ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.337
Committed: Sat May 13 19:51:48 2017 UTC (7 years ago) by jsr166
Branch: MAIN
Changes since 1.336: +1 -1 lines
Log Message:
8179592: Update tables in java.base to be HTML 5-friendly

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.58 * http://creativecommons.org/publicdomain/zero/1.0/
5 jsr166 1.1 */
6 jsr166 1.301
7 jsr166 1.1 package java.util.concurrent;
8    
9 jsr166 1.156 import java.lang.Thread.UncaughtExceptionHandler;
10 dl 1.314 import java.lang.invoke.MethodHandles;
11     import java.lang.invoke.VarHandle;
12 jsr166 1.329 import java.security.AccessController;
13 jsr166 1.228 import java.security.AccessControlContext;
14 jsr166 1.331 import java.security.Permission;
15 jsr166 1.228 import java.security.Permissions;
16 jsr166 1.329 import java.security.PrivilegedAction;
17 jsr166 1.228 import java.security.ProtectionDomain;
18 jsr166 1.1 import java.util.ArrayList;
19     import java.util.Collection;
20     import java.util.Collections;
21     import java.util.List;
22 dl 1.307 import java.util.function.Predicate;
23 dl 1.243 import java.util.concurrent.locks.LockSupport;
24 jsr166 1.1
25     /**
26 jsr166 1.4 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
27 jsr166 1.8 * A {@code ForkJoinPool} provides the entry point for submissions
28 dl 1.18 * from non-{@code ForkJoinTask} clients, as well as management and
29 jsr166 1.11 * monitoring operations.
30 jsr166 1.1 *
31 jsr166 1.9 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
32     * ExecutorService} mainly by virtue of employing
33     * <em>work-stealing</em>: all threads in the pool attempt to find and
34 dl 1.78 * execute tasks submitted to the pool and/or created by other active
35     * tasks (eventually blocking waiting for work if none exist). This
36     * enables efficient processing when most tasks spawn other subtasks
37     * (as do most {@code ForkJoinTask}s), as well as when many small
38     * tasks are submitted to the pool from external clients. Especially
39     * when setting <em>asyncMode</em> to true in constructors, {@code
40     * ForkJoinPool}s may also be appropriate for use with event-style
41 dl 1.330 * tasks that are never joined. All worker threads are initialized
42     * with {@link Thread#isDaemon} set {@code true}.
43 jsr166 1.1 *
44 dl 1.112 * <p>A static {@link #commonPool()} is available and appropriate for
45 dl 1.101 * most applications. The common pool is used by any ForkJoinTask that
46     * is not explicitly submitted to a specified pool. Using the common
47     * pool normally reduces resource usage (its threads are slowly
48     * reclaimed during periods of non-use, and reinstated upon subsequent
49 dl 1.105 * use).
50 dl 1.100 *
51     * <p>For applications that require separate or custom pools, a {@code
52     * ForkJoinPool} may be constructed with a given target parallelism
53 jsr166 1.214 * level; by default, equal to the number of available processors.
54     * The pool attempts to maintain enough active (or available) threads
55     * by dynamically adding, suspending, or resuming internal worker
56 jsr166 1.187 * threads, even if some tasks are stalled waiting to join others.
57     * However, no such adjustments are guaranteed in the face of blocked
58     * I/O or other unmanaged synchronization. The nested {@link
59 dl 1.100 * ManagedBlocker} interface enables extension of the kinds of
60 dl 1.300 * synchronization accommodated. The default policies may be
61     * overridden using a constructor with parameters corresponding to
62     * those documented in class {@link ThreadPoolExecutor}.
63 jsr166 1.1 *
64     * <p>In addition to execution and lifecycle control methods, this
65     * class provides status check methods (for example
66 jsr166 1.4 * {@link #getStealCount}) that are intended to aid in developing,
67 jsr166 1.1 * tuning, and monitoring fork/join applications. Also, method
68 jsr166 1.4 * {@link #toString} returns indications of pool state in a
69 jsr166 1.1 * convenient form for informal monitoring.
70     *
71 jsr166 1.109 * <p>As is the case with other ExecutorServices, there are three
72 jsr166 1.84 * main task execution methods summarized in the following table.
73     * These are designed to be used primarily by clients not already
74     * engaged in fork/join computations in the current pool. The main
75     * forms of these methods accept instances of {@code ForkJoinTask},
76     * but overloaded forms also allow mixed execution of plain {@code
77     * Runnable}- or {@code Callable}- based activities as well. However,
78     * tasks that are already executing in a pool should normally instead
79     * use the within-computation forms listed in the table unless using
80     * async event-style tasks that are not usually joined, in which case
81     * there is little difference among choice of methods.
82 dl 1.18 *
83 jsr166 1.337 * <table class="plain">
84 jsr166 1.159 * <caption>Summary of task execution methods</caption>
85 dl 1.18 * <tr>
86     * <td></td>
87 jsr166 1.336 * <td style="text-align:center"> <b>Call from non-fork/join clients</b></td>
88     * <td style="text-align:center"> <b>Call from within fork/join computations</b></td>
89 dl 1.18 * </tr>
90     * <tr>
91 jsr166 1.153 * <td> <b>Arrange async execution</b></td>
92 dl 1.18 * <td> {@link #execute(ForkJoinTask)}</td>
93     * <td> {@link ForkJoinTask#fork}</td>
94     * </tr>
95     * <tr>
96 jsr166 1.153 * <td> <b>Await and obtain result</b></td>
97 dl 1.18 * <td> {@link #invoke(ForkJoinTask)}</td>
98     * <td> {@link ForkJoinTask#invoke}</td>
99     * </tr>
100     * <tr>
101 jsr166 1.153 * <td> <b>Arrange exec and obtain Future</b></td>
102 dl 1.18 * <td> {@link #submit(ForkJoinTask)}</td>
103     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
104     * </tr>
105     * </table>
106 dl 1.19 *
107 jsr166 1.333 * <p>The parameters used to construct the common pool may be controlled by
108     * setting the following {@linkplain System#getProperty system properties}:
109 jsr166 1.162 * <ul>
110     * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
111     * - the parallelism level, a non-negative integer
112     * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
113 jsr166 1.331 * - the class name of a {@link ForkJoinWorkerThreadFactory}.
114     * The {@linkplain ClassLoader#getSystemClassLoader() system class loader}
115     * is used to load this class.
116 jsr166 1.162 * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
117 jsr166 1.331 * - the class name of a {@link UncaughtExceptionHandler}.
118     * The {@linkplain ClassLoader#getSystemClassLoader() system class loader}
119     * is used to load this class.
120 dl 1.208 * <li>{@code java.util.concurrent.ForkJoinPool.common.maximumSpares}
121 dl 1.223 * - the maximum number of allowed extra threads to maintain target
122 dl 1.208 * parallelism (default 256).
123 jsr166 1.162 * </ul>
124 jsr166 1.333 * If no thread factory is supplied via a system property, then the
125     * common pool uses a factory that uses the system class loader as the
126 jsr166 1.331 * {@linkplain Thread#getContextClassLoader() thread context class loader}.
127 jsr166 1.333 * In addition, if a {@link SecurityManager} is present, then
128     * the common pool uses a factory supplying threads that have no
129     * {@link Permissions} enabled.
130 jsr166 1.331 *
131 jsr166 1.156 * Upon any error in establishing these settings, default parameters
132 dl 1.160 * are used. It is possible to disable or limit the use of threads in
133     * the common pool by setting the parallelism property to zero, and/or
134 dl 1.193 * using a factory that may return {@code null}. However doing so may
135     * cause unjoined tasks to never be executed.
136 dl 1.105 *
137 jsr166 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
138     * maximum number of running threads to 32767. Attempts to create
139 jsr166 1.11 * pools with greater than the maximum number result in
140 jsr166 1.8 * {@code IllegalArgumentException}.
141 jsr166 1.1 *
142 jsr166 1.11 * <p>This implementation rejects submitted tasks (that is, by throwing
143 dl 1.19 * {@link RejectedExecutionException}) only when the pool is shut down
144 dl 1.20 * or internal resources have been exhausted.
145 jsr166 1.11 *
146 jsr166 1.1 * @since 1.7
147     * @author Doug Lea
148     */
149     public class ForkJoinPool extends AbstractExecutorService {
150    
151     /*
152 dl 1.14 * Implementation Overview
153     *
154 dl 1.78 * This class and its nested classes provide the main
155     * functionality and control for a set of worker threads:
156 jsr166 1.84 * Submissions from non-FJ threads enter into submission queues.
157     * Workers take these tasks and typically split them into subtasks
158     * that may be stolen by other workers. Preference rules give
159     * first priority to processing tasks from their own queues (LIFO
160     * or FIFO, depending on mode), then to randomized FIFO steals of
161 dl 1.200 * tasks in other queues. This framework began as vehicle for
162     * supporting tree-structured parallelism using work-stealing.
163     * Over time, its scalability advantages led to extensions and
164 dl 1.208 * changes to better support more diverse usage contexts. Because
165     * most internal methods and nested classes are interrelated,
166     * their main rationale and descriptions are presented here;
167     * individual methods and nested classes contain only brief
168     * comments about details.
169 dl 1.78 *
170 jsr166 1.84 * WorkQueues
171 dl 1.78 * ==========
172     *
173     * Most operations occur within work-stealing queues (in nested
174     * class WorkQueue). These are special forms of Deques that
175     * support only three of the four possible end-operations -- push,
176     * pop, and poll (aka steal), under the further constraints that
177     * push and pop are called only from the owning thread (or, as
178     * extended here, under a lock), while poll may be called from
179     * other threads. (If you are unfamiliar with them, you probably
180     * want to read Herlihy and Shavit's book "The Art of
181     * Multiprocessor programming", chapter 16 describing these in
182     * more detail before proceeding.) The main work-stealing queue
183     * design is roughly similar to those in the papers "Dynamic
184     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
185     * (http://research.sun.com/scalable/pubs/index.html) and
186     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
187     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
188 dl 1.200 * The main differences ultimately stem from GC requirements that
189     * we null out taken slots as soon as we can, to maintain as small
190     * a footprint as possible even in programs generating huge
191     * numbers of tasks. To accomplish this, we shift the CAS
192     * arbitrating pop vs poll (steal) from being on the indices
193     * ("base" and "top") to the slots themselves.
194     *
195 dl 1.243 * Adding tasks then takes the form of a classic array push(task)
196     * in a circular buffer:
197     * q.array[q.top++ % length] = task;
198 dl 1.200 *
199     * (The actual code needs to null-check and size-check the array,
200 jsr166 1.247 * uses masking, not mod, for indexing a power-of-two-sized array,
201 dl 1.243 * properly fences accesses, and possibly signals waiting workers
202     * to start scanning -- see below.) Both a successful pop and
203     * poll mainly entail a CAS of a slot from non-null to null.
204 dl 1.200 *
205 jsr166 1.202 * The pop operation (always performed by owner) is:
206 dl 1.243 * if ((the task at top slot is not null) and
207 dl 1.200 * (CAS slot to null))
208     * decrement top and return task;
209     *
210     * And the poll operation (usually by a stealer) is
211 dl 1.243 * if ((the task at base slot is not null) and
212 dl 1.200 * (CAS slot to null))
213     * increment base and return task;
214     *
215 dl 1.300 * There are several variants of each of these. In particular,
216     * almost all uses of poll occur within scan operations that also
217     * interleave contention tracking (with associated code sprawl.)
218 dl 1.243 *
219     * Memory ordering. See "Correct and Efficient Work-Stealing for
220     * Weak Memory Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
221     * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
222     * analysis of memory ordering requirements in work-stealing
223     * algorithms similar to (but different than) the one used here.
224     * Extracting tasks in array slots via (fully fenced) CAS provides
225     * primary synchronization. The base and top indices imprecisely
226     * guide where to extract from. We do not always require strict
227     * orderings of array and index updates, so sometimes let them be
228     * subject to compiler and processor reorderings. However, the
229     * volatile "base" index also serves as a basis for memory
230     * ordering: Slot accesses are preceded by a read of base,
231 jsr166 1.247 * ensuring happens-before ordering with respect to stealers (so
232 dl 1.243 * the slots themselves can be read via plain array reads.) The
233     * only other memory orderings relied on are maintained in the
234     * course of signalling and activation (see below). A check that
235     * base == top indicates (momentary) emptiness, but otherwise may
236     * err on the side of possibly making the queue appear nonempty
237     * when a push, pop, or poll have not fully committed, or making
238     * it appear empty when an update of top has not yet been visibly
239     * written. (Method isEmpty() checks the case of a partially
240 dl 1.211 * completed removal of the last element.) Because of this, the
241     * poll operation, considered individually, is not wait-free. One
242     * thief cannot successfully continue until another in-progress
243 dl 1.243 * one (or, if previously empty, a push) visibly completes.
244     * However, in the aggregate, we ensure at least probabilistic
245     * non-blockingness. If an attempted steal fails, a scanning
246     * thief chooses a different random victim target to try next. So,
247     * in order for one thief to progress, it suffices for any
248 dl 1.205 * in-progress poll or new push on any empty queue to
249 dl 1.300 * complete.
250 dl 1.200 *
251     * This approach also enables support of a user mode in which
252     * local task processing is in FIFO, not LIFO order, simply by
253     * using poll rather than pop. This can be useful in
254     * message-passing frameworks in which tasks are never joined.
255 dl 1.78 *
256     * WorkQueues are also used in a similar way for tasks submitted
257     * to the pool. We cannot mix these tasks in the same queues used
258 dl 1.200 * by workers. Instead, we randomly associate submission queues
259 dl 1.83 * with submitting threads, using a form of hashing. The
260 dl 1.139 * ThreadLocalRandom probe value serves as a hash code for
261     * choosing existing queues, and may be randomly repositioned upon
262     * contention with other submitters. In essence, submitters act
263     * like workers except that they are restricted to executing local
264 dl 1.300 * tasks that they submitted. Insertion of tasks in shared mode
265     * requires a lock but we use only a simple spinlock (using field
266 jsr166 1.304 * phase), because submitters encountering a busy queue move to a
267     * different position to use or create other queues -- they block
268     * only when creating and registering new queues. Because it is
269     * used only as a spinlock, unlocking requires only a "releasing"
270 dl 1.314 * store (using setRelease).
271 dl 1.78 *
272 jsr166 1.84 * Management
273 dl 1.78 * ==========
274 dl 1.52 *
275     * The main throughput advantages of work-stealing stem from
276     * decentralized control -- workers mostly take tasks from
277 dl 1.200 * themselves or each other, at rates that can exceed a billion
278     * per second. The pool itself creates, activates (enables
279     * scanning for and running tasks), deactivates, blocks, and
280     * terminates threads, all with minimal central information.
281     * There are only a few properties that we can globally track or
282     * maintain, so we pack them into a small number of variables,
283     * often maintaining atomicity without blocking or locking.
284 dl 1.300 * Nearly all essentially atomic control state is held in a few
285 dl 1.200 * volatile variables that are by far most often read (not
286 dl 1.300 * written) as status and consistency checks. We pack as much
287     * information into them as we can.
288 dl 1.78 *
289 dl 1.200 * Field "ctl" contains 64 bits holding information needed to
290 dl 1.300 * atomically decide to add, enqueue (on an event queue), and
291     * dequeue (and release)-activate workers. To enable this
292 dl 1.78 * packing, we restrict maximum parallelism to (1<<15)-1 (which is
293     * far in excess of normal operating range) to allow ids, counts,
294     * and their negations (used for thresholding) to fit into 16bit
295 dl 1.215 * subfields.
296     *
297 dl 1.300 * Field "mode" holds configuration parameters as well as lifetime
298     * status, atomically and monotonically setting SHUTDOWN, STOP,
299     * and finally TERMINATED bits.
300 dl 1.258 *
301     * Field "workQueues" holds references to WorkQueues. It is
302 dl 1.300 * updated (only during worker creation and termination) under
303     * lock (using field workerNamePrefix as lock), but is otherwise
304     * concurrently readable, and accessed directly. We also ensure
305     * that uses of the array reference itself never become too stale
306     * in case of resizing. To simplify index-based operations, the
307     * array size is always a power of two, and all readers must
308     * tolerate null slots. Worker queues are at odd indices. Shared
309     * (submission) queues are at even indices, up to a maximum of 64
310     * slots, to limit growth even if array needs to expand to add
311     * more workers. Grouping them together in this way simplifies and
312 dl 1.262 * speeds up task scanning.
313 dl 1.86 *
314     * All worker thread creation is on-demand, triggered by task
315     * submissions, replacement of terminated workers, and/or
316 dl 1.78 * compensation for blocked workers. However, all other support
317     * code is set up to work with other policies. To ensure that we
318 jsr166 1.264 * do not hold on to worker references that would prevent GC, all
319 dl 1.78 * accesses to workQueues are via indices into the workQueues
320     * array (which is one source of some of the messy code
321     * constructions here). In essence, the workQueues array serves as
322 dl 1.200 * a weak reference mechanism. Thus for example the stack top
323     * subfield of ctl stores indices, not references.
324     *
325     * Queuing Idle Workers. Unlike HPC work-stealing frameworks, we
326     * cannot let workers spin indefinitely scanning for tasks when
327     * none can be found immediately, and we cannot start/resume
328     * workers unless there appear to be tasks available. On the
329     * other hand, we must quickly prod them into action when new
330     * tasks are submitted or generated. In many usages, ramp-up time
331 dl 1.300 * is the main limiting factor in overall performance, which is
332     * compounded at program start-up by JIT compilation and
333     * allocation. So we streamline this as much as possible.
334     *
335     * The "ctl" field atomically maintains total worker and
336     * "released" worker counts, plus the head of the available worker
337     * queue (actually stack, represented by the lower 32bit subfield
338     * of ctl). Released workers are those known to be scanning for
339     * and/or running tasks. Unreleased ("available") workers are
340     * recorded in the ctl stack. These workers are made available for
341     * signalling by enqueuing in ctl (see method runWorker). The
342     * "queue" is a form of Treiber stack. This is ideal for
343     * activating threads in most-recently used order, and improves
344 dl 1.200 * performance and locality, outweighing the disadvantages of
345     * being prone to contention and inability to release a worker
346 dl 1.300 * unless it is topmost on stack. To avoid missed signal problems
347     * inherent in any wait/signal design, available workers rescan
348     * for (and if found run) tasks after enqueuing. Normally their
349     * release status will be updated while doing so, but the released
350     * worker ctl count may underestimate the number of active
351     * threads. (However, it is still possible to determine quiescence
352     * via a validation traversal -- see isQuiescent). After an
353     * unsuccessful rescan, available workers are blocked until
354     * signalled (see signalWork). The top stack state holds the
355     * value of the "phase" field of the worker: its index and status,
356     * plus a version counter that, in addition to the count subfields
357     * (also serving as version stamps) provide protection against
358     * Treiber stack ABA effects.
