerException if the task is null
2435     * @throws RejectedExecutionException if the task cannot be
2436     * scheduled for execution
2437 jsr166 1.1 */
2438 jsr166 1.8 public void execute(ForkJoinTask<?> task) {
2439 dl 1.243 externalSubmit(task);
2440 jsr166 1.1 }
2441    
2442     // AbstractExecutorService methods
2443    
2444 jsr166 1.11 /**
2445     * @throws NullPointerException if the task is null
2446     * @throws RejectedExecutionException if the task cannot be
2447     * scheduled for execution
2448     */
2449 jsr166 1.1 public void execute(Runnable task) {
2450 dl 1.41 if (task == null)
2451     throw new NullPointerException();
2452 jsr166 1.2 ForkJoinTask<?> job;
2453 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2454     job = (ForkJoinTask<?>) task;
2455 jsr166 1.2 else
2456 dl 1.152 job = new ForkJoinTask.RunnableExecuteAction(task);
2457 dl 1.243 externalSubmit(job);
2458 jsr166 1.1 }
2459    
2460 jsr166 1.11 /**
2461 dl 1.18 * Submits a ForkJoinTask for execution.
2462     *
2463     * @param task the task to submit
2464 jsr166 1.191 * @param <T> the type of the task's result
2465 dl 1.18 * @return the task
2466     * @throws NullPointerException if the task is null
2467     * @throws RejectedExecutionException if the task cannot be
2468     * scheduled for execution
2469     */
2470     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2471 dl 1.243 return externalSubmit(task);
2472 dl 1.18 }
2473    
2474     /**
2475 jsr166 1.11 * @throws NullPointerException if the task is null
2476     * @throws RejectedExecutionException if the task cannot be
2477     * scheduled for execution
2478     */
2479 jsr166 1.1 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2480 dl 1.243 return externalSubmit(new ForkJoinTask.AdaptedCallable<T>(task));
2481 jsr166 1.1 }
2482    
2483 jsr166 1.11 /**
2484     * @throws NullPointerException if the task is null
2485     * @throws RejectedExecutionException if the task cannot be
2486     * scheduled for execution
2487     */
2488 jsr166 1.1 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2489 dl 1.243 return externalSubmit(new ForkJoinTask.AdaptedRunnable<T>(task, result));
2490 jsr166 1.1 }
2491    
2492 jsr166 1.11 /**
2493     * @throws NullPointerException if the task is null
2494     * @throws RejectedExecutionException if the task cannot be
2495     * scheduled for execution
2496     */
2497 jsr166 1.1 public ForkJoinTask<?> submit(Runnable task) {
2498 dl 1.41 if (task == null)
2499     throw new NullPointerException();
2500 jsr166 1.2 ForkJoinTask<?> job;
2501 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2502     job = (ForkJoinTask<?>) task;
2503 jsr166 1.2 else
2504 dl 1.90 job = new ForkJoinTask.AdaptedRunnableAction(task);
2505 dl 1.243 return externalSubmit(job);
2506 jsr166 1.1 }
2507    
2508     /**
2509 jsr166 1.11 * @throws NullPointerException {@inheritDoc}
2510     * @throws RejectedExecutionException {@inheritDoc}
2511     */
2512 jsr166 1.1 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2513 dl 1.86 // In previous versions of this class, this method constructed
2514     // a task to run ForkJoinTask.invokeAll, but now external
2515     // invocation of multiple tasks is at least as efficient.
2516 jsr166 1.199 ArrayList<Future<T>> futures = new ArrayList<>(tasks.size());
2517 jsr166 1.1
2518 dl 1.86 try {
2519     for (Callable<T> t : tasks) {
2520 dl 1.90 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2521 jsr166 1.144 futures.add(f);
2522 dl 1.243 externalSubmit(f);
2523 dl 1.86 }
2524 jsr166 1.143 for (int i = 0, size = futures.size(); i < size; i++)
2525     ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2526 dl 1.86 return futures;
2527 jsr166 1.226 } catch (Throwable t) {
2528     for (int i = 0, size = futures.size(); i < size; i++)
2529     futures.get(i).cancel(false);
2530     throw t;
2531 jsr166 1.1 }
2532     }
2533    
2534     /**
2535     * Returns the factory used for constructing new workers.
2536     *
2537     * @return the factory used for constructing new workers
2538     */
2539     public ForkJoinWorkerThreadFactory getFactory() {
2540     return factory;
2541     }
2542    
2543     /**
2544     * Returns the handler for internal worker threads that terminate
2545     * due to unrecoverable errors encountered while executing tasks.
