ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.330
Committed: Thu Nov 3 12:00:26 2016 UTC (7 years, 6 months ago) by dl
Branch: MAIN
Changes since 1.329: +2 -1 lines
Log Message:
Mention daemon status in docs

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.58 * http://creativecommons.org/publicdomain/zero/1.0/
5 jsr166 1.1 */
6 jsr166 1.301
7 jsr166 1.1 package java.util.concurrent;
8    
9 jsr166 1.156 import java.lang.Thread.UncaughtExceptionHandler;
10 dl 1.314 import java.lang.invoke.MethodHandles;
11     import java.lang.invoke.VarHandle;
12 jsr166 1.329 import java.security.AccessController;
13 jsr166 1.228 import java.security.AccessControlContext;
14     import java.security.Permissions;
15 jsr166 1.329 import java.security.PrivilegedAction;
16 jsr166 1.228 import java.security.ProtectionDomain;
17 jsr166 1.1 import java.util.ArrayList;
18     import java.util.Collection;
19     import java.util.Collections;
20     import java.util.List;
21 dl 1.307 import java.util.function.Predicate;
22 dl 1.243 import java.util.concurrent.locks.LockSupport;
23 jsr166 1.1
24     /**
25 jsr166 1.4 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
26 jsr166 1.8 * A {@code ForkJoinPool} provides the entry point for submissions
27 dl 1.18 * from non-{@code ForkJoinTask} clients, as well as management and
28 jsr166 1.11 * monitoring operations.
29 jsr166 1.1 *
30 jsr166 1.9 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
31     * ExecutorService} mainly by virtue of employing
32     * <em>work-stealing</em>: all threads in the pool attempt to find and
33 dl 1.78 * execute tasks submitted to the pool and/or created by other active
34     * tasks (eventually blocking waiting for work if none exist). This
35     * enables efficient processing when most tasks spawn other subtasks
36     * (as do most {@code ForkJoinTask}s), as well as when many small
37     * tasks are submitted to the pool from external clients. Especially
38     * when setting <em>asyncMode</em> to true in constructors, {@code
39     * ForkJoinPool}s may also be appropriate for use with event-style
40 dl 1.330 * tasks that are never joined. All worker threads are initialized
41     * with {@link Thread#isDaemon} set {@code true}.
42 jsr166 1.1 *
43 dl 1.112 * <p>A static {@link #commonPool()} is available and appropriate for
44 dl 1.101 * most applications. The common pool is used by any ForkJoinTask that
45     * is not explicitly submitted to a specified pool. Using the common
46     * pool normally reduces resource usage (its threads are slowly
47     * reclaimed during periods of non-use, and reinstated upon subsequent
48 dl 1.105 * use).
49 dl 1.100 *
50     * <p>For applications that require separate or custom pools, a {@code
51     * ForkJoinPool} may be constructed with a given target parallelism
52 jsr166 1.214 * level; by default, equal to the number of available processors.
53     * The pool attempts to maintain enough active (or available) threads
54     * by dynamically adding, suspending, or resuming internal worker
55 jsr166 1.187 * threads, even if some tasks are stalled waiting to join others.
56     * However, no such adjustments are guaranteed in the face of blocked
57     * I/O or other unmanaged synchronization. The nested {@link
58 dl 1.100 * ManagedBlocker} interface enables extension of the kinds of
59 dl 1.300 * synchronization accommodated. The default policies may be
60     * overridden using a constructor with parameters corresponding to
61     * those documented in class {@link ThreadPoolExecutor}.
62 jsr166 1.1 *
63     * <p>In addition to execution and lifecycle control methods, this
64     * class provides status check methods (for example
65 jsr166 1.4 * {@link #getStealCount}) that are intended to aid in developing,
66 jsr166 1.1 * tuning, and monitoring fork/join applications. Also, method
67 jsr166 1.4 * {@link #toString} returns indications of pool state in a
68 jsr166 1.1 * convenient form for informal monitoring.
69     *
70 jsr166 1.109 * <p>As is the case with other ExecutorServices, there are three
71 jsr166 1.84 * main task execution methods summarized in the following table.
72     * These are designed to be used primarily by clients not already
73     * engaged in fork/join computations in the current pool. The main
74     * forms of these methods accept instances of {@code ForkJoinTask},
75     * but overloaded forms also allow mixed execution of plain {@code
76     * Runnable}- or {@code Callable}- based activities as well. However,
77     * tasks that are already executing in a pool should normally instead
78     * use the within-computation forms listed in the table unless using
79     * async event-style tasks that are not usually joined, in which case
80     * there is little difference among choice of methods.
81 dl 1.18 *
82     * <table BORDER CELLPADDING=3 CELLSPACING=1>
83 jsr166 1.159 * <caption>Summary of task execution methods</caption>
84 dl 1.18 * <tr>
85     * <td></td>
86     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
87     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
88     * </tr>
89     * <tr>
90 jsr166 1.153 * <td> <b>Arrange async execution</b></td>
91 dl 1.18 * <td> {@link #execute(ForkJoinTask)}</td>
92     * <td> {@link ForkJoinTask#fork}</td>
93     * </tr>
94     * <tr>
95 jsr166 1.153 * <td> <b>Await and obtain result</b></td>
96 dl 1.18 * <td> {@link #invoke(ForkJoinTask)}</td>
97     * <td> {@link ForkJoinTask#invoke}</td>
98     * </tr>
99     * <tr>
100 jsr166 1.153 * <td> <b>Arrange exec and obtain Future</b></td>
101 dl 1.18 * <td> {@link #submit(ForkJoinTask)}</td>
102     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
103     * </tr>
104     * </table>
105 dl 1.19 *
106 dl 1.105 * <p>The common pool is by default constructed with default
107 jsr166 1.321 * parameters, but these may be controlled by setting the following
108 jsr166 1.162 * {@linkplain System#getProperty system properties}:
109     * <ul>
110     * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
111     * - the parallelism level, a non-negative integer
112     * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
113     * - the class name of a {@link ForkJoinWorkerThreadFactory}
114     * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
115     * - the class name of a {@link UncaughtExceptionHandler}
116 dl 1.208 * <li>{@code java.util.concurrent.ForkJoinPool.common.maximumSpares}
117 dl 1.223 * - the maximum number of allowed extra threads to maintain target
118 dl 1.208 * parallelism (default 256).
119 jsr166 1.162 * </ul>
120 dl 1.197 * If a {@link SecurityManager} is present and no factory is
121     * specified, then the default pool uses a factory supplying
122     * threads that have no {@link Permissions} enabled.
123 jsr166 1.165 * The system class loader is used to load these classes.
124 jsr166 1.156 * Upon any error in establishing these settings, default parameters
125 dl 1.160 * are used. It is possible to disable or limit the use of threads in
126     * the common pool by setting the parallelism property to zero, and/or
127 dl 1.193 * using a factory that may return {@code null}. However doing so may
128     * cause unjoined tasks to never be executed.
129 dl 1.105 *
130 jsr166 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
131     * maximum number of running threads to 32767. Attempts to create
132 jsr166 1.11 * pools with greater than the maximum number result in
133 jsr166 1.8 * {@code IllegalArgumentException}.
134 jsr166 1.1 *
135 jsr166 1.11 * <p>This implementation rejects submitted tasks (that is, by throwing
136 dl 1.19 * {@link RejectedExecutionException}) only when the pool is shut down
137 dl 1.20 * or internal resources have been exhausted.
138 jsr166 1.11 *
139 jsr166 1.1 * @since 1.7
140     * @author Doug Lea
141     */
142     public class ForkJoinPool extends AbstractExecutorService {
143    
144     /*
145 dl 1.14 * Implementation Overview
146     *
147 dl 1.78 * This class and its nested classes provide the main
148     * functionality and control for a set of worker threads:
149 jsr166 1.84 * Submissions from non-FJ threads enter into submission queues.
150     * Workers take these tasks and typically split them into subtasks
151     * that may be stolen by other workers. Preference rules give
152     * first priority to processing tasks from their own queues (LIFO
153     * or FIFO, depending on mode), then to randomized FIFO steals of
154 dl 1.200 * tasks in other queues. This framework began as vehicle for
155     * supporting tree-structured parallelism using work-stealing.
156     * Over time, its scalability advantages led to extensions and
157 dl 1.208 * changes to better support more diverse usage contexts. Because
158     * most internal methods and nested classes are interrelated,
159     * their main rationale and descriptions are presented here;
160     * individual methods and nested classes contain only brief
161     * comments about details.
162 dl 1.78 *
163 jsr166 1.84 * WorkQueues
164 dl 1.78 * ==========
165     *
166     * Most operations occur within work-stealing queues (in nested
167     * class WorkQueue). These are special forms of Deques that
168     * support only three of the four possible end-operations -- push,
169     * pop, and poll (aka steal), under the further constraints that
170     * push and pop are called only from the owning thread (or, as
171     * extended here, under a lock), while poll may be called from
172     * other threads. (If you are unfamiliar with them, you probably
173     * want to read Herlihy and Shavit's book "The Art of
174     * Multiprocessor programming", chapter 16 describing these in
175     * more detail before proceeding.) The main work-stealing queue
176     * design is roughly similar to those in the papers "Dynamic
177     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
178     * (http://research.sun.com/scalable/pubs/index.html) and
179     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
180     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
181 dl 1.200 * The main differences ultimately stem from GC requirements that
182     * we null out taken slots as soon as we can, to maintain as small
183     * a footprint as possible even in programs generating huge
184     * numbers of tasks. To accomplish this, we shift the CAS
185     * arbitrating pop vs poll (steal) from being on the indices
186     * ("base" and "top") to the slots themselves.
187     *
188 dl 1.243 * Adding tasks then takes the form of a classic array push(task)
189     * in a circular buffer:
190     * q.array[q.top++ % length] = task;
191 dl 1.200 *
192     * (The actual code needs to null-check and size-check the array,
193 jsr166 1.247 * uses masking, not mod, for indexing a power-of-two-sized array,
194 dl 1.243 * properly fences accesses, and possibly signals waiting workers
195     * to start scanning -- see below.) Both a successful pop and
196     * poll mainly entail a CAS of a slot from non-null to null.
197 dl 1.200 *
198 jsr166 1.202 * The pop operation (always performed by owner) is:
199 dl 1.243 * if ((the task at top slot is not null) and
200 dl 1.200 * (CAS slot to null))
201     * decrement top and return task;
202     *
203     * And the poll operation (usually by a stealer) is
204 dl 1.243 * if ((the task at base slot is not null) and
205 dl 1.200 * (CAS slot to null))
206     * increment base and return task;
207     *
208 dl 1.300 * There are several variants of each of these. In particular,
209     * almost all uses of poll occur within scan operations that also
210     * interleave contention tracking (with associated code sprawl.)
211 dl 1.243 *
212     * Memory ordering. See "Correct and Efficient Work-Stealing for
213     * Weak Memory Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
214     * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
215     * analysis of memory ordering requirements in work-stealing
216     * algorithms similar to (but different than) the one used here.
217     * Extracting tasks in array slots via (fully fenced) CAS provides
218     * primary synchronization. The base and top indices imprecisely
219     * guide where to extract from. We do not always require strict
220     * orderings of array and index updates, so sometimes let them be
221     * subject to compiler and processor reorderings. However, the
222     * volatile "base" index also serves as a basis for memory
223     * ordering: Slot accesses are preceded by a read of base,
224 jsr166 1.247 * ensuring happens-before ordering with respect to stealers (so
225 dl 1.243 * the slots themselves can be read via plain array reads.) The
226     * only other memory orderings relied on are maintained in the
227     * course of signalling and activation (see below). A check that
228     * base == top indicates (momentary) emptiness, but otherwise may
229     * err on the side of possibly making the queue appear nonempty
230     * when a push, pop, or poll have not fully committed, or making
231     * it appear empty when an update of top has not yet been visibly
232     * written. (Method isEmpty() checks the case of a partially
233 dl 1.211 * completed removal of the last element.) Because of this, the
234     * poll operation, considered individually, is not wait-free. One
235     * thief cannot successfully continue until another in-progress
236 dl 1.243 * one (or, if previously empty, a push) visibly completes.
237     * However, in the aggregate, we ensure at least probabilistic
238     * non-blockingness. If an attempted steal fails, a scanning
239     * thief chooses a different random victim target to try next. So,
240     * in order for one thief to progress, it suffices for any
241 dl 1.205 * in-progress poll or new push on any empty queue to
242 dl 1.300 * complete.
243 dl 1.200 *
244     * This approach also enables support of a user mode in which
245     * local task processing is in FIFO, not LIFO order, simply by
246     * using poll rather than pop. This can be useful in
247     * message-passing frameworks in which tasks are never joined.
248 dl 1.78 *
249     * WorkQueues are also used in a similar way for tasks submitted
250     * to the pool. We cannot mix these tasks in the same queues used
251 dl 1.200 * by workers. Instead, we randomly associate submission queues
252 dl 1.83 * with submitting threads, using a form of hashing. The
253 dl 1.139 * ThreadLocalRandom probe value serves as a hash code for
254     * choosing existing queues, and may be randomly repositioned upon
255     * contention with other submitters. In essence, submitters act
256     * like workers except that they are restricted to executing local
257 dl 1.300 * tasks that they submitted. Insertion of tasks in shared mode
258     * requires a lock but we use only a simple spinlock (using field
259 jsr166 1.304 * phase), because submitters encountering a busy queue move to a
260     * different position to use or create other queues -- they block
261     * only when creating and registering new queues. Because it is
262     * used only as a spinlock, unlocking requires only a "releasing"
263 dl 1.314 * store (using setRelease).
264 dl 1.78 *
265 jsr166 1.84 * Management
266 dl 1.78 * ==========
267 dl 1.52 *
268     * The main throughput advantages of work-stealing stem from
269     * decentralized control -- workers mostly take tasks from
270 dl 1.200 * themselves or each other, at rates that can exceed a billion
271     * per second. The pool itself creates, activates (enables
272     * scanning for and running tasks), deactivates, blocks, and
273     * terminates threads, all with minimal central information.
274     * There are only a few properties that we can globally track or
275     * maintain, so we pack them into a small number of variables,
276     * often maintaining atomicity without blocking or locking.
277 dl 1.300 * Nearly all essentially atomic control state is held in a few
278 dl 1.200 * volatile variables that are by far most often read (not
279 dl 1.300 * written) as status and consistency checks. We pack as much
280     * information into them as we can.
281 dl 1.78 *
282 dl 1.200 * Field "ctl" contains 64 bits holding information needed to
283 dl 1.300 * atomically decide to add, enqueue (on an event queue), and
284     * dequeue (and release)-activate workers. To enable this
285 dl 1.78 * packing, we restrict maximum parallelism to (1<<15)-1 (which is
286     * far in excess of normal operating range) to allow ids, counts,
287     * and their negations (used for thresholding) to fit into 16bit
288 dl 1.215 * subfields.
289     *
290 dl 1.300 * Field "mode" holds configuration parameters as well as lifetime
291     * status, atomically and monotonically setting SHUTDOWN, STOP,
292     * and finally TERMINATED bits.
293 dl 1.258 *
294     * Field "workQueues" holds references to WorkQueues. It is
295 dl 1.300 * updated (only during worker creation and termination) under
296     * lock (using field workerNamePrefix as lock), but is otherwise
297     * concurrently readable, and accessed directly. We also ensure
298     * that uses of the array reference itself never become too stale
299     * in case of resizing. To simplify index-based operations, the
300     * array size is always a power of two, and all readers must
301     * tolerate null slots. Worker queues are at odd indices. Shared
302     * (submission) queues are at even indices, up to a maximum of 64
303     * slots, to limit growth even if array needs to expand to add
304     * more workers. Grouping them together in this way simplifies and
305 dl 1.262 * speeds up task scanning.
306 dl 1.86 *
307     * All worker thread creation is on-demand, triggered by task
308     * submissions, replacement of terminated workers, and/or
309 dl 1.78 * compensation for blocked workers. However, all other support
310     * code is set up to work with other policies. To ensure that we
311 jsr166 1.264 * do not hold on to worker references that would prevent GC, all
312 dl 1.78 * accesses to workQueues are via indices into the workQueues
313     * array (which is one source of some of the messy code
314     * constructions here). In essence, the workQueues array serves as
315 dl 1.200 * a weak reference mechanism. Thus for example the stack top
316     * subfield of ctl stores indices, not references.
317     *
318     * Queuing Idle Workers. Unlike HPC work-stealing frameworks, we
319     * cannot let workers spin indefinitely scanning for tasks when
320     * none can be found immediately, and we cannot start/resume
321     * workers unless there appear to be tasks available. On the
322     * other hand, we must quickly prod them into action when new
323     * tasks are submitted or generated. In many usages, ramp-up time
324 dl 1.300 * is the main limiting factor in overall performance, which is
325     * compounded at program start-up by JIT compilation and
326     * allocation. So we streamline this as much as possible.
327     *
328     * The "ctl" field atomically maintains total worker and
329     * "released" worker counts, plus the head of the available worker
330     * queue (actually stack, represented by the lower 32bit subfield
331     * of ctl). Released workers are those known to be scanning for
332     * and/or running tasks. Unreleased ("available") workers are
333     * recorded in the ctl stack. These workers are made available for
334     * signalling by enqueuing in ctl (see method runWorker). The
335     * "queue" is a form of Treiber stack. This is ideal for
336     * activating threads in most-recently used order, and improves
337 dl 1.200 * performance and locality, outweighing the disadvantages of
338     * being prone to contention and inability to release a worker
339 dl 1.300 * unless it is topmost on stack. To avoid missed signal problems
340     * inherent in any wait/signal design, available workers rescan
341     * for (and if found run) tasks after enqueuing. Normally their
342     * release status will be updated while doing so, but the released
343     * worker ctl count may underestimate the number of active
344     * threads. (However, it is still possible to determine quiescence
345     * via a validation traversal -- see isQuiescent). After an
346     * unsuccessful rescan, available workers are blocked until
347     * signalled (see signalWork). The top stack state holds the
348     * value of the "phase" field of the worker: its index and status,
349     * plus a version counter that, in addition to the count subfields
350     * (also serving as version stamps) provide protection against
351     * Treiber stack ABA effects.