359 dl 1.200 *
360 dl 1.300 * Creating workers. To create a worker, we pre-increment counts
361     * (serving as a reservation), and attempt to construct a
362 dl 1.200 * ForkJoinWorkerThread via its factory. Upon construction, the
363     * new thread invokes registerWorker, where it constructs a
364     * WorkQueue and is assigned an index in the workQueues array
365 jsr166 1.266 * (expanding the array if necessary). The thread is then started.
366     * Upon any exception across these steps, or null return from
367     * factory, deregisterWorker adjusts counts and records
368 dl 1.200 * accordingly. If a null return, the pool continues running with
369     * fewer than the target number workers. If exceptional, the
370     * exception is propagated, generally to some external caller.
371     * Worker index assignment avoids the bias in scanning that would
372     * occur if entries were sequentially packed starting at the front
373     * of the workQueues array. We treat the array as a simple
374     * power-of-two hash table, expanding as needed. The seedIndex
375     * increment ensures no collisions until a resize is needed or a
376     * worker is deregistered and replaced, and thereafter keeps
377 jsr166 1.202 * probability of collision low. We cannot use
378 dl 1.200 * ThreadLocalRandom.getProbe() for similar purposes here because
379     * the thread has not started yet, but do so for creating
380 dl 1.243 * submission queues for existing external threads (see
381     * externalPush).
382     *
383 dl 1.300 * WorkQueue field "phase" is used by both workers and the pool to
384     * manage and track whether a worker is UNSIGNALLED (possibly
385     * blocked waiting for a signal). When a worker is enqueued its
386     * phase field is set. Note that phase field updates lag queue CAS
387     * releases so usage requires care -- seeing a negative phase does
388     * not guarantee that the worker is available. When queued, the
389     * lower 16 bits of scanState must hold its pool index. So we
390     * place the index there upon initialization (see registerWorker)
391     * and otherwise keep it there or restore it when necessary.
392 dl 1.243 *
393     * The ctl field also serves as the basis for memory
394     * synchronization surrounding activation. This uses a more
395     * efficient version of a Dekker-like rule that task producers and
396     * consumers sync with each other by both writing/CASing ctl (even
397 dl 1.253 * if to its current value). This would be extremely costly. So
398     * we relax it in several ways: (1) Producers only signal when
399     * their queue is empty. Other workers propagate this signal (in
400 dl 1.300 * method scan) when they find tasks; to further reduce flailing,
401     * each worker signals only one other per activation. (2) Workers
402     * only enqueue after scanning (see below) and not finding any
403     * tasks. (3) Rather than CASing ctl to its current value in the
404     * common case where no action is required, we reduce write
405     * contention by equivalently prefacing signalWork when called by
406     * an external task producer using a memory access with
407     * full-volatile semantics or a "fullFence".
408 dl 1.243 *
409 jsr166 1.249 * Almost always, too many signals are issued. A task producer
410 dl 1.243 * cannot in general tell if some existing worker is in the midst
411     * of finishing one task (or already scanning) and ready to take
412     * another without being signalled. So the producer might instead
413     * activate a different worker that does not find any work, and
414     * then inactivates. This scarcely matters in steady-state
415     * computations involving all workers, but can create contention
416 jsr166 1.247 * and bookkeeping bottlenecks during ramp-up, ramp-down, and small
417 dl 1.243 * computations involving only a few workers.
418     *
419 dl 1.300 * Scanning. Method runWorker performs top-level scanning for
420     * tasks. Each scan traverses and tries to poll from each queue
421     * starting at a random index and circularly stepping. Scans are
422     * not performed in ideal random permutation order, to reduce
423     * cacheline contention. The pseudorandom generator need not have
424     * high-quality statistical properties in the long term, but just
425     * within computations; We use Marsaglia XorShifts (often via
426     * ThreadLocalRandom.nextSecondarySeed), which are cheap and
427     * suffice. Scanning also employs contention reduction: When
428     * scanning workers fail to extract an apparently existing task,
429     * they soon restart at a different pseudorandom index. This
430     * improves throughput when many threads are trying to take tasks
431     * from few queues, which can be common in some usages. Scans do
432     * not otherwise explicitly take into account core affinities,
433     * loads, cache localities, etc, However, they do exploit temporal
434     * locality (which usually approximates these) by preferring to
435     * re-poll (at most #workers times) from the same queue after a
436     * successful poll before trying others.
437 dl 1.52 *
438     * Trimming workers. To release resources after periods of lack of
439     * use, a worker starting to wait when the pool is quiescent will
440 dl 1.300 * time out and terminate (see method scan) if the pool has
441     * remained quiescent for period given by field keepAlive.
442 dl 1.52 *
443 dl 1.210 * Shutdown and Termination. A call to shutdownNow invokes
444     * tryTerminate to atomically set a runState bit. The calling
445     * thread, as well as every other worker thereafter terminating,
446 dl 1.300 * helps terminate others by cancelling their unprocessed tasks,
447     * and waking them up, doing so repeatedly until stable. Calls to
448     * non-abrupt shutdown() preface this by checking whether
449     * termination should commence by sweeping through queues (until
450     * stable) to ensure lack of in-flight submissions and workers
451     * about to process them before triggering the "STOP" phase of
452     * termination.
453 dl 1.211 *
454 jsr166 1.84 * Joining Tasks
455     * =============
456 dl 1.78 *
457     * Any of several actions may be taken when one worker is waiting
458 jsr166 1.84 * to join a task stolen (or always held) by another. Because we
459 dl 1.78 * are multiplexing many tasks on to a pool of workers, we can't
460 dl 1.300 * always just let them block (as in Thread.join). We also cannot
461     * just reassign the joiner's run-time stack with another and
462     * replace it later, which would be a form of "continuation", that
463     * even if possible is not necessarily a good idea since we may
464     * need both an unblocked task and its continuation to progress.
465     * Instead we combine two tactics:
466 dl 1.19 *
467     * Helping: Arranging for the joiner to execute some task that it
468 dl 1.78 * would be running if the steal had not occurred.
469 dl 1.19 *
470     * Compensating: Unless there are already enough live threads,
471 dl 1.78 * method tryCompensate() may create or re-activate a spare
472     * thread to compensate for blocked joiners until they unblock.
473     *
474 dl 1.105 * A third form (implemented in tryRemoveAndExec) amounts to
475     * helping a hypothetical compensator: If we can readily tell that
476     * a possible action of a compensator is to steal and execute the
477     * task being joined, the joining thread can do so directly,
478 dl 1.300 * without the need for a compensation thread.
479 dl 1.52 *
480     * The ManagedBlocker extension API can't use helping so relies
481     * only on compensation in method awaitBlocker.
482 dl 1.19 *
483 dl 1.300 * The algorithm in awaitJoin entails a form of "linear helping".
484     * Each worker records (in field source) the id of the queue from
485     * which it last stole a task. The scan in method awaitJoin uses
486     * these markers to try to find a worker to help (i.e., steal back
487     * a task from and execute it) that could hasten completion of the
488     * actively joined task. Thus, the joiner executes a task that
489     * would be on its own local deque if the to-be-joined task had
490     * not been stolen. This is a conservative variant of the approach
491     * described in Wagner & Calder "Leapfrogging: a portable
492     * technique for implementing efficient futures" SIGPLAN Notices,
493     * 1993 (http://portal.acm.org/citation.cfm?id=155354). It differs
494     * mainly in that we only record queue ids, not full dependency
495     * links. This requires a linear scan of the workQueues array to
496     * locate stealers, but isolates cost to when it is needed, rather
497     * than adding to per-task overhead. Searches can fail to locate
498     * stealers GC stalls and the like delay recording sources.
499     * Further, even when accurately identified, stealers might not
500     * ever produce a task that the joiner can in turn help with. So,
501     * compensation is tried upon failure to find tasks to run.
502 dl 1.105 *
503 dl 1.300 * Compensation does not by default aim to keep exactly the target
504 dl 1.200 * parallelism number of unblocked threads running at any given
505     * time. Some previous versions of this class employed immediate
506     * compensations for any blocked join. However, in practice, the
507     * vast majority of blockages are transient byproducts of GC and
508     * other JVM or OS activities that are made worse by replacement.
509 dl 1.300 * Rather than impose arbitrary policies, we allow users to
510     * override the default of only adding threads upon apparent
511     * starvation. The compensation mechanism may also be bounded.
512     * Bounds for the commonPool (see COMMON_MAX_SPARES) better enable
513     * JVMs to cope with programming errors and abuse before running
514     * out of resources to do so.
515 jsr166 1.301 *
516 dl 1.105 * Common Pool
517     * ===========
518     *
519 jsr166 1.175 * The static common pool always exists after static
520 dl 1.105 * initialization. Since it (or any other created pool) need
521     * never be used, we minimize initial construction overhead and
522 dl 1.300 * footprint to the setup of about a dozen fields.
523 dl 1.105 *
524     * When external threads submit to the common pool, they can
525 dl 1.200 * perform subtask processing (see externalHelpComplete and
526     * related methods) upon joins. This caller-helps policy makes it
527     * sensible to set common pool parallelism level to one (or more)
528     * less than the total number of available cores, or even zero for
529     * pure caller-runs. We do not need to record whether external
530     * submissions are to the common pool -- if not, external help
531     * methods return quickly. These submitters would otherwise be
532     * blocked waiting for completion, so the extra effort (with
533     * liberally sprinkled task status checks) in inapplicable cases
534     * amounts to an odd form of limited spin-wait before blocking in
535     * ForkJoinTask.join.
536 dl 1.105 *
537 dl 1.197 * As a more appropriate default in managed environments, unless
538     * overridden by system properties, we use workers of subclass
539     * InnocuousForkJoinWorkerThread when there is a SecurityManager
540     * present. These workers have no permissions set, do not belong
541     * to any user-defined ThreadGroup, and erase all ThreadLocals
542 dl 1.300 * after executing any top-level task (see
543     * WorkQueue.afterTopLevelExec). The associated mechanics (mainly
544     * in ForkJoinWorkerThread) may be JVM-dependent and must access
545     * particular Thread class fields to achieve this effect.
546 jsr166 1.198 *
547 dl 1.105 * Style notes
548     * ===========
549     *
550 jsr166 1.315 * Memory ordering relies mainly on VarHandles. This can be
551     * awkward and ugly, but also reflects the need to control
552     * outcomes across the unusual cases that arise in very racy code
553 dl 1.319 * with very few invariants. All fields are read into locals
554     * before use, and null-checked if they are references. This is
555     * usually done in a "C"-like style of listing declarations at the
556     * heads of methods or blocks, and using inline assignments on
557     * first encounter. Nearly all explicit checks lead to
558     * bypass/return, not exception throws, because they may
559     * legitimately arise due to cancellation/revocation during
560     * shutdown.
561 dl 1.200 *
562 dl 1.105 * There is a lot of representation-level coupling among classes
563     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
564     * fields of WorkQueue maintain data structures managed by
565     * ForkJoinPool, so are directly accessed. There is little point
566     * trying to reduce this, since any associated future changes in
567     * representations will need to be accompanied by algorithmic
568     * changes anyway. Several methods intrinsically sprawl because
569 dl 1.200 * they must accumulate sets of consistent reads of fields held in
570     * local variables. There are also other coding oddities
571     * (including several unnecessary-looking hoisted null checks)
572     * that help some methods perform reasonably even when interpreted
573     * (not compiled).
574 dl 1.52 *
575 dl 1.208 * The order of declarations in this file is (with a few exceptions):
576 dl 1.86 * (1) Static utility functions
577     * (2) Nested (static) classes
578     * (3) Static fields
579     * (4) Fields, along with constants used when unpacking some of them
580     * (5) Internal control methods
581     * (6) Callbacks and other support for ForkJoinTask methods
582     * (7) Exported methods
583     * (8) Static block initializing statics in minimally dependent order
584     */
585    
586     // Static utilities
587    
588     /**
589     * If there is a security manager, makes sure caller has
590     * permission to modify threads.
591 jsr166 1.1 */
592 dl 1.86 private static void checkPermission() {
593     SecurityManager security = System.getSecurityManager();
594     if (security != null)
595     security.checkPermission(modifyThreadPermission);
596     }
597    
598     // Nested classes
599 jsr166 1.1
600     /**
601 jsr166 1.8 * Factory for creating new {@link ForkJoinWorkerThread}s.
602     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
603     * for {@code ForkJoinWorkerThread} subclasses that extend base
604     * functionality or initialize threads with different contexts.
605 jsr166 1.1 */
606     public static interface ForkJoinWorkerThreadFactory {
607     /**
608     * Returns a new worker thread operating in the given pool.
609 dl 1.300 * Returning null or throwing an exception may result in tasks
610     * never being executed. If this method throws an exception,
611     * it is relayed to the caller of the method (for example
612     * {@code execute}) causing attempted thread creation. If this
613     * method returns null or throws an exception, it is not
614     * retried until the next attempted creation (for example
615     * another call to {@code execute}).
616 jsr166 1.1 *
617     * @param pool the pool this thread works in
618 jsr166 1.296 * @return the new worker thread, or {@code null} if the request
619 jsr166 1.331 * to create a thread is rejected
620 jsr166 1.11 * @throws NullPointerException if the pool is null
621 jsr166 1.1 */
622     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
623     }
624    
625 jsr166 1.331 static AccessControlContext contextWithPermissions(Permission ... perms) {
626     Permissions permissions = new Permissions();
627     for (Permission perm : perms)
628     permissions.add(perm);
629     return new AccessControlContext(
630     new ProtectionDomain[] { new ProtectionDomain(null, permissions) });
631     }
632    
633 jsr166 1.1 /**
634     * Default ForkJoinWorkerThreadFactory implementation; creates a
635 jsr166 1.331 * new ForkJoinWorkerThread using the system class loader as the
636     * thread context class loader.
637 jsr166 1.1 */
638 jsr166 1.278 private static final class DefaultForkJoinWorkerThreadFactory
639 jsr166 1.1 implements ForkJoinWorkerThreadFactory {
640 jsr166 1.331 private static final AccessControlContext ACC = contextWithPermissions(
641     new RuntimePermission("getClassLoader"),
642     new RuntimePermission("setContextClassLoader"));
643    
644 dl 1.112 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
645 jsr166 1.331 return AccessController.doPrivileged(
646     new PrivilegedAction<>() {
647     public ForkJoinWorkerThread run() {
648     return new ForkJoinWorkerThread(
649     pool, ClassLoader.getSystemClassLoader()); }},
650     ACC);
651 jsr166 1.1 }
652     }
653    
654 dl 1.200 // Constants shared across ForkJoinPool and WorkQueue
655    
656     // Bounds
657 dl 1.300 static final int SWIDTH = 16; // width of short
658 dl 1.200 static final int SMASK = 0xffff; // short bits == max index
659     static final int MAX_CAP = 0x7fff; // max #workers - 1
660     static final int SQMASK = 0x007e; // max 64 (even) slots
661    
662 dl 1.300 // Masks and units for WorkQueue.phase and ctl sp subfield
663 dl 1.243 static final int UNSIGNALLED = 1 << 31; // must be negative
664 dl 1.211 static final int SS_SEQ = 1 << 16; // version count
665 dl 1.300 static final int QLOCK = 1; // must be 1
666 dl 1.200
667 dl 1.300 // Mode bits and sentinels, some also used in WorkQueue id and.source fields
668     static final int OWNED = 1; // queue has owner thread
669     static final int FIFO = 1 << 16; // fifo queue or access mode
670     static final int SHUTDOWN = 1 << 18;
671     static final int TERMINATED = 1 << 19;
672     static final int STOP = 1 << 31; // must be negative
673     static final int QUIET = 1 << 30; // not scanning or working
674     static final int DORMANT = QUIET | UNSIGNALLED;
675    
676     /**
677     * The maximum number of local polls from the same queue before
678     * checking others. This is a safeguard against infinitely unfair
679     * looping under unbounded user task recursion, and must be larger
680     * than plausible cases of intentional bounded task recursion.
681 dl 1.253 */
682 dl 1.300 static final int POLL_LIMIT = 1 << 10;
683 dl 1.253
684     /**
685 dl 1.78 * Queues supporting work-stealing as well as external task
686 jsr166 1.202 * submission. See above for descriptions and algorithms.
687 dl 1.78 * Performance on most platforms is very sensitive to placement of
688     * instances of both WorkQueues and their arrays -- we absolutely
689     * do not want multiple WorkQueue instances or multiple queue
690 dl 1.200 * arrays sharing cache lines. The @Contended annotation alerts
691     * JVMs to try to keep instances apart.
692 dl 1.78 */
693 dl 1.308 @jdk.internal.vm.annotation.Contended
694 dl 1.78 static final class WorkQueue {
695 dl 1.200
696 dl 1.78 /**
697     * Capacity of work-stealing queue array upon initialization.
698 dl 1.90 * Must be a power of two; at least 4, but should be larger to
699     * reduce or eliminate cacheline sharing among queues.
700     * Currently, it is much larger, as a partial workaround for
701     * the fact that JVMs often place arrays in locations that
702     * share GC bookkeeping (especially cardmarks) such that
703     * per-write accesses encounter serious memory contention.
704 dl 1.78 */
705 dl 1.90 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
706 dl 1.78
707     /**
708     * Maximum size for queue arrays. Must be a power of two less
709     * than or equal to 1 << (31 - width of array entry) to ensure
710     * lack of wraparound of index calculations, but defined to a
711     * value a bit less than this to help users trap runaway
712     * programs before saturating systems.
