ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.322
Committed: Wed Aug 24 21:00:37 2016 UTC (7 years, 9 months ago) by jsr166
Branch: MAIN
Changes since 1.321: +0 -4 lines
Log Message:
remove same-package imports

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.58 * http://creativecommons.org/publicdomain/zero/1.0/
5 jsr166 1.1 */
6 jsr166 1.301
7 jsr166 1.1 package java.util.concurrent;
8    
9 jsr166 1.156 import java.lang.Thread.UncaughtExceptionHandler;
10 dl 1.314 import java.lang.invoke.MethodHandles;
11     import java.lang.invoke.VarHandle;
12 jsr166 1.228 import java.security.AccessControlContext;
13     import java.security.Permissions;
14     import java.security.ProtectionDomain;
15 jsr166 1.1 import java.util.ArrayList;
16     import java.util.Arrays;
17     import java.util.Collection;
18     import java.util.Collections;
19     import java.util.List;
20 dl 1.307 import java.util.function.Predicate;
21 dl 1.243 import java.util.concurrent.locks.LockSupport;
22 jsr166 1.1
23     /**
24 jsr166 1.4 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
25 jsr166 1.8 * A {@code ForkJoinPool} provides the entry point for submissions
26 dl 1.18 * from non-{@code ForkJoinTask} clients, as well as management and
27 jsr166 1.11 * monitoring operations.
28 jsr166 1.1 *
29 jsr166 1.9 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
30     * ExecutorService} mainly by virtue of employing
31     * <em>work-stealing</em>: all threads in the pool attempt to find and
32 dl 1.78 * execute tasks submitted to the pool and/or created by other active
33     * tasks (eventually blocking waiting for work if none exist). This
34     * enables efficient processing when most tasks spawn other subtasks
35     * (as do most {@code ForkJoinTask}s), as well as when many small
36     * tasks are submitted to the pool from external clients. Especially
37     * when setting <em>asyncMode</em> to true in constructors, {@code
38     * ForkJoinPool}s may also be appropriate for use with event-style
39     * tasks that are never joined.
40 jsr166 1.1 *
41 dl 1.112 * <p>A static {@link #commonPool()} is available and appropriate for
42 dl 1.101 * most applications. The common pool is used by any ForkJoinTask that
43     * is not explicitly submitted to a specified pool. Using the common
44     * pool normally reduces resource usage (its threads are slowly
45     * reclaimed during periods of non-use, and reinstated upon subsequent
46 dl 1.105 * use).
47 dl 1.100 *
48     * <p>For applications that require separate or custom pools, a {@code
49     * ForkJoinPool} may be constructed with a given target parallelism
50 jsr166 1.214 * level; by default, equal to the number of available processors.
51     * The pool attempts to maintain enough active (or available) threads
52     * by dynamically adding, suspending, or resuming internal worker
53 jsr166 1.187 * threads, even if some tasks are stalled waiting to join others.
54     * However, no such adjustments are guaranteed in the face of blocked
55     * I/O or other unmanaged synchronization. The nested {@link
56 dl 1.100 * ManagedBlocker} interface enables extension of the kinds of
57 dl 1.300 * synchronization accommodated. The default policies may be
58     * overridden using a constructor with parameters corresponding to
59     * those documented in class {@link ThreadPoolExecutor}.
60 jsr166 1.1 *
61     * <p>In addition to execution and lifecycle control methods, this
62     * class provides status check methods (for example
63 jsr166 1.4 * {@link #getStealCount}) that are intended to aid in developing,
64 jsr166 1.1 * tuning, and monitoring fork/join applications. Also, method
65 jsr166 1.4 * {@link #toString} returns indications of pool state in a
66 jsr166 1.1 * convenient form for informal monitoring.
67     *
68 jsr166 1.109 * <p>As is the case with other ExecutorServices, there are three
69 jsr166 1.84 * main task execution methods summarized in the following table.
70     * These are designed to be used primarily by clients not already
71     * engaged in fork/join computations in the current pool. The main
72     * forms of these methods accept instances of {@code ForkJoinTask},
73     * but overloaded forms also allow mixed execution of plain {@code
74     * Runnable}- or {@code Callable}- based activities as well. However,
75     * tasks that are already executing in a pool should normally instead
76     * use the within-computation forms listed in the table unless using
77     * async event-style tasks that are not usually joined, in which case
78     * there is little difference among choice of methods.
79 dl 1.18 *
80     * <table BORDER CELLPADDING=3 CELLSPACING=1>
81 jsr166 1.159 * <caption>Summary of task execution methods</caption>
82 dl 1.18 * <tr>
83     * <td></td>
84     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
85     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
86     * </tr>
87     * <tr>
88 jsr166 1.153 * <td> <b>Arrange async execution</b></td>
89 dl 1.18 * <td> {@link #execute(ForkJoinTask)}</td>
90     * <td> {@link ForkJoinTask#fork}</td>
91     * </tr>
92     * <tr>
93 jsr166 1.153 * <td> <b>Await and obtain result</b></td>
94 dl 1.18 * <td> {@link #invoke(ForkJoinTask)}</td>
95     * <td> {@link ForkJoinTask#invoke}</td>
96     * </tr>
97     * <tr>
98 jsr166 1.153 * <td> <b>Arrange exec and obtain Future</b></td>
99 dl 1.18 * <td> {@link #submit(ForkJoinTask)}</td>
100     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
101     * </tr>
102     * </table>
103 dl 1.19 *
104 dl 1.105 * <p>The common pool is by default constructed with default
105 jsr166 1.321 * parameters, but these may be controlled by setting the following
106 jsr166 1.162 * {@linkplain System#getProperty system properties}:
107     * <ul>
108     * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
109     * - the parallelism level, a non-negative integer
110     * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
111     * - the class name of a {@link ForkJoinWorkerThreadFactory}
112     * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
113     * - the class name of a {@link UncaughtExceptionHandler}
114 dl 1.208 * <li>{@code java.util.concurrent.ForkJoinPool.common.maximumSpares}
115 dl 1.223 * - the maximum number of allowed extra threads to maintain target
116 dl 1.208 * parallelism (default 256).
117 jsr166 1.162 * </ul>
118 dl 1.197 * If a {@link SecurityManager} is present and no factory is
119     * specified, then the default pool uses a factory supplying
120     * threads that have no {@link Permissions} enabled.
121 jsr166 1.165 * The system class loader is used to load these classes.
122 jsr166 1.156 * Upon any error in establishing these settings, default parameters
123 dl 1.160 * are used. It is possible to disable or limit the use of threads in
124     * the common pool by setting the parallelism property to zero, and/or
125 dl 1.193 * using a factory that may return {@code null}. However doing so may
126     * cause unjoined tasks to never be executed.
127 dl 1.105 *
128 jsr166 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
129     * maximum number of running threads to 32767. Attempts to create
130 jsr166 1.11 * pools with greater than the maximum number result in
131 jsr166 1.8 * {@code IllegalArgumentException}.
132 jsr166 1.1 *
133 jsr166 1.11 * <p>This implementation rejects submitted tasks (that is, by throwing
134 dl 1.19 * {@link RejectedExecutionException}) only when the pool is shut down
135 dl 1.20 * or internal resources have been exhausted.
136 jsr166 1.11 *
137 jsr166 1.1 * @since 1.7
138     * @author Doug Lea
139     */
140     public class ForkJoinPool extends AbstractExecutorService {
141    
142     /*
143 dl 1.14 * Implementation Overview
144     *
145 dl 1.78 * This class and its nested classes provide the main
146     * functionality and control for a set of worker threads:
147 jsr166 1.84 * Submissions from non-FJ threads enter into submission queues.
148     * Workers take these tasks and typically split them into subtasks
149     * that may be stolen by other workers. Preference rules give
150     * first priority to processing tasks from their own queues (LIFO
151     * or FIFO, depending on mode), then to randomized FIFO steals of
152 dl 1.200 * tasks in other queues. This framework began as vehicle for
153     * supporting tree-structured parallelism using work-stealing.
154     * Over time, its scalability advantages led to extensions and
155 dl 1.208 * changes to better support more diverse usage contexts. Because
156     * most internal methods and nested classes are interrelated,
157     * their main rationale and descriptions are presented here;
158     * individual methods and nested classes contain only brief
159     * comments about details.
160 dl 1.78 *
161 jsr166 1.84 * WorkQueues
162 dl 1.78 * ==========
163     *
164     * Most operations occur within work-stealing queues (in nested
165     * class WorkQueue). These are special forms of Deques that
166     * support only three of the four possible end-operations -- push,
167     * pop, and poll (aka steal), under the further constraints that
168     * push and pop are called only from the owning thread (or, as
169     * extended here, under a lock), while poll may be called from
170     * other threads. (If you are unfamiliar with them, you probably
171     * want to read Herlihy and Shavit's book "The Art of
172     * Multiprocessor programming", chapter 16 describing these in
173     * more detail before proceeding.) The main work-stealing queue
174     * design is roughly similar to those in the papers "Dynamic
175     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
176     * (http://research.sun.com/scalable/pubs/index.html) and
177     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
178     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
179 dl 1.200 * The main differences ultimately stem from GC requirements that
180     * we null out taken slots as soon as we can, to maintain as small
181     * a footprint as possible even in programs generating huge
182     * numbers of tasks. To accomplish this, we shift the CAS
183     * arbitrating pop vs poll (steal) from being on the indices
184     * ("base" and "top") to the slots themselves.
185     *
186 dl 1.243 * Adding tasks then takes the form of a classic array push(task)
187     * in a circular buffer:
188     * q.array[q.top++ % length] = task;
189 dl 1.200 *
190     * (The actual code needs to null-check and size-check the array,
191 jsr166 1.247 * uses masking, not mod, for indexing a power-of-two-sized array,
192 dl 1.243 * properly fences accesses, and possibly signals waiting workers
193     * to start scanning -- see below.) Both a successful pop and
194     * poll mainly entail a CAS of a slot from non-null to null.
195 dl 1.200 *
196 jsr166 1.202 * The pop operation (always performed by owner) is:
197 dl 1.243 * if ((the task at top slot is not null) and
198 dl 1.200 * (CAS slot to null))
199     * decrement top and return task;
200     *
201     * And the poll operation (usually by a stealer) is
202 dl 1.243 * if ((the task at base slot is not null) and
203 dl 1.200 * (CAS slot to null))
204     * increment base and return task;
205     *
206 dl 1.300 * There are several variants of each of these. In particular,
207     * almost all uses of poll occur within scan operations that also
208     * interleave contention tracking (with associated code sprawl.)
209 dl 1.243 *
210     * Memory ordering. See "Correct and Efficient Work-Stealing for
211     * Weak Memory Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
212     * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
213     * analysis of memory ordering requirements in work-stealing
214     * algorithms similar to (but different than) the one used here.
215     * Extracting tasks in array slots via (fully fenced) CAS provides
216     * primary synchronization. The base and top indices imprecisely
217     * guide where to extract from. We do not always require strict
218     * orderings of array and index updates, so sometimes let them be
219     * subject to compiler and processor reorderings. However, the
220     * volatile "base" index also serves as a basis for memory
221     * ordering: Slot accesses are preceded by a read of base,
222 jsr166 1.247 * ensuring happens-before ordering with respect to stealers (so
223 dl 1.243 * the slots themselves can be read via plain array reads.) The
224     * only other memory orderings relied on are maintained in the
225     * course of signalling and activation (see below). A check that
226     * base == top indicates (momentary) emptiness, but otherwise may
227     * err on the side of possibly making the queue appear nonempty
228     * when a push, pop, or poll have not fully committed, or making
229     * it appear empty when an update of top has not yet been visibly
230     * written. (Method isEmpty() checks the case of a partially
231 dl 1.211 * completed removal of the last element.) Because of this, the
232     * poll operation, considered individually, is not wait-free. One
233     * thief cannot successfully continue until another in-progress
234 dl 1.243 * one (or, if previously empty, a push) visibly completes.
235     * However, in the aggregate, we ensure at least probabilistic
236     * non-blockingness. If an attempted steal fails, a scanning
237     * thief chooses a different random victim target to try next. So,
238     * in order for one thief to progress, it suffices for any
239 dl 1.205 * in-progress poll or new push on any empty queue to
240 dl 1.300 * complete.
241 dl 1.200 *
242     * This approach also enables support of a user mode in which
243     * local task processing is in FIFO, not LIFO order, simply by
244     * using poll rather than pop. This can be useful in
245     * message-passing frameworks in which tasks are never joined.
246 dl 1.78 *
247     * WorkQueues are also used in a similar way for tasks submitted
248     * to the pool. We cannot mix these tasks in the same queues used
249 dl 1.200 * by workers. Instead, we randomly associate submission queues
250 dl 1.83 * with submitting threads, using a form of hashing. The
251 dl 1.139 * ThreadLocalRandom probe value serves as a hash code for
252     * choosing existing queues, and may be randomly repositioned upon
253     * contention with other submitters. In essence, submitters act
254     * like workers except that they are restricted to executing local
255 dl 1.300 * tasks that they submitted. Insertion of tasks in shared mode
256     * requires a lock but we use only a simple spinlock (using field
257 jsr166 1.304 * phase), because submitters encountering a busy queue move to a
258     * different position to use or create other queues -- they block
259     * only when creating and registering new queues. Because it is
260     * used only as a spinlock, unlocking requires only a "releasing"
261 dl 1.314 * store (using setRelease).
262 dl 1.78 *
263 jsr166 1.84 * Management
264 dl 1.78 * ==========
265 dl 1.52 *
266     * The main throughput advantages of work-stealing stem from
267     * decentralized control -- workers mostly take tasks from
268 dl 1.200 * themselves or each other, at rates that can exceed a billion
269     * per second. The pool itself creates, activates (enables
270     * scanning for and running tasks), deactivates, blocks, and
271     * terminates threads, all with minimal central information.
272     * There are only a few properties that we can globally track or
273     * maintain, so we pack them into a small number of variables,
274     * often maintaining atomicity without blocking or locking.
275 dl 1.300 * Nearly all essentially atomic control state is held in a few
276 dl 1.200 * volatile variables that are by far most often read (not
277 dl 1.300 * written) as status and consistency checks. We pack as much
278     * information into them as we can.
279 dl 1.78 *
280 dl 1.200 * Field "ctl" contains 64 bits holding information needed to
281 dl 1.300 * atomically decide to add, enqueue (on an event queue), and
282     * dequeue (and release)-activate workers. To enable this
283 dl 1.78 * packing, we restrict maximum parallelism to (1<<15)-1 (which is
284     * far in excess of normal operating range) to allow ids, counts,
285     * and their negations (used for thresholding) to fit into 16bit
286 dl 1.215 * subfields.
287     *
288 dl 1.300 * Field "mode" holds configuration parameters as well as lifetime
289     * status, atomically and monotonically setting SHUTDOWN, STOP,
290     * and finally TERMINATED bits.
291 dl 1.258 *
292     * Field "workQueues" holds references to WorkQueues. It is
293 dl 1.300 * updated (only during worker creation and termination) under
294     * lock (using field workerNamePrefix as lock), but is otherwise
295     * concurrently readable, and accessed directly. We also ensure
296     * that uses of the array reference itself never become too stale
297     * in case of resizing. To simplify index-based operations, the
298     * array size is always a power of two, and all readers must
299     * tolerate null slots. Worker queues are at odd indices. Shared
300     * (submission) queues are at even indices, up to a maximum of 64
301     * slots, to limit growth even if array needs to expand to add
302     * more workers. Grouping them together in this way simplifies and
303 dl 1.262 * speeds up task scanning.
304 dl 1.86 *
305     * All worker thread creation is on-demand, triggered by task
306     * submissions, replacement of terminated workers, and/or
307 dl 1.78 * compensation for blocked workers. However, all other support
308     * code is set up to work with other policies. To ensure that we
309 jsr166 1.264 * do not hold on to worker references that would prevent GC, all
310 dl 1.78 * accesses to workQueues are via indices into the workQueues
311     * array (which is one source of some of the messy code
312     * constructions here). In essence, the workQueues array serves as
313 dl 1.200 * a weak reference mechanism. Thus for example the stack top
314     * subfield of ctl stores indices, not references.
315     *
316     * Queuing Idle Workers. Unlike HPC work-stealing frameworks, we
317     * cannot let workers spin indefinitely scanning for tasks when
318     * none can be found immediately, and we cannot start/resume
319     * workers unless there appear to be tasks available. On the
320     * other hand, we must quickly prod them into action when new
321     * tasks are submitted or generated. In many usages, ramp-up time
322 dl 1.300 * is the main limiting factor in overall performance, which is
323     * compounded at program start-up by JIT compilation and
324     * allocation. So we streamline this as much as possible.
325     *
326     * The "ctl" field atomically maintains total worker and
327     * "released" worker counts, plus the head of the available worker
328     * queue (actually stack, represented by the lower 32bit subfield
329     * of ctl). Released workers are those known to be scanning for
330     * and/or running tasks. Unreleased ("available") workers are
331     * recorded in the ctl stack. These workers are made available for
332     * signalling by enqueuing in ctl (see method runWorker). The
333     * "queue" is a form of Treiber stack. This is ideal for
334     * activating threads in most-recently used order, and improves
335 dl 1.200 * performance and locality, outweighing the disadvantages of
336     * being prone to contention and inability to release a worker
337 dl 1.300 * unless it is topmost on stack. To avoid missed signal problems
338     * inherent in any wait/signal design, available workers rescan
339     * for (and if found run) tasks after enqueuing. Normally their
340     * release status will be updated while doing so, but the released
341     * worker ctl count may underestimate the number of active
342     * threads. (However, it is still possible to determine quiescence
343     * via a validation traversal -- see isQuiescent). After an
344     * unsuccessful rescan, available workers are blocked until
345     * signalled (see signalWork). The top stack state holds the
346     * value of the "phase" field of the worker: its index and status,
347     * plus a version counter that, in addition to the count subfields
348     * (also serving as version stamps) provide protection against
349     * Treiber stack ABA effects.