352 dl 1.200 *
353 dl 1.300 * Creating workers. To create a worker, we pre-increment counts
354     * (serving as a reservation), and attempt to construct a
355 dl 1.200 * ForkJoinWorkerThread via its factory. Upon construction, the
356     * new thread invokes registerWorker, where it constructs a
357     * WorkQueue and is assigned an index in the workQueues array
358 jsr166 1.266 * (expanding the array if necessary). The thread is then started.
359     * Upon any exception across these steps, or null return from
360     * factory, deregisterWorker adjusts counts and records
361 dl 1.200 * accordingly. If a null return, the pool continues running with
362     * fewer than the target number workers. If exceptional, the
363     * exception is propagated, generally to some external caller.
364     * Worker index assignment avoids the bias in scanning that would
365     * occur if entries were sequentially packed starting at the front
366     * of the workQueues array. We treat the array as a simple
367     * power-of-two hash table, expanding as needed. The seedIndex
368     * increment ensures no collisions until a resize is needed or a
369     * worker is deregistered and replaced, and thereafter keeps
370 jsr166 1.202 * probability of collision low. We cannot use
371 dl 1.200 * ThreadLocalRandom.getProbe() for similar purposes here because
372     * the thread has not started yet, but do so for creating
373 dl 1.243 * submission queues for existing external threads (see
374     * externalPush).
375     *
376 dl 1.300 * WorkQueue field "phase" is used by both workers and the pool to
377     * manage and track whether a worker is UNSIGNALLED (possibly
378     * blocked waiting for a signal). When a worker is enqueued its
379     * phase field is set. Note that phase field updates lag queue CAS
380     * releases so usage requires care -- seeing a negative phase does
381     * not guarantee that the worker is available. When queued, the
382     * lower 16 bits of scanState must hold its pool index. So we
383     * place the index there upon initialization (see registerWorker)
384     * and otherwise keep it there or restore it when necessary.
385 dl 1.243 *
386     * The ctl field also serves as the basis for memory
387     * synchronization surrounding activation. This uses a more
388     * efficient version of a Dekker-like rule that task producers and
389     * consumers sync with each other by both writing/CASing ctl (even
390 dl 1.253 * if to its current value). This would be extremely costly. So
391     * we relax it in several ways: (1) Producers only signal when
392     * their queue is empty. Other workers propagate this signal (in
393 dl 1.300 * method scan) when they find tasks; to further reduce flailing,
394     * each worker signals only one other per activation. (2) Workers
395     * only enqueue after scanning (see below) and not finding any
396     * tasks. (3) Rather than CASing ctl to its current value in the
397     * common case where no action is required, we reduce write
398     * contention by equivalently prefacing signalWork when called by
399     * an external task producer using a memory access with
400     * full-volatile semantics or a "fullFence".
401 dl 1.243 *
402 jsr166 1.249 * Almost always, too many signals are issued. A task producer
403 dl 1.243 * cannot in general tell if some existing worker is in the midst
404     * of finishing one task (or already scanning) and ready to take
405     * another without being signalled. So the producer might instead
406     * activate a different worker that does not find any work, and
407     * then inactivates. This scarcely matters in steady-state
408     * computations involving all workers, but can create contention
409 jsr166 1.247 * and bookkeeping bottlenecks during ramp-up, ramp-down, and small
410 dl 1.243 * computations involving only a few workers.
411     *
412 dl 1.300 * Scanning. Method runWorker performs top-level scanning for
413     * tasks. Each scan traverses and tries to poll from each queue
414     * starting at a random index and circularly stepping. Scans are
415     * not performed in ideal random permutation order, to reduce
416     * cacheline contention. The pseudorandom generator need not have
417     * high-quality statistical properties in the long term, but just
418     * within computations; We use Marsaglia XorShifts (often via
419     * ThreadLocalRandom.nextSecondarySeed), which are cheap and
420     * suffice. Scanning also employs contention reduction: When
421     * scanning workers fail to extract an apparently existing task,
422     * they soon restart at a different pseudorandom index. This
423     * improves throughput when many threads are trying to take tasks
424     * from few queues, which can be common in some usages. Scans do
425     * not otherwise explicitly take into account core affinities,
426     * loads, cache localities, etc, However, they do exploit temporal
427     * locality (which usually approximates these) by preferring to
428     * re-poll (at most #workers times) from the same queue after a
429     * successful poll before trying others.
430 dl 1.52 *
431     * Trimming workers. To release resources after periods of lack of
432     * use, a worker starting to wait when the pool is quiescent will
433 dl 1.300 * time out and terminate (see method scan) if the pool has
434     * remained quiescent for period given by field keepAlive.
435 dl 1.52 *
436 dl 1.210 * Shutdown and Termination. A call to shutdownNow invokes
437     * tryTerminate to atomically set a runState bit. The calling
438     * thread, as well as every other worker thereafter terminating,
439 dl 1.300 * helps terminate others by cancelling their unprocessed tasks,
440     * and waking them up, doing so repeatedly until stable. Calls to
441     * non-abrupt shutdown() preface this by checking whether
442     * termination should commence by sweeping through queues (until
443     * stable) to ensure lack of in-flight submissions and workers
444     * about to process them before triggering the "STOP" phase of
445     * termination.
446 dl 1.211 *
447 jsr166 1.84 * Joining Tasks
448     * =============
449 dl 1.78 *
450     * Any of several actions may be taken when one worker is waiting
451 jsr166 1.84 * to join a task stolen (or always held) by another. Because we
452 dl 1.78 * are multiplexing many tasks on to a pool of workers, we can't
453 dl 1.300 * always just let them block (as in Thread.join). We also cannot
454     * just reassign the joiner's run-time stack with another and
455     * replace it later, which would be a form of "continuation", that
456     * even if possible is not necessarily a good idea since we may
457     * need both an unblocked task and its continuation to progress.
458     * Instead we combine two tactics:
459 dl 1.19 *
460     * Helping: Arranging for the joiner to execute some task that it
461 dl 1.78 * would be running if the steal had not occurred.
462 dl 1.19 *
463     * Compensating: Unless there are already enough live threads,
464 dl 1.78 * method tryCompensate() may create or re-activate a spare
465     * thread to compensate for blocked joiners until they unblock.
466     *
467 dl 1.105 * A third form (implemented in tryRemoveAndExec) amounts to
468     * helping a hypothetical compensator: If we can readily tell that
469     * a possible action of a compensator is to steal and execute the
470     * task being joined, the joining thread can do so directly,
471 dl 1.300 * without the need for a compensation thread.
472 dl 1.52 *
473     * The ManagedBlocker extension API can't use helping so relies
474     * only on compensation in method awaitBlocker.
475 dl 1.19 *
476 dl 1.300 * The algorithm in awaitJoin entails a form of "linear helping".
477     * Each worker records (in field source) the id of the queue from
478     * which it last stole a task. The scan in method awaitJoin uses
479     * these markers to try to find a worker to help (i.e., steal back
480     * a task from and execute it) that could hasten completion of the
481     * actively joined task. Thus, the joiner executes a task that
482     * would be on its own local deque if the to-be-joined task had
483     * not been stolen. This is a conservative variant of the approach
484     * described in Wagner & Calder "Leapfrogging: a portable
485     * technique for implementing efficient futures" SIGPLAN Notices,
486     * 1993 (http://portal.acm.org/citation.cfm?id=155354). It differs
487     * mainly in that we only record queue ids, not full dependency
488     * links. This requires a linear scan of the workQueues array to
489     * locate stealers, but isolates cost to when it is needed, rather
490     * than adding to per-task overhead. Searches can fail to locate
491     * stealers GC stalls and the like delay recording sources.
492     * Further, even when accurately identified, stealers might not
493     * ever produce a task that the joiner can in turn help with. So,
494     * compensation is tried upon failure to find tasks to run.
495 dl 1.105 *
496 dl 1.300 * Compensation does not by default aim to keep exactly the target
497 dl 1.200 * parallelism number of unblocked threads running at any given
498     * time. Some previous versions of this class employed immediate
499     * compensations for any blocked join. However, in practice, the
500     * vast majority of blockages are transient byproducts of GC and
501     * other JVM or OS activities that are made worse by replacement.
502 dl 1.300 * Rather than impose arbitrary policies, we allow users to
503     * override the default of only adding threads upon apparent
504     * starvation. The compensation mechanism may also be bounded.
505     * Bounds for the commonPool (see COMMON_MAX_SPARES) better enable
506     * JVMs to cope with programming errors and abuse before running
507     * out of resources to do so.
508 jsr166 1.301 *
509 dl 1.105 * Common Pool
510     * ===========
511     *
512 jsr166 1.175 * The static common pool always exists after static
513 dl 1.105 * initialization. Since it (or any other created pool) need
514     * never be used, we minimize initial construction overhead and
515 dl 1.300 * footprint to the setup of about a dozen fields.
516 dl 1.105 *
517     * When external threads submit to the common pool, they can
518 dl 1.200 * perform subtask processing (see externalHelpComplete and
519     * related methods) upon joins. This caller-helps policy makes it
520     * sensible to set common pool parallelism level to one (or more)
521     * less than the total number of available cores, or even zero for
522     * pure caller-runs. We do not need to record whether external
523     * submissions are to the common pool -- if not, external help
524     * methods return quickly. These submitters would otherwise be
525     * blocked waiting for completion, so the extra effort (with
526     * liberally sprinkled task status checks) in inapplicable cases
527     * amounts to an odd form of limited spin-wait before blocking in
528     * ForkJoinTask.join.
529 dl 1.105 *
530 dl 1.197 * As a more appropriate default in managed environments, unless
531     * overridden by system properties, we use workers of subclass
532     * InnocuousForkJoinWorkerThread when there is a SecurityManager
533     * present. These workers have no permissions set, do not belong
534     * to any user-defined ThreadGroup, and erase all ThreadLocals
535 dl 1.300 * after executing any top-level task (see
536     * WorkQueue.afterTopLevelExec). The associated mechanics (mainly
537     * in ForkJoinWorkerThread) may be JVM-dependent and must access
538     * particular Thread class fields to achieve this effect.
539 jsr166 1.198 *
540 dl 1.105 * Style notes
541     * ===========
542     *
543 jsr166 1.315 * Memory ordering relies mainly on VarHandles. This can be
544     * awkward and ugly, but also reflects the need to control
545     * outcomes across the unusual cases that arise in very racy code
546 dl 1.319 * with very few invariants. All fields are read into locals
547     * before use, and null-checked if they are references. This is
548     * usually done in a "C"-like style of listing declarations at the
549     * heads of methods or blocks, and using inline assignments on
550     * first encounter. Nearly all explicit checks lead to
551     * bypass/return, not exception throws, because they may
552     * legitimately arise due to cancellation/revocation during
553     * shutdown.
554 dl 1.200 *
555 dl 1.105 * There is a lot of representation-level coupling among classes
556     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
557     * fields of WorkQueue maintain data structures managed by
558     * ForkJoinPool, so are directly accessed. There is little point
559     * trying to reduce this, since any associated future changes in
560     * representations will need to be accompanied by algorithmic
561     * changes anyway. Several methods intrinsically sprawl because
562 dl 1.200 * they must accumulate sets of consistent reads of fields held in
563     * local variables. There are also other coding oddities
564     * (including several unnecessary-looking hoisted null checks)
565     * that help some methods perform reasonably even when interpreted
566     * (not compiled).
567 dl 1.52 *
568 dl 1.208 * The order of declarations in this file is (with a few exceptions):
569 dl 1.86 * (1) Static utility functions
570     * (2) Nested (static) classes
571     * (3) Static fields
572     * (4) Fields, along with constants used when unpacking some of them
573     * (5) Internal control methods
574     * (6) Callbacks and other support for ForkJoinTask methods
575     * (7) Exported methods
576     * (8) Static block initializing statics in minimally dependent order
577     */
578    
579     // Static utilities
580    
581     /**
582     * If there is a security manager, makes sure caller has
583     * permission to modify threads.
584 jsr166 1.1 */
585 dl 1.86 private static void checkPermission() {
586     SecurityManager security = System.getSecurityManager();
587     if (security != null)
588     security.checkPermission(modifyThreadPermission);
589     }
590    
591     // Nested classes
592 jsr166 1.1
593     /**
594 jsr166 1.8 * Factory for creating new {@link ForkJoinWorkerThread}s.
595     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
596     * for {@code ForkJoinWorkerThread} subclasses that extend base
597     * functionality or initialize threads with different contexts.
598 jsr166 1.1 */
599     public static interface ForkJoinWorkerThreadFactory {
600     /**
601     * Returns a new worker thread operating in the given pool.
602 dl 1.300 * Returning null or throwing an exception may result in tasks
603     * never being executed. If this method throws an exception,
604     * it is relayed to the caller of the method (for example
605     * {@code execute}) causing attempted thread creation. If this
606     * method returns null or throws an exception, it is not
607     * retried until the next attempted creation (for example
608     * another call to {@code execute}).
609 jsr166 1.1 *
610     * @param pool the pool this thread works in
611 jsr166 1.296 * @return the new worker thread, or {@code null} if the request
612 dl 1.300 * to create a thread is rejected.
613 jsr166 1.11 * @throws NullPointerException if the pool is null
614 jsr166 1.1 */
615     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
616     }
617    
618     /**
619     * Default ForkJoinWorkerThreadFactory implementation; creates a
620     * new ForkJoinWorkerThread.
621     */
622 jsr166 1.278 private static final class DefaultForkJoinWorkerThreadFactory
623 jsr166 1.1 implements ForkJoinWorkerThreadFactory {
624 dl 1.112 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
625 dl 1.14 return new ForkJoinWorkerThread(pool);
626 jsr166 1.1 }
627     }
628    
629 dl 1.200 // Constants shared across ForkJoinPool and WorkQueue
630    
631     // Bounds
632 dl 1.300 static final int SWIDTH = 16; // width of short
633 dl 1.200 static final int SMASK = 0xffff; // short bits == max index
634     static final int MAX_CAP = 0x7fff; // max #workers - 1
635     static final int SQMASK = 0x007e; // max 64 (even) slots
636    
637 dl 1.300 // Masks and units for WorkQueue.phase and ctl sp subfield
638 dl 1.243 static final int UNSIGNALLED = 1 << 31; // must be negative
639 dl 1.211 static final int SS_SEQ = 1 << 16; // version count
640 dl 1.300 static final int QLOCK = 1; // must be 1
641 dl 1.200
642 dl 1.300 // Mode bits and sentinels, some also used in WorkQueue id and.source fields
643     static final int OWNED = 1; // queue has owner thread
644     static final int FIFO = 1 << 16; // fifo queue or access mode
645     static final int SHUTDOWN = 1 << 18;
646     static final int TERMINATED = 1 << 19;
647     static final int STOP = 1 << 31; // must be negative
648     static final int QUIET = 1 << 30; // not scanning or working
649     static final int DORMANT = QUIET | UNSIGNALLED;
650    
651     /**
652     * The maximum number of local polls from the same queue before
653     * checking others. This is a safeguard against infinitely unfair
654     * looping under unbounded user task recursion, and must be larger
655     * than plausible cases of intentional bounded task recursion.
656 dl 1.253 */
657 dl 1.300 static final int POLL_LIMIT = 1 << 10;
658 dl 1.253
659     /**
660 dl 1.78 * Queues supporting work-stealing as well as external task
661 jsr166 1.202 * submission. See above for descriptions and algorithms.
662 dl 1.78 * Performance on most platforms is very sensitive to placement of
663     * instances of both WorkQueues and their arrays -- we absolutely
664     * do not want multiple WorkQueue instances or multiple queue
665 dl 1.200 * arrays sharing cache lines. The @Contended annotation alerts
666     * JVMs to try to keep instances apart.
667 dl 1.78 */
668 dl 1.308 @jdk.internal.vm.annotation.Contended
669 dl 1.78 static final class WorkQueue {
670 dl 1.200
671 dl 1.78 /**
672     * Capacity of work-stealing queue array upon initialization.
673 dl 1.90 * Must be a power of two; at least 4, but should be larger to
674     * reduce or eliminate cacheline sharing among queues.
675     * Currently, it is much larger, as a partial workaround for
676     * the fact that JVMs often place arrays in locations that
677     * share GC bookkeeping (especially cardmarks) such that
678     * per-write accesses encounter serious memory contention.
679 dl 1.78 */
680 dl 1.90 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
681 dl 1.78
682     /**
683     * Maximum size for queue arrays. Must be a power of two less
684     * than or equal to 1 << (31 - width of array entry) to ensure
685     * lack of wraparound of index calculations, but defined to a
686     * value a bit less than this to help users trap runaway
687     * programs before saturating systems.
688     */
689     static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
690    
691 dl 1.200 // Instance fields
692 dl 1.300 volatile int phase; // versioned, negative: queued, 1: locked
693     int stackPred; // pool stack (ctl) predecessor link
694 dl 1.178 int nsteals; // number of steals
695 dl 1.300 int id; // index, mode, tag
696     volatile int source; // source queue id, or sentinel
697 dl 1.78 volatile int base; // index of next slot for poll
698     int top; // index of next slot for push
699     ForkJoinTask<?>[] array; // the elements (initially unallocated)
700 dl 1.90 final ForkJoinPool pool; // the containing pool (may be null)
701 dl 1.78 final ForkJoinWorkerThread owner; // owning thread or null if shared
702 dl 1.112
703 dl 1.200 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner) {
704 dl 1.90 this.pool = pool;
705 dl 1.78 this.owner = owner;
706 dl 1.115 // Place indices in the center of array (that is not yet allocated)
707 dl 1.78 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
708     }
709    
710     /**
711 jsr166 1.220 * Returns an exportable index (used by ForkJoinWorkerThread).
712 dl 1.200 */
713     final int getPoolIndex() {
714 dl 1.300 return (id & 0xffff) >>> 1; // ignore odd/even tag bit
715 dl 1.200 }
716    
717     /**
718 dl 1.115 * Returns the approximate number of tasks in the queue.
719     */
720     final int queueSize() {
721 dl 1.243 int n = base - top; // read base first
722 dl 1.115 return (n >= 0) ? 0 : -n; // ignore transient negative
723     }
724    
725 jsr166 1.180 /**
726 dl 1.115 * Provides a more accurate estimate of whether this queue has
727     * any tasks than does queueSize, by checking whether a
728     * near-empty queue has at least one unclaimed task.