713     */
714     static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
715    
716 dl 1.200 // Instance fields
717 dl 1.300 volatile int phase; // versioned, negative: queued, 1: locked
718     int stackPred; // pool stack (ctl) predecessor link
719 dl 1.178 int nsteals; // number of steals
720 dl 1.300 int id; // index, mode, tag
721     volatile int source; // source queue id, or sentinel
722 dl 1.78 volatile int base; // index of next slot for poll
723     int top; // index of next slot for push
724     ForkJoinTask<?>[] array; // the elements (initially unallocated)
725 dl 1.90 final ForkJoinPool pool; // the containing pool (may be null)
726 dl 1.78 final ForkJoinWorkerThread owner; // owning thread or null if shared
727 dl 1.112
728 dl 1.200 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner) {
729 dl 1.90 this.pool = pool;
730 dl 1.78 this.owner = owner;
731 dl 1.115 // Place indices in the center of array (that is not yet allocated)
732 dl 1.78 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
733     }
734    
735     /**
736 jsr166 1.220 * Returns an exportable index (used by ForkJoinWorkerThread).
737 dl 1.200 */
738     final int getPoolIndex() {
739 dl 1.300 return (id & 0xffff) >>> 1; // ignore odd/even tag bit
740 dl 1.200 }
741    
742     /**
743 dl 1.115 * Returns the approximate number of tasks in the queue.
744     */
745     final int queueSize() {
746 dl 1.243 int n = base - top; // read base first
747 dl 1.115 return (n >= 0) ? 0 : -n; // ignore transient negative
748     }
749    
750 jsr166 1.180 /**
751 dl 1.115 * Provides a more accurate estimate of whether this queue has
752     * any tasks than does queueSize, by checking whether a
753     * near-empty queue has at least one unclaimed task.
754     */
755     final boolean isEmpty() {
756 dl 1.300 ForkJoinTask<?>[] a; int n, al, b;
757     return ((n = (b = base) - top) >= 0 || // possibly one task
758 dl 1.243 (n == -1 && ((a = array) == null ||
759     (al = a.length) == 0 ||
760 dl 1.300 a[(al - 1) & b] == null)));
761 dl 1.115 }
762    
763 dl 1.300
764 dl 1.115 /**
765 dl 1.256 * Pushes a task. Call only by owner in unshared queues.
766 dl 1.78 *
767     * @param task the task. Caller must ensure non-null.
768 jsr166 1.146 * @throws RejectedExecutionException if array cannot be resized
769 dl 1.78 */
770 dl 1.90 final void push(ForkJoinTask<?> task) {
771 dl 1.300 int s = top; ForkJoinTask<?>[] a; int al, d;
772 dl 1.243 if ((a = array) != null && (al = a.length) > 0) {
773 dl 1.300 int index = (al - 1) & s;
774     ForkJoinPool p = pool;
775 dl 1.243 top = s + 1;
776 dl 1.314 QA.setRelease(a, index, task);
777 dl 1.292 if ((d = base - s) == 0 && p != null) {
778 dl 1.314 VarHandle.fullFence();
779 dl 1.253 p.signalWork();
780 dl 1.284 }
781 dl 1.300 else if (d + al == 1)
782 dl 1.243 growArray();
783 dl 1.78 }
784     }
785    
786 dl 1.178 /**
787 dl 1.112 * Initializes or doubles the capacity of array. Call either
788     * by owner or with lock held -- it is OK for base, but not
789     * top, to move while resizings are in progress.
790     */
791     final ForkJoinTask<?>[] growArray() {
792     ForkJoinTask<?>[] oldA = array;
793 dl 1.300 int oldSize = oldA != null ? oldA.length : 0;
794     int size = oldSize > 0 ? oldSize << 1 : INITIAL_QUEUE_CAPACITY;
795 dl 1.225 if (size < INITIAL_QUEUE_CAPACITY || size > MAXIMUM_QUEUE_CAPACITY)
796 dl 1.112 throw new RejectedExecutionException("Queue capacity exceeded");
797     int oldMask, t, b;
798     ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
799 dl 1.300 if (oldA != null && (oldMask = oldSize - 1) > 0 &&
800 dl 1.112 (t = top) - (b = base) > 0) {
801     int mask = size - 1;
802 dl 1.200 do { // emulate poll from old array, push to new array
803 dl 1.256 int index = b & oldMask;
804 dl 1.243 ForkJoinTask<?> x = (ForkJoinTask<?>)
805 dl 1.316 QA.getAcquire(oldA, index);
806 dl 1.243 if (x != null &&
807 dl 1.314 QA.compareAndSet(oldA, index, x, null))
808 dl 1.243 a[b & mask] = x;
809 dl 1.112 } while (++b != t);
810 dl 1.314 VarHandle.releaseFence();
811 dl 1.78 }
812 dl 1.112 return a;
813 dl 1.78 }
814    
815     /**
816 dl 1.90 * Takes next task, if one exists, in LIFO order. Call only
817 dl 1.102 * by owner in unshared queues.
818 dl 1.90 */
819     final ForkJoinTask<?> pop() {
820 dl 1.243 int b = base, s = top, al, i; ForkJoinTask<?>[] a;
821 dl 1.256 if ((a = array) != null && b != s && (al = a.length) > 0) {
822     int index = (al - 1) & --s;
823 dl 1.262 ForkJoinTask<?> t = (ForkJoinTask<?>)
824 dl 1.314 QA.get(a, index);
825 dl 1.262 if (t != null &&
826 dl 1.314 QA.compareAndSet(a, index, t, null)) {
827 dl 1.256 top = s;
828 dl 1.314 VarHandle.releaseFence();
829 dl 1.78 return t;
830     }
831     }
832     return null;
833     }
834    
835     /**
836 dl 1.90 * Takes next task, if one exists, in FIFO order.
837 dl 1.78 */
838 dl 1.90 final ForkJoinTask<?> poll() {
839 dl 1.243 for (;;) {
840     int b = base, s = top, d, al; ForkJoinTask<?>[] a;
841     if ((a = array) != null && (d = b - s) < 0 &&
842     (al = a.length) > 0) {
843 dl 1.256 int index = (al - 1) & b;
844 dl 1.243 ForkJoinTask<?> t = (ForkJoinTask<?>)
845 dl 1.316 QA.getAcquire(a, index);
846 dl 1.243 if (b++ == base) {
847     if (t != null) {
848 dl 1.314 if (QA.compareAndSet(a, index, t, null)) {
849 dl 1.243 base = b;
850     return t;
851     }
852 dl 1.200 }
853 dl 1.243 else if (d == -1)
854     break; // now empty
855 dl 1.78 }
856 dl 1.90 }
857 dl 1.243 else
858     break;
859 dl 1.78 }
860     return null;
861     }
862    
863     /**
864     * Takes next task, if one exists, in order specified by mode.
865     */
866     final ForkJoinTask<?> nextLocalTask() {
867 dl 1.300 return ((id & FIFO) != 0) ? poll() : pop();
868 dl 1.78 }
869    
870     /**
871     * Returns next task, if one exists, in order specified by mode.
872     */
873     final ForkJoinTask<?> peek() {
874 dl 1.292 int al; ForkJoinTask<?>[] a;
875 dl 1.243 return ((a = array) != null && (al = a.length) > 0) ?
876 dl 1.300 a[(al - 1) &
877     ((id & FIFO) != 0 ? base : top - 1)] : null;
878 dl 1.78 }
879    
880     /**
881     * Pops the given task only if it is at the current top.
882 jsr166 1.251 */
883 dl 1.243 final boolean tryUnpush(ForkJoinTask<?> task) {
884 dl 1.256 int b = base, s = top, al; ForkJoinTask<?>[] a;
885     if ((a = array) != null && b != s && (al = a.length) > 0) {
886     int index = (al - 1) & --s;
887 dl 1.314 if (QA.compareAndSet(a, index, task, null)) {
888 dl 1.243 top = s;
889 dl 1.314 VarHandle.releaseFence();
890 dl 1.224 return true;
891     }
892 dl 1.78 }
893     return false;
894     }
895    
896     /**
897 jsr166 1.84 * Removes and cancels all known tasks, ignoring any exceptions.
898 dl 1.78 */
899     final void cancelAll() {
900 dl 1.300 for (ForkJoinTask<?> t; (t = poll()) != null; )
901 dl 1.78 ForkJoinTask.cancelIgnoringExceptions(t);
902     }
903    
904 dl 1.104 // Specialized execution methods
905 dl 1.78
906     /**
907 dl 1.300 * Pops and executes up to limit consecutive tasks or until empty.
908     *
909     * @param limit max runs, or zero for no limit
910 dl 1.253 */
911 dl 1.300 final void localPopAndExec(int limit) {
912     for (;;) {
913 dl 1.253 int b = base, s = top, al; ForkJoinTask<?>[] a;
914     if ((a = array) != null && b != s && (al = a.length) > 0) {
915 dl 1.256 int index = (al - 1) & --s;
916 dl 1.253 ForkJoinTask<?> t = (ForkJoinTask<?>)
917 dl 1.314 QA.getAndSet(a, index, null);
918 dl 1.253 if (t != null) {
919     top = s;
920 dl 1.314 VarHandle.releaseFence();
921 dl 1.300 t.doExec();
922     if (limit != 0 && --limit == 0)
923 dl 1.253 break;
924     }
925     else
926     break;
927     }
928     else
929     break;
930     }
931     }
932    
933     /**
934 dl 1.300 * Polls and executes up to limit consecutive tasks or until empty.
935     *
936     * @param limit, or zero for no limit
937 dl 1.253 */
938 dl 1.300 final void localPollAndExec(int limit) {
939     for (int polls = 0;;) {
940     int b = base, s = top, d, al; ForkJoinTask<?>[] a;
941     if ((a = array) != null && (d = b - s) < 0 &&
942     (al = a.length) > 0) {
943 dl 1.256 int index = (al - 1) & b++;
944 dl 1.253 ForkJoinTask<?> t = (ForkJoinTask<?>)
945 dl 1.314 QA.getAndSet(a, index, null);
946 dl 1.253 if (t != null) {
947     base = b;
948 dl 1.255 t.doExec();
949 dl 1.300 if (limit != 0 && ++polls == limit)
950 dl 1.253 break;
951     }
952 dl 1.300 else if (d == -1)
953     break; // now empty
954     else
955     polls = 0; // stolen; reset
956 dl 1.253 }
957     else
958     break;
959     }
960     }
961    
962     /**
963 jsr166 1.302 * If present, removes task from queue and executes it.
964 dl 1.94 */
965 dl 1.300 final void tryRemoveAndExec(ForkJoinTask<?> task) {
966     ForkJoinTask<?>[] wa; int s, wal;
967     if (base - (s = top) < 0 && // traverse from top
968     (wa = array) != null && (wal = wa.length) > 0) {
969     for (int m = wal - 1, ns = s - 1, i = ns; ; --i) {
970     int index = i & m;
971     ForkJoinTask<?> t = (ForkJoinTask<?>)
972 dl 1.314 QA.get(wa, index);
973 dl 1.300 if (t == null)
974     break;
975     else if (t == task) {
976 dl 1.314 if (QA.compareAndSet(wa, index, t, null)) {
977 dl 1.300 top = ns; // safely shift down
978     for (int j = i; j != ns; ++j) {
979     ForkJoinTask<?> f;
980     int pindex = (j + 1) & m;
981 dl 1.314 f = (ForkJoinTask<?>)QA.get(wa, pindex);
982     QA.setVolatile(wa, pindex, null);
983 dl 1.300 int jindex = j & m;
984 dl 1.314 QA.setRelease(wa, jindex, f);
985 dl 1.300 }
986 dl 1.314 VarHandle.releaseFence();
987 dl 1.300 t.doExec();
988     }
989     break;
990     }
991 dl 1.262 }
992 dl 1.215 }
993     }
994    
995     /**
996 dl 1.300 * Tries to steal and run tasks within the target's
997 jsr166 1.302 * computation until done, not found, or limit exceeded.
998 dl 1.94 *
999 dl 1.300 * @param task root of CountedCompleter computation
1000     * @param limit max runs, or zero for no limit
1001     * @return task status on exit
1002     */
1003     final int localHelpCC(CountedCompleter<?> task, int limit) {
1004     int status = 0;
1005     if (task != null && (status = task.status) >= 0) {
1006     for (;;) {
1007     boolean help = false;
1008     int b = base, s = top, al; ForkJoinTask<?>[] a;
1009     if ((a = array) != null && b != s && (al = a.length) > 0) {
1010     int index = (al - 1) & (s - 1);
1011     ForkJoinTask<?> o = (ForkJoinTask<?>)
1012 dl 1.314 QA.get(a, index);
1013 dl 1.300 if (o instanceof CountedCompleter) {
1014     CountedCompleter<?> t = (CountedCompleter<?>)o;
1015     for (CountedCompleter<?> f = t;;) {
1016     if (f != task) {
1017     if ((f = f.completer) == null) // try parent
1018     break;
1019     }
1020     else {
1021 dl 1.314 if (QA.compareAndSet(a, index, t, null)) {
1022 dl 1.300 top = s - 1;
1023 dl 1.314 VarHandle.releaseFence();
1024 dl 1.300 t.doExec();
1025     help = true;
1026     }
1027     break;
1028 dl 1.200 }
1029     }
1030 dl 1.243 }
1031 dl 1.104 }
1032 dl 1.300 if ((status = task.status) < 0 || !help ||
1033     (limit != 0 && --limit == 0))
1034     break;
1035 dl 1.104 }
1036     }
1037 dl 1.300 return status;
1038     }
1039    
1040     // Operations on shared queues
1041    
1042     /**
1043 jsr166 1.302 * Tries to lock shared queue by CASing phase field.
1044 dl 1.300 */
1045     final boolean tryLockSharedQueue() {
1046 dl 1.314 return PHASE.compareAndSet(this, 0, QLOCK);
1047 dl 1.104 }
1048    
1049     /**
1050 dl 1.300 * Shared version of tryUnpush.
1051 dl 1.78 */
1052 dl 1.300 final boolean trySharedUnpush(ForkJoinTask<?> task) {
1053     boolean popped = false;
1054     int s = top - 1, al; ForkJoinTask<?>[] a;
1055     if ((a = array) != null && (al = a.length) > 0) {
1056     int index = (al - 1) & s;
1057 dl 1.314 ForkJoinTask<?> t = (ForkJoinTask<?>) QA.get(a, index);
1058 dl 1.300 if (t == task &&
1059 dl 1.314 PHASE.compareAndSet(this, 0, QLOCK)) {
1060 dl 1.300 if (top == s + 1 && array == a &&
1061 dl 1.314 QA.compareAndSet(a, index, task, null)) {
1062 dl 1.300 popped = true;
1063     top = s;
1064 dl 1.178 }
1065 dl 1.314 PHASE.setRelease(this, 0);
1066 dl 1.94 }
1067 dl 1.78 }
1068 dl 1.300 return popped;
1069 dl 1.78 }
1070    
1071     /**
1072 dl 1.300 * Shared version of localHelpCC.
1073     */
1074     final int sharedHelpCC(CountedCompleter<?> task, int limit) {
1075     int status = 0;
1076     if (task != null && (status = task.status) >= 0) {
1077     for (;;) {
1078     boolean help = false;
1079     int b = base, s = top, al; ForkJoinTask<?>[] a;
1080     if ((a = array) != null && b != s && (al = a.length) > 0) {
1081     int index = (al - 1) & (s - 1);
1082     ForkJoinTask<?> o = (ForkJoinTask<?>)
1083 dl 1.314 QA.get(a, index);
1084 dl 1.300 if (o instanceof CountedCompleter) {
1085     CountedCompleter<?> t = (CountedCompleter<?>)o;
1086     for (CountedCompleter<?> f = t;;) {
1087     if (f != task) {
1088     if ((f = f.completer) == null)
1089     break;
1090     }
1091     else {
1092 dl 1.314 if (PHASE.compareAndSet(this, 0, QLOCK)) {
1093 dl 1.300 if (top == s && array == a &&
1094 dl 1.314 QA.compareAndSet(a, index, t, null)) {
1095 dl 1.300 help = true;
1096     top = s - 1;
1097     }
1098 dl 1.314 PHASE.setRelease(this, 0);
1099 dl 1.300 if (help)
1100     t.doExec();
1101     }
1102     break;
1103     }
1104 dl 1.243 }
1105 dl 1.200 }
1106 dl 1.178 }
1107 dl 1.300 if ((status = task.status) < 0 || !help ||
1108     (limit != 0 && --limit == 0))
1109     break;
1110 dl 1.178 }
1111 dl 1.78 }
1112 dl 1.300 return status;
1113 dl 1.78 }
1114    
1115     /**
1116 dl 1.86 * Returns true if owned and not known to be blocked.
1117     */
1118     final boolean isApparentlyUnblocked() {
1119     Thread wt; Thread.State s;
1120 dl 1.300 return ((wt = owner) != null &&
1121 dl 1.86 (s = wt.getState()) != Thread.State.BLOCKED &&
1122     s != Thread.State.WAITING &&
1123     s != Thread.State.TIMED_WAITING);
1124     }
1125    
1126 dl 1.314 // VarHandle mechanics.
1127     private static final VarHandle PHASE;
1128 dl 1.78 static {
1129     try {
1130 dl 1.314 MethodHandles.Lookup l = MethodHandles.lookup();
1131     PHASE = l.findVarHandle(WorkQueue.class, "phase", int.class);
1132 jsr166 1.231 } catch (ReflectiveOperationException e) {
1133 dl 1.78 throw new Error(e);
1134     }
1135     }
1136     }
1137 dl 1.14
1138 dl 1.112 // static fields (initialized in static initializer below)
1139    
1140     /**
1141     * Creates a new ForkJoinWorkerThread. This factory is used unless
1142     * overridden in ForkJoinPool constructors.
1143     */
1144     public static final ForkJoinWorkerThreadFactory
1145     defaultForkJoinWorkerThreadFactory;
1146    
1147 jsr166 1.1 /**
1148 dl 1.115 * Permission required for callers of methods that may start or
1149 dl 1.300 * kill threads.
1150 dl 1.115 */
1151 jsr166 1.276 static final RuntimePermission modifyThreadPermission;
1152 dl 1.115
1153     /**
1154 dl 1.101 * Common (static) pool. Non-null for public use unless a static
1155 dl 1.105 * construction exception, but internal usages null-check on use
1156     * to paranoically avoid potential initialization circularities
1157     * as well as to simplify generated code.
1158 dl 1.101 */
1159 dl 1.134 static final ForkJoinPool common;
1160 dl 1.101
1161     /**
1162 dl 1.160 * Common pool parallelism. To allow simpler use and management
1163     * when common pool threads are disabled, we allow the underlying
1164 dl 1.185 * common.parallelism field to be zero, but in that case still report
1165 dl 1.160 * parallelism as 1 to reflect resulting caller-runs mechanics.