350 dl 1.200 *
351 dl 1.300 * Creating workers. To create a worker, we pre-increment counts
352     * (serving as a reservation), and attempt to construct a
353 dl 1.200 * ForkJoinWorkerThread via its factory. Upon construction, the
354     * new thread invokes registerWorker, where it constructs a
355     * WorkQueue and is assigned an index in the workQueues array
356 jsr166 1.266 * (expanding the array if necessary). The thread is then started.
357     * Upon any exception across these steps, or null return from
358     * factory, deregisterWorker adjusts counts and records
359 dl 1.200 * accordingly. If a null return, the pool continues running with
360     * fewer than the target number workers. If exceptional, the
361     * exception is propagated, generally to some external caller.
362     * Worker index assignment avoids the bias in scanning that would
363     * occur if entries were sequentially packed starting at the front
364     * of the workQueues array. We treat the array as a simple
365     * power-of-two hash table, expanding as needed. The seedIndex
366     * increment ensures no collisions until a resize is needed or a
367     * worker is deregistered and replaced, and thereafter keeps
368 jsr166 1.202 * probability of collision low. We cannot use
369 dl 1.200 * ThreadLocalRandom.getProbe() for similar purposes here because
370     * the thread has not started yet, but do so for creating
371 dl 1.243 * submission queues for existing external threads (see
372     * externalPush).
373     *
374 dl 1.300 * WorkQueue field "phase" is used by both workers and the pool to
375     * manage and track whether a worker is UNSIGNALLED (possibly
376     * blocked waiting for a signal). When a worker is enqueued its
377     * phase field is set. Note that phase field updates lag queue CAS
378     * releases so usage requires care -- seeing a negative phase does
379     * not guarantee that the worker is available. When queued, the
380     * lower 16 bits of scanState must hold its pool index. So we
381     * place the index there upon initialization (see registerWorker)
382     * and otherwise keep it there or restore it when necessary.
383 dl 1.243 *
384     * The ctl field also serves as the basis for memory
385     * synchronization surrounding activation. This uses a more
386     * efficient version of a Dekker-like rule that task producers and
387     * consumers sync with each other by both writing/CASing ctl (even
388 dl 1.253 * if to its current value). This would be extremely costly. So
389     * we relax it in several ways: (1) Producers only signal when
390     * their queue is empty. Other workers propagate this signal (in
391 dl 1.300 * method scan) when they find tasks; to further reduce flailing,
392     * each worker signals only one other per activation. (2) Workers
393     * only enqueue after scanning (see below) and not finding any
394     * tasks. (3) Rather than CASing ctl to its current value in the
395     * common case where no action is required, we reduce write
396     * contention by equivalently prefacing signalWork when called by
397     * an external task producer using a memory access with
398     * full-volatile semantics or a "fullFence".
399 dl 1.243 *
400 jsr166 1.249 * Almost always, too many signals are issued. A task producer
401 dl 1.243 * cannot in general tell if some existing worker is in the midst
402     * of finishing one task (or already scanning) and ready to take
403     * another without being signalled. So the producer might instead
404     * activate a different worker that does not find any work, and
405     * then inactivates. This scarcely matters in steady-state
406     * computations involving all workers, but can create contention
407 jsr166 1.247 * and bookkeeping bottlenecks during ramp-up, ramp-down, and small
408 dl 1.243 * computations involving only a few workers.
409     *
410 dl 1.300 * Scanning. Method runWorker performs top-level scanning for
411     * tasks. Each scan traverses and tries to poll from each queue
412     * starting at a random index and circularly stepping. Scans are
413     * not performed in ideal random permutation order, to reduce
414     * cacheline contention. The pseudorandom generator need not have
415     * high-quality statistical properties in the long term, but just
416     * within computations; We use Marsaglia XorShifts (often via
417     * ThreadLocalRandom.nextSecondarySeed), which are cheap and
418     * suffice. Scanning also employs contention reduction: When
419     * scanning workers fail to extract an apparently existing task,
420     * they soon restart at a different pseudorandom index. This
421     * improves throughput when many threads are trying to take tasks
422     * from few queues, which can be common in some usages. Scans do
423     * not otherwise explicitly take into account core affinities,
424     * loads, cache localities, etc, However, they do exploit temporal
425     * locality (which usually approximates these) by preferring to
426     * re-poll (at most #workers times) from the same queue after a
427     * successful poll before trying others.
428 dl 1.52 *
429     * Trimming workers. To release resources after periods of lack of
430     * use, a worker starting to wait when the pool is quiescent will
431 dl 1.300 * time out and terminate (see method scan) if the pool has
432     * remained quiescent for period given by field keepAlive.
433 dl 1.52 *
434 dl 1.210 * Shutdown and Termination. A call to shutdownNow invokes
435     * tryTerminate to atomically set a runState bit. The calling
436     * thread, as well as every other worker thereafter terminating,
437 dl 1.300 * helps terminate others by cancelling their unprocessed tasks,
438     * and waking them up, doing so repeatedly until stable. Calls to
439     * non-abrupt shutdown() preface this by checking whether
440     * termination should commence by sweeping through queues (until
441     * stable) to ensure lack of in-flight submissions and workers
442     * about to process them before triggering the "STOP" phase of
443     * termination.
444 dl 1.211 *
445 jsr166 1.84 * Joining Tasks
446     * =============
447 dl 1.78 *
448     * Any of several actions may be taken when one worker is waiting
449 jsr166 1.84 * to join a task stolen (or always held) by another. Because we
450 dl 1.78 * are multiplexing many tasks on to a pool of workers, we can't
451 dl 1.300 * always just let them block (as in Thread.join). We also cannot
452     * just reassign the joiner's run-time stack with another and
453     * replace it later, which would be a form of "continuation", that
454     * even if possible is not necessarily a good idea since we may
455     * need both an unblocked task and its continuation to progress.
456     * Instead we combine two tactics:
457 dl 1.19 *
458     * Helping: Arranging for the joiner to execute some task that it
459 dl 1.78 * would be running if the steal had not occurred.
460 dl 1.19 *
461     * Compensating: Unless there are already enough live threads,
462 dl 1.78 * method tryCompensate() may create or re-activate a spare
463     * thread to compensate for blocked joiners until they unblock.
464     *
465 dl 1.105 * A third form (implemented in tryRemoveAndExec) amounts to
466     * helping a hypothetical compensator: If we can readily tell that
467     * a possible action of a compensator is to steal and execute the
468     * task being joined, the joining thread can do so directly,
469 dl 1.300 * without the need for a compensation thread.
470 dl 1.52 *
471     * The ManagedBlocker extension API can't use helping so relies
472     * only on compensation in method awaitBlocker.
473 dl 1.19 *
474 dl 1.300 * The algorithm in awaitJoin entails a form of "linear helping".
475     * Each worker records (in field source) the id of the queue from
476     * which it last stole a task. The scan in method awaitJoin uses
477     * these markers to try to find a worker to help (i.e., steal back
478     * a task from and execute it) that could hasten completion of the
479     * actively joined task. Thus, the joiner executes a task that
480     * would be on its own local deque if the to-be-joined task had
481     * not been stolen. This is a conservative variant of the approach
482     * described in Wagner & Calder "Leapfrogging: a portable
483     * technique for implementing efficient futures" SIGPLAN Notices,
484     * 1993 (http://portal.acm.org/citation.cfm?id=155354). It differs
485     * mainly in that we only record queue ids, not full dependency
486     * links. This requires a linear scan of the workQueues array to
487     * locate stealers, but isolates cost to when it is needed, rather
488     * than adding to per-task overhead. Searches can fail to locate
489     * stealers GC stalls and the like delay recording sources.
490     * Further, even when accurately identified, stealers might not
491     * ever produce a task that the joiner can in turn help with. So,
492     * compensation is tried upon failure to find tasks to run.
493 dl 1.105 *
494 dl 1.300 * Compensation does not by default aim to keep exactly the target
495 dl 1.200 * parallelism number of unblocked threads running at any given
496     * time. Some previous versions of this class employed immediate
497     * compensations for any blocked join. However, in practice, the
498     * vast majority of blockages are transient byproducts of GC and
499     * other JVM or OS activities that are made worse by replacement.
500 dl 1.300 * Rather than impose arbitrary policies, we allow users to
501     * override the default of only adding threads upon apparent
502     * starvation. The compensation mechanism may also be bounded.
503     * Bounds for the commonPool (see COMMON_MAX_SPARES) better enable
504     * JVMs to cope with programming errors and abuse before running
505     * out of resources to do so.
506 jsr166 1.301 *
507 dl 1.105 * Common Pool
508     * ===========
509     *
510 jsr166 1.175 * The static common pool always exists after static
511 dl 1.105 * initialization. Since it (or any other created pool) need
512     * never be used, we minimize initial construction overhead and
513 dl 1.300 * footprint to the setup of about a dozen fields.
514 dl 1.105 *
515     * When external threads submit to the common pool, they can
516 dl 1.200 * perform subtask processing (see externalHelpComplete and
517     * related methods) upon joins. This caller-helps policy makes it
518     * sensible to set common pool parallelism level to one (or more)
519     * less than the total number of available cores, or even zero for
520     * pure caller-runs. We do not need to record whether external
521     * submissions are to the common pool -- if not, external help
522     * methods return quickly. These submitters would otherwise be
523     * blocked waiting for completion, so the extra effort (with
524     * liberally sprinkled task status checks) in inapplicable cases
525     * amounts to an odd form of limited spin-wait before blocking in
526     * ForkJoinTask.join.
527 dl 1.105 *
528 dl 1.197 * As a more appropriate default in managed environments, unless
529     * overridden by system properties, we use workers of subclass
530     * InnocuousForkJoinWorkerThread when there is a SecurityManager
531     * present. These workers have no permissions set, do not belong
532     * to any user-defined ThreadGroup, and erase all ThreadLocals
533 dl 1.300 * after executing any top-level task (see
534     * WorkQueue.afterTopLevelExec). The associated mechanics (mainly
535     * in ForkJoinWorkerThread) may be JVM-dependent and must access
536     * particular Thread class fields to achieve this effect.
537 jsr166 1.198 *
538 dl 1.105 * Style notes
539     * ===========
540     *
541 jsr166 1.315 * Memory ordering relies mainly on VarHandles. This can be
542     * awkward and ugly, but also reflects the need to control
543     * outcomes across the unusual cases that arise in very racy code
544 dl 1.319 * with very few invariants. All fields are read into locals
545     * before use, and null-checked if they are references. This is
546     * usually done in a "C"-like style of listing declarations at the
547     * heads of methods or blocks, and using inline assignments on
548     * first encounter. Nearly all explicit checks lead to
549     * bypass/return, not exception throws, because they may
550     * legitimately arise due to cancellation/revocation during
551     * shutdown.
552 dl 1.200 *
553 dl 1.105 * There is a lot of representation-level coupling among classes
554     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
555     * fields of WorkQueue maintain data structures managed by
556     * ForkJoinPool, so are directly accessed. There is little point
557     * trying to reduce this, since any associated future changes in
558     * representations will need to be accompanied by algorithmic
559     * changes anyway. Several methods intrinsically sprawl because
560 dl 1.200 * they must accumulate sets of consistent reads of fields held in
561     * local variables. There are also other coding oddities
562     * (including several unnecessary-looking hoisted null checks)
563     * that help some methods perform reasonably even when interpreted
564     * (not compiled).
565 dl 1.52 *
566 dl 1.208 * The order of declarations in this file is (with a few exceptions):
567 dl 1.86 * (1) Static utility functions
568     * (2) Nested (static) classes
569     * (3) Static fields
570     * (4) Fields, along with constants used when unpacking some of them
571     * (5) Internal control methods
572     * (6) Callbacks and other support for ForkJoinTask methods
573     * (7) Exported methods
574     * (8) Static block initializing statics in minimally dependent order
575     */
576    
577     // Static utilities
578    
579     /**
580     * If there is a security manager, makes sure caller has
581     * permission to modify threads.
582 jsr166 1.1 */
583 dl 1.86 private static void checkPermission() {
584     SecurityManager security = System.getSecurityManager();
585     if (security != null)
586     security.checkPermission(modifyThreadPermission);
587     }
588    
589     // Nested classes
590 jsr166 1.1
591     /**
592 jsr166 1.8 * Factory for creating new {@link ForkJoinWorkerThread}s.
593     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
594     * for {@code ForkJoinWorkerThread} subclasses that extend base
595     * functionality or initialize threads with different contexts.
596 jsr166 1.1 */
597     public static interface ForkJoinWorkerThreadFactory {
598     /**
599     * Returns a new worker thread operating in the given pool.
600 dl 1.300 * Returning null or throwing an exception may result in tasks
601     * never being executed. If this method throws an exception,
602     * it is relayed to the caller of the method (for example
603     * {@code execute}) causing attempted thread creation. If this
604     * method returns null or throws an exception, it is not
605     * retried until the next attempted creation (for example
606     * another call to {@code execute}).
607 jsr166 1.1 *
608     * @param pool the pool this thread works in
609 jsr166 1.296 * @return the new worker thread, or {@code null} if the request
610 dl 1.300 * to create a thread is rejected.
611 jsr166 1.11 * @throws NullPointerException if the pool is null
612 jsr166 1.1 */
613     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
614     }
615    
616     /**
617     * Default ForkJoinWorkerThreadFactory implementation; creates a
618     * new ForkJoinWorkerThread.
619     */
620 jsr166 1.278 private static final class DefaultForkJoinWorkerThreadFactory
621 jsr166 1.1 implements ForkJoinWorkerThreadFactory {
622 dl 1.112 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
623 dl 1.14 return new ForkJoinWorkerThread(pool);
624 jsr166 1.1 }
625     }
626    
627 dl 1.200 // Constants shared across ForkJoinPool and WorkQueue
628    
629     // Bounds
630 dl 1.300 static final int SWIDTH = 16; // width of short
631 dl 1.200 static final int SMASK = 0xffff; // short bits == max index
632     static final int MAX_CAP = 0x7fff; // max #workers - 1
633     static final int SQMASK = 0x007e; // max 64 (even) slots
634    
635 dl 1.300 // Masks and units for WorkQueue.phase and ctl sp subfield
636 dl 1.243 static final int UNSIGNALLED = 1 << 31; // must be negative
637 dl 1.211 static final int SS_SEQ = 1 << 16; // version count
638 dl 1.300 static final int QLOCK = 1; // must be 1
639 dl 1.200
640 dl 1.300 // Mode bits and sentinels, some also used in WorkQueue id and.source fields
641     static final int OWNED = 1; // queue has owner thread
642     static final int FIFO = 1 << 16; // fifo queue or access mode
643     static final int SHUTDOWN = 1 << 18;
644     static final int TERMINATED = 1 << 19;
645     static final int STOP = 1 << 31; // must be negative
646     static final int QUIET = 1 << 30; // not scanning or working
647     static final int DORMANT = QUIET | UNSIGNALLED;
648    
649     /**
650     * The maximum number of local polls from the same queue before
651     * checking others. This is a safeguard against infinitely unfair
652     * looping under unbounded user task recursion, and must be larger
653     * than plausible cases of intentional bounded task recursion.
654 dl 1.253 */
655 dl 1.300 static final int POLL_LIMIT = 1 << 10;
656 dl 1.253
657     /**
658 dl 1.78 * Queues supporting work-stealing as well as external task
659 jsr166 1.202 * submission. See above for descriptions and algorithms.
660 dl 1.78 * Performance on most platforms is very sensitive to placement of
661     * instances of both WorkQueues and their arrays -- we absolutely
662     * do not want multiple WorkQueue instances or multiple queue
663 dl 1.200 * arrays sharing cache lines. The @Contended annotation alerts
664     * JVMs to try to keep instances apart.
665 dl 1.78 */
666 dl 1.308 @jdk.internal.vm.annotation.Contended
667 dl 1.78 static final class WorkQueue {
668 dl 1.200
669 dl 1.78 /**
670     * Capacity of work-stealing queue array upon initialization.
671 dl 1.90 * Must be a power of two; at least 4, but should be larger to
672     * reduce or eliminate cacheline sharing among queues.
673     * Currently, it is much larger, as a partial workaround for
674     * the fact that JVMs often place arrays in locations that
675     * share GC bookkeeping (especially cardmarks) such that
676     * per-write accesses encounter serious memory contention.
677 dl 1.78 */
678 dl 1.90 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
679 dl 1.78
680     /**
681     * Maximum size for queue arrays. Must be a power of two less
682     * than or equal to 1 << (31 - width of array entry) to ensure
683     * lack of wraparound of index calculations, but defined to a
684     * value a bit less than this to help users trap runaway
685     * programs before saturating systems.
686     */
687     static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
688    
689 dl 1.200 // Instance fields
690 dl 1.300 volatile int phase; // versioned, negative: queued, 1: locked
691     int stackPred; // pool stack (ctl) predecessor link
692 dl 1.178 int nsteals; // number of steals
693 dl 1.300 int id; // index, mode, tag
694     volatile int source; // source queue id, or sentinel
695 dl 1.78 volatile int base; // index of next slot for poll
696     int top; // index of next slot for push
697     ForkJoinTask<?>[] array; // the elements (initially unallocated)
698 dl 1.90 final ForkJoinPool pool; // the containing pool (may be null)
699 dl 1.78 final ForkJoinWorkerThread owner; // owning thread or null if shared
700 dl 1.112
701 dl 1.200 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner) {
702 dl 1.90 this.pool = pool;
703 dl 1.78 this.owner = owner;
704 dl 1.115 // Place indices in the center of array (that is not yet allocated)
705 dl 1.78 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
706     }
707    
708     /**
709 jsr166 1.220 * Returns an exportable index (used by ForkJoinWorkerThread).
710 dl 1.200 */
711     final int getPoolIndex() {
712 dl 1.300 return (id & 0xffff) >>> 1; // ignore odd/even tag bit
713 dl 1.200 }
714    
715     /**
716 dl 1.115 * Returns the approximate number of tasks in the queue.
717     */
718     final int queueSize() {
719 dl 1.243 int n = base - top; // read base first
720 dl 1.115 return (n >= 0) ? 0 : -n; // ignore transient negative
721     }
722    
723 jsr166 1.180 /**
724 dl 1.115 * Provides a more accurate estimate of whether this queue has
725     * any tasks than does queueSize, by checking whether a
726     * near-empty queue has at least one unclaimed task.