729     */
730     final boolean isEmpty() {
731 dl 1.300 ForkJoinTask<?>[] a; int n, al, b;
732     return ((n = (b = base) - top) >= 0 || // possibly one task
733 dl 1.243 (n == -1 && ((a = array) == null ||
734     (al = a.length) == 0 ||
735 dl 1.300 a[(al - 1) & b] == null)));
736 dl 1.115 }
737    
738 dl 1.300
739 dl 1.115 /**
740 dl 1.256 * Pushes a task. Call only by owner in unshared queues.
741 dl 1.78 *
742     * @param task the task. Caller must ensure non-null.
743 jsr166 1.146 * @throws RejectedExecutionException if array cannot be resized
744 dl 1.78 */
745 dl 1.90 final void push(ForkJoinTask<?> task) {
746 dl 1.300 int s = top; ForkJoinTask<?>[] a; int al, d;
747 dl 1.243 if ((a = array) != null && (al = a.length) > 0) {
748 dl 1.300 int index = (al - 1) & s;
749     ForkJoinPool p = pool;
750 dl 1.243 top = s + 1;
751 dl 1.314 QA.setRelease(a, index, task);
752 dl 1.292 if ((d = base - s) == 0 && p != null) {
753 dl 1.314 VarHandle.fullFence();
754 dl 1.253 p.signalWork();
755 dl 1.284 }
756 dl 1.300 else if (d + al == 1)
757 dl 1.243 growArray();
758 dl 1.78 }
759     }
760    
761 dl 1.178 /**
762 dl 1.112 * Initializes or doubles the capacity of array. Call either
763     * by owner or with lock held -- it is OK for base, but not
764     * top, to move while resizings are in progress.
765     */
766     final ForkJoinTask<?>[] growArray() {
767     ForkJoinTask<?>[] oldA = array;
768 dl 1.300 int oldSize = oldA != null ? oldA.length : 0;
769     int size = oldSize > 0 ? oldSize << 1 : INITIAL_QUEUE_CAPACITY;
770 dl 1.225 if (size < INITIAL_QUEUE_CAPACITY || size > MAXIMUM_QUEUE_CAPACITY)
771 dl 1.112 throw new RejectedExecutionException("Queue capacity exceeded");
772     int oldMask, t, b;
773     ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
774 dl 1.300 if (oldA != null && (oldMask = oldSize - 1) > 0 &&
775 dl 1.112 (t = top) - (b = base) > 0) {
776     int mask = size - 1;
777 dl 1.200 do { // emulate poll from old array, push to new array
778 dl 1.256 int index = b & oldMask;
779 dl 1.243 ForkJoinTask<?> x = (ForkJoinTask<?>)
780 dl 1.316 QA.getAcquire(oldA, index);
781 dl 1.243 if (x != null &&
782 dl 1.314 QA.compareAndSet(oldA, index, x, null))
783 dl 1.243 a[b & mask] = x;
784 dl 1.112 } while (++b != t);
785 dl 1.314 VarHandle.releaseFence();
786 dl 1.78 }
787 dl 1.112 return a;
788 dl 1.78 }
789    
790     /**
791 dl 1.90 * Takes next task, if one exists, in LIFO order. Call only
792 dl 1.102 * by owner in unshared queues.
793 dl 1.90 */
794     final ForkJoinTask<?> pop() {
795 dl 1.243 int b = base, s = top, al, i; ForkJoinTask<?>[] a;
796 dl 1.256 if ((a = array) != null && b != s && (al = a.length) > 0) {
797     int index = (al - 1) & --s;
798 dl 1.262 ForkJoinTask<?> t = (ForkJoinTask<?>)
799 dl 1.314 QA.get(a, index);
800 dl 1.262 if (t != null &&
801 dl 1.314 QA.compareAndSet(a, index, t, null)) {
802 dl 1.256 top = s;
803 dl 1.314 VarHandle.releaseFence();
804 dl 1.78 return t;
805     }
806     }
807     return null;
808     }
809    
810     /**
811 dl 1.90 * Takes next task, if one exists, in FIFO order.
812 dl 1.78 */
813 dl 1.90 final ForkJoinTask<?> poll() {
814 dl 1.243 for (;;) {
815     int b = base, s = top, d, al; ForkJoinTask<?>[] a;
816     if ((a = array) != null && (d = b - s) < 0 &&
817     (al = a.length) > 0) {
818 dl 1.256 int index = (al - 1) & b;
819 dl 1.243 ForkJoinTask<?> t = (ForkJoinTask<?>)
820 dl 1.316 QA.getAcquire(a, index);
821 dl 1.243 if (b++ == base) {
822     if (t != null) {
823 dl 1.314 if (QA.compareAndSet(a, index, t, null)) {
824 dl 1.243 base = b;
825     return t;
826     }
827 dl 1.200 }
828 dl 1.243 else if (d == -1)
829     break; // now empty
830 dl 1.78 }
831 dl 1.90 }
832 dl 1.243 else
833     break;
834 dl 1.78 }
835     return null;
836     }
837    
838     /**
839     * Takes next task, if one exists, in order specified by mode.
840     */
841     final ForkJoinTask<?> nextLocalTask() {
842 dl 1.300 return ((id & FIFO) != 0) ? poll() : pop();
843 dl 1.78 }
844    
845     /**
846     * Returns next task, if one exists, in order specified by mode.
847     */
848     final ForkJoinTask<?> peek() {
849 dl 1.292 int al; ForkJoinTask<?>[] a;
850 dl 1.243 return ((a = array) != null && (al = a.length) > 0) ?
851 dl 1.300 a[(al - 1) &
852     ((id & FIFO) != 0 ? base : top - 1)] : null;
853 dl 1.78 }
854    
855     /**
856     * Pops the given task only if it is at the current top.
857 jsr166 1.251 */
858 dl 1.243 final boolean tryUnpush(ForkJoinTask<?> task) {
859 dl 1.256 int b = base, s = top, al; ForkJoinTask<?>[] a;
860     if ((a = array) != null && b != s && (al = a.length) > 0) {
861     int index = (al - 1) & --s;
862 dl 1.314 if (QA.compareAndSet(a, index, task, null)) {
863 dl 1.243 top = s;
864 dl 1.314 VarHandle.releaseFence();
865 dl 1.224 return true;
866     }
867 dl 1.78 }
868     return false;
869     }
870    
871     /**
872 jsr166 1.84 * Removes and cancels all known tasks, ignoring any exceptions.
873 dl 1.78 */
874     final void cancelAll() {
875 dl 1.300 for (ForkJoinTask<?> t; (t = poll()) != null; )
876 dl 1.78 ForkJoinTask.cancelIgnoringExceptions(t);
877     }
878    
879 dl 1.104 // Specialized execution methods
880 dl 1.78
881     /**
882 dl 1.300 * Pops and executes up to limit consecutive tasks or until empty.
883     *
884     * @param limit max runs, or zero for no limit
885 dl 1.253 */
886 dl 1.300 final void localPopAndExec(int limit) {
887     for (;;) {
888 dl 1.253 int b = base, s = top, al; ForkJoinTask<?>[] a;
889     if ((a = array) != null && b != s && (al = a.length) > 0) {
890 dl 1.256 int index = (al - 1) & --s;
891 dl 1.253 ForkJoinTask<?> t = (ForkJoinTask<?>)
892 dl 1.314 QA.getAndSet(a, index, null);
893 dl 1.253 if (t != null) {
894     top = s;
895 dl 1.314 VarHandle.releaseFence();
896 dl 1.300 t.doExec();
897     if (limit != 0 && --limit == 0)
898 dl 1.253 break;
899     }
900     else
901     break;
902     }
903     else
904     break;
905     }
906     }
907    
908     /**
909 dl 1.300 * Polls and executes up to limit consecutive tasks or until empty.
910     *
911     * @param limit, or zero for no limit
912 dl 1.253 */
913 dl 1.300 final void localPollAndExec(int limit) {
914     for (int polls = 0;;) {
915     int b = base, s = top, d, al; ForkJoinTask<?>[] a;
916     if ((a = array) != null && (d = b - s) < 0 &&
917     (al = a.length) > 0) {
918 dl 1.256 int index = (al - 1) & b++;
919 dl 1.253 ForkJoinTask<?> t = (ForkJoinTask<?>)
920 dl 1.314 QA.getAndSet(a, index, null);
921 dl 1.253 if (t != null) {
922     base = b;
923 dl 1.255 t.doExec();
924 dl 1.300 if (limit != 0 && ++polls == limit)
925 dl 1.253 break;
926     }
927 dl 1.300 else if (d == -1)
928     break; // now empty
929     else
930     polls = 0; // stolen; reset
931 dl 1.253 }
932     else
933     break;
934     }
935     }
936    
937     /**
938 jsr166 1.302 * If present, removes task from queue and executes it.
939 dl 1.94 */
940 dl 1.300 final void tryRemoveAndExec(ForkJoinTask<?> task) {
941     ForkJoinTask<?>[] wa; int s, wal;
942     if (base - (s = top) < 0 && // traverse from top
943     (wa = array) != null && (wal = wa.length) > 0) {
944     for (int m = wal - 1, ns = s - 1, i = ns; ; --i) {
945     int index = i & m;
946     ForkJoinTask<?> t = (ForkJoinTask<?>)
947 dl 1.314 QA.get(wa, index);
948 dl 1.300 if (t == null)
949     break;
950     else if (t == task) {
951 dl 1.314 if (QA.compareAndSet(wa, index, t, null)) {
952 dl 1.300 top = ns; // safely shift down
953     for (int j = i; j != ns; ++j) {
954     ForkJoinTask<?> f;
955     int pindex = (j + 1) & m;
956 dl 1.314 f = (ForkJoinTask<?>)QA.get(wa, pindex);
957     QA.setVolatile(wa, pindex, null);
958 dl 1.300 int jindex = j & m;
959 dl 1.314 QA.setRelease(wa, jindex, f);
960 dl 1.300 }
961 dl 1.314 VarHandle.releaseFence();
962 dl 1.300 t.doExec();
963     }
964     break;
965     }
966 dl 1.262 }
967 dl 1.215 }
968     }
969    
970     /**
971 dl 1.300 * Tries to steal and run tasks within the target's
972 jsr166 1.302 * computation until done, not found, or limit exceeded.
973 dl 1.94 *
974 dl 1.300 * @param task root of CountedCompleter computation
975     * @param limit max runs, or zero for no limit
976     * @return task status on exit
977     */
978     final int localHelpCC(CountedCompleter<?> task, int limit) {
979     int status = 0;
980     if (task != null && (status = task.status) >= 0) {
981     for (;;) {
982     boolean help = false;
983     int b = base, s = top, al; ForkJoinTask<?>[] a;
984     if ((a = array) != null && b != s && (al = a.length) > 0) {
985     int index = (al - 1) & (s - 1);
986     ForkJoinTask<?> o = (ForkJoinTask<?>)
987 dl 1.314 QA.get(a, index);
988 dl 1.300 if (o instanceof CountedCompleter) {
989     CountedCompleter<?> t = (CountedCompleter<?>)o;
990     for (CountedCompleter<?> f = t;;) {
991     if (f != task) {
992     if ((f = f.completer) == null) // try parent
993     break;
994     }
995     else {
996 dl 1.314 if (QA.compareAndSet(a, index, t, null)) {
997 dl 1.300 top = s - 1;
998 dl 1.314 VarHandle.releaseFence();
999 dl 1.300 t.doExec();
1000     help = true;
1001     }
1002     break;
1003 dl 1.200 }
1004     }
1005 dl 1.243 }
1006 dl 1.104 }
1007 dl 1.300 if ((status = task.status) < 0 || !help ||
1008     (limit != 0 && --limit == 0))
1009     break;
1010 dl 1.104 }
1011     }
1012 dl 1.300 return status;
1013     }
1014    
1015     // Operations on shared queues
1016    
1017     /**
1018 jsr166 1.302 * Tries to lock shared queue by CASing phase field.
1019 dl 1.300 */
1020     final boolean tryLockSharedQueue() {
1021 dl 1.314 return PHASE.compareAndSet(this, 0, QLOCK);
1022 dl 1.104 }
1023    
1024     /**
1025 dl 1.300 * Shared version of tryUnpush.
1026 dl 1.78 */
1027 dl 1.300 final boolean trySharedUnpush(ForkJoinTask<?> task) {
1028     boolean popped = false;
1029     int s = top - 1, al; ForkJoinTask<?>[] a;
1030     if ((a = array) != null && (al = a.length) > 0) {
1031     int index = (al - 1) & s;
1032 dl 1.314 ForkJoinTask<?> t = (ForkJoinTask<?>) QA.get(a, index);
1033 dl 1.300 if (t == task &&
1034 dl 1.314 PHASE.compareAndSet(this, 0, QLOCK)) {
1035 dl 1.300 if (top == s + 1 && array == a &&
1036 dl 1.314 QA.compareAndSet(a, index, task, null)) {
1037 dl 1.300 popped = true;
1038     top = s;
1039 dl 1.178 }
1040 dl 1.314 PHASE.setRelease(this, 0);
1041 dl 1.94 }
1042 dl 1.78 }
1043 dl 1.300 return popped;
1044 dl 1.78 }
1045    
1046     /**
1047 dl 1.300 * Shared version of localHelpCC.
1048     */
1049     final int sharedHelpCC(CountedCompleter<?> task, int limit) {
1050     int status = 0;
1051     if (task != null && (status = task.status) >= 0) {
1052     for (;;) {
1053     boolean help = false;
1054     int b = base, s = top, al; ForkJoinTask<?>[] a;
1055     if ((a = array) != null && b != s && (al = a.length) > 0) {
1056     int index = (al - 1) & (s - 1);
1057     ForkJoinTask<?> o = (ForkJoinTask<?>)
1058 dl 1.314 QA.get(a, index);
1059 dl 1.300 if (o instanceof CountedCompleter) {
1060     CountedCompleter<?> t = (CountedCompleter<?>)o;
1061     for (CountedCompleter<?> f = t;;) {
1062     if (f != task) {
1063     if ((f = f.completer) == null)
1064     break;
1065     }
1066     else {
1067 dl 1.314 if (PHASE.compareAndSet(this, 0, QLOCK)) {
1068 dl 1.300 if (top == s && array == a &&
1069 dl 1.314 QA.compareAndSet(a, index, t, null)) {
1070 dl 1.300 help = true;
1071     top = s - 1;
1072     }
1073 dl 1.314 PHASE.setRelease(this, 0);
1074 dl 1.300 if (help)
1075     t.doExec();
1076     }
1077     break;
1078     }
1079 dl 1.243 }
1080 dl 1.200 }
1081 dl 1.178 }
1082 dl 1.300 if ((status = task.status) < 0 || !help ||
1083     (limit != 0 && --limit == 0))
1084     break;
1085 dl 1.178 }
1086 dl 1.78 }
1087 dl 1.300 return status;
1088 dl 1.78 }
1089    
1090     /**
1091 dl 1.86 * Returns true if owned and not known to be blocked.
1092     */
1093     final boolean isApparentlyUnblocked() {
1094     Thread wt; Thread.State s;
1095 dl 1.300 return ((wt = owner) != null &&
1096 dl 1.86 (s = wt.getState()) != Thread.State.BLOCKED &&
1097     s != Thread.State.WAITING &&
1098     s != Thread.State.TIMED_WAITING);
1099     }
1100    
1101 dl 1.314 // VarHandle mechanics.
1102     private static final VarHandle PHASE;
1103 dl 1.78 static {
1104     try {
1105 dl 1.314 MethodHandles.Lookup l = MethodHandles.lookup();
1106     PHASE = l.findVarHandle(WorkQueue.class, "phase", int.class);
1107 jsr166 1.231 } catch (ReflectiveOperationException e) {
1108 dl 1.78 throw new Error(e);
1109     }
1110     }
1111     }
1112 dl 1.14
1113 dl 1.112 // static fields (initialized in static initializer below)
1114    
1115     /**
1116     * Creates a new ForkJoinWorkerThread. This factory is used unless
1117     * overridden in ForkJoinPool constructors.
1118     */
1119     public static final ForkJoinWorkerThreadFactory
1120     defaultForkJoinWorkerThreadFactory;
1121    
1122 jsr166 1.1 /**
1123 dl 1.115 * Permission required for callers of methods that may start or
1124 dl 1.300 * kill threads.
1125 dl 1.115 */
1126 jsr166 1.276 static final RuntimePermission modifyThreadPermission;
1127 dl 1.115
1128     /**
1129 dl 1.101 * Common (static) pool. Non-null for public use unless a static
1130 dl 1.105 * construction exception, but internal usages null-check on use
1131     * to paranoically avoid potential initialization circularities
1132     * as well as to simplify generated code.
1133 dl 1.101 */
1134 dl 1.134 static final ForkJoinPool common;
1135 dl 1.101
1136     /**
1137 dl 1.160 * Common pool parallelism. To allow simpler use and management
1138     * when common pool threads are disabled, we allow the underlying
1139 dl 1.185 * common.parallelism field to be zero, but in that case still report
1140 dl 1.160 * parallelism as 1 to reflect resulting caller-runs mechanics.
1141 dl 1.90 */
1142 jsr166 1.274 static final int COMMON_PARALLELISM;
1143 dl 1.90
1144     /**
1145 dl 1.208 * Limit on spare thread construction in tryCompensate.
1146     */
1147 jsr166 1.273 private static final int COMMON_MAX_SPARES;
1148 dl 1.208
1149     /**
1150 dl 1.105 * Sequence number for creating workerNamePrefix.
1151 dl 1.86 */
1152 dl 1.105 private static int poolNumberSequence;
1153 dl 1.86
1154 jsr166 1.1 /**
1155 jsr166 1.132 * Returns the next sequence number. We don't expect this to
1156     * ever contend, so use simple builtin sync.
