ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.343
Committed: Wed Jan 17 05:53:23 2018 UTC (6 years, 4 months ago) by jsr166
Branch: MAIN
Changes since 1.342: +1 -1 lines
Log Message:
typo

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.58 * http://creativecommons.org/publicdomain/zero/1.0/
5 jsr166 1.1 */
6 jsr166 1.301
7 jsr166 1.1 package java.util.concurrent;
8    
9 jsr166 1.156 import java.lang.Thread.UncaughtExceptionHandler;
10 dl 1.314 import java.lang.invoke.MethodHandles;
11     import java.lang.invoke.VarHandle;
12 jsr166 1.329 import java.security.AccessController;
13 jsr166 1.228 import java.security.AccessControlContext;
14 jsr166 1.331 import java.security.Permission;
15 jsr166 1.228 import java.security.Permissions;
16 jsr166 1.329 import java.security.PrivilegedAction;
17 jsr166 1.228 import java.security.ProtectionDomain;
18 jsr166 1.1 import java.util.ArrayList;
19     import java.util.Collection;
20     import java.util.Collections;
21     import java.util.List;
22 dl 1.307 import java.util.function.Predicate;
23 dl 1.243 import java.util.concurrent.locks.LockSupport;
24 jsr166 1.1
25     /**
26 jsr166 1.4 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
27 jsr166 1.8 * A {@code ForkJoinPool} provides the entry point for submissions
28 dl 1.18 * from non-{@code ForkJoinTask} clients, as well as management and
29 jsr166 1.11 * monitoring operations.
30 jsr166 1.1 *
31 jsr166 1.9 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
32     * ExecutorService} mainly by virtue of employing
33     * <em>work-stealing</em>: all threads in the pool attempt to find and
34 dl 1.78 * execute tasks submitted to the pool and/or created by other active
35     * tasks (eventually blocking waiting for work if none exist). This
36     * enables efficient processing when most tasks spawn other subtasks
37     * (as do most {@code ForkJoinTask}s), as well as when many small
38     * tasks are submitted to the pool from external clients. Especially
39     * when setting <em>asyncMode</em> to true in constructors, {@code
40     * ForkJoinPool}s may also be appropriate for use with event-style
41 dl 1.330 * tasks that are never joined. All worker threads are initialized
42     * with {@link Thread#isDaemon} set {@code true}.
43 jsr166 1.1 *
44 dl 1.112 * <p>A static {@link #commonPool()} is available and appropriate for
45 dl 1.101 * most applications. The common pool is used by any ForkJoinTask that
46     * is not explicitly submitted to a specified pool. Using the common
47     * pool normally reduces resource usage (its threads are slowly
48     * reclaimed during periods of non-use, and reinstated upon subsequent
49 dl 1.105 * use).
50 dl 1.100 *
51     * <p>For applications that require separate or custom pools, a {@code
52     * ForkJoinPool} may be constructed with a given target parallelism
53 jsr166 1.214 * level; by default, equal to the number of available processors.
54     * The pool attempts to maintain enough active (or available) threads
55     * by dynamically adding, suspending, or resuming internal worker
56 jsr166 1.187 * threads, even if some tasks are stalled waiting to join others.
57     * However, no such adjustments are guaranteed in the face of blocked
58     * I/O or other unmanaged synchronization. The nested {@link
59 dl 1.100 * ManagedBlocker} interface enables extension of the kinds of
60 dl 1.300 * synchronization accommodated. The default policies may be
61     * overridden using a constructor with parameters corresponding to
62     * those documented in class {@link ThreadPoolExecutor}.
63 jsr166 1.1 *
64     * <p>In addition to execution and lifecycle control methods, this
65     * class provides status check methods (for example
66 jsr166 1.4 * {@link #getStealCount}) that are intended to aid in developing,
67 jsr166 1.1 * tuning, and monitoring fork/join applications. Also, method
68 jsr166 1.4 * {@link #toString} returns indications of pool state in a
69 jsr166 1.1 * convenient form for informal monitoring.
70     *
71 jsr166 1.109 * <p>As is the case with other ExecutorServices, there are three
72 jsr166 1.84 * main task execution methods summarized in the following table.
73     * These are designed to be used primarily by clients not already
74     * engaged in fork/join computations in the current pool. The main
75     * forms of these methods accept instances of {@code ForkJoinTask},
76     * but overloaded forms also allow mixed execution of plain {@code
77     * Runnable}- or {@code Callable}- based activities as well. However,
78     * tasks that are already executing in a pool should normally instead
79     * use the within-computation forms listed in the table unless using
80     * async event-style tasks that are not usually joined, in which case
81     * there is little difference among choice of methods.
82 dl 1.18 *
83 jsr166 1.337 * <table class="plain">
84 jsr166 1.159 * <caption>Summary of task execution methods</caption>
85 dl 1.18 * <tr>
86     * <td></td>
87 jsr166 1.338 * <th scope="col"> Call from non-fork/join clients</th>
88     * <th scope="col"> Call from within fork/join computations</th>
89 dl 1.18 * </tr>
90     * <tr>
91 jsr166 1.338 * <th scope="row" style="text-align:left"> Arrange async execution</th>
92 dl 1.18 * <td> {@link #execute(ForkJoinTask)}</td>
93     * <td> {@link ForkJoinTask#fork}</td>
94     * </tr>
95     * <tr>
96 jsr166 1.338 * <th scope="row" style="text-align:left"> Await and obtain result</th>
97 dl 1.18 * <td> {@link #invoke(ForkJoinTask)}</td>
98     * <td> {@link ForkJoinTask#invoke}</td>
99     * </tr>
100     * <tr>
101 jsr166 1.338 * <th scope="row" style="text-align:left"> Arrange exec and obtain Future</th>
102 dl 1.18 * <td> {@link #submit(ForkJoinTask)}</td>
103     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
104     * </tr>
105     * </table>
106 dl 1.19 *
107 jsr166 1.333 * <p>The parameters used to construct the common pool may be controlled by
108     * setting the following {@linkplain System#getProperty system properties}:
109 jsr166 1.162 * <ul>
110     * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
111     * - the parallelism level, a non-negative integer
112     * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
113 jsr166 1.331 * - the class name of a {@link ForkJoinWorkerThreadFactory}.
114     * The {@linkplain ClassLoader#getSystemClassLoader() system class loader}
115     * is used to load this class.
116 jsr166 1.162 * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
117 jsr166 1.331 * - the class name of a {@link UncaughtExceptionHandler}.
118     * The {@linkplain ClassLoader#getSystemClassLoader() system class loader}
119     * is used to load this class.
120 dl 1.208 * <li>{@code java.util.concurrent.ForkJoinPool.common.maximumSpares}
121 dl 1.223 * - the maximum number of allowed extra threads to maintain target
122 dl 1.208 * parallelism (default 256).
123 jsr166 1.162 * </ul>
124 jsr166 1.333 * If no thread factory is supplied via a system property, then the
125     * common pool uses a factory that uses the system class loader as the
126 jsr166 1.331 * {@linkplain Thread#getContextClassLoader() thread context class loader}.
127 jsr166 1.333 * In addition, if a {@link SecurityManager} is present, then
128     * the common pool uses a factory supplying threads that have no
129     * {@link Permissions} enabled.
130 jsr166 1.331 *
131 jsr166 1.156 * Upon any error in establishing these settings, default parameters
132 dl 1.160 * are used. It is possible to disable or limit the use of threads in
133     * the common pool by setting the parallelism property to zero, and/or
134 dl 1.193 * using a factory that may return {@code null}. However doing so may
135     * cause unjoined tasks to never be executed.
136 dl 1.105 *
137 jsr166 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
138     * maximum number of running threads to 32767. Attempts to create
139 jsr166 1.11 * pools with greater than the maximum number result in
140 jsr166 1.8 * {@code IllegalArgumentException}.
141 jsr166 1.1 *
142 jsr166 1.11 * <p>This implementation rejects submitted tasks (that is, by throwing
143 dl 1.19 * {@link RejectedExecutionException}) only when the pool is shut down
144 dl 1.20 * or internal resources have been exhausted.
145 jsr166 1.11 *
146 jsr166 1.1 * @since 1.7
147     * @author Doug Lea
148     */
149     public class ForkJoinPool extends AbstractExecutorService {
150    
151     /*
152 dl 1.14 * Implementation Overview
153     *
154 dl 1.78 * This class and its nested classes provide the main
155     * functionality and control for a set of worker threads:
156 jsr166 1.84 * Submissions from non-FJ threads enter into submission queues.
157     * Workers take these tasks and typically split them into subtasks
158 dl 1.339 * that may be stolen by other workers. Work-stealing based on
159     * randomized scans generally leads to better throughput than
160     * "work dealing" in which producers assign tasks to idle threads,
161     * in part because threads that have finished other tasks before
162     * the signalled thread wakes up (which can be a long time) can
163     * take the task instead. Preference rules give first priority to
164     * processing tasks from their own queues (LIFO or FIFO, depending
165     * on mode), then to randomized FIFO steals of tasks in other
166     * queues. This framework began as vehicle for supporting
167     * tree-structured parallelism using work-stealing. Over time,
168     * its scalability advantages led to extensions and changes to
169     * better support more diverse usage contexts. Because most
170     * internal methods and nested classes are interrelated, their
171     * main rationale and descriptions are presented here; individual
172     * methods and nested classes contain only brief comments about
173     * details.
174 dl 1.78 *
175 jsr166 1.84 * WorkQueues
176 dl 1.78 * ==========
177     *
178     * Most operations occur within work-stealing queues (in nested
179     * class WorkQueue). These are special forms of Deques that
180     * support only three of the four possible end-operations -- push,
181     * pop, and poll (aka steal), under the further constraints that
182     * push and pop are called only from the owning thread (or, as
183     * extended here, under a lock), while poll may be called from
184     * other threads. (If you are unfamiliar with them, you probably
185     * want to read Herlihy and Shavit's book "The Art of
186     * Multiprocessor programming", chapter 16 describing these in
187     * more detail before proceeding.) The main work-stealing queue
188     * design is roughly similar to those in the papers "Dynamic
189     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
190     * (http://research.sun.com/scalable/pubs/index.html) and
191     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
192     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
193 dl 1.200 * The main differences ultimately stem from GC requirements that
194     * we null out taken slots as soon as we can, to maintain as small
195     * a footprint as possible even in programs generating huge
196     * numbers of tasks. To accomplish this, we shift the CAS
197     * arbitrating pop vs poll (steal) from being on the indices
198     * ("base" and "top") to the slots themselves.
199     *
200 dl 1.243 * Adding tasks then takes the form of a classic array push(task)
201     * in a circular buffer:
202     * q.array[q.top++ % length] = task;
203 dl 1.200 *
204     * (The actual code needs to null-check and size-check the array,
205 jsr166 1.247 * uses masking, not mod, for indexing a power-of-two-sized array,
206 jsr166 1.341 * adds a release fence for publication, and possibly signals
207 dl 1.339 * waiting workers to start scanning -- see below.) Both a
208     * successful pop and poll mainly entail a CAS of a slot from
209     * non-null to null.
210 dl 1.200 *
211 jsr166 1.202 * The pop operation (always performed by owner) is:
212 dl 1.243 * if ((the task at top slot is not null) and
213 dl 1.200 * (CAS slot to null))
214     * decrement top and return task;
215     *
216     * And the poll operation (usually by a stealer) is
217 dl 1.243 * if ((the task at base slot is not null) and
218 dl 1.200 * (CAS slot to null))
219     * increment base and return task;
220     *
221 dl 1.339 * There are several variants of each of these. Most uses occur
222     * within operations that also interleave contention or emptiness
223     * tracking or inspection of elements before extracting them, so
224     * must interleave these with the above code. When performed by
225     * owner, getAndSet is used instead of CAS (see for example method
226     * nextLocalTask) which is usually more efficient, and possible
227     * because the top index cannot independently change during the
228     * operation.
229 dl 1.243 *
230     * Memory ordering. See "Correct and Efficient Work-Stealing for
231     * Weak Memory Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
232     * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
233     * analysis of memory ordering requirements in work-stealing
234     * algorithms similar to (but different than) the one used here.
235     * Extracting tasks in array slots via (fully fenced) CAS provides
236     * primary synchronization. The base and top indices imprecisely
237 dl 1.339 * guide where to extract from. We do not usually require strict
238     * orderings of array and index updates. Many index accesses use
239     * plain mode, with ordering constrained by surrounding context
240     * (usually with respect to element CASes or the two WorkQueue
241     * volatile fields source and phase). When not otherwise already
242     * constrained, reads of "base" by queue owners use acquire-mode,
243     * and some externally callable methods preface accesses with
244     * acquire fences. Additionally, to ensure that index update
245     * writes are not coalesced or postponed in loops etc, "opaque"
246     * mode is used in a few cases where timely writes are not
247     * otherwise ensured. The "locked" versions of push- and pop-
248     * based methods for shared queues differ from owned versions
249     * because locking already forces some of the ordering.
250     *
251     * Because indices and slot contents cannot always be consistent,
252     * a check that base == top indicates (momentary) emptiness, but
253     * otherwise may err on the side of possibly making the queue
254     * appear nonempty when a push, pop, or poll have not fully
255     * committed, or making it appear empty when an update of top has
256     * not yet been visibly written. (Method isEmpty() checks the
257     * case of a partially completed removal of the last element.)
258     * Because of this, the poll operation, considered individually,
259     * is not wait-free. One thief cannot successfully continue until
260     * another in-progress one (or, if previously empty, a push)
261     * visibly completes. This can stall threads when required to
262     * consume from a given queue (see method poll()). However, in
263     * the aggregate, we ensure at least probabilistic
264 dl 1.243 * non-blockingness. If an attempted steal fails, a scanning
265     * thief chooses a different random victim target to try next. So,
266     * in order for one thief to progress, it suffices for any
267 dl 1.339 * in-progress poll or new push on any empty queue to complete.
268 dl 1.200 *
269     * This approach also enables support of a user mode in which
270     * local task processing is in FIFO, not LIFO order, simply by
271     * using poll rather than pop. This can be useful in
272     * message-passing frameworks in which tasks are never joined.