727     */
728     final boolean isEmpty() {
729 dl 1.300 ForkJoinTask<?>[] a; int n, al, b;
730     return ((n = (b = base) - top) >= 0 || // possibly one task
731 dl 1.243 (n == -1 && ((a = array) == null ||
732     (al = a.length) == 0 ||
733 dl 1.300 a[(al - 1) & b] == null)));
734 dl 1.115 }
735    
736 dl 1.300
737 dl 1.115 /**
738 dl 1.256 * Pushes a task. Call only by owner in unshared queues.
739 dl 1.78 *
740     * @param task the task. Caller must ensure non-null.
741 jsr166 1.146 * @throws RejectedExecutionException if array cannot be resized
742 dl 1.78 */
743 dl 1.90 final void push(ForkJoinTask<?> task) {
744 dl 1.300 int s = top; ForkJoinTask<?>[] a; int al, d;
745 dl 1.243 if ((a = array) != null && (al = a.length) > 0) {
746 dl 1.300 int index = (al - 1) & s;
747     ForkJoinPool p = pool;
748 dl 1.243 top = s + 1;
749 dl 1.314 QA.setRelease(a, index, task);
750 dl 1.292 if ((d = base - s) == 0 && p != null) {
751 dl 1.314 VarHandle.fullFence();
752 dl 1.253 p.signalWork();
753 dl 1.284 }
754 dl 1.300 else if (d + al == 1)
755 dl 1.243 growArray();
756 dl 1.78 }
757     }
758    
759 dl 1.178 /**
760 dl 1.112 * Initializes or doubles the capacity of array. Call either
761     * by owner or with lock held -- it is OK for base, but not
762     * top, to move while resizings are in progress.
763     */
764     final ForkJoinTask<?>[] growArray() {
765     ForkJoinTask<?>[] oldA = array;
766 dl 1.300 int oldSize = oldA != null ? oldA.length : 0;
767     int size = oldSize > 0 ? oldSize << 1 : INITIAL_QUEUE_CAPACITY;
768 dl 1.225 if (size < INITIAL_QUEUE_CAPACITY || size > MAXIMUM_QUEUE_CAPACITY)
769 dl 1.112 throw new RejectedExecutionException("Queue capacity exceeded");
770     int oldMask, t, b;
771     ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
772 dl 1.300 if (oldA != null && (oldMask = oldSize - 1) > 0 &&
773 dl 1.112 (t = top) - (b = base) > 0) {
774     int mask = size - 1;
775 dl 1.200 do { // emulate poll from old array, push to new array
776 dl 1.256 int index = b & oldMask;
777 dl 1.243 ForkJoinTask<?> x = (ForkJoinTask<?>)
778 dl 1.316 QA.getAcquire(oldA, index);
779 dl 1.243 if (x != null &&
780 dl 1.314 QA.compareAndSet(oldA, index, x, null))
781 dl 1.243 a[b & mask] = x;
782 dl 1.112 } while (++b != t);
783 dl 1.314 VarHandle.releaseFence();
784 dl 1.78 }
785 dl 1.112 return a;
786 dl 1.78 }
787    
788     /**
789 dl 1.90 * Takes next task, if one exists, in LIFO order. Call only
790 dl 1.102 * by owner in unshared queues.
791 dl 1.90 */
792     final ForkJoinTask<?> pop() {
793 dl 1.243 int b = base, s = top, al, i; ForkJoinTask<?>[] a;
794 dl 1.256 if ((a = array) != null && b != s && (al = a.length) > 0) {
795     int index = (al - 1) & --s;
796 dl 1.262 ForkJoinTask<?> t = (ForkJoinTask<?>)
797 dl 1.314 QA.get(a, index);
798 dl 1.262 if (t != null &&
799 dl 1.314 QA.compareAndSet(a, index, t, null)) {
800 dl 1.256 top = s;
801 dl 1.314 VarHandle.releaseFence();
802 dl 1.78 return t;
803     }
804     }
805     return null;
806     }
807    
808     /**
809 dl 1.90 * Takes next task, if one exists, in FIFO order.
810 dl 1.78 */
811 dl 1.90 final ForkJoinTask<?> poll() {
812 dl 1.243 for (;;) {
813     int b = base, s = top, d, al; ForkJoinTask<?>[] a;
814     if ((a = array) != null && (d = b - s) < 0 &&
815     (al = a.length) > 0) {
816 dl 1.256 int index = (al - 1) & b;
817 dl 1.243 ForkJoinTask<?> t = (ForkJoinTask<?>)
818 dl 1.316 QA.getAcquire(a, index);
819 dl 1.243 if (b++ == base) {
820     if (t != null) {
821 dl 1.314 if (QA.compareAndSet(a, index, t, null)) {
822 dl 1.243 base = b;
823     return t;
824     }
825 dl 1.200 }
826 dl 1.243 else if (d == -1)
827     break; // now empty
828 dl 1.78 }
829 dl 1.90 }
830 dl 1.243 else
831     break;
832 dl 1.78 }
833     return null;
834     }
835    
836     /**
837     * Takes next task, if one exists, in order specified by mode.
838     */
839     final ForkJoinTask<?> nextLocalTask() {
840 dl 1.300 return ((id & FIFO) != 0) ? poll() : pop();
841 dl 1.78 }
842    
843     /**
844     * Returns next task, if one exists, in order specified by mode.
845     */
846     final ForkJoinTask<?> peek() {
847 dl 1.292 int al; ForkJoinTask<?>[] a;
848 dl 1.243 return ((a = array) != null && (al = a.length) > 0) ?
849 dl 1.300 a[(al - 1) &
850     ((id & FIFO) != 0 ? base : top - 1)] : null;
851 dl 1.78 }
852    
853     /**
854     * Pops the given task only if it is at the current top.
855 jsr166 1.251 */
856 dl 1.243 final boolean tryUnpush(ForkJoinTask<?> task) {
857 dl 1.256 int b = base, s = top, al; ForkJoinTask<?>[] a;
858     if ((a = array) != null && b != s && (al = a.length) > 0) {
859     int index = (al - 1) & --s;
860 dl 1.314 if (QA.compareAndSet(a, index, task, null)) {
861 dl 1.243 top = s;
862 dl 1.314 VarHandle.releaseFence();
863 dl 1.224 return true;
864     }
865 dl 1.78 }
866     return false;
867     }
868    
869     /**
870 jsr166 1.84 * Removes and cancels all known tasks, ignoring any exceptions.
871 dl 1.78 */
872     final void cancelAll() {
873 dl 1.300 for (ForkJoinTask<?> t; (t = poll()) != null; )
874 dl 1.78 ForkJoinTask.cancelIgnoringExceptions(t);
875     }
876    
877 dl 1.104 // Specialized execution methods
878 dl 1.78
879     /**
880 dl 1.300 * Pops and executes up to limit consecutive tasks or until empty.
881     *
882     * @param limit max runs, or zero for no limit
883 dl 1.253 */
884 dl 1.300 final void localPopAndExec(int limit) {
885     for (;;) {
886 dl 1.253 int b = base, s = top, al; ForkJoinTask<?>[] a;
887     if ((a = array) != null && b != s && (al = a.length) > 0) {
888 dl 1.256 int index = (al - 1) & --s;
889 dl 1.253 ForkJoinTask<?> t = (ForkJoinTask<?>)
890 dl 1.314 QA.getAndSet(a, index, null);
891 dl 1.253 if (t != null) {
892     top = s;
893 dl 1.314 VarHandle.releaseFence();
894 dl 1.300 t.doExec();
895     if (limit != 0 && --limit == 0)
896 dl 1.253 break;
897     }
898     else
899     break;
900     }
901     else
902     break;
903     }
904     }
905    
906     /**
907 dl 1.300 * Polls and executes up to limit consecutive tasks or until empty.
908     *
909     * @param limit, or zero for no limit
910 dl 1.253 */
911 dl 1.300 final void localPollAndExec(int limit) {
912     for (int polls = 0;;) {
913     int b = base, s = top, d, al; ForkJoinTask<?>[] a;
914     if ((a = array) != null && (d = b - s) < 0 &&
915     (al = a.length) > 0) {
916 dl 1.256 int index = (al - 1) & b++;
917 dl 1.253 ForkJoinTask<?> t = (ForkJoinTask<?>)
918 dl 1.314 QA.getAndSet(a, index, null);
919 dl 1.253 if (t != null) {
920     base = b;
921 dl 1.255 t.doExec();
922 dl 1.300 if (limit != 0 && ++polls == limit)
923 dl 1.253 break;
924     }
925 dl 1.300 else if (d == -1)
926     break; // now empty
927     else
928     polls = 0; // stolen; reset
929 dl 1.253 }
930     else
931     break;
932     }
933     }
934    
935     /**
936 jsr166 1.302 * If present, removes task from queue and executes it.
937 dl 1.94 */
938 dl 1.300 final void tryRemoveAndExec(ForkJoinTask<?> task) {
939     ForkJoinTask<?>[] wa; int s, wal;
940     if (base - (s = top) < 0 && // traverse from top
941     (wa = array) != null && (wal = wa.length) > 0) {
942     for (int m = wal - 1, ns = s - 1, i = ns; ; --i) {
943     int index = i & m;
944     ForkJoinTask<?> t = (ForkJoinTask<?>)
945 dl 1.314 QA.get(wa, index);
946 dl 1.300 if (t == null)
947     break;
948     else if (t == task) {
949 dl 1.314 if (QA.compareAndSet(wa, index, t, null)) {
950 dl 1.300 top = ns; // safely shift down
951     for (int j = i; j != ns; ++j) {
952     ForkJoinTask<?> f;
953     int pindex = (j + 1) & m;
954 dl 1.314 f = (ForkJoinTask<?>)QA.get(wa, pindex);
955     QA.setVolatile(wa, pindex, null);
956 dl 1.300 int jindex = j & m;
957 dl 1.314 QA.setRelease(wa, jindex, f);
958 dl 1.300 }
959 dl 1.314 VarHandle.releaseFence();
960 dl 1.300 t.doExec();
961     }
962     break;
963     }
964 dl 1.262 }
965 dl 1.215 }
966     }
967    
968     /**
969 dl 1.300 * Tries to steal and run tasks within the target's
970 jsr166 1.302 * computation until done, not found, or limit exceeded.
971 dl 1.94 *
972 dl 1.300 * @param task root of CountedCompleter computation
973     * @param limit max runs, or zero for no limit
974     * @return task status on exit
975     */
976     final int localHelpCC(CountedCompleter<?> task, int limit) {
977     int status = 0;
978     if (task != null && (status = task.status) >= 0) {
979     for (;;) {
980     boolean help = false;
981     int b = base, s = top, al; ForkJoinTask<?>[] a;
982     if ((a = array) != null && b != s && (al = a.length) > 0) {
983     int index = (al - 1) & (s - 1);
984     ForkJoinTask<?> o = (ForkJoinTask<?>)
985 dl 1.314 QA.get(a, index);
986 dl 1.300 if (o instanceof CountedCompleter) {
987     CountedCompleter<?> t = (CountedCompleter<?>)o;
988     for (CountedCompleter<?> f = t;;) {
989     if (f != task) {
990     if ((f = f.completer) == null) // try parent
991     break;
992     }
993     else {
994 dl 1.314 if (QA.compareAndSet(a, index, t, null)) {
995 dl 1.300 top = s - 1;
996 dl 1.314 VarHandle.releaseFence();
997 dl 1.300 t.doExec();
998     help = true;
999     }
1000     break;
1001 dl 1.200 }
1002     }
1003 dl 1.243 }
1004 dl 1.104 }
1005 dl 1.300 if ((status = task.status) < 0 || !help ||
1006     (limit != 0 && --limit == 0))
1007     break;
1008 dl 1.104 }
1009     }
1010 dl 1.300 return status;
1011     }
1012    
1013     // Operations on shared queues
1014    
1015     /**
1016 jsr166 1.302 * Tries to lock shared queue by CASing phase field.
1017 dl 1.300 */
1018     final boolean tryLockSharedQueue() {
1019 dl 1.314 return PHASE.compareAndSet(this, 0, QLOCK);
1020 dl 1.104 }
1021    
1022     /**
1023 dl 1.300 * Shared version of tryUnpush.
1024 dl 1.78 */
1025 dl 1.300 final boolean trySharedUnpush(ForkJoinTask<?> task) {
1026     boolean popped = false;
1027     int s = top - 1, al; ForkJoinTask<?>[] a;
1028     if ((a = array) != null && (al = a.length) > 0) {
1029     int index = (al - 1) & s;
1030 dl 1.314 ForkJoinTask<?> t = (ForkJoinTask<?>) QA.get(a, index);
1031 dl 1.300 if (t == task &&
1032 dl 1.314 PHASE.compareAndSet(this, 0, QLOCK)) {
1033 dl 1.300 if (top == s + 1 && array == a &&
1034 dl 1.314 QA.compareAndSet(a, index, task, null)) {
1035 dl 1.300 popped = true;
1036     top = s;
1037 dl 1.178 }
1038 dl 1.314 PHASE.setRelease(this, 0);
1039 dl 1.94 }
1040 dl 1.78 }
1041 dl 1.300 return popped;
1042 dl 1.78 }
1043    
1044     /**
1045 dl 1.300 * Shared version of localHelpCC.
1046     */
1047     final int sharedHelpCC(CountedCompleter<?> task, int limit) {
1048     int status = 0;
1049     if (task != null && (status = task.status) >= 0) {
1050     for (;;) {
1051     boolean help = false;
1052     int b = base, s = top, al; ForkJoinTask<?>[] a;
1053     if ((a = array) != null && b != s && (al = a.length) > 0) {
1054     int index = (al - 1) & (s - 1);
1055     ForkJoinTask<?> o = (ForkJoinTask<?>)
1056 dl 1.314 QA.get(a, index);
1057 dl 1.300 if (o instanceof CountedCompleter) {
1058     CountedCompleter<?> t = (CountedCompleter<?>)o;
1059     for (CountedCompleter<?> f = t;;) {
1060     if (f != task) {
1061     if ((f = f.completer) == null)
1062     break;
1063     }
1064     else {
1065 dl 1.314 if (PHASE.compareAndSet(this, 0, QLOCK)) {
1066 dl 1.300 if (top == s && array == a &&
1067 dl 1.314 QA.compareAndSet(a, index, t, null)) {
1068 dl 1.300 help = true;
1069     top = s - 1;
1070     }
1071 dl 1.314 PHASE.setRelease(this, 0);
1072 dl 1.300 if (help)
1073     t.doExec();
1074     }
1075     break;
1076     }
1077 dl 1.243 }
1078 dl 1.200 }
1079 dl 1.178 }
1080 dl 1.300 if ((status = task.status) < 0 || !help ||
1081     (limit != 0 && --limit == 0))
1082     break;
1083 dl 1.178 }
1084 dl 1.78 }
1085 dl 1.300 return status;
1086 dl 1.78 }
1087    
1088     /**
1089 dl 1.86 * Returns true if owned and not known to be blocked.
1090     */
1091     final boolean isApparentlyUnblocked() {
1092     Thread wt; Thread.State s;
1093 dl 1.300 return ((wt = owner) != null &&
1094 dl 1.86 (s = wt.getState()) != Thread.State.BLOCKED &&
1095     s != Thread.State.WAITING &&
1096     s != Thread.State.TIMED_WAITING);
1097     }
1098    
1099 dl 1.314 // VarHandle mechanics.
1100     private static final VarHandle PHASE;
1101 dl 1.78 static {
1102     try {
1103 dl 1.314 MethodHandles.Lookup l = MethodHandles.lookup();
1104     PHASE = l.findVarHandle(WorkQueue.class, "phase", int.class);
1105 jsr166 1.231 } catch (ReflectiveOperationException e) {
1106 dl 1.78 throw new Error(e);
1107     }
1108     }
1109     }
1110 dl 1.14
1111 dl 1.112 // static fields (initialized in static initializer below)
1112    
1113     /**
1114     * Creates a new ForkJoinWorkerThread. This factory is used unless
1115     * overridden in ForkJoinPool constructors.
1116     */
1117     public static final ForkJoinWorkerThreadFactory
1118     defaultForkJoinWorkerThreadFactory;
1119    
1120 jsr166 1.1 /**
1121 dl 1.115 * Permission required for callers of methods that may start or
1122 dl 1.300 * kill threads.
1123 dl 1.115 */
1124 jsr166 1.276 static final RuntimePermission modifyThreadPermission;
1125 dl 1.115
1126     /**
1127 dl 1.101 * Common (static) pool. Non-null for public use unless a static
1128 dl 1.105 * construction exception, but internal usages null-check on use
1129     * to paranoically avoid potential initialization circularities
1130     * as well as to simplify generated code.
1131 dl 1.101 */
1132 dl 1.134 static final ForkJoinPool common;
1133 dl 1.101
1134     /**
1135 dl 1.160 * Common pool parallelism. To allow simpler use and management
1136     * when common pool threads are disabled, we allow the underlying
1137 dl 1.185 * common.parallelism field to be zero, but in that case still report
1138 dl 1.160 * parallelism as 1 to reflect resulting caller-runs mechanics.
1139 dl 1.90 */
1140 jsr166 1.274 static final int COMMON_PARALLELISM;
1141 dl 1.90
1142     /**
1143 dl 1.208 * Limit on spare thread construction in tryCompensate.
1144     */
1145 jsr166 1.273 private static final int COMMON_MAX_SPARES;
1146 dl 1.208
1147     /**
1148 dl 1.105 * Sequence number for creating workerNamePrefix.
1149 dl 1.86 */
1150 dl 1.105 private static int poolNumberSequence;
1151 dl 1.86
1152 jsr166 1.1 /**
1153 jsr166 1.132 * Returns the next sequence number. We don't expect this to
1154     * ever contend, so use simple builtin sync.
