ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.325
Committed: Sat Sep 10 04:06:51 2016 UTC (7 years, 8 months ago) by jsr166
Branch: MAIN
Changes since 1.324: +2 -2 lines
Log Message:
incorporate upstream VarHandle changes

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.58 * http://creativecommons.org/publicdomain/zero/1.0/
5 jsr166 1.1 */
6 jsr166 1.301
7 jsr166 1.1 package java.util.concurrent;
8    
9 jsr166 1.156 import java.lang.Thread.UncaughtExceptionHandler;
10 dl 1.314 import java.lang.invoke.MethodHandles;
11     import java.lang.invoke.VarHandle;
12 jsr166 1.228 import java.security.AccessControlContext;
13     import java.security.Permissions;
14     import java.security.ProtectionDomain;
15 jsr166 1.1 import java.util.ArrayList;
16     import java.util.Collection;
17     import java.util.Collections;
18     import java.util.List;
19 dl 1.307 import java.util.function.Predicate;
20 dl 1.243 import java.util.concurrent.locks.LockSupport;
21 jsr166 1.1
22     /**
23 jsr166 1.4 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
24 jsr166 1.8 * A {@code ForkJoinPool} provides the entry point for submissions
25 dl 1.18 * from non-{@code ForkJoinTask} clients, as well as management and
26 jsr166 1.11 * monitoring operations.
27 jsr166 1.1 *
28 jsr166 1.9 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
29     * ExecutorService} mainly by virtue of employing
30     * <em>work-stealing</em>: all threads in the pool attempt to find and
31 dl 1.78 * execute tasks submitted to the pool and/or created by other active
32     * tasks (eventually blocking waiting for work if none exist). This
33     * enables efficient processing when most tasks spawn other subtasks
34     * (as do most {@code ForkJoinTask}s), as well as when many small
35     * tasks are submitted to the pool from external clients. Especially
36     * when setting <em>asyncMode</em> to true in constructors, {@code
37     * ForkJoinPool}s may also be appropriate for use with event-style
38     * tasks that are never joined.
39 jsr166 1.1 *
40 dl 1.112 * <p>A static {@link #commonPool()} is available and appropriate for
41 dl 1.101 * most applications. The common pool is used by any ForkJoinTask that
42     * is not explicitly submitted to a specified pool. Using the common
43     * pool normally reduces resource usage (its threads are slowly
44     * reclaimed during periods of non-use, and reinstated upon subsequent
45 dl 1.105 * use).
46 dl 1.100 *
47     * <p>For applications that require separate or custom pools, a {@code
48     * ForkJoinPool} may be constructed with a given target parallelism
49 jsr166 1.214 * level; by default, equal to the number of available processors.
50     * The pool attempts to maintain enough active (or available) threads
51     * by dynamically adding, suspending, or resuming internal worker
52 jsr166 1.187 * threads, even if some tasks are stalled waiting to join others.
53     * However, no such adjustments are guaranteed in the face of blocked
54     * I/O or other unmanaged synchronization. The nested {@link
55 dl 1.100 * ManagedBlocker} interface enables extension of the kinds of
56 dl 1.300 * synchronization accommodated. The default policies may be
57     * overridden using a constructor with parameters corresponding to
58     * those documented in class {@link ThreadPoolExecutor}.
59 jsr166 1.1 *
60     * <p>In addition to execution and lifecycle control methods, this
61     * class provides status check methods (for example
62 jsr166 1.4 * {@link #getStealCount}) that are intended to aid in developing,
63 jsr166 1.1 * tuning, and monitoring fork/join applications. Also, method
64 jsr166 1.4 * {@link #toString} returns indications of pool state in a
65 jsr166 1.1 * convenient form for informal monitoring.
66     *
67 jsr166 1.109 * <p>As is the case with other ExecutorServices, there are three
68 jsr166 1.84 * main task execution methods summarized in the following table.
69     * These are designed to be used primarily by clients not already
70     * engaged in fork/join computations in the current pool. The main
71     * forms of these methods accept instances of {@code ForkJoinTask},
72     * but overloaded forms also allow mixed execution of plain {@code
73     * Runnable}- or {@code Callable}- based activities as well. However,
74     * tasks that are already executing in a pool should normally instead
75     * use the within-computation forms listed in the table unless using
76     * async event-style tasks that are not usually joined, in which case
77     * there is little difference among choice of methods.
78 dl 1.18 *
79     * <table BORDER CELLPADDING=3 CELLSPACING=1>
80 jsr166 1.159 * <caption>Summary of task execution methods</caption>
81 dl 1.18 * <tr>
82     * <td></td>
83     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
84     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
85     * </tr>
86     * <tr>
87 jsr166 1.153 * <td> <b>Arrange async execution</b></td>
88 dl 1.18 * <td> {@link #execute(ForkJoinTask)}</td>
89     * <td> {@link ForkJoinTask#fork}</td>
90     * </tr>
91     * <tr>
92 jsr166 1.153 * <td> <b>Await and obtain result</b></td>
93 dl 1.18 * <td> {@link #invoke(ForkJoinTask)}</td>
94     * <td> {@link ForkJoinTask#invoke}</td>
95     * </tr>
96     * <tr>
97 jsr166 1.153 * <td> <b>Arrange exec and obtain Future</b></td>
98 dl 1.18 * <td> {@link #submit(ForkJoinTask)}</td>
99     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
100     * </tr>
101     * </table>
102 dl 1.19 *
103 dl 1.105 * <p>The common pool is by default constructed with default
104 jsr166 1.321 * parameters, but these may be controlled by setting the following
105 jsr166 1.162 * {@linkplain System#getProperty system properties}:
106     * <ul>
107     * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
108     * - the parallelism level, a non-negative integer
109     * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
110     * - the class name of a {@link ForkJoinWorkerThreadFactory}
111     * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
112     * - the class name of a {@link UncaughtExceptionHandler}
113 dl 1.208 * <li>{@code java.util.concurrent.ForkJoinPool.common.maximumSpares}
114 dl 1.223 * - the maximum number of allowed extra threads to maintain target
115 dl 1.208 * parallelism (default 256).
116 jsr166 1.162 * </ul>
117 dl 1.197 * If a {@link SecurityManager} is present and no factory is
118     * specified, then the default pool uses a factory supplying
119     * threads that have no {@link Permissions} enabled.
120 jsr166 1.165 * The system class loader is used to load these classes.
121 jsr166 1.156 * Upon any error in establishing these settings, default parameters
122 dl 1.160 * are used. It is possible to disable or limit the use of threads in
123     * the common pool by setting the parallelism property to zero, and/or
124 dl 1.193 * using a factory that may return {@code null}. However doing so may
125     * cause unjoined tasks to never be executed.
126 dl 1.105 *
127 jsr166 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
128     * maximum number of running threads to 32767. Attempts to create
129 jsr166 1.11 * pools with greater than the maximum number result in
130 jsr166 1.8 * {@code IllegalArgumentException}.
131 jsr166 1.1 *
132 jsr166 1.11 * <p>This implementation rejects submitted tasks (that is, by throwing
133 dl 1.19 * {@link RejectedExecutionException}) only when the pool is shut down
134 dl 1.20 * or internal resources have been exhausted.
135 jsr166 1.11 *
136 jsr166 1.1 * @since 1.7
137     * @author Doug Lea
138     */
139     public class ForkJoinPool extends AbstractExecutorService {
140    
141     /*
142 dl 1.14 * Implementation Overview
143     *
144 dl 1.78 * This class and its nested classes provide the main
145     * functionality and control for a set of worker threads:
146 jsr166 1.84 * Submissions from non-FJ threads enter into submission queues.
147     * Workers take these tasks and typically split them into subtasks
148     * that may be stolen by other workers. Preference rules give
149     * first priority to processing tasks from their own queues (LIFO
150     * or FIFO, depending on mode), then to randomized FIFO steals of
151 dl 1.200 * tasks in other queues. This framework began as vehicle for
152     * supporting tree-structured parallelism using work-stealing.
153     * Over time, its scalability advantages led to extensions and
154 dl 1.208 * changes to better support more diverse usage contexts. Because
155     * most internal methods and nested classes are interrelated,
156     * their main rationale and descriptions are presented here;
157     * individual methods and nested classes contain only brief
158     * comments about details.
159 dl 1.78 *
160 jsr166 1.84 * WorkQueues
161 dl 1.78 * ==========
162     *
163     * Most operations occur within work-stealing queues (in nested
164     * class WorkQueue). These are special forms of Deques that
165     * support only three of the four possible end-operations -- push,
166     * pop, and poll (aka steal), under the further constraints that
167     * push and pop are called only from the owning thread (or, as
168     * extended here, under a lock), while poll may be called from
169     * other threads. (If you are unfamiliar with them, you probably
170     * want to read Herlihy and Shavit's book "The Art of
171     * Multiprocessor programming", chapter 16 describing these in
172     * more detail before proceeding.) The main work-stealing queue
173     * design is roughly similar to those in the papers "Dynamic
174     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
175     * (http://research.sun.com/scalable/pubs/index.html) and
176     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
177     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
178 dl 1.200 * The main differences ultimately stem from GC requirements that
179     * we null out taken slots as soon as we can, to maintain as small
180     * a footprint as possible even in programs generating huge
181     * numbers of tasks. To accomplish this, we shift the CAS
182     * arbitrating pop vs poll (steal) from being on the indices
183     * ("base" and "top") to the slots themselves.
184     *
185 dl 1.243 * Adding tasks then takes the form of a classic array push(task)
186     * in a circular buffer:
187     * q.array[q.top++ % length] = task;
188 dl 1.200 *
189     * (The actual code needs to null-check and size-check the array,
190 jsr166 1.247 * uses masking, not mod, for indexing a power-of-two-sized array,
191 dl 1.243 * properly fences accesses, and possibly signals waiting workers
192     * to start scanning -- see below.) Both a successful pop and
193     * poll mainly entail a CAS of a slot from non-null to null.
194 dl 1.200 *
195 jsr166 1.202 * The pop operation (always performed by owner) is:
196 dl 1.243 * if ((the task at top slot is not null) and
197 dl 1.200 * (CAS slot to null))
198     * decrement top and return task;
199     *
200     * And the poll operation (usually by a stealer) is
201 dl 1.243 * if ((the task at base slot is not null) and
202 dl 1.200 * (CAS slot to null))
203     * increment base and return task;
204     *
205 dl 1.300 * There are several variants of each of these. In particular,
206     * almost all uses of poll occur within scan operations that also
207     * interleave contention tracking (with associated code sprawl.)
208 dl 1.243 *
209     * Memory ordering. See "Correct and Efficient Work-Stealing for
210     * Weak Memory Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
211     * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
212     * analysis of memory ordering requirements in work-stealing
213     * algorithms similar to (but different than) the one used here.
214     * Extracting tasks in array slots via (fully fenced) CAS provides
215     * primary synchronization. The base and top indices imprecisely
216     * guide where to extract from. We do not always require strict
217     * orderings of array and index updates, so sometimes let them be
218     * subject to compiler and processor reorderings. However, the
219     * volatile "base" index also serves as a basis for memory
220     * ordering: Slot accesses are preceded by a read of base,
221 jsr166 1.247 * ensuring happens-before ordering with respect to stealers (so
222 dl 1.243 * the slots themselves can be read via plain array reads.) The
223     * only other memory orderings relied on are maintained in the
224     * course of signalling and activation (see below). A check that
225     * base == top indicates (momentary) emptiness, but otherwise may
226     * err on the side of possibly making the queue appear nonempty
227     * when a push, pop, or poll have not fully committed, or making
228     * it appear empty when an update of top has not yet been visibly
229     * written. (Method isEmpty() checks the case of a partially
230 dl 1.211 * completed removal of the last element.) Because of this, the
231     * poll operation, considered individually, is not wait-free. One
232     * thief cannot successfully continue until another in-progress
233 dl 1.243 * one (or, if previously empty, a push) visibly completes.
234     * However, in the aggregate, we ensure at least probabilistic
235     * non-blockingness. If an attempted steal fails, a scanning
236     * thief chooses a different random victim target to try next. So,
237     * in order for one thief to progress, it suffices for any
238 dl 1.205 * in-progress poll or new push on any empty queue to
239 dl 1.300 * complete.
240 dl 1.200 *
241     * This approach also enables support of a user mode in which
242     * local task processing is in FIFO, not LIFO order, simply by
243     * using poll rather than pop. This can be useful in
244     * message-passing frameworks in which tasks are never joined.
245 dl 1.78 *
246     * WorkQueues are also used in a similar way for tasks submitted
247     * to the pool. We cannot mix these tasks in the same queues used
248 dl 1.200 * by workers. Instead, we randomly associate submission queues
249 dl 1.83 * with submitting threads, using a form of hashing. The
250 dl 1.139 * ThreadLocalRandom probe value serves as a hash code for
251     * choosing existing queues, and may be randomly repositioned upon
252     * contention with other submitters. In essence, submitters act
253     * like workers except that they are restricted to executing local
254 dl 1.300 * tasks that they submitted. Insertion of tasks in shared mode
255     * requires a lock but we use only a simple spinlock (using field
256 jsr166 1.304 * phase), because submitters encountering a busy queue move to a
257     * different position to use or create other queues -- they block
258     * only when creating and registering new queues. Because it is
259     * used only as a spinlock, unlocking requires only a "releasing"
260 dl 1.314 * store (using setRelease).
261 dl 1.78 *
262 jsr166 1.84 * Management
263 dl 1.78 * ==========
264 dl 1.52 *
265     * The main throughput advantages of work-stealing stem from
266     * decentralized control -- workers mostly take tasks from
267 dl 1.200 * themselves or each other, at rates that can exceed a billion
268     * per second. The pool itself creates, activates (enables
269     * scanning for and running tasks), deactivates, blocks, and
270     * terminates threads, all with minimal central information.
271     * There are only a few properties that we can globally track or
272     * maintain, so we pack them into a small number of variables,
273     * often maintaining atomicity without blocking or locking.
274 dl 1.300 * Nearly all essentially atomic control state is held in a few
275 dl 1.200 * volatile variables that are by far most often read (not
276 dl 1.300 * written) as status and consistency checks. We pack as much
277     * information into them as we can.
278 dl 1.78 *
279 dl 1.200 * Field "ctl" contains 64 bits holding information needed to
280 dl 1.300 * atomically decide to add, enqueue (on an event queue), and
281     * dequeue (and release)-activate workers. To enable this
282 dl 1.78 * packing, we restrict maximum parallelism to (1<<15)-1 (which is
283     * far in excess of normal operating range) to allow ids, counts,
284     * and their negations (used for thresholding) to fit into 16bit
285 dl 1.215 * subfields.
286     *
287 dl 1.300 * Field "mode" holds configuration parameters as well as lifetime
288     * status, atomically and monotonically setting SHUTDOWN, STOP,
289     * and finally TERMINATED bits.
290 dl 1.258 *
291     * Field "workQueues" holds references to WorkQueues. It is
292 dl 1.300 * updated (only during worker creation and termination) under
293     * lock (using field workerNamePrefix as lock), but is otherwise
294     * concurrently readable, and accessed directly. We also ensure
295     * that uses of the array reference itself never become too stale
296     * in case of resizing. To simplify index-based operations, the
297     * array size is always a power of two, and all readers must
298     * tolerate null slots. Worker queues are at odd indices. Shared
299     * (submission) queues are at even indices, up to a maximum of 64
300     * slots, to limit growth even if array needs to expand to add
301     * more workers. Grouping them together in this way simplifies and
302 dl 1.262 * speeds up task scanning.
303 dl 1.86 *
304     * All worker thread creation is on-demand, triggered by task
305     * submissions, replacement of terminated workers, and/or
306 dl 1.78 * compensation for blocked workers. However, all other support
307     * code is set up to work with other policies. To ensure that we
308 jsr166 1.264 * do not hold on to worker references that would prevent GC, all
309 dl 1.78 * accesses to workQueues are via indices into the workQueues
310     * array (which is one source of some of the messy code
311     * constructions here). In essence, the workQueues array serves as
312 dl 1.200 * a weak reference mechanism. Thus for example the stack top
313     * subfield of ctl stores indices, not references.
314     *
315     * Queuing Idle Workers. Unlike HPC work-stealing frameworks, we
316     * cannot let workers spin indefinitely scanning for tasks when
317     * none can be found immediately, and we cannot start/resume
318     * workers unless there appear to be tasks available. On the
319     * other hand, we must quickly prod them into action when new
320     * tasks are submitted or generated. In many usages, ramp-up time
321 dl 1.300 * is the main limiting factor in overall performance, which is
322     * compounded at program start-up by JIT compilation and
323     * allocation. So we streamline this as much as possible.
324     *
325     * The "ctl" field atomically maintains total worker and
326     * "released" worker counts, plus the head of the available worker
327     * queue (actually stack, represented by the lower 32bit subfield
328     * of ctl). Released workers are those known to be scanning for
329     * and/or running tasks. Unreleased ("available") workers are
330     * recorded in the ctl stack. These workers are made available for
331     * signalling by enqueuing in ctl (see method runWorker). The
332     * "queue" is a form of Treiber stack. This is ideal for
333     * activating threads in most-recently used order, and improves
334 dl 1.200 * performance and locality, outweighing the disadvantages of
335     * being prone to contention and inability to release a worker
336 dl 1.300 * unless it is topmost on stack. To avoid missed signal problems
337     * inherent in any wait/signal design, available workers rescan
338     * for (and if found run) tasks after enqueuing. Normally their
339     * release status will be updated while doing so, but the released
340     * worker ctl count may underestimate the number of active
341     * threads. (However, it is still possible to determine quiescence
342     * via a validation traversal -- see isQuiescent). After an
343     * unsuccessful rescan, available workers are blocked until
344     * signalled (see signalWork). The top stack state holds the
345     * value of the "phase" field of the worker: its index and status,
346     * plus a version counter that, in addition to the count subfields
347     * (also serving as version stamps) provide protection against
348     * Treiber stack ABA effects.
349 dl 1.200 *
350 dl 1.300 * Creating workers. To create a worker, we pre-increment counts
351     * (serving as a reservation), and attempt to construct a
352 dl 1.200 * ForkJoinWorkerThread via its factory. Upon construction, the
353     * new thread invokes registerWorker, where it constructs a
354     * WorkQueue and is assigned an index in the workQueues array
355 jsr166 1.266 * (expanding the array if necessary). The thread is then started.