1157 dl 1.83 */
1158 dl 1.105 private static final synchronized int nextPoolId() {
1159     return ++poolNumberSequence;
1160     }
1161 dl 1.86
1162 dl 1.200 // static configuration constants
1163 dl 1.86
1164     /**
1165 dl 1.300 * Default idle timeout value (in milliseconds) for the thread
1166     * triggering quiescence to park waiting for new work
1167 dl 1.86 */
1168 jsr166 1.326 private static final long DEFAULT_KEEPALIVE = 60_000L;
1169 dl 1.86
1170     /**
1171 dl 1.300 * Undershoot tolerance for idle timeouts
1172 dl 1.120 */
1173 dl 1.300 private static final long TIMEOUT_SLOP = 20L;
1174 dl 1.200
1175     /**
1176 jsr166 1.273 * The default value for COMMON_MAX_SPARES. Overridable using the
1177     * "java.util.concurrent.ForkJoinPool.common.maximumSpares" system
1178     * property. The default value is far in excess of normal
1179     * requirements, but also far short of MAX_CAP and typical OS
1180     * thread limits, so allows JVMs to catch misuse/abuse before
1181     * running out of resources needed to do so.
1182 dl 1.200 */
1183 dl 1.208 private static final int DEFAULT_COMMON_MAX_SPARES = 256;
1184 dl 1.120
1185     /**
1186 dl 1.90 * Increment for seed generators. See class ThreadLocal for
1187     * explanation.
1188     */
1189 dl 1.193 private static final int SEED_INCREMENT = 0x9e3779b9;
1190 dl 1.83
1191 jsr166 1.163 /*
1192 dl 1.200 * Bits and masks for field ctl, packed with 4 16 bit subfields:
1193 dl 1.300 * RC: Number of released (unqueued) workers minus target parallelism
1194 dl 1.200 * TC: Number of total workers minus target parallelism
1195     * SS: version count and status of top waiting thread
1196     * ID: poolIndex of top of Treiber stack of waiters
1197     *
1198     * When convenient, we can extract the lower 32 stack top bits
1199     * (including version bits) as sp=(int)ctl. The offsets of counts
1200     * by the target parallelism and the positionings of fields makes
1201     * it possible to perform the most common checks via sign tests of
1202 dl 1.300 * fields: When ac is negative, there are not enough unqueued
1203 dl 1.200 * workers, when tc is negative, there are not enough total
1204     * workers. When sp is non-zero, there are waiting workers. To
1205     * deal with possibly negative fields, we use casts in and out of
1206     * "short" and/or signed shifts to maintain signedness.
1207     *
1208 dl 1.300 * Because it occupies uppermost bits, we can add one release count
1209     * using getAndAddLong of RC_UNIT, rather than CAS, when returning
1210 dl 1.200 * from a blocked join. Other updates entail multiple subfields
1211     * and masking, requiring CAS.
1212 dl 1.300 *
1213     * The limits packed in field "bounds" are also offset by the
1214     * parallelism level to make them comparable to the ctl rc and tc
1215     * fields.
1216 dl 1.200 */
1217    
1218     // Lower and upper word masks
1219     private static final long SP_MASK = 0xffffffffL;
1220     private static final long UC_MASK = ~SP_MASK;
1221 dl 1.86
1222 dl 1.300 // Release counts
1223     private static final int RC_SHIFT = 48;
1224     private static final long RC_UNIT = 0x0001L << RC_SHIFT;
1225     private static final long RC_MASK = 0xffffL << RC_SHIFT;
1226 dl 1.200
1227     // Total counts
1228 dl 1.86 private static final int TC_SHIFT = 32;
1229 dl 1.200 private static final long TC_UNIT = 0x0001L << TC_SHIFT;
1230     private static final long TC_MASK = 0xffffL << TC_SHIFT;
1231     private static final long ADD_WORKER = 0x0001L << (TC_SHIFT + 15); // sign
1232    
1233 dl 1.300 // Instance fields
1234 dl 1.86
1235 dl 1.300 volatile long stealCount; // collects worker nsteals
1236     final long keepAlive; // milliseconds before dropping if idle
1237     int indexSeed; // next worker index
1238     final int bounds; // min, max threads packed as shorts
1239     volatile int mode; // parallelism, runstate, queue mode
1240     WorkQueue[] workQueues; // main registry
1241     final String workerNamePrefix; // for worker thread string; sync lock
1242 dl 1.112 final ForkJoinWorkerThreadFactory factory;
1243 dl 1.200 final UncaughtExceptionHandler ueh; // per-worker UEH
1244 dl 1.307 final Predicate<? super ForkJoinPool> saturate;
1245 dl 1.101
1246 dl 1.308 @jdk.internal.vm.annotation.Contended("fjpctl") // segregate
1247     volatile long ctl; // main pool control
1248 jsr166 1.309
1249 dl 1.200 // Creating, registering and deregistering workers
1250    
1251 dl 1.112 /**
1252 dl 1.200 * Tries to construct and start one worker. Assumes that total
1253     * count has already been incremented as a reservation. Invokes
1254     * deregisterWorker on any failure.
1255     *
1256     * @return true if successful
1257 dl 1.115 */
1258 dl 1.300 private boolean createWorker() {
1259 dl 1.200 ForkJoinWorkerThreadFactory fac = factory;
1260     Throwable ex = null;
1261     ForkJoinWorkerThread wt = null;
1262     try {
1263     if (fac != null && (wt = fac.newThread(this)) != null) {
1264     wt.start();
1265     return true;
1266 dl 1.115 }
1267 dl 1.200 } catch (Throwable rex) {
1268     ex = rex;
1269 dl 1.112 }
1270 dl 1.200 deregisterWorker(wt, ex);
1271     return false;
1272 dl 1.112 }
1273    
1274 dl 1.200 /**
1275     * Tries to add one worker, incrementing ctl counts before doing
1276     * so, relying on createWorker to back out on failure.
1277     *
1278     * @param c incoming ctl value, with total count negative and no
1279     * idle workers. On CAS failure, c is refreshed and retried if
1280 jsr166 1.202 * this holds (otherwise, a new worker is not needed).
1281 dl 1.200 */
1282     private void tryAddWorker(long c) {
1283     do {
1284 dl 1.300 long nc = ((RC_MASK & (c + RC_UNIT)) |
1285 dl 1.200 (TC_MASK & (c + TC_UNIT)));
1286 dl 1.314 if (ctl == c && CTL.compareAndSet(this, c, nc)) {
1287 dl 1.300 createWorker();
1288 dl 1.243 break;
1289 dl 1.200 }
1290     } while (((c = ctl) & ADD_WORKER) != 0L && (int)c == 0);
1291     }
1292 dl 1.112
1293     /**
1294 dl 1.200 * Callback from ForkJoinWorkerThread constructor to establish and
1295     * record its WorkQueue.
1296 dl 1.112 *
1297     * @param wt the worker thread
1298 dl 1.115 * @return the worker's queue
1299 dl 1.112 */
1300 dl 1.115 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1301 dl 1.200 UncaughtExceptionHandler handler;
1302 dl 1.300 wt.setDaemon(true); // configure thread
1303 dl 1.115 if ((handler = ueh) != null)
1304     wt.setUncaughtExceptionHandler(handler);
1305 dl 1.200 WorkQueue w = new WorkQueue(this, wt);
1306 dl 1.300 int tid = 0; // for thread name
1307     int fifo = mode & FIFO;
1308     String prefix = workerNamePrefix;
1309     if (prefix != null) {
1310 jsr166 1.301 synchronized (prefix) {
1311 dl 1.300 WorkQueue[] ws = workQueues; int n;
1312     int s = indexSeed += SEED_INCREMENT;
1313     if (ws != null && (n = ws.length) > 1) {
1314     int m = n - 1;
1315     tid = s & m;
1316     int i = m & ((s << 1) | 1); // odd-numbered indices
1317     for (int probes = n >>> 1;;) { // find empty slot
1318     WorkQueue q;
1319     if ((q = ws[i]) == null || q.phase == QUIET)
1320     break;
1321     else if (--probes == 0) {
1322     i = n | 1; // resize below
1323     break;
1324     }
1325     else
1326     i = (i + 2) & m;
1327     }
1328    
1329     int id = i | fifo | (s & ~(SMASK | FIFO | DORMANT));
1330     w.phase = w.id = id; // now publishable
1331    
1332     if (i < n)
1333     ws[i] = w;
1334     else { // expand array
1335     int an = n << 1;
1336     WorkQueue[] as = new WorkQueue[an];
1337     as[i] = w;
1338     int am = an - 1;
1339     for (int j = 0; j < n; ++j) {
1340     WorkQueue v; // copy external queue
1341     if ((v = ws[j]) != null) // position may change
1342     as[v.id & am & SQMASK] = v;
1343     if (++j >= n)
1344     break;
1345     as[j] = ws[j]; // copy worker
1346 dl 1.94 }
1347 dl 1.300 workQueues = as;
1348 dl 1.94 }
1349     }
1350 dl 1.78 }
1351 dl 1.300 wt.setName(prefix.concat(Integer.toString(tid)));
1352 dl 1.78 }
1353 dl 1.115 return w;
1354 dl 1.78 }
1355 dl 1.19
1356 jsr166 1.1 /**
1357 dl 1.86 * Final callback from terminating worker, as well as upon failure
1358 dl 1.105 * to construct or start a worker. Removes record of worker from
1359     * array, and adjusts counts. If pool is shutting down, tries to
1360     * complete termination.
1361 dl 1.78 *
1362 jsr166 1.151 * @param wt the worker thread, or null if construction failed
1363 dl 1.78 * @param ex the exception causing failure, or null if none
1364 dl 1.45 */
1365 dl 1.78 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1366     WorkQueue w = null;
1367 dl 1.300 int phase = 0;
1368 dl 1.78 if (wt != null && (w = wt.workQueue) != null) {
1369 dl 1.300 Object lock = workerNamePrefix;
1370     long ns = (long)w.nsteals & 0xffffffffL;
1371     int idx = w.id & SMASK;
1372     if (lock != null) {
1373     WorkQueue[] ws; // remove index from array
1374 jsr166 1.301 synchronized (lock) {
1375 dl 1.243 if ((ws = workQueues) != null && ws.length > idx &&
1376     ws[idx] == w)
1377     ws[idx] = null;
1378 dl 1.300 stealCount += ns;
1379 dl 1.243 }
1380     }
1381 dl 1.300 phase = w.phase;
1382 dl 1.243 }
1383 dl 1.300 if (phase != QUIET) { // else pre-adjusted
1384 dl 1.243 long c; // decrement counts
1385 jsr166 1.325 do {} while (!CTL.weakCompareAndSet
1386 dl 1.314 (this, c = ctl, ((RC_MASK & (c - RC_UNIT)) |
1387     (TC_MASK & (c - TC_UNIT)) |
1388     (SP_MASK & c))));
1389 dl 1.243 }
1390 dl 1.300 if (w != null)
1391 dl 1.200 w.cancelAll(); // cancel remaining tasks
1392 dl 1.300
1393     if (!tryTerminate(false, false) && // possibly replace worker
1394     w != null && w.array != null) // avoid repeated failures
1395     signalWork();
1396    
1397 dl 1.200 if (ex == null) // help clean on way out
1398 dl 1.120 ForkJoinTask.helpExpungeStaleExceptions();
1399 dl 1.200 else // rethrow
1400 dl 1.104 ForkJoinTask.rethrow(ex);
1401 dl 1.78 }
1402 dl 1.52
1403 dl 1.19 /**
1404 dl 1.300 * Tries to create or release a worker if too few are running.
1405 dl 1.105 */
1406 dl 1.253 final void signalWork() {
1407 dl 1.243 for (;;) {
1408 dl 1.300 long c; int sp; WorkQueue[] ws; int i; WorkQueue v;
1409 dl 1.243 if ((c = ctl) >= 0L) // enough workers
1410     break;
1411     else if ((sp = (int)c) == 0) { // no idle workers
1412     if ((c & ADD_WORKER) != 0L) // too few workers
1413 dl 1.200 tryAddWorker(c);
1414     break;
1415     }
1416 dl 1.243 else if ((ws = workQueues) == null)
1417     break; // unstarted/terminated
1418     else if (ws.length <= (i = sp & SMASK))
1419     break; // terminated
1420     else if ((v = ws[i]) == null)
1421     break; // terminating
1422     else {
1423 dl 1.300 int np = sp & ~UNSIGNALLED;
1424     int vp = v.phase;
1425     long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + RC_UNIT));
1426     Thread vt = v.owner;
1427 dl 1.314 if (sp == vp && CTL.compareAndSet(this, c, nc)) {
1428 dl 1.300 v.phase = np;
1429     if (v.source < 0)
1430     LockSupport.unpark(vt);
1431 dl 1.243 break;
1432     }
1433 dl 1.174 }
1434 dl 1.52 }
1435 dl 1.14 }
1436    
1437 dl 1.200 /**
1438 dl 1.300 * Tries to decrement counts (sometimes implicitly) and possibly
1439     * arrange for a compensating worker in preparation for blocking:
1440     * If not all core workers yet exist, creates one, else if any are
1441     * unreleased (possibly including caller) releases one, else if
1442     * fewer than the minimum allowed number of workers running,
1443     * checks to see that they are all active, and if so creates an
1444     * extra worker unless over maximum limit and policy is to
1445     * saturate. Most of these steps can fail due to interference, in
1446     * which case 0 is returned so caller will retry. A negative
1447     * return value indicates that the caller doesn't need to
1448     * re-adjust counts when later unblocked.
1449 dl 1.243 *
1450 dl 1.300 * @return 1: block then adjust, -1: block without adjust, 0 : retry
1451 dl 1.243 */
1452 dl 1.300 private int tryCompensate(WorkQueue w) {
1453     int t, n, sp;
1454     long c = ctl;
1455     WorkQueue[] ws = workQueues;
1456 dl 1.310 if ((t = (short)(c >>> TC_SHIFT)) >= 0) {
1457 dl 1.300 if (ws == null || (n = ws.length) <= 0 || w == null)
1458     return 0; // disabled
1459     else if ((sp = (int)c) != 0) { // replace or release
1460     WorkQueue v = ws[sp & (n - 1)];
1461     int wp = w.phase;
1462     long uc = UC_MASK & ((wp < 0) ? c + RC_UNIT : c);
1463     int np = sp & ~UNSIGNALLED;
1464     if (v != null) {
1465     int vp = v.phase;
1466     Thread vt = v.owner;
1467     long nc = ((long)v.stackPred & SP_MASK) | uc;
1468 dl 1.314 if (vp == sp && CTL.compareAndSet(this, c, nc)) {
1469 dl 1.300 v.phase = np;
1470     if (v.source < 0)
1471     LockSupport.unpark(vt);
1472     return (wp < 0) ? -1 : 1;
1473     }
1474     }
1475     return 0;
1476     }
1477     else if ((int)(c >> RC_SHIFT) - // reduce parallelism
1478     (short)(bounds & SMASK) > 0) {
1479     long nc = ((RC_MASK & (c - RC_UNIT)) | (~RC_MASK & c));
1480 dl 1.314 return CTL.compareAndSet(this, c, nc) ? 1 : 0;
1481 dl 1.300 }
1482     else { // validate
1483     int md = mode, pc = md & SMASK, tc = pc + t, bc = 0;
1484     boolean unstable = false;
1485     for (int i = 1; i < n; i += 2) {
1486     WorkQueue q; Thread wt; Thread.State ts;
1487     if ((q = ws[i]) != null) {
1488     if (q.source == 0) {
1489     unstable = true;
1490     break;
1491     }
1492     else {
1493     --tc;
1494     if ((wt = q.owner) != null &&
1495     ((ts = wt.getState()) == Thread.State.BLOCKED ||
1496     ts == Thread.State.WAITING))
1497     ++bc; // worker is blocking
1498     }
1499 dl 1.243 }
1500     }
1501 dl 1.300 if (unstable || tc != 0 || ctl != c)
1502     return 0; // inconsistent
1503     else if (t + pc >= MAX_CAP || t >= (bounds >>> SWIDTH)) {
1504 dl 1.307 Predicate<? super ForkJoinPool> sat;
1505     if ((sat = saturate) != null && sat.test(this))
1506 dl 1.300 return -1;
1507     else if (bc < pc) { // lagging
1508     Thread.yield(); // for retry spins
1509     return 0;
1510 dl 1.243 }
1511     else
1512 dl 1.300 throw new RejectedExecutionException(
1513     "Thread limit exceeded replacing blocked worker");
1514 dl 1.200 }
1515 dl 1.177 }
1516 dl 1.243 }
1517 dl 1.300
1518     long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK); // expand pool
1519 dl 1.314 return CTL.compareAndSet(this, c, nc) && createWorker() ? 1 : 0;
1520 dl 1.243 }
1521    
1522     /**
1523     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1524 dl 1.300 * See above for explanation.