1155 dl 1.83 */
1156 dl 1.105 private static final synchronized int nextPoolId() {
1157     return ++poolNumberSequence;
1158     }
1159 dl 1.86
1160 dl 1.200 // static configuration constants
1161 dl 1.86
1162     /**
1163 dl 1.300 * Default idle timeout value (in milliseconds) for the thread
1164     * triggering quiescence to park waiting for new work
1165 dl 1.86 */
1166 dl 1.300 private static final long DEFAULT_KEEPALIVE = 60000L;
1167 dl 1.86
1168     /**
1169 dl 1.300 * Undershoot tolerance for idle timeouts
1170 dl 1.120 */
1171 dl 1.300 private static final long TIMEOUT_SLOP = 20L;
1172 dl 1.200
1173     /**
1174 jsr166 1.273 * The default value for COMMON_MAX_SPARES. Overridable using the
1175     * "java.util.concurrent.ForkJoinPool.common.maximumSpares" system
1176     * property. The default value is far in excess of normal
1177     * requirements, but also far short of MAX_CAP and typical OS
1178     * thread limits, so allows JVMs to catch misuse/abuse before
1179     * running out of resources needed to do so.
1180 dl 1.200 */
1181 dl 1.208 private static final int DEFAULT_COMMON_MAX_SPARES = 256;
1182 dl 1.120
1183     /**
1184 dl 1.90 * Increment for seed generators. See class ThreadLocal for
1185     * explanation.
1186     */
1187 dl 1.193 private static final int SEED_INCREMENT = 0x9e3779b9;
1188 dl 1.83
1189 jsr166 1.163 /*
1190 dl 1.200 * Bits and masks for field ctl, packed with 4 16 bit subfields:
1191 dl 1.300 * RC: Number of released (unqueued) workers minus target parallelism
1192 dl 1.200 * TC: Number of total workers minus target parallelism
1193     * SS: version count and status of top waiting thread
1194     * ID: poolIndex of top of Treiber stack of waiters
1195     *
1196     * When convenient, we can extract the lower 32 stack top bits
1197     * (including version bits) as sp=(int)ctl. The offsets of counts
1198     * by the target parallelism and the positionings of fields makes
1199     * it possible to perform the most common checks via sign tests of
1200 dl 1.300 * fields: When ac is negative, there are not enough unqueued
1201 dl 1.200 * workers, when tc is negative, there are not enough total
1202     * workers. When sp is non-zero, there are waiting workers. To
1203     * deal with possibly negative fields, we use casts in and out of
1204     * "short" and/or signed shifts to maintain signedness.
1205     *
1206 dl 1.300 * Because it occupies uppermost bits, we can add one release count
1207     * using getAndAddLong of RC_UNIT, rather than CAS, when returning
1208 dl 1.200 * from a blocked join. Other updates entail multiple subfields
1209     * and masking, requiring CAS.
1210 dl 1.300 *
1211     * The limits packed in field "bounds" are also offset by the
1212     * parallelism level to make them comparable to the ctl rc and tc
1213     * fields.
1214 dl 1.200 */
1215    
1216     // Lower and upper word masks
1217     private static final long SP_MASK = 0xffffffffL;
1218     private static final long UC_MASK = ~SP_MASK;
1219 dl 1.86
1220 dl 1.300 // Release counts
1221     private static final int RC_SHIFT = 48;
1222     private static final long RC_UNIT = 0x0001L << RC_SHIFT;
1223     private static final long RC_MASK = 0xffffL << RC_SHIFT;
1224 dl 1.200
1225     // Total counts
1226 dl 1.86 private static final int TC_SHIFT = 32;
1227 dl 1.200 private static final long TC_UNIT = 0x0001L << TC_SHIFT;
1228     private static final long TC_MASK = 0xffffL << TC_SHIFT;
1229     private static final long ADD_WORKER = 0x0001L << (TC_SHIFT + 15); // sign
1230    
1231 dl 1.300 // Instance fields
1232 dl 1.86
1233 dl 1.300 volatile long stealCount; // collects worker nsteals
1234     final long keepAlive; // milliseconds before dropping if idle
1235     int indexSeed; // next worker index
1236     final int bounds; // min, max threads packed as shorts
1237     volatile int mode; // parallelism, runstate, queue mode
1238     WorkQueue[] workQueues; // main registry
1239     final String workerNamePrefix; // for worker thread string; sync lock
1240 dl 1.112 final ForkJoinWorkerThreadFactory factory;
1241 dl 1.200 final UncaughtExceptionHandler ueh; // per-worker UEH
1242 dl 1.307 final Predicate<? super ForkJoinPool> saturate;
1243 dl 1.101
1244 dl 1.308 @jdk.internal.vm.annotation.Contended("fjpctl") // segregate
1245     volatile long ctl; // main pool control
1246 jsr166 1.309
1247 dl 1.200 // Creating, registering and deregistering workers
1248    
1249 dl 1.112 /**
1250 dl 1.200 * Tries to construct and start one worker. Assumes that total
1251     * count has already been incremented as a reservation. Invokes
1252     * deregisterWorker on any failure.
1253     *
1254     * @return true if successful
1255 dl 1.115 */
1256 dl 1.300 private boolean createWorker() {
1257 dl 1.200 ForkJoinWorkerThreadFactory fac = factory;
1258     Throwable ex = null;
1259     ForkJoinWorkerThread wt = null;
1260     try {
1261     if (fac != null && (wt = fac.newThread(this)) != null) {
1262     wt.start();
1263     return true;
1264 dl 1.115 }
1265 dl 1.200 } catch (Throwable rex) {
1266     ex = rex;
1267 dl 1.112 }
1268 dl 1.200 deregisterWorker(wt, ex);
1269     return false;
1270 dl 1.112 }
1271    
1272 dl 1.200 /**
1273     * Tries to add one worker, incrementing ctl counts before doing
1274     * so, relying on createWorker to back out on failure.
1275     *
1276     * @param c incoming ctl value, with total count negative and no
1277     * idle workers. On CAS failure, c is refreshed and retried if
1278 jsr166 1.202 * this holds (otherwise, a new worker is not needed).
1279 dl 1.200 */
1280     private void tryAddWorker(long c) {
1281     do {
1282 dl 1.300 long nc = ((RC_MASK & (c + RC_UNIT)) |
1283 dl 1.200 (TC_MASK & (c + TC_UNIT)));
1284 dl 1.314 if (ctl == c && CTL.compareAndSet(this, c, nc)) {
1285 dl 1.300 createWorker();
1286 dl 1.243 break;
1287 dl 1.200 }
1288     } while (((c = ctl) & ADD_WORKER) != 0L && (int)c == 0);
1289     }
1290 dl 1.112
1291     /**
1292 dl 1.200 * Callback from ForkJoinWorkerThread constructor to establish and
1293     * record its WorkQueue.
1294 dl 1.112 *
1295     * @param wt the worker thread
1296 dl 1.115 * @return the worker's queue
1297 dl 1.112 */
1298 dl 1.115 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1299 dl 1.200 UncaughtExceptionHandler handler;
1300 dl 1.300 wt.setDaemon(true); // configure thread
1301 dl 1.115 if ((handler = ueh) != null)
1302     wt.setUncaughtExceptionHandler(handler);
1303 dl 1.200 WorkQueue w = new WorkQueue(this, wt);
1304 dl 1.300 int tid = 0; // for thread name
1305     int fifo = mode & FIFO;
1306     String prefix = workerNamePrefix;
1307     if (prefix != null) {
1308 jsr166 1.301 synchronized (prefix) {
1309 dl 1.300 WorkQueue[] ws = workQueues; int n;
1310     int s = indexSeed += SEED_INCREMENT;
1311     if (ws != null && (n = ws.length) > 1) {
1312     int m = n - 1;
1313     tid = s & m;
1314     int i = m & ((s << 1) | 1); // odd-numbered indices
1315     for (int probes = n >>> 1;;) { // find empty slot
1316     WorkQueue q;
1317     if ((q = ws[i]) == null || q.phase == QUIET)
1318     break;
1319     else if (--probes == 0) {
1320     i = n | 1; // resize below
1321     break;
1322     }
1323     else
1324     i = (i + 2) & m;
1325     }
1326    
1327     int id = i | fifo | (s & ~(SMASK | FIFO | DORMANT));
1328     w.phase = w.id = id; // now publishable
1329    
1330     if (i < n)
1331     ws[i] = w;
1332     else { // expand array
1333     int an = n << 1;
1334     WorkQueue[] as = new WorkQueue[an];
1335     as[i] = w;
1336     int am = an - 1;
1337     for (int j = 0; j < n; ++j) {
1338     WorkQueue v; // copy external queue
1339     if ((v = ws[j]) != null) // position may change
1340     as[v.id & am & SQMASK] = v;
1341     if (++j >= n)
1342     break;
1343     as[j] = ws[j]; // copy worker
1344 dl 1.94 }
1345 dl 1.300 workQueues = as;
1346 dl 1.94 }
1347     }
1348 dl 1.78 }
1349 dl 1.300 wt.setName(prefix.concat(Integer.toString(tid)));
1350 dl 1.78 }
1351 dl 1.115 return w;
1352 dl 1.78 }
1353 dl 1.19
1354 jsr166 1.1 /**
1355 dl 1.86 * Final callback from terminating worker, as well as upon failure
1356 dl 1.105 * to construct or start a worker. Removes record of worker from
1357     * array, and adjusts counts. If pool is shutting down, tries to
1358     * complete termination.
1359 dl 1.78 *
1360 jsr166 1.151 * @param wt the worker thread, or null if construction failed
1361 dl 1.78 * @param ex the exception causing failure, or null if none
1362 dl 1.45 */
1363 dl 1.78 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1364     WorkQueue w = null;
1365 dl 1.300 int phase = 0;
1366 dl 1.78 if (wt != null && (w = wt.workQueue) != null) {
1367 dl 1.300 Object lock = workerNamePrefix;
1368     long ns = (long)w.nsteals & 0xffffffffL;
1369     int idx = w.id & SMASK;
1370     if (lock != null) {
1371     WorkQueue[] ws; // remove index from array
1372 jsr166 1.301 synchronized (lock) {
1373 dl 1.243 if ((ws = workQueues) != null && ws.length > idx &&
1374     ws[idx] == w)
1375     ws[idx] = null;
1376 dl 1.300 stealCount += ns;
1377 dl 1.243 }
1378     }
1379 dl 1.300 phase = w.phase;
1380 dl 1.243 }
1381 dl 1.300 if (phase != QUIET) { // else pre-adjusted
1382 dl 1.243 long c; // decrement counts
1383 dl 1.317 do {} while (!CTL.weakCompareAndSetVolatile
1384 dl 1.314 (this, c = ctl, ((RC_MASK & (c - RC_UNIT)) |
1385     (TC_MASK & (c - TC_UNIT)) |
1386     (SP_MASK & c))));
1387 dl 1.243 }
1388 dl 1.300 if (w != null)
1389 dl 1.200 w.cancelAll(); // cancel remaining tasks
1390 dl 1.300
1391     if (!tryTerminate(false, false) && // possibly replace worker
1392     w != null && w.array != null) // avoid repeated failures
1393     signalWork();
1394    
1395 dl 1.200 if (ex == null) // help clean on way out
1396 dl 1.120 ForkJoinTask.helpExpungeStaleExceptions();
1397 dl 1.200 else // rethrow
1398 dl 1.104 ForkJoinTask.rethrow(ex);
1399 dl 1.78 }
1400 dl 1.52
1401 dl 1.19 /**
1402 dl 1.300 * Tries to create or release a worker if too few are running.
1403 dl 1.105 */
1404 dl 1.253 final void signalWork() {
1405 dl 1.243 for (;;) {
1406 dl 1.300 long c; int sp; WorkQueue[] ws; int i; WorkQueue v;
1407 dl 1.243 if ((c = ctl) >= 0L) // enough workers
1408     break;
1409     else if ((sp = (int)c) == 0) { // no idle workers
1410     if ((c & ADD_WORKER) != 0L) // too few workers
1411 dl 1.200 tryAddWorker(c);
1412     break;
1413     }
1414 dl 1.243 else if ((ws = workQueues) == null)
1415     break; // unstarted/terminated
1416     else if (ws.length <= (i = sp & SMASK))
1417     break; // terminated
1418     else if ((v = ws[i]) == null)
1419     break; // terminating
1420     else {
1421 dl 1.300 int np = sp & ~UNSIGNALLED;
1422     int vp = v.phase;
1423     long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + RC_UNIT));
1424     Thread vt = v.owner;
1425 dl 1.314 if (sp == vp && CTL.compareAndSet(this, c, nc)) {
1426 dl 1.300 v.phase = np;
1427     if (v.source < 0)
1428     LockSupport.unpark(vt);
1429 dl 1.243 break;
1430     }
1431 dl 1.174 }
1432 dl 1.52 }
1433 dl 1.14 }
1434    
1435 dl 1.200 /**
1436 dl 1.300 * Tries to decrement counts (sometimes implicitly) and possibly
1437     * arrange for a compensating worker in preparation for blocking:
1438     * If not all core workers yet exist, creates one, else if any are
1439     * unreleased (possibly including caller) releases one, else if
1440     * fewer than the minimum allowed number of workers running,
1441     * checks to see that they are all active, and if so creates an
1442     * extra worker unless over maximum limit and policy is to
1443     * saturate. Most of these steps can fail due to interference, in
1444     * which case 0 is returned so caller will retry. A negative
1445     * return value indicates that the caller doesn't need to
1446     * re-adjust counts when later unblocked.
1447 dl 1.243 *
1448 dl 1.300 * @return 1: block then adjust, -1: block without adjust, 0 : retry
1449 dl 1.243 */
1450 dl 1.300 private int tryCompensate(WorkQueue w) {
1451     int t, n, sp;
1452     long c = ctl;
1453     WorkQueue[] ws = workQueues;
1454 dl 1.310 if ((t = (short)(c >>> TC_SHIFT)) >= 0) {
1455 dl 1.300 if (ws == null || (n = ws.length) <= 0 || w == null)
1456     return 0; // disabled
1457     else if ((sp = (int)c) != 0) { // replace or release
1458     WorkQueue v = ws[sp & (n - 1)];
1459     int wp = w.phase;
1460     long uc = UC_MASK & ((wp < 0) ? c + RC_UNIT : c);
1461     int np = sp & ~UNSIGNALLED;
1462     if (v != null) {
1463     int vp = v.phase;
1464     Thread vt = v.owner;
1465     long nc = ((long)v.stackPred & SP_MASK) | uc;
1466 dl 1.314 if (vp == sp && CTL.compareAndSet(this, c, nc)) {
1467 dl 1.300 v.phase = np;
1468     if (v.source < 0)
1469     LockSupport.unpark(vt);
1470     return (wp < 0) ? -1 : 1;
1471     }
1472     }
1473     return 0;
1474     }
1475     else if ((int)(c >> RC_SHIFT) - // reduce parallelism
1476     (short)(bounds & SMASK) > 0) {
1477     long nc = ((RC_MASK & (c - RC_UNIT)) | (~RC_MASK & c));
1478 dl 1.314 return CTL.compareAndSet(this, c, nc) ? 1 : 0;
1479 dl 1.300 }
1480     else { // validate
1481     int md = mode, pc = md & SMASK, tc = pc + t, bc = 0;
1482     boolean unstable = false;
1483     for (int i = 1; i < n; i += 2) {
1484     WorkQueue q; Thread wt; Thread.State ts;
1485     if ((q = ws[i]) != null) {
1486     if (q.source == 0) {
1487     unstable = true;
1488     break;
1489     }
1490     else {
1491     --tc;
1492     if ((wt = q.owner) != null &&
1493     ((ts = wt.getState()) == Thread.State.BLOCKED ||
1494     ts == Thread.State.WAITING))
1495     ++bc; // worker is blocking
1496     }
1497 dl 1.243 }
1498     }
1499 dl 1.300 if (unstable || tc != 0 || ctl != c)
1500     return 0; // inconsistent
1501     else if (t + pc >= MAX_CAP || t >= (bounds >>> SWIDTH)) {
1502 dl 1.307 Predicate<? super ForkJoinPool> sat;
1503     if ((sat = saturate) != null && sat.test(this))
1504 dl 1.300 return -1;
1505     else if (bc < pc) { // lagging
1506     Thread.yield(); // for retry spins
1507     return 0;
1508 dl 1.243 }
1509     else
1510 dl 1.300 throw new RejectedExecutionException(
1511     "Thread limit exceeded replacing blocked worker");
1512 dl 1.200 }
1513 dl 1.177 }
1514 dl 1.243 }
1515 dl 1.300
1516     long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK); // expand pool
1517 dl 1.314 return CTL.compareAndSet(this, c, nc) && createWorker() ? 1 : 0;
1518 dl 1.243 }
1519    
1520     /**
1521     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1522 dl 1.300 * See above for explanation.