273 dl 1.78 *
274     * WorkQueues are also used in a similar way for tasks submitted
275     * to the pool. We cannot mix these tasks in the same queues used
276 dl 1.200 * by workers. Instead, we randomly associate submission queues
277 dl 1.83 * with submitting threads, using a form of hashing. The
278 dl 1.139 * ThreadLocalRandom probe value serves as a hash code for
279     * choosing existing queues, and may be randomly repositioned upon
280     * contention with other submitters. In essence, submitters act
281     * like workers except that they are restricted to executing local
282 dl 1.300 * tasks that they submitted. Insertion of tasks in shared mode
283     * requires a lock but we use only a simple spinlock (using field
284 jsr166 1.304 * phase), because submitters encountering a busy queue move to a
285     * different position to use or create other queues -- they block
286     * only when creating and registering new queues. Because it is
287     * used only as a spinlock, unlocking requires only a "releasing"
288 dl 1.339 * store (using setRelease) unless otherwise signalling.
289 dl 1.78 *
290 jsr166 1.84 * Management
291 dl 1.78 * ==========
292 dl 1.52 *
293     * The main throughput advantages of work-stealing stem from
294     * decentralized control -- workers mostly take tasks from
295 dl 1.200 * themselves or each other, at rates that can exceed a billion
296     * per second. The pool itself creates, activates (enables
297     * scanning for and running tasks), deactivates, blocks, and
298     * terminates threads, all with minimal central information.
299     * There are only a few properties that we can globally track or
300     * maintain, so we pack them into a small number of variables,
301     * often maintaining atomicity without blocking or locking.
302 dl 1.300 * Nearly all essentially atomic control state is held in a few
303 dl 1.200 * volatile variables that are by far most often read (not
304 dl 1.300 * written) as status and consistency checks. We pack as much
305     * information into them as we can.
306 dl 1.78 *
307 dl 1.200 * Field "ctl" contains 64 bits holding information needed to
308 dl 1.300 * atomically decide to add, enqueue (on an event queue), and
309 dl 1.339 * dequeue and release workers. To enable this packing, we
310     * restrict maximum parallelism to (1<<15)-1 (which is far in
311     * excess of normal operating range) to allow ids, counts, and
312     * their negations (used for thresholding) to fit into 16bit
313 dl 1.215 * subfields.
314     *
315 dl 1.300 * Field "mode" holds configuration parameters as well as lifetime
316     * status, atomically and monotonically setting SHUTDOWN, STOP,
317     * and finally TERMINATED bits.
318 dl 1.258 *
319     * Field "workQueues" holds references to WorkQueues. It is
320 dl 1.300 * updated (only during worker creation and termination) under
321     * lock (using field workerNamePrefix as lock), but is otherwise
322     * concurrently readable, and accessed directly. We also ensure
323     * that uses of the array reference itself never become too stale
324 dl 1.339 * in case of resizing, by arranging that (re-)reads are separated
325     * by at least one acquiring read access. To simplify index-based
326     * operations, the array size is always a power of two, and all
327     * readers must tolerate null slots. Worker queues are at odd
328     * indices. Shared (submission) queues are at even indices, up to
329     * a maximum of 64 slots, to limit growth even if array needs to
330     * expand to add more workers. Grouping them together in this way
331     * simplifies and speeds up task scanning.
332 dl 1.86 *
333     * All worker thread creation is on-demand, triggered by task
334     * submissions, replacement of terminated workers, and/or
335 dl 1.78 * compensation for blocked workers. However, all other support
336     * code is set up to work with other policies. To ensure that we
337 jsr166 1.264 * do not hold on to worker references that would prevent GC, all
338 dl 1.78 * accesses to workQueues are via indices into the workQueues
339     * array (which is one source of some of the messy code
340     * constructions here). In essence, the workQueues array serves as
341 dl 1.200 * a weak reference mechanism. Thus for example the stack top
342     * subfield of ctl stores indices, not references.
343     *
344     * Queuing Idle Workers. Unlike HPC work-stealing frameworks, we
345     * cannot let workers spin indefinitely scanning for tasks when
346     * none can be found immediately, and we cannot start/resume
347     * workers unless there appear to be tasks available. On the
348     * other hand, we must quickly prod them into action when new
349     * tasks are submitted or generated. In many usages, ramp-up time
350 dl 1.300 * is the main limiting factor in overall performance, which is
351     * compounded at program start-up by JIT compilation and
352     * allocation. So we streamline this as much as possible.
353     *
354     * The "ctl" field atomically maintains total worker and
355     * "released" worker counts, plus the head of the available worker
356     * queue (actually stack, represented by the lower 32bit subfield
357     * of ctl). Released workers are those known to be scanning for
358     * and/or running tasks. Unreleased ("available") workers are
359     * recorded in the ctl stack. These workers are made available for
360     * signalling by enqueuing in ctl (see method runWorker). The
361     * "queue" is a form of Treiber stack. This is ideal for
362     * activating threads in most-recently used order, and improves
363 dl 1.200 * performance and locality, outweighing the disadvantages of
364     * being prone to contention and inability to release a worker
365 dl 1.300 * unless it is topmost on stack. To avoid missed signal problems
366     * inherent in any wait/signal design, available workers rescan
367     * for (and if found run) tasks after enqueuing. Normally their
368     * release status will be updated while doing so, but the released
369     * worker ctl count may underestimate the number of active
370     * threads. (However, it is still possible to determine quiescence
371     * via a validation traversal -- see isQuiescent). After an
372     * unsuccessful rescan, available workers are blocked until
373     * signalled (see signalWork). The top stack state holds the
374     * value of the "phase" field of the worker: its index and status,
375     * plus a version counter that, in addition to the count subfields
376     * (also serving as version stamps) provide protection against
377     * Treiber stack ABA effects.
378 dl 1.200 *
379 dl 1.300 * Creating workers. To create a worker, we pre-increment counts
380     * (serving as a reservation), and attempt to construct a
381 dl 1.200 * ForkJoinWorkerThread via its factory. Upon construction, the
382     * new thread invokes registerWorker, where it constructs a
383     * WorkQueue and is assigned an index in the workQueues array
384 jsr166 1.266 * (expanding the array if necessary). The thread is then started.
385     * Upon any exception across these steps, or null return from
386     * factory, deregisterWorker adjusts counts and records
387 dl 1.200 * accordingly. If a null return, the pool continues running with
388     * fewer than the target number workers. If exceptional, the
389     * exception is propagated, generally to some external caller.
390     * Worker index assignment avoids the bias in scanning that would
391     * occur if entries were sequentially packed starting at the front
392     * of the workQueues array. We treat the array as a simple
393     * power-of-two hash table, expanding as needed. The seedIndex
394     * increment ensures no collisions until a resize is needed or a
395     * worker is deregistered and replaced, and thereafter keeps
396 jsr166 1.202 * probability of collision low. We cannot use
397 dl 1.200 * ThreadLocalRandom.getProbe() for similar purposes here because
398     * the thread has not started yet, but do so for creating
399 dl 1.243 * submission queues for existing external threads (see
400     * externalPush).
401     *
402 dl 1.300 * WorkQueue field "phase" is used by both workers and the pool to
403     * manage and track whether a worker is UNSIGNALLED (possibly
404     * blocked waiting for a signal). When a worker is enqueued its
405     * phase field is set. Note that phase field updates lag queue CAS
406     * releases so usage requires care -- seeing a negative phase does
407     * not guarantee that the worker is available. When queued, the
408     * lower 16 bits of scanState must hold its pool index. So we
409 dl 1.339 * place the index there upon initialization and otherwise keep it
410     * there or restore it when necessary.
411 dl 1.243 *
412     * The ctl field also serves as the basis for memory
413     * synchronization surrounding activation. This uses a more
414     * efficient version of a Dekker-like rule that task producers and
415     * consumers sync with each other by both writing/CASing ctl (even
416 dl 1.253 * if to its current value). This would be extremely costly. So
417     * we relax it in several ways: (1) Producers only signal when
418 dl 1.339 * their queue is seen as empty at some point during a push
419     * operation. (2) Other workers propagate this signal when they
420     * find tasks. (3) Workers only enqueue after scanning (see below)
421     * and not finding any tasks. (4) Rather than CASing ctl to its
422     * current value in the common case where no action is required,
423     * we reduce write contention by equivalently prefacing signalWork
424     * when called by an external task producer using a memory access
425     * with full-volatile semantics or a "fullFence".
426 dl 1.243 *
427 jsr166 1.249 * Almost always, too many signals are issued. A task producer
428 dl 1.243 * cannot in general tell if some existing worker is in the midst
429     * of finishing one task (or already scanning) and ready to take
430     * another without being signalled. So the producer might instead
431     * activate a different worker that does not find any work, and
432     * then inactivates. This scarcely matters in steady-state
433     * computations involving all workers, but can create contention
434 jsr166 1.247 * and bookkeeping bottlenecks during ramp-up, ramp-down, and small
435 dl 1.243 * computations involving only a few workers.
436     *
437 dl 1.339 * Scanning. Method scan (from runWorker) performs top-level
438     * scanning for tasks. (Similar scans appear in helpQuiesce and
439     * pollScan.) Each scan traverses and tries to poll from each
440     * queue starting at a random index. Scans are not performed in
441     * ideal random permutation order, to reduce cacheline
442     * contention. The pseudorandom generator need not have
443 dl 1.300 * high-quality statistical properties in the long term, but just
444     * within computations; We use Marsaglia XorShifts (often via
445     * ThreadLocalRandom.nextSecondarySeed), which are cheap and
446 dl 1.339 * suffice. Scanning also includes contention reduction: When
447 dl 1.300 * scanning workers fail to extract an apparently existing task,
448 dl 1.339 * they soon restart at a different pseudorandom index. This form
449     * of backoff improves throughput when many threads are trying to
450     * take tasks from few queues, which can be common in some usages.
451     * Scans do not otherwise explicitly take into account core
452     * affinities, loads, cache localities, etc, However, they do
453     * exploit temporal locality (which usually approximates these) by
454     * preferring to re-poll from the same queue after a successful
455     * poll before trying others (see method topLevelExec).
456 dl 1.52 *
457     * Trimming workers. To release resources after periods of lack of
458     * use, a worker starting to wait when the pool is quiescent will
459 dl 1.339 * time out and terminate (see method runWorker) if the pool has
460 dl 1.300 * remained quiescent for period given by field keepAlive.
461 dl 1.52 *
462 dl 1.210 * Shutdown and Termination. A call to shutdownNow invokes
463     * tryTerminate to atomically set a runState bit. The calling
464     * thread, as well as every other worker thereafter terminating,
465 dl 1.300 * helps terminate others by cancelling their unprocessed tasks,
466     * and waking them up, doing so repeatedly until stable. Calls to
467     * non-abrupt shutdown() preface this by checking whether
468     * termination should commence by sweeping through queues (until
469     * stable) to ensure lack of in-flight submissions and workers
470     * about to process them before triggering the "STOP" phase of
471     * termination.
472 dl 1.211 *
473 jsr166 1.84 * Joining Tasks
474     * =============
475 dl 1.78 *
476     * Any of several actions may be taken when one worker is waiting
477 jsr166 1.84 * to join a task stolen (or always held) by another. Because we
478 dl 1.78 * are multiplexing many tasks on to a pool of workers, we can't
479 dl 1.300 * always just let them block (as in Thread.join). We also cannot
480     * just reassign the joiner's run-time stack with another and
481     * replace it later, which would be a form of "continuation", that
482     * even if possible is not necessarily a good idea since we may
483     * need both an unblocked task and its continuation to progress.
484     * Instead we combine two tactics:
485 dl 1.19 *
486     * Helping: Arranging for the joiner to execute some task that it
487 dl 1.78 * would be running if the steal had not occurred.
488 dl 1.19 *
489     * Compensating: Unless there are already enough live threads,
490 dl 1.78 * method tryCompensate() may create or re-activate a spare
491     * thread to compensate for blocked joiners until they unblock.
492     *
493 dl 1.105 * A third form (implemented in tryRemoveAndExec) amounts to
494     * helping a hypothetical compensator: If we can readily tell that
495     * a possible action of a compensator is to steal and execute the
496     * task being joined, the joining thread can do so directly,
497 dl 1.300 * without the need for a compensation thread.
498 dl 1.52 *
499     * The ManagedBlocker extension API can't use helping so relies
500     * only on compensation in method awaitBlocker.
501 dl 1.19 *
502 dl 1.300 * The algorithm in awaitJoin entails a form of "linear helping".
503     * Each worker records (in field source) the id of the queue from
504     * which it last stole a task. The scan in method awaitJoin uses
505     * these markers to try to find a worker to help (i.e., steal back
506     * a task from and execute it) that could hasten completion of the
507     * actively joined task. Thus, the joiner executes a task that
508     * would be on its own local deque if the to-be-joined task had
509     * not been stolen. This is a conservative variant of the approach
510     * described in Wagner & Calder "Leapfrogging: a portable
511     * technique for implementing efficient futures" SIGPLAN Notices,
512     * 1993 (http://portal.acm.org/citation.cfm?id=155354). It differs
513     * mainly in that we only record queue ids, not full dependency
514     * links. This requires a linear scan of the workQueues array to
515     * locate stealers, but isolates cost to when it is needed, rather
516     * than adding to per-task overhead. Searches can fail to locate
517     * stealers GC stalls and the like delay recording sources.
518     * Further, even when accurately identified, stealers might not
519     * ever produce a task that the joiner can in turn help with. So,
520     * compensation is tried upon failure to find tasks to run.
521 dl 1.105 *
522 dl 1.300 * Compensation does not by default aim to keep exactly the target
523 dl 1.200 * parallelism number of unblocked threads running at any given
524     * time. Some previous versions of this class employed immediate
525     * compensations for any blocked join. However, in practice, the
526     * vast majority of blockages are transient byproducts of GC and
527 dl 1.339 * other JVM or OS activities that are made worse by replacement
528     * when they cause longer-term oversubscription. Rather than
529     * impose arbitrary policies, we allow users to override the
530     * default of only adding threads upon apparent starvation. The
531     * compensation mechanism may also be bounded. Bounds for the
532     * commonPool (see COMMON_MAX_SPARES) better enable JVMs to cope
533     * with programming errors and abuse before running out of
534     * resources to do so.
535 jsr166 1.301 *
536 dl 1.105 * Common Pool
537     * ===========
538     *
539 jsr166 1.175 * The static common pool always exists after static
540 dl 1.105 * initialization. Since it (or any other created pool) need
541     * never be used, we minimize initial construction overhead and
542 dl 1.300 * footprint to the setup of about a dozen fields.
543 dl 1.105 *
544     * When external threads submit to the common pool, they can
545 dl 1.200 * perform subtask processing (see externalHelpComplete and
546     * related methods) upon joins. This caller-helps policy makes it
547     * sensible to set common pool parallelism level to one (or more)
548     * less than the total number of available cores, or even zero for
549     * pure caller-runs. We do not need to record whether external
550     * submissions are to the common pool -- if not, external help
551     * methods return quickly. These submitters would otherwise be
552     * blocked waiting for completion, so the extra effort (with
553     * liberally sprinkled task status checks) in inapplicable cases
554     * amounts to an odd form of limited spin-wait before blocking in
555     * ForkJoinTask.join.