2546     *
2547 jsr166 1.4 * @return the handler, or {@code null} if none
2548 jsr166 1.1 */
2549 jsr166 1.156 public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2550 dl 1.14 return ueh;
2551 jsr166 1.1 }
2552    
2553     /**
2554 jsr166 1.9 * Returns the targeted parallelism level of this pool.
2555 jsr166 1.1 *
2556 jsr166 1.9 * @return the targeted parallelism level of this pool
2557 jsr166 1.1 */
2558     public int getParallelism() {
2559 dl 1.310 int par = mode & SMASK;
2560     return (par > 0) ? par : 1;
2561 jsr166 1.1 }
2562    
2563     /**
2564 dl 1.100 * Returns the targeted parallelism level of the common pool.
2565     *
2566     * @return the targeted parallelism level of the common pool
2567 jsr166 1.138 * @since 1.8
2568 dl 1.100 */
2569     public static int getCommonPoolParallelism() {
2570 jsr166 1.274 return COMMON_PARALLELISM;
2571 dl 1.100 }
2572    
2573     /**
2574 jsr166 1.1 * Returns the number of worker threads that have started but not
2575 jsr166 1.34 * yet terminated. The result returned by this method may differ
2576 jsr166 1.4 * from {@link #getParallelism} when threads are created to
2577 jsr166 1.1 * maintain parallelism when others are cooperatively blocked.
2578     *
2579     * @return the number of worker threads
2580     */
2581     public int getPoolSize() {
2582 dl 1.300 return ((mode & SMASK) + (short)(ctl >>> TC_SHIFT));
2583 jsr166 1.1 }
2584    
2585     /**
2586 jsr166 1.4 * Returns {@code true} if this pool uses local first-in-first-out
2587 jsr166 1.1 * scheduling mode for forked tasks that are never joined.
2588     *
2589 jsr166 1.4 * @return {@code true} if this pool uses async mode
2590 jsr166 1.1 */
2591     public boolean getAsyncMode() {
2592 dl 1.300 return (mode & FIFO) != 0;
2593 jsr166 1.1 }
2594    
2595     /**
2596     * Returns an estimate of the number of worker threads that are
2597     * not blocked waiting to join tasks or for other managed
2598 dl 1.14 * synchronization. This method may overestimate the
2599     * number of running threads.
2600 jsr166 1.1 *
2601     * @return the number of worker threads
2602     */
2603     public int getRunningThreadCount() {
2604 dl 1.78 int rc = 0;
2605     WorkQueue[] ws; WorkQueue w;
2606     if ((ws = workQueues) != null) {
2607 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2608     if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2609 dl 1.78 ++rc;
2610     }
2611     }
2612     return rc;
2613 jsr166 1.1 }
2614    
2615     /**
2616     * Returns an estimate of the number of threads that are currently
2617     * stealing or executing tasks. This method may overestimate the
2618     * number of active threads.
2619     *
2620     * @return the number of active threads
2621     */
2622     public int getActiveThreadCount() {
2623 dl 1.300 int r = (mode & SMASK) + (int)(ctl >> RC_SHIFT);
2624 jsr166 1.63 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2625 jsr166 1.1 }
2626    
2627     /**
2628 jsr166 1.4 * Returns {@code true} if all worker threads are currently idle.
2629     * An idle worker is one that cannot obtain a task to execute
2630     * because none are available to steal from other threads, and
2631     * there are no pending submissions to the pool. This method is
2632     * conservative; it might not return {@code true} immediately upon
2633     * idleness of all threads, but will eventually become true if
2634     * threads remain inactive.
2635 jsr166 1.1 *
2636 jsr166 1.4 * @return {@code true} if all threads are currently idle
2637 jsr166 1.1 */
2638     public boolean isQuiescent() {
2639 dl 1.300 for (;;) {
2640     long c = ctl;
2641     int md = mode, pc = md & SMASK;
2642 dl 1.310 int tc = pc + (short)(c >>> TC_SHIFT);
2643 dl 1.300 int rc = pc + (int)(c >> RC_SHIFT);
2644     if ((md & (STOP | TERMINATED)) != 0)
2645     return true;
2646     else if (rc > 0)
2647     return false;
2648     else {
2649     WorkQueue[] ws; WorkQueue v;
2650     if ((ws = workQueues) != null) {
2651     for (int i = 1; i < ws.length; i += 2) {
2652     if ((v = ws[i]) != null) {
2653     if ((v.source & QUIET) == 0)
2654     return false;
2655     --tc;
2656     }
2657     }
2658     }
2659     if (tc == 0 && ctl == c)
2660     return true;
2661     }
2662     }
2663 jsr166 1.1 }
2664    
2665     /**
2666     * Returns an estimate of the total number of tasks stolen from
2667     * one thread's work queue by another. The reported value
2668     * underestimates the actual total number of steals when the pool
2669     * is not quiescent. This value may be useful for monitoring and
2670     * tuning fork/join programs: in general, steal counts should be
2671     * high enough to keep threads busy, but low enough to avoid
2672     * overhead and contention across threads.