1523 dl 1.243 */
1524     final void runWorker(WorkQueue w) {
1525 dl 1.300 WorkQueue[] ws;
1526 dl 1.243 w.growArray(); // allocate queue
1527 dl 1.300 int r = w.id ^ ThreadLocalRandom.nextSecondarySeed();
1528     if (r == 0) // initial nonzero seed
1529     r = 1;
1530     int lastSignalId = 0; // avoid unneeded signals
1531     while ((ws = workQueues) != null) {
1532     boolean nonempty = false; // scan
1533     for (int n = ws.length, j = n, m = n - 1; j > 0; --j) {
1534     WorkQueue q; int i, b, al; ForkJoinTask<?>[] a;
1535     if ((i = r & m) >= 0 && i < n && // always true
1536     (q = ws[i]) != null && (b = q.base) - q.top < 0 &&
1537 dl 1.243 (a = q.array) != null && (al = a.length) > 0) {
1538 dl 1.300 int qid = q.id; // (never zero)
1539 dl 1.256 int index = (al - 1) & b;
1540 dl 1.243 ForkJoinTask<?> t = (ForkJoinTask<?>)
1541 dl 1.316 QA.getAcquire(a, index);
1542 dl 1.300 if (t != null && b++ == q.base &&
1543 dl 1.314 QA.compareAndSet(a, index, t, null)) {
1544 dl 1.300 if ((q.base = b) - q.top < 0 && qid != lastSignalId)
1545     signalWork(); // propagate signal
1546     w.source = lastSignalId = qid;
1547     t.doExec();
1548     if ((w.id & FIFO) != 0) // run remaining locals
1549     w.localPollAndExec(POLL_LIMIT);
1550     else
1551     w.localPopAndExec(POLL_LIMIT);
1552     ForkJoinWorkerThread thread = w.owner;
1553     ++w.nsteals;
1554     w.source = 0; // now idle
1555     if (thread != null)
1556     thread.afterTopLevelExec();
1557 dl 1.243 }
1558 dl 1.300 nonempty = true;
1559 dl 1.178 }
1560 dl 1.300 else if (nonempty)
1561 dl 1.243 break;
1562 dl 1.300 else
1563     ++r;
1564 dl 1.120 }
1565 dl 1.178
1566 dl 1.300 if (nonempty) { // move (xorshift)
1567     r ^= r << 13; r ^= r >>> 17; r ^= r << 5;
1568     }
1569     else {
1570     int phase;
1571     lastSignalId = 0; // clear for next scan
1572     if ((phase = w.phase) >= 0) { // enqueue
1573     int np = w.phase = (phase + SS_SEQ) | UNSIGNALLED;
1574     long c, nc;
1575     do {
1576     w.stackPred = (int)(c = ctl);
1577     nc = ((c - RC_UNIT) & UC_MASK) | (SP_MASK & np);
1578 dl 1.317 } while (!CTL.weakCompareAndSetVolatile(this, c, nc));
1579 dl 1.300 }
1580     else { // already queued
1581     int pred = w.stackPred;
1582     w.source = DORMANT; // enable signal
1583     for (int steps = 0;;) {
1584     int md, rc; long c;
1585     if (w.phase >= 0) {
1586     w.source = 0;
1587     break;
1588     }
1589     else if ((md = mode) < 0) // shutting down
1590     return;
1591     else if ((rc = ((md & SMASK) + // possibly quiescent
1592     (int)((c = ctl) >> RC_SHIFT))) <= 0 &&
1593     (md & SHUTDOWN) != 0 &&
1594     tryTerminate(false, false))
1595     return; // help terminate
1596     else if ((++steps & 1) == 0)
1597     Thread.interrupted(); // clear between parks
1598     else if (rc <= 0 && pred != 0 && phase == (int)c) {
1599     long d = keepAlive + System.currentTimeMillis();
1600     LockSupport.parkUntil(this, d);
1601     if (ctl == c &&
1602     d - System.currentTimeMillis() <= TIMEOUT_SLOP) {
1603     long nc = ((UC_MASK & (c - TC_UNIT)) |
1604     (SP_MASK & pred));
1605 dl 1.314 if (CTL.compareAndSet(this, c, nc)) {
1606 dl 1.300 w.phase = QUIET;
1607     return; // drop on timeout
1608     }
1609     }
1610     }
1611     else
1612     LockSupport.park(this);
1613     }
1614     }
1615     }
1616     }
1617     }
1618 dl 1.200
1619 dl 1.305 /**
1620     * Helps and/or blocks until the given task is done or timeout.
1621     * First tries locally helping, then scans other queues for a task
1622     * produced by one of w's stealers; compensating and blocking if
1623     * none are found (rescanning if tryCompensate fails).
1624     *
1625     * @param w caller
1626     * @param task the task
1627     * @param deadline for timed waits, if nonzero
1628     * @return task status on exit
1629     */
1630 dl 1.300 final int awaitJoin(WorkQueue w, ForkJoinTask<?> task, long deadline) {
1631     int s = 0;
1632     if (w != null && task != null &&
1633     (!(task instanceof CountedCompleter) ||
1634     (s = w.localHelpCC((CountedCompleter<?>)task, 0)) >= 0)) {
1635     w.tryRemoveAndExec(task);
1636     int src = w.source, id = w.id;
1637     s = task.status;
1638     while (s >= 0) {
1639     WorkQueue[] ws;
1640     boolean nonempty = false;
1641     int r = ThreadLocalRandom.nextSecondarySeed() | 1; // odd indices
1642     if ((ws = workQueues) != null) { // scan for matching id
1643     for (int n = ws.length, m = n - 1, j = -n; j < n; j += 2) {
1644     WorkQueue q; int i, b, al; ForkJoinTask<?>[] a;
1645     if ((i = (r + j) & m) >= 0 && i < n &&
1646     (q = ws[i]) != null && q.source == id &&
1647     (b = q.base) - q.top < 0 &&
1648     (a = q.array) != null && (al = a.length) > 0) {
1649     int qid = q.id;
1650     int index = (al - 1) & b;
1651     ForkJoinTask<?> t = (ForkJoinTask<?>)
1652 dl 1.316 QA.getAcquire(a, index);
1653 dl 1.300 if (t != null && b++ == q.base && id == q.source &&
1654 dl 1.314 QA.compareAndSet(a, index, t, null)) {
1655 dl 1.300 q.base = b;
1656     w.source = qid;
1657     t.doExec();
1658     w.source = src;
1659     }
1660     nonempty = true;
1661 dl 1.200 break;
1662 dl 1.300 }
1663 dl 1.200 }
1664 dl 1.300 }
1665     if ((s = task.status) < 0)
1666     break;
1667     else if (!nonempty) {
1668     long ms, ns; int block;
1669     if (deadline == 0L)
1670     ms = 0L; // untimed
1671     else if ((ns = deadline - System.nanoTime()) <= 0L)
1672     break; // timeout
1673     else if ((ms = TimeUnit.NANOSECONDS.toMillis(ns)) <= 0L)
1674     ms = 1L; // avoid 0 for timed wait
1675     if ((block = tryCompensate(w)) != 0) {
1676     task.internalWait(ms);
1677 dl 1.314 CTL.getAndAdd(this, (block > 0) ? RC_UNIT : 0L);
1678 dl 1.200 }
1679 dl 1.300 s = task.status;
1680 dl 1.200 }
1681 dl 1.178 }
1682     }
1683 dl 1.200 return s;
1684 dl 1.120 }
1685    
1686     /**
1687 dl 1.300 * Runs tasks until {@code isQuiescent()}. Rather than blocking
1688     * when tasks cannot be found, rescans until all others cannot
1689     * find tasks either.
1690 dl 1.78 */
1691 dl 1.300 final void helpQuiescePool(WorkQueue w) {
1692     int prevSrc = w.source, fifo = w.id & FIFO;
1693     for (int source = prevSrc, released = -1;;) { // -1 until known
1694     WorkQueue[] ws;
1695     if (fifo != 0)
1696     w.localPollAndExec(0);
1697     else
1698     w.localPopAndExec(0);
1699     if (released == -1 && w.phase >= 0)
1700     released = 1;
1701     boolean quiet = true, empty = true;
1702     int r = ThreadLocalRandom.nextSecondarySeed();
1703     if ((ws = workQueues) != null) {
1704     for (int n = ws.length, j = n, m = n - 1; j > 0; --j) {
1705     WorkQueue q; int i, b, al; ForkJoinTask<?>[] a;
1706     if ((i = (r - j) & m) >= 0 && i < n && (q = ws[i]) != null) {
1707     if ((b = q.base) - q.top < 0 &&
1708     (a = q.array) != null && (al = a.length) > 0) {
1709     int qid = q.id;
1710     if (released == 0) { // increment
1711     released = 1;
1712 dl 1.314 CTL.getAndAdd(this, RC_UNIT);
1713 dl 1.95 }
1714 dl 1.256 int index = (al - 1) & b;
1715 dl 1.300 ForkJoinTask<?> t = (ForkJoinTask<?>)
1716 dl 1.316 QA.getAcquire(a, index);
1717 dl 1.300 if (t != null && b++ == q.base &&
1718 dl 1.314 QA.compareAndSet(a, index, t, null)) {
1719 dl 1.300 q.base = b;
1720     w.source = source = q.id;
1721     t.doExec();
1722     w.source = source = prevSrc;
1723 dl 1.243 }
1724 dl 1.300 quiet = empty = false;
1725 dl 1.200 break;
1726 dl 1.95 }
1727 dl 1.300 else if ((q.source & QUIET) == 0)
1728     quiet = false;
1729 dl 1.52 }
1730 dl 1.19 }
1731 dl 1.243 }
1732 dl 1.300 if (quiet) {
1733     if (released == 0)
1734 dl 1.314 CTL.getAndAdd(this, RC_UNIT);
1735 dl 1.300 w.source = prevSrc;
1736     break;
1737     }
1738     else if (empty) {
1739     if (source != QUIET)
1740     w.source = source = QUIET;
1741     if (released == 1) { // decrement
1742     released = 0;
1743 dl 1.314 CTL.getAndAdd(this, RC_MASK & -RC_UNIT);
1744 dl 1.300 }
1745     }
1746 dl 1.14 }
1747 dl 1.22 }
1748    
1749 dl 1.52 /**
1750 dl 1.300 * Scans for and returns a polled task, if available.
1751     * Used only for untracked polls.
1752 dl 1.105 *
1753 dl 1.300 * @param submissionsOnly if true, only scan submission queues
1754 dl 1.19 */
1755 dl 1.300 private ForkJoinTask<?> pollScan(boolean submissionsOnly) {
1756     WorkQueue[] ws; int n;
1757     rescan: while ((mode & STOP) == 0 && (ws = workQueues) != null &&
1758     (n = ws.length) > 0) {
1759     int m = n - 1;
1760     int r = ThreadLocalRandom.nextSecondarySeed();
1761     int h = r >>> 16;
1762     int origin, step;
1763     if (submissionsOnly) {
1764     origin = (r & ~1) & m; // even indices and steps
1765     step = (h & ~1) | 2;
1766     }
1767     else {
1768     origin = r & m;
1769     step = h | 1;
1770     }
1771     for (int k = origin, oldSum = 0, checkSum = 0;;) {
1772     WorkQueue q; int b, al; ForkJoinTask<?>[] a;
1773     if ((q = ws[k]) != null) {
1774     checkSum += b = q.base;
1775     if (b - q.top < 0 &&
1776     (a = q.array) != null && (al = a.length) > 0) {
1777     int index = (al - 1) & b;
1778     ForkJoinTask<?> t = (ForkJoinTask<?>)
1779 dl 1.316 QA.getAcquire(a, index);
1780 dl 1.300 if (t != null && b++ == q.base &&
1781 dl 1.314 QA.compareAndSet(a, index, t, null)) {
1782 dl 1.300 q.base = b;
1783     return t;
1784     }
1785     else
1786     break; // restart
1787     }
1788     }
1789     if ((k = (k + step) & m) == origin) {
1790     if (oldSum == (oldSum = checkSum))
1791     break rescan;
1792     checkSum = 0;
1793 dl 1.178 }
1794 dl 1.52 }
1795 dl 1.90 }
1796 dl 1.300 return null;
1797     }
1798    
1799     /**
1800     * Gets and removes a local or stolen task for the given worker.
1801     *
1802     * @return a task, if available
1803     */
1804     final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
1805     ForkJoinTask<?> t;
1806     if (w != null &&
1807     (t = (w.id & FIFO) != 0 ? w.poll() : w.pop()) != null)
1808     return t;
1809     else
1810     return pollScan(false);
1811 dl 1.90 }
1812    
1813 dl 1.300 // External operations
1814    
1815 dl 1.90 /**
1816 dl 1.300 * Adds the given task to a submission queue at submitter's
1817     * current queue, creating one if null or contended.
1818 dl 1.90 *
1819 dl 1.300 * @param task the task. Caller must ensure non-null.
1820 dl 1.90 */
1821 dl 1.300 final void externalPush(ForkJoinTask<?> task) {
1822     int r; // initialize caller's probe
1823     if ((r = ThreadLocalRandom.getProbe()) == 0) {
1824     ThreadLocalRandom.localInit();
1825     r = ThreadLocalRandom.getProbe();
1826     }
1827     for (;;) {
1828     int md = mode, n;
1829     WorkQueue[] ws = workQueues;
1830     if ((md & SHUTDOWN) != 0 || ws == null || (n = ws.length) <= 0)
1831     throw new RejectedExecutionException();
1832     else {
1833     WorkQueue q;
1834     boolean push = false, grow = false;
1835     if ((q = ws[(n - 1) & r & SQMASK]) == null) {
1836     Object lock = workerNamePrefix;
1837     int qid = (r | QUIET) & ~(FIFO | OWNED);
1838     q = new WorkQueue(this, null);
1839     q.id = qid;
1840     q.source = QUIET;
1841     q.phase = QLOCK; // lock queue
1842     if (lock != null) {
1843 jsr166 1.301 synchronized (lock) { // lock pool to install
1844 dl 1.300 int i;
1845     if ((ws = workQueues) != null &&
1846     (n = ws.length) > 0 &&
1847     ws[i = qid & (n - 1) & SQMASK] == null) {
1848     ws[i] = q;
1849     push = grow = true;
1850     }
1851     }
1852     }
1853     }
1854     else if (q.tryLockSharedQueue()) {
1855     int b = q.base, s = q.top, al, d; ForkJoinTask<?>[] a;
1856     if ((a = q.array) != null && (al = a.length) > 0 &&
1857     al - 1 + (d = b - s) > 0) {
1858     a[(al - 1) & s] = task;
1859     q.top = s + 1; // relaxed writes OK here
1860     q.phase = 0;
1861 dl 1.311 if (d < 0 && q.base - s < -1)
1862 dl 1.300 break; // no signal needed
1863     }
1864 dl 1.243 else
1865 dl 1.300 grow = true;
1866     push = true;
1867     }
1868     if (push) {
1869     if (grow) {
1870     try {
1871     q.growArray();
1872     int s = q.top, al; ForkJoinTask<?>[] a;
1873     if ((a = q.array) != null && (al = a.length) > 0) {
1874     a[(al - 1) & s] = task;
1875     q.top = s + 1;
1876     }
1877     } finally {
1878     q.phase = 0;
1879     }
1880 dl 1.243 }
1881 dl 1.300 signalWork();
1882     break;
1883 dl 1.90 }
1884 dl 1.300 else // move if busy
1885     r = ThreadLocalRandom.advanceProbe(r);
1886 dl 1.90 }
1887     }
1888     }
1889    
1890 dl 1.300 /**
1891     * Pushes a possibly-external submission.
1892     */
1893     private <T> ForkJoinTask<T> externalSubmit(ForkJoinTask<T> task) {
1894     Thread t; ForkJoinWorkerThread w; WorkQueue q;
1895     if (task == null)
1896     throw new NullPointerException();
1897     if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) &&
1898     (w = (ForkJoinWorkerThread)t).pool == this &&
1899     (q = w.workQueue) != null)
1900     q.push(task);
1901     else
1902     externalPush(task);
1903     return task;
1904     }
1905    
1906     /**
1907     * Returns common pool queue for an external thread.
1908     */
1909     static WorkQueue commonSubmitterQueue() {
1910     ForkJoinPool p = common;
1911     int r = ThreadLocalRandom.getProbe();
1912     WorkQueue[] ws; int n;
1913     return (p != null && (ws = p.workQueues) != null &&
1914     (n = ws.length) > 0) ?
1915     ws[(n - 1) & r & SQMASK] : null;
1916     }
1917 dl 1.90
1918     /**
1919 dl 1.300 * Performs tryUnpush for an external submitter.
1920     */
1921     final boolean tryExternalUnpush(ForkJoinTask<?> task) {
1922     int r = ThreadLocalRandom.getProbe();
1923     WorkQueue[] ws; WorkQueue w; int n;
1924     return ((ws = workQueues) != null &&
1925     (n = ws.length) > 0 &&
1926     (w = ws[(n - 1) & r & SQMASK]) != null &&
1927     w.trySharedUnpush(task));
1928 dl 1.22 }
1929    
1930     /**
1931 dl 1.300 * Performs helpComplete for an external submitter.
1932 dl 1.78 */
1933 dl 1.300 final int externalHelpComplete(CountedCompleter<?> task, int maxTasks) {
1934     int r = ThreadLocalRandom.getProbe();
1935     WorkQueue[] ws; WorkQueue w; int n;
1936     return ((ws = workQueues) != null && (n = ws.length) > 0 &&
1937     (w = ws[(n - 1) & r & SQMASK]) != null) ?
1938     w.sharedHelpCC(task, maxTasks) : 0;
1939 dl 1.22 }
1940    
1941     /**
1942 dl 1.300 * Tries to steal and run tasks within the target's computation.
1943     * The maxTasks argument supports external usages; internal calls
1944     * use zero, allowing unbounded steps (external calls trap
1945     * non-positive values).
1946 dl 1.78 *
1947 dl 1.300 * @param w caller
1948     * @param maxTasks if non-zero, the maximum number of other tasks to run
1949     * @return task status on exit
1950 dl 1.22 */
1951 dl 1.300 final int helpComplete(WorkQueue w, CountedCompleter<?> task,
1952     int maxTasks) {
1953     return (w == null) ? 0 : w.localHelpCC(task, maxTasks);
1954 dl 1.14 }
1955    
1956     /**
1957 dl 1.105 * Returns a cheap heuristic guide for task partitioning when
1958     * programmers, frameworks, tools, or languages have little or no
1959 jsr166 1.222 * idea about task granularity. In essence, by offering this
1960 dl 1.105 * method, we ask users only about tradeoffs in overhead vs
1961     * expected throughput and its variance, rather than how finely to
1962     * partition tasks.
1963     *
1964     * In a steady state strict (tree-structured) computation, each
1965     * thread makes available for stealing enough tasks for other
1966     * threads to remain active. Inductively, if all threads play by
1967     * the same rules, each thread should make available only a
1968     * constant number of tasks.
1969     *
1970     * The minimum useful constant is just 1. But using a value of 1
1971     * would require immediate replenishment upon each steal to
1972     * maintain enough tasks, which is infeasible. Further,
1973     * partitionings/granularities of offered tasks should minimize
1974     * steal rates, which in general means that threads nearer the top
1975     * of computation tree should generate more than those nearer the
1976     * bottom. In perfect steady state, each thread is at
1977     * approximately the same level of computation tree. However,
1978     * producing extra tasks amortizes the uncertainty of progress and
1979     * diffusion assumptions.
1980     *
1981 jsr166 1.161 * So, users will want to use values larger (but not much larger)
1982 dl 1.105 * than 1 to both smooth over transient shortages and hedge
1983     * against uneven progress; as traded off against the cost of
1984     * extra task overhead. We leave the user to pick a threshold
1985     * value to compare with the results of this call to guide
1986     * decisions, but recommend values such as 3.