1525 dl 1.243 */
1526     final void runWorker(WorkQueue w) {
1527 dl 1.300 WorkQueue[] ws;
1528 dl 1.243 w.growArray(); // allocate queue
1529 dl 1.300 int r = w.id ^ ThreadLocalRandom.nextSecondarySeed();
1530     if (r == 0) // initial nonzero seed
1531     r = 1;
1532     int lastSignalId = 0; // avoid unneeded signals
1533     while ((ws = workQueues) != null) {
1534     boolean nonempty = false; // scan
1535     for (int n = ws.length, j = n, m = n - 1; j > 0; --j) {
1536     WorkQueue q; int i, b, al; ForkJoinTask<?>[] a;
1537     if ((i = r & m) >= 0 && i < n && // always true
1538     (q = ws[i]) != null && (b = q.base) - q.top < 0 &&
1539 dl 1.243 (a = q.array) != null && (al = a.length) > 0) {
1540 dl 1.300 int qid = q.id; // (never zero)
1541 dl 1.256 int index = (al - 1) & b;
1542 dl 1.243 ForkJoinTask<?> t = (ForkJoinTask<?>)
1543 dl 1.316 QA.getAcquire(a, index);
1544 dl 1.300 if (t != null && b++ == q.base &&
1545 dl 1.314 QA.compareAndSet(a, index, t, null)) {
1546 dl 1.300 if ((q.base = b) - q.top < 0 && qid != lastSignalId)
1547     signalWork(); // propagate signal
1548     w.source = lastSignalId = qid;
1549     t.doExec();
1550     if ((w.id & FIFO) != 0) // run remaining locals
1551     w.localPollAndExec(POLL_LIMIT);
1552     else
1553     w.localPopAndExec(POLL_LIMIT);
1554     ForkJoinWorkerThread thread = w.owner;
1555     ++w.nsteals;
1556     w.source = 0; // now idle
1557     if (thread != null)
1558     thread.afterTopLevelExec();
1559 dl 1.243 }
1560 dl 1.300 nonempty = true;
1561 dl 1.178 }
1562 dl 1.300 else if (nonempty)
1563 dl 1.243 break;
1564 dl 1.300 else
1565     ++r;
1566 dl 1.120 }
1567 dl 1.178
1568 dl 1.300 if (nonempty) { // move (xorshift)
1569     r ^= r << 13; r ^= r >>> 17; r ^= r << 5;
1570     }
1571     else {
1572     int phase;
1573     lastSignalId = 0; // clear for next scan
1574     if ((phase = w.phase) >= 0) { // enqueue
1575     int np = w.phase = (phase + SS_SEQ) | UNSIGNALLED;
1576     long c, nc;
1577     do {
1578     w.stackPred = (int)(c = ctl);
1579     nc = ((c - RC_UNIT) & UC_MASK) | (SP_MASK & np);
1580 jsr166 1.325 } while (!CTL.weakCompareAndSet(this, c, nc));
1581 dl 1.300 }
1582     else { // already queued
1583     int pred = w.stackPred;
1584     w.source = DORMANT; // enable signal
1585     for (int steps = 0;;) {
1586     int md, rc; long c;
1587     if (w.phase >= 0) {
1588     w.source = 0;
1589     break;
1590     }
1591     else if ((md = mode) < 0) // shutting down
1592     return;
1593     else if ((rc = ((md & SMASK) + // possibly quiescent
1594     (int)((c = ctl) >> RC_SHIFT))) <= 0 &&
1595     (md & SHUTDOWN) != 0 &&
1596     tryTerminate(false, false))
1597     return; // help terminate
1598     else if ((++steps & 1) == 0)
1599     Thread.interrupted(); // clear between parks
1600     else if (rc <= 0 && pred != 0 && phase == (int)c) {
1601     long d = keepAlive + System.currentTimeMillis();
1602     LockSupport.parkUntil(this, d);
1603     if (ctl == c &&
1604     d - System.currentTimeMillis() <= TIMEOUT_SLOP) {
1605     long nc = ((UC_MASK & (c - TC_UNIT)) |
1606     (SP_MASK & pred));
1607 dl 1.314 if (CTL.compareAndSet(this, c, nc)) {
1608 dl 1.300 w.phase = QUIET;
1609     return; // drop on timeout
1610     }
1611     }
1612     }
1613     else
1614     LockSupport.park(this);
1615     }
1616     }
1617     }
1618     }
1619     }
1620 dl 1.200
1621 dl 1.305 /**
1622     * Helps and/or blocks until the given task is done or timeout.
1623     * First tries locally helping, then scans other queues for a task
1624     * produced by one of w's stealers; compensating and blocking if
1625     * none are found (rescanning if tryCompensate fails).
1626     *
1627     * @param w caller
1628     * @param task the task
1629     * @param deadline for timed waits, if nonzero
1630     * @return task status on exit
1631     */
1632 dl 1.300 final int awaitJoin(WorkQueue w, ForkJoinTask<?> task, long deadline) {
1633     int s = 0;
1634     if (w != null && task != null &&
1635     (!(task instanceof CountedCompleter) ||
1636     (s = w.localHelpCC((CountedCompleter<?>)task, 0)) >= 0)) {
1637     w.tryRemoveAndExec(task);
1638     int src = w.source, id = w.id;
1639     s = task.status;
1640     while (s >= 0) {
1641     WorkQueue[] ws;
1642     boolean nonempty = false;
1643     int r = ThreadLocalRandom.nextSecondarySeed() | 1; // odd indices
1644     if ((ws = workQueues) != null) { // scan for matching id
1645     for (int n = ws.length, m = n - 1, j = -n; j < n; j += 2) {
1646     WorkQueue q; int i, b, al; ForkJoinTask<?>[] a;
1647     if ((i = (r + j) & m) >= 0 && i < n &&
1648     (q = ws[i]) != null && q.source == id &&
1649     (b = q.base) - q.top < 0 &&
1650     (a = q.array) != null && (al = a.length) > 0) {
1651     int qid = q.id;
1652     int index = (al - 1) & b;
1653     ForkJoinTask<?> t = (ForkJoinTask<?>)
1654 dl 1.316 QA.getAcquire(a, index);
1655 dl 1.300 if (t != null && b++ == q.base && id == q.source &&
1656 dl 1.314 QA.compareAndSet(a, index, t, null)) {
1657 dl 1.300 q.base = b;
1658     w.source = qid;
1659     t.doExec();
1660     w.source = src;
1661     }
1662     nonempty = true;
1663 dl 1.200 break;
1664 dl 1.300 }
1665 dl 1.200 }
1666 dl 1.300 }
1667     if ((s = task.status) < 0)
1668     break;
1669     else if (!nonempty) {
1670     long ms, ns; int block;
1671     if (deadline == 0L)
1672     ms = 0L; // untimed
1673     else if ((ns = deadline - System.nanoTime()) <= 0L)
1674     break; // timeout
1675     else if ((ms = TimeUnit.NANOSECONDS.toMillis(ns)) <= 0L)
1676     ms = 1L; // avoid 0 for timed wait
1677     if ((block = tryCompensate(w)) != 0) {
1678     task.internalWait(ms);
1679 dl 1.314 CTL.getAndAdd(this, (block > 0) ? RC_UNIT : 0L);
1680 dl 1.200 }
1681 dl 1.300 s = task.status;
1682 dl 1.200 }
1683 dl 1.178 }
1684     }
1685 dl 1.200 return s;
1686 dl 1.120 }
1687    
1688     /**
1689 dl 1.300 * Runs tasks until {@code isQuiescent()}. Rather than blocking
1690     * when tasks cannot be found, rescans until all others cannot
1691     * find tasks either.
1692 dl 1.78 */
1693 dl 1.300 final void helpQuiescePool(WorkQueue w) {
1694     int prevSrc = w.source, fifo = w.id & FIFO;
1695     for (int source = prevSrc, released = -1;;) { // -1 until known
1696     WorkQueue[] ws;
1697     if (fifo != 0)
1698     w.localPollAndExec(0);
1699     else
1700     w.localPopAndExec(0);
1701     if (released == -1 && w.phase >= 0)
1702     released = 1;
1703     boolean quiet = true, empty = true;
1704     int r = ThreadLocalRandom.nextSecondarySeed();
1705     if ((ws = workQueues) != null) {
1706     for (int n = ws.length, j = n, m = n - 1; j > 0; --j) {
1707     WorkQueue q; int i, b, al; ForkJoinTask<?>[] a;
1708     if ((i = (r - j) & m) >= 0 && i < n && (q = ws[i]) != null) {
1709     if ((b = q.base) - q.top < 0 &&
1710     (a = q.array) != null && (al = a.length) > 0) {
1711     int qid = q.id;
1712     if (released == 0) { // increment
1713     released = 1;
1714 dl 1.314 CTL.getAndAdd(this, RC_UNIT);
1715 dl 1.95 }
1716 dl 1.256 int index = (al - 1) & b;
1717 dl 1.300 ForkJoinTask<?> t = (ForkJoinTask<?>)
1718 dl 1.316 QA.getAcquire(a, index);
1719 dl 1.300 if (t != null && b++ == q.base &&
1720 dl 1.314 QA.compareAndSet(a, index, t, null)) {
1721 dl 1.300 q.base = b;
1722     w.source = source = q.id;
1723     t.doExec();
1724     w.source = source = prevSrc;
1725 dl 1.243 }
1726 dl 1.300 quiet = empty = false;
1727 dl 1.200 break;
1728 dl 1.95 }
1729 dl 1.300 else if ((q.source & QUIET) == 0)
1730     quiet = false;
1731 dl 1.52 }
1732 dl 1.19 }
1733 dl 1.243 }
1734 dl 1.300 if (quiet) {
1735     if (released == 0)
1736 dl 1.314 CTL.getAndAdd(this, RC_UNIT);
1737 dl 1.300 w.source = prevSrc;
1738     break;
1739     }
1740     else if (empty) {
1741     if (source != QUIET)
1742     w.source = source = QUIET;
1743     if (released == 1) { // decrement
1744     released = 0;
1745 dl 1.314 CTL.getAndAdd(this, RC_MASK & -RC_UNIT);
1746 dl 1.300 }
1747     }
1748 dl 1.14 }
1749 dl 1.22 }
1750    
1751 dl 1.52 /**
1752 dl 1.300 * Scans for and returns a polled task, if available.
1753     * Used only for untracked polls.
1754 dl 1.105 *
1755 dl 1.300 * @param submissionsOnly if true, only scan submission queues
1756 dl 1.19 */
1757 dl 1.300 private ForkJoinTask<?> pollScan(boolean submissionsOnly) {
1758     WorkQueue[] ws; int n;
1759     rescan: while ((mode & STOP) == 0 && (ws = workQueues) != null &&
1760     (n = ws.length) > 0) {
1761     int m = n - 1;
1762     int r = ThreadLocalRandom.nextSecondarySeed();
1763     int h = r >>> 16;
1764     int origin, step;
1765     if (submissionsOnly) {
1766     origin = (r & ~1) & m; // even indices and steps
1767     step = (h & ~1) | 2;
1768     }
1769     else {
1770     origin = r & m;
1771     step = h | 1;
1772     }
1773     for (int k = origin, oldSum = 0, checkSum = 0;;) {
1774     WorkQueue q; int b, al; ForkJoinTask<?>[] a;
1775     if ((q = ws[k]) != null) {
1776     checkSum += b = q.base;
1777     if (b - q.top < 0 &&
1778     (a = q.array) != null && (al = a.length) > 0) {
1779     int index = (al - 1) & b;
1780     ForkJoinTask<?> t = (ForkJoinTask<?>)
1781 dl 1.316 QA.getAcquire(a, index);
1782 dl 1.300 if (t != null && b++ == q.base &&
1783 dl 1.314 QA.compareAndSet(a, index, t, null)) {
1784 dl 1.300 q.base = b;
1785     return t;
1786     }
1787     else
1788     break; // restart
1789     }
1790     }
1791     if ((k = (k + step) & m) == origin) {
1792     if (oldSum == (oldSum = checkSum))
1793     break rescan;
1794     checkSum = 0;
1795 dl 1.178 }
1796 dl 1.52 }
1797 dl 1.90 }
1798 dl 1.300 return null;
1799     }
1800    
1801     /**
1802     * Gets and removes a local or stolen task for the given worker.
1803     *
1804     * @return a task, if available
1805     */
1806     final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
1807     ForkJoinTask<?> t;
1808     if (w != null &&
1809     (t = (w.id & FIFO) != 0 ? w.poll() : w.pop()) != null)
1810     return t;
1811     else
1812     return pollScan(false);
1813 dl 1.90 }
1814    
1815 dl 1.300 // External operations
1816    
1817 dl 1.90 /**
1818 dl 1.300 * Adds the given task to a submission queue at submitter's
1819     * current queue, creating one if null or contended.
1820 dl 1.90 *
1821 dl 1.300 * @param task the task. Caller must ensure non-null.
1822 dl 1.90 */
1823 dl 1.300 final void externalPush(ForkJoinTask<?> task) {
1824     int r; // initialize caller's probe
1825     if ((r = ThreadLocalRandom.getProbe()) == 0) {
1826     ThreadLocalRandom.localInit();
1827     r = ThreadLocalRandom.getProbe();
1828     }
1829     for (;;) {
1830     int md = mode, n;
1831     WorkQueue[] ws = workQueues;
1832     if ((md & SHUTDOWN) != 0 || ws == null || (n = ws.length) <= 0)
1833     throw new RejectedExecutionException();
1834     else {
1835     WorkQueue q;
1836     boolean push = false, grow = false;
1837     if ((q = ws[(n - 1) & r & SQMASK]) == null) {
1838     Object lock = workerNamePrefix;
1839     int qid = (r | QUIET) & ~(FIFO | OWNED);
1840     q = new WorkQueue(this, null);
1841     q.id = qid;
1842     q.source = QUIET;
1843     q.phase = QLOCK; // lock queue
1844     if (lock != null) {
1845 jsr166 1.301 synchronized (lock) { // lock pool to install
1846 dl 1.300 int i;
1847     if ((ws = workQueues) != null &&
1848     (n = ws.length) > 0 &&
1849     ws[i = qid & (n - 1) & SQMASK] == null) {
1850     ws[i] = q;
1851     push = grow = true;
1852     }
1853     }
1854     }
1855     }
1856     else if (q.tryLockSharedQueue()) {
1857     int b = q.base, s = q.top, al, d; ForkJoinTask<?>[] a;
1858     if ((a = q.array) != null && (al = a.length) > 0 &&
1859     al - 1 + (d = b - s) > 0) {
1860     a[(al - 1) & s] = task;
1861     q.top = s + 1; // relaxed writes OK here
1862     q.phase = 0;
1863 dl 1.311 if (d < 0 && q.base - s < -1)
1864 dl 1.300 break; // no signal needed
1865     }
1866 dl 1.243 else
1867 dl 1.300 grow = true;
1868     push = true;
1869     }
1870     if (push) {
1871     if (grow) {
1872     try {
1873     q.growArray();
1874     int s = q.top, al; ForkJoinTask<?>[] a;
1875     if ((a = q.array) != null && (al = a.length) > 0) {
1876     a[(al - 1) & s] = task;
1877     q.top = s + 1;
1878     }
1879     } finally {
1880     q.phase = 0;
1881     }
1882 dl 1.243 }
1883 dl 1.300 signalWork();
1884     break;
1885 dl 1.90 }
1886 dl 1.300 else // move if busy
1887     r = ThreadLocalRandom.advanceProbe(r);
1888 dl 1.90 }
1889     }
1890     }
1891    
1892 dl 1.300 /**
1893     * Pushes a possibly-external submission.
1894     */
1895     private <T> ForkJoinTask<T> externalSubmit(ForkJoinTask<T> task) {
1896     Thread t; ForkJoinWorkerThread w; WorkQueue q;
1897     if (task == null)
1898     throw new NullPointerException();
1899     if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) &&
1900     (w = (ForkJoinWorkerThread)t).pool == this &&
1901     (q = w.workQueue) != null)
1902     q.push(task);
1903     else
1904     externalPush(task);
1905     return task;
1906     }
1907    
1908     /**
1909     * Returns common pool queue for an external thread.
1910     */
1911     static WorkQueue commonSubmitterQueue() {
1912     ForkJoinPool p = common;
1913     int r = ThreadLocalRandom.getProbe();
1914     WorkQueue[] ws; int n;
1915     return (p != null && (ws = p.workQueues) != null &&
1916     (n = ws.length) > 0) ?
1917     ws[(n - 1) & r & SQMASK] : null;
1918     }
1919 dl 1.90
1920     /**
1921 dl 1.300 * Performs tryUnpush for an external submitter.
1922     */
1923     final boolean tryExternalUnpush(ForkJoinTask<?> task) {
1924     int r = ThreadLocalRandom.getProbe();
1925     WorkQueue[] ws; WorkQueue w; int n;
1926     return ((ws = workQueues) != null &&
1927     (n = ws.length) > 0 &&
1928     (w = ws[(n - 1) & r & SQMASK]) != null &&
1929     w.trySharedUnpush(task));
1930 dl 1.22 }
1931    
1932     /**
1933 dl 1.300 * Performs helpComplete for an external submitter.
1934 dl 1.78 */
1935 dl 1.300 final int externalHelpComplete(CountedCompleter<?> task, int maxTasks) {
1936     int r = ThreadLocalRandom.getProbe();
1937     WorkQueue[] ws; WorkQueue w; int n;
1938     return ((ws = workQueues) != null && (n = ws.length) > 0 &&
1939     (w = ws[(n - 1) & r & SQMASK]) != null) ?
1940     w.sharedHelpCC(task, maxTasks) : 0;
1941 dl 1.22 }
1942    
1943     /**
1944 dl 1.300 * Tries to steal and run tasks within the target's computation.
1945     * The maxTasks argument supports external usages; internal calls
1946     * use zero, allowing unbounded steps (external calls trap
1947     * non-positive values).
1948 dl 1.78 *
1949 dl 1.300 * @param w caller
1950     * @param maxTasks if non-zero, the maximum number of other tasks to run
1951     * @return task status on exit
1952 dl 1.22 */
1953 dl 1.300 final int helpComplete(WorkQueue w, CountedCompleter<?> task,
1954     int maxTasks) {
1955     return (w == null) ? 0 : w.localHelpCC(task, maxTasks);
1956 dl 1.14 }
1957    
1958     /**
1959 dl 1.105 * Returns a cheap heuristic guide for task partitioning when
1960     * programmers, frameworks, tools, or languages have little or no
1961 jsr166 1.222 * idea about task granularity. In essence, by offering this
1962 dl 1.105 * method, we ask users only about tradeoffs in overhead vs
1963     * expected throughput and its variance, rather than how finely to
1964     * partition tasks.
1965     *
1966     * In a steady state strict (tree-structured) computation, each
1967     * thread makes available for stealing enough tasks for other
1968     * threads to remain active. Inductively, if all threads play by
1969     * the same rules, each thread should make available only a
1970     * constant number of tasks.
1971     *
1972     * The minimum useful constant is just 1. But using a value of 1
1973     * would require immediate replenishment upon each steal to
1974     * maintain enough tasks, which is infeasible. Further,
1975     * partitionings/granularities of offered tasks should minimize
1976     * steal rates, which in general means that threads nearer the top
1977     * of computation tree should generate more than those nearer the
1978     * bottom. In perfect steady state, each thread is at
1979     * approximately the same level of computation tree. However,
1980     * producing extra tasks amortizes the uncertainty of progress and
1981     * diffusion assumptions.
1982     *
1983 jsr166 1.161 * So, users will want to use values larger (but not much larger)
1984 dl 1.105 * than 1 to both smooth over transient shortages and hedge
1985     * against uneven progress; as traded off against the cost of
1986     * extra task overhead. We leave the user to pick a threshold
1987     * value to compare with the results of this call to guide
1988     * decisions, but recommend values such as 3.