356     * Upon any exception across these steps, or null return from
357     * factory, deregisterWorker adjusts counts and records
358 dl 1.200 * accordingly. If a null return, the pool continues running with
359     * fewer than the target number workers. If exceptional, the
360     * exception is propagated, generally to some external caller.
361     * Worker index assignment avoids the bias in scanning that would
362     * occur if entries were sequentially packed starting at the front
363     * of the workQueues array. We treat the array as a simple
364     * power-of-two hash table, expanding as needed. The seedIndex
365     * increment ensures no collisions until a resize is needed or a
366     * worker is deregistered and replaced, and thereafter keeps
367 jsr166 1.202 * probability of collision low. We cannot use
368 dl 1.200 * ThreadLocalRandom.getProbe() for similar purposes here because
369     * the thread has not started yet, but do so for creating
370 dl 1.243 * submission queues for existing external threads (see
371     * externalPush).
372     *
373 dl 1.300 * WorkQueue field "phase" is used by both workers and the pool to
374     * manage and track whether a worker is UNSIGNALLED (possibly
375     * blocked waiting for a signal). When a worker is enqueued its
376     * phase field is set. Note that phase field updates lag queue CAS
377     * releases so usage requires care -- seeing a negative phase does
378     * not guarantee that the worker is available. When queued, the
379     * lower 16 bits of scanState must hold its pool index. So we
380     * place the index there upon initialization (see registerWorker)
381     * and otherwise keep it there or restore it when necessary.
382 dl 1.243 *
383     * The ctl field also serves as the basis for memory
384     * synchronization surrounding activation. This uses a more
385     * efficient version of a Dekker-like rule that task producers and
386     * consumers sync with each other by both writing/CASing ctl (even
387 dl 1.253 * if to its current value). This would be extremely costly. So
388     * we relax it in several ways: (1) Producers only signal when
389     * their queue is empty. Other workers propagate this signal (in
390 dl 1.300 * method scan) when they find tasks; to further reduce flailing,
391     * each worker signals only one other per activation. (2) Workers
392     * only enqueue after scanning (see below) and not finding any
393     * tasks. (3) Rather than CASing ctl to its current value in the
394     * common case where no action is required, we reduce write
395     * contention by equivalently prefacing signalWork when called by
396     * an external task producer using a memory access with
397     * full-volatile semantics or a "fullFence".
398 dl 1.243 *
399 jsr166 1.249 * Almost always, too many signals are issued. A task producer
400 dl 1.243 * cannot in general tell if some existing worker is in the midst
401     * of finishing one task (or already scanning) and ready to take
402     * another without being signalled. So the producer might instead
403     * activate a different worker that does not find any work, and
404     * then inactivates. This scarcely matters in steady-state
405     * computations involving all workers, but can create contention
406 jsr166 1.247 * and bookkeeping bottlenecks during ramp-up, ramp-down, and small
407 dl 1.243 * computations involving only a few workers.
408     *
409 dl 1.300 * Scanning. Method runWorker performs top-level scanning for
410     * tasks. Each scan traverses and tries to poll from each queue
411     * starting at a random index and circularly stepping. Scans are
412     * not performed in ideal random permutation order, to reduce
413     * cacheline contention. The pseudorandom generator need not have
414     * high-quality statistical properties in the long term, but just
415     * within computations; We use Marsaglia XorShifts (often via
416     * ThreadLocalRandom.nextSecondarySeed), which are cheap and
417     * suffice. Scanning also employs contention reduction: When
418     * scanning workers fail to extract an apparently existing task,
419     * they soon restart at a different pseudorandom index. This
420     * improves throughput when many threads are trying to take tasks
421     * from few queues, which can be common in some usages. Scans do
422     * not otherwise explicitly take into account core affinities,
423     * loads, cache localities, etc, However, they do exploit temporal
424     * locality (which usually approximates these) by preferring to
425     * re-poll (at most #workers times) from the same queue after a
426     * successful poll before trying others.
427 dl 1.52 *
428     * Trimming workers. To release resources after periods of lack of
429     * use, a worker starting to wait when the pool is quiescent will
430 dl 1.300 * time out and terminate (see method scan) if the pool has
431     * remained quiescent for period given by field keepAlive.
432 dl 1.52 *
433 dl 1.210 * Shutdown and Termination. A call to shutdownNow invokes
434     * tryTerminate to atomically set a runState bit. The calling
435     * thread, as well as every other worker thereafter terminating,
436 dl 1.300 * helps terminate others by cancelling their unprocessed tasks,
437     * and waking them up, doing so repeatedly until stable. Calls to
438     * non-abrupt shutdown() preface this by checking whether
439     * termination should commence by sweeping through queues (until
440     * stable) to ensure lack of in-flight submissions and workers
441     * about to process them before triggering the "STOP" phase of
442     * termination.
443 dl 1.211 *
444 jsr166 1.84 * Joining Tasks
445     * =============
446 dl 1.78 *
447     * Any of several actions may be taken when one worker is waiting
448 jsr166 1.84 * to join a task stolen (or always held) by another. Because we
449 dl 1.78 * are multiplexing many tasks on to a pool of workers, we can't
450 dl 1.300 * always just let them block (as in Thread.join). We also cannot
451     * just reassign the joiner's run-time stack with another and
452     * replace it later, which would be a form of "continuation", that
453     * even if possible is not necessarily a good idea since we may
454     * need both an unblocked task and its continuation to progress.
455     * Instead we combine two tactics:
456 dl 1.19 *
457     * Helping: Arranging for the joiner to execute some task that it
458 dl 1.78 * would be running if the steal had not occurred.
459 dl 1.19 *
460     * Compensating: Unless there are already enough live threads,
461 dl 1.78 * method tryCompensate() may create or re-activate a spare
462     * thread to compensate for blocked joiners until they unblock.
463     *
464 dl 1.105 * A third form (implemented in tryRemoveAndExec) amounts to
465     * helping a hypothetical compensator: If we can readily tell that
466     * a possible action of a compensator is to steal and execute the
467     * task being joined, the joining thread can do so directly,
468 dl 1.300 * without the need for a compensation thread.
469 dl 1.52 *
470     * The ManagedBlocker extension API can't use helping so relies
471     * only on compensation in method awaitBlocker.
472 dl 1.19 *
473 dl 1.300 * The algorithm in awaitJoin entails a form of "linear helping".
474     * Each worker records (in field source) the id of the queue from
475     * which it last stole a task. The scan in method awaitJoin uses
476     * these markers to try to find a worker to help (i.e., steal back
477     * a task from and execute it) that could hasten completion of the
478     * actively joined task. Thus, the joiner executes a task that
479     * would be on its own local deque if the to-be-joined task had
480     * not been stolen. This is a conservative variant of the approach
481     * described in Wagner & Calder "Leapfrogging: a portable
482     * technique for implementing efficient futures" SIGPLAN Notices,
483     * 1993 (http://portal.acm.org/citation.cfm?id=155354). It differs
484     * mainly in that we only record queue ids, not full dependency
485     * links. This requires a linear scan of the workQueues array to
486     * locate stealers, but isolates cost to when it is needed, rather
487     * than adding to per-task overhead. Searches can fail to locate
488     * stealers GC stalls and the like delay recording sources.
489     * Further, even when accurately identified, stealers might not
490     * ever produce a task that the joiner can in turn help with. So,
491     * compensation is tried upon failure to find tasks to run.
492 dl 1.105 *
493 dl 1.300 * Compensation does not by default aim to keep exactly the target
494 dl 1.200 * parallelism number of unblocked threads running at any given
495     * time. Some previous versions of this class employed immediate
496     * compensations for any blocked join. However, in practice, the
497     * vast majority of blockages are transient byproducts of GC and
498     * other JVM or OS activities that are made worse by replacement.
499 dl 1.300 * Rather than impose arbitrary policies, we allow users to
500     * override the default of only adding threads upon apparent
501     * starvation. The compensation mechanism may also be bounded.
502     * Bounds for the commonPool (see COMMON_MAX_SPARES) better enable
503     * JVMs to cope with programming errors and abuse before running
504     * out of resources to do so.
505 jsr166 1.301 *
506 dl 1.105 * Common Pool
507     * ===========
508     *
509 jsr166 1.175 * The static common pool always exists after static
510 dl 1.105 * initialization. Since it (or any other created pool) need
511     * never be used, we minimize initial construction overhead and
512 dl 1.300 * footprint to the setup of about a dozen fields.
513 dl 1.105 *
514     * When external threads submit to the common pool, they can
515 dl 1.200 * perform subtask processing (see externalHelpComplete and
516     * related methods) upon joins. This caller-helps policy makes it
517     * sensible to set common pool parallelism level to one (or more)
518     * less than the total number of available cores, or even zero for
519     * pure caller-runs. We do not need to record whether external
520     * submissions are to the common pool -- if not, external help
521     * methods return quickly. These submitters would otherwise be
522     * blocked waiting for completion, so the extra effort (with
523     * liberally sprinkled task status checks) in inapplicable cases
524     * amounts to an odd form of limited spin-wait before blocking in
525     * ForkJoinTask.join.
526 dl 1.105 *
527 dl 1.197 * As a more appropriate default in managed environments, unless
528     * overridden by system properties, we use workers of subclass
529     * InnocuousForkJoinWorkerThread when there is a SecurityManager
530     * present. These workers have no permissions set, do not belong
531     * to any user-defined ThreadGroup, and erase all ThreadLocals
532 dl 1.300 * after executing any top-level task (see
533     * WorkQueue.afterTopLevelExec). The associated mechanics (mainly
534     * in ForkJoinWorkerThread) may be JVM-dependent and must access
535     * particular Thread class fields to achieve this effect.
536 jsr166 1.198 *
537 dl 1.105 * Style notes
538     * ===========
539     *
540 jsr166 1.315 * Memory ordering relies mainly on VarHandles. This can be
541     * awkward and ugly, but also reflects the need to control
542     * outcomes across the unusual cases that arise in very racy code
543 dl 1.319 * with very few invariants. All fields are read into locals
544     * before use, and null-checked if they are references. This is
545     * usually done in a "C"-like style of listing declarations at the
546     * heads of methods or blocks, and using inline assignments on
547     * first encounter. Nearly all explicit checks lead to
548     * bypass/return, not exception throws, because they may
549     * legitimately arise due to cancellation/revocation during
550     * shutdown.
551 dl 1.200 *
552 dl 1.105 * There is a lot of representation-level coupling among classes
553     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
554     * fields of WorkQueue maintain data structures managed by
555     * ForkJoinPool, so are directly accessed. There is little point
556     * trying to reduce this, since any associated future changes in
557     * representations will need to be accompanied by algorithmic
558     * changes anyway. Several methods intrinsically sprawl because
559 dl 1.200 * they must accumulate sets of consistent reads of fields held in
560     * local variables. There are also other coding oddities
561     * (including several unnecessary-looking hoisted null checks)
562     * that help some methods perform reasonably even when interpreted
563     * (not compiled).
564 dl 1.52 *
565 dl 1.208 * The order of declarations in this file is (with a few exceptions):
566 dl 1.86 * (1) Static utility functions
567     * (2) Nested (static) classes
568     * (3) Static fields
569     * (4) Fields, along with constants used when unpacking some of them
570     * (5) Internal control methods
571     * (6) Callbacks and other support for ForkJoinTask methods
572     * (7) Exported methods
573     * (8) Static block initializing statics in minimally dependent order
574     */
575    
576     // Static utilities
577    
578     /**
579     * If there is a security manager, makes sure caller has
580     * permission to modify threads.
581 jsr166 1.1 */
582 dl 1.86 private static void checkPermission() {
583     SecurityManager security = System.getSecurityManager();
584     if (security != null)
585     security.checkPermission(modifyThreadPermission);
586     }
587    
588     // Nested classes
589 jsr166 1.1
590     /**
591 jsr166 1.8 * Factory for creating new {@link ForkJoinWorkerThread}s.
592     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
593     * for {@code ForkJoinWorkerThread} subclasses that extend base
594     * functionality or initialize threads with different contexts.
595 jsr166 1.1 */
596     public static interface ForkJoinWorkerThreadFactory {
597     /**
598     * Returns a new worker thread operating in the given pool.
599 dl 1.300 * Returning null or throwing an exception may result in tasks
600     * never being executed. If this method throws an exception,
601     * it is relayed to the caller of the method (for example
602     * {@code execute}) causing attempted thread creation. If this
603     * method returns null or throws an exception, it is not
604     * retried until the next attempted creation (for example
605     * another call to {@code execute}).
606 jsr166 1.1 *
607     * @param pool the pool this thread works in
608 jsr166 1.296 * @return the new worker thread, or {@code null} if the request
609 dl 1.300 * to create a thread is rejected.
610 jsr166 1.11 * @throws NullPointerException if the pool is null
611 jsr166 1.1 */
612     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
613     }
614    
615     /**
616     * Default ForkJoinWorkerThreadFactory implementation; creates a
617     * new ForkJoinWorkerThread.
618     */
619 jsr166 1.278 private static final class DefaultForkJoinWorkerThreadFactory
620 jsr166 1.1 implements ForkJoinWorkerThreadFactory {
621 dl 1.112 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
622 dl 1.14 return new ForkJoinWorkerThread(pool);
623 jsr166 1.1 }
624     }
625    
626 dl 1.200 // Constants shared across ForkJoinPool and WorkQueue
627    
628     // Bounds
629 dl 1.300 static final int SWIDTH = 16; // width of short
630 dl 1.200 static final int SMASK = 0xffff; // short bits == max index
631     static final int MAX_CAP = 0x7fff; // max #workers - 1
632     static final int SQMASK = 0x007e; // max 64 (even) slots
633    
634 dl 1.300 // Masks and units for WorkQueue.phase and ctl sp subfield
635 dl 1.243 static final int UNSIGNALLED = 1 << 31; // must be negative
636 dl 1.211 static final int SS_SEQ = 1 << 16; // version count
637 dl 1.300 static final int QLOCK = 1; // must be 1
638 dl 1.200
639 dl 1.300 // Mode bits and sentinels, some also used in WorkQueue id and.source fields
640     static final int OWNED = 1; // queue has owner thread
641     static final int FIFO = 1 << 16; // fifo queue or access mode
642     static final int SHUTDOWN = 1 << 18;
643     static final int TERMINATED = 1 << 19;
644     static final int STOP = 1 << 31; // must be negative
645     static final int QUIET = 1 << 30; // not scanning or working
646     static final int DORMANT = QUIET | UNSIGNALLED;
647    
648     /**
649     * The maximum number of local polls from the same queue before
650     * checking others. This is a safeguard against infinitely unfair
651     * looping under unbounded user task recursion, and must be larger
652     * than plausible cases of intentional bounded task recursion.
653 dl 1.253 */
654 dl 1.300 static final int POLL_LIMIT = 1 << 10;
655 dl 1.253
656     /**
657 dl 1.78 * Queues supporting work-stealing as well as external task
658 jsr166 1.202 * submission. See above for descriptions and algorithms.
659 dl 1.78 * Performance on most platforms is very sensitive to placement of
660     * instances of both WorkQueues and their arrays -- we absolutely
661     * do not want multiple WorkQueue instances or multiple queue
662 dl 1.200 * arrays sharing cache lines. The @Contended annotation alerts
663     * JVMs to try to keep instances apart.
664 dl 1.78 */
665 dl 1.308 @jdk.internal.vm.annotation.Contended
666 dl 1.78 static final class WorkQueue {
667 dl 1.200
668 dl 1.78 /**
669     * Capacity of work-stealing queue array upon initialization.
670 dl 1.90 * Must be a power of two; at least 4, but should be larger to
671     * reduce or eliminate cacheline sharing among queues.
672     * Currently, it is much larger, as a partial workaround for
673     * the fact that JVMs often place arrays in locations that
674     * share GC bookkeeping (especially cardmarks) such that
675     * per-write accesses encounter serious memory contention.
676 dl 1.78 */
677 dl 1.90 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
678 dl 1.78
679     /**
680     * Maximum size for queue arrays. Must be a power of two less
681     * than or equal to 1 << (31 - width of array entry) to ensure
682     * lack of wraparound of index calculations, but defined to a
683     * value a bit less than this to help users trap runaway
684     * programs before saturating systems.
685     */
686     static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
687    
688 dl 1.200 // Instance fields
689 dl 1.300 volatile int phase; // versioned, negative: queued, 1: locked
690     int stackPred; // pool stack (ctl) predecessor link
691 dl 1.178 int nsteals; // number of steals
692 dl 1.300 int id; // index, mode, tag
693     volatile int source; // source queue id, or sentinel
694 dl 1.78 volatile int base; // index of next slot for poll
695     int top; // index of next slot for push
696     ForkJoinTask<?>[] array; // the elements (initially unallocated)
697 dl 1.90 final ForkJoinPool pool; // the containing pool (may be null)
698 dl 1.78 final ForkJoinWorkerThread owner; // owning thread or null if shared
699 dl 1.112
700 dl 1.200 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner) {
701 dl 1.90 this.pool = pool;
702 dl 1.78 this.owner = owner;
703 dl 1.115 // Place indices in the center of array (that is not yet allocated)
704 dl 1.78 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
705     }
706    
707     /**
708 jsr166 1.220 * Returns an exportable index (used by ForkJoinWorkerThread).
709 dl 1.200 */
710     final int getPoolIndex() {
711 dl 1.300 return (id & 0xffff) >>> 1; // ignore odd/even tag bit
712 dl 1.200 }
713    
714     /**
715 dl 1.115 * Returns the approximate number of tasks in the queue.
716     */
717     final int queueSize() {
718 dl 1.243 int n = base - top; // read base first
719 dl 1.115 return (n >= 0) ? 0 : -n; // ignore transient negative
720     }
721    
722 jsr166 1.180 /**
723 dl 1.115 * Provides a more accurate estimate of whether this queue has
724     * any tasks than does queueSize, by checking whether a
725     * near-empty queue has at least one unclaimed task.