1166 dl 1.90 */
1167 jsr166 1.274 static final int COMMON_PARALLELISM;
1168 dl 1.90
1169     /**
1170 dl 1.208 * Limit on spare thread construction in tryCompensate.
1171     */
1172 jsr166 1.273 private static final int COMMON_MAX_SPARES;
1173 dl 1.208
1174     /**
1175 dl 1.105 * Sequence number for creating workerNamePrefix.
1176 dl 1.86 */
1177 dl 1.105 private static int poolNumberSequence;
1178 dl 1.86
1179 jsr166 1.1 /**
1180 jsr166 1.132 * Returns the next sequence number. We don't expect this to
1181     * ever contend, so use simple builtin sync.
1182 dl 1.83 */
1183 dl 1.105 private static final synchronized int nextPoolId() {
1184     return ++poolNumberSequence;
1185     }
1186 dl 1.86
1187 dl 1.200 // static configuration constants
1188 dl 1.86
1189     /**
1190 dl 1.300 * Default idle timeout value (in milliseconds) for the thread
1191     * triggering quiescence to park waiting for new work
1192 dl 1.86 */
1193 jsr166 1.326 private static final long DEFAULT_KEEPALIVE = 60_000L;
1194 dl 1.86
1195     /**
1196 dl 1.300 * Undershoot tolerance for idle timeouts
1197 dl 1.120 */
1198 dl 1.300 private static final long TIMEOUT_SLOP = 20L;
1199 dl 1.200
1200     /**
1201 jsr166 1.273 * The default value for COMMON_MAX_SPARES. Overridable using the
1202     * "java.util.concurrent.ForkJoinPool.common.maximumSpares" system
1203     * property. The default value is far in excess of normal
1204     * requirements, but also far short of MAX_CAP and typical OS
1205     * thread limits, so allows JVMs to catch misuse/abuse before
1206     * running out of resources needed to do so.
1207 dl 1.200 */
1208 dl 1.208 private static final int DEFAULT_COMMON_MAX_SPARES = 256;
1209 dl 1.120
1210     /**
1211 dl 1.90 * Increment for seed generators. See class ThreadLocal for
1212     * explanation.
1213     */
1214 dl 1.193 private static final int SEED_INCREMENT = 0x9e3779b9;
1215 dl 1.83
1216 jsr166 1.163 /*
1217 dl 1.200 * Bits and masks for field ctl, packed with 4 16 bit subfields:
1218 dl 1.300 * RC: Number of released (unqueued) workers minus target parallelism
1219 dl 1.200 * TC: Number of total workers minus target parallelism
1220     * SS: version count and status of top waiting thread
1221     * ID: poolIndex of top of Treiber stack of waiters
1222     *
1223     * When convenient, we can extract the lower 32 stack top bits
1224     * (including version bits) as sp=(int)ctl. The offsets of counts
1225     * by the target parallelism and the positionings of fields makes
1226     * it possible to perform the most common checks via sign tests of
1227 dl 1.300 * fields: When ac is negative, there are not enough unqueued
1228 dl 1.200 * workers, when tc is negative, there are not enough total
1229     * workers. When sp is non-zero, there are waiting workers. To
1230     * deal with possibly negative fields, we use casts in and out of
1231     * "short" and/or signed shifts to maintain signedness.
1232     *
1233 dl 1.300 * Because it occupies uppermost bits, we can add one release count
1234     * using getAndAddLong of RC_UNIT, rather than CAS, when returning
1235 dl 1.200 * from a blocked join. Other updates entail multiple subfields
1236     * and masking, requiring CAS.
1237 dl 1.300 *
1238     * The limits packed in field "bounds" are also offset by the
1239     * parallelism level to make them comparable to the ctl rc and tc
1240     * fields.
1241 dl 1.200 */
1242    
1243     // Lower and upper word masks
1244     private static final long SP_MASK = 0xffffffffL;
1245     private static final long UC_MASK = ~SP_MASK;
1246 dl 1.86
1247 dl 1.300 // Release counts
1248     private static final int RC_SHIFT = 48;
1249     private static final long RC_UNIT = 0x0001L << RC_SHIFT;
1250     private static final long RC_MASK = 0xffffL << RC_SHIFT;
1251 dl 1.200
1252     // Total counts
1253 dl 1.86 private static final int TC_SHIFT = 32;
1254 dl 1.200 private static final long TC_UNIT = 0x0001L << TC_SHIFT;
1255     private static final long TC_MASK = 0xffffL << TC_SHIFT;
1256     private static final long ADD_WORKER = 0x0001L << (TC_SHIFT + 15); // sign
1257    
1258 dl 1.300 // Instance fields
1259 dl 1.86
1260 dl 1.300 volatile long stealCount; // collects worker nsteals
1261     final long keepAlive; // milliseconds before dropping if idle
1262     int indexSeed; // next worker index
1263     final int bounds; // min, max threads packed as shorts
1264     volatile int mode; // parallelism, runstate, queue mode
1265     WorkQueue[] workQueues; // main registry
1266     final String workerNamePrefix; // for worker thread string; sync lock
1267 dl 1.112 final ForkJoinWorkerThreadFactory factory;
1268 dl 1.200 final UncaughtExceptionHandler ueh; // per-worker UEH
1269 dl 1.307 final Predicate<? super ForkJoinPool> saturate;
1270 dl 1.101
1271 dl 1.308 @jdk.internal.vm.annotation.Contended("fjpctl") // segregate
1272     volatile long ctl; // main pool control
1273 jsr166 1.309
1274 dl 1.200 // Creating, registering and deregistering workers
1275    
1276 dl 1.112 /**
1277 dl 1.200 * Tries to construct and start one worker. Assumes that total
1278     * count has already been incremented as a reservation. Invokes
1279     * deregisterWorker on any failure.
1280     *
1281     * @return true if successful
1282 dl 1.115 */
1283 dl 1.300 private boolean createWorker() {
1284 dl 1.200 ForkJoinWorkerThreadFactory fac = factory;
1285     Throwable ex = null;
1286     ForkJoinWorkerThread wt = null;
1287     try {
1288     if (fac != null && (wt = fac.newThread(this)) != null) {
1289     wt.start();
1290     return true;
1291 dl 1.115 }
1292 dl 1.200 } catch (Throwable rex) {
1293     ex = rex;
1294 dl 1.112 }
1295 dl 1.200 deregisterWorker(wt, ex);
1296     return false;
1297 dl 1.112 }
1298    
1299 dl 1.200 /**
1300     * Tries to add one worker, incrementing ctl counts before doing
1301     * so, relying on createWorker to back out on failure.
1302     *
1303     * @param c incoming ctl value, with total count negative and no
1304     * idle workers. On CAS failure, c is refreshed and retried if
1305 jsr166 1.202 * this holds (otherwise, a new worker is not needed).
1306 dl 1.200 */
1307     private void tryAddWorker(long c) {
1308     do {
1309 dl 1.300 long nc = ((RC_MASK & (c + RC_UNIT)) |
1310 dl 1.200 (TC_MASK & (c + TC_UNIT)));
1311 dl 1.314 if (ctl == c && CTL.compareAndSet(this, c, nc)) {
1312 dl 1.300 createWorker();
1313 dl 1.243 break;
1314 dl 1.200 }
1315     } while (((c = ctl) & ADD_WORKER) != 0L && (int)c == 0);
1316     }
1317 dl 1.112
1318     /**
1319 dl 1.200 * Callback from ForkJoinWorkerThread constructor to establish and
1320     * record its WorkQueue.
1321 dl 1.112 *
1322     * @param wt the worker thread
1323 dl 1.115 * @return the worker's queue
1324 dl 1.112 */
1325 dl 1.115 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1326 dl 1.200 UncaughtExceptionHandler handler;
1327 dl 1.300 wt.setDaemon(true); // configure thread
1328 dl 1.115 if ((handler = ueh) != null)
1329     wt.setUncaughtExceptionHandler(handler);
1330 dl 1.200 WorkQueue w = new WorkQueue(this, wt);
1331 dl 1.300 int tid = 0; // for thread name
1332     int fifo = mode & FIFO;
1333     String prefix = workerNamePrefix;
1334     if (prefix != null) {
1335 jsr166 1.301 synchronized (prefix) {
1336 dl 1.300 WorkQueue[] ws = workQueues; int n;
1337     int s = indexSeed += SEED_INCREMENT;
1338     if (ws != null && (n = ws.length) > 1) {
1339     int m = n - 1;
1340     tid = s & m;
1341     int i = m & ((s << 1) | 1); // odd-numbered indices
1342     for (int probes = n >>> 1;;) { // find empty slot
1343     WorkQueue q;
1344     if ((q = ws[i]) == null || q.phase == QUIET)
1345     break;
1346     else if (--probes == 0) {
1347     i = n | 1; // resize below
1348     break;
1349     }
1350     else
1351     i = (i + 2) & m;
1352     }
1353    
1354     int id = i | fifo | (s & ~(SMASK | FIFO | DORMANT));
1355     w.phase = w.id = id; // now publishable
1356    
1357     if (i < n)
1358     ws[i] = w;
1359     else { // expand array
1360     int an = n << 1;
1361     WorkQueue[] as = new WorkQueue[an];
1362     as[i] = w;
1363     int am = an - 1;
1364     for (int j = 0; j < n; ++j) {
1365     WorkQueue v; // copy external queue
1366     if ((v = ws[j]) != null) // position may change
1367     as[v.id & am & SQMASK] = v;
1368     if (++j >= n)
1369     break;
1370     as[j] = ws[j]; // copy worker
1371 dl 1.94 }
1372 dl 1.300 workQueues = as;
1373 dl 1.94 }
1374     }
1375 dl 1.78 }
1376 dl 1.300 wt.setName(prefix.concat(Integer.toString(tid)));
1377 dl 1.78 }
1378 dl 1.115 return w;
1379 dl 1.78 }
1380 dl 1.19
1381 jsr166 1.1 /**
1382 dl 1.86 * Final callback from terminating worker, as well as upon failure
1383 dl 1.105 * to construct or start a worker. Removes record of worker from
1384     * array, and adjusts counts. If pool is shutting down, tries to
1385     * complete termination.
1386 dl 1.78 *
1387 jsr166 1.151 * @param wt the worker thread, or null if construction failed
1388 dl 1.78 * @param ex the exception causing failure, or null if none
1389 dl 1.45 */
1390 dl 1.78 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1391     WorkQueue w = null;
1392 dl 1.300 int phase = 0;
1393 dl 1.78 if (wt != null && (w = wt.workQueue) != null) {
1394 dl 1.300 Object lock = workerNamePrefix;
1395     long ns = (long)w.nsteals & 0xffffffffL;
1396     int idx = w.id & SMASK;
1397     if (lock != null) {
1398     WorkQueue[] ws; // remove index from array
1399 jsr166 1.301 synchronized (lock) {
1400 dl 1.243 if ((ws = workQueues) != null && ws.length > idx &&
1401     ws[idx] == w)
1402     ws[idx] = null;
1403 dl 1.300 stealCount += ns;
1404 dl 1.243 }
1405     }
1406 dl 1.300 phase = w.phase;
1407 dl 1.243 }
1408 dl 1.300 if (phase != QUIET) { // else pre-adjusted
1409 dl 1.243 long c; // decrement counts
1410 jsr166 1.325 do {} while (!CTL.weakCompareAndSet
1411 dl 1.314 (this, c = ctl, ((RC_MASK & (c - RC_UNIT)) |
1412     (TC_MASK & (c - TC_UNIT)) |
1413     (SP_MASK & c))));
1414 dl 1.243 }
1415 dl 1.300 if (w != null)
1416 dl 1.200 w.cancelAll(); // cancel remaining tasks
1417 dl 1.300
1418     if (!tryTerminate(false, false) && // possibly replace worker
1419     w != null && w.array != null) // avoid repeated failures
1420     signalWork();
1421    
1422 dl 1.200 if (ex == null) // help clean on way out
1423 dl 1.120 ForkJoinTask.helpExpungeStaleExceptions();
1424 dl 1.200 else // rethrow
1425 dl 1.104 ForkJoinTask.rethrow(ex);
1426 dl 1.78 }
1427 dl 1.52
1428 dl 1.19 /**
1429 dl 1.300 * Tries to create or release a worker if too few are running.
1430 dl 1.105 */
1431 dl 1.253 final void signalWork() {
1432 dl 1.243 for (;;) {
1433 dl 1.300 long c; int sp; WorkQueue[] ws; int i; WorkQueue v;
1434 dl 1.243 if ((c = ctl) >= 0L) // enough workers
1435     break;
1436     else if ((sp = (int)c) == 0) { // no idle workers
1437     if ((c & ADD_WORKER) != 0L) // too few workers
1438 dl 1.200 tryAddWorker(c);
1439     break;
1440     }
1441 dl 1.243 else if ((ws = workQueues) == null)
1442     break; // unstarted/terminated
1443     else if (ws.length <= (i = sp & SMASK))
1444     break; // terminated
1445     else if ((v = ws[i]) == null)
1446     break; // terminating
1447     else {
1448 dl 1.300 int np = sp & ~UNSIGNALLED;
1449     int vp = v.phase;
1450     long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + RC_UNIT));
1451     Thread vt = v.owner;
1452 dl 1.314 if (sp == vp && CTL.compareAndSet(this, c, nc)) {
1453 dl 1.300 v.phase = np;
1454     if (v.source < 0)
1455     LockSupport.unpark(vt);
1456 dl 1.243 break;
1457     }
1458 dl 1.174 }
1459 dl 1.52 }
1460 dl 1.14 }
1461    
1462 dl 1.200 /**
1463 dl 1.300 * Tries to decrement counts (sometimes implicitly) and possibly
1464     * arrange for a compensating worker in preparation for blocking:
1465     * If not all core workers yet exist, creates one, else if any are
1466     * unreleased (possibly including caller) releases one, else if
1467     * fewer than the minimum allowed number of workers running,
1468     * checks to see that they are all active, and if so creates an
1469     * extra worker unless over maximum limit and policy is to
1470     * saturate. Most of these steps can fail due to interference, in
1471     * which case 0 is returned so caller will retry. A negative
1472     * return value indicates that the caller doesn't need to
1473     * re-adjust counts when later unblocked.
1474 dl 1.243 *
1475 dl 1.300 * @return 1: block then adjust, -1: block without adjust, 0 : retry
1476 dl 1.243 */
1477 dl 1.300 private int tryCompensate(WorkQueue w) {
1478     int t, n, sp;
1479     long c = ctl;
1480     WorkQueue[] ws = workQueues;
1481 dl 1.310 if ((t = (short)(c >>> TC_SHIFT)) >= 0) {
1482 dl 1.300 if (ws == null || (n = ws.length) <= 0 || w == null)
1483     return 0; // disabled
1484     else if ((sp = (int)c) != 0) { // replace or release
1485     WorkQueue v = ws[sp & (n - 1)];
1486     int wp = w.phase;
1487     long uc = UC_MASK & ((wp < 0) ? c + RC_UNIT : c);
1488     int np = sp & ~UNSIGNALLED;
1489     if (v != null) {
1490     int vp = v.phase;
1491     Thread vt = v.owner;
1492     long nc = ((long)v.stackPred & SP_MASK) | uc;
1493 dl 1.314 if (vp == sp && CTL.compareAndSet(this, c, nc)) {
1494 dl 1.300 v.phase = np;
1495     if (v.source < 0)
1496     LockSupport.unpark(vt);
1497     return (wp < 0) ? -1 : 1;
1498     }
1499     }
1500     return 0;
1501     }
1502     else if ((int)(c >> RC_SHIFT) - // reduce parallelism
1503     (short)(bounds & SMASK) > 0) {
1504     long nc = ((RC_MASK & (c - RC_UNIT)) | (~RC_MASK & c));
1505 dl 1.314 return CTL.compareAndSet(this, c, nc) ? 1 : 0;
1506 dl 1.300 }
1507     else { // validate
1508     int md = mode, pc = md & SMASK, tc = pc + t, bc = 0;
1509     boolean unstable = false;
1510     for (int i = 1; i < n; i += 2) {
1511     WorkQueue q; Thread wt; Thread.State ts;
1512     if ((q = ws[i]) != null) {
1513     if (q.source == 0) {
1514     unstable = true;
1515     break;
1516     }
1517     else {
1518     --tc;
1519     if ((wt = q.owner) != null &&
1520     ((ts = wt.getState()) == Thread.State.BLOCKED ||
1521     ts == Thread.State.WAITING))
1522     ++bc; // worker is blocking
1523     }
1524 dl 1.243 }
1525     }
1526 dl 1.300 if (unstable || tc != 0 || ctl != c)
1527     return 0; // inconsistent
1528     else if (t + pc >= MAX_CAP || t >= (bounds >>> SWIDTH)) {
1529 dl 1.307 Predicate<? super ForkJoinPool> sat;
1530     if ((sat = saturate) != null && sat.test(this))
1531 dl 1.300 return -1;
1532     else if (bc < pc) { // lagging
1533     Thread.yield(); // for retry spins
1534     return 0;
1535 dl 1.243 }
1536     else
1537 dl 1.300 throw new RejectedExecutionException(
1538     "Thread limit exceeded replacing blocked worker");
1539 dl 1.200 }
1540 dl 1.177 }
1541 dl 1.243 }
1542 dl 1.300
1543     long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK); // expand pool
1544 dl 1.314 return CTL.compareAndSet(this, c, nc) && createWorker() ? 1 : 0;
1545 dl 1.243 }
1546    
1547     /**
1548     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1549 dl 1.300 * See above for explanation.