556 dl 1.105 *
557 dl 1.197 * As a more appropriate default in managed environments, unless
558     * overridden by system properties, we use workers of subclass
559     * InnocuousForkJoinWorkerThread when there is a SecurityManager
560     * present. These workers have no permissions set, do not belong
561     * to any user-defined ThreadGroup, and erase all ThreadLocals
562 dl 1.300 * after executing any top-level task (see
563     * WorkQueue.afterTopLevelExec). The associated mechanics (mainly
564     * in ForkJoinWorkerThread) may be JVM-dependent and must access
565     * particular Thread class fields to achieve this effect.
566 jsr166 1.198 *
567 dl 1.339 * Memory placement
568     * ================
569     *
570     * Performance can be very sensitive to placement of instances of
571     * ForkJoinPool and WorkQueues and their queue arrays. To reduce
572     * false-sharing impact, the @Contended annotation isolates
573     * adjacent WorkQueue instances, as well as the ForkJoinPool.ctl
574     * field. WorkQueue arrays are allocated (by their threads) with
575     * larger initial sizes than most ever need, mostly to reduce
576 jsr166 1.342 * false sharing with current garbage collectors that use cardmark
577 dl 1.339 * tables.
578     *
579 dl 1.105 * Style notes
580     * ===========
581     *
582 jsr166 1.315 * Memory ordering relies mainly on VarHandles. This can be
583     * awkward and ugly, but also reflects the need to control
584     * outcomes across the unusual cases that arise in very racy code
585 dl 1.319 * with very few invariants. All fields are read into locals
586 dl 1.339 * before use, and null-checked if they are references. Array
587     * accesses using masked indices include checks (that are always
588     * true) that the array length is non-zero to avoid compilers
589     * inserting more expensive traps. This is usually done in a
590     * "C"-like style of listing declarations at the heads of methods
591     * or blocks, and using inline assignments on first encounter.
592     * Nearly all explicit checks lead to bypass/return, not exception
593     * throws, because they may legitimately arise due to
594     * cancellation/revocation during shutdown.
595 dl 1.200 *
596 dl 1.105 * There is a lot of representation-level coupling among classes
597     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
598     * fields of WorkQueue maintain data structures managed by
599     * ForkJoinPool, so are directly accessed. There is little point
600     * trying to reduce this, since any associated future changes in
601     * representations will need to be accompanied by algorithmic
602     * changes anyway. Several methods intrinsically sprawl because
603 dl 1.200 * they must accumulate sets of consistent reads of fields held in
604 dl 1.339 * local variables. Some others are artificially broken up to
605     * reduce producer/consumer imbalances due to dynamic compilation.
606     * There are also other coding oddities (including several
607     * unnecessary-looking hoisted null checks) that help some methods
608     * perform reasonably even when interpreted (not compiled).
609 dl 1.52 *
610 dl 1.208 * The order of declarations in this file is (with a few exceptions):
611 dl 1.86 * (1) Static utility functions
612     * (2) Nested (static) classes
613     * (3) Static fields
614     * (4) Fields, along with constants used when unpacking some of them
615     * (5) Internal control methods
616     * (6) Callbacks and other support for ForkJoinTask methods
617     * (7) Exported methods
618     * (8) Static block initializing statics in minimally dependent order
619     */
620    
621     // Static utilities
622    
623     /**
624     * If there is a security manager, makes sure caller has
625     * permission to modify threads.
626 jsr166 1.1 */
627 dl 1.86 private static void checkPermission() {
628     SecurityManager security = System.getSecurityManager();
629     if (security != null)
630     security.checkPermission(modifyThreadPermission);
631     }
632    
633     // Nested classes
634 jsr166 1.1
635     /**
636 jsr166 1.8 * Factory for creating new {@link ForkJoinWorkerThread}s.
637     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
638     * for {@code ForkJoinWorkerThread} subclasses that extend base
639     * functionality or initialize threads with different contexts.
640 jsr166 1.1 */
641     public static interface ForkJoinWorkerThreadFactory {
642     /**
643     * Returns a new worker thread operating in the given pool.
644 dl 1.300 * Returning null or throwing an exception may result in tasks
645     * never being executed. If this method throws an exception,
646     * it is relayed to the caller of the method (for example
647     * {@code execute}) causing attempted thread creation. If this
648     * method returns null or throws an exception, it is not
649     * retried until the next attempted creation (for example
650     * another call to {@code execute}).
651 jsr166 1.1 *
652     * @param pool the pool this thread works in
653 jsr166 1.296 * @return the new worker thread, or {@code null} if the request
654 jsr166 1.331 * to create a thread is rejected
655 jsr166 1.11 * @throws NullPointerException if the pool is null
656 jsr166 1.1 */
657     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
658     }
659    
660 jsr166 1.331 static AccessControlContext contextWithPermissions(Permission ... perms) {
661     Permissions permissions = new Permissions();
662     for (Permission perm : perms)
663     permissions.add(perm);
664     return new AccessControlContext(
665     new ProtectionDomain[] { new ProtectionDomain(null, permissions) });
666     }
667    
668 jsr166 1.1 /**
669     * Default ForkJoinWorkerThreadFactory implementation; creates a
670 jsr166 1.331 * new ForkJoinWorkerThread using the system class loader as the
671     * thread context class loader.
672 jsr166 1.1 */
673 jsr166 1.278 private static final class DefaultForkJoinWorkerThreadFactory
674 jsr166 1.1 implements ForkJoinWorkerThreadFactory {
675 jsr166 1.331 private static final AccessControlContext ACC = contextWithPermissions(
676     new RuntimePermission("getClassLoader"),
677     new RuntimePermission("setContextClassLoader"));
678    
679 dl 1.112 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
680 jsr166 1.331 return AccessController.doPrivileged(
681     new PrivilegedAction<>() {
682     public ForkJoinWorkerThread run() {
683     return new ForkJoinWorkerThread(
684     pool, ClassLoader.getSystemClassLoader()); }},
685     ACC);
686 jsr166 1.1 }
687     }
688    
689 dl 1.200 // Constants shared across ForkJoinPool and WorkQueue
690    
691     // Bounds
692 dl 1.300 static final int SWIDTH = 16; // width of short
693 dl 1.200 static final int SMASK = 0xffff; // short bits == max index
694     static final int MAX_CAP = 0x7fff; // max #workers - 1
695     static final int SQMASK = 0x007e; // max 64 (even) slots
696    
697 dl 1.300 // Masks and units for WorkQueue.phase and ctl sp subfield
698 dl 1.243 static final int UNSIGNALLED = 1 << 31; // must be negative
699 dl 1.211 static final int SS_SEQ = 1 << 16; // version count
700 dl 1.300 static final int QLOCK = 1; // must be 1
701 dl 1.200
702 dl 1.300 // Mode bits and sentinels, some also used in WorkQueue id and.source fields
703     static final int OWNED = 1; // queue has owner thread
704     static final int FIFO = 1 << 16; // fifo queue or access mode
705     static final int SHUTDOWN = 1 << 18;
706     static final int TERMINATED = 1 << 19;
707     static final int STOP = 1 << 31; // must be negative
708     static final int QUIET = 1 << 30; // not scanning or working
709     static final int DORMANT = QUIET | UNSIGNALLED;
710    
711     /**
712 dl 1.339 * Initial capacity of work-stealing queue array.
713     * Must be a power of two, at least 2.
714     */
715     static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
716    
717     /**
718     * Maximum capacity for queue arrays. Must be a power of two less
719     * than or equal to 1 << (31 - width of array entry) to ensure
720     * lack of wraparound of index calculations, but defined to a
721 jsr166 1.343 * value a bit less than this to help users trap runaway programs
722 dl 1.339 * before saturating systems.
723     */
724     static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
725    
726     /**
727     * The maximum number of top-level polls from local queue before
728 dl 1.300 * checking others. This is a safeguard against infinitely unfair
729     * looping under unbounded user task recursion, and must be larger
730     * than plausible cases of intentional bounded task recursion.
731 dl 1.253 */
732 dl 1.339 static final int SELF_CONSUME_LIMIT = 1 << 10;
733 dl 1.253
734     /**
735 dl 1.78 * Queues supporting work-stealing as well as external task
736 jsr166 1.202 * submission. See above for descriptions and algorithms.
737 dl 1.78 */
738 dl 1.308 @jdk.internal.vm.annotation.Contended
739 dl 1.78 static final class WorkQueue {
740 dl 1.339 volatile int source; // source queue id, or sentinel
741     int id; // pool index, mode, tag
742     int base; // index of next slot for poll
743     int top; // index of next slot for push
744 dl 1.300 volatile int phase; // versioned, negative: queued, 1: locked
745     int stackPred; // pool stack (ctl) predecessor link
746 dl 1.178 int nsteals; // number of steals
747 dl 1.339 ForkJoinTask<?>[] array; // the queued tasks; power of 2 size
748 dl 1.90 final ForkJoinPool pool; // the containing pool (may be null)
749 dl 1.78 final ForkJoinWorkerThread owner; // owning thread or null if shared
750 dl 1.112
751 dl 1.200 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner) {
752 dl 1.90 this.pool = pool;
753 dl 1.78 this.owner = owner;
754 dl 1.115 // Place indices in the center of array (that is not yet allocated)
755 dl 1.78 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
756     }
757    
758     /**
759 dl 1.339 * Tries to lock shared queue by CASing phase field.
760     */
761     final boolean tryLockPhase() {
762     return PHASE.compareAndSet(this, 0, 1);
763     }
764    
765     final void releasePhaseLock() {
766     PHASE.setRelease(this, 0);
767     }
768    
769     /**
770 jsr166 1.220 * Returns an exportable index (used by ForkJoinWorkerThread).
771 dl 1.200 */
772     final int getPoolIndex() {
773 dl 1.300 return (id & 0xffff) >>> 1; // ignore odd/even tag bit
774 dl 1.200 }
775    
776     /**
777 dl 1.115 * Returns the approximate number of tasks in the queue.
778     */
779     final int queueSize() {
780 dl 1.339 int n = (int)BASE.getAcquire(this) - top;
781 dl 1.115 return (n >= 0) ? 0 : -n; // ignore transient negative
782     }
783    
784 jsr166 1.180 /**
785 dl 1.115 * Provides a more accurate estimate of whether this queue has
786     * any tasks than does queueSize, by checking whether a
787     * near-empty queue has at least one unclaimed task.
788     */
789     final boolean isEmpty() {
790 dl 1.339 ForkJoinTask<?>[] a; int n, cap, b;
791     VarHandle.acquireFence(); // needed by external callers
792 dl 1.300 return ((n = (b = base) - top) >= 0 || // possibly one task
793 dl 1.243 (n == -1 && ((a = array) == null ||
794 dl 1.339 (cap = a.length) == 0 ||
795     a[(cap - 1) & b] == null)));
796 dl 1.115 }
797    
798     /**
799 dl 1.256 * Pushes a task. Call only by owner in unshared queues.
800 dl 1.78 *
801     * @param task the task. Caller must ensure non-null.
802 jsr166 1.146 * @throws RejectedExecutionException if array cannot be resized
803 dl 1.78 */
804 dl 1.90 final void push(ForkJoinTask<?> task) {
805 dl 1.339 ForkJoinTask<?>[] a;
806     int s = top, d, cap;
807     ForkJoinPool p = pool;
808     if ((a = array) != null && (cap = a.length) > 0) {
809     QA.setRelease(a, (cap - 1) & s, task);
810 dl 1.243 top = s + 1;
811 dl 1.339 if ((d = (int)BASE.getAcquire(this) - s) == 0 && p != null) {
812 dl 1.314 VarHandle.fullFence();
813 dl 1.253 p.signalWork();
814 dl 1.284 }
815 dl 1.339 else if (d + cap - 1 == 0)
816     growArray(false);
817 dl 1.78 }
818     }
819    
820 dl 1.178 /**
821 dl 1.339 * Version of push for shared queues. Call only with phase lock held.
822     * @return true if should signal work
823 dl 1.112 */
824 dl 1.339 final boolean lockedPush(ForkJoinTask<?> task) {
825     ForkJoinTask<?>[] a;
826     boolean signal = false;
827     int s = top, b = base, cap;
828     if ((a = array) != null && (cap = a.length) > 0) {
829     a[(cap - 1) & s] = task;
830     top = s + 1;
831     if (b - s + cap - 1 == 0)
832     growArray(true);
833     else {
834     phase = 0; // full volatile unlock
835     if (base == s)
836     signal = true;
837     }
838     }
839     return signal;
840 dl 1.78 }
841    
842     /**
843 dl 1.339 * Doubles the capacity of array. Call either by owner or with
844     * lock held -- it is OK for base, but not top, to move while
845     * resizings are in progress.
846     */
847     final void growArray(boolean locked) {
848     ForkJoinTask<?>[] newA = null;
849     try {
850     ForkJoinTask<?>[] oldA; int oldSize, newSize;
851     if ((oldA = array) != null && (oldSize = oldA.length) > 0 &&
852     (newSize = oldSize << 1) <= MAXIMUM_QUEUE_CAPACITY &&
853     newSize > 0) {
854     try {
855     newA = new ForkJoinTask<?>[newSize];
856     } catch (OutOfMemoryError ex) {
857     }
858     if (newA != null) { // poll from old array, push to new
859     int oldMask = oldSize - 1, newMask = newSize - 1;
860     for (int s = top - 1, k = oldMask; k >= 0; --k) {
861     ForkJoinTask<?> x = (ForkJoinTask<?>)
862     QA.getAndSet(oldA, s & oldMask, null);
863     if (x != null)
864     newA[s-- & newMask] = x;
865     else
866     break;
867     }
868     array = newA;
869     VarHandle.releaseFence();
870     }
871 dl 1.78 }
872 dl 1.339 } finally {
873     if (locked)
874     phase = 0;
875 dl 1.78 }
876 dl 1.339 if (newA == null)
877     throw new RejectedExecutionException("Queue capacity exceeded");
878 dl 1.78 }
879    
880     /**
881 dl 1.90 * Takes next task, if one exists, in FIFO order.