726     */
727     final boolean isEmpty() {
728 dl 1.300 ForkJoinTask<?>[] a; int n, al, b;
729     return ((n = (b = base) - top) >= 0 || // possibly one task
730 dl 1.243 (n == -1 && ((a = array) == null ||
731     (al = a.length) == 0 ||
732 dl 1.300 a[(al - 1) & b] == null)));
733 dl 1.115 }
734    
735 dl 1.300
736 dl 1.115 /**
737 dl 1.256 * Pushes a task. Call only by owner in unshared queues.
738 dl 1.78 *
739     * @param task the task. Caller must ensure non-null.
740 jsr166 1.146 * @throws RejectedExecutionException if array cannot be resized
741 dl 1.78 */
742 dl 1.90 final void push(ForkJoinTask<?> task) {
743 dl 1.300 int s = top; ForkJoinTask<?>[] a; int al, d;
744 dl 1.243 if ((a = array) != null && (al = a.length) > 0) {
745 dl 1.300 int index = (al - 1) & s;
746     ForkJoinPool p = pool;
747 dl 1.243 top = s + 1;
748 dl 1.314 QA.setRelease(a, index, task);
749 dl 1.292 if ((d = base - s) == 0 && p != null) {
750 dl 1.314 VarHandle.fullFence();
751 dl 1.253 p.signalWork();
752 dl 1.284 }
753 dl 1.300 else if (d + al == 1)
754 dl 1.243 growArray();
755 dl 1.78 }
756     }
757    
758 dl 1.178 /**
759 dl 1.112 * Initializes or doubles the capacity of array. Call either
760     * by owner or with lock held -- it is OK for base, but not
761     * top, to move while resizings are in progress.
762     */
763     final ForkJoinTask<?>[] growArray() {
764     ForkJoinTask<?>[] oldA = array;
765 dl 1.300 int oldSize = oldA != null ? oldA.length : 0;
766     int size = oldSize > 0 ? oldSize << 1 : INITIAL_QUEUE_CAPACITY;
767 dl 1.225 if (size < INITIAL_QUEUE_CAPACITY || size > MAXIMUM_QUEUE_CAPACITY)
768 dl 1.112 throw new RejectedExecutionException("Queue capacity exceeded");
769     int oldMask, t, b;
770     ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
771 dl 1.300 if (oldA != null && (oldMask = oldSize - 1) > 0 &&
772 dl 1.112 (t = top) - (b = base) > 0) {
773     int mask = size - 1;
774 dl 1.200 do { // emulate poll from old array, push to new array
775 dl 1.256 int index = b & oldMask;
776 dl 1.243 ForkJoinTask<?> x = (ForkJoinTask<?>)
777 dl 1.316 QA.getAcquire(oldA, index);
778 dl 1.243 if (x != null &&
779 dl 1.314 QA.compareAndSet(oldA, index, x, null))
780 dl 1.243 a[b & mask] = x;
781 dl 1.112 } while (++b != t);
782 dl 1.314 VarHandle.releaseFence();
783 dl 1.78 }
784 dl 1.112 return a;
785 dl 1.78 }
786    
787     /**
788 dl 1.90 * Takes next task, if one exists, in LIFO order. Call only
789 dl 1.102 * by owner in unshared queues.
790 dl 1.90 */
791     final ForkJoinTask<?> pop() {
792 dl 1.243 int b = base, s = top, al, i; ForkJoinTask<?>[] a;
793 dl 1.256 if ((a = array) != null && b != s && (al = a.length) > 0) {
794     int index = (al - 1) & --s;
795 dl 1.262 ForkJoinTask<?> t = (ForkJoinTask<?>)
796 dl 1.314 QA.get(a, index);
797 dl 1.262 if (t != null &&
798 dl 1.314 QA.compareAndSet(a, index, t, null)) {
799 dl 1.256 top = s;
800 dl 1.314 VarHandle.releaseFence();
801 dl 1.78 return t;
802     }
803     }
804     return null;
805     }
806    
807     /**
808 dl 1.90 * Takes next task, if one exists, in FIFO order.
809 dl 1.78 */
810 dl 1.90 final ForkJoinTask<?> poll() {
811 dl 1.243 for (;;) {
812     int b = base, s = top, d, al; ForkJoinTask<?>[] a;
813     if ((a = array) != null && (d = b - s) < 0 &&
814     (al = a.length) > 0) {
815 dl 1.256 int index = (al - 1) & b;
816 dl 1.243 ForkJoinTask<?> t = (ForkJoinTask<?>)
817 dl 1.316 QA.getAcquire(a, index);
818 dl 1.243 if (b++ == base) {
819     if (t != null) {
820 dl 1.314 if (QA.compareAndSet(a, index, t, null)) {
821 dl 1.243 base = b;
822     return t;
823     }
824 dl 1.200 }
825 dl 1.243 else if (d == -1)
826     break; // now empty
827 dl 1.78 }
828 dl 1.90 }
829 dl 1.243 else
830     break;
831 dl 1.78 }
832     return null;
833     }
834    
835     /**
836     * Takes next task, if one exists, in order specified by mode.
837     */
838     final ForkJoinTask<?> nextLocalTask() {
839 dl 1.300 return ((id & FIFO) != 0) ? poll() : pop();
840 dl 1.78 }
841    
842     /**
843     * Returns next task, if one exists, in order specified by mode.
844     */
845     final ForkJoinTask<?> peek() {
846 dl 1.292 int al; ForkJoinTask<?>[] a;
847 dl 1.243 return ((a = array) != null && (al = a.length) > 0) ?
848 dl 1.300 a[(al - 1) &
849     ((id & FIFO) != 0 ? base : top - 1)] : null;
850 dl 1.78 }
851    
852     /**
853     * Pops the given task only if it is at the current top.
854 jsr166 1.251 */
855 dl 1.243 final boolean tryUnpush(ForkJoinTask<?> task) {
856 dl 1.256 int b = base, s = top, al; ForkJoinTask<?>[] a;
857     if ((a = array) != null && b != s && (al = a.length) > 0) {
858     int index = (al - 1) & --s;
859 dl 1.314 if (QA.compareAndSet(a, index, task, null)) {
860 dl 1.243 top = s;
861 dl 1.314 VarHandle.releaseFence();
862 dl 1.224 return true;
863     }
864 dl 1.78 }
865     return false;
866     }
867    
868     /**
869 jsr166 1.84 * Removes and cancels all known tasks, ignoring any exceptions.
870 dl 1.78 */
871     final void cancelAll() {
872 dl 1.300 for (ForkJoinTask<?> t; (t = poll()) != null; )
873 dl 1.78 ForkJoinTask.cancelIgnoringExceptions(t);
874     }
875    
876 dl 1.104 // Specialized execution methods
877 dl 1.78
878     /**
879 dl 1.300 * Pops and executes up to limit consecutive tasks or until empty.
880     *
881     * @param limit max runs, or zero for no limit
882 dl 1.253 */
883 dl 1.300 final void localPopAndExec(int limit) {
884     for (;;) {
885 dl 1.253 int b = base, s = top, al; ForkJoinTask<?>[] a;
886     if ((a = array) != null && b != s && (al = a.length) > 0) {
887 dl 1.256 int index = (al - 1) & --s;
888 dl 1.253 ForkJoinTask<?> t = (ForkJoinTask<?>)
889 dl 1.314 QA.getAndSet(a, index, null);
890 dl 1.253 if (t != null) {
891     top = s;
892 dl 1.314 VarHandle.releaseFence();
893 dl 1.300 t.doExec();
894     if (limit != 0 && --limit == 0)
895 dl 1.253 break;
896     }
897     else
898     break;
899     }
900     else
901     break;
902     }
903     }
904    
905     /**
906 dl 1.300 * Polls and executes up to limit consecutive tasks or until empty.
907     *
908     * @param limit, or zero for no limit
909 dl 1.253 */
910 dl 1.300 final void localPollAndExec(int limit) {
911     for (int polls = 0;;) {
912     int b = base, s = top, d, al; ForkJoinTask<?>[] a;
913     if ((a = array) != null && (d = b - s) < 0 &&
914     (al = a.length) > 0) {
915 dl 1.256 int index = (al - 1) & b++;
916 dl 1.253 ForkJoinTask<?> t = (ForkJoinTask<?>)
917 dl 1.314 QA.getAndSet(a, index, null);
918 dl 1.253 if (t != null) {
919     base = b;
920 dl 1.255 t.doExec();
921 dl 1.300 if (limit != 0 && ++polls == limit)
922 dl 1.253 break;
923     }
924 dl 1.300 else if (d == -1)
925     break; // now empty
926     else
927     polls = 0; // stolen; reset
928 dl 1.253 }
929     else
930     break;
931     }
932     }
933    
934     /**
935 jsr166 1.302 * If present, removes task from queue and executes it.
936 dl 1.94 */
937 dl 1.300 final void tryRemoveAndExec(ForkJoinTask<?> task) {
938     ForkJoinTask<?>[] wa; int s, wal;
939     if (base - (s = top) < 0 && // traverse from top
940     (wa = array) != null && (wal = wa.length) > 0) {
941     for (int m = wal - 1, ns = s - 1, i = ns; ; --i) {
942     int index = i & m;
943     ForkJoinTask<?> t = (ForkJoinTask<?>)
944 dl 1.314 QA.get(wa, index);
945 dl 1.300 if (t == null)
946     break;
947     else if (t == task) {
948 dl 1.314 if (QA.compareAndSet(wa, index, t, null)) {
949 dl 1.300 top = ns; // safely shift down
950     for (int j = i; j != ns; ++j) {
951     ForkJoinTask<?> f;
952     int pindex = (j + 1) & m;
953 dl 1.314 f = (ForkJoinTask<?>)QA.get(wa, pindex);
954     QA.setVolatile(wa, pindex, null);
955 dl 1.300 int jindex = j & m;
956 dl 1.314 QA.setRelease(wa, jindex, f);
957 dl 1.300 }
958 dl 1.314 VarHandle.releaseFence();
959 dl 1.300 t.doExec();
960     }
961     break;
962     }
963 dl 1.262 }
964 dl 1.215 }
965     }
966    
967     /**
968 dl 1.300 * Tries to steal and run tasks within the target's
969 jsr166 1.302 * computation until done, not found, or limit exceeded.
970 dl 1.94 *
971 dl 1.300 * @param task root of CountedCompleter computation
972     * @param limit max runs, or zero for no limit
973     * @return task status on exit
974     */
975     final int localHelpCC(CountedCompleter<?> task, int limit) {
976     int status = 0;
977     if (task != null && (status = task.status) >= 0) {
978     for (;;) {
979     boolean help = false;
980     int b = base, s = top, al; ForkJoinTask<?>[] a;
981     if ((a = array) != null && b != s && (al = a.length) > 0) {
982     int index = (al - 1) & (s - 1);
983     ForkJoinTask<?> o = (ForkJoinTask<?>)
984 dl 1.314 QA.get(a, index);
985 dl 1.300 if (o instanceof CountedCompleter) {
986     CountedCompleter<?> t = (CountedCompleter<?>)o;
987     for (CountedCompleter<?> f = t;;) {
988     if (f != task) {
989     if ((f = f.completer) == null) // try parent
990     break;
991     }
992     else {
993 dl 1.314 if (QA.compareAndSet(a, index, t, null)) {
994 dl 1.300 top = s - 1;
995 dl 1.314 VarHandle.releaseFence();
996 dl 1.300 t.doExec();
997     help = true;
998     }
999     break;
1000 dl 1.200 }
1001     }
1002 dl 1.243 }
1003 dl 1.104 }
1004 dl 1.300 if ((status = task.status) < 0 || !help ||
1005     (limit != 0 && --limit == 0))
1006     break;
1007 dl 1.104 }
1008     }
1009 dl 1.300 return status;
1010     }
1011    
1012     // Operations on shared queues
1013    
1014     /**
1015 jsr166 1.302 * Tries to lock shared queue by CASing phase field.
1016 dl 1.300 */
1017     final boolean tryLockSharedQueue() {
1018 dl 1.314 return PHASE.compareAndSet(this, 0, QLOCK);
1019 dl 1.104 }
1020    
1021     /**
1022 dl 1.300 * Shared version of tryUnpush.
1023 dl 1.78 */
1024 dl 1.300 final boolean trySharedUnpush(ForkJoinTask<?> task) {
1025     boolean popped = false;
1026     int s = top - 1, al; ForkJoinTask<?>[] a;
1027     if ((a = array) != null && (al = a.length) > 0) {
1028     int index = (al - 1) & s;
1029 dl 1.314 ForkJoinTask<?> t = (ForkJoinTask<?>) QA.get(a, index);
1030 dl 1.300 if (t == task &&
1031 dl 1.314 PHASE.compareAndSet(this, 0, QLOCK)) {
1032 dl 1.300 if (top == s + 1 && array == a &&
1033 dl 1.314 QA.compareAndSet(a, index, task, null)) {
1034 dl 1.300 popped = true;
1035     top = s;
1036 dl 1.178 }
1037 dl 1.314 PHASE.setRelease(this, 0);
1038 dl 1.94 }
1039 dl 1.78 }
1040 dl 1.300 return popped;
1041 dl 1.78 }
1042    
1043     /**
1044 dl 1.300 * Shared version of localHelpCC.
1045     */
1046     final int sharedHelpCC(CountedCompleter<?> task, int limit) {
1047     int status = 0;
1048     if (task != null && (status = task.status) >= 0) {
1049     for (;;) {
1050     boolean help = false;
1051     int b = base, s = top, al; ForkJoinTask<?>[] a;
1052     if ((a = array) != null && b != s && (al = a.length) > 0) {
1053     int index = (al - 1) & (s - 1);
1054     ForkJoinTask<?> o = (ForkJoinTask<?>)
1055 dl 1.314 QA.get(a, index);
1056 dl 1.300 if (o instanceof CountedCompleter) {
1057     CountedCompleter<?> t = (CountedCompleter<?>)o;
1058     for (CountedCompleter<?> f = t;;) {
1059     if (f != task) {
1060     if ((f = f.completer) == null)
1061     break;
1062     }
1063     else {
1064 dl 1.314 if (PHASE.compareAndSet(this, 0, QLOCK)) {
1065 dl 1.300 if (top == s && array == a &&
1066 dl 1.314 QA.compareAndSet(a, index, t, null)) {
1067 dl 1.300 help = true;
1068     top = s - 1;
1069     }
1070 dl 1.314 PHASE.setRelease(this, 0);
1071 dl 1.300 if (help)
1072     t.doExec();
1073     }
1074     break;
1075     }
1076 dl 1.243 }
1077 dl 1.200 }
1078 dl 1.178 }
1079 dl 1.300 if ((status = task.status) < 0 || !help ||
1080     (limit != 0 && --limit == 0))
1081     break;
1082 dl 1.178 }
1083 dl 1.78 }
1084 dl 1.300 return status;
1085 dl 1.78 }
1086    
1087     /**
1088 dl 1.86 * Returns true if owned and not known to be blocked.
1089     */
1090     final boolean isApparentlyUnblocked() {
1091     Thread wt; Thread.State s;
1092 dl 1.300 return ((wt = owner) != null &&
1093 dl 1.86 (s = wt.getState()) != Thread.State.BLOCKED &&
1094     s != Thread.State.WAITING &&
1095     s != Thread.State.TIMED_WAITING);
1096     }
1097    
1098 dl 1.314 // VarHandle mechanics.
1099     private static final VarHandle PHASE;
1100 dl 1.78 static {
1101     try {
1102 dl 1.314 MethodHandles.Lookup l = MethodHandles.lookup();
1103     PHASE = l.findVarHandle(WorkQueue.class, "phase", int.class);
1104 jsr166 1.231 } catch (ReflectiveOperationException e) {
1105 dl 1.78 throw new Error(e);
1106     }
1107     }
1108     }
1109 dl 1.14
1110 dl 1.112 // static fields (initialized in static initializer below)
1111    
1112     /**
1113     * Creates a new ForkJoinWorkerThread. This factory is used unless
1114     * overridden in ForkJoinPool constructors.
1115     */
1116     public static final ForkJoinWorkerThreadFactory
1117     defaultForkJoinWorkerThreadFactory;
1118    
1119 jsr166 1.1 /**
1120 dl 1.115 * Permission required for callers of methods that may start or
1121 dl 1.300 * kill threads.
1122 dl 1.115 */
1123 jsr166 1.276 static final RuntimePermission modifyThreadPermission;
1124 dl 1.115
1125     /**
1126 dl 1.101 * Common (static) pool. Non-null for public use unless a static
1127 dl 1.105 * construction exception, but internal usages null-check on use
1128     * to paranoically avoid potential initialization circularities
1129     * as well as to simplify generated code.
1130 dl 1.101 */
1131 dl 1.134 static final ForkJoinPool common;
1132 dl 1.101
1133     /**
1134 dl 1.160 * Common pool parallelism. To allow simpler use and management
1135     * when common pool threads are disabled, we allow the underlying
1136 dl 1.185 * common.parallelism field to be zero, but in that case still report
1137 dl 1.160 * parallelism as 1 to reflect resulting caller-runs mechanics.
1138 dl 1.90 */
1139 jsr166 1.274 static final int COMMON_PARALLELISM;
1140 dl 1.90
1141     /**
1142 dl 1.208 * Limit on spare thread construction in tryCompensate.
1143     */
1144 jsr166 1.273 private static final int COMMON_MAX_SPARES;
1145 dl 1.208
1146     /**
1147 dl 1.105 * Sequence number for creating workerNamePrefix.
1148 dl 1.86 */
1149 dl 1.105 private static int poolNumberSequence;
1150 dl 1.86
1151 jsr166 1.1 /**
1152 jsr166 1.132 * Returns the next sequence number. We don't expect this to
1153     * ever contend, so use simple builtin sync.