1550 dl 1.243 */
1551     final void runWorker(WorkQueue w) {
1552 dl 1.300 WorkQueue[] ws;
1553 dl 1.243 w.growArray(); // allocate queue
1554 dl 1.300 int r = w.id ^ ThreadLocalRandom.nextSecondarySeed();
1555     if (r == 0) // initial nonzero seed
1556     r = 1;
1557     int lastSignalId = 0; // avoid unneeded signals
1558     while ((ws = workQueues) != null) {
1559     boolean nonempty = false; // scan
1560     for (int n = ws.length, j = n, m = n - 1; j > 0; --j) {
1561     WorkQueue q; int i, b, al; ForkJoinTask<?>[] a;
1562     if ((i = r & m) >= 0 && i < n && // always true
1563     (q = ws[i]) != null && (b = q.base) - q.top < 0 &&
1564 dl 1.243 (a = q.array) != null && (al = a.length) > 0) {
1565 dl 1.300 int qid = q.id; // (never zero)
1566 dl 1.256 int index = (al - 1) & b;
1567 dl 1.243 ForkJoinTask<?> t = (ForkJoinTask<?>)
1568 dl 1.316 QA.getAcquire(a, index);
1569 dl 1.300 if (t != null && b++ == q.base &&
1570 dl 1.314 QA.compareAndSet(a, index, t, null)) {
1571 dl 1.300 if ((q.base = b) - q.top < 0 && qid != lastSignalId)
1572     signalWork(); // propagate signal
1573     w.source = lastSignalId = qid;
1574     t.doExec();
1575     if ((w.id & FIFO) != 0) // run remaining locals
1576     w.localPollAndExec(POLL_LIMIT);
1577     else
1578     w.localPopAndExec(POLL_LIMIT);
1579     ForkJoinWorkerThread thread = w.owner;
1580     ++w.nsteals;
1581     w.source = 0; // now idle
1582     if (thread != null)
1583     thread.afterTopLevelExec();
1584 dl 1.243 }
1585 dl 1.300 nonempty = true;
1586 dl 1.178 }
1587 dl 1.300 else if (nonempty)
1588 dl 1.243 break;
1589 dl 1.300 else
1590     ++r;
1591 dl 1.120 }
1592 dl 1.178
1593 dl 1.300 if (nonempty) { // move (xorshift)
1594     r ^= r << 13; r ^= r >>> 17; r ^= r << 5;
1595     }
1596     else {
1597     int phase;
1598     lastSignalId = 0; // clear for next scan
1599     if ((phase = w.phase) >= 0) { // enqueue
1600     int np = w.phase = (phase + SS_SEQ) | UNSIGNALLED;
1601     long c, nc;
1602     do {
1603     w.stackPred = (int)(c = ctl);
1604     nc = ((c - RC_UNIT) & UC_MASK) | (SP_MASK & np);
1605 jsr166 1.325 } while (!CTL.weakCompareAndSet(this, c, nc));
1606 dl 1.300 }
1607     else { // already queued
1608     int pred = w.stackPred;
1609     w.source = DORMANT; // enable signal
1610     for (int steps = 0;;) {
1611     int md, rc; long c;
1612     if (w.phase >= 0) {
1613     w.source = 0;
1614     break;
1615     }
1616     else if ((md = mode) < 0) // shutting down
1617     return;
1618     else if ((rc = ((md & SMASK) + // possibly quiescent
1619     (int)((c = ctl) >> RC_SHIFT))) <= 0 &&
1620     (md & SHUTDOWN) != 0 &&
1621     tryTerminate(false, false))
1622     return; // help terminate
1623     else if ((++steps & 1) == 0)
1624     Thread.interrupted(); // clear between parks
1625     else if (rc <= 0 && pred != 0 && phase == (int)c) {
1626     long d = keepAlive + System.currentTimeMillis();
1627     LockSupport.parkUntil(this, d);
1628     if (ctl == c &&
1629     d - System.currentTimeMillis() <= TIMEOUT_SLOP) {
1630     long nc = ((UC_MASK & (c - TC_UNIT)) |
1631     (SP_MASK & pred));
1632 dl 1.314 if (CTL.compareAndSet(this, c, nc)) {
1633 dl 1.300 w.phase = QUIET;
1634     return; // drop on timeout
1635     }
1636     }
1637     }
1638     else
1639     LockSupport.park(this);
1640     }
1641     }
1642     }
1643     }
1644     }
1645 dl 1.200
1646 dl 1.305 /**
1647     * Helps and/or blocks until the given task is done or timeout.
1648     * First tries locally helping, then scans other queues for a task
1649     * produced by one of w's stealers; compensating and blocking if
1650     * none are found (rescanning if tryCompensate fails).
1651     *
1652     * @param w caller
1653     * @param task the task
1654     * @param deadline for timed waits, if nonzero
1655     * @return task status on exit
1656     */
1657 dl 1.300 final int awaitJoin(WorkQueue w, ForkJoinTask<?> task, long deadline) {
1658     int s = 0;
1659     if (w != null && task != null &&
1660     (!(task instanceof CountedCompleter) ||
1661     (s = w.localHelpCC((CountedCompleter<?>)task, 0)) >= 0)) {
1662     w.tryRemoveAndExec(task);
1663     int src = w.source, id = w.id;
1664     s = task.status;
1665     while (s >= 0) {
1666     WorkQueue[] ws;
1667     boolean nonempty = false;
1668     int r = ThreadLocalRandom.nextSecondarySeed() | 1; // odd indices
1669     if ((ws = workQueues) != null) { // scan for matching id
1670     for (int n = ws.length, m = n - 1, j = -n; j < n; j += 2) {
1671     WorkQueue q; int i, b, al; ForkJoinTask<?>[] a;
1672     if ((i = (r + j) & m) >= 0 && i < n &&
1673     (q = ws[i]) != null && q.source == id &&
1674     (b = q.base) - q.top < 0 &&
1675     (a = q.array) != null && (al = a.length) > 0) {
1676     int qid = q.id;
1677     int index = (al - 1) & b;
1678     ForkJoinTask<?> t = (ForkJoinTask<?>)
1679 dl 1.316 QA.getAcquire(a, index);
1680 dl 1.300 if (t != null && b++ == q.base && id == q.source &&
1681 dl 1.314 QA.compareAndSet(a, index, t, null)) {
1682 dl 1.300 q.base = b;
1683     w.source = qid;
1684     t.doExec();
1685     w.source = src;
1686     }
1687     nonempty = true;
1688 dl 1.200 break;
1689 dl 1.300 }
1690 dl 1.200 }
1691 dl 1.300 }
1692     if ((s = task.status) < 0)
1693     break;
1694     else if (!nonempty) {
1695     long ms, ns; int block;
1696     if (deadline == 0L)
1697     ms = 0L; // untimed
1698     else if ((ns = deadline - System.nanoTime()) <= 0L)
1699     break; // timeout
1700     else if ((ms = TimeUnit.NANOSECONDS.toMillis(ns)) <= 0L)
1701     ms = 1L; // avoid 0 for timed wait
1702     if ((block = tryCompensate(w)) != 0) {
1703     task.internalWait(ms);
1704 dl 1.314 CTL.getAndAdd(this, (block > 0) ? RC_UNIT : 0L);
1705 dl 1.200 }
1706 dl 1.300 s = task.status;
1707 dl 1.200 }
1708 dl 1.178 }
1709     }
1710 dl 1.200 return s;
1711 dl 1.120 }
1712    
1713     /**
1714 dl 1.300 * Runs tasks until {@code isQuiescent()}. Rather than blocking
1715     * when tasks cannot be found, rescans until all others cannot
1716     * find tasks either.
1717 dl 1.78 */
1718 dl 1.300 final void helpQuiescePool(WorkQueue w) {
1719     int prevSrc = w.source, fifo = w.id & FIFO;
1720     for (int source = prevSrc, released = -1;;) { // -1 until known
1721     WorkQueue[] ws;
1722     if (fifo != 0)
1723     w.localPollAndExec(0);
1724     else
1725     w.localPopAndExec(0);
1726     if (released == -1 && w.phase >= 0)
1727     released = 1;
1728     boolean quiet = true, empty = true;
1729     int r = ThreadLocalRandom.nextSecondarySeed();
1730     if ((ws = workQueues) != null) {
1731     for (int n = ws.length, j = n, m = n - 1; j > 0; --j) {
1732     WorkQueue q; int i, b, al; ForkJoinTask<?>[] a;
1733     if ((i = (r - j) & m) >= 0 && i < n && (q = ws[i]) != null) {
1734     if ((b = q.base) - q.top < 0 &&
1735     (a = q.array) != null && (al = a.length) > 0) {
1736     int qid = q.id;
1737     if (released == 0) { // increment
1738     released = 1;
1739 dl 1.314 CTL.getAndAdd(this, RC_UNIT);
1740 dl 1.95 }
1741 dl 1.256 int index = (al - 1) & b;
1742 dl 1.300 ForkJoinTask<?> t = (ForkJoinTask<?>)
1743 dl 1.316 QA.getAcquire(a, index);
1744 dl 1.300 if (t != null && b++ == q.base &&
1745 dl 1.314 QA.compareAndSet(a, index, t, null)) {
1746 dl 1.300 q.base = b;
1747     w.source = source = q.id;
1748     t.doExec();
1749     w.source = source = prevSrc;
1750 dl 1.243 }
1751 dl 1.300 quiet = empty = false;
1752 dl 1.200 break;
1753 dl 1.95 }
1754 dl 1.300 else if ((q.source & QUIET) == 0)
1755     quiet = false;
1756 dl 1.52 }
1757 dl 1.19 }
1758 dl 1.243 }
1759 dl 1.300 if (quiet) {
1760     if (released == 0)
1761 dl 1.314 CTL.getAndAdd(this, RC_UNIT);
1762 dl 1.300 w.source = prevSrc;
1763     break;
1764     }
1765     else if (empty) {
1766     if (source != QUIET)
1767     w.source = source = QUIET;
1768     if (released == 1) { // decrement
1769     released = 0;
1770 dl 1.314 CTL.getAndAdd(this, RC_MASK & -RC_UNIT);
1771 dl 1.300 }
1772     }
1773 dl 1.14 }
1774 dl 1.22 }
1775    
1776 dl 1.52 /**
1777 dl 1.300 * Scans for and returns a polled task, if available.
1778     * Used only for untracked polls.
1779 dl 1.105 *
1780 dl 1.300 * @param submissionsOnly if true, only scan submission queues
1781 dl 1.19 */
1782 dl 1.300 private ForkJoinTask<?> pollScan(boolean submissionsOnly) {
1783     WorkQueue[] ws; int n;
1784     rescan: while ((mode & STOP) == 0 && (ws = workQueues) != null &&
1785     (n = ws.length) > 0) {
1786     int m = n - 1;
1787     int r = ThreadLocalRandom.nextSecondarySeed();
1788     int h = r >>> 16;
1789     int origin, step;
1790     if (submissionsOnly) {
1791     origin = (r & ~1) & m; // even indices and steps
1792     step = (h & ~1) | 2;
1793     }
1794     else {
1795     origin = r & m;
1796     step = h | 1;
1797     }
1798     for (int k = origin, oldSum = 0, checkSum = 0;;) {
1799     WorkQueue q; int b, al; ForkJoinTask<?>[] a;
1800     if ((q = ws[k]) != null) {
1801     checkSum += b = q.base;
1802     if (b - q.top < 0 &&
1803     (a = q.array) != null && (al = a.length) > 0) {
1804     int index = (al - 1) & b;
1805     ForkJoinTask<?> t = (ForkJoinTask<?>)
1806 dl 1.316 QA.getAcquire(a, index);
1807 dl 1.300 if (t != null && b++ == q.base &&
1808 dl 1.314 QA.compareAndSet(a, index, t, null)) {
1809 dl 1.300 q.base = b;
1810     return t;
1811     }
1812     else
1813     break; // restart
1814     }
1815     }
1816     if ((k = (k + step) & m) == origin) {
1817     if (oldSum == (oldSum = checkSum))
1818     break rescan;
1819     checkSum = 0;
1820 dl 1.178 }
1821 dl 1.52 }
1822 dl 1.90 }
1823 dl 1.300 return null;
1824     }
1825    
1826     /**
1827     * Gets and removes a local or stolen task for the given worker.
1828     *
1829     * @return a task, if available
1830     */
1831     final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
1832     ForkJoinTask<?> t;
1833     if (w != null &&
1834     (t = (w.id & FIFO) != 0 ? w.poll() : w.pop()) != null)
1835     return t;
1836     else
1837     return pollScan(false);
1838 dl 1.90 }
1839    
1840 dl 1.300 // External operations
1841    
1842 dl 1.90 /**
1843 dl 1.300 * Adds the given task to a submission queue at submitter's
1844     * current queue, creating one if null or contended.
1845 dl 1.90 *
1846 dl 1.300 * @param task the task. Caller must ensure non-null.
1847 dl 1.90 */
1848 dl 1.300 final void externalPush(ForkJoinTask<?> task) {
1849     int r; // initialize caller's probe
1850     if ((r = ThreadLocalRandom.getProbe()) == 0) {
1851     ThreadLocalRandom.localInit();
1852     r = ThreadLocalRandom.getProbe();
1853     }
1854     for (;;) {
1855     int md = mode, n;
1856     WorkQueue[] ws = workQueues;
1857     if ((md & SHUTDOWN) != 0 || ws == null || (n = ws.length) <= 0)
1858     throw new RejectedExecutionException();
1859     else {
1860     WorkQueue q;
1861     boolean push = false, grow = false;
1862     if ((q = ws[(n - 1) & r & SQMASK]) == null) {
1863     Object lock = workerNamePrefix;
1864     int qid = (r | QUIET) & ~(FIFO | OWNED);
1865     q = new WorkQueue(this, null);
1866     q.id = qid;
1867     q.source = QUIET;
1868     q.phase = QLOCK; // lock queue
1869     if (lock != null) {
1870 jsr166 1.301 synchronized (lock) { // lock pool to install
1871 dl 1.300 int i;
1872     if ((ws = workQueues) != null &&
1873     (n = ws.length) > 0 &&
1874     ws[i = qid & (n - 1) & SQMASK] == null) {
1875     ws[i] = q;
1876     push = grow = true;
1877     }
1878     }
1879     }
1880     }
1881     else if (q.tryLockSharedQueue()) {
1882     int b = q.base, s = q.top, al, d; ForkJoinTask<?>[] a;
1883     if ((a = q.array) != null && (al = a.length) > 0 &&
1884     al - 1 + (d = b - s) > 0) {
1885     a[(al - 1) & s] = task;
1886     q.top = s + 1; // relaxed writes OK here
1887     q.phase = 0;
1888 dl 1.311 if (d < 0 && q.base - s < -1)
1889 dl 1.300 break; // no signal needed
1890     }
1891 dl 1.243 else
1892 dl 1.300 grow = true;
1893     push = true;
1894     }
1895     if (push) {
1896     if (grow) {
1897     try {
1898     q.growArray();
1899     int s = q.top, al; ForkJoinTask<?>[] a;
1900     if ((a = q.array) != null && (al = a.length) > 0) {
1901     a[(al - 1) & s] = task;
1902     q.top = s + 1;
1903     }
1904     } finally {
1905     q.phase = 0;
1906     }
1907 dl 1.243 }
1908 dl 1.300 signalWork();
1909     break;
1910 dl 1.90 }
1911 dl 1.300 else // move if busy
1912     r = ThreadLocalRandom.advanceProbe(r);
1913 dl 1.90 }
1914     }
1915     }
1916    
1917 dl 1.300 /**
1918     * Pushes a possibly-external submission.
1919     */
1920     private <T> ForkJoinTask<T> externalSubmit(ForkJoinTask<T> task) {
1921     Thread t; ForkJoinWorkerThread w; WorkQueue q;
1922     if (task == null)
1923     throw new NullPointerException();
1924     if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) &&
1925     (w = (ForkJoinWorkerThread)t).pool == this &&
1926     (q = w.workQueue) != null)
1927     q.push(task);
1928     else
1929     externalPush(task);
1930     return task;
1931     }
1932    
1933     /**
1934     * Returns common pool queue for an external thread.
1935     */
1936     static WorkQueue commonSubmitterQueue() {
1937     ForkJoinPool p = common;
1938     int r = ThreadLocalRandom.getProbe();
1939     WorkQueue[] ws; int n;
1940     return (p != null && (ws = p.workQueues) != null &&
1941     (n = ws.length) > 0) ?
1942     ws[(n - 1) & r & SQMASK] : null;
1943     }
1944 dl 1.90
1945     /**
1946 dl 1.300 * Performs tryUnpush for an external submitter.
1947     */
1948     final boolean tryExternalUnpush(ForkJoinTask<?> task) {
1949     int r = ThreadLocalRandom.getProbe();
1950     WorkQueue[] ws; WorkQueue w; int n;
1951     return ((ws = workQueues) != null &&
1952     (n = ws.length) > 0 &&
1953     (w = ws[(n - 1) & r & SQMASK]) != null &&
1954     w.trySharedUnpush(task));
1955 dl 1.22 }
1956    
1957     /**
1958 dl 1.300 * Performs helpComplete for an external submitter.
1959 dl 1.78 */
1960 dl 1.300 final int externalHelpComplete(CountedCompleter<?> task, int maxTasks) {
1961     int r = ThreadLocalRandom.getProbe();
1962     WorkQueue[] ws; WorkQueue w; int n;
1963     return ((ws = workQueues) != null && (n = ws.length) > 0 &&
1964     (w = ws[(n - 1) & r & SQMASK]) != null) ?
1965     w.sharedHelpCC(task, maxTasks) : 0;
1966 dl 1.22 }
1967    
1968     /**
1969 dl 1.300 * Tries to steal and run tasks within the target's computation.
1970     * The maxTasks argument supports external usages; internal calls
1971     * use zero, allowing unbounded steps (external calls trap
1972     * non-positive values).
1973 dl 1.78 *
1974 dl 1.300 * @param w caller
1975     * @param maxTasks if non-zero, the maximum number of other tasks to run
1976     * @return task status on exit
1977 dl 1.22 */
1978 dl 1.300 final int helpComplete(WorkQueue w, CountedCompleter<?> task,
1979     int maxTasks) {
1980     return (w == null) ? 0 : w.localHelpCC(task, maxTasks);
1981 dl 1.14 }
1982    
1983     /**
1984 dl 1.105 * Returns a cheap heuristic guide for task partitioning when
1985     * programmers, frameworks, tools, or languages have little or no
1986 jsr166 1.222 * idea about task granularity. In essence, by offering this
1987 dl 1.105 * method, we ask users only about tradeoffs in overhead vs
1988     * expected throughput and its variance, rather than how finely to
1989     * partition tasks.
1990     *
1991     * In a steady state strict (tree-structured) computation, each
1992     * thread makes available for stealing enough tasks for other
1993     * threads to remain active. Inductively, if all threads play by
1994     * the same rules, each thread should make available only a
1995     * constant number of tasks.