882 dl 1.78 */
883 dl 1.90 final ForkJoinTask<?> poll() {
884 dl 1.339 int b, k, cap; ForkJoinTask<?>[] a;
885     while ((a = array) != null && (cap = a.length) > 0 &&
886     (b = base) != top) {
887     ForkJoinTask<?> t = (ForkJoinTask<?>)
888     QA.getAcquire(a, k = (cap - 1) & b);
889     if (base == b++) {
890     if (t == null)
891     Thread.yield(); // await index advance
892     else if (QA.compareAndSet(a, k, t, null)) {
893     BASE.setOpaque(this, b);
894     return t;
895 dl 1.78 }
896 dl 1.90 }
897 dl 1.78 }
898     return null;
899     }
900    
901     /**
902     * Takes next task, if one exists, in order specified by mode.
903     */
904     final ForkJoinTask<?> nextLocalTask() {
905 dl 1.339 ForkJoinTask<?> t = null;
906     int md = id, b, s, d, cap; ForkJoinTask<?>[] a;
907     if ((a = array) != null && (cap = a.length) > 0 &&
908     (d = (s = top) - (b = base)) > 0) {
909     if ((md & FIFO) == 0 || d == 1) {
910     if ((t = (ForkJoinTask<?>)
911     QA.getAndSet(a, (cap - 1) & --s, null)) != null)
912     TOP.setOpaque(this, s);
913     }
914     else if ((t = (ForkJoinTask<?>)
915     QA.getAndSet(a, (cap - 1) & b++, null)) != null) {
916     BASE.setOpaque(this, b);
917     }
918     else // on contention in FIFO mode, use regular poll
919     t = poll();
920     }
921     return t;
922 dl 1.78 }
923    
924     /**
925     * Returns next task, if one exists, in order specified by mode.
926     */
927     final ForkJoinTask<?> peek() {
928 dl 1.339 int cap; ForkJoinTask<?>[] a;
929     return ((a = array) != null && (cap = a.length) > 0) ?
930     a[(cap - 1) & ((id & FIFO) != 0 ? base : top - 1)] : null;
931 dl 1.78 }
932    
933     /**
934     * Pops the given task only if it is at the current top.
935 jsr166 1.251 */
936 dl 1.243 final boolean tryUnpush(ForkJoinTask<?> task) {
937 dl 1.339 boolean popped = false;
938     int s, cap; ForkJoinTask<?>[] a;
939     if ((a = array) != null && (cap = a.length) > 0 &&
940     (s = top) != base &&
941     (popped = QA.compareAndSet(a, (cap - 1) & --s, task, null)))
942     TOP.setOpaque(this, s);
943     return popped;
944     }
945    
946     /**
947     * Shared version of tryUnpush.
948     */
949     final boolean tryLockedUnpush(ForkJoinTask<?> task) {
950     boolean popped = false;
951     int s = top - 1, k, cap; ForkJoinTask<?>[] a;
952     if ((a = array) != null && (cap = a.length) > 0 &&
953     a[k = (cap - 1) & s] == task && tryLockPhase()) {
954     if (top == s + 1 && array == a &&
955     (popped = QA.compareAndSet(a, k, task, null)))
956 dl 1.243 top = s;
957 dl 1.339 releasePhaseLock();
958 dl 1.78 }
959 dl 1.339 return popped;
960 dl 1.78 }
961    
962     /**
963 jsr166 1.84 * Removes and cancels all known tasks, ignoring any exceptions.
964 dl 1.78 */
965     final void cancelAll() {
966 dl 1.300 for (ForkJoinTask<?> t; (t = poll()) != null; )
967 dl 1.78 ForkJoinTask.cancelIgnoringExceptions(t);
968     }
969    
970 dl 1.104 // Specialized execution methods
971 dl 1.78
972     /**
973 dl 1.339 * Runs the given (stolen) task, as well as remaining local
974     * tasks (up to limit) and others available from the given
975     * queue.
976     */
977     final void topLevelExec(ForkJoinTask<?> t, WorkQueue q) {
978     int nstolen = 1;
979     for (int nlocal = 0;;) {
980     if (t != null)
981     t.doExec();
982     if (nlocal >= SELF_CONSUME_LIMIT)
983     break; // avoid infinite self-consume loops
984     else if ((t = nextLocalTask()) != null)
985     ++nlocal;
986     else if (q != null && (t = q.poll()) != null)
987     ++nstolen;
988 dl 1.253 else
989     break;
990     }
991 dl 1.339 ForkJoinWorkerThread thread = owner;
992     nsteals += nstolen;
993     source = 0;
994     if (thread != null)
995     thread.afterTopLevelExec();
996 dl 1.253 }
997    
998     /**
999 jsr166 1.302 * If present, removes task from queue and executes it.
1000 dl 1.94 */
1001 dl 1.300 final void tryRemoveAndExec(ForkJoinTask<?> task) {
1002 dl 1.339 ForkJoinTask<?>[] a; int s, cap;
1003     if ((a = array) != null && (cap = a.length) > 0 &&
1004     base - (s = top) < 0) { // traverse from top
1005     for (int m = cap - 1, ns = s - 1, i = ns; ; --i) {
1006 dl 1.300 int index = i & m;
1007 dl 1.339 ForkJoinTask<?> t = (ForkJoinTask<?>)QA.get(a, index);
1008 dl 1.300 if (t == null)
1009     break;
1010     else if (t == task) {
1011 dl 1.339 if (QA.compareAndSet(a, index, t, null)) {
1012 dl 1.300 top = ns; // safely shift down
1013     for (int j = i; j != ns; ++j) {
1014     ForkJoinTask<?> f;
1015     int pindex = (j + 1) & m;
1016 dl 1.339 f = (ForkJoinTask<?>)QA.get(a, pindex);
1017     QA.setVolatile(a, pindex, null);
1018 dl 1.300 int jindex = j & m;
1019 dl 1.339 QA.setRelease(a, jindex, f);
1020 dl 1.300 }
1021 dl 1.314 VarHandle.releaseFence();
1022 dl 1.300 t.doExec();
1023     }
1024     break;
1025     }
1026 dl 1.262 }
1027 dl 1.215 }
1028     }
1029    
1030     /**
1031 dl 1.339 * Tries to pop and run tasks within the target's computation
1032     * until done, not found, or limit exceeded.
1033 dl 1.94 *
1034 dl 1.300 * @param task root of CountedCompleter computation
1035     * @param limit max runs, or zero for no limit
1036 dl 1.339 * @param shared true if must lock to extract task
1037 dl 1.300 * @return task status on exit
1038     */
1039 dl 1.339 final int helpCC(CountedCompleter<?> task, int limit, boolean shared) {
1040 dl 1.300 int status = 0;
1041     if (task != null && (status = task.status) >= 0) {
1042 dl 1.339 int s, k, cap; ForkJoinTask<?>[] a;
1043     while ((a = array) != null && (cap = a.length) > 0 &&
1044     (s = top) != base) {
1045     CountedCompleter<?> v = null;
1046     ForkJoinTask<?> o = a[k = (cap - 1) & (s - 1)];
1047     if (o instanceof CountedCompleter) {
1048     CountedCompleter<?> t = (CountedCompleter<?>)o;
1049     for (CountedCompleter<?> f = t;;) {
1050     if (f != task) {
1051     if ((f = f.completer) == null)
1052     break;
1053     }
1054     else if (shared) {
1055     if (tryLockPhase()) {
1056     if (top == s && array == a &&
1057     QA.compareAndSet(a, k, t, null)) {
1058 dl 1.300 top = s - 1;
1059 dl 1.339 v = t;
1060 dl 1.300 }
1061 dl 1.339 releasePhaseLock();
1062     }
1063     break;
1064     }
1065     else {
1066     if (QA.compareAndSet(a, k, t, null)) {
1067     top = s - 1;
1068     v = t;
1069 dl 1.200 }
1070 dl 1.339 break;
1071 dl 1.200 }
1072 dl 1.243 }
1073 dl 1.104 }
1074 dl 1.339 if (v != null)
1075     v.doExec();
1076     if ((status = task.status) < 0 || v == null ||
1077 dl 1.300 (limit != 0 && --limit == 0))
1078     break;
1079 dl 1.104 }
1080     }
1081 dl 1.300 return status;
1082     }
1083    
1084     /**
1085 dl 1.339 * Tries to poll and run AsynchronousCompletionTasks until
1086     * none found or blocker is released
1087     *
1088     * @param blocker the blocker
1089 dl 1.300 */
1090 dl 1.339 final void helpAsyncBlocker(ManagedBlocker blocker) {
1091     if (blocker != null) {
1092     int b, k, cap; ForkJoinTask<?>[] a; ForkJoinTask<?> t;
1093     while ((a = array) != null && (cap = a.length) > 0 &&
1094     (b = base) != top) {
1095     t = (ForkJoinTask<?>)QA.getAcquire(a, k = (cap - 1) & b);
1096     if (blocker.isReleasable())
1097     break;
1098     else if (base == b++ && t != null) {
1099     if (!(t instanceof CompletableFuture.
1100     AsynchronousCompletionTask))
1101     break;
1102     else if (QA.compareAndSet(a, k, t, null)) {
1103     BASE.setOpaque(this, b);
1104     t.doExec();
1105 dl 1.200 }
1106 dl 1.178 }
1107     }
1108 dl 1.78 }
1109     }
1110    
1111     /**
1112 dl 1.86 * Returns true if owned and not known to be blocked.
1113     */
1114     final boolean isApparentlyUnblocked() {
1115     Thread wt; Thread.State s;
1116 dl 1.300 return ((wt = owner) != null &&
1117 dl 1.86 (s = wt.getState()) != Thread.State.BLOCKED &&
1118     s != Thread.State.WAITING &&
1119     s != Thread.State.TIMED_WAITING);
1120     }
1121    
1122 dl 1.314 // VarHandle mechanics.
1123 dl 1.339 static final VarHandle PHASE;
1124     static final VarHandle BASE;
1125     static final VarHandle TOP;
1126 dl 1.78 static {
1127     try {
1128 dl 1.314 MethodHandles.Lookup l = MethodHandles.lookup();
1129     PHASE = l.findVarHandle(WorkQueue.class, "phase", int.class);
1130 dl 1.339 BASE = l.findVarHandle(WorkQueue.class, "base", int.class);
1131     TOP = l.findVarHandle(WorkQueue.class, "top", int.class);
1132 jsr166 1.231 } catch (ReflectiveOperationException e) {
1133 dl 1.78 throw new Error(e);
1134     }
1135     }
1136     }
1137 dl 1.14
1138 dl 1.112 // static fields (initialized in static initializer below)
1139    
1140     /**
1141     * Creates a new ForkJoinWorkerThread. This factory is used unless
1142     * overridden in ForkJoinPool constructors.
1143     */
1144     public static final ForkJoinWorkerThreadFactory
1145     defaultForkJoinWorkerThreadFactory;
1146    
1147 jsr166 1.1 /**
1148 dl 1.115 * Permission required for callers of methods that may start or
1149 dl 1.300 * kill threads.
1150 dl 1.115 */
1151 jsr166 1.276 static final RuntimePermission modifyThreadPermission;
1152 dl 1.115
1153     /**
1154 dl 1.101 * Common (static) pool. Non-null for public use unless a static
1155 dl 1.105 * construction exception, but internal usages null-check on use
1156     * to paranoically avoid potential initialization circularities
1157     * as well as to simplify generated code.
1158 dl 1.101 */
1159 dl 1.134 static final ForkJoinPool common;
1160 dl 1.101
1161     /**
1162 dl 1.160 * Common pool parallelism. To allow simpler use and management
1163     * when common pool threads are disabled, we allow the underlying
1164 dl 1.185 * common.parallelism field to be zero, but in that case still report
1165 dl 1.160 * parallelism as 1 to reflect resulting caller-runs mechanics.
1166 dl 1.90 */
1167 jsr166 1.274 static final int COMMON_PARALLELISM;
1168 dl 1.90
1169     /**
1170 dl 1.208 * Limit on spare thread construction in tryCompensate.
1171     */
1172 jsr166 1.273 private static final int COMMON_MAX_SPARES;
1173 dl 1.208
1174     /**
1175 dl 1.105 * Sequence number for creating workerNamePrefix.
1176 dl 1.86 */
1177 dl 1.105 private static int poolNumberSequence;
1178 dl 1.86
1179 jsr166 1.1 /**
1180 jsr166 1.132 * Returns the next sequence number. We don't expect this to
1181     * ever contend, so use simple builtin sync.
1182 dl 1.83 */
1183 dl 1.105 private static final synchronized int nextPoolId() {
1184     return ++poolNumberSequence;
1185     }
1186 dl 1.86
1187 dl 1.200 // static configuration constants
1188 dl 1.86
1189     /**
1190 dl 1.300 * Default idle timeout value (in milliseconds) for the thread
1191     * triggering quiescence to park waiting for new work
1192 dl 1.86 */
1193 jsr166 1.326 private static final long DEFAULT_KEEPALIVE = 60_000L;
1194 dl 1.86
1195     /**
1196 dl 1.300 * Undershoot tolerance for idle timeouts
1197 dl 1.120 */
1198 dl 1.300 private static final long TIMEOUT_SLOP = 20L;
1199 dl 1.200
1200     /**
1201 jsr166 1.273 * The default value for COMMON_MAX_SPARES. Overridable using the
1202     * "java.util.concurrent.ForkJoinPool.common.maximumSpares" system
1203     * property. The default value is far in excess of normal
1204     * requirements, but also far short of MAX_CAP and typical OS
1205     * thread limits, so allows JVMs to catch misuse/abuse before
1206     * running out of resources needed to do so.
1207 dl 1.200 */
1208 dl 1.208 private static final int DEFAULT_COMMON_MAX_SPARES = 256;
1209 dl 1.120
1210     /**
1211 dl 1.90 * Increment for seed generators. See class ThreadLocal for
1212     * explanation.
1213     */
1214 dl 1.193 private static final int SEED_INCREMENT = 0x9e3779b9;
1215 dl 1.83
1216 jsr166 1.163 /*
1217 dl 1.200 * Bits and masks for field ctl, packed with 4 16 bit subfields:
1218 dl 1.300 * RC: Number of released (unqueued) workers minus target parallelism
1219 dl 1.200 * TC: Number of total workers minus target parallelism
1220     * SS: version count and status of top waiting thread
1221     * ID: poolIndex of top of Treiber stack of waiters
1222     *
1223     * When convenient, we can extract the lower 32 stack top bits
1224     * (including version bits) as sp=(int)ctl. The offsets of counts
1225     * by the target parallelism and the positionings of fields makes
1226     * it possible to perform the most common checks via sign tests of
1227 dl 1.300 * fields: When ac is negative, there are not enough unqueued
1228 dl 1.200 * workers, when tc is negative, there are not enough total
1229     * workers. When sp is non-zero, there are waiting workers. To
1230     * deal with possibly negative fields, we use casts in and out of
1231     * "short" and/or signed shifts to maintain signedness.