1154 dl 1.83 */
1155 dl 1.105 private static final synchronized int nextPoolId() {
1156     return ++poolNumberSequence;
1157     }
1158 dl 1.86
1159 dl 1.200 // static configuration constants
1160 dl 1.86
1161     /**
1162 dl 1.300 * Default idle timeout value (in milliseconds) for the thread
1163     * triggering quiescence to park waiting for new work
1164 dl 1.86 */
1165 dl 1.300 private static final long DEFAULT_KEEPALIVE = 60000L;
1166 dl 1.86
1167     /**
1168 dl 1.300 * Undershoot tolerance for idle timeouts
1169 dl 1.120 */
1170 dl 1.300 private static final long TIMEOUT_SLOP = 20L;
1171 dl 1.200
1172     /**
1173 jsr166 1.273 * The default value for COMMON_MAX_SPARES. Overridable using the
1174     * "java.util.concurrent.ForkJoinPool.common.maximumSpares" system
1175     * property. The default value is far in excess of normal
1176     * requirements, but also far short of MAX_CAP and typical OS
1177     * thread limits, so allows JVMs to catch misuse/abuse before
1178     * running out of resources needed to do so.
1179 dl 1.200 */
1180 dl 1.208 private static final int DEFAULT_COMMON_MAX_SPARES = 256;
1181 dl 1.120
1182     /**
1183 dl 1.90 * Increment for seed generators. See class ThreadLocal for
1184     * explanation.
1185     */
1186 dl 1.193 private static final int SEED_INCREMENT = 0x9e3779b9;
1187 dl 1.83
1188 jsr166 1.163 /*
1189 dl 1.200 * Bits and masks for field ctl, packed with 4 16 bit subfields:
1190 dl 1.300 * RC: Number of released (unqueued) workers minus target parallelism
1191 dl 1.200 * TC: Number of total workers minus target parallelism
1192     * SS: version count and status of top waiting thread
1193     * ID: poolIndex of top of Treiber stack of waiters
1194     *
1195     * When convenient, we can extract the lower 32 stack top bits
1196     * (including version bits) as sp=(int)ctl. The offsets of counts
1197     * by the target parallelism and the positionings of fields makes
1198     * it possible to perform the most common checks via sign tests of
1199 dl 1.300 * fields: When ac is negative, there are not enough unqueued
1200 dl 1.200 * workers, when tc is negative, there are not enough total
1201     * workers. When sp is non-zero, there are waiting workers. To
1202     * deal with possibly negative fields, we use casts in and out of
1203     * "short" and/or signed shifts to maintain signedness.
1204     *
1205 dl 1.300 * Because it occupies uppermost bits, we can add one release count
1206     * using getAndAddLong of RC_UNIT, rather than CAS, when returning
1207 dl 1.200 * from a blocked join. Other updates entail multiple subfields
1208     * and masking, requiring CAS.
1209 dl 1.300 *
1210     * The limits packed in field "bounds" are also offset by the
1211     * parallelism level to make them comparable to the ctl rc and tc
1212     * fields.
1213 dl 1.200 */
1214    
1215     // Lower and upper word masks
1216     private static final long SP_MASK = 0xffffffffL;
1217     private static final long UC_MASK = ~SP_MASK;
1218 dl 1.86
1219 dl 1.300 // Release counts
1220     private static final int RC_SHIFT = 48;
1221     private static final long RC_UNIT = 0x0001L << RC_SHIFT;
1222     private static final long RC_MASK = 0xffffL << RC_SHIFT;
1223 dl 1.200
1224     // Total counts
1225 dl 1.86 private static final int TC_SHIFT = 32;
1226 dl 1.200 private static final long TC_UNIT = 0x0001L << TC_SHIFT;
1227     private static final long TC_MASK = 0xffffL << TC_SHIFT;
1228     private static final long ADD_WORKER = 0x0001L << (TC_SHIFT + 15); // sign
1229    
1230 dl 1.300 // Instance fields
1231 dl 1.86
1232 dl 1.300 volatile long stealCount; // collects worker nsteals
1233     final long keepAlive; // milliseconds before dropping if idle
1234     int indexSeed; // next worker index
1235     final int bounds; // min, max threads packed as shorts
1236     volatile int mode; // parallelism, runstate, queue mode
1237     WorkQueue[] workQueues; // main registry
1238     final String workerNamePrefix; // for worker thread string; sync lock
1239 dl 1.112 final ForkJoinWorkerThreadFactory factory;
1240 dl 1.200 final UncaughtExceptionHandler ueh; // per-worker UEH
1241 dl 1.307 final Predicate<? super ForkJoinPool> saturate;
1242 dl 1.101
1243 dl 1.308 @jdk.internal.vm.annotation.Contended("fjpctl") // segregate
1244     volatile long ctl; // main pool control
1245 jsr166 1.309
1246 dl 1.200 // Creating, registering and deregistering workers
1247    
1248 dl 1.112 /**
1249 dl 1.200 * Tries to construct and start one worker. Assumes that total
1250     * count has already been incremented as a reservation. Invokes
1251     * deregisterWorker on any failure.
1252     *
1253     * @return true if successful
1254 dl 1.115 */
1255 dl 1.300 private boolean createWorker() {
1256 dl 1.200 ForkJoinWorkerThreadFactory fac = factory;
1257     Throwable ex = null;
1258     ForkJoinWorkerThread wt = null;
1259     try {
1260     if (fac != null && (wt = fac.newThread(this)) != null) {
1261     wt.start();
1262     return true;
1263 dl 1.115 }
1264 dl 1.200 } catch (Throwable rex) {
1265     ex = rex;
1266 dl 1.112 }
1267 dl 1.200 deregisterWorker(wt, ex);
1268     return false;
1269 dl 1.112 }
1270    
1271 dl 1.200 /**
1272     * Tries to add one worker, incrementing ctl counts before doing
1273     * so, relying on createWorker to back out on failure.
1274     *
1275     * @param c incoming ctl value, with total count negative and no
1276     * idle workers. On CAS failure, c is refreshed and retried if
1277 jsr166 1.202 * this holds (otherwise, a new worker is not needed).
1278 dl 1.200 */
1279     private void tryAddWorker(long c) {
1280     do {
1281 dl 1.300 long nc = ((RC_MASK & (c + RC_UNIT)) |
1282 dl 1.200 (TC_MASK & (c + TC_UNIT)));
1283 dl 1.314 if (ctl == c && CTL.compareAndSet(this, c, nc)) {
1284 dl 1.300 createWorker();
1285 dl 1.243 break;
1286 dl 1.200 }
1287     } while (((c = ctl) & ADD_WORKER) != 0L && (int)c == 0);
1288     }
1289 dl 1.112
1290     /**
1291 dl 1.200 * Callback from ForkJoinWorkerThread constructor to establish and
1292     * record its WorkQueue.
1293 dl 1.112 *
1294     * @param wt the worker thread
1295 dl 1.115 * @return the worker's queue
1296 dl 1.112 */
1297 dl 1.115 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1298 dl 1.200 UncaughtExceptionHandler handler;
1299 dl 1.300 wt.setDaemon(true); // configure thread
1300 dl 1.115 if ((handler = ueh) != null)
1301     wt.setUncaughtExceptionHandler(handler);
1302 dl 1.200 WorkQueue w = new WorkQueue(this, wt);
1303 dl 1.300 int tid = 0; // for thread name
1304     int fifo = mode & FIFO;
1305     String prefix = workerNamePrefix;
1306     if (prefix != null) {
1307 jsr166 1.301 synchronized (prefix) {
1308 dl 1.300 WorkQueue[] ws = workQueues; int n;
1309     int s = indexSeed += SEED_INCREMENT;
1310     if (ws != null && (n = ws.length) > 1) {
1311     int m = n - 1;
1312     tid = s & m;
1313     int i = m & ((s << 1) | 1); // odd-numbered indices
1314     for (int probes = n >>> 1;;) { // find empty slot
1315     WorkQueue q;
1316     if ((q = ws[i]) == null || q.phase == QUIET)
1317     break;
1318     else if (--probes == 0) {
1319     i = n | 1; // resize below
1320     break;
1321     }
1322     else
1323     i = (i + 2) & m;
1324     }
1325    
1326     int id = i | fifo | (s & ~(SMASK | FIFO | DORMANT));
1327     w.phase = w.id = id; // now publishable
1328    
1329     if (i < n)
1330     ws[i] = w;
1331     else { // expand array
1332     int an = n << 1;
1333     WorkQueue[] as = new WorkQueue[an];
1334     as[i] = w;
1335     int am = an - 1;
1336     for (int j = 0; j < n; ++j) {
1337     WorkQueue v; // copy external queue
1338     if ((v = ws[j]) != null) // position may change
1339     as[v.id & am & SQMASK] = v;
1340     if (++j >= n)
1341     break;
1342     as[j] = ws[j]; // copy worker
1343 dl 1.94 }
1344 dl 1.300 workQueues = as;
1345 dl 1.94 }
1346     }
1347 dl 1.78 }
1348 dl 1.300 wt.setName(prefix.concat(Integer.toString(tid)));
1349 dl 1.78 }
1350 dl 1.115 return w;
1351 dl 1.78 }
1352 dl 1.19
1353 jsr166 1.1 /**
1354 dl 1.86 * Final callback from terminating worker, as well as upon failure
1355 dl 1.105 * to construct or start a worker. Removes record of worker from
1356     * array, and adjusts counts. If pool is shutting down, tries to
1357     * complete termination.
1358 dl 1.78 *
1359 jsr166 1.151 * @param wt the worker thread, or null if construction failed
1360 dl 1.78 * @param ex the exception causing failure, or null if none
1361 dl 1.45 */
1362 dl 1.78 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1363     WorkQueue w = null;
1364 dl 1.300 int phase = 0;
1365 dl 1.78 if (wt != null && (w = wt.workQueue) != null) {
1366 dl 1.300 Object lock = workerNamePrefix;
1367     long ns = (long)w.nsteals & 0xffffffffL;
1368     int idx = w.id & SMASK;
1369     if (lock != null) {
1370     WorkQueue[] ws; // remove index from array
1371 jsr166 1.301 synchronized (lock) {
1372 dl 1.243 if ((ws = workQueues) != null && ws.length > idx &&
1373     ws[idx] == w)
1374     ws[idx] = null;
1375 dl 1.300 stealCount += ns;
1376 dl 1.243 }
1377     }
1378 dl 1.300 phase = w.phase;
1379 dl 1.243 }
1380 dl 1.300 if (phase != QUIET) { // else pre-adjusted
1381 dl 1.243 long c; // decrement counts
1382 jsr166 1.325 do {} while (!CTL.weakCompareAndSet
1383 dl 1.314 (this, c = ctl, ((RC_MASK & (c - RC_UNIT)) |
1384     (TC_MASK & (c - TC_UNIT)) |
1385     (SP_MASK & c))));
1386 dl 1.243 }
1387 dl 1.300 if (w != null)
1388 dl 1.200 w.cancelAll(); // cancel remaining tasks
1389 dl 1.300
1390     if (!tryTerminate(false, false) && // possibly replace worker
1391     w != null && w.array != null) // avoid repeated failures
1392     signalWork();
1393    
1394 dl 1.200 if (ex == null) // help clean on way out
1395 dl 1.120 ForkJoinTask.helpExpungeStaleExceptions();
1396 dl 1.200 else // rethrow
1397 dl 1.104 ForkJoinTask.rethrow(ex);
1398 dl 1.78 }
1399 dl 1.52
1400 dl 1.19 /**
1401 dl 1.300 * Tries to create or release a worker if too few are running.
1402 dl 1.105 */
1403 dl 1.253 final void signalWork() {
1404 dl 1.243 for (;;) {
1405 dl 1.300 long c; int sp; WorkQueue[] ws; int i; WorkQueue v;
1406 dl 1.243 if ((c = ctl) >= 0L) // enough workers
1407     break;
1408     else if ((sp = (int)c) == 0) { // no idle workers
1409     if ((c & ADD_WORKER) != 0L) // too few workers
1410 dl 1.200 tryAddWorker(c);
1411     break;
1412     }
1413 dl 1.243 else if ((ws = workQueues) == null)
1414     break; // unstarted/terminated
1415     else if (ws.length <= (i = sp & SMASK))
1416     break; // terminated
1417     else if ((v = ws[i]) == null)
1418     break; // terminating
1419     else {
1420 dl 1.300 int np = sp & ~UNSIGNALLED;
1421     int vp = v.phase;
1422     long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + RC_UNIT));
1423     Thread vt = v.owner;
1424 dl 1.314 if (sp == vp && CTL.compareAndSet(this, c, nc)) {
1425 dl 1.300 v.phase = np;
1426     if (v.source < 0)
1427     LockSupport.unpark(vt);
1428 dl 1.243 break;
1429     }
1430 dl 1.174 }
1431 dl 1.52 }
1432 dl 1.14 }
1433    
1434 dl 1.200 /**
1435 dl 1.300 * Tries to decrement counts (sometimes implicitly) and possibly
1436     * arrange for a compensating worker in preparation for blocking:
1437     * If not all core workers yet exist, creates one, else if any are
1438     * unreleased (possibly including caller) releases one, else if
1439     * fewer than the minimum allowed number of workers running,
1440     * checks to see that they are all active, and if so creates an
1441     * extra worker unless over maximum limit and policy is to
1442     * saturate. Most of these steps can fail due to interference, in
1443     * which case 0 is returned so caller will retry. A negative
1444     * return value indicates that the caller doesn't need to
1445     * re-adjust counts when later unblocked.
1446 dl 1.243 *
1447 dl 1.300 * @return 1: block then adjust, -1: block without adjust, 0 : retry
1448 dl 1.243 */
1449 dl 1.300 private int tryCompensate(WorkQueue w) {
1450     int t, n, sp;
1451     long c = ctl;
1452     WorkQueue[] ws = workQueues;
1453 dl 1.310 if ((t = (short)(c >>> TC_SHIFT)) >= 0) {
1454 dl 1.300 if (ws == null || (n = ws.length) <= 0 || w == null)
1455     return 0; // disabled
1456     else if ((sp = (int)c) != 0) { // replace or release
1457     WorkQueue v = ws[sp & (n - 1)];
1458     int wp = w.phase;
1459     long uc = UC_MASK & ((wp < 0) ? c + RC_UNIT : c);
1460     int np = sp & ~UNSIGNALLED;
1461     if (v != null) {
1462     int vp = v.phase;
1463     Thread vt = v.owner;
1464     long nc = ((long)v.stackPred & SP_MASK) | uc;
1465 dl 1.314 if (vp == sp && CTL.compareAndSet(this, c, nc)) {
1466 dl 1.300 v.phase = np;
1467     if (v.source < 0)
1468     LockSupport.unpark(vt);
1469     return (wp < 0) ? -1 : 1;
1470     }
1471     }
1472     return 0;
1473     }
1474     else if ((int)(c >> RC_SHIFT) - // reduce parallelism
1475     (short)(bounds & SMASK) > 0) {
1476     long nc = ((RC_MASK & (c - RC_UNIT)) | (~RC_MASK & c));
1477 dl 1.314 return CTL.compareAndSet(this, c, nc) ? 1 : 0;
1478 dl 1.300 }
1479     else { // validate
1480     int md = mode, pc = md & SMASK, tc = pc + t, bc = 0;
1481     boolean unstable = false;
1482     for (int i = 1; i < n; i += 2) {
1483     WorkQueue q; Thread wt; Thread.State ts;
1484     if ((q = ws[i]) != null) {
1485     if (q.source == 0) {
1486     unstable = true;
1487     break;
1488     }
1489     else {
1490     --tc;
1491     if ((wt = q.owner) != null &&
1492     ((ts = wt.getState()) == Thread.State.BLOCKED ||
1493     ts == Thread.State.WAITING))
1494     ++bc; // worker is blocking
1495     }
1496 dl 1.243 }
1497     }
1498 dl 1.300 if (unstable || tc != 0 || ctl != c)
1499     return 0; // inconsistent
1500     else if (t + pc >= MAX_CAP || t >= (bounds >>> SWIDTH)) {
1501 dl 1.307 Predicate<? super ForkJoinPool> sat;
1502     if ((sat = saturate) != null && sat.test(this))
1503 dl 1.300 return -1;
1504     else if (bc < pc) { // lagging
1505     Thread.yield(); // for retry spins
1506     return 0;
1507 dl 1.243 }
1508     else
1509 dl 1.300 throw new RejectedExecutionException(
1510     "Thread limit exceeded replacing blocked worker");
1511 dl 1.200 }
1512 dl 1.177 }
1513 dl 1.243 }
1514 dl 1.300
1515     long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK); // expand pool
1516 dl 1.314 return CTL.compareAndSet(this, c, nc) && createWorker() ? 1 : 0;
1517 dl 1.243 }
1518    
1519     /**
1520     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1521 dl 1.300 * See above for explanation.