1987     *
1988     * When all threads are active, it is on average OK to estimate
1989     * surplus strictly locally. In steady-state, if one thread is
1990     * maintaining say 2 surplus tasks, then so are others. So we can
1991     * just use estimated queue length. However, this strategy alone
1992     * leads to serious mis-estimates in some non-steady-state
1993     * conditions (ramp-up, ramp-down, other stalls). We can detect
1994     * many of these by further considering the number of "idle"
1995     * threads, that are known to have zero queued tasks, so
1996     * compensate by a factor of (#idle/#active) threads.
1997     */
1998     static int getSurplusQueuedTaskCount() {
1999     Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2000 dl 1.300 if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) &&
2001     (pool = (wt = (ForkJoinWorkerThread)t).pool) != null &&
2002     (q = wt.workQueue) != null) {
2003     int p = pool.mode & SMASK;
2004     int a = p + (int)(pool.ctl >> RC_SHIFT);
2005     int n = q.top - q.base;
2006 dl 1.112 return n - (a > (p >>>= 1) ? 0 :
2007     a > (p >>>= 1) ? 1 :
2008     a > (p >>>= 1) ? 2 :
2009     a > (p >>>= 1) ? 4 :
2010     8);
2011 dl 1.105 }
2012     return 0;
2013 dl 1.100 }
2014    
2015 dl 1.300 // Termination
2016 dl 1.14
2017     /**
2018 dl 1.210 * Possibly initiates and/or completes termination.
2019 dl 1.14 *
2020     * @param now if true, unconditionally terminate, else only
2021 dl 1.78 * if no work and no active workers
2022 dl 1.243 * @param enable if true, terminate when next possible
2023 dl 1.300 * @return true if terminating or terminated
2024 jsr166 1.1 */
2025 dl 1.300 private boolean tryTerminate(boolean now, boolean enable) {
2026     int md; // 3 phases: try to set SHUTDOWN, then STOP, then TERMINATED
2027 dl 1.289
2028 dl 1.300 while (((md = mode) & SHUTDOWN) == 0) {
2029 dl 1.294 if (!enable || this == common) // cannot shutdown
2030 dl 1.300 return false;
2031 dl 1.294 else
2032 dl 1.314 MODE.compareAndSet(this, md, md | SHUTDOWN);
2033 dl 1.289 }
2034    
2035 dl 1.300 while (((md = mode) & STOP) == 0) { // try to initiate termination
2036     if (!now) { // check if quiescent & empty
2037 dl 1.211 for (long oldSum = 0L;;) { // repeat until stable
2038 dl 1.300 boolean running = false;
2039 dl 1.210 long checkSum = ctl;
2040 dl 1.300 WorkQueue[] ws = workQueues;
2041     if ((md & SMASK) + (int)(checkSum >> RC_SHIFT) > 0)
2042     running = true;
2043     else if (ws != null) {
2044     WorkQueue w; int b;
2045 dl 1.289 for (int i = 0; i < ws.length; ++i) {
2046     if ((w = ws[i]) != null) {
2047 dl 1.300 checkSum += (b = w.base) + w.id;
2048     if (b != w.top ||
2049     ((i & 1) == 1 && w.source >= 0)) {
2050     running = true;
2051     break;
2052     }
2053 dl 1.289 }
2054 dl 1.206 }
2055 dl 1.203 }
2056 dl 1.300 if (((md = mode) & STOP) != 0)
2057     break; // already triggered
2058     else if (running)
2059     return false;
2060     else if (workQueues == ws && oldSum == (oldSum = checkSum))
2061 dl 1.210 break;
2062 dl 1.203 }
2063     }
2064 dl 1.300 if ((md & STOP) == 0)
2065 dl 1.314 MODE.compareAndSet(this, md, md | STOP);
2066 dl 1.200 }
2067 dl 1.210
2068 dl 1.300 while (((md = mode) & TERMINATED) == 0) { // help terminate others
2069     for (long oldSum = 0L;;) { // repeat until stable
2070     WorkQueue[] ws; WorkQueue w;
2071     long checkSum = ctl;
2072     if ((ws = workQueues) != null) {
2073     for (int i = 0; i < ws.length; ++i) {
2074     if ((w = ws[i]) != null) {
2075     ForkJoinWorkerThread wt = w.owner;
2076     w.cancelAll(); // clear queues
2077     if (wt != null) {
2078 dl 1.289 try { // unblock join or park
2079 dl 1.210 wt.interrupt();
2080     } catch (Throwable ignore) {
2081 dl 1.200 }
2082     }
2083 dl 1.300 checkSum += w.base + w.id;
2084 dl 1.200 }
2085 dl 1.101 }
2086 dl 1.78 }
2087 dl 1.300 if (((md = mode) & TERMINATED) != 0 ||
2088     (workQueues == ws && oldSum == (oldSum = checkSum)))
2089     break;
2090 dl 1.78 }
2091 dl 1.300 if ((md & TERMINATED) != 0)
2092     break;
2093     else if ((md & SMASK) + (short)(ctl >>> TC_SHIFT) > 0)
2094 dl 1.210 break;
2095 dl 1.314 else if (MODE.compareAndSet(this, md, md | TERMINATED)) {
2096 dl 1.300 synchronized (this) {
2097     notifyAll(); // for awaitTermination
2098 dl 1.243 }
2099 dl 1.256 break;
2100 dl 1.200 }
2101 dl 1.52 }
2102 dl 1.300 return true;
2103 dl 1.105 }
2104    
2105 dl 1.52 // Exported methods
2106 jsr166 1.1
2107     // Constructors
2108    
2109     /**
2110 jsr166 1.9 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2111 dl 1.300 * java.lang.Runtime#availableProcessors}, using defaults for all
2112 dl 1.319 * other parameters (see {@link #ForkJoinPool(int,
2113     * ForkJoinWorkerThreadFactory, UncaughtExceptionHandler, boolean,
2114     * int, int, int, Predicate, long, TimeUnit)}).
2115 jsr166 1.1 *
2116     * @throws SecurityException if a security manager exists and
2117     * the caller is not permitted to modify threads
2118     * because it does not hold {@link
2119     * java.lang.RuntimePermission}{@code ("modifyThread")}
2120     */
2121     public ForkJoinPool() {
2122 jsr166 1.148 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2123 dl 1.300 defaultForkJoinWorkerThreadFactory, null, false,
2124 dl 1.307 0, MAX_CAP, 1, null, DEFAULT_KEEPALIVE, TimeUnit.MILLISECONDS);
2125 jsr166 1.1 }
2126    
2127     /**
2128 jsr166 1.9 * Creates a {@code ForkJoinPool} with the indicated parallelism
2129 dl 1.319 * level, using defaults for all other parameters (see {@link
2130     * #ForkJoinPool(int, ForkJoinWorkerThreadFactory,
2131     * UncaughtExceptionHandler, boolean, int, int, int, Predicate,
2132     * long, TimeUnit)}).
2133 jsr166 1.1 *
2134 jsr166 1.9 * @param parallelism the parallelism level
2135 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
2136 jsr166 1.11 * equal to zero, or greater than implementation limit
2137 jsr166 1.1 * @throws SecurityException if a security manager exists and
2138     * the caller is not permitted to modify threads
2139     * because it does not hold {@link
2140     * java.lang.RuntimePermission}{@code ("modifyThread")}
2141     */
2142     public ForkJoinPool(int parallelism) {
2143 dl 1.300 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false,
2144 dl 1.307 0, MAX_CAP, 1, null, DEFAULT_KEEPALIVE, TimeUnit.MILLISECONDS);
2145 jsr166 1.1 }
2146    
2147     /**
2148 dl 1.300 * Creates a {@code ForkJoinPool} with the given parameters (using
2149 dl 1.319 * defaults for others -- see {@link #ForkJoinPool(int,
2150     * ForkJoinWorkerThreadFactory, UncaughtExceptionHandler, boolean,
2151     * int, int, int, Predicate, long, TimeUnit)}).
2152 jsr166 1.1 *
2153 dl 1.18 * @param parallelism the parallelism level. For default value,
2154     * use {@link java.lang.Runtime#availableProcessors}.
2155     * @param factory the factory for creating new threads. For default value,
2156     * use {@link #defaultForkJoinWorkerThreadFactory}.
2157 dl 1.19 * @param handler the handler for internal worker threads that
2158     * terminate due to unrecoverable errors encountered while executing
2159 jsr166 1.31 * tasks. For default value, use {@code null}.
2160 dl 1.19 * @param asyncMode if true,
2161 dl 1.18 * establishes local first-in-first-out scheduling mode for forked
2162     * tasks that are never joined. This mode may be more appropriate
2163     * than default locally stack-based mode in applications in which
2164     * worker threads only process event-style asynchronous tasks.
2165 jsr166 1.31 * For default value, use {@code false}.
2166 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
2167 jsr166 1.11 * equal to zero, or greater than implementation limit
2168     * @throws NullPointerException if the factory is null
2169 jsr166 1.1 * @throws SecurityException if a security manager exists and
2170     * the caller is not permitted to modify threads
2171     * because it does not hold {@link
2172     * java.lang.RuntimePermission}{@code ("modifyThread")}
2173     */
2174 dl 1.19 public ForkJoinPool(int parallelism,
2175 dl 1.18 ForkJoinWorkerThreadFactory factory,
2176 jsr166 1.156 UncaughtExceptionHandler handler,
2177 dl 1.18 boolean asyncMode) {
2178 dl 1.300 this(parallelism, factory, handler, asyncMode,
2179 dl 1.307 0, MAX_CAP, 1, null, DEFAULT_KEEPALIVE, TimeUnit.MILLISECONDS);
2180 dl 1.152 }
2181    
2182 dl 1.300 /**
2183     * Creates a {@code ForkJoinPool} with the given parameters.
2184     *
2185     * @param parallelism the parallelism level. For default value,
2186     * use {@link java.lang.Runtime#availableProcessors}.
2187     *
2188     * @param factory the factory for creating new threads. For
2189     * default value, use {@link #defaultForkJoinWorkerThreadFactory}.
2190     *
2191     * @param handler the handler for internal worker threads that
2192     * terminate due to unrecoverable errors encountered while
2193     * executing tasks. For default value, use {@code null}.
2194     *
2195     * @param asyncMode if true, establishes local first-in-first-out
2196     * scheduling mode for forked tasks that are never joined. This
2197     * mode may be more appropriate than default locally stack-based
2198     * mode in applications in which worker threads only process
2199     * event-style asynchronous tasks. For default value, use {@code
2200     * false}.
2201     *
2202     * @param corePoolSize the number of threads to keep in the pool
2203     * (unless timed out after an elapsed keep-alive). Normally (and
2204     * by default) this is the same value as the parallelism level,
2205     * but may be set to a larger value to reduce dynamic overhead if
2206     * tasks regularly block. Using a smaller value (for example
2207     * {@code 0}) has the same effect as the default.
2208     *
2209     * @param maximumPoolSize the maximum number of threads allowed.
2210     * When the maximum is reached, attempts to replace blocked
2211     * threads fail. (However, because creation and termination of
2212     * different threads may overlap, and may be managed by the given
2213 dl 1.307 * thread factory, this value may be transiently exceeded.) To
2214     * arrange the same value as is used by default for the common
2215 dl 1.319 * pool, use {@code 256} plus the {@code parallelism} level. (By
2216     * default, the common pool allows a maximum of 256 spare
2217     * threads.) Using a value (for example {@code
2218     * Integer.MAX_VALUE}) larger than the implementation's total
2219     * thread limit has the same effect as using this limit (which is
2220     * the default).
2221 dl 1.300 *
2222     * @param minimumRunnable the minimum allowed number of core
2223     * threads not blocked by a join or {@link ManagedBlocker}. To
2224     * ensure progress, when too few unblocked threads exist and
2225     * unexecuted tasks may exist, new threads are constructed, up to
2226     * the given maximumPoolSize. For the default value, use {@code
2227     * 1}, that ensures liveness. A larger value might improve
2228     * throughput in the presence of blocked activities, but might
2229     * not, due to increased overhead. A value of zero may be
2230     * acceptable when submitted tasks cannot have dependencies
2231     * requiring additional threads.
2232     *
2233 jsr166 1.318 * @param saturate if non-null, a predicate invoked upon attempts
2234 dl 1.307 * to create more than the maximum total allowed threads. By
2235     * default, when a thread is about to block on a join or {@link
2236     * ManagedBlocker}, but cannot be replaced because the
2237     * maximumPoolSize would be exceeded, a {@link
2238     * RejectedExecutionException} is thrown. But if this predicate
2239     * returns {@code true}, then no exception is thrown, so the pool
2240     * continues to operate with fewer than the target number of
2241     * runnable threads, which might not ensure progress.
2242 dl 1.300 *
2243     * @param keepAliveTime the elapsed time since last use before
2244     * a thread is terminated (and then later replaced if needed).
2245     * For the default value, use {@code 60, TimeUnit.SECONDS}.
2246     *
2247     * @param unit the time unit for the {@code keepAliveTime} argument
2248     *
2249     * @throws IllegalArgumentException if parallelism is less than or
2250     * equal to zero, or is greater than implementation limit,
2251     * or if maximumPoolSize is less than parallelism,
2252     * of if the keepAliveTime is less than or equal to zero.
2253     * @throws NullPointerException if the factory is null
2254     * @throws SecurityException if a security manager exists and
2255     * the caller is not permitted to modify threads
2256     * because it does not hold {@link
2257     * java.lang.RuntimePermission}{@code ("modifyThread")}
2258 jsr166 1.306 * @since 9
2259 dl 1.300 */
2260     public ForkJoinPool(int parallelism,
2261     ForkJoinWorkerThreadFactory factory,
2262     UncaughtExceptionHandler handler,
2263     boolean asyncMode,
2264     int corePoolSize,
2265     int maximumPoolSize,
2266     int minimumRunnable,
2267 dl 1.307 Predicate<? super ForkJoinPool> saturate,
2268 dl 1.300 long keepAliveTime,
2269     TimeUnit unit) {
2270     // check, encode, pack parameters
2271     if (parallelism <= 0 || parallelism > MAX_CAP ||
2272     maximumPoolSize < parallelism || keepAliveTime <= 0L)
2273 dl 1.152 throw new IllegalArgumentException();
2274 dl 1.14 if (factory == null)
2275     throw new NullPointerException();
2276 dl 1.300 long ms = Math.max(unit.toMillis(keepAliveTime), TIMEOUT_SLOP);
2277    
2278     String prefix = "ForkJoinPool-" + nextPoolId() + "-worker-";
2279     int corep = Math.min(Math.max(corePoolSize, parallelism), MAX_CAP);
2280     long c = ((((long)(-corep) << TC_SHIFT) & TC_MASK) |
2281     (((long)(-parallelism) << RC_SHIFT) & RC_MASK));
2282 dl 1.307 int m = parallelism | (asyncMode ? FIFO : 0);
2283 dl 1.300 int maxSpares = Math.min(maximumPoolSize, MAX_CAP) - parallelism;
2284     int minAvail = Math.min(Math.max(minimumRunnable, 0), MAX_CAP);
2285     int b = ((minAvail - parallelism) & SMASK) | (maxSpares << SWIDTH);
2286     int n = (parallelism > 1) ? parallelism - 1 : 1; // at least 2 slots
2287     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
2288     n = (n + 1) << 1; // power of two, including space for submission queues
2289    
2290     this.workQueues = new WorkQueue[n];
2291     this.workerNamePrefix = prefix;
2292     this.factory = factory;
2293     this.ueh = handler;
2294 dl 1.307 this.saturate = saturate;
2295 dl 1.300 this.keepAlive = ms;
2296     this.bounds = b;
2297     this.mode = m;
2298     this.ctl = c;
2299     checkPermission();
2300 dl 1.152 }
2301    
2302     /**
2303 dl 1.300 * Constructor for common pool using parameters possibly
2304     * overridden by system properties
2305     */
2306 jsr166 1.313 @SuppressWarnings("deprecation") // Class.newInstance
2307 dl 1.300 private ForkJoinPool(byte forCommonPoolOnly) {
2308     int parallelism = -1;
2309     ForkJoinWorkerThreadFactory fac = null;
2310     UncaughtExceptionHandler handler = null;
2311     try { // ignore exceptions in accessing/parsing properties
2312     String pp = System.getProperty
2313     ("java.util.concurrent.ForkJoinPool.common.parallelism");
2314     String fp = System.getProperty
2315     ("java.util.concurrent.ForkJoinPool.common.threadFactory");
2316     String hp = System.getProperty
2317     ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
2318     if (pp != null)
2319     parallelism = Integer.parseInt(pp);
2320     if (fp != null)
2321     fac = ((ForkJoinWorkerThreadFactory)ClassLoader.
2322     getSystemClassLoader().loadClass(fp).newInstance());
2323     if (hp != null)
2324     handler = ((UncaughtExceptionHandler)ClassLoader.
2325     getSystemClassLoader().loadClass(hp).newInstance());
2326     } catch (Exception ignore) {
2327     }
2328    
2329     if (fac == null) {
2330     if (System.getSecurityManager() == null)
2331     fac = defaultForkJoinWorkerThreadFactory;
2332     else // use security-managed default
2333     fac = new InnocuousForkJoinWorkerThreadFactory();
2334     }
2335     if (parallelism < 0 && // default 1 less than #cores
2336     (parallelism = Runtime.getRuntime().availableProcessors() - 1) <= 0)
2337     parallelism = 1;
2338     if (parallelism > MAX_CAP)
2339     parallelism = MAX_CAP;
2340    
2341     long c = ((((long)(-parallelism) << TC_SHIFT) & TC_MASK) |
2342     (((long)(-parallelism) << RC_SHIFT) & RC_MASK));
2343     int b = ((1 - parallelism) & SMASK) | (COMMON_MAX_SPARES << SWIDTH);
2344     int n = (parallelism > 1) ? parallelism - 1 : 1;
2345     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
2346     n = (n + 1) << 1;
2347    
2348     this.workQueues = new WorkQueue[n];
2349     this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2350     this.factory = fac;
2351 dl 1.18 this.ueh = handler;
2352 dl 1.307 this.saturate = null;
2353 dl 1.300 this.keepAlive = DEFAULT_KEEPALIVE;
2354     this.bounds = b;
2355 dl 1.310 this.mode = parallelism;
2356 dl 1.300 this.ctl = c;
2357 dl 1.101 }
2358    
2359     /**
2360 dl 1.128 * Returns the common pool instance. This pool is statically
2361 dl 1.134 * constructed; its run state is unaffected by attempts to {@link
2362     * #shutdown} or {@link #shutdownNow}. However this pool and any
2363     * ongoing processing are automatically terminated upon program
2364     * {@link System#exit}. Any program that relies on asynchronous
2365     * task processing to complete before program termination should
2366 jsr166 1.158 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2367     * before exit.