1989     *
1990     * When all threads are active, it is on average OK to estimate
1991     * surplus strictly locally. In steady-state, if one thread is
1992     * maintaining say 2 surplus tasks, then so are others. So we can
1993     * just use estimated queue length. However, this strategy alone
1994     * leads to serious mis-estimates in some non-steady-state
1995     * conditions (ramp-up, ramp-down, other stalls). We can detect
1996     * many of these by further considering the number of "idle"
1997     * threads, that are known to have zero queued tasks, so
1998     * compensate by a factor of (#idle/#active) threads.
1999     */
2000     static int getSurplusQueuedTaskCount() {
2001     Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2002 dl 1.300 if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) &&
2003     (pool = (wt = (ForkJoinWorkerThread)t).pool) != null &&
2004     (q = wt.workQueue) != null) {
2005     int p = pool.mode & SMASK;
2006     int a = p + (int)(pool.ctl >> RC_SHIFT);
2007     int n = q.top - q.base;
2008 dl 1.112 return n - (a > (p >>>= 1) ? 0 :
2009     a > (p >>>= 1) ? 1 :
2010     a > (p >>>= 1) ? 2 :
2011     a > (p >>>= 1) ? 4 :
2012     8);
2013 dl 1.105 }
2014     return 0;
2015 dl 1.100 }
2016    
2017 dl 1.300 // Termination
2018 dl 1.14
2019     /**
2020 dl 1.210 * Possibly initiates and/or completes termination.
2021 dl 1.14 *
2022     * @param now if true, unconditionally terminate, else only
2023 dl 1.78 * if no work and no active workers
2024 dl 1.243 * @param enable if true, terminate when next possible
2025 dl 1.300 * @return true if terminating or terminated
2026 jsr166 1.1 */
2027 dl 1.300 private boolean tryTerminate(boolean now, boolean enable) {
2028     int md; // 3 phases: try to set SHUTDOWN, then STOP, then TERMINATED
2029 dl 1.289
2030 dl 1.300 while (((md = mode) & SHUTDOWN) == 0) {
2031 dl 1.294 if (!enable || this == common) // cannot shutdown
2032 dl 1.300 return false;
2033 dl 1.294 else
2034 dl 1.314 MODE.compareAndSet(this, md, md | SHUTDOWN);
2035 dl 1.289 }
2036    
2037 dl 1.300 while (((md = mode) & STOP) == 0) { // try to initiate termination
2038     if (!now) { // check if quiescent & empty
2039 dl 1.211 for (long oldSum = 0L;;) { // repeat until stable
2040 dl 1.300 boolean running = false;
2041 dl 1.210 long checkSum = ctl;
2042 dl 1.300 WorkQueue[] ws = workQueues;
2043     if ((md & SMASK) + (int)(checkSum >> RC_SHIFT) > 0)
2044     running = true;
2045     else if (ws != null) {
2046     WorkQueue w; int b;
2047 dl 1.289 for (int i = 0; i < ws.length; ++i) {
2048     if ((w = ws[i]) != null) {
2049 dl 1.300 checkSum += (b = w.base) + w.id;
2050     if (b != w.top ||
2051     ((i & 1) == 1 && w.source >= 0)) {
2052     running = true;
2053     break;
2054     }
2055 dl 1.289 }
2056 dl 1.206 }
2057 dl 1.203 }
2058 dl 1.300 if (((md = mode) & STOP) != 0)
2059     break; // already triggered
2060     else if (running)
2061     return false;
2062     else if (workQueues == ws && oldSum == (oldSum = checkSum))
2063 dl 1.210 break;
2064 dl 1.203 }
2065     }
2066 dl 1.300 if ((md & STOP) == 0)
2067 dl 1.314 MODE.compareAndSet(this, md, md | STOP);
2068 dl 1.200 }
2069 dl 1.210
2070 dl 1.300 while (((md = mode) & TERMINATED) == 0) { // help terminate others
2071     for (long oldSum = 0L;;) { // repeat until stable
2072     WorkQueue[] ws; WorkQueue w;
2073     long checkSum = ctl;
2074     if ((ws = workQueues) != null) {
2075     for (int i = 0; i < ws.length; ++i) {
2076     if ((w = ws[i]) != null) {
2077     ForkJoinWorkerThread wt = w.owner;
2078     w.cancelAll(); // clear queues
2079     if (wt != null) {
2080 dl 1.289 try { // unblock join or park
2081 dl 1.210 wt.interrupt();
2082     } catch (Throwable ignore) {
2083 dl 1.200 }
2084     }
2085 dl 1.300 checkSum += w.base + w.id;
2086 dl 1.200 }
2087 dl 1.101 }
2088 dl 1.78 }
2089 dl 1.300 if (((md = mode) & TERMINATED) != 0 ||
2090     (workQueues == ws && oldSum == (oldSum = checkSum)))
2091     break;
2092 dl 1.78 }
2093 dl 1.300 if ((md & TERMINATED) != 0)
2094     break;
2095     else if ((md & SMASK) + (short)(ctl >>> TC_SHIFT) > 0)
2096 dl 1.210 break;
2097 dl 1.314 else if (MODE.compareAndSet(this, md, md | TERMINATED)) {
2098 dl 1.300 synchronized (this) {
2099     notifyAll(); // for awaitTermination
2100 dl 1.243 }
2101 dl 1.256 break;
2102 dl 1.200 }
2103 dl 1.52 }
2104 dl 1.300 return true;
2105 dl 1.105 }
2106    
2107 dl 1.52 // Exported methods
2108 jsr166 1.1
2109     // Constructors
2110    
2111     /**
2112 jsr166 1.9 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2113 dl 1.300 * java.lang.Runtime#availableProcessors}, using defaults for all
2114 dl 1.319 * other parameters (see {@link #ForkJoinPool(int,
2115     * ForkJoinWorkerThreadFactory, UncaughtExceptionHandler, boolean,
2116     * int, int, int, Predicate, long, TimeUnit)}).
2117 jsr166 1.1 *
2118     * @throws SecurityException if a security manager exists and
2119     * the caller is not permitted to modify threads
2120     * because it does not hold {@link
2121     * java.lang.RuntimePermission}{@code ("modifyThread")}
2122     */
2123     public ForkJoinPool() {
2124 jsr166 1.148 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2125 dl 1.300 defaultForkJoinWorkerThreadFactory, null, false,
2126 dl 1.307 0, MAX_CAP, 1, null, DEFAULT_KEEPALIVE, TimeUnit.MILLISECONDS);
2127 jsr166 1.1 }
2128    
2129     /**
2130 jsr166 1.9 * Creates a {@code ForkJoinPool} with the indicated parallelism
2131 dl 1.319 * level, using defaults for all other parameters (see {@link
2132     * #ForkJoinPool(int, ForkJoinWorkerThreadFactory,
2133     * UncaughtExceptionHandler, boolean, int, int, int, Predicate,
2134     * long, TimeUnit)}).
2135 jsr166 1.1 *
2136 jsr166 1.9 * @param parallelism the parallelism level
2137 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
2138 jsr166 1.11 * equal to zero, or greater than implementation limit
2139 jsr166 1.1 * @throws SecurityException if a security manager exists and
2140     * the caller is not permitted to modify threads
2141     * because it does not hold {@link
2142     * java.lang.RuntimePermission}{@code ("modifyThread")}
2143     */
2144     public ForkJoinPool(int parallelism) {
2145 dl 1.300 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false,
2146 dl 1.307 0, MAX_CAP, 1, null, DEFAULT_KEEPALIVE, TimeUnit.MILLISECONDS);
2147 jsr166 1.1 }
2148    
2149     /**
2150 dl 1.300 * Creates a {@code ForkJoinPool} with the given parameters (using
2151 dl 1.319 * defaults for others -- see {@link #ForkJoinPool(int,
2152     * ForkJoinWorkerThreadFactory, UncaughtExceptionHandler, boolean,
2153     * int, int, int, Predicate, long, TimeUnit)}).
2154 jsr166 1.1 *
2155 dl 1.18 * @param parallelism the parallelism level. For default value,
2156     * use {@link java.lang.Runtime#availableProcessors}.
2157     * @param factory the factory for creating new threads. For default value,
2158     * use {@link #defaultForkJoinWorkerThreadFactory}.
2159 dl 1.19 * @param handler the handler for internal worker threads that
2160     * terminate due to unrecoverable errors encountered while executing
2161 jsr166 1.31 * tasks. For default value, use {@code null}.
2162 dl 1.19 * @param asyncMode if true,
2163 dl 1.18 * establishes local first-in-first-out scheduling mode for forked
2164     * tasks that are never joined. This mode may be more appropriate
2165     * than default locally stack-based mode in applications in which
2166     * worker threads only process event-style asynchronous tasks.
2167 jsr166 1.31 * For default value, use {@code false}.
2168 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
2169 jsr166 1.11 * equal to zero, or greater than implementation limit
2170     * @throws NullPointerException if the factory is null
2171 jsr166 1.1 * @throws SecurityException if a security manager exists and
2172     * the caller is not permitted to modify threads
2173     * because it does not hold {@link
2174     * java.lang.RuntimePermission}{@code ("modifyThread")}
2175     */
2176 dl 1.19 public ForkJoinPool(int parallelism,
2177 dl 1.18 ForkJoinWorkerThreadFactory factory,
2178 jsr166 1.156 UncaughtExceptionHandler handler,
2179 dl 1.18 boolean asyncMode) {
2180 dl 1.300 this(parallelism, factory, handler, asyncMode,
2181 dl 1.307 0, MAX_CAP, 1, null, DEFAULT_KEEPALIVE, TimeUnit.MILLISECONDS);
2182 dl 1.152 }
2183    
2184 dl 1.300 /**
2185     * Creates a {@code ForkJoinPool} with the given parameters.
2186     *
2187     * @param parallelism the parallelism level. For default value,
2188     * use {@link java.lang.Runtime#availableProcessors}.
2189     *
2190     * @param factory the factory for creating new threads. For
2191     * default value, use {@link #defaultForkJoinWorkerThreadFactory}.
2192     *
2193     * @param handler the handler for internal worker threads that
2194     * terminate due to unrecoverable errors encountered while
2195     * executing tasks. For default value, use {@code null}.
2196     *
2197     * @param asyncMode if true, establishes local first-in-first-out
2198     * scheduling mode for forked tasks that are never joined. This
2199     * mode may be more appropriate than default locally stack-based
2200     * mode in applications in which worker threads only process
2201     * event-style asynchronous tasks. For default value, use {@code
2202     * false}.
2203     *
2204     * @param corePoolSize the number of threads to keep in the pool
2205     * (unless timed out after an elapsed keep-alive). Normally (and
2206     * by default) this is the same value as the parallelism level,
2207     * but may be set to a larger value to reduce dynamic overhead if
2208     * tasks regularly block. Using a smaller value (for example
2209     * {@code 0}) has the same effect as the default.
2210     *
2211     * @param maximumPoolSize the maximum number of threads allowed.
2212     * When the maximum is reached, attempts to replace blocked
2213     * threads fail. (However, because creation and termination of
2214     * different threads may overlap, and may be managed by the given
2215 dl 1.307 * thread factory, this value may be transiently exceeded.) To
2216     * arrange the same value as is used by default for the common
2217 dl 1.319 * pool, use {@code 256} plus the {@code parallelism} level. (By
2218     * default, the common pool allows a maximum of 256 spare
2219     * threads.) Using a value (for example {@code
2220     * Integer.MAX_VALUE}) larger than the implementation's total
2221     * thread limit has the same effect as using this limit (which is
2222     * the default).
2223 dl 1.300 *
2224     * @param minimumRunnable the minimum allowed number of core
2225     * threads not blocked by a join or {@link ManagedBlocker}. To
2226     * ensure progress, when too few unblocked threads exist and
2227     * unexecuted tasks may exist, new threads are constructed, up to
2228     * the given maximumPoolSize. For the default value, use {@code
2229     * 1}, that ensures liveness. A larger value might improve
2230     * throughput in the presence of blocked activities, but might
2231     * not, due to increased overhead. A value of zero may be
2232     * acceptable when submitted tasks cannot have dependencies
2233     * requiring additional threads.
2234     *
2235 jsr166 1.318 * @param saturate if non-null, a predicate invoked upon attempts
2236 dl 1.307 * to create more than the maximum total allowed threads. By
2237     * default, when a thread is about to block on a join or {@link
2238     * ManagedBlocker}, but cannot be replaced because the
2239     * maximumPoolSize would be exceeded, a {@link
2240     * RejectedExecutionException} is thrown. But if this predicate
2241     * returns {@code true}, then no exception is thrown, so the pool
2242     * continues to operate with fewer than the target number of
2243     * runnable threads, which might not ensure progress.
2244 dl 1.300 *
2245     * @param keepAliveTime the elapsed time since last use before
2246     * a thread is terminated (and then later replaced if needed).
2247     * For the default value, use {@code 60, TimeUnit.SECONDS}.
2248     *
2249     * @param unit the time unit for the {@code keepAliveTime} argument
2250     *
2251     * @throws IllegalArgumentException if parallelism is less than or
2252     * equal to zero, or is greater than implementation limit,
2253     * or if maximumPoolSize is less than parallelism,
2254     * of if the keepAliveTime is less than or equal to zero.
2255     * @throws NullPointerException if the factory is null
2256     * @throws SecurityException if a security manager exists and
2257     * the caller is not permitted to modify threads
2258     * because it does not hold {@link
2259     * java.lang.RuntimePermission}{@code ("modifyThread")}
2260 jsr166 1.306 * @since 9
2261 dl 1.300 */
2262     public ForkJoinPool(int parallelism,
2263     ForkJoinWorkerThreadFactory factory,
2264     UncaughtExceptionHandler handler,
2265     boolean asyncMode,
2266     int corePoolSize,
2267     int maximumPoolSize,
2268     int minimumRunnable,
2269 dl 1.307 Predicate<? super ForkJoinPool> saturate,
2270 dl 1.300 long keepAliveTime,
2271     TimeUnit unit) {
2272     // check, encode, pack parameters
2273     if (parallelism <= 0 || parallelism > MAX_CAP ||
2274     maximumPoolSize < parallelism || keepAliveTime <= 0L)
2275 dl 1.152 throw new IllegalArgumentException();
2276 dl 1.14 if (factory == null)
2277     throw new NullPointerException();
2278 dl 1.300 long ms = Math.max(unit.toMillis(keepAliveTime), TIMEOUT_SLOP);
2279    
2280     int corep = Math.min(Math.max(corePoolSize, parallelism), MAX_CAP);
2281     long c = ((((long)(-corep) << TC_SHIFT) & TC_MASK) |
2282     (((long)(-parallelism) << RC_SHIFT) & RC_MASK));
2283 dl 1.307 int m = parallelism | (asyncMode ? FIFO : 0);
2284 dl 1.300 int maxSpares = Math.min(maximumPoolSize, MAX_CAP) - parallelism;
2285     int minAvail = Math.min(Math.max(minimumRunnable, 0), MAX_CAP);
2286     int b = ((minAvail - parallelism) & SMASK) | (maxSpares << SWIDTH);
2287     int n = (parallelism > 1) ? parallelism - 1 : 1; // at least 2 slots
2288     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
2289     n = (n + 1) << 1; // power of two, including space for submission queues
2290    
2291 jsr166 1.328 this.workerNamePrefix = "ForkJoinPool-" + nextPoolId() + "-worker-";
2292 dl 1.300 this.workQueues = new WorkQueue[n];
2293     this.factory = factory;
2294     this.ueh = handler;
2295 dl 1.307 this.saturate = saturate;
2296 dl 1.300 this.keepAlive = ms;
2297     this.bounds = b;
2298     this.mode = m;
2299     this.ctl = c;
2300     checkPermission();
2301 dl 1.152 }
2302    
2303 jsr166 1.327 private Object newInstanceFromSystemProperty(String property)
2304     throws ReflectiveOperationException {
2305     String className = System.getProperty(property);
2306     return (className == null)
2307     ? null
2308     : ClassLoader.getSystemClassLoader().loadClass(className)
2309     .getConstructor().newInstance();
2310     }
2311    
2312 dl 1.152 /**
2313 dl 1.300 * Constructor for common pool using parameters possibly
2314     * overridden by system properties
2315     */
2316     private ForkJoinPool(byte forCommonPoolOnly) {
2317     int parallelism = -1;
2318     ForkJoinWorkerThreadFactory fac = null;
2319     UncaughtExceptionHandler handler = null;
2320     try { // ignore exceptions in accessing/parsing properties
2321     String pp = System.getProperty
2322     ("java.util.concurrent.ForkJoinPool.common.parallelism");
2323     if (pp != null)
2324     parallelism = Integer.parseInt(pp);
2325 jsr166 1.327 fac = (ForkJoinWorkerThreadFactory) newInstanceFromSystemProperty(
2326     "java.util.concurrent.ForkJoinPool.common.threadFactory");
2327     handler = (UncaughtExceptionHandler) newInstanceFromSystemProperty(
2328     "java.util.concurrent.ForkJoinPool.common.exceptionHandler");
2329 dl 1.300 } catch (Exception ignore) {
2330     }
2331    
2332     if (fac == null) {
2333     if (System.getSecurityManager() == null)
2334     fac = defaultForkJoinWorkerThreadFactory;
2335     else // use security-managed default
2336     fac = new InnocuousForkJoinWorkerThreadFactory();
2337     }
2338     if (parallelism < 0 && // default 1 less than #cores
2339     (parallelism = Runtime.getRuntime().availableProcessors() - 1) <= 0)
2340     parallelism = 1;
2341     if (parallelism > MAX_CAP)
2342     parallelism = MAX_CAP;
2343    
2344     long c = ((((long)(-parallelism) << TC_SHIFT) & TC_MASK) |
2345     (((long)(-parallelism) << RC_SHIFT) & RC_MASK));
2346     int b = ((1 - parallelism) & SMASK) | (COMMON_MAX_SPARES << SWIDTH);
2347     int n = (parallelism > 1) ? parallelism - 1 : 1;
2348     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
2349     n = (n + 1) << 1;
2350    
2351 jsr166 1.328 this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2352 dl 1.300 this.workQueues = new WorkQueue[n];
2353     this.factory = fac;
2354 dl 1.18 this.ueh = handler;
2355 dl 1.307 this.saturate = null;
2356 dl 1.300 this.keepAlive = DEFAULT_KEEPALIVE;
2357     this.bounds = b;
2358 dl 1.310 this.mode = parallelism;
2359 dl 1.300 this.ctl = c;
2360 dl 1.101 }
2361    
2362     /**
2363 dl 1.128 * Returns the common pool instance. This pool is statically
2364 dl 1.134 * constructed; its run state is unaffected by attempts to {@link
2365     * #shutdown} or {@link #shutdownNow}. However this pool and any
2366     * ongoing processing are automatically terminated upon program
2367     * {@link System#exit}. Any program that relies on asynchronous
2368     * task processing to complete before program termination should
2369 jsr166 1.158 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2370     * before exit.