1522 dl 1.243 */
1523     final void runWorker(WorkQueue w) {
1524 dl 1.300 WorkQueue[] ws;
1525 dl 1.243 w.growArray(); // allocate queue
1526 dl 1.300 int r = w.id ^ ThreadLocalRandom.nextSecondarySeed();
1527     if (r == 0) // initial nonzero seed
1528     r = 1;
1529     int lastSignalId = 0; // avoid unneeded signals
1530     while ((ws = workQueues) != null) {
1531     boolean nonempty = false; // scan
1532     for (int n = ws.length, j = n, m = n - 1; j > 0; --j) {
1533     WorkQueue q; int i, b, al; ForkJoinTask<?>[] a;
1534     if ((i = r & m) >= 0 && i < n && // always true
1535     (q = ws[i]) != null && (b = q.base) - q.top < 0 &&
1536 dl 1.243 (a = q.array) != null && (al = a.length) > 0) {
1537 dl 1.300 int qid = q.id; // (never zero)
1538 dl 1.256 int index = (al - 1) & b;
1539 dl 1.243 ForkJoinTask<?> t = (ForkJoinTask<?>)
1540 dl 1.316 QA.getAcquire(a, index);
1541 dl 1.300 if (t != null && b++ == q.base &&
1542 dl 1.314 QA.compareAndSet(a, index, t, null)) {
1543 dl 1.300 if ((q.base = b) - q.top < 0 && qid != lastSignalId)
1544     signalWork(); // propagate signal
1545     w.source = lastSignalId = qid;
1546     t.doExec();
1547     if ((w.id & FIFO) != 0) // run remaining locals
1548     w.localPollAndExec(POLL_LIMIT);
1549     else
1550     w.localPopAndExec(POLL_LIMIT);
1551     ForkJoinWorkerThread thread = w.owner;
1552     ++w.nsteals;
1553     w.source = 0; // now idle
1554     if (thread != null)
1555     thread.afterTopLevelExec();
1556 dl 1.243 }
1557 dl 1.300 nonempty = true;
1558 dl 1.178 }
1559 dl 1.300 else if (nonempty)
1560 dl 1.243 break;
1561 dl 1.300 else
1562     ++r;
1563 dl 1.120 }
1564 dl 1.178
1565 dl 1.300 if (nonempty) { // move (xorshift)
1566     r ^= r << 13; r ^= r >>> 17; r ^= r << 5;
1567     }
1568     else {
1569     int phase;
1570     lastSignalId = 0; // clear for next scan
1571     if ((phase = w.phase) >= 0) { // enqueue
1572     int np = w.phase = (phase + SS_SEQ) | UNSIGNALLED;
1573     long c, nc;
1574     do {
1575     w.stackPred = (int)(c = ctl);
1576     nc = ((c - RC_UNIT) & UC_MASK) | (SP_MASK & np);
1577 jsr166 1.325 } while (!CTL.weakCompareAndSet(this, c, nc));
1578 dl 1.300 }
1579     else { // already queued
1580     int pred = w.stackPred;
1581     w.source = DORMANT; // enable signal
1582     for (int steps = 0;;) {
1583     int md, rc; long c;
1584     if (w.phase >= 0) {
1585     w.source = 0;
1586     break;
1587     }
1588     else if ((md = mode) < 0) // shutting down
1589     return;
1590     else if ((rc = ((md & SMASK) + // possibly quiescent
1591     (int)((c = ctl) >> RC_SHIFT))) <= 0 &&
1592     (md & SHUTDOWN) != 0 &&
1593     tryTerminate(false, false))
1594     return; // help terminate
1595     else if ((++steps & 1) == 0)
1596     Thread.interrupted(); // clear between parks
1597     else if (rc <= 0 && pred != 0 && phase == (int)c) {
1598     long d = keepAlive + System.currentTimeMillis();
1599     LockSupport.parkUntil(this, d);
1600     if (ctl == c &&
1601     d - System.currentTimeMillis() <= TIMEOUT_SLOP) {
1602     long nc = ((UC_MASK & (c - TC_UNIT)) |
1603     (SP_MASK & pred));
1604 dl 1.314 if (CTL.compareAndSet(this, c, nc)) {
1605 dl 1.300 w.phase = QUIET;
1606     return; // drop on timeout
1607     }
1608     }
1609     }
1610     else
1611     LockSupport.park(this);
1612     }
1613     }
1614     }
1615     }
1616     }
1617 dl 1.200
1618 dl 1.305 /**
1619     * Helps and/or blocks until the given task is done or timeout.
1620     * First tries locally helping, then scans other queues for a task
1621     * produced by one of w's stealers; compensating and blocking if
1622     * none are found (rescanning if tryCompensate fails).
1623     *
1624     * @param w caller
1625     * @param task the task
1626     * @param deadline for timed waits, if nonzero
1627     * @return task status on exit
1628     */
1629 dl 1.300 final int awaitJoin(WorkQueue w, ForkJoinTask<?> task, long deadline) {
1630     int s = 0;
1631     if (w != null && task != null &&
1632     (!(task instanceof CountedCompleter) ||
1633     (s = w.localHelpCC((CountedCompleter<?>)task, 0)) >= 0)) {
1634     w.tryRemoveAndExec(task);
1635     int src = w.source, id = w.id;
1636     s = task.status;
1637     while (s >= 0) {
1638     WorkQueue[] ws;
1639     boolean nonempty = false;
1640     int r = ThreadLocalRandom.nextSecondarySeed() | 1; // odd indices
1641     if ((ws = workQueues) != null) { // scan for matching id
1642     for (int n = ws.length, m = n - 1, j = -n; j < n; j += 2) {
1643     WorkQueue q; int i, b, al; ForkJoinTask<?>[] a;
1644     if ((i = (r + j) & m) >= 0 && i < n &&
1645     (q = ws[i]) != null && q.source == id &&
1646     (b = q.base) - q.top < 0 &&
1647     (a = q.array) != null && (al = a.length) > 0) {
1648     int qid = q.id;
1649     int index = (al - 1) & b;
1650     ForkJoinTask<?> t = (ForkJoinTask<?>)
1651 dl 1.316 QA.getAcquire(a, index);
1652 dl 1.300 if (t != null && b++ == q.base && id == q.source &&
1653 dl 1.314 QA.compareAndSet(a, index, t, null)) {
1654 dl 1.300 q.base = b;
1655     w.source = qid;
1656     t.doExec();
1657     w.source = src;
1658     }
1659     nonempty = true;
1660 dl 1.200 break;
1661 dl 1.300 }
1662 dl 1.200 }
1663 dl 1.300 }
1664     if ((s = task.status) < 0)
1665     break;
1666     else if (!nonempty) {
1667     long ms, ns; int block;
1668     if (deadline == 0L)
1669     ms = 0L; // untimed
1670     else if ((ns = deadline - System.nanoTime()) <= 0L)
1671     break; // timeout
1672     else if ((ms = TimeUnit.NANOSECONDS.toMillis(ns)) <= 0L)
1673     ms = 1L; // avoid 0 for timed wait
1674     if ((block = tryCompensate(w)) != 0) {
1675     task.internalWait(ms);
1676 dl 1.314 CTL.getAndAdd(this, (block > 0) ? RC_UNIT : 0L);
1677 dl 1.200 }
1678 dl 1.300 s = task.status;
1679 dl 1.200 }
1680 dl 1.178 }
1681     }
1682 dl 1.200 return s;
1683 dl 1.120 }
1684    
1685     /**
1686 dl 1.300 * Runs tasks until {@code isQuiescent()}. Rather than blocking
1687     * when tasks cannot be found, rescans until all others cannot
1688     * find tasks either.
1689 dl 1.78 */
1690 dl 1.300 final void helpQuiescePool(WorkQueue w) {
1691     int prevSrc = w.source, fifo = w.id & FIFO;
1692     for (int source = prevSrc, released = -1;;) { // -1 until known
1693     WorkQueue[] ws;
1694     if (fifo != 0)
1695     w.localPollAndExec(0);
1696     else
1697     w.localPopAndExec(0);
1698     if (released == -1 && w.phase >= 0)
1699     released = 1;
1700     boolean quiet = true, empty = true;
1701     int r = ThreadLocalRandom.nextSecondarySeed();
1702     if ((ws = workQueues) != null) {
1703     for (int n = ws.length, j = n, m = n - 1; j > 0; --j) {
1704     WorkQueue q; int i, b, al; ForkJoinTask<?>[] a;
1705     if ((i = (r - j) & m) >= 0 && i < n && (q = ws[i]) != null) {
1706     if ((b = q.base) - q.top < 0 &&
1707     (a = q.array) != null && (al = a.length) > 0) {
1708     int qid = q.id;
1709     if (released == 0) { // increment
1710     released = 1;
1711 dl 1.314 CTL.getAndAdd(this, RC_UNIT);
1712 dl 1.95 }
1713 dl 1.256 int index = (al - 1) & b;
1714 dl 1.300 ForkJoinTask<?> t = (ForkJoinTask<?>)
1715 dl 1.316 QA.getAcquire(a, index);
1716 dl 1.300 if (t != null && b++ == q.base &&
1717 dl 1.314 QA.compareAndSet(a, index, t, null)) {
1718 dl 1.300 q.base = b;
1719     w.source = source = q.id;
1720     t.doExec();
1721     w.source = source = prevSrc;
1722 dl 1.243 }
1723 dl 1.300 quiet = empty = false;
1724 dl 1.200 break;
1725 dl 1.95 }
1726 dl 1.300 else if ((q.source & QUIET) == 0)
1727     quiet = false;
1728 dl 1.52 }
1729 dl 1.19 }
1730 dl 1.243 }
1731 dl 1.300 if (quiet) {
1732     if (released == 0)
1733 dl 1.314 CTL.getAndAdd(this, RC_UNIT);
1734 dl 1.300 w.source = prevSrc;
1735     break;
1736     }
1737     else if (empty) {
1738     if (source != QUIET)
1739     w.source = source = QUIET;
1740     if (released == 1) { // decrement
1741     released = 0;
1742 dl 1.314 CTL.getAndAdd(this, RC_MASK & -RC_UNIT);
1743 dl 1.300 }
1744     }
1745 dl 1.14 }
1746 dl 1.22 }
1747    
1748 dl 1.52 /**
1749 dl 1.300 * Scans for and returns a polled task, if available.
1750     * Used only for untracked polls.
1751 dl 1.105 *
1752 dl 1.300 * @param submissionsOnly if true, only scan submission queues
1753 dl 1.19 */
1754 dl 1.300 private ForkJoinTask<?> pollScan(boolean submissionsOnly) {
1755     WorkQueue[] ws; int n;
1756     rescan: while ((mode & STOP) == 0 && (ws = workQueues) != null &&
1757     (n = ws.length) > 0) {
1758     int m = n - 1;
1759     int r = ThreadLocalRandom.nextSecondarySeed();
1760     int h = r >>> 16;
1761     int origin, step;
1762     if (submissionsOnly) {
1763     origin = (r & ~1) & m; // even indices and steps
1764     step = (h & ~1) | 2;
1765     }
1766     else {
1767     origin = r & m;
1768     step = h | 1;
1769     }
1770     for (int k = origin, oldSum = 0, checkSum = 0;;) {
1771     WorkQueue q; int b, al; ForkJoinTask<?>[] a;
1772     if ((q = ws[k]) != null) {
1773     checkSum += b = q.base;
1774     if (b - q.top < 0 &&
1775     (a = q.array) != null && (al = a.length) > 0) {
1776     int index = (al - 1) & b;
1777     ForkJoinTask<?> t = (ForkJoinTask<?>)
1778 dl 1.316 QA.getAcquire(a, index);
1779 dl 1.300 if (t != null && b++ == q.base &&
1780 dl 1.314 QA.compareAndSet(a, index, t, null)) {
1781 dl 1.300 q.base = b;
1782     return t;
1783     }
1784     else
1785     break; // restart
1786     }
1787     }
1788     if ((k = (k + step) & m) == origin) {
1789     if (oldSum == (oldSum = checkSum))
1790     break rescan;
1791     checkSum = 0;
1792 dl 1.178 }
1793 dl 1.52 }
1794 dl 1.90 }
1795 dl 1.300 return null;
1796     }
1797    
1798     /**
1799     * Gets and removes a local or stolen task for the given worker.
1800     *
1801     * @return a task, if available
1802     */
1803     final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
1804     ForkJoinTask<?> t;
1805     if (w != null &&
1806     (t = (w.id & FIFO) != 0 ? w.poll() : w.pop()) != null)
1807     return t;
1808     else
1809     return pollScan(false);
1810 dl 1.90 }
1811    
1812 dl 1.300 // External operations
1813    
1814 dl 1.90 /**
1815 dl 1.300 * Adds the given task to a submission queue at submitter's
1816     * current queue, creating one if null or contended.
1817 dl 1.90 *
1818 dl 1.300 * @param task the task. Caller must ensure non-null.
1819 dl 1.90 */
1820 dl 1.300 final void externalPush(ForkJoinTask<?> task) {
1821     int r; // initialize caller's probe
1822     if ((r = ThreadLocalRandom.getProbe()) == 0) {
1823     ThreadLocalRandom.localInit();
1824     r = ThreadLocalRandom.getProbe();
1825     }
1826     for (;;) {
1827     int md = mode, n;
1828     WorkQueue[] ws = workQueues;
1829     if ((md & SHUTDOWN) != 0 || ws == null || (n = ws.length) <= 0)
1830     throw new RejectedExecutionException();
1831     else {
1832     WorkQueue q;
1833     boolean push = false, grow = false;
1834     if ((q = ws[(n - 1) & r & SQMASK]) == null) {
1835     Object lock = workerNamePrefix;
1836     int qid = (r | QUIET) & ~(FIFO | OWNED);
1837     q = new WorkQueue(this, null);
1838     q.id = qid;
1839     q.source = QUIET;
1840     q.phase = QLOCK; // lock queue
1841     if (lock != null) {
1842 jsr166 1.301 synchronized (lock) { // lock pool to install
1843 dl 1.300 int i;
1844     if ((ws = workQueues) != null &&
1845     (n = ws.length) > 0 &&
1846     ws[i = qid & (n - 1) & SQMASK] == null) {
1847     ws[i] = q;
1848     push = grow = true;
1849     }
1850     }
1851     }
1852     }
1853     else if (q.tryLockSharedQueue()) {
1854     int b = q.base, s = q.top, al, d; ForkJoinTask<?>[] a;
1855     if ((a = q.array) != null && (al = a.length) > 0 &&
1856     al - 1 + (d = b - s) > 0) {
1857     a[(al - 1) & s] = task;
1858     q.top = s + 1; // relaxed writes OK here
1859     q.phase = 0;
1860 dl 1.311 if (d < 0 && q.base - s < -1)
1861 dl 1.300 break; // no signal needed
1862     }
1863 dl 1.243 else
1864 dl 1.300 grow = true;
1865     push = true;
1866     }
1867     if (push) {
1868     if (grow) {
1869     try {
1870     q.growArray();
1871     int s = q.top, al; ForkJoinTask<?>[] a;
1872     if ((a = q.array) != null && (al = a.length) > 0) {
1873     a[(al - 1) & s] = task;
1874     q.top = s + 1;
1875     }
1876     } finally {
1877     q.phase = 0;
1878     }
1879 dl 1.243 }
1880 dl 1.300 signalWork();
1881     break;
1882 dl 1.90 }
1883 dl 1.300 else // move if busy
1884     r = ThreadLocalRandom.advanceProbe(r);
1885 dl 1.90 }
1886     }
1887     }
1888    
1889 dl 1.300 /**
1890     * Pushes a possibly-external submission.
1891     */
1892     private <T> ForkJoinTask<T> externalSubmit(ForkJoinTask<T> task) {
1893     Thread t; ForkJoinWorkerThread w; WorkQueue q;
1894     if (task == null)
1895     throw new NullPointerException();
1896     if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) &&
1897     (w = (ForkJoinWorkerThread)t).pool == this &&
1898     (q = w.workQueue) != null)
1899     q.push(task);
1900     else
1901     externalPush(task);
1902     return task;
1903     }
1904    
1905     /**
1906     * Returns common pool queue for an external thread.
1907     */
1908     static WorkQueue commonSubmitterQueue() {
1909     ForkJoinPool p = common;
1910     int r = ThreadLocalRandom.getProbe();
1911     WorkQueue[] ws; int n;
1912     return (p != null && (ws = p.workQueues) != null &&
1913     (n = ws.length) > 0) ?
1914     ws[(n - 1) & r & SQMASK] : null;
1915     }
1916 dl 1.90
1917     /**
1918 dl 1.300 * Performs tryUnpush for an external submitter.
1919     */
1920     final boolean tryExternalUnpush(ForkJoinTask<?> task) {
1921     int r = ThreadLocalRandom.getProbe();
1922     WorkQueue[] ws; WorkQueue w; int n;
1923     return ((ws = workQueues) != null &&
1924     (n = ws.length) > 0 &&
1925     (w = ws[(n - 1) & r & SQMASK]) != null &&
1926     w.trySharedUnpush(task));
1927 dl 1.22 }
1928    
1929     /**
1930 dl 1.300 * Performs helpComplete for an external submitter.
1931 dl 1.78 */
1932 dl 1.300 final int externalHelpComplete(CountedCompleter<?> task, int maxTasks) {
1933     int r = ThreadLocalRandom.getProbe();
1934     WorkQueue[] ws; WorkQueue w; int n;
1935     return ((ws = workQueues) != null && (n = ws.length) > 0 &&
1936     (w = ws[(n - 1) & r & SQMASK]) != null) ?
1937     w.sharedHelpCC(task, maxTasks) : 0;
1938 dl 1.22 }
1939    
1940     /**
1941 dl 1.300 * Tries to steal and run tasks within the target's computation.
1942     * The maxTasks argument supports external usages; internal calls
1943     * use zero, allowing unbounded steps (external calls trap
1944     * non-positive values).
1945 dl 1.78 *
1946 dl 1.300 * @param w caller
1947     * @param maxTasks if non-zero, the maximum number of other tasks to run
1948     * @return task status on exit
1949 dl 1.22 */
1950 dl 1.300 final int helpComplete(WorkQueue w, CountedCompleter<?> task,
1951     int maxTasks) {
1952     return (w == null) ? 0 : w.localHelpCC(task, maxTasks);
1953 dl 1.14 }
1954    
1955     /**
1956 dl 1.105 * Returns a cheap heuristic guide for task partitioning when
1957     * programmers, frameworks, tools, or languages have little or no
1958 jsr166 1.222 * idea about task granularity. In essence, by offering this
1959 dl 1.105 * method, we ask users only about tradeoffs in overhead vs
1960     * expected throughput and its variance, rather than how finely to
1961     * partition tasks.
1962     *
1963     * In a steady state strict (tree-structured) computation, each
1964     * thread makes available for stealing enough tasks for other
1965     * threads to remain active. Inductively, if all threads play by
1966     * the same rules, each thread should make available only a
1967     * constant number of tasks.
1968     *
1969     * The minimum useful constant is just 1. But using a value of 1
1970     * would require immediate replenishment upon each steal to
1971     * maintain enough tasks, which is infeasible. Further,
1972     * partitionings/granularities of offered tasks should minimize
1973     * steal rates, which in general means that threads nearer the top
1974     * of computation tree should generate more than those nearer the
1975     * bottom. In perfect steady state, each thread is at
1976     * approximately the same level of computation tree. However,
1977     * producing extra tasks amortizes the uncertainty of progress and
1978     * diffusion assumptions.
1979     *
1980 jsr166 1.161 * So, users will want to use values larger (but not much larger)
1981 dl 1.105 * than 1 to both smooth over transient shortages and hedge
1982     * against uneven progress; as traded off against the cost of
1983     * extra task overhead. We leave the user to pick a threshold
1984     * value to compare with the results of this call to guide
1985     * decisions, but recommend values such as 3.