1232     *
1233 dl 1.300 * Because it occupies uppermost bits, we can add one release count
1234     * using getAndAddLong of RC_UNIT, rather than CAS, when returning
1235 dl 1.200 * from a blocked join. Other updates entail multiple subfields
1236     * and masking, requiring CAS.
1237 dl 1.300 *
1238     * The limits packed in field "bounds" are also offset by the
1239     * parallelism level to make them comparable to the ctl rc and tc
1240     * fields.
1241 dl 1.200 */
1242    
1243     // Lower and upper word masks
1244     private static final long SP_MASK = 0xffffffffL;
1245     private static final long UC_MASK = ~SP_MASK;
1246 dl 1.86
1247 dl 1.300 // Release counts
1248     private static final int RC_SHIFT = 48;
1249     private static final long RC_UNIT = 0x0001L << RC_SHIFT;
1250     private static final long RC_MASK = 0xffffL << RC_SHIFT;
1251 dl 1.200
1252     // Total counts
1253 dl 1.86 private static final int TC_SHIFT = 32;
1254 dl 1.200 private static final long TC_UNIT = 0x0001L << TC_SHIFT;
1255     private static final long TC_MASK = 0xffffL << TC_SHIFT;
1256     private static final long ADD_WORKER = 0x0001L << (TC_SHIFT + 15); // sign
1257    
1258 dl 1.300 // Instance fields
1259 dl 1.86
1260 dl 1.300 volatile long stealCount; // collects worker nsteals
1261     final long keepAlive; // milliseconds before dropping if idle
1262     int indexSeed; // next worker index
1263     final int bounds; // min, max threads packed as shorts
1264     volatile int mode; // parallelism, runstate, queue mode
1265     WorkQueue[] workQueues; // main registry
1266     final String workerNamePrefix; // for worker thread string; sync lock
1267 dl 1.112 final ForkJoinWorkerThreadFactory factory;
1268 dl 1.200 final UncaughtExceptionHandler ueh; // per-worker UEH
1269 dl 1.307 final Predicate<? super ForkJoinPool> saturate;
1270 dl 1.101
1271 dl 1.308 @jdk.internal.vm.annotation.Contended("fjpctl") // segregate
1272     volatile long ctl; // main pool control
1273 jsr166 1.309
1274 dl 1.200 // Creating, registering and deregistering workers
1275    
1276 dl 1.112 /**
1277 dl 1.200 * Tries to construct and start one worker. Assumes that total
1278     * count has already been incremented as a reservation. Invokes
1279     * deregisterWorker on any failure.
1280     *
1281     * @return true if successful
1282 dl 1.115 */
1283 dl 1.300 private boolean createWorker() {
1284 dl 1.200 ForkJoinWorkerThreadFactory fac = factory;
1285     Throwable ex = null;
1286     ForkJoinWorkerThread wt = null;
1287     try {
1288     if (fac != null && (wt = fac.newThread(this)) != null) {
1289     wt.start();
1290     return true;
1291 dl 1.115 }
1292 dl 1.200 } catch (Throwable rex) {
1293     ex = rex;
1294 dl 1.112 }
1295 dl 1.200 deregisterWorker(wt, ex);
1296     return false;
1297 dl 1.112 }
1298    
1299 dl 1.200 /**
1300     * Tries to add one worker, incrementing ctl counts before doing
1301     * so, relying on createWorker to back out on failure.
1302     *
1303     * @param c incoming ctl value, with total count negative and no
1304     * idle workers. On CAS failure, c is refreshed and retried if
1305 jsr166 1.202 * this holds (otherwise, a new worker is not needed).
1306 dl 1.200 */
1307     private void tryAddWorker(long c) {
1308     do {
1309 dl 1.300 long nc = ((RC_MASK & (c + RC_UNIT)) |
1310 dl 1.200 (TC_MASK & (c + TC_UNIT)));
1311 dl 1.314 if (ctl == c && CTL.compareAndSet(this, c, nc)) {
1312 dl 1.300 createWorker();
1313 dl 1.243 break;
1314 dl 1.200 }
1315     } while (((c = ctl) & ADD_WORKER) != 0L && (int)c == 0);
1316     }
1317 dl 1.112
1318     /**
1319 dl 1.200 * Callback from ForkJoinWorkerThread constructor to establish and
1320     * record its WorkQueue.
1321 dl 1.112 *
1322     * @param wt the worker thread
1323 dl 1.115 * @return the worker's queue
1324 dl 1.112 */
1325 dl 1.115 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1326 dl 1.200 UncaughtExceptionHandler handler;
1327 dl 1.300 wt.setDaemon(true); // configure thread
1328 dl 1.115 if ((handler = ueh) != null)
1329     wt.setUncaughtExceptionHandler(handler);
1330 dl 1.300 int tid = 0; // for thread name
1331 dl 1.339 int idbits = mode & FIFO;
1332 dl 1.300 String prefix = workerNamePrefix;
1333 dl 1.339 WorkQueue w = new WorkQueue(this, wt);
1334 dl 1.300 if (prefix != null) {
1335 jsr166 1.301 synchronized (prefix) {
1336 dl 1.300 WorkQueue[] ws = workQueues; int n;
1337     int s = indexSeed += SEED_INCREMENT;
1338 dl 1.339 idbits |= (s & ~(SMASK | FIFO | DORMANT));
1339 dl 1.300 if (ws != null && (n = ws.length) > 1) {
1340     int m = n - 1;
1341 dl 1.339 tid = m & ((s << 1) | 1); // odd-numbered indices
1342 dl 1.300 for (int probes = n >>> 1;;) { // find empty slot
1343     WorkQueue q;
1344 dl 1.339 if ((q = ws[tid]) == null || q.phase == QUIET)
1345 dl 1.300 break;
1346     else if (--probes == 0) {
1347 dl 1.339 tid = n | 1; // resize below
1348 dl 1.300 break;
1349     }
1350     else
1351 dl 1.339 tid = (tid + 2) & m;
1352 dl 1.300 }
1353 dl 1.339 w.phase = w.id = tid | idbits; // now publishable
1354 dl 1.300
1355 dl 1.339 if (tid < n)
1356     ws[tid] = w;
1357 dl 1.300 else { // expand array
1358     int an = n << 1;
1359     WorkQueue[] as = new WorkQueue[an];
1360 dl 1.339 as[tid] = w;
1361 dl 1.300 int am = an - 1;
1362     for (int j = 0; j < n; ++j) {
1363     WorkQueue v; // copy external queue
1364     if ((v = ws[j]) != null) // position may change
1365     as[v.id & am & SQMASK] = v;
1366     if (++j >= n)
1367     break;
1368     as[j] = ws[j]; // copy worker
1369 dl 1.94 }
1370 dl 1.300 workQueues = as;
1371 dl 1.94 }
1372     }
1373 dl 1.78 }
1374 dl 1.300 wt.setName(prefix.concat(Integer.toString(tid)));
1375 dl 1.78 }
1376 dl 1.115 return w;
1377 dl 1.78 }
1378 dl 1.19
1379 jsr166 1.1 /**
1380 dl 1.86 * Final callback from terminating worker, as well as upon failure
1381 dl 1.105 * to construct or start a worker. Removes record of worker from
1382     * array, and adjusts counts. If pool is shutting down, tries to
1383     * complete termination.
1384 dl 1.78 *
1385 jsr166 1.151 * @param wt the worker thread, or null if construction failed
1386 dl 1.78 * @param ex the exception causing failure, or null if none
1387 dl 1.45 */
1388 dl 1.78 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1389     WorkQueue w = null;
1390 dl 1.300 int phase = 0;
1391 dl 1.78 if (wt != null && (w = wt.workQueue) != null) {
1392 dl 1.300 Object lock = workerNamePrefix;
1393 dl 1.339 int wid = w.id;
1394 dl 1.300 long ns = (long)w.nsteals & 0xffffffffL;
1395     if (lock != null) {
1396 jsr166 1.301 synchronized (lock) {
1397 dl 1.339 WorkQueue[] ws; int n, i; // remove index from array
1398     if ((ws = workQueues) != null && (n = ws.length) > 0 &&
1399     ws[i = wid & (n - 1)] == w)
1400     ws[i] = null;
1401 dl 1.300 stealCount += ns;
1402 dl 1.243 }
1403     }
1404 dl 1.300 phase = w.phase;
1405 dl 1.243 }
1406 dl 1.300 if (phase != QUIET) { // else pre-adjusted
1407 dl 1.243 long c; // decrement counts
1408 jsr166 1.325 do {} while (!CTL.weakCompareAndSet
1409 dl 1.314 (this, c = ctl, ((RC_MASK & (c - RC_UNIT)) |
1410     (TC_MASK & (c - TC_UNIT)) |
1411     (SP_MASK & c))));
1412 dl 1.243 }
1413 dl 1.300 if (w != null)
1414 dl 1.200 w.cancelAll(); // cancel remaining tasks
1415 dl 1.300
1416     if (!tryTerminate(false, false) && // possibly replace worker
1417     w != null && w.array != null) // avoid repeated failures
1418     signalWork();
1419    
1420 dl 1.200 if (ex == null) // help clean on way out
1421 dl 1.120 ForkJoinTask.helpExpungeStaleExceptions();
1422 dl 1.200 else // rethrow
1423 dl 1.104 ForkJoinTask.rethrow(ex);
1424 dl 1.78 }
1425 dl 1.52
1426 dl 1.19 /**
1427 dl 1.300 * Tries to create or release a worker if too few are running.
1428 dl 1.105 */
1429 dl 1.253 final void signalWork() {
1430 dl 1.243 for (;;) {
1431 dl 1.300 long c; int sp; WorkQueue[] ws; int i; WorkQueue v;
1432 dl 1.243 if ((c = ctl) >= 0L) // enough workers
1433     break;
1434     else if ((sp = (int)c) == 0) { // no idle workers
1435     if ((c & ADD_WORKER) != 0L) // too few workers
1436 dl 1.200 tryAddWorker(c);
1437     break;
1438     }
1439 dl 1.243 else if ((ws = workQueues) == null)
1440     break; // unstarted/terminated
1441     else if (ws.length <= (i = sp & SMASK))
1442     break; // terminated
1443     else if ((v = ws[i]) == null)
1444     break; // terminating
1445     else {
1446 dl 1.300 int np = sp & ~UNSIGNALLED;
1447     int vp = v.phase;
1448     long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + RC_UNIT));
1449     Thread vt = v.owner;
1450 dl 1.314 if (sp == vp && CTL.compareAndSet(this, c, nc)) {
1451 dl 1.300 v.phase = np;
1452 dl 1.339 if (vt != null && v.source < 0)
1453 dl 1.300 LockSupport.unpark(vt);
1454 dl 1.243 break;
1455     }
1456 dl 1.174 }
1457 dl 1.52 }
1458 dl 1.14 }
1459    
1460 dl 1.200 /**
1461 dl 1.300 * Tries to decrement counts (sometimes implicitly) and possibly
1462     * arrange for a compensating worker in preparation for blocking:
1463     * If not all core workers yet exist, creates one, else if any are
1464     * unreleased (possibly including caller) releases one, else if
1465     * fewer than the minimum allowed number of workers running,
1466     * checks to see that they are all active, and if so creates an
1467     * extra worker unless over maximum limit and policy is to
1468     * saturate. Most of these steps can fail due to interference, in
1469     * which case 0 is returned so caller will retry. A negative
1470     * return value indicates that the caller doesn't need to
1471     * re-adjust counts when later unblocked.
1472 dl 1.243 *
1473 dl 1.300 * @return 1: block then adjust, -1: block without adjust, 0 : retry
1474 dl 1.243 */
1475 dl 1.300 private int tryCompensate(WorkQueue w) {
1476     int t, n, sp;
1477     long c = ctl;
1478     WorkQueue[] ws = workQueues;
1479 dl 1.310 if ((t = (short)(c >>> TC_SHIFT)) >= 0) {
1480 dl 1.300 if (ws == null || (n = ws.length) <= 0 || w == null)
1481     return 0; // disabled
1482     else if ((sp = (int)c) != 0) { // replace or release
1483     WorkQueue v = ws[sp & (n - 1)];
1484     int wp = w.phase;
1485     long uc = UC_MASK & ((wp < 0) ? c + RC_UNIT : c);
1486     int np = sp & ~UNSIGNALLED;
1487     if (v != null) {
1488     int vp = v.phase;
1489     Thread vt = v.owner;
1490     long nc = ((long)v.stackPred & SP_MASK) | uc;
1491 dl 1.314 if (vp == sp && CTL.compareAndSet(this, c, nc)) {
1492 dl 1.300 v.phase = np;
1493 dl 1.339 if (vt != null && v.source < 0)
1494 dl 1.300 LockSupport.unpark(vt);
1495     return (wp < 0) ? -1 : 1;
1496     }
1497     }
1498     return 0;
1499     }
1500     else if ((int)(c >> RC_SHIFT) - // reduce parallelism
1501     (short)(bounds & SMASK) > 0) {
1502     long nc = ((RC_MASK & (c - RC_UNIT)) | (~RC_MASK & c));
1503 dl 1.314 return CTL.compareAndSet(this, c, nc) ? 1 : 0;
1504 dl 1.300 }
1505     else { // validate
1506     int md = mode, pc = md & SMASK, tc = pc + t, bc = 0;
1507     boolean unstable = false;
1508     for (int i = 1; i < n; i += 2) {
1509     WorkQueue q; Thread wt; Thread.State ts;
1510     if ((q = ws[i]) != null) {
1511     if (q.source == 0) {
1512     unstable = true;
1513     break;
1514     }
1515     else {
1516     --tc;
1517     if ((wt = q.owner) != null &&
1518     ((ts = wt.getState()) == Thread.State.BLOCKED ||
1519     ts == Thread.State.WAITING))
1520     ++bc; // worker is blocking
1521     }
1522 dl 1.243 }
1523     }
1524 dl 1.300 if (unstable || tc != 0 || ctl != c)
1525     return 0; // inconsistent
1526     else if (t + pc >= MAX_CAP || t >= (bounds >>> SWIDTH)) {
1527 dl 1.307 Predicate<? super ForkJoinPool> sat;
1528     if ((sat = saturate) != null && sat.test(this))
1529 dl 1.300 return -1;
1530     else if (bc < pc) { // lagging
1531     Thread.yield(); // for retry spins
1532     return 0;
1533 dl 1.243 }
1534     else
1535 dl 1.300 throw new RejectedExecutionException(
1536     "Thread limit exceeded replacing blocked worker");
1537 dl 1.200 }
1538 dl 1.177 }
1539 dl 1.243 }
1540 dl 1.300
1541     long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK); // expand pool
1542 dl 1.314 return CTL.compareAndSet(this, c, nc) && createWorker() ? 1 : 0;
1543 dl 1.243 }
1544    
1545     /**
1546     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1547 dl 1.300 * See above for explanation.