2673     *
2674     * @return the number of steals
2675     */
2676     public long getStealCount() {
2677 dl 1.300 long count = stealCount;
2678 dl 1.78 WorkQueue[] ws; WorkQueue w;
2679     if ((ws = workQueues) != null) {
2680 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2681 dl 1.78 if ((w = ws[i]) != null)
2682 dl 1.300 count += (long)w.nsteals & 0xffffffffL;
2683 dl 1.78 }
2684     }
2685     return count;
2686 jsr166 1.1 }
2687    
2688     /**
2689     * Returns an estimate of the total number of tasks currently held
2690     * in queues by worker threads (but not including tasks submitted
2691     * to the pool that have not begun executing). This value is only
2692     * an approximation, obtained by iterating across all threads in
2693     * the pool. This method may be useful for tuning task
2694     * granularities.
2695     *
2696     * @return the number of queued tasks
2697     */
2698     public long getQueuedTaskCount() {
2699     long count = 0;
2700 dl 1.78 WorkQueue[] ws; WorkQueue w;
2701     if ((ws = workQueues) != null) {
2702 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2703 dl 1.78 if ((w = ws[i]) != null)
2704     count += w.queueSize();
2705     }
2706 dl 1.52 }
2707 jsr166 1.1 return count;
2708     }
2709    
2710     /**
2711 jsr166 1.8 * Returns an estimate of the number of tasks submitted to this
2712 dl 1.55 * pool that have not yet begun executing. This method may take
2713 dl 1.52 * time proportional to the number of submissions.
2714 jsr166 1.1 *
2715     * @return the number of queued submissions
2716     */
2717     public int getQueuedSubmissionCount() {
2718 dl 1.78 int count = 0;
2719     WorkQueue[] ws; WorkQueue w;
2720     if ((ws = workQueues) != null) {
2721 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2722 dl 1.78 if ((w = ws[i]) != null)
2723     count += w.queueSize();
2724     }
2725     }
2726     return count;
2727 jsr166 1.1 }
2728    
2729     /**
2730 jsr166 1.4 * Returns {@code true} if there are any tasks submitted to this
2731     * pool that have not yet begun executing.
2732 jsr166 1.1 *
2733     * @return {@code true} if there are any queued submissions
2734     */
2735     public boolean hasQueuedSubmissions() {
2736 dl 1.78 WorkQueue[] ws; WorkQueue w;
2737     if ((ws = workQueues) != null) {
2738 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2739 dl 1.115 if ((w = ws[i]) != null && !w.isEmpty())
2740 dl 1.78 return true;
2741     }
2742     }
2743     return false;
2744 jsr166 1.1 }
2745    
2746     /**
2747     * Removes and returns the next unexecuted submission if one is
2748     * available. This method may be useful in extensions to this
2749     * class that re-assign work in systems with multiple pools.
2750     *
2751 jsr166 1.4 * @return the next submission, or {@code null} if none
2752 jsr166 1.1 */
2753     protected ForkJoinTask<?> pollSubmission() {
2754 dl 1.300 return pollScan(true);
2755 jsr166 1.1 }
2756    
2757     /**
2758     * Removes all available unexecuted submitted and forked tasks
2759     * from scheduling queues and adds them to the given collection,
2760     * without altering their execution status. These may include
2761 jsr166 1.8 * artificially generated or wrapped tasks. This method is
2762     * designed to be invoked only when the pool is known to be
2763 jsr166 1.1 * quiescent. Invocations at other times may not remove all
2764     * tasks. A failure encountered while attempting to add elements
2765     * to collection {@code c} may result in elements being in
2766     * neither, either or both collections when the associated
2767     * exception is thrown. The behavior of this operation is
2768     * undefined if the specified collection is modified while the
2769     * operation is in progress.