2371 dl 1.100 *
2372     * @return the common pool instance
2373 jsr166 1.138 * @since 1.8
2374 dl 1.100 */
2375     public static ForkJoinPool commonPool() {
2376 dl 1.134 // assert common != null : "static init error";
2377     return common;
2378 dl 1.100 }
2379    
2380 jsr166 1.1 // Execution methods
2381    
2382     /**
2383     * Performs the given task, returning its result upon completion.
2384 dl 1.52 * If the computation encounters an unchecked Exception or Error,
2385     * it is rethrown as the outcome of this invocation. Rethrown
2386     * exceptions behave in the same way as regular exceptions, but,
2387     * when possible, contain stack traces (as displayed for example
2388     * using {@code ex.printStackTrace()}) of both the current thread
2389     * as well as the thread actually encountering the exception;
2390     * minimally only the latter.
2391 jsr166 1.1 *
2392     * @param task the task
2393 jsr166 1.191 * @param <T> the type of the task's result
2394 jsr166 1.1 * @return the task's result
2395 jsr166 1.11 * @throws NullPointerException if the task is null
2396     * @throws RejectedExecutionException if the task cannot be
2397     * scheduled for execution
2398 jsr166 1.1 */
2399     public <T> T invoke(ForkJoinTask<T> task) {
2400 dl 1.90 if (task == null)
2401     throw new NullPointerException();
2402 dl 1.243 externalSubmit(task);
2403 dl 1.78 return task.join();
2404 jsr166 1.1 }
2405    
2406     /**
2407     * Arranges for (asynchronous) execution of the given task.
2408     *
2409     * @param task the task
2410 jsr166 1.11 * @throws NullPointerException if the task is null
2411     * @throws RejectedExecutionException if the task cannot be
2412     * scheduled for execution
2413 jsr166 1.1 */
2414 jsr166 1.8 public void execute(ForkJoinTask<?> task) {
2415 dl 1.243 externalSubmit(task);
2416 jsr166 1.1 }
2417    
2418     // AbstractExecutorService methods
2419    
2420 jsr166 1.11 /**
2421     * @throws NullPointerException if the task is null
2422     * @throws RejectedExecutionException if the task cannot be
2423     * scheduled for execution
2424     */
2425 jsr166 1.1 public void execute(Runnable task) {
2426 dl 1.41 if (task == null)
2427     throw new NullPointerException();
2428 jsr166 1.2 ForkJoinTask<?> job;
2429 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2430     job = (ForkJoinTask<?>) task;
2431 jsr166 1.2 else
2432 dl 1.152 job = new ForkJoinTask.RunnableExecuteAction(task);
2433 dl 1.243 externalSubmit(job);
2434 jsr166 1.1 }
2435    
2436 jsr166 1.11 /**
2437 dl 1.18 * Submits a ForkJoinTask for execution.
2438     *
2439     * @param task the task to submit
2440 jsr166 1.191 * @param <T> the type of the task's result
2441 dl 1.18 * @return the task
2442     * @throws NullPointerException if the task is null
2443     * @throws RejectedExecutionException if the task cannot be
2444     * scheduled for execution
2445     */
2446     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2447 dl 1.243 return externalSubmit(task);
2448 dl 1.18 }
2449    
2450     /**
2451 jsr166 1.11 * @throws NullPointerException if the task is null
2452     * @throws RejectedExecutionException if the task cannot be
2453     * scheduled for execution
2454     */
2455 jsr166 1.1 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2456 dl 1.243 return externalSubmit(new ForkJoinTask.AdaptedCallable<T>(task));
2457 jsr166 1.1 }
2458    
2459 jsr166 1.11 /**
2460     * @throws NullPointerException if the task is null
2461     * @throws RejectedExecutionException if the task cannot be
2462     * scheduled for execution
2463     */
2464 jsr166 1.1 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2465 dl 1.243 return externalSubmit(new ForkJoinTask.AdaptedRunnable<T>(task, result));
2466 jsr166 1.1 }
2467    
2468 jsr166 1.11 /**
2469     * @throws NullPointerException if the task is null
2470     * @throws RejectedExecutionException if the task cannot be
2471     * scheduled for execution
2472     */
2473 jsr166 1.1 public ForkJoinTask<?> submit(Runnable task) {
2474 dl 1.41 if (task == null)
2475     throw new NullPointerException();
2476 jsr166 1.2 ForkJoinTask<?> job;
2477 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2478     job = (ForkJoinTask<?>) task;
2479 jsr166 1.2 else
2480 dl 1.90 job = new ForkJoinTask.AdaptedRunnableAction(task);
2481 dl 1.243 return externalSubmit(job);
2482 jsr166 1.1 }
2483    
2484     /**
2485 jsr166 1.11 * @throws NullPointerException {@inheritDoc}
2486     * @throws RejectedExecutionException {@inheritDoc}
2487     */
2488 jsr166 1.1 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2489 dl 1.86 // In previous versions of this class, this method constructed
2490     // a task to run ForkJoinTask.invokeAll, but now external
2491     // invocation of multiple tasks is at least as efficient.
2492 jsr166 1.199 ArrayList<Future<T>> futures = new ArrayList<>(tasks.size());
2493 jsr166 1.1
2494 dl 1.86 try {
2495     for (Callable<T> t : tasks) {
2496 dl 1.90 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2497 jsr166 1.144 futures.add(f);
2498 dl 1.243 externalSubmit(f);
2499 dl 1.86 }
2500 jsr166 1.143 for (int i = 0, size = futures.size(); i < size; i++)
2501     ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2502 dl 1.86 return futures;
2503 jsr166 1.226 } catch (Throwable t) {
2504     for (int i = 0, size = futures.size(); i < size; i++)
2505     futures.get(i).cancel(false);
2506     throw t;
2507 jsr166 1.1 }
2508     }
2509    
2510     /**
2511     * Returns the factory used for constructing new workers.
2512     *
2513     * @return the factory used for constructing new workers
2514     */
2515     public ForkJoinWorkerThreadFactory getFactory() {
2516     return factory;
2517     }
2518    
2519     /**
2520     * Returns the handler for internal worker threads that terminate
2521     * due to unrecoverable errors encountered while executing tasks.
2522     *
2523 jsr166 1.4 * @return the handler, or {@code null} if none
2524 jsr166 1.1 */
2525 jsr166 1.156 public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2526 dl 1.14 return ueh;
2527 jsr166 1.1 }
2528    
2529     /**
2530 jsr166 1.9 * Returns the targeted parallelism level of this pool.
2531 jsr166 1.1 *
2532 jsr166 1.9 * @return the targeted parallelism level of this pool
2533 jsr166 1.1 */
2534     public int getParallelism() {
2535 dl 1.310 int par = mode & SMASK;
2536     return (par > 0) ? par : 1;
2537 jsr166 1.1 }
2538    
2539     /**
2540 dl 1.100 * Returns the targeted parallelism level of the common pool.
2541     *
2542     * @return the targeted parallelism level of the common pool
2543 jsr166 1.138 * @since 1.8
2544 dl 1.100 */
2545     public static int getCommonPoolParallelism() {
2546 jsr166 1.274 return COMMON_PARALLELISM;
2547 dl 1.100 }
2548    
2549     /**
2550 jsr166 1.1 * Returns the number of worker threads that have started but not
2551 jsr166 1.34 * yet terminated. The result returned by this method may differ
2552 jsr166 1.4 * from {@link #getParallelism} when threads are created to
2553 jsr166 1.1 * maintain parallelism when others are cooperatively blocked.
2554     *
2555     * @return the number of worker threads
2556     */
2557     public int getPoolSize() {
2558 dl 1.300 return ((mode & SMASK) + (short)(ctl >>> TC_SHIFT));
2559 jsr166 1.1 }
2560    
2561     /**
2562 jsr166 1.4 * Returns {@code true} if this pool uses local first-in-first-out
2563 jsr166 1.1 * scheduling mode for forked tasks that are never joined.
2564     *
2565 jsr166 1.4 * @return {@code true} if this pool uses async mode
2566 jsr166 1.1 */
2567     public boolean getAsyncMode() {
2568 dl 1.300 return (mode & FIFO) != 0;
2569 jsr166 1.1 }
2570    
2571     /**
2572     * Returns an estimate of the number of worker threads that are
2573     * not blocked waiting to join tasks or for other managed
2574 dl 1.14 * synchronization. This method may overestimate the
2575     * number of running threads.
2576 jsr166 1.1 *
2577     * @return the number of worker threads
2578     */
2579     public int getRunningThreadCount() {
2580 dl 1.78 int rc = 0;
2581     WorkQueue[] ws; WorkQueue w;
2582     if ((ws = workQueues) != null) {
2583 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2584     if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2585 dl 1.78 ++rc;
2586     }
2587     }
2588     return rc;
2589 jsr166 1.1 }
2590    
2591     /**
2592     * Returns an estimate of the number of threads that are currently
2593     * stealing or executing tasks. This method may overestimate the
2594     * number of active threads.
2595     *
2596     * @return the number of active threads
2597     */
2598     public int getActiveThreadCount() {
2599 dl 1.300 int r = (mode & SMASK) + (int)(ctl >> RC_SHIFT);
2600 jsr166 1.63 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2601 jsr166 1.1 }
2602    
2603     /**
2604 jsr166 1.4 * Returns {@code true} if all worker threads are currently idle.
2605     * An idle worker is one that cannot obtain a task to execute
2606     * because none are available to steal from other threads, and
2607     * there are no pending submissions to the pool. This method is
2608     * conservative; it might not return {@code true} immediately upon
2609     * idleness of all threads, but will eventually become true if
2610     * threads remain inactive.
2611 jsr166 1.1 *
2612 jsr166 1.4 * @return {@code true} if all threads are currently idle
2613 jsr166 1.1 */
2614     public boolean isQuiescent() {
2615 dl 1.300 for (;;) {
2616     long c = ctl;
2617     int md = mode, pc = md & SMASK;
2618 dl 1.310 int tc = pc + (short)(c >>> TC_SHIFT);
2619 dl 1.300 int rc = pc + (int)(c >> RC_SHIFT);
2620     if ((md & (STOP | TERMINATED)) != 0)
2621     return true;
2622     else if (rc > 0)
2623     return false;
2624     else {
2625     WorkQueue[] ws; WorkQueue v;
2626     if ((ws = workQueues) != null) {
2627     for (int i = 1; i < ws.length; i += 2) {
2628     if ((v = ws[i]) != null) {
2629     if ((v.source & QUIET) == 0)
2630     return false;
2631     --tc;
2632     }
2633     }
2634     }
2635     if (tc == 0 && ctl == c)
2636     return true;
2637     }
2638     }
2639 jsr166 1.1 }
2640    
2641     /**
2642     * Returns an estimate of the total number of tasks stolen from
2643     * one thread's work queue by another. The reported value
2644     * underestimates the actual total number of steals when the pool
2645     * is not quiescent. This value may be useful for monitoring and
2646     * tuning fork/join programs: in general, steal counts should be
2647     * high enough to keep threads busy, but low enough to avoid
2648     * overhead and contention across threads.
2649     *
2650     * @return the number of steals
2651     */
2652     public long getStealCount() {
2653 dl 1.300 long count = stealCount;
2654 dl 1.78 WorkQueue[] ws; WorkQueue w;
2655     if ((ws = workQueues) != null) {
2656 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2657 dl 1.78 if ((w = ws[i]) != null)
2658 dl 1.300 count += (long)w.nsteals & 0xffffffffL;
2659 dl 1.78 }
2660     }
2661     return count;
2662 jsr166 1.1 }
2663    
2664     /**
2665     * Returns an estimate of the total number of tasks currently held
2666     * in queues by worker threads (but not including tasks submitted
2667     * to the pool that have not begun executing). This value is only
2668     * an approximation, obtained by iterating across all threads in
2669     * the pool. This method may be useful for tuning task
2670     * granularities.
2671     *
2672     * @return the number of queued tasks
2673     */
2674     public long getQueuedTaskCount() {
2675     long count = 0;
2676 dl 1.78 WorkQueue[] ws; WorkQueue w;
2677     if ((ws = workQueues) != null) {
2678 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2679 dl 1.78 if ((w = ws[i]) != null)
2680     count += w.queueSize();
2681     }
2682 dl 1.52 }
2683 jsr166 1.1 return count;
2684     }
2685    
2686     /**
2687 jsr166 1.8 * Returns an estimate of the number of tasks submitted to this
2688 dl 1.55 * pool that have not yet begun executing. This method may take
2689 dl 1.52 * time proportional to the number of submissions.
2690 jsr166 1.1 *
2691     * @return the number of queued submissions
2692     */
2693     public int getQueuedSubmissionCount() {
2694 dl 1.78 int count = 0;
2695     WorkQueue[] ws; WorkQueue w;
2696     if ((ws = workQueues) != null) {
2697 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2698 dl 1.78 if ((w = ws[i]) != null)
2699     count += w.queueSize();
2700     }
2701     }
2702     return count;
2703 jsr166 1.1 }
2704    
2705     /**
2706 jsr166 1.4 * Returns {@code true} if there are any tasks submitted to this
2707     * pool that have not yet begun executing.
2708 jsr166 1.1 *
2709     * @return {@code true} if there are any queued submissions
2710     */
2711     public boolean hasQueuedSubmissions() {
2712 dl 1.78 WorkQueue[] ws; WorkQueue w;
2713     if ((ws = workQueues) != null) {
2714 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2715 dl 1.115 if ((w = ws[i]) != null && !w.isEmpty())
2716 dl 1.78 return true;
2717     }
2718     }
2719     return false;
2720 jsr166 1.1 }
2721    
2722     /**
2723     * Removes and returns the next unexecuted submission if one is
2724     * available. This method may be useful in extensions to this
2725     * class that re-assign work in systems with multiple pools.
2726     *
2727 jsr166 1.4 * @return the next submission, or {@code null} if none
2728 jsr166 1.1 */
2729     protected ForkJoinTask<?> pollSubmission() {
2730 dl 1.300 return pollScan(true);
2731 jsr166 1.1 }
2732    
2733     /**
2734     * Removes all available unexecuted submitted and forked tasks
2735     * from scheduling queues and adds them to the given collection,
2736     * without altering their execution status. These may include
2737 jsr166 1.8 * artificially generated or wrapped tasks. This method is
2738     * designed to be invoked only when the pool is known to be
2739 jsr166 1.1 * quiescent. Invocations at other times may not remove all
2740     * tasks. A failure encountered while attempting to add elements
2741     * to collection {@code c} may result in elements being in
2742     * neither, either or both collections when the associated
2743     * exception is thrown. The behavior of this operation is
2744     * undefined if the specified collection is modified while the
2745     * operation is in progress.
2746     *
2747     * @param c the collection to transfer elements into
2748     * @return the number of elements transferred
2749     */
2750 jsr166 1.5 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2751 dl 1.52 int count = 0;
2752 dl 1.78 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2753     if ((ws = workQueues) != null) {
2754 dl 1.86 for (int i = 0; i < ws.length; ++i) {
2755 dl 1.78 if ((w = ws[i]) != null) {
2756     while ((t = w.poll()) != null) {
2757     c.add(t);
2758     ++count;
2759     }
2760     }
2761 dl 1.52 }
2762     }
2763 dl 1.18 return count;
2764     }
2765    
2766     /**
2767 jsr166 1.1 * Returns a string identifying this pool, as well as its state,
2768     * including indications of run state, parallelism level, and
2769     * worker and task counts.
2770     *
2771     * @return a string identifying this pool, as well as its state
2772     */
2773     public String toString() {
2774 dl 1.86 // Use a single pass through workQueues to collect counts
2775     long qt = 0L, qs = 0L; int rc = 0;
2776 dl 1.300 long st = stealCount;
2777 dl 1.86 WorkQueue[] ws; WorkQueue w;
2778     if ((ws = workQueues) != null) {
2779     for (int i = 0; i < ws.length; ++i) {
2780     if ((w = ws[i]) != null) {
2781     int size = w.queueSize();
2782     if ((i & 1) == 0)
2783     qs += size;
2784     else {
2785     qt += size;
2786 dl 1.300 st += (long)w.nsteals & 0xffffffffL;
2787 dl 1.86 if (w.isApparentlyUnblocked())
2788     ++rc;
2789     }
2790     }
2791     }
2792     }
2793 dl 1.300
2794     int md = mode;
2795     int pc = (md & SMASK);
2796     long c = ctl;
2797 dl 1.52 int tc = pc + (short)(c >>> TC_SHIFT);
2798 dl 1.300 int ac = pc + (int)(c >> RC_SHIFT);
2799 dl 1.78 if (ac < 0) // ignore transient negative
2800     ac = 0;
2801 dl 1.300 String level = ((md & TERMINATED) != 0 ? "Terminated" :
2802     (md & STOP) != 0 ? "Terminating" :
2803     (md & SHUTDOWN) != 0 ? "Shutting down" :
2804 dl 1.200 "Running");
2805 jsr166 1.1 return super.toString() +
2806 dl 1.52 "[" + level +
2807 dl 1.14 ", parallelism = " + pc +
2808     ", size = " + tc +
2809     ", active = " + ac +
2810     ", running = " + rc +
2811 jsr166 1.1 ", steals = " + st +
2812     ", tasks = " + qt +
2813     ", submissions = " + qs +
2814     "]";
2815     }
2816    
2817     /**
2818 dl 1.100 * Possibly initiates an orderly shutdown in which previously
2819     * submitted tasks are executed, but no new tasks will be
2820     * accepted. Invocation has no effect on execution state if this
2821 jsr166 1.137 * is the {@link #commonPool()}, and no additional effect if
2822 dl 1.100 * already shut down. Tasks that are in the process of being
2823     * submitted concurrently during the course of this method may or
2824     * may not be rejected.