1548 dl 1.243 */
1549     final void runWorker(WorkQueue w) {
1550 dl 1.339 int r = (w.id ^ ThreadLocalRandom.nextSecondarySeed()) | FIFO; // rng
1551     w.array = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY]; // initialize
1552     for (;;) {
1553     int phase;
1554     if (scan(w, r)) { // scan until apparently empty
1555     r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // move (xorshift)
1556     }
1557     else if ((phase = w.phase) >= 0) { // enqueue, then rescan
1558     long np = (w.phase = (phase + SS_SEQ) | UNSIGNALLED) & SP_MASK;
1559     long c, nc;
1560     do {
1561     w.stackPred = (int)(c = ctl);
1562     nc = ((c - RC_UNIT) & UC_MASK) | np;
1563     } while (!CTL.weakCompareAndSet(this, c, nc));
1564     }
1565     else { // already queued
1566     int pred = w.stackPred;
1567     Thread.interrupted(); // clear before park
1568     w.source = DORMANT; // enable signal
1569     long c = ctl;
1570     int md = mode, rc = (md & SMASK) + (int)(c >> RC_SHIFT);
1571     if (md < 0) // terminating
1572     break;
1573     else if (rc <= 0 && (md & SHUTDOWN) != 0 &&
1574     tryTerminate(false, false))
1575     break; // quiescent shutdown
1576     else if (rc <= 0 && pred != 0 && phase == (int)c) {
1577     long nc = (UC_MASK & (c - TC_UNIT)) | (SP_MASK & pred);
1578     long d = keepAlive + System.currentTimeMillis();
1579     LockSupport.parkUntil(this, d);
1580     if (ctl == c && // drop on timeout if all idle
1581     d - System.currentTimeMillis() <= TIMEOUT_SLOP &&
1582     CTL.compareAndSet(this, c, nc)) {
1583     w.phase = QUIET;
1584     break;
1585 dl 1.243 }
1586 dl 1.178 }
1587 dl 1.339 else if (w.phase < 0)
1588     LockSupport.park(this); // OK if spuriously woken
1589     w.source = 0; // disable signal
1590 dl 1.120 }
1591 dl 1.339 }
1592     }
1593 dl 1.178
1594 dl 1.339 /**
1595     * Scans for and executes top-level task
1596     * @return true if found an apparently non-empty queue (and
1597     * possibly ran task)
1598     */
1599     private boolean scan(WorkQueue w, int r) {
1600     WorkQueue[] ws; int n;
1601     if ((ws = workQueues) != null && (n = ws.length) > 0 && w != null) {
1602     for (int m = n - 1, j = r & m;;) {
1603     WorkQueue q; int b, d;
1604     if ((q = ws[j]) != null && (d = (b = q.base) - q.top) < 0) {
1605     int qid = q.id;
1606     ForkJoinTask<?>[] a; int cap, k; ForkJoinTask<?> t;
1607     if ((a = q.array) != null && (cap = a.length) > 0) {
1608     t = (ForkJoinTask<?>)QA.getAcquire(a, k = (cap - 1) & b);
1609     if (q.base == b++ && t != null &&
1610     QA.compareAndSet(a, k, t, null)) {
1611     q.base = b;
1612     w.source = qid;
1613     if (d != -1)
1614     signalWork();
1615     w.topLevelExec(t, q);
1616 dl 1.300 }
1617     }
1618 dl 1.339 return true;
1619 dl 1.300 }
1620 dl 1.339 else if (--n > 0)
1621     j = (j + 1) & m;
1622     else
1623     break;
1624 dl 1.300 }
1625     }
1626 dl 1.339 return false;
1627 dl 1.300 }
1628 dl 1.200
1629 dl 1.305 /**
1630     * Helps and/or blocks until the given task is done or timeout.
1631     * First tries locally helping, then scans other queues for a task
1632     * produced by one of w's stealers; compensating and blocking if
1633     * none are found (rescanning if tryCompensate fails).
1634     *
1635     * @param w caller
1636     * @param task the task
1637     * @param deadline for timed waits, if nonzero
1638     * @return task status on exit
1639     */
1640 dl 1.300 final int awaitJoin(WorkQueue w, ForkJoinTask<?> task, long deadline) {
1641     int s = 0;
1642 dl 1.339 int seed = ThreadLocalRandom.nextSecondarySeed();
1643 dl 1.300 if (w != null && task != null &&
1644     (!(task instanceof CountedCompleter) ||
1645 dl 1.339 (s = w.helpCC((CountedCompleter<?>)task, 0, false)) >= 0)) {
1646 dl 1.300 w.tryRemoveAndExec(task);
1647     int src = w.source, id = w.id;
1648 dl 1.339 int r = (seed >>> 16) | 1, step = (seed & ~1) | 2;
1649 dl 1.300 s = task.status;
1650     while (s >= 0) {
1651     WorkQueue[] ws;
1652 dl 1.339 int n = (ws = workQueues) == null ? 0 : ws.length, m = n - 1;
1653     while (n > 0) {
1654     WorkQueue q; int b;
1655     if ((q = ws[r & m]) != null && q.source == id &&
1656     (b = q.base) - q.top < 0) {
1657     ForkJoinTask<?>[] a; int cap, k;
1658     int qid = q.id;
1659     if ((a = q.array) != null && (cap = a.length) > 0) {
1660 dl 1.300 ForkJoinTask<?> t = (ForkJoinTask<?>)
1661 dl 1.339 QA.getAcquire(a, k = (cap - 1) & b);
1662     if (q.source == id && q.base == b++ &&
1663     t != null && QA.compareAndSet(a, k, t, null)) {
1664 dl 1.300 q.base = b;
1665     w.source = qid;
1666     t.doExec();
1667     w.source = src;
1668     }
1669     }
1670 dl 1.339 break;
1671     }
1672     else {
1673     r += step;
1674     --n;
1675 dl 1.200 }
1676 dl 1.300 }
1677     if ((s = task.status) < 0)
1678     break;
1679 dl 1.339 else if (n == 0) { // empty scan
1680 dl 1.300 long ms, ns; int block;
1681     if (deadline == 0L)
1682     ms = 0L; // untimed
1683     else if ((ns = deadline - System.nanoTime()) <= 0L)
1684     break; // timeout
1685     else if ((ms = TimeUnit.NANOSECONDS.toMillis(ns)) <= 0L)
1686     ms = 1L; // avoid 0 for timed wait
1687     if ((block = tryCompensate(w)) != 0) {
1688     task.internalWait(ms);
1689 dl 1.314 CTL.getAndAdd(this, (block > 0) ? RC_UNIT : 0L);
1690 dl 1.200 }
1691 dl 1.300 s = task.status;
1692 dl 1.200 }
1693 dl 1.178 }
1694     }
1695 dl 1.200 return s;
1696 dl 1.120 }
1697    
1698     /**
1699 dl 1.300 * Runs tasks until {@code isQuiescent()}. Rather than blocking
1700     * when tasks cannot be found, rescans until all others cannot
1701     * find tasks either.
1702 dl 1.78 */
1703 dl 1.300 final void helpQuiescePool(WorkQueue w) {
1704 dl 1.339 int prevSrc = w.source;
1705     int seed = ThreadLocalRandom.nextSecondarySeed();
1706     int r = seed >>> 16, step = r | 1;
1707 dl 1.300 for (int source = prevSrc, released = -1;;) { // -1 until known
1708 dl 1.339 ForkJoinTask<?> localTask; WorkQueue[] ws;
1709     while ((localTask = w.nextLocalTask()) != null)
1710     localTask.doExec();
1711     if (w.phase >= 0 && released == -1)
1712 dl 1.300 released = 1;
1713     boolean quiet = true, empty = true;
1714 dl 1.339 int n = (ws = workQueues) == null ? 0 : ws.length;
1715     for (int m = n - 1; n > 0; r += step, --n) {
1716     WorkQueue q; int b;
1717     if ((q = ws[r & m]) != null) {
1718     int qs = q.source;
1719     if ((b = q.base) - q.top < 0) {
1720     quiet = empty = false;
1721     ForkJoinTask<?>[] a; int cap, k;
1722     int qid = q.id;
1723     if ((a = q.array) != null && (cap = a.length) > 0) {
1724 dl 1.300 if (released == 0) { // increment
1725     released = 1;
1726 dl 1.314 CTL.getAndAdd(this, RC_UNIT);
1727 dl 1.95 }
1728 dl 1.300 ForkJoinTask<?> t = (ForkJoinTask<?>)
1729 dl 1.339 QA.getAcquire(a, k = (cap - 1) & b);
1730     if (q.base == b++ && t != null &&
1731     QA.compareAndSet(a, k, t, null)) {
1732 dl 1.300 q.base = b;
1733 dl 1.339 w.source = qid;
1734 dl 1.300 t.doExec();
1735     w.source = source = prevSrc;
1736 dl 1.243 }
1737 dl 1.95 }
1738 dl 1.339 break;
1739 dl 1.52 }
1740 dl 1.339 else if ((qs & QUIET) == 0)
1741     quiet = false;
1742 dl 1.19 }
1743 dl 1.243 }
1744 dl 1.300 if (quiet) {
1745     if (released == 0)
1746 dl 1.314 CTL.getAndAdd(this, RC_UNIT);
1747 dl 1.300 w.source = prevSrc;
1748     break;
1749     }
1750     else if (empty) {
1751     if (source != QUIET)
1752     w.source = source = QUIET;
1753     if (released == 1) { // decrement
1754     released = 0;
1755 dl 1.314 CTL.getAndAdd(this, RC_MASK & -RC_UNIT);
1756 dl 1.300 }
1757     }
1758 dl 1.14 }
1759 dl 1.22 }
1760    
1761 dl 1.52 /**
1762 dl 1.300 * Scans for and returns a polled task, if available.
1763     * Used only for untracked polls.
1764 dl 1.105 *
1765 dl 1.300 * @param submissionsOnly if true, only scan submission queues
1766 dl 1.19 */
1767 dl 1.300 private ForkJoinTask<?> pollScan(boolean submissionsOnly) {
1768     WorkQueue[] ws; int n;
1769     rescan: while ((mode & STOP) == 0 && (ws = workQueues) != null &&
1770     (n = ws.length) > 0) {
1771     int m = n - 1;
1772     int r = ThreadLocalRandom.nextSecondarySeed();
1773     int h = r >>> 16;
1774     int origin, step;
1775     if (submissionsOnly) {
1776     origin = (r & ~1) & m; // even indices and steps
1777     step = (h & ~1) | 2;
1778     }
1779     else {
1780     origin = r & m;
1781     step = h | 1;
1782     }
1783 dl 1.339 boolean nonempty = false;
1784     for (int i = origin, oldSum = 0, checkSum = 0;;) {
1785     WorkQueue q;
1786     if ((q = ws[i]) != null) {
1787     int b; ForkJoinTask<?> t;
1788     if ((b = q.base) - q.top < 0) {
1789     nonempty = true;
1790     if ((t = q.poll()) != null)
1791 dl 1.300 return t;
1792     }
1793 dl 1.339 else
1794     checkSum += b + q.id;
1795 dl 1.300 }
1796 dl 1.339 if ((i = (i + step) & m) == origin) {
1797     if (!nonempty && oldSum == (oldSum = checkSum))
1798 dl 1.300 break rescan;
1799     checkSum = 0;
1800 dl 1.339 nonempty = false;
1801 dl 1.178 }
1802 dl 1.52 }
1803 dl 1.90 }
1804 dl 1.300 return null;
1805     }
1806    
1807     /**
1808     * Gets and removes a local or stolen task for the given worker.
1809     *
1810     * @return a task, if available
1811     */
1812     final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
1813     ForkJoinTask<?> t;
1814 dl 1.339 if (w == null || (t = w.nextLocalTask()) == null)
1815     t = pollScan(false);
1816     return t;
1817 dl 1.90 }
1818    
1819 dl 1.300 // External operations
1820    
1821 dl 1.90 /**
1822 dl 1.300 * Adds the given task to a submission queue at submitter's
1823     * current queue, creating one if null or contended.
1824 dl 1.90 *
1825 dl 1.300 * @param task the task. Caller must ensure non-null.
1826 dl 1.90 */
1827 dl 1.300 final void externalPush(ForkJoinTask<?> task) {
1828     int r; // initialize caller's probe
1829     if ((r = ThreadLocalRandom.getProbe()) == 0) {
1830     ThreadLocalRandom.localInit();
1831     r = ThreadLocalRandom.getProbe();
1832     }
1833     for (;;) {
1834 dl 1.339 WorkQueue q;
1835 dl 1.300 int md = mode, n;
1836     WorkQueue[] ws = workQueues;
1837     if ((md & SHUTDOWN) != 0 || ws == null || (n = ws.length) <= 0)
1838     throw new RejectedExecutionException();
1839 dl 1.339 else if ((q = ws[(n - 1) & r & SQMASK]) == null) { // add queue
1840     int qid = (r | QUIET) & ~(FIFO | OWNED);
1841     Object lock = workerNamePrefix;
1842     ForkJoinTask<?>[] qa =
1843     new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
1844     q = new WorkQueue(this, null);
1845     q.array = qa;
1846     q.id = qid;
1847     q.source = QUIET;
1848     if (lock != null) { // unless disabled, lock pool to install
1849     synchronized (lock) {
1850     WorkQueue[] vs; int i, vn;
1851     if ((vs = workQueues) != null && (vn = vs.length) > 0 &&
1852     vs[i = qid & (vn - 1) & SQMASK] == null)
1853     vs[i] = q; // else another thread already installed
1854 dl 1.300 }
1855     }
1856 dl 1.339 }
1857     else if (!q.tryLockPhase()) // move if busy
1858     r = ThreadLocalRandom.advanceProbe(r);
1859     else {
1860     if (q.lockedPush(task))
1861 dl 1.300 signalWork();
1862 dl 1.339 return;
1863 dl 1.90 }
1864     }
1865     }
1866    
1867 dl 1.300 /**
1868     * Pushes a possibly-external submission.