2770     *
2771     * @param c the collection to transfer elements into
2772     * @return the number of elements transferred
2773     */
2774 jsr166 1.5 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2775 dl 1.52 int count = 0;
2776 dl 1.78 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2777     if ((ws = workQueues) != null) {
2778 dl 1.86 for (int i = 0; i < ws.length; ++i) {
2779 dl 1.78 if ((w = ws[i]) != null) {
2780     while ((t = w.poll()) != null) {
2781     c.add(t);
2782     ++count;
2783     }
2784     }
2785 dl 1.52 }
2786     }
2787 dl 1.18 return count;
2788     }
2789    
2790     /**
2791 jsr166 1.1 * Returns a string identifying this pool, as well as its state,
2792     * including indications of run state, parallelism level, and
2793     * worker and task counts.
2794     *
2795     * @return a string identifying this pool, as well as its state
2796     */
2797     public String toString() {
2798 dl 1.86 // Use a single pass through workQueues to collect counts
2799     long qt = 0L, qs = 0L; int rc = 0;
2800 dl 1.300 long st = stealCount;
2801 dl 1.86 WorkQueue[] ws; WorkQueue w;
2802     if ((ws = workQueues) != null) {
2803     for (int i = 0; i < ws.length; ++i) {
2804     if ((w = ws[i]) != null) {
2805     int size = w.queueSize();
2806     if ((i & 1) == 0)
2807     qs += size;
2808     else {
2809     qt += size;
2810 dl 1.300 st += (long)w.nsteals & 0xffffffffL;
2811 dl 1.86 if (w.isApparentlyUnblocked())
2812     ++rc;
2813     }
2814     }
2815     }
2816     }
2817 dl 1.300
2818     int md = mode;
2819     int pc = (md & SMASK);
2820     long c = ctl;
2821 dl 1.52 int tc = pc + (short)(c >>> TC_SHIFT);
2822 dl 1.300 int ac = pc + (int)(c >> RC_SHIFT);
2823 dl 1.78 if (ac < 0) // ignore transient negative
2824     ac = 0;
2825 dl 1.300 String level = ((md & TERMINATED) != 0 ? "Terminated" :
2826     (md & STOP) != 0 ? "Terminating" :
2827     (md & SHUTDOWN) != 0 ? "Shutting down" :
2828 dl 1.200 "Running");
2829 jsr166 1.1 return super.toString() +
2830 dl 1.52 "[" + level +
2831 dl 1.14 ", parallelism = " + pc +
2832     ", size = " + tc +
2833     ", active = " + ac +
2834     ", running = " + rc +
2835 jsr166 1.1 ", steals = " + st +
2836     ", tasks = " + qt +
2837     ", submissions = " + qs +
2838     "]";
2839     }
2840    
2841     /**
2842 dl 1.100 * Possibly initiates an orderly shutdown in which previously
2843     * submitted tasks are executed, but no new tasks will be
2844     * accepted. Invocation has no effect on execution state if this
2845 jsr166 1.137 * is the {@link #commonPool()}, and no additional effect if
2846 dl 1.100 * already shut down. Tasks that are in the process of being
2847     * submitted concurrently during the course of this method may or
2848     * may not be rejected.
2849 jsr166 1.1 *
2850     * @throws SecurityException if a security manager exists and
2851     * the caller is not permitted to modify threads
2852     * because it does not hold {@link
2853     * java.lang.RuntimePermission}{@code ("modifyThread")}
2854     */
2855     public void shutdown() {
2856     checkPermission();
2857 dl 1.105 tryTerminate(false, true);
2858 jsr166 1.1 }
2859    
2860     /**
2861 dl 1.100 * Possibly attempts to cancel and/or stop all tasks, and reject
2862     * all subsequently submitted tasks. Invocation has no effect on
2863 jsr166 1.137 * execution state if this is the {@link #commonPool()}, and no
2864 dl 1.100 * additional effect if already shut down. Otherwise, tasks that
2865     * are in the process of being submitted or executed concurrently
2866     * during the course of this method may or may not be
2867     * rejected. This method cancels both existing and unexecuted
2868     * tasks, in order to permit termination in the presence of task
2869     * dependencies. So the method always returns an empty list
2870     * (unlike the case for some other Executors).