2368 dl 1.100 *
2369     * @return the common pool instance
2370 jsr166 1.138 * @since 1.8
2371 dl 1.100 */
2372     public static ForkJoinPool commonPool() {
2373 dl 1.134 // assert common != null : "static init error";
2374     return common;
2375 dl 1.100 }
2376    
2377 jsr166 1.1 // Execution methods
2378    
2379     /**
2380     * Performs the given task, returning its result upon completion.
2381 dl 1.52 * If the computation encounters an unchecked Exception or Error,
2382     * it is rethrown as the outcome of this invocation. Rethrown
2383     * exceptions behave in the same way as regular exceptions, but,
2384     * when possible, contain stack traces (as displayed for example
2385     * using {@code ex.printStackTrace()}) of both the current thread
2386     * as well as the thread actually encountering the exception;
2387     * minimally only the latter.
2388 jsr166 1.1 *
2389     * @param task the task
2390 jsr166 1.191 * @param <T> the type of the task's result
2391 jsr166 1.1 * @return the task's result
2392 jsr166 1.11 * @throws NullPointerException if the task is null
2393     * @throws RejectedExecutionException if the task cannot be
2394     * scheduled for execution
2395 jsr166 1.1 */
2396     public <T> T invoke(ForkJoinTask<T> task) {
2397 dl 1.90 if (task == null)
2398     throw new NullPointerException();
2399 dl 1.243 externalSubmit(task);
2400 dl 1.78 return task.join();
2401 jsr166 1.1 }
2402    
2403     /**
2404     * Arranges for (asynchronous) execution of the given task.
2405     *
2406     * @param task the task
2407 jsr166 1.11 * @throws NullPointerException if the task is null
2408     * @throws RejectedExecutionException if the task cannot be
2409     * scheduled for execution
2410 jsr166 1.1 */
2411 jsr166 1.8 public void execute(ForkJoinTask<?> task) {
2412 dl 1.243 externalSubmit(task);
2413 jsr166 1.1 }
2414    
2415     // AbstractExecutorService methods
2416    
2417 jsr166 1.11 /**
2418     * @throws NullPointerException if the task is null
2419     * @throws RejectedExecutionException if the task cannot be
2420     * scheduled for execution
2421     */
2422 jsr166 1.1 public void execute(Runnable task) {
2423 dl 1.41 if (task == null)
2424     throw new NullPointerException();
2425 jsr166 1.2 ForkJoinTask<?> job;
2426 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2427     job = (ForkJoinTask<?>) task;
2428 jsr166 1.2 else
2429 dl 1.152 job = new ForkJoinTask.RunnableExecuteAction(task);
2430 dl 1.243 externalSubmit(job);
2431 jsr166 1.1 }
2432    
2433 jsr166 1.11 /**
2434 dl 1.18 * Submits a ForkJoinTask for execution.
2435     *
2436     * @param task the task to submit
2437 jsr166 1.191 * @param <T> the type of the task's result
2438 dl 1.18 * @return the task
2439     * @throws NullPointerException if the task is null
2440     * @throws RejectedExecutionException if the task cannot be
2441     * scheduled for execution
2442     */
2443     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2444 dl 1.243 return externalSubmit(task);
2445 dl 1.18 }
2446    
2447     /**
2448 jsr166 1.11 * @throws NullPointerException if the task is null
2449     * @throws RejectedExecutionException if the task cannot be
2450     * scheduled for execution
2451     */
2452 jsr166 1.1 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2453 dl 1.243 return externalSubmit(new ForkJoinTask.AdaptedCallable<T>(task));
2454 jsr166 1.1 }
2455    
2456 jsr166 1.11 /**
2457     * @throws NullPointerException if the task is null
2458     * @throws RejectedExecutionException if the task cannot be
2459     * scheduled for execution
2460     */
2461 jsr166 1.1 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2462 dl 1.243 return externalSubmit(new ForkJoinTask.AdaptedRunnable<T>(task, result));
2463 jsr166 1.1 }
2464    
2465 jsr166 1.11 /**
2466     * @throws NullPointerException if the task is null
2467     * @throws RejectedExecutionException if the task cannot be
2468     * scheduled for execution
2469     */
2470 jsr166 1.1 public ForkJoinTask<?> submit(Runnable task) {
2471 dl 1.41 if (task == null)
2472     throw new NullPointerException();
2473 jsr166 1.2 ForkJoinTask<?> job;
2474 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2475     job = (ForkJoinTask<?>) task;
2476 jsr166 1.2 else
2477 dl 1.90 job = new ForkJoinTask.AdaptedRunnableAction(task);
2478 dl 1.243 return externalSubmit(job);
2479 jsr166 1.1 }
2480    
2481     /**
2482 jsr166 1.11 * @throws NullPointerException {@inheritDoc}
2483     * @throws RejectedExecutionException {@inheritDoc}
2484     */
2485 jsr166 1.1 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2486 dl 1.86 // In previous versions of this class, this method constructed
2487     // a task to run ForkJoinTask.invokeAll, but now external
2488     // invocation of multiple tasks is at least as efficient.
2489 jsr166 1.199 ArrayList<Future<T>> futures = new ArrayList<>(tasks.size());
2490 jsr166 1.1
2491 dl 1.86 try {
2492     for (Callable<T> t : tasks) {
2493 dl 1.90 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2494 jsr166 1.144 futures.add(f);
2495 dl 1.243 externalSubmit(f);
2496 dl 1.86 }
2497 jsr166 1.143 for (int i = 0, size = futures.size(); i < size; i++)
2498     ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2499 dl 1.86 return futures;
2500 jsr166 1.226 } catch (Throwable t) {
2501     for (int i = 0, size = futures.size(); i < size; i++)
2502     futures.get(i).cancel(false);
2503     throw t;
2504 jsr166 1.1 }
2505     }
2506    
2507     /**
2508     * Returns the factory used for constructing new workers.
2509     *
2510     * @return the factory used for constructing new workers
2511     */
2512     public ForkJoinWorkerThreadFactory getFactory() {
2513     return factory;
2514     }
2515    
2516     /**
2517     * Returns the handler for internal worker threads that terminate
2518     * due to unrecoverable errors encountered while executing tasks.
2519     *
2520 jsr166 1.4 * @return the handler, or {@code null} if none
2521 jsr166 1.1 */
2522 jsr166 1.156 public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2523 dl 1.14 return ueh;
2524 jsr166 1.1 }
2525    
2526     /**
2527 jsr166 1.9 * Returns the targeted parallelism level of this pool.
2528 jsr166 1.1 *
2529 jsr166 1.9 * @return the targeted parallelism level of this pool
2530 jsr166 1.1 */
2531     public int getParallelism() {
2532 dl 1.310 int par = mode & SMASK;
2533     return (par > 0) ? par : 1;
2534 jsr166 1.1 }
2535    
2536     /**
2537 dl 1.100 * Returns the targeted parallelism level of the common pool.
2538     *
2539     * @return the targeted parallelism level of the common pool
2540 jsr166 1.138 * @since 1.8
2541 dl 1.100 */
2542     public static int getCommonPoolParallelism() {
2543 jsr166 1.274 return COMMON_PARALLELISM;
2544 dl 1.100 }
2545    
2546     /**
2547 jsr166 1.1 * Returns the number of worker threads that have started but not
2548 jsr166 1.34 * yet terminated. The result returned by this method may differ
2549 jsr166 1.4 * from {@link #getParallelism} when threads are created to
2550 jsr166 1.1 * maintain parallelism when others are cooperatively blocked.
2551     *
2552     * @return the number of worker threads
2553     */
2554     public int getPoolSize() {
2555 dl 1.300 return ((mode & SMASK) + (short)(ctl >>> TC_SHIFT));
2556 jsr166 1.1 }
2557    
2558     /**
2559 jsr166 1.4 * Returns {@code true} if this pool uses local first-in-first-out
2560 jsr166 1.1 * scheduling mode for forked tasks that are never joined.
2561     *
2562 jsr166 1.4 * @return {@code true} if this pool uses async mode
2563 jsr166 1.1 */
2564     public boolean getAsyncMode() {
2565 dl 1.300 return (mode & FIFO) != 0;
2566 jsr166 1.1 }
2567    
2568     /**
2569     * Returns an estimate of the number of worker threads that are
2570     * not blocked waiting to join tasks or for other managed
2571 dl 1.14 * synchronization. This method may overestimate the
2572     * number of running threads.
2573 jsr166 1.1 *
2574     * @return the number of worker threads
2575     */
2576     public int getRunningThreadCount() {
2577 dl 1.78 int rc = 0;
2578     WorkQueue[] ws; WorkQueue w;
2579     if ((ws = workQueues) != null) {
2580 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2581     if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2582 dl 1.78 ++rc;
2583     }
2584     }
2585     return rc;
2586 jsr166 1.1 }
2587    
2588     /**
2589     * Returns an estimate of the number of threads that are currently
2590     * stealing or executing tasks. This method may overestimate the
2591     * number of active threads.
2592     *
2593     * @return the number of active threads
2594     */
2595     public int getActiveThreadCount() {
2596 dl 1.300 int r = (mode & SMASK) + (int)(ctl >> RC_SHIFT);
2597 jsr166 1.63 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2598 jsr166 1.1 }
2599    
2600     /**
2601 jsr166 1.4 * Returns {@code true} if all worker threads are currently idle.
2602     * An idle worker is one that cannot obtain a task to execute
2603     * because none are available to steal from other threads, and
2604     * there are no pending submissions to the pool. This method is
2605     * conservative; it might not return {@code true} immediately upon
2606     * idleness of all threads, but will eventually become true if
2607     * threads remain inactive.
2608 jsr166 1.1 *
2609 jsr166 1.4 * @return {@code true} if all threads are currently idle
2610 jsr166 1.1 */
2611     public boolean isQuiescent() {
2612 dl 1.300 for (;;) {
2613     long c = ctl;
2614     int md = mode, pc = md & SMASK;
2615 dl 1.310 int tc = pc + (short)(c >>> TC_SHIFT);
2616 dl 1.300 int rc = pc + (int)(c >> RC_SHIFT);
2617     if ((md & (STOP | TERMINATED)) != 0)
2618     return true;
2619     else if (rc > 0)
2620     return false;
2621     else {
2622     WorkQueue[] ws; WorkQueue v;
2623     if ((ws = workQueues) != null) {
2624     for (int i = 1; i < ws.length; i += 2) {
2625     if ((v = ws[i]) != null) {
2626     if ((v.source & QUIET) == 0)
2627     return false;
2628     --tc;
2629     }
2630     }
2631     }
2632     if (tc == 0 && ctl == c)
2633     return true;
2634     }
2635     }
2636 jsr166 1.1 }
2637    
2638     /**
2639     * Returns an estimate of the total number of tasks stolen from
2640     * one thread's work queue by another. The reported value
2641     * underestimates the actual total number of steals when the pool
2642     * is not quiescent. This value may be useful for monitoring and
2643     * tuning fork/join programs: in general, steal counts should be
2644     * high enough to keep threads busy, but low enough to avoid
2645     * overhead and contention across threads.
2646     *
2647     * @return the number of steals
2648     */
2649     public long getStealCount() {
2650 dl 1.300 long count = stealCount;
2651 dl 1.78 WorkQueue[] ws; WorkQueue w;
2652     if ((ws = workQueues) != null) {
2653 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2654 dl 1.78 if ((w = ws[i]) != null)
2655 dl 1.300 count += (long)w.nsteals & 0xffffffffL;
2656 dl 1.78 }
2657     }
2658     return count;
2659 jsr166 1.1 }
2660    
2661     /**
2662     * Returns an estimate of the total number of tasks currently held
2663     * in queues by worker threads (but not including tasks submitted
2664     * to the pool that have not begun executing). This value is only
2665     * an approximation, obtained by iterating across all threads in
2666     * the pool. This method may be useful for tuning task
2667     * granularities.
2668     *
2669     * @return the number of queued tasks
2670     */
2671     public long getQueuedTaskCount() {
2672     long count = 0;
2673 dl 1.78 WorkQueue[] ws; WorkQueue w;
2674     if ((ws = workQueues) != null) {
2675 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2676 dl 1.78 if ((w = ws[i]) != null)
2677     count += w.queueSize();
2678     }
2679 dl 1.52 }
2680 jsr166 1.1 return count;
2681     }
2682    
2683     /**
2684 jsr166 1.8 * Returns an estimate of the number of tasks submitted to this
2685 dl 1.55 * pool that have not yet begun executing. This method may take
2686 dl 1.52 * time proportional to the number of submissions.
2687 jsr166 1.1 *
2688     * @return the number of queued submissions
2689     */
2690     public int getQueuedSubmissionCount() {
2691 dl 1.78 int count = 0;
2692     WorkQueue[] ws; WorkQueue w;
2693     if ((ws = workQueues) != null) {
2694 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2695 dl 1.78 if ((w = ws[i]) != null)
2696     count += w.queueSize();
2697     }
2698     }
2699     return count;
2700 jsr166 1.1 }
2701    
2702     /**
2703 jsr166 1.4 * Returns {@code true} if there are any tasks submitted to this
2704     * pool that have not yet begun executing.
2705 jsr166 1.1 *
2706     * @return {@code true} if there are any queued submissions
2707     */
2708     public boolean hasQueuedSubmissions() {
2709 dl 1.78 WorkQueue[] ws; WorkQueue w;
2710     if ((ws = workQueues) != null) {
2711 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2712 dl 1.115 if ((w = ws[i]) != null && !w.isEmpty())
2713 dl 1.78 return true;
2714     }
2715     }
2716     return false;
2717 jsr166 1.1 }
2718    
2719     /**
2720     * Removes and returns the next unexecuted submission if one is
2721     * available. This method may be useful in extensions to this
2722     * class that re-assign work in systems with multiple pools.
2723     *
2724 jsr166 1.4 * @return the next submission, or {@code null} if none
2725 jsr166 1.1 */
2726     protected ForkJoinTask<?> pollSubmission() {
2727 dl 1.300 return pollScan(true);
2728 jsr166 1.1 }
2729    
2730     /**
2731     * Removes all available unexecuted submitted and forked tasks
2732     * from scheduling queues and adds them to the given collection,
2733     * without altering their execution status. These may include
2734 jsr166 1.8 * artificially generated or wrapped tasks. This method is
2735     * designed to be invoked only when the pool is known to be
2736 jsr166 1.1 * quiescent. Invocations at other times may not remove all
2737     * tasks. A failure encountered while attempting to add elements
2738     * to collection {@code c} may result in elements being in
2739     * neither, either or both collections when the associated
2740     * exception is thrown. The behavior of this operation is
2741     * undefined if the specified collection is modified while the
2742     * operation is in progress.
2743     *
2744     * @param c the collection to transfer elements into
2745     * @return the number of elements transferred
2746     */
2747 jsr166 1.5 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2748 dl 1.52 int count = 0;
2749 dl 1.78 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2750     if ((ws = workQueues) != null) {
2751 dl 1.86 for (int i = 0; i < ws.length; ++i) {
2752 dl 1.78 if ((w = ws[i]) != null) {
2753     while ((t = w.poll()) != null) {
2754     c.add(t);
2755     ++count;
2756     }
2757     }
2758 dl 1.52 }
2759     }
2760 dl 1.18 return count;
2761     }
2762    
2763     /**
2764 jsr166 1.1 * Returns a string identifying this pool, as well as its state,
2765     * including indications of run state, parallelism level, and
2766     * worker and task counts.
2767     *
2768     * @return a string identifying this pool, as well as its state
2769     */
2770     public String toString() {
2771 dl 1.86 // Use a single pass through workQueues to collect counts
2772     long qt = 0L, qs = 0L; int rc = 0;
2773 dl 1.300 long st = stealCount;
2774 dl 1.86 WorkQueue[] ws; WorkQueue w;
2775     if ((ws = workQueues) != null) {
2776     for (int i = 0; i < ws.length; ++i) {
2777     if ((w = ws[i]) != null) {
2778     int size = w.queueSize();
2779     if ((i & 1) == 0)
2780     qs += size;
2781     else {
2782     qt += size;
2783 dl 1.300 st += (long)w.nsteals & 0xffffffffL;
2784 dl 1.86 if (w.isApparentlyUnblocked())
2785     ++rc;
2786     }
2787     }
2788     }
2789     }
2790 dl 1.300
2791     int md = mode;
2792     int pc = (md & SMASK);
2793     long c = ctl;
2794 dl 1.52 int tc = pc + (short)(c >>> TC_SHIFT);
2795 dl 1.300 int ac = pc + (int)(c >> RC_SHIFT);
2796 dl 1.78 if (ac < 0) // ignore transient negative
2797     ac = 0;
2798 dl 1.300 String level = ((md & TERMINATED) != 0 ? "Terminated" :
2799     (md & STOP) != 0 ? "Terminating" :
2800     (md & SHUTDOWN) != 0 ? "Shutting down" :
2801 dl 1.200 "Running");
2802 jsr166 1.1 return super.toString() +
2803 dl 1.52 "[" + level +
2804 dl 1.14 ", parallelism = " + pc +
2805     ", size = " + tc +
2806     ", active = " + ac +
2807     ", running = " + rc +
2808 jsr166 1.1 ", steals = " + st +
2809     ", tasks = " + qt +
2810     ", submissions = " + qs +
2811     "]";
2812     }
2813    
2814     /**
2815 dl 1.100 * Possibly initiates an orderly shutdown in which previously
2816     * submitted tasks are executed, but no new tasks will be
2817     * accepted. Invocation has no effect on execution state if this
2818 jsr166 1.137 * is the {@link #commonPool()}, and no additional effect if
2819 dl 1.100 * already shut down. Tasks that are in the process of being
2820     * submitted concurrently during the course of this method may or
2821     * may not be rejected.