1986     *
1987     * When all threads are active, it is on average OK to estimate
1988     * surplus strictly locally. In steady-state, if one thread is
1989     * maintaining say 2 surplus tasks, then so are others. So we can
1990     * just use estimated queue length. However, this strategy alone
1991     * leads to serious mis-estimates in some non-steady-state
1992     * conditions (ramp-up, ramp-down, other stalls). We can detect
1993     * many of these by further considering the number of "idle"
1994     * threads, that are known to have zero queued tasks, so
1995     * compensate by a factor of (#idle/#active) threads.
1996     */
1997     static int getSurplusQueuedTaskCount() {
1998     Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
1999 dl 1.300 if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) &&
2000     (pool = (wt = (ForkJoinWorkerThread)t).pool) != null &&
2001     (q = wt.workQueue) != null) {
2002     int p = pool.mode & SMASK;
2003     int a = p + (int)(pool.ctl >> RC_SHIFT);
2004     int n = q.top - q.base;
2005 dl 1.112 return n - (a > (p >>>= 1) ? 0 :
2006     a > (p >>>= 1) ? 1 :
2007     a > (p >>>= 1) ? 2 :
2008     a > (p >>>= 1) ? 4 :
2009     8);
2010 dl 1.105 }
2011     return 0;
2012 dl 1.100 }
2013    
2014 dl 1.300 // Termination
2015 dl 1.14
2016     /**
2017 dl 1.210 * Possibly initiates and/or completes termination.
2018 dl 1.14 *
2019     * @param now if true, unconditionally terminate, else only
2020 dl 1.78 * if no work and no active workers
2021 dl 1.243 * @param enable if true, terminate when next possible
2022 dl 1.300 * @return true if terminating or terminated
2023 jsr166 1.1 */
2024 dl 1.300 private boolean tryTerminate(boolean now, boolean enable) {
2025     int md; // 3 phases: try to set SHUTDOWN, then STOP, then TERMINATED
2026 dl 1.289
2027 dl 1.300 while (((md = mode) & SHUTDOWN) == 0) {
2028 dl 1.294 if (!enable || this == common) // cannot shutdown
2029 dl 1.300 return false;
2030 dl 1.294 else
2031 dl 1.314 MODE.compareAndSet(this, md, md | SHUTDOWN);
2032 dl 1.289 }
2033    
2034 dl 1.300 while (((md = mode) & STOP) == 0) { // try to initiate termination
2035     if (!now) { // check if quiescent & empty
2036 dl 1.211 for (long oldSum = 0L;;) { // repeat until stable
2037 dl 1.300 boolean running = false;
2038 dl 1.210 long checkSum = ctl;
2039 dl 1.300 WorkQueue[] ws = workQueues;
2040     if ((md & SMASK) + (int)(checkSum >> RC_SHIFT) > 0)
2041     running = true;
2042     else if (ws != null) {
2043     WorkQueue w; int b;
2044 dl 1.289 for (int i = 0; i < ws.length; ++i) {
2045     if ((w = ws[i]) != null) {
2046 dl 1.300 checkSum += (b = w.base) + w.id;
2047     if (b != w.top ||
2048     ((i & 1) == 1 && w.source >= 0)) {
2049     running = true;
2050     break;
2051     }
2052 dl 1.289 }
2053 dl 1.206 }
2054 dl 1.203 }
2055 dl 1.300 if (((md = mode) & STOP) != 0)
2056     break; // already triggered
2057     else if (running)
2058     return false;
2059     else if (workQueues == ws && oldSum == (oldSum = checkSum))
2060 dl 1.210 break;
2061 dl 1.203 }
2062     }
2063 dl 1.300 if ((md & STOP) == 0)
2064 dl 1.314 MODE.compareAndSet(this, md, md | STOP);
2065 dl 1.200 }
2066 dl 1.210
2067 dl 1.300 while (((md = mode) & TERMINATED) == 0) { // help terminate others
2068     for (long oldSum = 0L;;) { // repeat until stable
2069     WorkQueue[] ws; WorkQueue w;
2070     long checkSum = ctl;
2071     if ((ws = workQueues) != null) {
2072     for (int i = 0; i < ws.length; ++i) {
2073     if ((w = ws[i]) != null) {
2074     ForkJoinWorkerThread wt = w.owner;
2075     w.cancelAll(); // clear queues
2076     if (wt != null) {
2077 dl 1.289 try { // unblock join or park
2078 dl 1.210 wt.interrupt();
2079     } catch (Throwable ignore) {
2080 dl 1.200 }
2081     }
2082 dl 1.300 checkSum += w.base + w.id;
2083 dl 1.200 }
2084 dl 1.101 }
2085 dl 1.78 }
2086 dl 1.300 if (((md = mode) & TERMINATED) != 0 ||
2087     (workQueues == ws && oldSum == (oldSum = checkSum)))
2088     break;
2089 dl 1.78 }
2090 dl 1.300 if ((md & TERMINATED) != 0)
2091     break;
2092     else if ((md & SMASK) + (short)(ctl >>> TC_SHIFT) > 0)
2093 dl 1.210 break;
2094 dl 1.314 else if (MODE.compareAndSet(this, md, md | TERMINATED)) {
2095 dl 1.300 synchronized (this) {
2096     notifyAll(); // for awaitTermination
2097 dl 1.243 }
2098 dl 1.256 break;
2099 dl 1.200 }
2100 dl 1.52 }
2101 dl 1.300 return true;
2102 dl 1.105 }
2103    
2104 dl 1.52 // Exported methods
2105 jsr166 1.1
2106     // Constructors
2107    
2108     /**
2109 jsr166 1.9 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2110 dl 1.300 * java.lang.Runtime#availableProcessors}, using defaults for all
2111 dl 1.319 * other parameters (see {@link #ForkJoinPool(int,
2112     * ForkJoinWorkerThreadFactory, UncaughtExceptionHandler, boolean,
2113     * int, int, int, Predicate, long, TimeUnit)}).
2114 jsr166 1.1 *
2115     * @throws SecurityException if a security manager exists and
2116     * the caller is not permitted to modify threads
2117     * because it does not hold {@link
2118     * java.lang.RuntimePermission}{@code ("modifyThread")}
2119     */
2120     public ForkJoinPool() {
2121 jsr166 1.148 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2122 dl 1.300 defaultForkJoinWorkerThreadFactory, null, false,
2123 dl 1.307 0, MAX_CAP, 1, null, DEFAULT_KEEPALIVE, TimeUnit.MILLISECONDS);
2124 jsr166 1.1 }
2125    
2126     /**
2127 jsr166 1.9 * Creates a {@code ForkJoinPool} with the indicated parallelism
2128 dl 1.319 * level, using defaults for all other parameters (see {@link
2129     * #ForkJoinPool(int, ForkJoinWorkerThreadFactory,
2130     * UncaughtExceptionHandler, boolean, int, int, int, Predicate,
2131     * long, TimeUnit)}).
2132 jsr166 1.1 *
2133 jsr166 1.9 * @param parallelism the parallelism level
2134 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
2135 jsr166 1.11 * equal to zero, or greater than implementation limit
2136 jsr166 1.1 * @throws SecurityException if a security manager exists and
2137     * the caller is not permitted to modify threads
2138     * because it does not hold {@link
2139     * java.lang.RuntimePermission}{@code ("modifyThread")}
2140     */
2141     public ForkJoinPool(int parallelism) {
2142 dl 1.300 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false,
2143 dl 1.307 0, MAX_CAP, 1, null, DEFAULT_KEEPALIVE, TimeUnit.MILLISECONDS);
2144 jsr166 1.1 }
2145    
2146     /**
2147 dl 1.300 * Creates a {@code ForkJoinPool} with the given parameters (using
2148 dl 1.319 * defaults for others -- see {@link #ForkJoinPool(int,
2149     * ForkJoinWorkerThreadFactory, UncaughtExceptionHandler, boolean,
2150     * int, int, int, Predicate, long, TimeUnit)}).
2151 jsr166 1.1 *
2152 dl 1.18 * @param parallelism the parallelism level. For default value,
2153     * use {@link java.lang.Runtime#availableProcessors}.
2154     * @param factory the factory for creating new threads. For default value,
2155     * use {@link #defaultForkJoinWorkerThreadFactory}.
2156 dl 1.19 * @param handler the handler for internal worker threads that
2157     * terminate due to unrecoverable errors encountered while executing
2158 jsr166 1.31 * tasks. For default value, use {@code null}.
2159 dl 1.19 * @param asyncMode if true,
2160 dl 1.18 * establishes local first-in-first-out scheduling mode for forked
2161     * tasks that are never joined. This mode may be more appropriate
2162     * than default locally stack-based mode in applications in which
2163     * worker threads only process event-style asynchronous tasks.
2164 jsr166 1.31 * For default value, use {@code false}.
2165 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
2166 jsr166 1.11 * equal to zero, or greater than implementation limit
2167     * @throws NullPointerException if the factory is null
2168 jsr166 1.1 * @throws SecurityException if a security manager exists and
2169     * the caller is not permitted to modify threads
2170     * because it does not hold {@link
2171     * java.lang.RuntimePermission}{@code ("modifyThread")}
2172     */
2173 dl 1.19 public ForkJoinPool(int parallelism,
2174 dl 1.18 ForkJoinWorkerThreadFactory factory,
2175 jsr166 1.156 UncaughtExceptionHandler handler,
2176 dl 1.18 boolean asyncMode) {
2177 dl 1.300 this(parallelism, factory, handler, asyncMode,
2178 dl 1.307 0, MAX_CAP, 1, null, DEFAULT_KEEPALIVE, TimeUnit.MILLISECONDS);
2179 dl 1.152 }
2180    
2181 dl 1.300 /**
2182     * Creates a {@code ForkJoinPool} with the given parameters.
2183     *
2184     * @param parallelism the parallelism level. For default value,
2185     * use {@link java.lang.Runtime#availableProcessors}.
2186     *
2187     * @param factory the factory for creating new threads. For
2188     * default value, use {@link #defaultForkJoinWorkerThreadFactory}.
2189     *
2190     * @param handler the handler for internal worker threads that
2191     * terminate due to unrecoverable errors encountered while
2192     * executing tasks. For default value, use {@code null}.
2193     *
2194     * @param asyncMode if true, establishes local first-in-first-out
2195     * scheduling mode for forked tasks that are never joined. This
2196     * mode may be more appropriate than default locally stack-based
2197     * mode in applications in which worker threads only process
2198     * event-style asynchronous tasks. For default value, use {@code
2199     * false}.
2200     *
2201     * @param corePoolSize the number of threads to keep in the pool
2202     * (unless timed out after an elapsed keep-alive). Normally (and
2203     * by default) this is the same value as the parallelism level,
2204     * but may be set to a larger value to reduce dynamic overhead if
2205     * tasks regularly block. Using a smaller value (for example
2206     * {@code 0}) has the same effect as the default.
2207     *
2208     * @param maximumPoolSize the maximum number of threads allowed.
2209     * When the maximum is reached, attempts to replace blocked
2210     * threads fail. (However, because creation and termination of
2211     * different threads may overlap, and may be managed by the given
2212 dl 1.307 * thread factory, this value may be transiently exceeded.) To
2213     * arrange the same value as is used by default for the common
2214 dl 1.319 * pool, use {@code 256} plus the {@code parallelism} level. (By
2215     * default, the common pool allows a maximum of 256 spare
2216     * threads.) Using a value (for example {@code
2217     * Integer.MAX_VALUE}) larger than the implementation's total
2218     * thread limit has the same effect as using this limit (which is
2219     * the default).
2220 dl 1.300 *
2221     * @param minimumRunnable the minimum allowed number of core
2222     * threads not blocked by a join or {@link ManagedBlocker}. To
2223     * ensure progress, when too few unblocked threads exist and
2224     * unexecuted tasks may exist, new threads are constructed, up to
2225     * the given maximumPoolSize. For the default value, use {@code
2226     * 1}, that ensures liveness. A larger value might improve
2227     * throughput in the presence of blocked activities, but might
2228     * not, due to increased overhead. A value of zero may be
2229     * acceptable when submitted tasks cannot have dependencies
2230     * requiring additional threads.
2231     *
2232 jsr166 1.318 * @param saturate if non-null, a predicate invoked upon attempts
2233 dl 1.307 * to create more than the maximum total allowed threads. By
2234     * default, when a thread is about to block on a join or {@link
2235     * ManagedBlocker}, but cannot be replaced because the
2236     * maximumPoolSize would be exceeded, a {@link
2237     * RejectedExecutionException} is thrown. But if this predicate
2238     * returns {@code true}, then no exception is thrown, so the pool
2239     * continues to operate with fewer than the target number of
2240     * runnable threads, which might not ensure progress.
2241 dl 1.300 *
2242     * @param keepAliveTime the elapsed time since last use before
2243     * a thread is terminated (and then later replaced if needed).
2244     * For the default value, use {@code 60, TimeUnit.SECONDS}.
2245     *
2246     * @param unit the time unit for the {@code keepAliveTime} argument
2247     *
2248     * @throws IllegalArgumentException if parallelism is less than or
2249     * equal to zero, or is greater than implementation limit,
2250     * or if maximumPoolSize is less than parallelism,
2251     * of if the keepAliveTime is less than or equal to zero.
2252     * @throws NullPointerException if the factory is null
2253     * @throws SecurityException if a security manager exists and
2254     * the caller is not permitted to modify threads
2255     * because it does not hold {@link
2256     * java.lang.RuntimePermission}{@code ("modifyThread")}
2257 jsr166 1.306 * @since 9
2258 dl 1.300 */
2259     public ForkJoinPool(int parallelism,
2260     ForkJoinWorkerThreadFactory factory,
2261     UncaughtExceptionHandler handler,
2262     boolean asyncMode,
2263     int corePoolSize,
2264     int maximumPoolSize,
2265     int minimumRunnable,
2266 dl 1.307 Predicate<? super ForkJoinPool> saturate,
2267 dl 1.300 long keepAliveTime,
2268     TimeUnit unit) {
2269     // check, encode, pack parameters
2270     if (parallelism <= 0 || parallelism > MAX_CAP ||
2271     maximumPoolSize < parallelism || keepAliveTime <= 0L)
2272 dl 1.152 throw new IllegalArgumentException();
2273 dl 1.14 if (factory == null)
2274     throw new NullPointerException();
2275 dl 1.300 long ms = Math.max(unit.toMillis(keepAliveTime), TIMEOUT_SLOP);
2276    
2277     String prefix = "ForkJoinPool-" + nextPoolId() + "-worker-";
2278     int corep = Math.min(Math.max(corePoolSize, parallelism), MAX_CAP);
2279     long c = ((((long)(-corep) << TC_SHIFT) & TC_MASK) |
2280     (((long)(-parallelism) << RC_SHIFT) & RC_MASK));
2281 dl 1.307 int m = parallelism | (asyncMode ? FIFO : 0);
2282 dl 1.300 int maxSpares = Math.min(maximumPoolSize, MAX_CAP) - parallelism;
2283     int minAvail = Math.min(Math.max(minimumRunnable, 0), MAX_CAP);
2284     int b = ((minAvail - parallelism) & SMASK) | (maxSpares << SWIDTH);
2285     int n = (parallelism > 1) ? parallelism - 1 : 1; // at least 2 slots
2286     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
2287     n = (n + 1) << 1; // power of two, including space for submission queues
2288    
2289     this.workQueues = new WorkQueue[n];
2290     this.workerNamePrefix = prefix;
2291     this.factory = factory;
2292     this.ueh = handler;
2293 dl 1.307 this.saturate = saturate;
2294 dl 1.300 this.keepAlive = ms;
2295     this.bounds = b;
2296     this.mode = m;
2297     this.ctl = c;
2298     checkPermission();
2299 dl 1.152 }
2300    
2301     /**
2302 dl 1.300 * Constructor for common pool using parameters possibly
2303     * overridden by system properties
2304     */
2305 jsr166 1.313 @SuppressWarnings("deprecation") // Class.newInstance
2306 dl 1.300 private ForkJoinPool(byte forCommonPoolOnly) {
2307     int parallelism = -1;
2308     ForkJoinWorkerThreadFactory fac = null;
2309     UncaughtExceptionHandler handler = null;
2310     try { // ignore exceptions in accessing/parsing properties
2311     String pp = System.getProperty
2312     ("java.util.concurrent.ForkJoinPool.common.parallelism");
2313     String fp = System.getProperty
2314     ("java.util.concurrent.ForkJoinPool.common.threadFactory");
2315     String hp = System.getProperty
2316     ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
2317     if (pp != null)
2318     parallelism = Integer.parseInt(pp);
2319     if (fp != null)
2320     fac = ((ForkJoinWorkerThreadFactory)ClassLoader.
2321     getSystemClassLoader().loadClass(fp).newInstance());
2322     if (hp != null)
2323     handler = ((UncaughtExceptionHandler)ClassLoader.
2324     getSystemClassLoader().loadClass(hp).newInstance());
2325     } catch (Exception ignore) {
2326     }
2327    
2328     if (fac == null) {
2329     if (System.getSecurityManager() == null)
2330     fac = defaultForkJoinWorkerThreadFactory;
2331     else // use security-managed default
2332     fac = new InnocuousForkJoinWorkerThreadFactory();
2333     }
2334     if (parallelism < 0 && // default 1 less than #cores
2335     (parallelism = Runtime.getRuntime().availableProcessors() - 1) <= 0)
2336     parallelism = 1;
2337     if (parallelism > MAX_CAP)
2338     parallelism = MAX_CAP;
2339    
2340     long c = ((((long)(-parallelism) << TC_SHIFT) & TC_MASK) |
2341     (((long)(-parallelism) << RC_SHIFT) & RC_MASK));
2342     int b = ((1 - parallelism) & SMASK) | (COMMON_MAX_SPARES << SWIDTH);
2343     int n = (parallelism > 1) ? parallelism - 1 : 1;
2344     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
2345     n = (n + 1) << 1;
2346    
2347     this.workQueues = new WorkQueue[n];
2348     this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2349     this.factory = fac;
2350 dl 1.18 this.ueh = handler;
2351 dl 1.307 this.saturate = null;
2352 dl 1.300 this.keepAlive = DEFAULT_KEEPALIVE;
2353     this.bounds = b;
2354 dl 1.310 this.mode = parallelism;
2355 dl 1.300 this.ctl = c;
2356 dl 1.101 }
2357    
2358     /**
2359 dl 1.128 * Returns the common pool instance. This pool is statically
2360 dl 1.134 * constructed; its run state is unaffected by attempts to {@link
2361     * #shutdown} or {@link #shutdownNow}. However this pool and any
2362     * ongoing processing are automatically terminated upon program
2363     * {@link System#exit}. Any program that relies on asynchronous
2364     * task processing to complete before program termination should
2365 jsr166 1.158 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2366     * before exit.