1996     *
1997     * The minimum useful constant is just 1. But using a value of 1
1998     * would require immediate replenishment upon each steal to
1999     * maintain enough tasks, which is infeasible. Further,
2000     * partitionings/granularities of offered tasks should minimize
2001     * steal rates, which in general means that threads nearer the top
2002     * of computation tree should generate more than those nearer the
2003     * bottom. In perfect steady state, each thread is at
2004     * approximately the same level of computation tree. However,
2005     * producing extra tasks amortizes the uncertainty of progress and
2006     * diffusion assumptions.
2007     *
2008 jsr166 1.161 * So, users will want to use values larger (but not much larger)
2009 dl 1.105 * than 1 to both smooth over transient shortages and hedge
2010     * against uneven progress; as traded off against the cost of
2011     * extra task overhead. We leave the user to pick a threshold
2012     * value to compare with the results of this call to guide
2013     * decisions, but recommend values such as 3.
2014     *
2015     * When all threads are active, it is on average OK to estimate
2016     * surplus strictly locally. In steady-state, if one thread is
2017     * maintaining say 2 surplus tasks, then so are others. So we can
2018     * just use estimated queue length. However, this strategy alone
2019     * leads to serious mis-estimates in some non-steady-state
2020     * conditions (ramp-up, ramp-down, other stalls). We can detect
2021     * many of these by further considering the number of "idle"
2022     * threads, that are known to have zero queued tasks, so
2023     * compensate by a factor of (#idle/#active) threads.
2024     */
2025     static int getSurplusQueuedTaskCount() {
2026     Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2027 dl 1.300 if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) &&
2028     (pool = (wt = (ForkJoinWorkerThread)t).pool) != null &&
2029     (q = wt.workQueue) != null) {
2030     int p = pool.mode & SMASK;
2031     int a = p + (int)(pool.ctl >> RC_SHIFT);
2032     int n = q.top - q.base;
2033 dl 1.112 return n - (a > (p >>>= 1) ? 0 :
2034     a > (p >>>= 1) ? 1 :
2035     a > (p >>>= 1) ? 2 :
2036     a > (p >>>= 1) ? 4 :
2037     8);
2038 dl 1.105 }
2039     return 0;
2040 dl 1.100 }
2041    
2042 dl 1.300 // Termination
2043 dl 1.14
2044     /**
2045 dl 1.210 * Possibly initiates and/or completes termination.
2046 dl 1.14 *
2047     * @param now if true, unconditionally terminate, else only
2048 dl 1.78 * if no work and no active workers
2049 dl 1.243 * @param enable if true, terminate when next possible
2050 dl 1.300 * @return true if terminating or terminated
2051 jsr166 1.1 */
2052 dl 1.300 private boolean tryTerminate(boolean now, boolean enable) {
2053     int md; // 3 phases: try to set SHUTDOWN, then STOP, then TERMINATED
2054 dl 1.289
2055 dl 1.300 while (((md = mode) & SHUTDOWN) == 0) {
2056 dl 1.294 if (!enable || this == common) // cannot shutdown
2057 dl 1.300 return false;
2058 dl 1.294 else
2059 dl 1.314 MODE.compareAndSet(this, md, md | SHUTDOWN);
2060 dl 1.289 }
2061    
2062 dl 1.300 while (((md = mode) & STOP) == 0) { // try to initiate termination
2063     if (!now) { // check if quiescent & empty
2064 dl 1.211 for (long oldSum = 0L;;) { // repeat until stable
2065 dl 1.300 boolean running = false;
2066 dl 1.210 long checkSum = ctl;
2067 dl 1.300 WorkQueue[] ws = workQueues;
2068     if ((md & SMASK) + (int)(checkSum >> RC_SHIFT) > 0)
2069     running = true;
2070     else if (ws != null) {
2071     WorkQueue w; int b;
2072 dl 1.289 for (int i = 0; i < ws.length; ++i) {
2073     if ((w = ws[i]) != null) {
2074 dl 1.300 checkSum += (b = w.base) + w.id;
2075     if (b != w.top ||
2076     ((i & 1) == 1 && w.source >= 0)) {
2077     running = true;
2078     break;
2079     }
2080 dl 1.289 }
2081 dl 1.206 }
2082 dl 1.203 }
2083 dl 1.300 if (((md = mode) & STOP) != 0)
2084     break; // already triggered
2085     else if (running)
2086     return false;
2087     else if (workQueues == ws && oldSum == (oldSum = checkSum))
2088 dl 1.210 break;
2089 dl 1.203 }
2090     }
2091 dl 1.300 if ((md & STOP) == 0)
2092 dl 1.314 MODE.compareAndSet(this, md, md | STOP);
2093 dl 1.200 }
2094 dl 1.210
2095 dl 1.300 while (((md = mode) & TERMINATED) == 0) { // help terminate others
2096     for (long oldSum = 0L;;) { // repeat until stable
2097     WorkQueue[] ws; WorkQueue w;
2098     long checkSum = ctl;
2099     if ((ws = workQueues) != null) {
2100     for (int i = 0; i < ws.length; ++i) {
2101     if ((w = ws[i]) != null) {
2102     ForkJoinWorkerThread wt = w.owner;
2103     w.cancelAll(); // clear queues
2104     if (wt != null) {
2105 dl 1.289 try { // unblock join or park
2106 dl 1.210 wt.interrupt();
2107     } catch (Throwable ignore) {
2108 dl 1.200 }
2109     }
2110 dl 1.300 checkSum += w.base + w.id;
2111 dl 1.200 }
2112 dl 1.101 }
2113 dl 1.78 }
2114 dl 1.300 if (((md = mode) & TERMINATED) != 0 ||
2115     (workQueues == ws && oldSum == (oldSum = checkSum)))
2116     break;
2117 dl 1.78 }
2118 dl 1.300 if ((md & TERMINATED) != 0)
2119     break;
2120     else if ((md & SMASK) + (short)(ctl >>> TC_SHIFT) > 0)
2121 dl 1.210 break;
2122 dl 1.314 else if (MODE.compareAndSet(this, md, md | TERMINATED)) {
2123 dl 1.300 synchronized (this) {
2124     notifyAll(); // for awaitTermination
2125 dl 1.243 }
2126 dl 1.256 break;
2127 dl 1.200 }
2128 dl 1.52 }
2129 dl 1.300 return true;
2130 dl 1.105 }
2131    
2132 dl 1.52 // Exported methods
2133 jsr166 1.1
2134     // Constructors
2135    
2136     /**
2137 jsr166 1.9 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2138 dl 1.300 * java.lang.Runtime#availableProcessors}, using defaults for all
2139 dl 1.319 * other parameters (see {@link #ForkJoinPool(int,
2140     * ForkJoinWorkerThreadFactory, UncaughtExceptionHandler, boolean,
2141     * int, int, int, Predicate, long, TimeUnit)}).
2142 jsr166 1.1 *
2143     * @throws SecurityException if a security manager exists and
2144     * the caller is not permitted to modify threads
2145     * because it does not hold {@link
2146     * java.lang.RuntimePermission}{@code ("modifyThread")}
2147     */
2148     public ForkJoinPool() {
2149 jsr166 1.148 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2150 dl 1.300 defaultForkJoinWorkerThreadFactory, null, false,
2151 dl 1.307 0, MAX_CAP, 1, null, DEFAULT_KEEPALIVE, TimeUnit.MILLISECONDS);
2152 jsr166 1.1 }
2153    
2154     /**
2155 jsr166 1.9 * Creates a {@code ForkJoinPool} with the indicated parallelism
2156 dl 1.319 * level, using defaults for all other parameters (see {@link
2157     * #ForkJoinPool(int, ForkJoinWorkerThreadFactory,
2158     * UncaughtExceptionHandler, boolean, int, int, int, Predicate,
2159     * long, TimeUnit)}).
2160 jsr166 1.1 *
2161 jsr166 1.9 * @param parallelism the parallelism level
2162 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
2163 jsr166 1.11 * equal to zero, or greater than implementation limit
2164 jsr166 1.1 * @throws SecurityException if a security manager exists and
2165     * the caller is not permitted to modify threads
2166     * because it does not hold {@link
2167     * java.lang.RuntimePermission}{@code ("modifyThread")}
2168     */
2169     public ForkJoinPool(int parallelism) {
2170 dl 1.300 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false,
2171 dl 1.307 0, MAX_CAP, 1, null, DEFAULT_KEEPALIVE, TimeUnit.MILLISECONDS);
2172 jsr166 1.1 }
2173    
2174     /**
2175 dl 1.300 * Creates a {@code ForkJoinPool} with the given parameters (using
2176 dl 1.319 * defaults for others -- see {@link #ForkJoinPool(int,
2177     * ForkJoinWorkerThreadFactory, UncaughtExceptionHandler, boolean,
2178     * int, int, int, Predicate, long, TimeUnit)}).
2179 jsr166 1.1 *
2180 dl 1.18 * @param parallelism the parallelism level. For default value,
2181     * use {@link java.lang.Runtime#availableProcessors}.
2182     * @param factory the factory for creating new threads. For default value,
2183     * use {@link #defaultForkJoinWorkerThreadFactory}.
2184 dl 1.19 * @param handler the handler for internal worker threads that
2185     * terminate due to unrecoverable errors encountered while executing
2186 jsr166 1.31 * tasks. For default value, use {@code null}.
2187 dl 1.19 * @param asyncMode if true,
2188 dl 1.18 * establishes local first-in-first-out scheduling mode for forked
2189     * tasks that are never joined. This mode may be more appropriate
2190     * than default locally stack-based mode in applications in which
2191     * worker threads only process event-style asynchronous tasks.
2192 jsr166 1.31 * For default value, use {@code false}.
2193 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
2194 jsr166 1.11 * equal to zero, or greater than implementation limit
2195     * @throws NullPointerException if the factory is null
2196 jsr166 1.1 * @throws SecurityException if a security manager exists and
2197     * the caller is not permitted to modify threads
2198     * because it does not hold {@link
2199     * java.lang.RuntimePermission}{@code ("modifyThread")}
2200     */
2201 dl 1.19 public ForkJoinPool(int parallelism,
2202 dl 1.18 ForkJoinWorkerThreadFactory factory,
2203 jsr166 1.156 UncaughtExceptionHandler handler,
2204 dl 1.18 boolean asyncMode) {
2205 dl 1.300 this(parallelism, factory, handler, asyncMode,
2206 dl 1.307 0, MAX_CAP, 1, null, DEFAULT_KEEPALIVE, TimeUnit.MILLISECONDS);
2207 dl 1.152 }
2208    
2209 dl 1.300 /**
2210     * Creates a {@code ForkJoinPool} with the given parameters.
2211     *
2212     * @param parallelism the parallelism level. For default value,
2213     * use {@link java.lang.Runtime#availableProcessors}.
2214     *
2215     * @param factory the factory for creating new threads. For
2216     * default value, use {@link #defaultForkJoinWorkerThreadFactory}.
2217     *
2218     * @param handler the handler for internal worker threads that
2219     * terminate due to unrecoverable errors encountered while
2220     * executing tasks. For default value, use {@code null}.
2221     *
2222     * @param asyncMode if true, establishes local first-in-first-out
2223     * scheduling mode for forked tasks that are never joined. This
2224     * mode may be more appropriate than default locally stack-based
2225     * mode in applications in which worker threads only process
2226     * event-style asynchronous tasks. For default value, use {@code
2227     * false}.
2228     *
2229     * @param corePoolSize the number of threads to keep in the pool
2230     * (unless timed out after an elapsed keep-alive). Normally (and
2231     * by default) this is the same value as the parallelism level,
2232     * but may be set to a larger value to reduce dynamic overhead if
2233     * tasks regularly block. Using a smaller value (for example
2234     * {@code 0}) has the same effect as the default.
2235     *
2236     * @param maximumPoolSize the maximum number of threads allowed.
2237     * When the maximum is reached, attempts to replace blocked
2238     * threads fail. (However, because creation and termination of
2239     * different threads may overlap, and may be managed by the given
2240 dl 1.307 * thread factory, this value may be transiently exceeded.) To
2241     * arrange the same value as is used by default for the common
2242 dl 1.319 * pool, use {@code 256} plus the {@code parallelism} level. (By
2243     * default, the common pool allows a maximum of 256 spare
2244     * threads.) Using a value (for example {@code
2245     * Integer.MAX_VALUE}) larger than the implementation's total
2246     * thread limit has the same effect as using this limit (which is
2247     * the default).
2248 dl 1.300 *
2249     * @param minimumRunnable the minimum allowed number of core
2250     * threads not blocked by a join or {@link ManagedBlocker}. To
2251     * ensure progress, when too few unblocked threads exist and
2252     * unexecuted tasks may exist, new threads are constructed, up to
2253     * the given maximumPoolSize. For the default value, use {@code
2254     * 1}, that ensures liveness. A larger value might improve
2255     * throughput in the presence of blocked activities, but might
2256     * not, due to increased overhead. A value of zero may be
2257     * acceptable when submitted tasks cannot have dependencies
2258     * requiring additional threads.
2259     *
2260 jsr166 1.318 * @param saturate if non-null, a predicate invoked upon attempts
2261 dl 1.307 * to create more than the maximum total allowed threads. By
2262     * default, when a thread is about to block on a join or {@link
2263     * ManagedBlocker}, but cannot be replaced because the
2264     * maximumPoolSize would be exceeded, a {@link
2265     * RejectedExecutionException} is thrown. But if this predicate
2266     * returns {@code true}, then no exception is thrown, so the pool
2267     * continues to operate with fewer than the target number of
2268     * runnable threads, which might not ensure progress.
2269 dl 1.300 *
2270     * @param keepAliveTime the elapsed time since last use before
2271     * a thread is terminated (and then later replaced if needed).
2272     * For the default value, use {@code 60, TimeUnit.SECONDS}.
2273     *
2274     * @param unit the time unit for the {@code keepAliveTime} argument
2275     *
2276     * @throws IllegalArgumentException if parallelism is less than or
2277     * equal to zero, or is greater than implementation limit,
2278     * or if maximumPoolSize is less than parallelism,
2279     * of if the keepAliveTime is less than or equal to zero.
2280     * @throws NullPointerException if the factory is null
2281     * @throws SecurityException if a security manager exists and
2282     * the caller is not permitted to modify threads
2283     * because it does not hold {@link
2284     * java.lang.RuntimePermission}{@code ("modifyThread")}
2285 jsr166 1.306 * @since 9
2286 dl 1.300 */
2287     public ForkJoinPool(int parallelism,
2288     ForkJoinWorkerThreadFactory factory,
2289     UncaughtExceptionHandler handler,
2290     boolean asyncMode,
2291     int corePoolSize,
2292     int maximumPoolSize,
2293     int minimumRunnable,
2294 dl 1.307 Predicate<? super ForkJoinPool> saturate,
2295 dl 1.300 long keepAliveTime,
2296     TimeUnit unit) {
2297     // check, encode, pack parameters
2298     if (parallelism <= 0 || parallelism > MAX_CAP ||
2299     maximumPoolSize < parallelism || keepAliveTime <= 0L)
2300 dl 1.152 throw new IllegalArgumentException();
2301 dl 1.14 if (factory == null)
2302     throw new NullPointerException();
2303 dl 1.300 long ms = Math.max(unit.toMillis(keepAliveTime), TIMEOUT_SLOP);
2304    
2305     int corep = Math.min(Math.max(corePoolSize, parallelism), MAX_CAP);
2306     long c = ((((long)(-corep) << TC_SHIFT) & TC_MASK) |
2307     (((long)(-parallelism) << RC_SHIFT) & RC_MASK));
2308 dl 1.307 int m = parallelism | (asyncMode ? FIFO : 0);
2309 dl 1.300 int maxSpares = Math.min(maximumPoolSize, MAX_CAP) - parallelism;
2310     int minAvail = Math.min(Math.max(minimumRunnable, 0), MAX_CAP);
2311     int b = ((minAvail - parallelism) & SMASK) | (maxSpares << SWIDTH);
2312     int n = (parallelism > 1) ? parallelism - 1 : 1; // at least 2 slots
2313     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
2314     n = (n + 1) << 1; // power of two, including space for submission queues
2315    
2316 jsr166 1.328 this.workerNamePrefix = "ForkJoinPool-" + nextPoolId() + "-worker-";
2317 dl 1.300 this.workQueues = new WorkQueue[n];
2318     this.factory = factory;
2319     this.ueh = handler;
2320 dl 1.307 this.saturate = saturate;
2321 dl 1.300 this.keepAlive = ms;
2322     this.bounds = b;
2323     this.mode = m;
2324     this.ctl = c;
2325     checkPermission();
2326 dl 1.152 }
2327    
2328 jsr166 1.334 private static Object newInstanceFromSystemProperty(String property)
2329 jsr166 1.327 throws ReflectiveOperationException {
2330     String className = System.getProperty(property);
2331     return (className == null)
2332     ? null
2333     : ClassLoader.getSystemClassLoader().loadClass(className)
2334     .getConstructor().newInstance();
2335     }
2336    
2337 dl 1.152 /**
2338 dl 1.300 * Constructor for common pool using parameters possibly
2339     * overridden by system properties
2340     */
2341     private ForkJoinPool(byte forCommonPoolOnly) {
2342     int parallelism = -1;
2343     ForkJoinWorkerThreadFactory fac = null;
2344     UncaughtExceptionHandler handler = null;
2345     try { // ignore exceptions in accessing/parsing properties
2346     String pp = System.getProperty
2347     ("java.util.concurrent.ForkJoinPool.common.parallelism");
2348     if (pp != null)
2349     parallelism = Integer.parseInt(pp);
2350 jsr166 1.327 fac = (ForkJoinWorkerThreadFactory) newInstanceFromSystemProperty(
2351     "java.util.concurrent.ForkJoinPool.common.threadFactory");
2352     handler = (UncaughtExceptionHandler) newInstanceFromSystemProperty(
2353     "java.util.concurrent.ForkJoinPool.common.exceptionHandler");
2354 dl 1.300 } catch (Exception ignore) {
2355     }
2356    
2357     if (fac == null) {
2358     if (System.getSecurityManager() == null)
2359     fac = defaultForkJoinWorkerThreadFactory;
2360     else // use security-managed default
2361     fac = new InnocuousForkJoinWorkerThreadFactory();
2362     }
2363     if (parallelism < 0 && // default 1 less than #cores
2364     (parallelism = Runtime.getRuntime().availableProcessors() - 1) <= 0)
2365     parallelism = 1;
2366     if (parallelism > MAX_CAP)
2367     parallelism = MAX_CAP;
2368    
2369     long c = ((((long)(-parallelism) << TC_SHIFT) & TC_MASK) |
2370     (((long)(-parallelism) << RC_SHIFT) & RC_MASK));
2371     int b = ((1 - parallelism) & SMASK) | (COMMON_MAX_SPARES << SWIDTH);
2372     int n = (parallelism > 1) ? parallelism - 1 : 1;
2373     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
2374     n = (n + 1) << 1;
2375    
2376 jsr166 1.328 this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2377 dl 1.300 this.workQueues = new WorkQueue[n];
2378     this.factory = fac;
2379 dl 1.18 this.ueh = handler;
2380 dl 1.307 this.saturate = null;
2381 dl 1.300 this.keepAlive = DEFAULT_KEEPALIVE;
2382     this.bounds = b;
2383 dl 1.310 this.mode = parallelism;
2384 dl 1.300 this.ctl = c;
2385 dl 1.101 }
2386    
2387     /**
2388 dl 1.128 * Returns the common pool instance. This pool is statically
2389 dl 1.134 * constructed; its run state is unaffected by attempts to {@link
2390     * #shutdown} or {@link #shutdownNow}. However this pool and any
2391     * ongoing processing are automatically terminated upon program
2392     * {@link System#exit}. Any program that relies on asynchronous
2393     * task processing to complete before program termination should
2394 jsr166 1.158 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2395     * before exit.