2822 jsr166 1.1 *
2823     * @throws SecurityException if a security manager exists and
2824     * the caller is not permitted to modify threads
2825     * because it does not hold {@link
2826     * java.lang.RuntimePermission}{@code ("modifyThread")}
2827     */
2828     public void shutdown() {
2829     checkPermission();
2830 dl 1.105 tryTerminate(false, true);
2831 jsr166 1.1 }
2832    
2833     /**
2834 dl 1.100 * Possibly attempts to cancel and/or stop all tasks, and reject
2835     * all subsequently submitted tasks. Invocation has no effect on
2836 jsr166 1.137 * execution state if this is the {@link #commonPool()}, and no
2837 dl 1.100 * additional effect if already shut down. Otherwise, tasks that
2838     * are in the process of being submitted or executed concurrently
2839     * during the course of this method may or may not be
2840     * rejected. This method cancels both existing and unexecuted
2841     * tasks, in order to permit termination in the presence of task
2842     * dependencies. So the method always returns an empty list
2843     * (unlike the case for some other Executors).
2844 jsr166 1.1 *
2845     * @return an empty list
2846     * @throws SecurityException if a security manager exists and
2847     * the caller is not permitted to modify threads
2848     * because it does not hold {@link
2849     * java.lang.RuntimePermission}{@code ("modifyThread")}
2850     */
2851     public List<Runnable> shutdownNow() {
2852     checkPermission();
2853 dl 1.105 tryTerminate(true, true);
2854 jsr166 1.1 return Collections.emptyList();
2855     }
2856    
2857     /**
2858     * Returns {@code true} if all tasks have completed following shut down.
2859     *
2860     * @return {@code true} if all tasks have completed following shut down
2861     */
2862     public boolean isTerminated() {
2863 dl 1.300 return (mode & TERMINATED) != 0;
2864 jsr166 1.1 }
2865    
2866     /**
2867     * Returns {@code true} if the process of termination has
2868 jsr166 1.9 * commenced but not yet completed. This method may be useful for
2869     * debugging. A return of {@code true} reported a sufficient
2870     * period after shutdown may indicate that submitted tasks have
2871 jsr166 1.119 * ignored or suppressed interruption, or are waiting for I/O,
2872 dl 1.49 * causing this executor not to properly terminate. (See the
2873     * advisory notes for class {@link ForkJoinTask} stating that
2874     * tasks should not normally entail blocking operations. But if
2875     * they do, they must abort them on interrupt.)
2876 jsr166 1.1 *
2877 jsr166 1.9 * @return {@code true} if terminating but not yet terminated
2878 jsr166 1.1 */
2879     public boolean isTerminating() {
2880 dl 1.300 int md = mode;
2881     return (md & STOP) != 0 && (md & TERMINATED) == 0;
2882 jsr166 1.1 }
2883    
2884     /**
2885     * Returns {@code true} if this pool has been shut down.
2886     *
2887     * @return {@code true} if this pool has been shut down
2888     */
2889     public boolean isShutdown() {
2890 dl 1.300 return (mode & SHUTDOWN) != 0;
2891 jsr166 1.9 }
2892    
2893     /**
2894 dl 1.105 * Blocks until all tasks have completed execution after a
2895     * shutdown request, or the timeout occurs, or the current thread
2896 dl 1.134 * is interrupted, whichever happens first. Because the {@link
2897     * #commonPool()} never terminates until program shutdown, when
2898     * applied to the common pool, this method is equivalent to {@link
2899 jsr166 1.158 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
2900 jsr166 1.1 *
2901     * @param timeout the maximum time to wait
2902     * @param unit the time unit of the timeout argument
2903     * @return {@code true} if this executor terminated and
2904     * {@code false} if the timeout elapsed before termination
2905     * @throws InterruptedException if interrupted while waiting
2906     */
2907     public boolean awaitTermination(long timeout, TimeUnit unit)
2908     throws InterruptedException {
2909 dl 1.134 if (Thread.interrupted())
2910     throw new InterruptedException();
2911     if (this == common) {
2912     awaitQuiescence(timeout, unit);
2913     return false;
2914     }
2915 dl 1.52 long nanos = unit.toNanos(timeout);
2916 dl 1.101 if (isTerminated())
2917     return true;
2918 dl 1.183 if (nanos <= 0L)
2919     return false;
2920     long deadline = System.nanoTime() + nanos;
2921 jsr166 1.103 synchronized (this) {
2922 jsr166 1.184 for (;;) {
2923 dl 1.183 if (isTerminated())
2924     return true;
2925     if (nanos <= 0L)
2926     return false;
2927     long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
2928     wait(millis > 0L ? millis : 1L);
2929     nanos = deadline - System.nanoTime();
2930 dl 1.52 }
2931 dl 1.18 }
2932 jsr166 1.1 }
2933    
2934     /**
2935 dl 1.134 * If called by a ForkJoinTask operating in this pool, equivalent
2936     * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
2937     * waits and/or attempts to assist performing tasks until this
2938     * pool {@link #isQuiescent} or the indicated timeout elapses.
2939     *
2940     * @param timeout the maximum time to wait
2941     * @param unit the time unit of the timeout argument
2942     * @return {@code true} if quiescent; {@code false} if the
2943     * timeout elapsed.
2944     */
2945     public boolean awaitQuiescence(long timeout, TimeUnit unit) {
2946     long nanos = unit.toNanos(timeout);
2947     ForkJoinWorkerThread wt;
2948     Thread thread = Thread.currentThread();
2949     if ((thread instanceof ForkJoinWorkerThread) &&
2950     (wt = (ForkJoinWorkerThread)thread).pool == this) {
2951     helpQuiescePool(wt.workQueue);
2952     return true;
2953     }
2954 dl 1.300 else {
2955     for (long startTime = System.nanoTime();;) {
2956     ForkJoinTask<?> t;
2957     if ((t = pollScan(false)) != null)
2958     t.doExec();
2959     else if (isQuiescent())
2960     return true;
2961     else if ((System.nanoTime() - startTime) > nanos)
2962 dl 1.134 return false;
2963 dl 1.300 else
2964     Thread.yield(); // cannot block
2965 dl 1.134 }
2966     }
2967     }
2968    
2969     /**
2970     * Waits and/or attempts to assist performing tasks indefinitely
2971 jsr166 1.141 * until the {@link #commonPool()} {@link #isQuiescent}.
2972 dl 1.134 */
2973 dl 1.136 static void quiesceCommonPool() {
2974 dl 1.134 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
2975     }
2976    
2977     /**
2978 jsr166 1.1 * Interface for extending managed parallelism for tasks running
2979 jsr166 1.8 * in {@link ForkJoinPool}s.
2980     *
2981 dl 1.19 * <p>A {@code ManagedBlocker} provides two methods. Method
2982 jsr166 1.218 * {@link #isReleasable} must return {@code true} if blocking is
2983     * not necessary. Method {@link #block} blocks the current thread
2984 dl 1.19 * if necessary (perhaps internally invoking {@code isReleasable}
2985 dl 1.54 * before actually blocking). These actions are performed by any
2986 jsr166 1.157 * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
2987     * The unusual methods in this API accommodate synchronizers that
2988     * may, but don't usually, block for long periods. Similarly, they
2989 dl 1.54 * allow more efficient internal handling of cases in which
2990     * additional workers may be, but usually are not, needed to
2991     * ensure sufficient parallelism. Toward this end,
2992     * implementations of method {@code isReleasable} must be amenable
2993     * to repeated invocation.
2994 jsr166 1.1 *
2995     * <p>For example, here is a ManagedBlocker based on a
2996     * ReentrantLock:
2997 jsr166 1.239 * <pre> {@code
2998 jsr166 1.1 * class ManagedLocker implements ManagedBlocker {
2999     * final ReentrantLock lock;
3000     * boolean hasLock = false;
3001     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3002     * public boolean block() {
3003     * if (!hasLock)
3004     * lock.lock();
3005     * return true;
3006     * }
3007     * public boolean isReleasable() {
3008     * return hasLock || (hasLock = lock.tryLock());
3009     * }
3010     * }}</pre>
3011 dl 1.19 *
3012     * <p>Here is a class that possibly blocks waiting for an
3013     * item on a given queue:
3014 jsr166 1.239 * <pre> {@code
3015 dl 1.19 * class QueueTaker<E> implements ManagedBlocker {
3016     * final BlockingQueue<E> queue;
3017     * volatile E item = null;
3018     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3019     * public boolean block() throws InterruptedException {
3020     * if (item == null)
3021 dl 1.23 * item = queue.take();
3022 dl 1.19 * return true;
3023     * }
3024     * public boolean isReleasable() {
3025 dl 1.23 * return item != null || (item = queue.poll()) != null;
3026 dl 1.19 * }
3027     * public E getItem() { // call after pool.managedBlock completes
3028     * return item;
3029     * }
3030     * }}</pre>
3031 jsr166 1.1 */
3032     public static interface ManagedBlocker {
3033     /**
3034     * Possibly blocks the current thread, for example waiting for
3035     * a lock or condition.
3036     *
3037 jsr166 1.4 * @return {@code true} if no additional blocking is necessary
3038     * (i.e., if isReleasable would return true)
3039 jsr166 1.1 * @throws InterruptedException if interrupted while waiting
3040     * (the method is not required to do so, but is allowed to)
3041     */
3042     boolean block() throws InterruptedException;
3043    
3044     /**
3045 jsr166 1.4 * Returns {@code true} if blocking is unnecessary.
3046 jsr166 1.154 * @return {@code true} if blocking is unnecessary
3047 jsr166 1.1 */
3048     boolean isReleasable();
3049     }
3050    
3051     /**
3052 jsr166 1.217 * Runs the given possibly blocking task. When {@linkplain
3053     * ForkJoinTask#inForkJoinPool() running in a ForkJoinPool}, this
3054     * method possibly arranges for a spare thread to be activated if
3055     * necessary to ensure sufficient parallelism while the current
3056     * thread is blocked in {@link ManagedBlocker#block blocker.block()}.
3057 jsr166 1.1 *
3058 jsr166 1.217 * <p>This method repeatedly calls {@code blocker.isReleasable()} and
3059     * {@code blocker.block()} until either method returns {@code true}.
3060     * Every call to {@code blocker.block()} is preceded by a call to
3061     * {@code blocker.isReleasable()} that returned {@code false}.
3062     *
3063     * <p>If not running in a ForkJoinPool, this method is
3064 jsr166 1.8 * behaviorally equivalent to
3065 jsr166 1.239 * <pre> {@code
3066 jsr166 1.1 * while (!blocker.isReleasable())
3067     * if (blocker.block())
3068 jsr166 1.217 * break;}</pre>
3069 jsr166 1.8 *
3070 jsr166 1.217 * If running in a ForkJoinPool, the pool may first be expanded to
3071     * ensure sufficient parallelism available during the call to
3072     * {@code blocker.block()}.
3073 jsr166 1.1 *
3074 jsr166 1.217 * @param blocker the blocker task
3075     * @throws InterruptedException if {@code blocker.block()} did so
3076 jsr166 1.1 */
3077 dl 1.18 public static void managedBlock(ManagedBlocker blocker)
3078 jsr166 1.1 throws InterruptedException {
3079 dl 1.200 ForkJoinPool p;
3080     ForkJoinWorkerThread wt;
3081 dl 1.300 WorkQueue w;
3082 jsr166 1.1 Thread t = Thread.currentThread();
3083 dl 1.200 if ((t instanceof ForkJoinWorkerThread) &&
3084 dl 1.300 (p = (wt = (ForkJoinWorkerThread)t).pool) != null &&
3085     (w = wt.workQueue) != null) {
3086     int block;
3087 dl 1.172 while (!blocker.isReleasable()) {
3088 dl 1.300 if ((block = p.tryCompensate(w)) != 0) {
3089 dl 1.105 try {
3090     do {} while (!blocker.isReleasable() &&
3091     !blocker.block());
3092     } finally {
3093 dl 1.314 CTL.getAndAdd(p, (block > 0) ? RC_UNIT : 0L);
3094 dl 1.105 }
3095     break;
3096 dl 1.78 }
3097     }
3098 dl 1.18 }
3099 dl 1.105 else {
3100     do {} while (!blocker.isReleasable() &&
3101     !blocker.block());
3102     }
3103 jsr166 1.1 }
3104    
3105 dl 1.310 /**
3106     * If the given executor is a ForkJoinPool, poll and execute
3107     * AsynchronousCompletionTasks from worker's queue until none are
3108     * available or blocker is released.
3109     */
3110     static void helpAsyncBlocker(Executor e, ManagedBlocker blocker) {
3111     if (blocker != null && (e instanceof ForkJoinPool)) {
3112     WorkQueue w; ForkJoinWorkerThread wt; WorkQueue[] ws; int r, n;
3113     ForkJoinPool p = (ForkJoinPool)e;
3114     Thread thread = Thread.currentThread();
3115     if (thread instanceof ForkJoinWorkerThread &&
3116     (wt = (ForkJoinWorkerThread)thread).pool == p)
3117     w = wt.workQueue;
3118     else if ((r = ThreadLocalRandom.getProbe()) != 0 &&
3119     (ws = p.workQueues) != null && (n = ws.length) > 0)
3120     w = ws[(n - 1) & r & SQMASK];
3121     else
3122     w = null;
3123     if (w != null) {
3124     for (;;) {
3125     int b = w.base, s = w.top, d, al; ForkJoinTask<?>[] a;
3126     if ((a = w.array) != null && (d = b - s) < 0 &&
3127     (al = a.length) > 0) {
3128     int index = (al - 1) & b;
3129     ForkJoinTask<?> t = (ForkJoinTask<?>)
3130 dl 1.316 QA.getAcquire(a, index);
3131 dl 1.310 if (blocker.isReleasable())
3132     break;
3133     else if (b++ == w.base) {
3134     if (t == null) {
3135     if (d == -1)
3136     break;
3137     }
3138     else if (!(t instanceof CompletableFuture.
3139     AsynchronousCompletionTask))
3140     break;
3141 dl 1.314 else if (QA.compareAndSet(a, index, t, null)) {
3142 dl 1.310 w.base = b;
3143     t.doExec();
3144     }
3145     }
3146     }
3147     else
3148     break;
3149     }
3150     }
3151     }
3152     }
3153    
3154 jsr166 1.7 // AbstractExecutorService overrides. These rely on undocumented
3155     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3156     // implement RunnableFuture.
3157 jsr166 1.1
3158     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3159 dl 1.90 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3160 jsr166 1.1 }
3161    
3162     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3163 dl 1.90 return new ForkJoinTask.AdaptedCallable<T>(callable);
3164 jsr166 1.1 }
3165    
3166 dl 1.314 // VarHandle mechanics
3167     private static final VarHandle CTL;
3168     private static final VarHandle MODE;
3169     private static final VarHandle QA;
3170 dl 1.52
3171     static {
3172 jsr166 1.3 try {
3173 dl 1.314 MethodHandles.Lookup l = MethodHandles.lookup();
3174     CTL = l.findVarHandle(ForkJoinPool.class, "ctl", long.class);
3175     MODE = l.findVarHandle(ForkJoinPool.class, "mode", int.class);
3176     QA = MethodHandles.arrayElementVarHandle(ForkJoinTask[].class);
3177 jsr166 1.231 } catch (ReflectiveOperationException e) {
3178 dl 1.52 throw new Error(e);
3179     }
3180 dl 1.105
3181 dl 1.243 // Reduce the risk of rare disastrous classloading in first call to
3182     // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
3183     Class<?> ensureLoaded = LockSupport.class;
3184    
3185 jsr166 1.273 int commonMaxSpares = DEFAULT_COMMON_MAX_SPARES;
3186     try {
3187     String p = System.getProperty
3188     ("java.util.concurrent.ForkJoinPool.common.maximumSpares");
3189     if (p != null)
3190     commonMaxSpares = Integer.parseInt(p);
3191     } catch (Exception ignore) {}
3192     COMMON_MAX_SPARES = commonMaxSpares;
3193    
3194 dl 1.152 defaultForkJoinWorkerThreadFactory =
3195 dl 1.112 new DefaultForkJoinWorkerThreadFactory();
3196 dl 1.115 modifyThreadPermission = new RuntimePermission("modifyThread");
3197    
3198 dl 1.152 common = java.security.AccessController.doPrivileged
3199     (new java.security.PrivilegedAction<ForkJoinPool>() {
3200 dl 1.300 public ForkJoinPool run() {
3201     return new ForkJoinPool((byte)0); }});
3202 jsr166 1.275
3203 dl 1.310 COMMON_PARALLELISM = Math.max(common.mode & SMASK, 1);
3204 jsr166 1.3 }
3205 dl 1.52
3206 dl 1.197 /**
3207 jsr166 1.279 * Factory for innocuous worker threads.
3208 dl 1.197 */
3209 jsr166 1.278 private static final class InnocuousForkJoinWorkerThreadFactory
3210 dl 1.197 implements ForkJoinWorkerThreadFactory {
3211    
3212     /**
3213     * An ACC to restrict permissions for the factory itself.
3214     * The constructed workers have no permissions set.
3215     */
3216     private static final AccessControlContext innocuousAcc;
3217     static {
3218     Permissions innocuousPerms = new Permissions();
3219     innocuousPerms.add(modifyThreadPermission);
3220     innocuousPerms.add(new RuntimePermission(
3221     "enableContextClassLoaderOverride"));
3222     innocuousPerms.add(new RuntimePermission(
3223     "modifyThreadGroup"));
3224     innocuousAcc = new AccessControlContext(new ProtectionDomain[] {
3225     new ProtectionDomain(null, innocuousPerms)
3226     });
3227     }
3228    
3229     public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
3230 jsr166 1.227 return java.security.AccessController.doPrivileged(
3231     new java.security.PrivilegedAction<ForkJoinWorkerThread>() {
3232 dl 1.197 public ForkJoinWorkerThread run() {
3233     return new ForkJoinWorkerThread.
3234     InnocuousForkJoinWorkerThread(pool);
3235     }}, innocuousAcc);
3236     }
3237     }
3238    
3239 jsr166 1.1 }