2825 jsr166 1.1 *
2826     * @throws SecurityException if a security manager exists and
2827     * the caller is not permitted to modify threads
2828     * because it does not hold {@link
2829     * java.lang.RuntimePermission}{@code ("modifyThread")}
2830     */
2831     public void shutdown() {
2832     checkPermission();
2833 dl 1.105 tryTerminate(false, true);
2834 jsr166 1.1 }
2835    
2836     /**
2837 dl 1.100 * Possibly attempts to cancel and/or stop all tasks, and reject
2838     * all subsequently submitted tasks. Invocation has no effect on
2839 jsr166 1.137 * execution state if this is the {@link #commonPool()}, and no
2840 dl 1.100 * additional effect if already shut down. Otherwise, tasks that
2841     * are in the process of being submitted or executed concurrently
2842     * during the course of this method may or may not be
2843     * rejected. This method cancels both existing and unexecuted
2844     * tasks, in order to permit termination in the presence of task
2845     * dependencies. So the method always returns an empty list
2846     * (unlike the case for some other Executors).
2847 jsr166 1.1 *
2848     * @return an empty list
2849     * @throws SecurityException if a security manager exists and
2850     * the caller is not permitted to modify threads
2851     * because it does not hold {@link
2852     * java.lang.RuntimePermission}{@code ("modifyThread")}
2853     */
2854     public List<Runnable> shutdownNow() {
2855     checkPermission();
2856 dl 1.105 tryTerminate(true, true);
2857 jsr166 1.1 return Collections.emptyList();
2858     }
2859    
2860     /**
2861     * Returns {@code true} if all tasks have completed following shut down.
2862     *
2863     * @return {@code true} if all tasks have completed following shut down
2864     */
2865     public boolean isTerminated() {
2866 dl 1.300 return (mode & TERMINATED) != 0;
2867 jsr166 1.1 }
2868    
2869     /**
2870     * Returns {@code true} if the process of termination has
2871 jsr166 1.9 * commenced but not yet completed. This method may be useful for
2872     * debugging. A return of {@code true} reported a sufficient
2873     * period after shutdown may indicate that submitted tasks have
2874 jsr166 1.119 * ignored or suppressed interruption, or are waiting for I/O,
2875 dl 1.49 * causing this executor not to properly terminate. (See the
2876     * advisory notes for class {@link ForkJoinTask} stating that
2877     * tasks should not normally entail blocking operations. But if
2878     * they do, they must abort them on interrupt.)
2879 jsr166 1.1 *
2880 jsr166 1.9 * @return {@code true} if terminating but not yet terminated
2881 jsr166 1.1 */
2882     public boolean isTerminating() {
2883 dl 1.300 int md = mode;
2884     return (md & STOP) != 0 && (md & TERMINATED) == 0;
2885 jsr166 1.1 }
2886    
2887     /**
2888     * Returns {@code true} if this pool has been shut down.
2889     *
2890     * @return {@code true} if this pool has been shut down
2891     */
2892     public boolean isShutdown() {
2893 dl 1.300 return (mode & SHUTDOWN) != 0;
2894 jsr166 1.9 }
2895    
2896     /**
2897 dl 1.105 * Blocks until all tasks have completed execution after a
2898     * shutdown request, or the timeout occurs, or the current thread
2899 dl 1.134 * is interrupted, whichever happens first. Because the {@link
2900     * #commonPool()} never terminates until program shutdown, when
2901     * applied to the common pool, this method is equivalent to {@link
2902 jsr166 1.158 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
2903 jsr166 1.1 *
2904     * @param timeout the maximum time to wait
2905     * @param unit the time unit of the timeout argument
2906     * @return {@code true} if this executor terminated and
2907     * {@code false} if the timeout elapsed before termination
2908     * @throws InterruptedException if interrupted while waiting
2909     */
2910     public boolean awaitTermination(long timeout, TimeUnit unit)
2911     throws InterruptedException {
2912 dl 1.134 if (Thread.interrupted())
2913     throw new InterruptedException();
2914     if (this == common) {
2915     awaitQuiescence(timeout, unit);
2916     return false;
2917     }
2918 dl 1.52 long nanos = unit.toNanos(timeout);
2919 dl 1.101 if (isTerminated())
2920     return true;
2921 dl 1.183 if (nanos <= 0L)
2922     return false;
2923     long deadline = System.nanoTime() + nanos;
2924 jsr166 1.103 synchronized (this) {
2925 jsr166 1.184 for (;;) {
2926 dl 1.183 if (isTerminated())
2927     return true;
2928     if (nanos <= 0L)
2929     return false;
2930     long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
2931     wait(millis > 0L ? millis : 1L);
2932     nanos = deadline - System.nanoTime();
2933 dl 1.52 }
2934 dl 1.18 }
2935 jsr166 1.1 }
2936    
2937     /**
2938 dl 1.134 * If called by a ForkJoinTask operating in this pool, equivalent
2939     * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
2940     * waits and/or attempts to assist performing tasks until this
2941     * pool {@link #isQuiescent} or the indicated timeout elapses.
2942     *
2943     * @param timeout the maximum time to wait
2944     * @param unit the time unit of the timeout argument
2945     * @return {@code true} if quiescent; {@code false} if the
2946     * timeout elapsed.
2947     */
2948     public boolean awaitQuiescence(long timeout, TimeUnit unit) {
2949     long nanos = unit.toNanos(timeout);
2950     ForkJoinWorkerThread wt;
2951     Thread thread = Thread.currentThread();
2952     if ((thread instanceof ForkJoinWorkerThread) &&
2953     (wt = (ForkJoinWorkerThread)thread).pool == this) {
2954     helpQuiescePool(wt.workQueue);
2955     return true;
2956     }
2957 dl 1.300 else {
2958     for (long startTime = System.nanoTime();;) {
2959     ForkJoinTask<?> t;
2960     if ((t = pollScan(false)) != null)
2961     t.doExec();
2962     else if (isQuiescent())
2963     return true;
2964     else if ((System.nanoTime() - startTime) > nanos)
2965 dl 1.134 return false;
2966 dl 1.300 else
2967     Thread.yield(); // cannot block
2968 dl 1.134 }
2969     }
2970     }
2971    
2972     /**
2973     * Waits and/or attempts to assist performing tasks indefinitely
2974 jsr166 1.141 * until the {@link #commonPool()} {@link #isQuiescent}.
2975 dl 1.134 */
2976 dl 1.136 static void quiesceCommonPool() {
2977 dl 1.134 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
2978     }
2979    
2980     /**
2981 jsr166 1.1 * Interface for extending managed parallelism for tasks running
2982 jsr166 1.8 * in {@link ForkJoinPool}s.
2983     *
2984 dl 1.19 * <p>A {@code ManagedBlocker} provides two methods. Method
2985 jsr166 1.218 * {@link #isReleasable} must return {@code true} if blocking is
2986     * not necessary. Method {@link #block} blocks the current thread
2987 dl 1.19 * if necessary (perhaps internally invoking {@code isReleasable}
2988 dl 1.54 * before actually blocking). These actions are performed by any
2989 jsr166 1.157 * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
2990     * The unusual methods in this API accommodate synchronizers that
2991     * may, but don't usually, block for long periods. Similarly, they
2992 dl 1.54 * allow more efficient internal handling of cases in which
2993     * additional workers may be, but usually are not, needed to
2994     * ensure sufficient parallelism. Toward this end,
2995     * implementations of method {@code isReleasable} must be amenable
2996     * to repeated invocation.
2997 jsr166 1.1 *
2998     * <p>For example, here is a ManagedBlocker based on a
2999     * ReentrantLock:
3000 jsr166 1.239 * <pre> {@code
3001 jsr166 1.1 * class ManagedLocker implements ManagedBlocker {
3002     * final ReentrantLock lock;
3003     * boolean hasLock = false;
3004     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3005     * public boolean block() {
3006     * if (!hasLock)
3007     * lock.lock();
3008     * return true;
3009     * }
3010     * public boolean isReleasable() {
3011     * return hasLock || (hasLock = lock.tryLock());
3012     * }
3013     * }}</pre>
3014 dl 1.19 *
3015     * <p>Here is a class that possibly blocks waiting for an
3016     * item on a given queue:
3017 jsr166 1.239 * <pre> {@code
3018 dl 1.19 * class QueueTaker<E> implements ManagedBlocker {
3019     * final BlockingQueue<E> queue;
3020     * volatile E item = null;
3021     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3022     * public boolean block() throws InterruptedException {
3023     * if (item == null)
3024 dl 1.23 * item = queue.take();
3025 dl 1.19 * return true;
3026     * }
3027     * public boolean isReleasable() {
3028 dl 1.23 * return item != null || (item = queue.poll()) != null;
3029 dl 1.19 * }
3030     * public E getItem() { // call after pool.managedBlock completes
3031     * return item;
3032     * }
3033     * }}</pre>
3034 jsr166 1.1 */
3035     public static interface ManagedBlocker {
3036     /**
3037     * Possibly blocks the current thread, for example waiting for
3038     * a lock or condition.
3039     *
3040 jsr166 1.4 * @return {@code true} if no additional blocking is necessary
3041     * (i.e., if isReleasable would return true)
3042 jsr166 1.1 * @throws InterruptedException if interrupted while waiting
3043     * (the method is not required to do so, but is allowed to)
3044     */
3045     boolean block() throws InterruptedException;
3046    
3047     /**
3048 jsr166 1.4 * Returns {@code true} if blocking is unnecessary.
3049 jsr166 1.154 * @return {@code true} if blocking is unnecessary
3050 jsr166 1.1 */
3051     boolean isReleasable();
3052     }
3053    
3054     /**
3055 jsr166 1.217 * Runs the given possibly blocking task. When {@linkplain
3056     * ForkJoinTask#inForkJoinPool() running in a ForkJoinPool}, this
3057     * method possibly arranges for a spare thread to be activated if
3058     * necessary to ensure sufficient parallelism while the current
3059     * thread is blocked in {@link ManagedBlocker#block blocker.block()}.
3060 jsr166 1.1 *
3061 jsr166 1.217 * <p>This method repeatedly calls {@code blocker.isReleasable()} and
3062     * {@code blocker.block()} until either method returns {@code true}.
3063     * Every call to {@code blocker.block()} is preceded by a call to
3064     * {@code blocker.isReleasable()} that returned {@code false}.
3065     *
3066     * <p>If not running in a ForkJoinPool, this method is
3067 jsr166 1.8 * behaviorally equivalent to
3068 jsr166 1.239 * <pre> {@code
3069 jsr166 1.1 * while (!blocker.isReleasable())
3070     * if (blocker.block())
3071 jsr166 1.217 * break;}</pre>
3072 jsr166 1.8 *
3073 jsr166 1.217 * If running in a ForkJoinPool, the pool may first be expanded to
3074     * ensure sufficient parallelism available during the call to
3075     * {@code blocker.block()}.
3076 jsr166 1.1 *
3077 jsr166 1.217 * @param blocker the blocker task
3078     * @throws InterruptedException if {@code blocker.block()} did so
3079 jsr166 1.1 */
3080 dl 1.18 public static void managedBlock(ManagedBlocker blocker)
3081 jsr166 1.1 throws InterruptedException {
3082 dl 1.200 ForkJoinPool p;
3083     ForkJoinWorkerThread wt;
3084 dl 1.300 WorkQueue w;
3085 jsr166 1.1 Thread t = Thread.currentThread();
3086 dl 1.200 if ((t instanceof ForkJoinWorkerThread) &&
3087 dl 1.300 (p = (wt = (ForkJoinWorkerThread)t).pool) != null &&
3088     (w = wt.workQueue) != null) {
3089     int block;
3090 dl 1.172 while (!blocker.isReleasable()) {
3091 dl 1.300 if ((block = p.tryCompensate(w)) != 0) {
3092 dl 1.105 try {
3093     do {} while (!blocker.isReleasable() &&
3094     !blocker.block());
3095     } finally {
3096 dl 1.314 CTL.getAndAdd(p, (block > 0) ? RC_UNIT : 0L);
3097 dl 1.105 }
3098     break;
3099 dl 1.78 }
3100     }
3101 dl 1.18 }
3102 dl 1.105 else {
3103     do {} while (!blocker.isReleasable() &&
3104     !blocker.block());
3105     }
3106 jsr166 1.1 }
3107    
3108 dl 1.310 /**
3109     * If the given executor is a ForkJoinPool, poll and execute
3110     * AsynchronousCompletionTasks from worker's queue until none are
3111     * available or blocker is released.
3112     */
3113     static void helpAsyncBlocker(Executor e, ManagedBlocker blocker) {
3114     if (blocker != null && (e instanceof ForkJoinPool)) {
3115     WorkQueue w; ForkJoinWorkerThread wt; WorkQueue[] ws; int r, n;
3116     ForkJoinPool p = (ForkJoinPool)e;
3117     Thread thread = Thread.currentThread();
3118     if (thread instanceof ForkJoinWorkerThread &&
3119     (wt = (ForkJoinWorkerThread)thread).pool == p)
3120     w = wt.workQueue;
3121     else if ((r = ThreadLocalRandom.getProbe()) != 0 &&
3122     (ws = p.workQueues) != null && (n = ws.length) > 0)
3123     w = ws[(n - 1) & r & SQMASK];
3124     else
3125     w = null;
3126     if (w != null) {
3127     for (;;) {
3128     int b = w.base, s = w.top, d, al; ForkJoinTask<?>[] a;
3129     if ((a = w.array) != null && (d = b - s) < 0 &&
3130     (al = a.length) > 0) {
3131     int index = (al - 1) & b;
3132     ForkJoinTask<?> t = (ForkJoinTask<?>)
3133 dl 1.316 QA.getAcquire(a, index);
3134 dl 1.310 if (blocker.isReleasable())
3135     break;
3136     else if (b++ == w.base) {
3137     if (t == null) {
3138     if (d == -1)
3139     break;
3140     }
3141     else if (!(t instanceof CompletableFuture.
3142     AsynchronousCompletionTask))
3143     break;
3144 dl 1.314 else if (QA.compareAndSet(a, index, t, null)) {
3145 dl 1.310 w.base = b;
3146     t.doExec();
3147     }
3148     }
3149     }
3150     else
3151     break;
3152     }
3153     }
3154     }
3155     }
3156    
3157 jsr166 1.7 // AbstractExecutorService overrides. These rely on undocumented
3158     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3159     // implement RunnableFuture.
3160 jsr166 1.1
3161     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3162 dl 1.90 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3163 jsr166 1.1 }
3164    
3165     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3166 dl 1.90 return new ForkJoinTask.AdaptedCallable<T>(callable);
3167 jsr166 1.1 }
3168    
3169 dl 1.314 // VarHandle mechanics
3170     private static final VarHandle CTL;
3171     private static final VarHandle MODE;
3172     private static final VarHandle QA;
3173 dl 1.52
3174     static {
3175 jsr166 1.3 try {
3176 dl 1.314 MethodHandles.Lookup l = MethodHandles.lookup();
3177     CTL = l.findVarHandle(ForkJoinPool.class, "ctl", long.class);
3178     MODE = l.findVarHandle(ForkJoinPool.class, "mode", int.class);
3179     QA = MethodHandles.arrayElementVarHandle(ForkJoinTask[].class);
3180 jsr166 1.231 } catch (ReflectiveOperationException e) {
3181 dl 1.52 throw new Error(e);
3182     }
3183 dl 1.105
3184 dl 1.243 // Reduce the risk of rare disastrous classloading in first call to
3185     // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
3186     Class<?> ensureLoaded = LockSupport.class;
3187    
3188 jsr166 1.273 int commonMaxSpares = DEFAULT_COMMON_MAX_SPARES;
3189     try {
3190     String p = System.getProperty
3191     ("java.util.concurrent.ForkJoinPool.common.maximumSpares");
3192     if (p != null)
3193     commonMaxSpares = Integer.parseInt(p);
3194     } catch (Exception ignore) {}
3195     COMMON_MAX_SPARES = commonMaxSpares;
3196    
3197 dl 1.152 defaultForkJoinWorkerThreadFactory =
3198 dl 1.112 new DefaultForkJoinWorkerThreadFactory();
3199 dl 1.115 modifyThreadPermission = new RuntimePermission("modifyThread");
3200    
3201 jsr166 1.329 common = AccessController.doPrivileged(new PrivilegedAction<>() {
3202     public ForkJoinPool run() {
3203     return new ForkJoinPool((byte)0); }});
3204 jsr166 1.275
3205 dl 1.310 COMMON_PARALLELISM = Math.max(common.mode & SMASK, 1);
3206 jsr166 1.3 }
3207 dl 1.52
3208 dl 1.197 /**
3209 jsr166 1.279 * Factory for innocuous worker threads.
3210 dl 1.197 */
3211 jsr166 1.278 private static final class InnocuousForkJoinWorkerThreadFactory
3212 dl 1.197 implements ForkJoinWorkerThreadFactory {
3213    
3214     /**
3215     * An ACC to restrict permissions for the factory itself.
3216     * The constructed workers have no permissions set.
3217     */
3218 jsr166 1.324 private static final AccessControlContext INNOCUOUS_ACC;
3219 dl 1.197 static {
3220     Permissions innocuousPerms = new Permissions();
3221     innocuousPerms.add(modifyThreadPermission);
3222     innocuousPerms.add(new RuntimePermission(
3223     "enableContextClassLoaderOverride"));
3224     innocuousPerms.add(new RuntimePermission(
3225     "modifyThreadGroup"));
3226 jsr166 1.324 INNOCUOUS_ACC = new AccessControlContext(new ProtectionDomain[] {
3227 dl 1.197 new ProtectionDomain(null, innocuousPerms)
3228     });
3229     }
3230    
3231     public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
3232 jsr166 1.329 return AccessController.doPrivileged(new PrivilegedAction<>() {
3233     public ForkJoinWorkerThread run() {
3234     return new ForkJoinWorkerThread.
3235     InnocuousForkJoinWorkerThread(pool);
3236     }}, INNOCUOUS_ACC);
3237 dl 1.197 }
3238     }
3239    
3240 jsr166 1.1 }