2396 dl 1.100 *
2397     * @return the common pool instance
2398 jsr166 1.138 * @since 1.8
2399 dl 1.100 */
2400     public static ForkJoinPool commonPool() {
2401 dl 1.134 // assert common != null : "static init error";
2402     return common;
2403 dl 1.100 }
2404    
2405 jsr166 1.1 // Execution methods
2406    
2407     /**
2408     * Performs the given task, returning its result upon completion.
2409 dl 1.52 * If the computation encounters an unchecked Exception or Error,
2410     * it is rethrown as the outcome of this invocation. Rethrown
2411     * exceptions behave in the same way as regular exceptions, but,
2412     * when possible, contain stack traces (as displayed for example
2413     * using {@code ex.printStackTrace()}) of both the current thread
2414     * as well as the thread actually encountering the exception;
2415     * minimally only the latter.
2416 jsr166 1.1 *
2417     * @param task the task
2418 jsr166 1.191 * @param <T> the type of the task's result
2419 jsr166 1.1 * @return the task's result
2420 jsr166 1.11 * @throws NullPointerException if the task is null
2421     * @throws RejectedExecutionException if the task cannot be
2422     * scheduled for execution
2423 jsr166 1.1 */
2424     public <T> T invoke(ForkJoinTask<T> task) {
2425 dl 1.90 if (task == null)
2426     throw new NullPointerException();
2427 dl 1.243 externalSubmit(task);
2428 dl 1.78 return task.join();
2429 jsr166 1.1 }
2430    
2431     /**
2432     * Arranges for (asynchronous) execution of the given task.
2433     *
2434     * @param task the task
2435 jsr166 1.11 * @throws NullPointerException if the task is null
2436     * @throws RejectedExecutionException if the task cannot be
2437     * scheduled for execution
2438 jsr166 1.1 */
2439 jsr166 1.8 public void execute(ForkJoinTask<?> task) {
2440 dl 1.243 externalSubmit(task);
2441 jsr166 1.1 }
2442    
2443     // AbstractExecutorService methods
2444    
2445 jsr166 1.11 /**
2446     * @throws NullPointerException if the task is null
2447     * @throws RejectedExecutionException if the task cannot be
2448     * scheduled for execution
2449     */
2450 jsr166 1.1 public void execute(Runnable task) {
2451 dl 1.41 if (task == null)
2452     throw new NullPointerException();
2453 jsr166 1.2 ForkJoinTask<?> job;
2454 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2455     job = (ForkJoinTask<?>) task;
2456 jsr166 1.2 else
2457 dl 1.152 job = new ForkJoinTask.RunnableExecuteAction(task);
2458 dl 1.243 externalSubmit(job);
2459 jsr166 1.1 }
2460    
2461 jsr166 1.11 /**
2462 dl 1.18 * Submits a ForkJoinTask for execution.
2463     *
2464     * @param task the task to submit
2465 jsr166 1.191 * @param <T> the type of the task's result
2466 dl 1.18 * @return the task
2467     * @throws NullPointerException if the task is null
2468     * @throws RejectedExecutionException if the task cannot be
2469     * scheduled for execution
2470     */
2471     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2472 dl 1.243 return externalSubmit(task);
2473 dl 1.18 }
2474    
2475     /**
2476 jsr166 1.11 * @throws NullPointerException if the task is null
2477     * @throws RejectedExecutionException if the task cannot be
2478     * scheduled for execution
2479     */
2480 jsr166 1.1 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2481 dl 1.243 return externalSubmit(new ForkJoinTask.AdaptedCallable<T>(task));
2482 jsr166 1.1 }
2483    
2484 jsr166 1.11 /**
2485     * @throws NullPointerException if the task is null
2486     * @throws RejectedExecutionException if the task cannot be
2487     * scheduled for execution
2488     */
2489 jsr166 1.1 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2490 dl 1.243 return externalSubmit(new ForkJoinTask.AdaptedRunnable<T>(task, result));
2491 jsr166 1.1 }
2492    
2493 jsr166 1.11 /**
2494     * @throws NullPointerException if the task is null
2495     * @throws RejectedExecutionException if the task cannot be
2496     * scheduled for execution
2497     */
2498 jsr166 1.335 @SuppressWarnings("unchecked")
2499 jsr166 1.1 public ForkJoinTask<?> submit(Runnable task) {
2500 dl 1.41 if (task == null)
2501     throw new NullPointerException();
2502 jsr166 1.335 return externalSubmit((task instanceof ForkJoinTask<?>)
2503     ? (ForkJoinTask<Void>) task // avoid re-wrap
2504     : new ForkJoinTask.AdaptedRunnableAction(task));
2505 jsr166 1.1 }
2506    
2507     /**
2508 jsr166 1.11 * @throws NullPointerException {@inheritDoc}
2509     * @throws RejectedExecutionException {@inheritDoc}
2510     */
2511 jsr166 1.1 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2512 dl 1.86 // In previous versions of this class, this method constructed
2513     // a task to run ForkJoinTask.invokeAll, but now external
2514     // invocation of multiple tasks is at least as efficient.
2515 jsr166 1.199 ArrayList<Future<T>> futures = new ArrayList<>(tasks.size());
2516 jsr166 1.1
2517 dl 1.86 try {
2518     for (Callable<T> t : tasks) {
2519 dl 1.90 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2520 jsr166 1.144 futures.add(f);
2521 dl 1.243 externalSubmit(f);
2522 dl 1.86 }
2523 jsr166 1.143 for (int i = 0, size = futures.size(); i < size; i++)
2524     ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2525 dl 1.86 return futures;
2526 jsr166 1.226 } catch (Throwable t) {
2527     for (int i = 0, size = futures.size(); i < size; i++)
2528     futures.get(i).cancel(false);
2529     throw t;
2530 jsr166 1.1 }
2531     }
2532    
2533     /**
2534     * Returns the factory used for constructing new workers.
2535     *
2536     * @return the factory used for constructing new workers
2537     */
2538     public ForkJoinWorkerThreadFactory getFactory() {
2539     return factory;
2540     }
2541    
2542     /**
2543     * Returns the handler for internal worker threads that terminate
2544     * due to unrecoverable errors encountered while executing tasks.
2545     *
2546 jsr166 1.4 * @return the handler, or {@code null} if none
2547 jsr166 1.1 */
2548 jsr166 1.156 public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2549 dl 1.14 return ueh;
2550 jsr166 1.1 }
2551    
2552     /**
2553 jsr166 1.9 * Returns the targeted parallelism level of this pool.
2554 jsr166 1.1 *
2555 jsr166 1.9 * @return the targeted parallelism level of this pool
2556 jsr166 1.1 */
2557     public int getParallelism() {
2558 dl 1.310 int par = mode & SMASK;
2559     return (par > 0) ? par : 1;
2560 jsr166 1.1 }
2561    
2562     /**
2563 dl 1.100 * Returns the targeted parallelism level of the common pool.
2564     *
2565     * @return the targeted parallelism level of the common pool
2566 jsr166 1.138 * @since 1.8
2567 dl 1.100 */
2568     public static int getCommonPoolParallelism() {
2569 jsr166 1.274 return COMMON_PARALLELISM;
2570 dl 1.100 }
2571    
2572     /**
2573 jsr166 1.1 * Returns the number of worker threads that have started but not
2574 jsr166 1.34 * yet terminated. The result returned by this method may differ
2575 jsr166 1.4 * from {@link #getParallelism} when threads are created to
2576 jsr166 1.1 * maintain parallelism when others are cooperatively blocked.
2577     *
2578     * @return the number of worker threads
2579     */
2580     public int getPoolSize() {
2581 dl 1.300 return ((mode & SMASK) + (short)(ctl >>> TC_SHIFT));
2582 jsr166 1.1 }
2583    
2584     /**
2585 jsr166 1.4 * Returns {@code true} if this pool uses local first-in-first-out
2586 jsr166 1.1 * scheduling mode for forked tasks that are never joined.
2587     *
2588 jsr166 1.4 * @return {@code true} if this pool uses async mode
2589 jsr166 1.1 */
2590     public boolean getAsyncMode() {
2591 dl 1.300 return (mode & FIFO) != 0;
2592 jsr166 1.1 }
2593    
2594     /**
2595     * Returns an estimate of the number of worker threads that are
2596     * not blocked waiting to join tasks or for other managed
2597 dl 1.14 * synchronization. This method may overestimate the
2598     * number of running threads.
2599 jsr166 1.1 *
2600     * @return the number of worker threads
2601     */
2602     public int getRunningThreadCount() {
2603 dl 1.78 int rc = 0;
2604     WorkQueue[] ws; WorkQueue w;
2605     if ((ws = workQueues) != null) {
2606 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2607     if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2608 dl 1.78 ++rc;
2609     }
2610     }
2611     return rc;
2612 jsr166 1.1 }
2613    
2614     /**
2615     * Returns an estimate of the number of threads that are currently
2616     * stealing or executing tasks. This method may overestimate the
2617     * number of active threads.
2618     *
2619     * @return the number of active threads
2620     */
2621     public int getActiveThreadCount() {
2622 dl 1.300 int r = (mode & SMASK) + (int)(ctl >> RC_SHIFT);
2623 jsr166 1.63 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2624 jsr166 1.1 }
2625    
2626     /**
2627 jsr166 1.4 * Returns {@code true} if all worker threads are currently idle.
2628     * An idle worker is one that cannot obtain a task to execute
2629     * because none are available to steal from other threads, and
2630     * there are no pending submissions to the pool. This method is
2631     * conservative; it might not return {@code true} immediately upon
2632     * idleness of all threads, but will eventually become true if
2633     * threads remain inactive.
2634 jsr166 1.1 *
2635 jsr166 1.4 * @return {@code true} if all threads are currently idle
2636 jsr166 1.1 */
2637     public boolean isQuiescent() {
2638 dl 1.300 for (;;) {
2639     long c = ctl;
2640     int md = mode, pc = md & SMASK;
2641 dl 1.310 int tc = pc + (short)(c >>> TC_SHIFT);
2642 dl 1.300 int rc = pc + (int)(c >> RC_SHIFT);
2643     if ((md & (STOP | TERMINATED)) != 0)
2644     return true;
2645     else if (rc > 0)
2646     return false;
2647     else {
2648     WorkQueue[] ws; WorkQueue v;
2649     if ((ws = workQueues) != null) {
2650     for (int i = 1; i < ws.length; i += 2) {
2651     if ((v = ws[i]) != null) {
2652     if ((v.source & QUIET) == 0)
2653     return false;
2654     --tc;
2655     }
2656     }
2657     }
2658     if (tc == 0 && ctl == c)
2659     return true;
2660     }
2661     }
2662 jsr166 1.1 }
2663    
2664     /**
2665     * Returns an estimate of the total number of tasks stolen from
2666     * one thread's work queue by another. The reported value
2667     * underestimates the actual total number of steals when the pool
2668     * is not quiescent. This value may be useful for monitoring and
2669     * tuning fork/join programs: in general, steal counts should be
2670     * high enough to keep threads busy, but low enough to avoid
2671     * overhead and contention across threads.
2672     *
2673     * @return the number of steals
2674     */
2675     public long getStealCount() {
2676 dl 1.300 long count = stealCount;
2677 dl 1.78 WorkQueue[] ws; WorkQueue w;
2678     if ((ws = workQueues) != null) {
2679 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2680 dl 1.78 if ((w = ws[i]) != null)
2681 dl 1.300 count += (long)w.nsteals & 0xffffffffL;
2682 dl 1.78 }
2683     }
2684     return count;
2685 jsr166 1.1 }
2686    
2687     /**
2688     * Returns an estimate of the total number of tasks currently held
2689     * in queues by worker threads (but not including tasks submitted
2690     * to the pool that have not begun executing). This value is only
2691     * an approximation, obtained by iterating across all threads in
2692     * the pool. This method may be useful for tuning task
2693     * granularities.
2694     *
2695     * @return the number of queued tasks
2696     */
2697     public long getQueuedTaskCount() {
2698     long count = 0;
2699 dl 1.78 WorkQueue[] ws; WorkQueue w;
2700     if ((ws = workQueues) != null) {
2701 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2702 dl 1.78 if ((w = ws[i]) != null)
2703     count += w.queueSize();
2704     }
2705 dl 1.52 }
2706 jsr166 1.1 return count;
2707     }
2708    
2709     /**
2710 jsr166 1.8 * Returns an estimate of the number of tasks submitted to this
2711 dl 1.55 * pool that have not yet begun executing. This method may take
2712 dl 1.52 * time proportional to the number of submissions.
2713 jsr166 1.1 *
2714     * @return the number of queued submissions
2715     */
2716     public int getQueuedSubmissionCount() {
2717 dl 1.78 int count = 0;
2718     WorkQueue[] ws; WorkQueue w;
2719     if ((ws = workQueues) != null) {
2720 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2721 dl 1.78 if ((w = ws[i]) != null)
2722     count += w.queueSize();
2723     }
2724     }
2725     return count;
2726 jsr166 1.1 }
2727    
2728     /**
2729 jsr166 1.4 * Returns {@code true} if there are any tasks submitted to this
2730     * pool that have not yet begun executing.
2731 jsr166 1.1 *
2732     * @return {@code true} if there are any queued submissions
2733     */
2734     public boolean hasQueuedSubmissions() {
2735 dl 1.78 WorkQueue[] ws; WorkQueue w;
2736     if ((ws = workQueues) != null) {
2737 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2738 dl 1.115 if ((w = ws[i]) != null && !w.isEmpty())
2739 dl 1.78 return true;
2740     }
2741     }
2742     return false;
2743 jsr166 1.1 }
2744    
2745     /**
2746     * Removes and returns the next unexecuted submission if one is
2747     * available. This method may be useful in extensions to this
2748     * class that re-assign work in systems with multiple pools.
2749     *
2750 jsr166 1.4 * @return the next submission, or {@code null} if none
2751 jsr166 1.1 */
2752     protected ForkJoinTask<?> pollSubmission() {
2753 dl 1.300 return pollScan(true);
2754 jsr166 1.1 }
2755    
2756     /**
2757     * Removes all available unexecuted submitted and forked tasks
2758     * from scheduling queues and adds them to the given collection,
2759     * without altering their execution status. These may include
2760 jsr166 1.8 * artificially generated or wrapped tasks. This method is
2761     * designed to be invoked only when the pool is known to be
2762 jsr166 1.1 * quiescent. Invocations at other times may not remove all
2763     * tasks. A failure encountered while attempting to add elements
2764     * to collection {@code c} may result in elements being in
2765     * neither, either or both collections when the associated
2766     * exception is thrown. The behavior of this operation is
2767     * undefined if the specified collection is modified while the
2768     * operation is in progress.
2769     *
2770     * @param c the collection to transfer elements into
2771     * @return the number of elements transferred
2772     */
2773 jsr166 1.5 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2774 dl 1.52 int count = 0;
2775 dl 1.78 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2776     if ((ws = workQueues) != null) {
2777 dl 1.86 for (int i = 0; i < ws.length; ++i) {
2778 dl 1.78 if ((w = ws[i]) != null) {
2779     while ((t = w.poll()) != null) {
2780     c.add(t);
2781     ++count;
2782     }
2783     }
2784 dl 1.52 }
2785     }
2786 dl 1.18 return count;
2787     }
2788    
2789     /**
2790 jsr166 1.1 * Returns a string identifying this pool, as well as its state,
2791     * including indications of run state, parallelism level, and
2792     * worker and task counts.
2793     *
2794     * @return a string identifying this pool, as well as its state
2795     */
2796     public String toString() {
2797 dl 1.86 // Use a single pass through workQueues to collect counts
2798     long qt = 0L, qs = 0L; int rc = 0;
2799 dl 1.300 long st = stealCount;
2800 dl 1.86 WorkQueue[] ws; WorkQueue w;
2801     if ((ws = workQueues) != null) {
2802     for (int i = 0; i < ws.length; ++i) {
2803     if ((w = ws[i]) != null) {
2804     int size = w.queueSize();
2805     if ((i & 1) == 0)
2806     qs += size;
2807     else {
2808     qt += size;
2809 dl 1.300 st += (long)w.nsteals & 0xffffffffL;
2810 dl 1.86 if (w.isApparentlyUnblocked())
2811     ++rc;
2812     }
2813     }
2814     }
2815     }
2816 dl 1.300
2817     int md = mode;
2818     int pc = (md & SMASK);
2819     long c = ctl;
2820 dl 1.52 int tc = pc + (short)(c >>> TC_SHIFT);
2821 dl 1.300 int ac = pc + (int)(c >> RC_SHIFT);
2822 dl 1.78 if (ac < 0) // ignore transient negative
2823     ac = 0;
2824 dl 1.300 String level = ((md & TERMINATED) != 0 ? "Terminated" :
2825     (md & STOP) != 0 ? "Terminating" :
2826     (md & SHUTDOWN) != 0 ? "Shutting down" :
2827 dl 1.200 "Running");
2828 jsr166 1.1 return super.toString() +
2829 dl 1.52 "[" + level +
2830 dl 1.14 ", parallelism = " + pc +
2831     ", size = " + tc +
2832     ", active = " + ac +
2833     ", running = " + rc +
2834 jsr166 1.1 ", steals = " + st +
2835     ", tasks = " + qt +
2836     ", submissions = " + qs +
2837     "]";
2838     }
2839    
2840     /**
2841 dl 1.100 * Possibly initiates an orderly shutdown in which previously
2842     * submitted tasks are executed, but no new tasks will be
2843     * accepted. Invocation has no effect on execution state if this
2844 jsr166 1.137 * is the {@link #commonPool()}, and no additional effect if
2845 dl 1.100 * already shut down. Tasks that are in the process of being
2846     * submitted concurrently during the course of this method may or
2847     * may not be rejected.