1869     */
1870     private <T> ForkJoinTask<T> externalSubmit(ForkJoinTask<T> task) {
1871     Thread t; ForkJoinWorkerThread w; WorkQueue q;
1872     if (task == null)
1873     throw new NullPointerException();
1874     if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) &&
1875     (w = (ForkJoinWorkerThread)t).pool == this &&
1876     (q = w.workQueue) != null)
1877     q.push(task);
1878     else
1879     externalPush(task);
1880     return task;
1881     }
1882    
1883     /**
1884     * Returns common pool queue for an external thread.
1885     */
1886     static WorkQueue commonSubmitterQueue() {
1887     ForkJoinPool p = common;
1888     int r = ThreadLocalRandom.getProbe();
1889     WorkQueue[] ws; int n;
1890     return (p != null && (ws = p.workQueues) != null &&
1891     (n = ws.length) > 0) ?
1892     ws[(n - 1) & r & SQMASK] : null;
1893     }
1894 dl 1.90
1895     /**
1896 dl 1.300 * Performs tryUnpush for an external submitter.
1897     */
1898     final boolean tryExternalUnpush(ForkJoinTask<?> task) {
1899     int r = ThreadLocalRandom.getProbe();
1900     WorkQueue[] ws; WorkQueue w; int n;
1901     return ((ws = workQueues) != null &&
1902     (n = ws.length) > 0 &&
1903     (w = ws[(n - 1) & r & SQMASK]) != null &&
1904 dl 1.339 w.tryLockedUnpush(task));
1905 dl 1.22 }
1906    
1907     /**
1908 dl 1.300 * Performs helpComplete for an external submitter.
1909 dl 1.78 */
1910 dl 1.300 final int externalHelpComplete(CountedCompleter<?> task, int maxTasks) {
1911     int r = ThreadLocalRandom.getProbe();
1912     WorkQueue[] ws; WorkQueue w; int n;
1913     return ((ws = workQueues) != null && (n = ws.length) > 0 &&
1914     (w = ws[(n - 1) & r & SQMASK]) != null) ?
1915 dl 1.339 w.helpCC(task, maxTasks, true) : 0;
1916 dl 1.22 }
1917    
1918     /**
1919 dl 1.300 * Tries to steal and run tasks within the target's computation.
1920     * The maxTasks argument supports external usages; internal calls
1921     * use zero, allowing unbounded steps (external calls trap
1922     * non-positive values).
1923 dl 1.78 *
1924 dl 1.300 * @param w caller
1925     * @param maxTasks if non-zero, the maximum number of other tasks to run
1926     * @return task status on exit
1927 dl 1.22 */
1928 dl 1.300 final int helpComplete(WorkQueue w, CountedCompleter<?> task,
1929     int maxTasks) {
1930 dl 1.339 return (w == null) ? 0 : w.helpCC(task, maxTasks, false);
1931 dl 1.14 }
1932    
1933     /**
1934 dl 1.105 * Returns a cheap heuristic guide for task partitioning when
1935     * programmers, frameworks, tools, or languages have little or no
1936 jsr166 1.222 * idea about task granularity. In essence, by offering this
1937 dl 1.105 * method, we ask users only about tradeoffs in overhead vs
1938     * expected throughput and its variance, rather than how finely to
1939     * partition tasks.
1940     *
1941     * In a steady state strict (tree-structured) computation, each
1942     * thread makes available for stealing enough tasks for other
1943     * threads to remain active. Inductively, if all threads play by
1944     * the same rules, each thread should make available only a
1945     * constant number of tasks.
1946     *
1947     * The minimum useful constant is just 1. But using a value of 1
1948     * would require immediate replenishment upon each steal to
1949     * maintain enough tasks, which is infeasible. Further,
1950     * partitionings/granularities of offered tasks should minimize
1951     * steal rates, which in general means that threads nearer the top
1952     * of computation tree should generate more than those nearer the
1953     * bottom. In perfect steady state, each thread is at
1954     * approximately the same level of computation tree. However,
1955     * producing extra tasks amortizes the uncertainty of progress and
1956     * diffusion assumptions.
1957     *
1958 jsr166 1.161 * So, users will want to use values larger (but not much larger)
1959 dl 1.105 * than 1 to both smooth over transient shortages and hedge
1960     * against uneven progress; as traded off against the cost of
1961     * extra task overhead. We leave the user to pick a threshold
1962     * value to compare with the results of this call to guide
1963     * decisions, but recommend values such as 3.
1964     *
1965     * When all threads are active, it is on average OK to estimate
1966     * surplus strictly locally. In steady-state, if one thread is
1967     * maintaining say 2 surplus tasks, then so are others. So we can
1968     * just use estimated queue length. However, this strategy alone
1969     * leads to serious mis-estimates in some non-steady-state
1970     * conditions (ramp-up, ramp-down, other stalls). We can detect
1971     * many of these by further considering the number of "idle"
1972     * threads, that are known to have zero queued tasks, so
1973     * compensate by a factor of (#idle/#active) threads.
1974     */
1975     static int getSurplusQueuedTaskCount() {
1976     Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
1977 dl 1.300 if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) &&
1978     (pool = (wt = (ForkJoinWorkerThread)t).pool) != null &&
1979     (q = wt.workQueue) != null) {
1980     int p = pool.mode & SMASK;
1981     int a = p + (int)(pool.ctl >> RC_SHIFT);
1982     int n = q.top - q.base;
1983 dl 1.112 return n - (a > (p >>>= 1) ? 0 :
1984     a > (p >>>= 1) ? 1 :
1985     a > (p >>>= 1) ? 2 :
1986     a > (p >>>= 1) ? 4 :
1987     8);
1988 dl 1.105 }
1989     return 0;
1990 dl 1.100 }
1991    
1992 dl 1.300 // Termination
1993 dl 1.14
1994     /**
1995 dl 1.210 * Possibly initiates and/or completes termination.
1996 dl 1.14 *
1997     * @param now if true, unconditionally terminate, else only
1998 dl 1.78 * if no work and no active workers
1999 dl 1.243 * @param enable if true, terminate when next possible
2000 dl 1.300 * @return true if terminating or terminated
2001 jsr166 1.1 */
2002 dl 1.300 private boolean tryTerminate(boolean now, boolean enable) {
2003     int md; // 3 phases: try to set SHUTDOWN, then STOP, then TERMINATED
2004 dl 1.289
2005 dl 1.300 while (((md = mode) & SHUTDOWN) == 0) {
2006 dl 1.294 if (!enable || this == common) // cannot shutdown
2007 dl 1.300 return false;
2008 dl 1.294 else
2009 dl 1.314 MODE.compareAndSet(this, md, md | SHUTDOWN);
2010 dl 1.289 }
2011    
2012 dl 1.300 while (((md = mode) & STOP) == 0) { // try to initiate termination
2013     if (!now) { // check if quiescent & empty
2014 dl 1.211 for (long oldSum = 0L;;) { // repeat until stable
2015 dl 1.300 boolean running = false;
2016 dl 1.210 long checkSum = ctl;
2017 dl 1.300 WorkQueue[] ws = workQueues;
2018     if ((md & SMASK) + (int)(checkSum >> RC_SHIFT) > 0)
2019     running = true;
2020     else if (ws != null) {
2021     WorkQueue w; int b;
2022 dl 1.289 for (int i = 0; i < ws.length; ++i) {
2023     if ((w = ws[i]) != null) {
2024 dl 1.300 checkSum += (b = w.base) + w.id;
2025     if (b != w.top ||
2026     ((i & 1) == 1 && w.source >= 0)) {
2027     running = true;
2028     break;
2029     }
2030 dl 1.289 }
2031 dl 1.206 }
2032 dl 1.203 }
2033 dl 1.300 if (((md = mode) & STOP) != 0)
2034     break; // already triggered
2035     else if (running)
2036     return false;
2037     else if (workQueues == ws && oldSum == (oldSum = checkSum))
2038 dl 1.210 break;
2039 dl 1.203 }
2040     }
2041 dl 1.300 if ((md & STOP) == 0)
2042 dl 1.314 MODE.compareAndSet(this, md, md | STOP);
2043 dl 1.200 }
2044 dl 1.210
2045 dl 1.300 while (((md = mode) & TERMINATED) == 0) { // help terminate others
2046     for (long oldSum = 0L;;) { // repeat until stable
2047     WorkQueue[] ws; WorkQueue w;
2048     long checkSum = ctl;
2049     if ((ws = workQueues) != null) {
2050     for (int i = 0; i < ws.length; ++i) {
2051     if ((w = ws[i]) != null) {
2052     ForkJoinWorkerThread wt = w.owner;
2053     w.cancelAll(); // clear queues
2054     if (wt != null) {
2055 dl 1.289 try { // unblock join or park
2056 dl 1.210 wt.interrupt();
2057     } catch (Throwable ignore) {
2058 dl 1.200 }
2059     }
2060 dl 1.339 checkSum += w.base + w.phase;
2061 dl 1.200 }
2062 dl 1.101 }
2063 dl 1.78 }
2064 dl 1.300 if (((md = mode) & TERMINATED) != 0 ||
2065     (workQueues == ws && oldSum == (oldSum = checkSum)))
2066     break;
2067 dl 1.78 }
2068 dl 1.300 if ((md & TERMINATED) != 0)
2069     break;
2070     else if ((md & SMASK) + (short)(ctl >>> TC_SHIFT) > 0)
2071 dl 1.210 break;
2072 dl 1.314 else if (MODE.compareAndSet(this, md, md | TERMINATED)) {
2073 dl 1.300 synchronized (this) {
2074     notifyAll(); // for awaitTermination
2075 dl 1.243 }
2076 dl 1.256 break;
2077 dl 1.200 }
2078 dl 1.52 }
2079 dl 1.300 return true;
2080 dl 1.105 }
2081    
2082 dl 1.52 // Exported methods
2083 jsr166 1.1
2084     // Constructors
2085    
2086     /**
2087 jsr166 1.9 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2088 dl 1.300 * java.lang.Runtime#availableProcessors}, using defaults for all
2089 dl 1.319 * other parameters (see {@link #ForkJoinPool(int,
2090     * ForkJoinWorkerThreadFactory, UncaughtExceptionHandler, boolean,
2091     * int, int, int, Predicate, long, TimeUnit)}).
2092 jsr166 1.1 *
2093     * @throws SecurityException if a security manager exists and
2094     * the caller is not permitted to modify threads
2095     * because it does not hold {@link
2096     * java.lang.RuntimePermission}{@code ("modifyThread")}
2097     */
2098     public ForkJoinPool() {
2099 jsr166 1.148 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2100 dl 1.300 defaultForkJoinWorkerThreadFactory, null, false,
2101 dl 1.307 0, MAX_CAP, 1, null, DEFAULT_KEEPALIVE, TimeUnit.MILLISECONDS);
2102 jsr166 1.1 }
2103    
2104     /**
2105 jsr166 1.9 * Creates a {@code ForkJoinPool} with the indicated parallelism
2106 dl 1.319 * level, using defaults for all other parameters (see {@link
2107     * #ForkJoinPool(int, ForkJoinWorkerThreadFactory,
2108     * UncaughtExceptionHandler, boolean, int, int, int, Predicate,
2109     * long, TimeUnit)}).
2110 jsr166 1.1 *
2111 jsr166 1.9 * @param parallelism the parallelism level
2112 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
2113 jsr166 1.11 * equal to zero, or greater than implementation limit
2114 jsr166 1.1 * @throws SecurityException if a security manager exists and
2115     * the caller is not permitted to modify threads
2116     * because it does not hold {@link
2117     * java.lang.RuntimePermission}{@code ("modifyThread")}
2118     */
2119     public ForkJoinPool(int parallelism) {
2120 dl 1.300 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false,
2121 dl 1.307 0, MAX_CAP, 1, null, DEFAULT_KEEPALIVE, TimeUnit.MILLISECONDS);
2122 jsr166 1.1 }
2123    
2124     /**
2125 dl 1.300 * Creates a {@code ForkJoinPool} with the given parameters (using
2126 dl 1.319 * defaults for others -- see {@link #ForkJoinPool(int,
2127     * ForkJoinWorkerThreadFactory, UncaughtExceptionHandler, boolean,
2128     * int, int, int, Predicate, long, TimeUnit)}).
2129 jsr166 1.1 *
2130 dl 1.18 * @param parallelism the parallelism level. For default value,
2131     * use {@link java.lang.Runtime#availableProcessors}.
2132     * @param factory the factory for creating new threads. For default value,
2133     * use {@link #defaultForkJoinWorkerThreadFactory}.
2134 dl 1.19 * @param handler the handler for internal worker threads that
2135     * terminate due to unrecoverable errors encountered while executing
2136 jsr166 1.31 * tasks. For default value, use {@code null}.
2137 dl 1.19 * @param asyncMode if true,
2138 dl 1.18 * establishes local first-in-first-out scheduling mode for forked
2139     * tasks that are never joined. This mode may be more appropriate
2140     * than default locally stack-based mode in applications in which
2141     * worker threads only process event-style asynchronous tasks.
2142 jsr166 1.31 * For default value, use {@code false}.
2143 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
2144 jsr166 1.11 * equal to zero, or greater than implementation limit
2145     * @throws NullPointerException if the factory is null
2146 jsr166 1.1 * @throws SecurityException if a security manager exists and
2147     * the caller is not permitted to modify threads
2148     * because it does not hold {@link
2149     * java.lang.RuntimePermission}{@code ("modifyThread")}
2150     */
2151 dl 1.19 public ForkJoinPool(int parallelism,
2152 dl 1.18 ForkJoinWorkerThreadFactory factory,
2153 jsr166 1.156 UncaughtExceptionHandler handler,
2154 dl 1.18 boolean asyncMode) {
2155 dl 1.300 this(parallelism, factory, handler, asyncMode,
2156 dl 1.307 0, MAX_CAP, 1, null, DEFAULT_KEEPALIVE, TimeUnit.MILLISECONDS);
2157 dl 1.152 }
2158    
2159 dl 1.300 /**
2160     * Creates a {@code ForkJoinPool} with the given parameters.
2161     *
2162     * @param parallelism the parallelism level. For default value,
2163     * use {@link java.lang.Runtime#availableProcessors}.
2164     *
2165     * @param factory the factory for creating new threads. For
2166     * default value, use {@link #defaultForkJoinWorkerThreadFactory}.
2167     *
2168     * @param handler the handler for internal worker threads that
2169     * terminate due to unrecoverable errors encountered while
2170     * executing tasks. For default value, use {@code null}.