2367 dl 1.100 *
2368     * @return the common pool instance
2369 jsr166 1.138 * @since 1.8
2370 dl 1.100 */
2371     public static ForkJoinPool commonPool() {
2372 dl 1.134 // assert common != null : "static init error";
2373     return common;
2374 dl 1.100 }
2375    
2376 jsr166 1.1 // Execution methods
2377    
2378     /**
2379     * Performs the given task, returning its result upon completion.
2380 dl 1.52 * If the computation encounters an unchecked Exception or Error,
2381     * it is rethrown as the outcome of this invocation. Rethrown
2382     * exceptions behave in the same way as regular exceptions, but,
2383     * when possible, contain stack traces (as displayed for example
2384     * using {@code ex.printStackTrace()}) of both the current thread
2385     * as well as the thread actually encountering the exception;
2386     * minimally only the latter.
2387 jsr166 1.1 *
2388     * @param task the task
2389 jsr166 1.191 * @param <T> the type of the task's result
2390 jsr166 1.1 * @return the task's result
2391 jsr166 1.11 * @throws NullPointerException if the task is null
2392     * @throws RejectedExecutionException if the task cannot be
2393     * scheduled for execution
2394 jsr166 1.1 */
2395     public <T> T invoke(ForkJoinTask<T> task) {
2396 dl 1.90 if (task == null)
2397     throw new NullPointerException();
2398 dl 1.243 externalSubmit(task);
2399 dl 1.78 return task.join();
2400 jsr166 1.1 }
2401    
2402     /**
2403     * Arranges for (asynchronous) execution of the given task.
2404     *
2405     * @param task the task
2406 jsr166 1.11 * @throws NullPointerException if the task is null
2407     * @throws RejectedExecutionException if the task cannot be
2408     * scheduled for execution
2409 jsr166 1.1 */
2410 jsr166 1.8 public void execute(ForkJoinTask<?> task) {
2411 dl 1.243 externalSubmit(task);
2412 jsr166 1.1 }
2413    
2414     // AbstractExecutorService methods
2415    
2416 jsr166 1.11 /**
2417     * @throws NullPointerException if the task is null
2418     * @throws RejectedExecutionException if the task cannot be
2419     * scheduled for execution
2420     */
2421 jsr166 1.1 public void execute(Runnable task) {
2422 dl 1.41 if (task == null)
2423     throw new NullPointerException();
2424 jsr166 1.2 ForkJoinTask<?> job;
2425 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2426     job = (ForkJoinTask<?>) task;
2427 jsr166 1.2 else
2428 dl 1.152 job = new ForkJoinTask.RunnableExecuteAction(task);
2429 dl 1.243 externalSubmit(job);
2430 jsr166 1.1 }
2431    
2432 jsr166 1.11 /**
2433 dl 1.18 * Submits a ForkJoinTask for execution.
2434     *
2435     * @param task the task to submit
2436 jsr166 1.191 * @param <T> the type of the task's result
2437 dl 1.18 * @return the task
2438     * @throws NullPointerException if the task is null
2439     * @throws RejectedExecutionException if the task cannot be
2440     * scheduled for execution
2441     */
2442     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2443 dl 1.243 return externalSubmit(task);
2444 dl 1.18 }
2445    
2446     /**
2447 jsr166 1.11 * @throws NullPointerException if the task is null
2448     * @throws RejectedExecutionException if the task cannot be
2449     * scheduled for execution
2450     */
2451 jsr166 1.1 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2452 dl 1.243 return externalSubmit(new ForkJoinTask.AdaptedCallable<T>(task));
2453 jsr166 1.1 }
2454    
2455 jsr166 1.11 /**
2456     * @throws NullPointerException if the task is null
2457     * @throws RejectedExecutionException if the task cannot be
2458     * scheduled for execution
2459     */
2460 jsr166 1.1 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2461 dl 1.243 return externalSubmit(new ForkJoinTask.AdaptedRunnable<T>(task, result));
2462 jsr166 1.1 }
2463    
2464 jsr166 1.11 /**
2465     * @throws NullPointerException if the task is null
2466     * @throws RejectedExecutionException if the task cannot be
2467     * scheduled for execution
2468     */
2469 jsr166 1.1 public ForkJoinTask<?> submit(Runnable task) {
2470 dl 1.41 if (task == null)
2471     throw new NullPointerException();
2472 jsr166 1.2 ForkJoinTask<?> job;
2473 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2474     job = (ForkJoinTask<?>) task;
2475 jsr166 1.2 else
2476 dl 1.90 job = new ForkJoinTask.AdaptedRunnableAction(task);
2477 dl 1.243 return externalSubmit(job);
2478 jsr166 1.1 }
2479    
2480     /**
2481 jsr166 1.11 * @throws NullPointerException {@inheritDoc}
2482     * @throws RejectedExecutionException {@inheritDoc}
2483     */
2484 jsr166 1.1 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2485 dl 1.86 // In previous versions of this class, this method constructed
2486     // a task to run ForkJoinTask.invokeAll, but now external
2487     // invocation of multiple tasks is at least as efficient.
2488 jsr166 1.199 ArrayList<Future<T>> futures = new ArrayList<>(tasks.size());
2489 jsr166 1.1
2490 dl 1.86 try {
2491     for (Callable<T> t : tasks) {
2492 dl 1.90 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2493 jsr166 1.144 futures.add(f);
2494 dl 1.243 externalSubmit(f);
2495 dl 1.86 }
2496 jsr166 1.143 for (int i = 0, size = futures.size(); i < size; i++)
2497     ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2498 dl 1.86 return futures;
2499 jsr166 1.226 } catch (Throwable t) {
2500     for (int i = 0, size = futures.size(); i < size; i++)
2501     futures.get(i).cancel(false);
2502     throw t;
2503 jsr166 1.1 }
2504     }
2505    
2506     /**
2507     * Returns the factory used for constructing new workers.
2508     *
2509     * @return the factory used for constructing new workers
2510     */
2511     public ForkJoinWorkerThreadFactory getFactory() {
2512     return factory;
2513     }
2514    
2515     /**
2516     * Returns the handler for internal worker threads that terminate
2517     * due to unrecoverable errors encountered while executing tasks.
2518     *
2519 jsr166 1.4 * @return the handler, or {@code null} if none
2520 jsr166 1.1 */
2521 jsr166 1.156 public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2522 dl 1.14 return ueh;
2523 jsr166 1.1 }
2524    
2525     /**
2526 jsr166 1.9 * Returns the targeted parallelism level of this pool.
2527 jsr166 1.1 *
2528 jsr166 1.9 * @return the targeted parallelism level of this pool
2529 jsr166 1.1 */
2530     public int getParallelism() {
2531 dl 1.310 int par = mode & SMASK;
2532     return (par > 0) ? par : 1;
2533 jsr166 1.1 }
2534    
2535     /**
2536 dl 1.100 * Returns the targeted parallelism level of the common pool.
2537     *
2538     * @return the targeted parallelism level of the common pool
2539 jsr166 1.138 * @since 1.8
2540 dl 1.100 */
2541     public static int getCommonPoolParallelism() {
2542 jsr166 1.274 return COMMON_PARALLELISM;
2543 dl 1.100 }
2544    
2545     /**
2546 jsr166 1.1 * Returns the number of worker threads that have started but not
2547 jsr166 1.34 * yet terminated. The result returned by this method may differ
2548 jsr166 1.4 * from {@link #getParallelism} when threads are created to
2549 jsr166 1.1 * maintain parallelism when others are cooperatively blocked.
2550     *
2551     * @return the number of worker threads
2552     */
2553     public int getPoolSize() {
2554 dl 1.300 return ((mode & SMASK) + (short)(ctl >>> TC_SHIFT));
2555 jsr166 1.1 }
2556    
2557     /**
2558 jsr166 1.4 * Returns {@code true} if this pool uses local first-in-first-out
2559 jsr166 1.1 * scheduling mode for forked tasks that are never joined.
2560     *
2561 jsr166 1.4 * @return {@code true} if this pool uses async mode
2562 jsr166 1.1 */
2563     public boolean getAsyncMode() {
2564 dl 1.300 return (mode & FIFO) != 0;
2565 jsr166 1.1 }
2566    
2567     /**
2568     * Returns an estimate of the number of worker threads that are
2569     * not blocked waiting to join tasks or for other managed
2570 dl 1.14 * synchronization. This method may overestimate the
2571     * number of running threads.
2572 jsr166 1.1 *
2573     * @return the number of worker threads
2574     */
2575     public int getRunningThreadCount() {
2576 dl 1.78 int rc = 0;
2577     WorkQueue[] ws; WorkQueue w;
2578     if ((ws = workQueues) != null) {
2579 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2580     if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2581 dl 1.78 ++rc;
2582     }
2583     }
2584     return rc;
2585 jsr166 1.1 }
2586    
2587     /**
2588     * Returns an estimate of the number of threads that are currently
2589     * stealing or executing tasks. This method may overestimate the
2590     * number of active threads.
2591     *
2592     * @return the number of active threads
2593     */
2594     public int getActiveThreadCount() {
2595 dl 1.300 int r = (mode & SMASK) + (int)(ctl >> RC_SHIFT);
2596 jsr166 1.63 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2597 jsr166 1.1 }
2598    
2599     /**
2600 jsr166 1.4 * Returns {@code true} if all worker threads are currently idle.
2601     * An idle worker is one that cannot obtain a task to execute
2602     * because none are available to steal from other threads, and
2603     * there are no pending submissions to the pool. This method is
2604     * conservative; it might not return {@code true} immediately upon
2605     * idleness of all threads, but will eventually become true if
2606     * threads remain inactive.
2607 jsr166 1.1 *
2608 jsr166 1.4 * @return {@code true} if all threads are currently idle
2609 jsr166 1.1 */
2610     public boolean isQuiescent() {
2611 dl 1.300 for (;;) {
2612     long c = ctl;
2613     int md = mode, pc = md & SMASK;
2614 dl 1.310 int tc = pc + (short)(c >>> TC_SHIFT);
2615 dl 1.300 int rc = pc + (int)(c >> RC_SHIFT);
2616     if ((md & (STOP | TERMINATED)) != 0)
2617     return true;
2618     else if (rc > 0)
2619     return false;
2620     else {
2621     WorkQueue[] ws; WorkQueue v;
2622     if ((ws = workQueues) != null) {
2623     for (int i = 1; i < ws.length; i += 2) {
2624     if ((v = ws[i]) != null) {
2625     if ((v.source & QUIET) == 0)
2626     return false;
2627     --tc;
2628     }
2629     }
2630     }
2631     if (tc == 0 && ctl == c)
2632     return true;
2633     }
2634     }
2635 jsr166 1.1 }
2636    
2637     /**
2638     * Returns an estimate of the total number of tasks stolen from
2639     * one thread's work queue by another. The reported value
2640     * underestimates the actual total number of steals when the pool
2641     * is not quiescent. This value may be useful for monitoring and
2642     * tuning fork/join programs: in general, steal counts should be
2643     * high enough to keep threads busy, but low enough to avoid
2644     * overhead and contention across threads.
2645     *
2646     * @return the number of steals
2647     */
2648     public long getStealCount() {
2649 dl 1.300 long count = stealCount;
2650 dl 1.78 WorkQueue[] ws; WorkQueue w;
2651     if ((ws = workQueues) != null) {
2652 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2653 dl 1.78 if ((w = ws[i]) != null)
2654 dl 1.300 count += (long)w.nsteals & 0xffffffffL;
2655 dl 1.78 }
2656     }
2657     return count;
2658 jsr166 1.1 }
2659    
2660     /**
2661     * Returns an estimate of the total number of tasks currently held
2662     * in queues by worker threads (but not including tasks submitted
2663     * to the pool that have not begun executing). This value is only
2664     * an approximation, obtained by iterating across all threads in
2665     * the pool. This method may be useful for tuning task
2666     * granularities.
2667     *
2668     * @return the number of queued tasks
2669     */
2670     public long getQueuedTaskCount() {
2671     long count = 0;
2672 dl 1.78 WorkQueue[] ws; WorkQueue w;
2673     if ((ws = workQueues) != null) {
2674 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2675 dl 1.78 if ((w = ws[i]) != null)
2676     count += w.queueSize();
2677     }
2678 dl 1.52 }
2679 jsr166 1.1 return count;
2680     }
2681    
2682     /**
2683 jsr166 1.8 * Returns an estimate of the number of tasks submitted to this
2684 dl 1.55 * pool that have not yet begun executing. This method may take
2685 dl 1.52 * time proportional to the number of submissions.
2686 jsr166 1.1 *
2687     * @return the number of queued submissions
2688     */
2689     public int getQueuedSubmissionCount() {
2690 dl 1.78 int count = 0;
2691     WorkQueue[] ws; WorkQueue w;
2692     if ((ws = workQueues) != null) {
2693 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2694 dl 1.78 if ((w = ws[i]) != null)
2695     count += w.queueSize();
2696     }
2697     }
2698     return count;
2699 jsr166 1.1 }
2700    
2701     /**
2702 jsr166 1.4 * Returns {@code true} if there are any tasks submitted to this
2703     * pool that have not yet begun executing.
2704 jsr166 1.1 *
2705     * @return {@code true} if there are any queued submissions
2706     */
2707     public boolean hasQueuedSubmissions() {
2708 dl 1.78 WorkQueue[] ws; WorkQueue w;
2709     if ((ws = workQueues) != null) {
2710 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2711 dl 1.115 if ((w = ws[i]) != null && !w.isEmpty())
2712 dl 1.78 return true;
2713     }
2714     }
2715     return false;
2716 jsr166 1.1 }
2717    
2718     /**
2719     * Removes and returns the next unexecuted submission if one is
2720     * available. This method may be useful in extensions to this
2721     * class that re-assign work in systems with multiple pools.
2722     *
2723 jsr166 1.4 * @return the next submission, or {@code null} if none
2724 jsr166 1.1 */
2725     protected ForkJoinTask<?> pollSubmission() {
2726 dl 1.300 return pollScan(true);
2727 jsr166 1.1 }
2728    
2729     /**
2730     * Removes all available unexecuted submitted and forked tasks
2731     * from scheduling queues and adds them to the given collection,
2732     * without altering their execution status. These may include
2733 jsr166 1.8 * artificially generated or wrapped tasks. This method is
2734     * designed to be invoked only when the pool is known to be
2735 jsr166 1.1 * quiescent. Invocations at other times may not remove all
2736     * tasks. A failure encountered while attempting to add elements
2737     * to collection {@code c} may result in elements being in
2738     * neither, either or both collections when the associated
2739     * exception is thrown. The behavior of this operation is
2740     * undefined if the specified collection is modified while the
2741     * operation is in progress.
2742     *
2743     * @param c the collection to transfer elements into
2744     * @return the number of elements transferred
2745     */
2746 jsr166 1.5 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2747 dl 1.52 int count = 0;
2748 dl 1.78 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2749     if ((ws = workQueues) != null) {
2750 dl 1.86 for (int i = 0; i < ws.length; ++i) {
2751 dl 1.78 if ((w = ws[i]) != null) {
2752     while ((t = w.poll()) != null) {
2753     c.add(t);
2754     ++count;
2755     }
2756     }
2757 dl 1.52 }
2758     }
2759 dl 1.18 return count;
2760     }
2761    
2762     /**
2763 jsr166 1.1 * Returns a string identifying this pool, as well as its state,
2764     * including indications of run state, parallelism level, and
2765     * worker and task counts.
2766     *
2767     * @return a string identifying this pool, as well as its state
2768     */
2769     public String toString() {
2770 dl 1.86 // Use a single pass through workQueues to collect counts
2771     long qt = 0L, qs = 0L; int rc = 0;
2772 dl 1.300 long st = stealCount;
2773 dl 1.86 WorkQueue[] ws; WorkQueue w;
2774     if ((ws = workQueues) != null) {
2775     for (int i = 0; i < ws.length; ++i) {
2776     if ((w = ws[i]) != null) {
2777     int size = w.queueSize();
2778     if ((i & 1) == 0)
2779     qs += size;
2780     else {
2781     qt += size;
2782 dl 1.300 st += (long)w.nsteals & 0xffffffffL;
2783 dl 1.86 if (w.isApparentlyUnblocked())
2784     ++rc;
2785     }
2786     }
2787     }
2788     }
2789 dl 1.300
2790     int md = mode;
2791     int pc = (md & SMASK);
2792     long c = ctl;
2793 dl 1.52 int tc = pc + (short)(c >>> TC_SHIFT);
2794 dl 1.300 int ac = pc + (int)(c >> RC_SHIFT);
2795 dl 1.78 if (ac < 0) // ignore transient negative
2796     ac = 0;
2797 dl 1.300 String level = ((md & TERMINATED) != 0 ? "Terminated" :
2798     (md & STOP) != 0 ? "Terminating" :
2799     (md & SHUTDOWN) != 0 ? "Shutting down" :
2800 dl 1.200 "Running");
2801 jsr166 1.1 return super.toString() +
2802 dl 1.52 "[" + level +
2803 dl 1.14 ", parallelism = " + pc +
2804     ", size = " + tc +
2805     ", active = " + ac +
2806     ", running = " + rc +
2807 jsr166 1.1 ", steals = " + st +
2808     ", tasks = " + qt +
2809     ", submissions = " + qs +
2810     "]";
2811     }
2812    
2813     /**
2814 dl 1.100 * Possibly initiates an orderly shutdown in which previously
2815     * submitted tasks are executed, but no new tasks will be
2816     * accepted. Invocation has no effect on execution state if this
2817 jsr166 1.137 * is the {@link #commonPool()}, and no additional effect if
2818 dl 1.100 * already shut down. Tasks that are in the process of being
2819     * submitted concurrently during the course of this method may or
2820     * may not be rejected.