2871 jsr166 1.1 *
2872     * @return an empty list
2873     * @throws SecurityException if a security manager exists and
2874     * the caller is not permitted to modify threads
2875     * because it does not hold {@link
2876     * java.lang.RuntimePermission}{@code ("modifyThread")}
2877     */
2878     public List<Runnable> shutdownNow() {
2879     checkPermission();
2880 dl 1.105 tryTerminate(true, true);
2881 jsr166 1.1 return Collections.emptyList();
2882     }
2883    
2884     /**
2885     * Returns {@code true} if all tasks have completed following shut down.
2886     *
2887     * @return {@code true} if all tasks have completed following shut down
2888     */
2889     public boolean isTerminated() {
2890 dl 1.300 return (mode & TERMINATED) != 0;
2891 jsr166 1.1 }
2892    
2893     /**
2894     * Returns {@code true} if the process of termination has
2895 jsr166 1.9 * commenced but not yet completed. This method may be useful for
2896     * debugging. A return of {@code true} reported a sufficient
2897     * period after shutdown may indicate that submitted tasks have
2898 jsr166 1.119 * ignored or suppressed interruption, or are waiting for I/O,
2899 dl 1.49 * causing this executor not to properly terminate. (See the
2900     * advisory notes for class {@link ForkJoinTask} stating that
2901     * tasks should not normally entail blocking operations. But if
2902     * they do, they must abort them on interrupt.)
2903 jsr166 1.1 *
2904 jsr166 1.9 * @return {@code true} if terminating but not yet terminated
2905 jsr166 1.1 */
2906     public boolean isTerminating() {
2907 dl 1.300 int md = mode;
2908     return (md & STOP) != 0 && (md & TERMINATED) == 0;
2909 jsr166 1.1 }
2910    
2911     /**
2912     * Returns {@code true} if this pool has been shut down.
2913     *
2914     * @return {@code true} if this pool has been shut down
2915     */
2916     public boolean isShutdown() {
2917 dl 1.300 return (mode & SHUTDOWN) != 0;
2918 jsr166 1.9 }
2919    
2920     /**
2921 dl 1.105 * Blocks until all tasks have completed execution after a
2922     * shutdown request, or the timeout occurs, or the current thread
2923 dl 1.134 * is interrupted, whichever happens first. Because the {@link
2924     * #commonPool()} never terminates until program shutdown, when
2925     * applied to the common pool, this method is equivalent to {@link
2926 jsr166 1.158 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
2927 jsr166 1.1 *
2928     * @param timeout the maximum time to wait
2929     * @param unit the time unit of the timeout argument
2930     * @return {@code true} if this executor terminated and
2931     * {@code false} if the timeout elapsed before termination
2932     * @throws InterruptedException if interrupted while waiting
2933     */
2934     public boolean awaitTermination(long timeout, TimeUnit unit)
2935     throws InterruptedException {
2936 dl 1.134 if (Thread.interrupted())
2937     throw new InterruptedException();
2938     if (this == common) {
2939     awaitQuiescence(timeout, unit);
2940     return false;
2941     }
2942 dl 1.52 long nanos = unit.toNanos(timeout);
2943 dl 1.101 if (isTerminated())
2944     return true;
2945 dl 1.183 if (nanos <= 0L)
2946     return false;
2947     long deadline = System.nanoTime() + nanos;
2948 jsr166 1.103 synchronized (this) {
2949 jsr166 1.184 for (;;) {
2950 dl 1.183 if (isTerminated())
2951     return true;
2952     if (nanos <= 0L)
2953     return false;
2954     long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
2955     wait(millis > 0L ? millis : 1L);
2956     nanos = deadline - System.nanoTime();
2957 dl 1.52 }
2958 dl 1.18 }
2959 jsr166 1.1 }
2960    
2961     /**
2962 dl 1.134 * If called by a ForkJoinTask operating in this pool, equivalent
2963     * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
2964     * waits and/or attempts to assist performing tasks until this
2965     * pool {@link #isQuiescent} or the indicated timeout elapses.
2966     *
2967     * @param timeout the maximum time to wait
2968     * @param unit the time unit of the timeout argument
2969     * @return {@code true} if quiescent; {@code false} if the
2970     * timeout elapsed.