2848 jsr166 1.1 *
2849     * @throws SecurityException if a security manager exists and
2850     * the caller is not permitted to modify threads
2851     * because it does not hold {@link
2852     * java.lang.RuntimePermission}{@code ("modifyThread")}
2853     */
2854     public void shutdown() {
2855     checkPermission();
2856 dl 1.105 tryTerminate(false, true);
2857 jsr166 1.1 }
2858    
2859     /**
2860 dl 1.100 * Possibly attempts to cancel and/or stop all tasks, and reject
2861     * all subsequently submitted tasks. Invocation has no effect on
2862 jsr166 1.137 * execution state if this is the {@link #commonPool()}, and no
2863 dl 1.100 * additional effect if already shut down. Otherwise, tasks that
2864     * are in the process of being submitted or executed concurrently
2865     * during the course of this method may or may not be
2866     * rejected. This method cancels both existing and unexecuted
2867     * tasks, in order to permit termination in the presence of task
2868     * dependencies. So the method always returns an empty list
2869     * (unlike the case for some other Executors).
2870 jsr166 1.1 *
2871     * @return an empty list
2872     * @throws SecurityException if a security manager exists and
2873     * the caller is not permitted to modify threads
2874     * because it does not hold {@link
2875     * java.lang.RuntimePermission}{@code ("modifyThread")}
2876     */
2877     public List<Runnable> shutdownNow() {
2878     checkPermission();
2879 dl 1.105 tryTerminate(true, true);
2880 jsr166 1.1 return Collections.emptyList();
2881     }
2882    
2883     /**
2884     * Returns {@code true} if all tasks have completed following shut down.
2885     *
2886     * @return {@code true} if all tasks have completed following shut down
2887     */
2888     public boolean isTerminated() {
2889 dl 1.300 return (mode & TERMINATED) != 0;
2890 jsr166 1.1 }
2891    
2892     /**
2893     * Returns {@code true} if the process of termination has
2894 jsr166 1.9 * commenced but not yet completed. This method may be useful for
2895     * debugging. A return of {@code true} reported a sufficient
2896     * period after shutdown may indicate that submitted tasks have
2897 jsr166 1.119 * ignored or suppressed interruption, or are waiting for I/O,
2898 dl 1.49 * causing this executor not to properly terminate. (See the
2899     * advisory notes for class {@link ForkJoinTask} stating that
2900     * tasks should not normally entail blocking operations. But if
2901     * they do, they must abort them on interrupt.)
2902 jsr166 1.1 *
2903 jsr166 1.9 * @return {@code true} if terminating but not yet terminated
2904 jsr166 1.1 */
2905     public boolean isTerminating() {
2906 dl 1.300 int md = mode;
2907     return (md & STOP) != 0 && (md & TERMINATED) == 0;
2908 jsr166 1.1 }
2909    
2910     /**
2911     * Returns {@code true} if this pool has been shut down.
2912     *
2913     * @return {@code true} if this pool has been shut down
2914     */
2915     public boolean isShutdown() {
2916 dl 1.300 return (mode & SHUTDOWN) != 0;
2917 jsr166 1.9 }
2918    
2919     /**
2920 dl 1.105 * Blocks until all tasks have completed execution after a
2921     * shutdown request, or the timeout occurs, or the current thread
2922 dl 1.134 * is interrupted, whichever happens first. Because the {@link
2923     * #commonPool()} never terminates until program shutdown, when
2924     * applied to the common pool, this method is equivalent to {@link
2925 jsr166 1.158 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
2926 jsr166 1.1 *
2927     * @param timeout the maximum time to wait
2928     * @param unit the time unit of the timeout argument
2929     * @return {@code true} if this executor terminated and
2930     * {@code false} if the timeout elapsed before termination
2931     * @throws InterruptedException if interrupted while waiting
2932     */
2933     public boolean awaitTermination(long timeout, TimeUnit unit)
2934     throws InterruptedException {
2935 dl 1.134 if (Thread.interrupted())
2936     throw new InterruptedException();
2937     if (this == common) {
2938     awaitQuiescence(timeout, unit);
2939     return false;
2940     }
2941 dl 1.52 long nanos = unit.toNanos(timeout);
2942 dl 1.101 if (isTerminated())
2943     return true;
2944 dl 1.183 if (nanos <= 0L)
2945     return false;
2946     long deadline = System.nanoTime() + nanos;
2947 jsr166 1.103 synchronized (this) {
2948 jsr166 1.184 for (;;) {
2949 dl 1.183 if (isTerminated())
2950     return true;
2951     if (nanos <= 0L)
2952     return false;
2953     long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
2954     wait(millis > 0L ? millis : 1L);
2955     nanos = deadline - System.nanoTime();
2956 dl 1.52 }
2957 dl 1.18 }
2958 jsr166 1.1 }
2959    
2960     /**
2961 dl 1.134 * If called by a ForkJoinTask operating in this pool, equivalent
2962     * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
2963     * waits and/or attempts to assist performing tasks until this
2964     * pool {@link #isQuiescent} or the indicated timeout elapses.
2965     *
2966     * @param timeout the maximum time to wait
2967     * @param unit the time unit of the timeout argument
2968     * @return {@code true} if quiescent; {@code false} if the
2969     * timeout elapsed.
2970     */
2971     public boolean awaitQuiescence(long timeout, TimeUnit unit) {
2972     long nanos = unit.toNanos(timeout);
2973     ForkJoinWorkerThread wt;
2974     Thread thread = Thread.currentThread();
2975     if ((thread instanceof ForkJoinWorkerThread) &&
2976     (wt = (ForkJoinWorkerThread)thread).pool == this) {
2977     helpQuiescePool(wt.workQueue);
2978     return true;
2979     }
2980 dl 1.300 else {
2981     for (long startTime = System.nanoTime();;) {
2982     ForkJoinTask<?> t;
2983     if ((t = pollScan(false)) != null)
2984     t.doExec();
2985     else if (isQuiescent())
2986     return true;
2987     else if ((System.nanoTime() - startTime) > nanos)
2988 dl 1.134 return false;
2989 dl 1.300 else
2990     Thread.yield(); // cannot block
2991 dl 1.134 }
2992     }
2993     }
2994    
2995     /**
2996     * Waits and/or attempts to assist performing tasks indefinitely
2997 jsr166 1.141 * until the {@link #commonPool()} {@link #isQuiescent}.
2998 dl 1.134 */
2999 dl 1.136 static void quiesceCommonPool() {
3000 dl 1.134 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3001     }
3002    
3003     /**
3004 jsr166 1.1 * Interface for extending managed parallelism for tasks running
3005 jsr166 1.8 * in {@link ForkJoinPool}s.
3006     *
3007 dl 1.19 * <p>A {@code ManagedBlocker} provides two methods. Method
3008 jsr166 1.218 * {@link #isReleasable} must return {@code true} if blocking is
3009     * not necessary. Method {@link #block} blocks the current thread
3010 dl 1.19 * if necessary (perhaps internally invoking {@code isReleasable}
3011 dl 1.54 * before actually blocking). These actions are performed by any
3012 jsr166 1.157 * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
3013     * The unusual methods in this API accommodate synchronizers that
3014     * may, but don't usually, block for long periods. Similarly, they
3015 dl 1.54 * allow more efficient internal handling of cases in which
3016     * additional workers may be, but usually are not, needed to
3017     * ensure sufficient parallelism. Toward this end,
3018     * implementations of method {@code isReleasable} must be amenable
3019     * to repeated invocation.
3020 jsr166 1.1 *
3021     * <p>For example, here is a ManagedBlocker based on a
3022     * ReentrantLock:
3023 jsr166 1.239 * <pre> {@code
3024 jsr166 1.1 * class ManagedLocker implements ManagedBlocker {
3025     * final ReentrantLock lock;
3026     * boolean hasLock = false;
3027     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3028     * public boolean block() {
3029     * if (!hasLock)
3030     * lock.lock();
3031     * return true;
3032     * }
3033     * public boolean isReleasable() {
3034     * return hasLock || (hasLock = lock.tryLock());
3035     * }
3036     * }}</pre>
3037 dl 1.19 *
3038     * <p>Here is a class that possibly blocks waiting for an
3039     * item on a given queue:
3040 jsr166 1.239 * <pre> {@code
3041 dl 1.19 * class QueueTaker<E> implements ManagedBlocker {
3042     * final BlockingQueue<E> queue;
3043     * volatile E item = null;
3044     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3045     * public boolean block() throws InterruptedException {
3046     * if (item == null)
3047 dl 1.23 * item = queue.take();
3048 dl 1.19 * return true;
3049     * }
3050     * public boolean isReleasable() {
3051 dl 1.23 * return item != null || (item = queue.poll()) != null;
3052 dl 1.19 * }
3053     * public E getItem() { // call after pool.managedBlock completes
3054     * return item;
3055     * }
3056     * }}</pre>
3057 jsr166 1.1 */
3058     public static interface ManagedBlocker {
3059     /**
3060     * Possibly blocks the current thread, for example waiting for
3061     * a lock or condition.
3062     *
3063 jsr166 1.4 * @return {@code true} if no additional blocking is necessary
3064     * (i.e., if isReleasable would return true)
3065 jsr166 1.1 * @throws InterruptedException if interrupted while waiting
3066     * (the method is not required to do so, but is allowed to)
3067     */
3068     boolean block() throws InterruptedException;
3069    
3070     /**
3071 jsr166 1.4 * Returns {@code true} if blocking is unnecessary.
3072 jsr166 1.154 * @return {@code true} if blocking is unnecessary
3073 jsr166 1.1 */
3074     boolean isReleasable();
3075     }
3076    
3077     /**
3078 jsr166 1.217 * Runs the given possibly blocking task. When {@linkplain
3079     * ForkJoinTask#inForkJoinPool() running in a ForkJoinPool}, this
3080     * method possibly arranges for a spare thread to be activated if
3081     * necessary to ensure sufficient parallelism while the current
3082     * thread is blocked in {@link ManagedBlocker#block blocker.block()}.
3083 jsr166 1.1 *
3084 jsr166 1.217 * <p>This method repeatedly calls {@code blocker.isReleasable()} and
3085     * {@code blocker.block()} until either method returns {@code true}.
3086     * Every call to {@code blocker.block()} is preceded by a call to
3087     * {@code blocker.isReleasable()} that returned {@code false}.
3088     *
3089     * <p>If not running in a ForkJoinPool, this method is
3090 jsr166 1.8 * behaviorally equivalent to
3091 jsr166 1.239 * <pre> {@code
3092 jsr166 1.1 * while (!blocker.isReleasable())
3093     * if (blocker.block())
3094 jsr166 1.217 * break;}</pre>
3095 jsr166 1.8 *
3096 jsr166 1.217 * If running in a ForkJoinPool, the pool may first be expanded to
3097     * ensure sufficient parallelism available during the call to
3098     * {@code blocker.block()}.
3099 jsr166 1.1 *
3100 jsr166 1.217 * @param blocker the blocker task
3101     * @throws InterruptedException if {@code blocker.block()} did so
3102 jsr166 1.1 */
3103 dl 1.18 public static void managedBlock(ManagedBlocker blocker)
3104 jsr166 1.1 throws InterruptedException {
3105 dl 1.200 ForkJoinPool p;
3106     ForkJoinWorkerThread wt;
3107 dl 1.300 WorkQueue w;
3108 jsr166 1.1 Thread t = Thread.currentThread();
3109 dl 1.200 if ((t instanceof ForkJoinWorkerThread) &&
3110 dl 1.300 (p = (wt = (ForkJoinWorkerThread)t).pool) != null &&
3111     (w = wt.workQueue) != null) {
3112     int block;
3113 dl 1.172 while (!blocker.isReleasable()) {
3114 dl 1.300 if ((block = p.tryCompensate(w)) != 0) {
3115 dl 1.105 try {
3116     do {} while (!blocker.isReleasable() &&
3117     !blocker.block());
3118     } finally {
3119 dl 1.314 CTL.getAndAdd(p, (block > 0) ? RC_UNIT : 0L);
3120 dl 1.105 }
3121     break;
3122 dl 1.78 }
3123     }
3124 dl 1.18 }
3125 dl 1.105 else {
3126     do {} while (!blocker.isReleasable() &&
3127     !blocker.block());
3128     }
3129 jsr166 1.1 }
3130    
3131 dl 1.310 /**
3132     * If the given executor is a ForkJoinPool, poll and execute
3133     * AsynchronousCompletionTasks from worker's queue until none are
3134     * available or blocker is released.
3135     */
3136     static void helpAsyncBlocker(Executor e, ManagedBlocker blocker) {
3137     if (blocker != null && (e instanceof ForkJoinPool)) {
3138     WorkQueue w; ForkJoinWorkerThread wt; WorkQueue[] ws; int r, n;
3139     ForkJoinPool p = (ForkJoinPool)e;
3140     Thread thread = Thread.currentThread();
3141     if (thread instanceof ForkJoinWorkerThread &&
3142     (wt = (ForkJoinWorkerThread)thread).pool == p)
3143     w = wt.workQueue;
3144     else if ((r = ThreadLocalRandom.getProbe()) != 0 &&
3145     (ws = p.workQueues) != null && (n = ws.length) > 0)
3146     w = ws[(n - 1) & r & SQMASK];
3147     else
3148     w = null;
3149     if (w != null) {
3150     for (;;) {
3151     int b = w.base, s = w.top, d, al; ForkJoinTask<?>[] a;
3152     if ((a = w.array) != null && (d = b - s) < 0 &&
3153     (al = a.length) > 0) {
3154     int index = (al - 1) & b;
3155     ForkJoinTask<?> t = (ForkJoinTask<?>)
3156 dl 1.316 QA.getAcquire(a, index);
3157 dl 1.310 if (blocker.isReleasable())
3158     break;
3159     else if (b++ == w.base) {
3160     if (t == null) {
3161     if (d == -1)
3162     break;
3163     }
3164     else if (!(t instanceof CompletableFuture.
3165     AsynchronousCompletionTask))
3166     break;
3167 dl 1.314 else if (QA.compareAndSet(a, index, t, null)) {
3168 dl 1.310 w.base = b;
3169     t.doExec();
3170     }
3171     }
3172     }
3173     else
3174     break;
3175     }
3176     }
3177     }
3178     }
3179    
3180 jsr166 1.7 // AbstractExecutorService overrides. These rely on undocumented
3181     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3182     // implement RunnableFuture.
3183 jsr166 1.1
3184     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3185 dl 1.90 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3186 jsr166 1.1 }
3187    
3188     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3189 dl 1.90 return new ForkJoinTask.AdaptedCallable<T>(callable);
3190 jsr166 1.1 }
3191    
3192 dl 1.314 // VarHandle mechanics
3193     private static final VarHandle CTL;
3194     private static final VarHandle MODE;
3195     private static final VarHandle QA;
3196 dl 1.52
3197     static {
3198 jsr166 1.3 try {
3199 dl 1.314 MethodHandles.Lookup l = MethodHandles.lookup();
3200     CTL = l.findVarHandle(ForkJoinPool.class, "ctl", long.class);
3201     MODE = l.findVarHandle(ForkJoinPool.class, "mode", int.class);
3202     QA = MethodHandles.arrayElementVarHandle(ForkJoinTask[].class);
3203 jsr166 1.231 } catch (ReflectiveOperationException e) {
3204 dl 1.52 throw new Error(e);
3205     }
3206 dl 1.105
3207 dl 1.243 // Reduce the risk of rare disastrous classloading in first call to
3208     // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
3209     Class<?> ensureLoaded = LockSupport.class;
3210    
3211 jsr166 1.273 int commonMaxSpares = DEFAULT_COMMON_MAX_SPARES;
3212     try {
3213     String p = System.getProperty
3214     ("java.util.concurrent.ForkJoinPool.common.maximumSpares");
3215     if (p != null)
3216     commonMaxSpares = Integer.parseInt(p);
3217     } catch (Exception ignore) {}
3218     COMMON_MAX_SPARES = commonMaxSpares;
3219    
3220 dl 1.152 defaultForkJoinWorkerThreadFactory =
3221 dl 1.112 new DefaultForkJoinWorkerThreadFactory();
3222 dl 1.115 modifyThreadPermission = new RuntimePermission("modifyThread");
3223    
3224 jsr166 1.329 common = AccessController.doPrivileged(new PrivilegedAction<>() {
3225     public ForkJoinPool run() {
3226     return new ForkJoinPool((byte)0); }});
3227 jsr166 1.275
3228 dl 1.310 COMMON_PARALLELISM = Math.max(common.mode & SMASK, 1);
3229 jsr166 1.3 }
3230 dl 1.52
3231 dl 1.197 /**
3232 jsr166 1.279 * Factory for innocuous worker threads.
3233 dl 1.197 */
3234 jsr166 1.278 private static final class InnocuousForkJoinWorkerThreadFactory
3235 dl 1.197 implements ForkJoinWorkerThreadFactory {
3236    
3237     /**
3238     * An ACC to restrict permissions for the factory itself.
3239     * The constructed workers have no permissions set.
3240     */
3241 jsr166 1.331 private static final AccessControlContext ACC = contextWithPermissions(
3242     modifyThreadPermission,
3243     new RuntimePermission("enableContextClassLoaderOverride"),
3244     new RuntimePermission("modifyThreadGroup"),
3245 jsr166 1.332 new RuntimePermission("getClassLoader"),
3246 jsr166 1.331 new RuntimePermission("setContextClassLoader"));
3247 dl 1.197
3248     public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
3249 jsr166 1.331 return AccessController.doPrivileged(
3250     new PrivilegedAction<>() {
3251     public ForkJoinWorkerThread run() {
3252     return new ForkJoinWorkerThread.
3253     InnocuousForkJoinWorkerThread(pool); }},
3254     ACC);
3255 dl 1.197 }
3256     }
3257 jsr166 1.1 }