2821 jsr166 1.1 *
2822     * @throws SecurityException if a security manager exists and
2823     * the caller is not permitted to modify threads
2824     * because it does not hold {@link
2825     * java.lang.RuntimePermission}{@code ("modifyThread")}
2826     */
2827     public void shutdown() {
2828     checkPermission();
2829 dl 1.105 tryTerminate(false, true);
2830 jsr166 1.1 }
2831    
2832     /**
2833 dl 1.100 * Possibly attempts to cancel and/or stop all tasks, and reject
2834     * all subsequently submitted tasks. Invocation has no effect on
2835 jsr166 1.137 * execution state if this is the {@link #commonPool()}, and no
2836 dl 1.100 * additional effect if already shut down. Otherwise, tasks that
2837     * are in the process of being submitted or executed concurrently
2838     * during the course of this method may or may not be
2839     * rejected. This method cancels both existing and unexecuted
2840     * tasks, in order to permit termination in the presence of task
2841     * dependencies. So the method always returns an empty list
2842     * (unlike the case for some other Executors).
2843 jsr166 1.1 *
2844     * @return an empty list
2845     * @throws SecurityException if a security manager exists and
2846     * the caller is not permitted to modify threads
2847     * because it does not hold {@link
2848     * java.lang.RuntimePermission}{@code ("modifyThread")}
2849     */
2850     public List<Runnable> shutdownNow() {
2851     checkPermission();
2852 dl 1.105 tryTerminate(true, true);
2853 jsr166 1.1 return Collections.emptyList();
2854     }
2855    
2856     /**
2857     * Returns {@code true} if all tasks have completed following shut down.
2858     *
2859     * @return {@code true} if all tasks have completed following shut down
2860     */
2861     public boolean isTerminated() {
2862 dl 1.300 return (mode & TERMINATED) != 0;
2863 jsr166 1.1 }
2864    
2865     /**
2866     * Returns {@code true} if the process of termination has
2867 jsr166 1.9 * commenced but not yet completed. This method may be useful for
2868     * debugging. A return of {@code true} reported a sufficient
2869     * period after shutdown may indicate that submitted tasks have
2870 jsr166 1.119 * ignored or suppressed interruption, or are waiting for I/O,
2871 dl 1.49 * causing this executor not to properly terminate. (See the
2872     * advisory notes for class {@link ForkJoinTask} stating that
2873     * tasks should not normally entail blocking operations. But if
2874     * they do, they must abort them on interrupt.)
2875 jsr166 1.1 *
2876 jsr166 1.9 * @return {@code true} if terminating but not yet terminated
2877 jsr166 1.1 */
2878     public boolean isTerminating() {
2879 dl 1.300 int md = mode;
2880     return (md & STOP) != 0 && (md & TERMINATED) == 0;
2881 jsr166 1.1 }
2882    
2883     /**
2884     * Returns {@code true} if this pool has been shut down.
2885     *
2886     * @return {@code true} if this pool has been shut down
2887     */
2888     public boolean isShutdown() {
2889 dl 1.300 return (mode & SHUTDOWN) != 0;
2890 jsr166 1.9 }
2891    
2892     /**
2893 dl 1.105 * Blocks until all tasks have completed execution after a
2894     * shutdown request, or the timeout occurs, or the current thread
2895 dl 1.134 * is interrupted, whichever happens first. Because the {@link
2896     * #commonPool()} never terminates until program shutdown, when
2897     * applied to the common pool, this method is equivalent to {@link
2898 jsr166 1.158 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
2899 jsr166 1.1 *
2900     * @param timeout the maximum time to wait
2901     * @param unit the time unit of the timeout argument
2902     * @return {@code true} if this executor terminated and
2903     * {@code false} if the timeout elapsed before termination
2904     * @throws InterruptedException if interrupted while waiting
2905     */
2906     public boolean awaitTermination(long timeout, TimeUnit unit)
2907     throws InterruptedException {
2908 dl 1.134 if (Thread.interrupted())
2909     throw new InterruptedException();
2910     if (this == common) {
2911     awaitQuiescence(timeout, unit);
2912     return false;
2913     }
2914 dl 1.52 long nanos = unit.toNanos(timeout);
2915 dl 1.101 if (isTerminated())
2916     return true;
2917 dl 1.183 if (nanos <= 0L)
2918     return false;
2919     long deadline = System.nanoTime() + nanos;
2920 jsr166 1.103 synchronized (this) {
2921 jsr166 1.184 for (;;) {
2922 dl 1.183 if (isTerminated())
2923     return true;
2924     if (nanos <= 0L)
2925     return false;
2926     long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
2927     wait(millis > 0L ? millis : 1L);
2928     nanos = deadline - System.nanoTime();
2929 dl 1.52 }
2930 dl 1.18 }
2931 jsr166 1.1 }
2932    
2933     /**
2934 dl 1.134 * If called by a ForkJoinTask operating in this pool, equivalent
2935     * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
2936     * waits and/or attempts to assist performing tasks until this
2937     * pool {@link #isQuiescent} or the indicated timeout elapses.
2938     *
2939     * @param timeout the maximum time to wait
2940     * @param unit the time unit of the timeout argument
2941     * @return {@code true} if quiescent; {@code false} if the
2942     * timeout elapsed.
2943     */
2944     public boolean awaitQuiescence(long timeout, TimeUnit unit) {
2945     long nanos = unit.toNanos(timeout);
2946     ForkJoinWorkerThread wt;
2947     Thread thread = Thread.currentThread();
2948     if ((thread instanceof ForkJoinWorkerThread) &&
2949     (wt = (ForkJoinWorkerThread)thread).pool == this) {
2950     helpQuiescePool(wt.workQueue);
2951     return true;
2952     }
2953 dl 1.300 else {
2954     for (long startTime = System.nanoTime();;) {
2955     ForkJoinTask<?> t;
2956     if ((t = pollScan(false)) != null)
2957     t.doExec();
2958     else if (isQuiescent())
2959     return true;
2960     else if ((System.nanoTime() - startTime) > nanos)
2961 dl 1.134 return false;
2962 dl 1.300 else
2963     Thread.yield(); // cannot block
2964 dl 1.134 }
2965     }
2966     }
2967    
2968     /**
2969     * Waits and/or attempts to assist performing tasks indefinitely
2970 jsr166 1.141 * until the {@link #commonPool()} {@link #isQuiescent}.
2971 dl 1.134 */
2972 dl 1.136 static void quiesceCommonPool() {
2973 dl 1.134 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
2974     }
2975    
2976     /**
2977 jsr166 1.1 * Interface for extending managed parallelism for tasks running
2978 jsr166 1.8 * in {@link ForkJoinPool}s.
2979     *
2980 dl 1.19 * <p>A {@code ManagedBlocker} provides two methods. Method
2981 jsr166 1.218 * {@link #isReleasable} must return {@code true} if blocking is
2982     * not necessary. Method {@link #block} blocks the current thread
2983 dl 1.19 * if necessary (perhaps internally invoking {@code isReleasable}
2984 dl 1.54 * before actually blocking). These actions are performed by any
2985 jsr166 1.157 * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
2986     * The unusual methods in this API accommodate synchronizers that
2987     * may, but don't usually, block for long periods. Similarly, they
2988 dl 1.54 * allow more efficient internal handling of cases in which
2989     * additional workers may be, but usually are not, needed to
2990     * ensure sufficient parallelism. Toward this end,
2991     * implementations of method {@code isReleasable} must be amenable
2992     * to repeated invocation.
2993 jsr166 1.1 *
2994     * <p>For example, here is a ManagedBlocker based on a
2995     * ReentrantLock:
2996 jsr166 1.239 * <pre> {@code
2997 jsr166 1.1 * class ManagedLocker implements ManagedBlocker {
2998     * final ReentrantLock lock;
2999     * boolean hasLock = false;
3000     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3001     * public boolean block() {
3002     * if (!hasLock)
3003     * lock.lock();
3004     * return true;
3005     * }
3006     * public boolean isReleasable() {
3007     * return hasLock || (hasLock = lock.tryLock());
3008     * }
3009     * }}</pre>
3010 dl 1.19 *
3011     * <p>Here is a class that possibly blocks waiting for an
3012     * item on a given queue:
3013 jsr166 1.239 * <pre> {@code
3014 dl 1.19 * class QueueTaker<E> implements ManagedBlocker {
3015     * final BlockingQueue<E> queue;
3016     * volatile E item = null;
3017     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3018     * public boolean block() throws InterruptedException {
3019     * if (item == null)
3020 dl 1.23 * item = queue.take();
3021 dl 1.19 * return true;
3022     * }
3023     * public boolean isReleasable() {
3024 dl 1.23 * return item != null || (item = queue.poll()) != null;
3025 dl 1.19 * }
3026     * public E getItem() { // call after pool.managedBlock completes
3027     * return item;
3028     * }
3029     * }}</pre>
3030 jsr166 1.1 */
3031     public static interface ManagedBlocker {
3032     /**
3033     * Possibly blocks the current thread, for example waiting for
3034     * a lock or condition.
3035     *
3036 jsr166 1.4 * @return {@code true} if no additional blocking is necessary
3037     * (i.e., if isReleasable would return true)
3038 jsr166 1.1 * @throws InterruptedException if interrupted while waiting
3039     * (the method is not required to do so, but is allowed to)
3040     */
3041     boolean block() throws InterruptedException;
3042    
3043     /**
3044 jsr166 1.4 * Returns {@code true} if blocking is unnecessary.
3045 jsr166 1.154 * @return {@code true} if blocking is unnecessary
3046 jsr166 1.1 */
3047     boolean isReleasable();
3048     }
3049    
3050     /**
3051 jsr166 1.217 * Runs the given possibly blocking task. When {@linkplain
3052     * ForkJoinTask#inForkJoinPool() running in a ForkJoinPool}, this
3053     * method possibly arranges for a spare thread to be activated if
3054     * necessary to ensure sufficient parallelism while the current
3055     * thread is blocked in {@link ManagedBlocker#block blocker.block()}.
3056 jsr166 1.1 *
3057 jsr166 1.217 * <p>This method repeatedly calls {@code blocker.isReleasable()} and
3058     * {@code blocker.block()} until either method returns {@code true}.
3059     * Every call to {@code blocker.block()} is preceded by a call to
3060     * {@code blocker.isReleasable()} that returned {@code false}.
3061     *
3062     * <p>If not running in a ForkJoinPool, this method is
3063 jsr166 1.8 * behaviorally equivalent to
3064 jsr166 1.239 * <pre> {@code
3065 jsr166 1.1 * while (!blocker.isReleasable())
3066     * if (blocker.block())
3067 jsr166 1.217 * break;}</pre>
3068 jsr166 1.8 *
3069 jsr166 1.217 * If running in a ForkJoinPool, the pool may first be expanded to
3070     * ensure sufficient parallelism available during the call to
3071     * {@code blocker.block()}.
3072 jsr166 1.1 *
3073 jsr166 1.217 * @param blocker the blocker task
3074     * @throws InterruptedException if {@code blocker.block()} did so
3075 jsr166 1.1 */
3076 dl 1.18 public static void managedBlock(ManagedBlocker blocker)
3077 jsr166 1.1 throws InterruptedException {
3078 dl 1.200 ForkJoinPool p;
3079     ForkJoinWorkerThread wt;
3080 dl 1.300 WorkQueue w;
3081 jsr166 1.1 Thread t = Thread.currentThread();
3082 dl 1.200 if ((t instanceof ForkJoinWorkerThread) &&
3083 dl 1.300 (p = (wt = (ForkJoinWorkerThread)t).pool) != null &&
3084     (w = wt.workQueue) != null) {
3085     int block;
3086 dl 1.172 while (!blocker.isReleasable()) {
3087 dl 1.300 if ((block = p.tryCompensate(w)) != 0) {
3088 dl 1.105 try {
3089     do {} while (!blocker.isReleasable() &&
3090     !blocker.block());
3091     } finally {
3092 dl 1.314 CTL.getAndAdd(p, (block > 0) ? RC_UNIT : 0L);
3093 dl 1.105 }
3094     break;
3095 dl 1.78 }
3096     }
3097 dl 1.18 }
3098 dl 1.105 else {
3099     do {} while (!blocker.isReleasable() &&
3100     !blocker.block());
3101     }
3102 jsr166 1.1 }
3103    
3104 dl 1.310 /**
3105     * If the given executor is a ForkJoinPool, poll and execute
3106     * AsynchronousCompletionTasks from worker's queue until none are
3107     * available or blocker is released.
3108     */
3109     static void helpAsyncBlocker(Executor e, ManagedBlocker blocker) {
3110     if (blocker != null && (e instanceof ForkJoinPool)) {
3111     WorkQueue w; ForkJoinWorkerThread wt; WorkQueue[] ws; int r, n;
3112     ForkJoinPool p = (ForkJoinPool)e;
3113     Thread thread = Thread.currentThread();
3114     if (thread instanceof ForkJoinWorkerThread &&
3115     (wt = (ForkJoinWorkerThread)thread).pool == p)
3116     w = wt.workQueue;
3117     else if ((r = ThreadLocalRandom.getProbe()) != 0 &&
3118     (ws = p.workQueues) != null && (n = ws.length) > 0)
3119     w = ws[(n - 1) & r & SQMASK];
3120     else
3121     w = null;
3122     if (w != null) {
3123     for (;;) {
3124     int b = w.base, s = w.top, d, al; ForkJoinTask<?>[] a;
3125     if ((a = w.array) != null && (d = b - s) < 0 &&
3126     (al = a.length) > 0) {
3127     int index = (al - 1) & b;
3128     ForkJoinTask<?> t = (ForkJoinTask<?>)
3129 dl 1.316 QA.getAcquire(a, index);
3130 dl 1.310 if (blocker.isReleasable())
3131     break;
3132     else if (b++ == w.base) {
3133     if (t == null) {
3134     if (d == -1)
3135     break;
3136     }
3137     else if (!(t instanceof CompletableFuture.
3138     AsynchronousCompletionTask))
3139     break;
3140 dl 1.314 else if (QA.compareAndSet(a, index, t, null)) {
3141 dl 1.310 w.base = b;
3142     t.doExec();
3143     }
3144     }
3145     }
3146     else
3147     break;
3148     }
3149     }
3150     }
3151     }
3152    
3153 jsr166 1.7 // AbstractExecutorService overrides. These rely on undocumented
3154     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3155     // implement RunnableFuture.
3156 jsr166 1.1
3157     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3158 dl 1.90 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3159 jsr166 1.1 }
3160    
3161     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3162 dl 1.90 return new ForkJoinTask.AdaptedCallable<T>(callable);
3163 jsr166 1.1 }
3164    
3165 dl 1.314 // VarHandle mechanics
3166     private static final VarHandle CTL;
3167     private static final VarHandle MODE;
3168     private static final VarHandle QA;
3169 dl 1.52
3170     static {
3171 jsr166 1.3 try {
3172 dl 1.314 MethodHandles.Lookup l = MethodHandles.lookup();
3173     CTL = l.findVarHandle(ForkJoinPool.class, "ctl", long.class);
3174     MODE = l.findVarHandle(ForkJoinPool.class, "mode", int.class);
3175     QA = MethodHandles.arrayElementVarHandle(ForkJoinTask[].class);
3176 jsr166 1.231 } catch (ReflectiveOperationException e) {
3177 dl 1.52 throw new Error(e);
3178     }
3179 dl 1.105
3180 dl 1.243 // Reduce the risk of rare disastrous classloading in first call to
3181     // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
3182     Class<?> ensureLoaded = LockSupport.class;
3183    
3184 jsr166 1.273 int commonMaxSpares = DEFAULT_COMMON_MAX_SPARES;
3185     try {
3186     String p = System.getProperty
3187     ("java.util.concurrent.ForkJoinPool.common.maximumSpares");
3188     if (p != null)
3189     commonMaxSpares = Integer.parseInt(p);
3190     } catch (Exception ignore) {}
3191     COMMON_MAX_SPARES = commonMaxSpares;
3192    
3193 dl 1.152 defaultForkJoinWorkerThreadFactory =
3194 dl 1.112 new DefaultForkJoinWorkerThreadFactory();
3195 dl 1.115 modifyThreadPermission = new RuntimePermission("modifyThread");
3196    
3197 dl 1.152 common = java.security.AccessController.doPrivileged
3198     (new java.security.PrivilegedAction<ForkJoinPool>() {
3199 dl 1.300 public ForkJoinPool run() {
3200     return new ForkJoinPool((byte)0); }});
3201 jsr166 1.275
3202 dl 1.310 COMMON_PARALLELISM = Math.max(common.mode & SMASK, 1);
3203 jsr166 1.3 }
3204 dl 1.52
3205 dl 1.197 /**
3206 jsr166 1.279 * Factory for innocuous worker threads.
3207 dl 1.197 */
3208 jsr166 1.278 private static final class InnocuousForkJoinWorkerThreadFactory
3209 dl 1.197 implements ForkJoinWorkerThreadFactory {
3210    
3211     /**
3212     * An ACC to restrict permissions for the factory itself.
3213     * The constructed workers have no permissions set.
3214     */
3215 jsr166 1.324 private static final AccessControlContext INNOCUOUS_ACC;
3216 dl 1.197 static {
3217     Permissions innocuousPerms = new Permissions();
3218     innocuousPerms.add(modifyThreadPermission);
3219     innocuousPerms.add(new RuntimePermission(
3220     "enableContextClassLoaderOverride"));
3221     innocuousPerms.add(new RuntimePermission(
3222     "modifyThreadGroup"));
3223 jsr166 1.324 INNOCUOUS_ACC = new AccessControlContext(new ProtectionDomain[] {
3224 dl 1.197 new ProtectionDomain(null, innocuousPerms)
3225     });
3226     }
3227    
3228     public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
3229 jsr166 1.227 return java.security.AccessController.doPrivileged(
3230     new java.security.PrivilegedAction<ForkJoinWorkerThread>() {
3231 dl 1.197 public ForkJoinWorkerThread run() {
3232     return new ForkJoinWorkerThread.
3233     InnocuousForkJoinWorkerThread(pool);
3234 jsr166 1.324 }}, INNOCUOUS_ACC);
3235 dl 1.197 }
3236     }
3237    
3238 jsr166 1.1 }