2971     */
2972     public boolean awaitQuiescence(long timeout, TimeUnit unit) {
2973     long nanos = unit.toNanos(timeout);
2974     ForkJoinWorkerThread wt;
2975     Thread thread = Thread.currentThread();
2976     if ((thread instanceof ForkJoinWorkerThread) &&
2977     (wt = (ForkJoinWorkerThread)thread).pool == this) {
2978     helpQuiescePool(wt.workQueue);
2979     return true;
2980     }
2981 dl 1.300 else {
2982     for (long startTime = System.nanoTime();;) {
2983     ForkJoinTask<?> t;
2984     if ((t = pollScan(false)) != null)
2985     t.doExec();
2986     else if (isQuiescent())
2987     return true;
2988     else if ((System.nanoTime() - startTime) > nanos)
2989 dl 1.134 return false;
2990 dl 1.300 else
2991     Thread.yield(); // cannot block
2992 dl 1.134 }
2993     }
2994     }
2995    
2996     /**
2997     * Waits and/or attempts to assist performing tasks indefinitely
2998 jsr166 1.141 * until the {@link #commonPool()} {@link #isQuiescent}.
2999 dl 1.134 */
3000 dl 1.136 static void quiesceCommonPool() {
3001 dl 1.134 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3002     }
3003    
3004     /**
3005 jsr166 1.1 * Interface for extending managed parallelism for tasks running
3006 jsr166 1.8 * in {@link ForkJoinPool}s.
3007     *
3008 dl 1.19 * <p>A {@code ManagedBlocker} provides two methods. Method
3009 jsr166 1.218 * {@link #isReleasable} must return {@code true} if blocking is
3010     * not necessary. Method {@link #block} blocks the current thread
3011 dl 1.19 * if necessary (perhaps internally invoking {@code isReleasable}
3012 dl 1.54 * before actually blocking). These actions are performed by any
3013 jsr166 1.157 * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
3014     * The unusual methods in this API accommodate synchronizers that
3015     * may, but don't usually, block for long periods. Similarly, they
3016 dl 1.54 * allow more efficient internal handling of cases in which
3017     * additional workers may be, but usually are not, needed to
3018     * ensure sufficient parallelism. Toward this end,
3019     * implementations of method {@code isReleasable} must be amenable
3020     * to repeated invocation.
3021 jsr166 1.1 *
3022     * <p>For example, here is a ManagedBlocker based on a
3023     * ReentrantLock:
3024 jsr166 1.239 * <pre> {@code
3025 jsr166 1.1 * class ManagedLocker implements ManagedBlocker {
3026     * final ReentrantLock lock;
3027     * boolean hasLock = false;
3028     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3029     * public boolean block() {
3030     * if (!hasLock)
3031     * lock.lock();
3032     * return true;
3033     * }
3034     * public boolean isReleasable() {
3035     * return hasLock || (hasLock = lock.tryLock());
3036     * }
3037     * }}</pre>
3038 dl 1.19 *
3039     * <p>Here is a class that possibly blocks waiting for an
3040     * item on a given queue:
3041 jsr166 1.239 * <pre> {@code
3042 dl 1.19 * class QueueTaker<E> implements ManagedBlocker {
3043     * final BlockingQueue<E> queue;
3044     * volatile E item = null;
3045     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3046     * public boolean block() throws InterruptedException {
3047     * if (item == null)
3048 dl 1.23 * item = queue.take();
3049 dl 1.19 * return true;
3050     * }
3051     * public boolean isReleasable() {
3052 dl 1.23 * return item != null || (item = queue.poll()) != null;
3053 dl 1.19 * }
3054     * public E getItem() { // call after pool.managedBlock completes
3055     * return item;
3056     * }
3057     * }}</pre>
3058 jsr166 1.1 */
3059     public static interface ManagedBlocker {
3060     /**
3061     * Possibly blocks the current thread, for example waiting for
3062     * a lock or condition.
3063     *
3064 jsr166 1.4 * @return {@code true} if no additional blocking is necessary
3065     * (i.e., if isReleasable would return true)
3066 jsr166 1.1 * @throws InterruptedException if interrupted while waiting
3067     * (the method is not required to do so, but is allowed to)
3068     */
3069     boolean block() throws InterruptedException;
3070    
3071     /**
3072 jsr166 1.4 * Returns {@code true} if blocking is unnecessary.
3073 jsr166 1.154 * @return {@code true} if blocking is unnecessary
3074 jsr166 1.1 */
3075     boolean isReleasable();
3076     }
3077    
3078     /**
3079 jsr166 1.217 * Runs the given possibly blocking task. When {@linkplain
3080     * ForkJoinTask#inForkJoinPool() running in a ForkJoinPool}, this
3081     * method possibly arranges for a spare thread to be activated if
3082     * necessary to ensure sufficient parallelism while the current
3083     * thread is blocked in {@link ManagedBlocker#block blocker.block()}.
3084 jsr166 1.1 *
3085 jsr166 1.217 * <p>This method repeatedly calls {@code blocker.isReleasable()} and
3086     * {@code blocker.block()} until either method returns {@code true}.
3087     * Every call to {@code blocker.block()} is preceded by a call to
3088     * {@code blocker.isReleasable()} that returned {@code false}.
3089     *
3090     * <p>If not running in a ForkJoinPool, this method is
3091 jsr166 1.8 * behaviorally equivalent to
3092 jsr166 1.239 * <pre> {@code
3093 jsr166 1.1 * while (!blocker.isReleasable())
3094     * if (blocker.block())
3095 jsr166 1.217 * break;}</pre>
3096 jsr166 1.8 *
3097 jsr166 1.217 * If running in a ForkJoinPool, the pool may first be expanded to
3098     * ensure sufficient parallelism available during the call to
3099     * {@code blocker.block()}.
3100 jsr166 1.1 *
3101 jsr166 1.217 * @param blocker the blocker task
3102     * @throws InterruptedException if {@code blocker.block()} did so
3103 jsr166 1.1 */
3104 dl 1.18 public static void managedBlock(ManagedBlocker blocker)
3105 jsr166 1.1 throws InterruptedException {
3106 dl 1.200 ForkJoinPool p;
3107     ForkJoinWorkerThread wt;
3108 dl 1.300 WorkQueue w;
3109 jsr166 1.1 Thread t = Thread.currentThread();
3110 dl 1.200 if ((t instanceof ForkJoinWorkerThread) &&
3111 dl 1.300 (p = (wt = (ForkJoinWorkerThread)t).pool) != null &&
3112     (w = wt.workQueue) != null) {
3113     int block;
3114 dl 1.172 while (!blocker.isReleasable()) {
3115 dl 1.300 if ((block = p.tryCompensate(w)) != 0) {
3116 dl 1.105 try {
3117     do {} while (!blocker.isReleasable() &&
3118     !blocker.block());
3119     } finally {
3120 dl 1.300 U.getAndAddLong(p, CTL, (block > 0) ? RC_UNIT : 0L);
3121 dl 1.105 }
3122     break;
3123 dl 1.78 }
3124     }
3125 dl 1.18 }
3126 dl 1.105 else {
3127     do {} while (!blocker.isReleasable() &&
3128     !blocker.block());
3129     }
3130 jsr166 1.1 }
3131    
3132 dl 1.310 /**
3133     * If the given executor is a ForkJoinPool, poll and execute
3134     * AsynchronousCompletionTasks from worker's queue until none are
3135     * available or blocker is released.
3136     */
3137     static void helpAsyncBlocker(Executor e, ManagedBlocker blocker) {
3138     if (blocker != null && (e instanceof ForkJoinPool)) {
3139     WorkQueue w; ForkJoinWorkerThread wt; WorkQueue[] ws; int r, n;
3140     ForkJoinPool p = (ForkJoinPool)e;
3141     Thread thread = Thread.currentThread();
3142     if (thread instanceof ForkJoinWorkerThread &&
3143     (wt = (ForkJoinWorkerThread)thread).pool == p)
3144     w = wt.workQueue;
3145     else if ((r = ThreadLocalRandom.getProbe()) != 0 &&
3146     (ws = p.workQueues) != null && (n = ws.length) > 0)
3147     w = ws[(n - 1) & r & SQMASK];
3148     else
3149     w = null;
3150     if (w != null) {
3151     for (;;) {
3152     int b = w.base, s = w.top, d, al; ForkJoinTask<?>[] a;
3153     if ((a = w.array) != null && (d = b - s) < 0 &&
3154     (al = a.length) > 0) {
3155     int index = (al - 1) & b;
3156     long offset = ((long)index << ASHIFT) + ABASE;
3157     ForkJoinTask<?> t = (ForkJoinTask<?>)
3158     U.getObjectVolatile(a, offset);
3159     if (blocker.isReleasable())
3160     break;
3161     else if (b++ == w.base) {
3162     if (t == null) {
3163     if (d == -1)
3164     break;
3165     }
3166     else if (!(t instanceof CompletableFuture.
3167     AsynchronousCompletionTask))
3168     break;
3169     else if (U.compareAndSwapObject(a, offset,
3170     t, null)) {
3171     w.base = b;
3172     t.doExec();
3173     }
3174     }
3175     }
3176     else
3177     break;
3178     }
3179     }
3180     }
3181     }
3182    
3183 jsr166 1.7 // AbstractExecutorService overrides. These rely on undocumented
3184     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3185     // implement RunnableFuture.
3186 jsr166 1.1
3187     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3188 dl 1.90 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3189 jsr166 1.1 }
3190    
3191     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3192 dl 1.90 return new ForkJoinTask.AdaptedCallable<T>(callable);
3193 jsr166 1.1 }
3194    
3195     // Unsafe mechanics
3196 jsr166 1.312 private static final jdk.internal.misc.Unsafe U = jdk.internal.misc.Unsafe.getUnsafe();
3197 dl 1.78 private static final long CTL;
3198 dl 1.300 private static final long MODE;
3199 jsr166 1.291 private static final int ABASE;
3200     private static final int ASHIFT;
3201 dl 1.52
3202     static {
3203 jsr166 1.3 try {
3204 dl 1.78 CTL = U.objectFieldOffset
3205 jsr166 1.233 (ForkJoinPool.class.getDeclaredField("ctl"));
3206 dl 1.300 MODE = U.objectFieldOffset
3207     (ForkJoinPool.class.getDeclaredField("mode"));
3208 jsr166 1.233 ABASE = U.arrayBaseOffset(ForkJoinTask[].class);
3209     int scale = U.arrayIndexScale(ForkJoinTask[].class);
3210 jsr166 1.142 if ((scale & (scale - 1)) != 0)
3211 jsr166 1.232 throw new Error("array index scale not a power of two");
3212 jsr166 1.142 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3213 jsr166 1.231 } catch (ReflectiveOperationException e) {
3214 dl 1.52 throw new Error(e);
3215     }
3216 dl 1.105
3217 dl 1.243 // Reduce the risk of rare disastrous classloading in first call to
3218     // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
3219     Class<?> ensureLoaded = LockSupport.class;
3220    
3221 jsr166 1.273 int commonMaxSpares = DEFAULT_COMMON_MAX_SPARES;
3222     try {
3223     String p = System.getProperty
3224     ("java.util.concurrent.ForkJoinPool.common.maximumSpares");
3225     if (p != null)
3226     commonMaxSpares = Integer.parseInt(p);
3227     } catch (Exception ignore) {}
3228     COMMON_MAX_SPARES = commonMaxSpares;
3229    
3230 dl 1.152 defaultForkJoinWorkerThreadFactory =
3231 dl 1.112 new DefaultForkJoinWorkerThreadFactory();
3232 dl 1.115 modifyThreadPermission = new RuntimePermission("modifyThread");
3233    
3234 dl 1.152 common = java.security.AccessController.doPrivileged
3235     (new java.security.PrivilegedAction<ForkJoinPool>() {
3236 dl 1.300 public ForkJoinPool run() {
3237     return new ForkJoinPool((byte)0); }});
3238 jsr166 1.275
3239 dl 1.310 COMMON_PARALLELISM = Math.max(common.mode & SMASK, 1);
3240 jsr166 1.3 }
3241 dl 1.52
3242 dl 1.197 /**
3243 jsr166 1.279 * Factory for innocuous worker threads.
3244 dl 1.197 */
3245 jsr166 1.278 private static final class InnocuousForkJoinWorkerThreadFactory
3246 dl 1.197 implements ForkJoinWorkerThreadFactory {
3247    
3248     /**
3249     * An ACC to restrict permissions for the factory itself.
3250     * The constructed workers have no permissions set.
3251     */
3252     private static final AccessControlContext innocuousAcc;
3253     static {
3254     Permissions innocuousPerms = new Permissions();
3255     innocuousPerms.add(modifyThreadPermission);
3256     innocuousPerms.add(new RuntimePermission(
3257     "enableContextClassLoaderOverride"));
3258     innocuousPerms.add(new RuntimePermission(
3259     "modifyThreadGroup"));
3260     innocuousAcc = new AccessControlContext(new ProtectionDomain[] {
3261     new ProtectionDomain(null, innocuousPerms)
3262     });
3263     }
3264    
3265     public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
3266 jsr166 1.227 return java.security.AccessController.doPrivileged(
3267     new java.security.PrivilegedAction<ForkJoinWorkerThread>() {
3268 dl 1.197 public ForkJoinWorkerThread run() {
3269     return new ForkJoinWorkerThread.
3270     InnocuousForkJoinWorkerThread(pool);
3271     }}, innocuousAcc);
3272     }
3273     }
3274    
3275 jsr166 1.1 }