2171     *
2172     * @param asyncMode if true, establishes local first-in-first-out
2173     * scheduling mode for forked tasks that are never joined. This
2174     * mode may be more appropriate than default locally stack-based
2175     * mode in applications in which worker threads only process
2176     * event-style asynchronous tasks. For default value, use {@code
2177     * false}.
2178     *
2179     * @param corePoolSize the number of threads to keep in the pool
2180     * (unless timed out after an elapsed keep-alive). Normally (and
2181     * by default) this is the same value as the parallelism level,
2182     * but may be set to a larger value to reduce dynamic overhead if
2183     * tasks regularly block. Using a smaller value (for example
2184     * {@code 0}) has the same effect as the default.
2185     *
2186     * @param maximumPoolSize the maximum number of threads allowed.
2187     * When the maximum is reached, attempts to replace blocked
2188     * threads fail. (However, because creation and termination of
2189     * different threads may overlap, and may be managed by the given
2190 dl 1.307 * thread factory, this value may be transiently exceeded.) To
2191     * arrange the same value as is used by default for the common
2192 dl 1.319 * pool, use {@code 256} plus the {@code parallelism} level. (By
2193     * default, the common pool allows a maximum of 256 spare
2194     * threads.) Using a value (for example {@code
2195     * Integer.MAX_VALUE}) larger than the implementation's total
2196     * thread limit has the same effect as using this limit (which is
2197     * the default).
2198 dl 1.300 *
2199     * @param minimumRunnable the minimum allowed number of core
2200     * threads not blocked by a join or {@link ManagedBlocker}. To
2201     * ensure progress, when too few unblocked threads exist and
2202     * unexecuted tasks may exist, new threads are constructed, up to
2203     * the given maximumPoolSize. For the default value, use {@code
2204     * 1}, that ensures liveness. A larger value might improve
2205     * throughput in the presence of blocked activities, but might
2206     * not, due to increased overhead. A value of zero may be
2207     * acceptable when submitted tasks cannot have dependencies
2208     * requiring additional threads.
2209     *
2210 jsr166 1.318 * @param saturate if non-null, a predicate invoked upon attempts
2211 dl 1.307 * to create more than the maximum total allowed threads. By
2212     * default, when a thread is about to block on a join or {@link
2213     * ManagedBlocker}, but cannot be replaced because the
2214     * maximumPoolSize would be exceeded, a {@link
2215     * RejectedExecutionException} is thrown. But if this predicate
2216     * returns {@code true}, then no exception is thrown, so the pool
2217     * continues to operate with fewer than the target number of
2218     * runnable threads, which might not ensure progress.
2219 dl 1.300 *
2220     * @param keepAliveTime the elapsed time since last use before
2221     * a thread is terminated (and then later replaced if needed).
2222     * For the default value, use {@code 60, TimeUnit.SECONDS}.
2223     *
2224     * @param unit the time unit for the {@code keepAliveTime} argument
2225     *
2226     * @throws IllegalArgumentException if parallelism is less than or
2227     * equal to zero, or is greater than implementation limit,
2228     * or if maximumPoolSize is less than parallelism,
2229     * of if the keepAliveTime is less than or equal to zero.
2230     * @throws NullPointerException if the factory is null
2231     * @throws SecurityException if a security manager exists and
2232     * the caller is not permitted to modify threads
2233     * because it does not hold {@link
2234     * java.lang.RuntimePermission}{@code ("modifyThread")}
2235 jsr166 1.306 * @since 9
2236 dl 1.300 */
2237     public ForkJoinPool(int parallelism,
2238     ForkJoinWorkerThreadFactory factory,
2239     UncaughtExceptionHandler handler,
2240     boolean asyncMode,
2241     int corePoolSize,
2242     int maximumPoolSize,
2243     int minimumRunnable,
2244 dl 1.307 Predicate<? super ForkJoinPool> saturate,
2245 dl 1.300 long keepAliveTime,
2246     TimeUnit unit) {
2247     // check, encode, pack parameters
2248     if (parallelism <= 0 || parallelism > MAX_CAP ||
2249     maximumPoolSize < parallelism || keepAliveTime <= 0L)
2250 dl 1.152 throw new IllegalArgumentException();
2251 dl 1.14 if (factory == null)
2252     throw new NullPointerException();
2253 dl 1.300 long ms = Math.max(unit.toMillis(keepAliveTime), TIMEOUT_SLOP);
2254    
2255     int corep = Math.min(Math.max(corePoolSize, parallelism), MAX_CAP);
2256     long c = ((((long)(-corep) << TC_SHIFT) & TC_MASK) |
2257     (((long)(-parallelism) << RC_SHIFT) & RC_MASK));
2258 dl 1.307 int m = parallelism | (asyncMode ? FIFO : 0);
2259 dl 1.300 int maxSpares = Math.min(maximumPoolSize, MAX_CAP) - parallelism;
2260     int minAvail = Math.min(Math.max(minimumRunnable, 0), MAX_CAP);
2261     int b = ((minAvail - parallelism) & SMASK) | (maxSpares << SWIDTH);
2262     int n = (parallelism > 1) ? parallelism - 1 : 1; // at least 2 slots
2263     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
2264     n = (n + 1) << 1; // power of two, including space for submission queues
2265    
2266 jsr166 1.328 this.workerNamePrefix = "ForkJoinPool-" + nextPoolId() + "-worker-";
2267 dl 1.300 this.workQueues = new WorkQueue[n];
2268     this.factory = factory;
2269     this.ueh = handler;
2270 dl 1.307 this.saturate = saturate;
2271 dl 1.300 this.keepAlive = ms;
2272     this.bounds = b;
2273     this.mode = m;
2274     this.ctl = c;
2275     checkPermission();
2276 dl 1.152 }
2277    
2278 jsr166 1.334 private static Object newInstanceFromSystemProperty(String property)
2279 jsr166 1.327 throws ReflectiveOperationException {
2280     String className = System.getProperty(property);
2281     return (className == null)
2282     ? null
2283     : ClassLoader.getSystemClassLoader().loadClass(className)
2284     .getConstructor().newInstance();
2285     }
2286    
2287 dl 1.152 /**
2288 dl 1.300 * Constructor for common pool using parameters possibly
2289     * overridden by system properties
2290     */
2291     private ForkJoinPool(byte forCommonPoolOnly) {
2292     int parallelism = -1;
2293     ForkJoinWorkerThreadFactory fac = null;
2294     UncaughtExceptionHandler handler = null;
2295     try { // ignore exceptions in accessing/parsing properties
2296     String pp = System.getProperty
2297     ("java.util.concurrent.ForkJoinPool.common.parallelism");
2298     if (pp != null)
2299     parallelism = Integer.parseInt(pp);
2300 jsr166 1.327 fac = (ForkJoinWorkerThreadFactory) newInstanceFromSystemProperty(
2301     "java.util.concurrent.ForkJoinPool.common.threadFactory");
2302     handler = (UncaughtExceptionHandler) newInstanceFromSystemProperty(
2303     "java.util.concurrent.ForkJoinPool.common.exceptionHandler");
2304 dl 1.300 } catch (Exception ignore) {
2305     }
2306    
2307     if (fac == null) {
2308     if (System.getSecurityManager() == null)
2309     fac = defaultForkJoinWorkerThreadFactory;
2310     else // use security-managed default
2311     fac = new InnocuousForkJoinWorkerThreadFactory();
2312     }
2313     if (parallelism < 0 && // default 1 less than #cores
2314     (parallelism = Runtime.getRuntime().availableProcessors() - 1) <= 0)
2315     parallelism = 1;
2316     if (parallelism > MAX_CAP)
2317     parallelism = MAX_CAP;
2318    
2319     long c = ((((long)(-parallelism) << TC_SHIFT) & TC_MASK) |
2320     (((long)(-parallelism) << RC_SHIFT) & RC_MASK));
2321     int b = ((1 - parallelism) & SMASK) | (COMMON_MAX_SPARES << SWIDTH);
2322     int n = (parallelism > 1) ? parallelism - 1 : 1;
2323     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
2324     n = (n + 1) << 1;
2325    
2326 jsr166 1.328 this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2327 dl 1.300 this.workQueues = new WorkQueue[n];
2328     this.factory = fac;
2329 dl 1.18 this.ueh = handler;
2330 dl 1.307 this.saturate = null;
2331 dl 1.300 this.keepAlive = DEFAULT_KEEPALIVE;
2332     this.bounds = b;
2333 dl 1.310 this.mode = parallelism;
2334 dl 1.300 this.ctl = c;
2335 dl 1.101 }
2336    
2337     /**
2338 dl 1.128 * Returns the common pool instance. This pool is statically
2339 dl 1.134 * constructed; its run state is unaffected by attempts to {@link
2340     * #shutdown} or {@link #shutdownNow}. However this pool and any
2341     * ongoing processing are automatically terminated upon program
2342     * {@link System#exit}. Any program that relies on asynchronous
2343     * task processing to complete before program termination should
2344 jsr166 1.158 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2345     * before exit.
2346 dl 1.100 *
2347     * @return the common pool instance
2348 jsr166 1.138 * @since 1.8
2349 dl 1.100 */
2350     public static ForkJoinPool commonPool() {
2351 dl 1.134 // assert common != null : "static init error";
2352     return common;
2353 dl 1.100 }
2354    
2355 jsr166 1.1 // Execution methods
2356    
2357     /**
2358     * Performs the given task, returning its result upon completion.
2359 dl 1.52 * If the computation encounters an unchecked Exception or Error,
2360     * it is rethrown as the outcome of this invocation. Rethrown
2361     * exceptions behave in the same way as regular exceptions, but,
2362     * when possible, contain stack traces (as displayed for example
2363     * using {@code ex.printStackTrace()}) of both the current thread
2364     * as well as the thread actually encountering the exception;
2365     * minimally only the latter.
2366 jsr166 1.1 *
2367     * @param task the task
2368 jsr166 1.191 * @param <T> the type of the task's result
2369 jsr166 1.1 * @return the task's result
2370 jsr166 1.11 * @throws NullPointerException if the task is null
2371     * @throws RejectedExecutionException if the task cannot be
2372     * scheduled for execution
2373 jsr166 1.1 */
2374     public <T> T invoke(ForkJoinTask<T> task) {
2375 dl 1.90 if (task == null)
2376     throw new NullPointerException();
2377 dl 1.243 externalSubmit(task);
2378 dl 1.78 return task.join();
2379 jsr166 1.1 }
2380    
2381     /**
2382     * Arranges for (asynchronous) execution of the given task.
2383     *
2384     * @param task the task
2385 jsr166 1.11 * @throws NullPointerException if the task is null
2386     * @throws RejectedExecutionException if the task cannot be
2387     * scheduled for execution
2388 jsr166 1.1 */
2389 jsr166 1.8 public void execute(ForkJoinTask<?> task) {
2390 dl 1.243 externalSubmit(task);
2391 jsr166 1.1 }
2392    
2393     // AbstractExecutorService methods
2394    
2395 jsr166 1.11 /**
2396     * @throws NullPointerException if the task is null
2397     * @throws RejectedExecutionException if the task cannot be
2398     * scheduled for execution
2399     */
2400 jsr166 1.1 public void execute(Runnable task) {
2401 dl 1.41 if (task == null)
2402     throw new NullPointerException();
2403 jsr166 1.2 ForkJoinTask<?> job;
2404 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2405     job = (ForkJoinTask<?>) task;
2406 jsr166 1.2 else
2407 dl 1.152 job = new ForkJoinTask.RunnableExecuteAction(task);
2408 dl 1.243 externalSubmit(job);
2409 jsr166 1.1 }
2410    
2411 jsr166 1.11 /**
2412 dl 1.18 * Submits a ForkJoinTask for execution.
2413     *
2414     * @param task the task to submit
2415 jsr166 1.191 * @param <T> the type of the task's result
2416 dl 1.18 * @return the task
2417     * @throws NullPointerException if the task is null
2418     * @throws RejectedExecutionException if the task cannot be
2419     * scheduled for execution
2420     */
2421     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2422 dl 1.243 return externalSubmit(task);
2423 dl 1.18 }
2424    
2425     /**
2426 jsr166 1.11 * @throws NullPointerException if the task is null
2427     * @throws RejectedExecutionException if the task cannot be
2428     * scheduled for execution
2429     */
2430 jsr166 1.1 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2431 dl 1.243 return externalSubmit(new ForkJoinTask.AdaptedCallable<T>(task));
2432 jsr166 1.1 }
2433    
2434 jsr166 1.11 /**
2435     * @throws NullPointerException if the task is null
2436     * @throws RejectedExecutionException if the task cannot be
2437     * scheduled for execution
2438     */
2439 jsr166 1.1 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2440 dl 1.243 return externalSubmit(new ForkJoinTask.AdaptedRunnable<T>(task, result));
2441 jsr166 1.1 }
2442    
2443 jsr166 1.11 /**
2444     * @throws NullPointerException if the task is null
2445     * @throws RejectedExecutionException if the task cannot be
2446     * scheduled for execution
2447     */
2448 jsr166 1.335 @SuppressWarnings("unchecked")
2449 jsr166 1.1 public ForkJoinTask<?> submit(Runnable task) {
2450 dl 1.41 if (task == null)
2451     throw new NullPointerException();
2452 jsr166 1.335 return externalSubmit((task instanceof ForkJoinTask<?>)
2453     ? (ForkJoinTask<Void>) task // avoid re-wrap
2454     : new ForkJoinTask.AdaptedRunnableAction(task));
2455 jsr166 1.1 }
2456    
2457     /**
2458 jsr166 1.11 * @throws NullPointerException {@inheritDoc}
2459     * @throws RejectedExecutionException {@inheritDoc}
2460     */
2461 jsr166 1.1 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2462 dl 1.86 // In previous versions of this class, this method constructed
2463     // a task to run ForkJoinTask.invokeAll, but now external
2464     // invocation of multiple tasks is at least as efficient.
2465 jsr166 1.199 ArrayList<Future<T>> futures = new ArrayList<>(tasks.size());
2466 jsr166 1.1
2467 dl 1.86 try {
2468     for (Callable<T> t : tasks) {
2469 dl 1.90 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2470 jsr166 1.144 futures.add(f);
2471 dl 1.243 externalSubmit(f);
2472 dl 1.86 }
2473 jsr166 1.143 for (int i = 0, size = futures.size(); i < size; i++)
2474     ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2475 dl 1.86 return futures;
2476 jsr166 1.226 } catch (Throwable t) {
2477     for (int i = 0, size = futures.size(); i < size; i++)
2478     futures.get(i).cancel(false);
2479     throw t;
2480 jsr166 1.1 }
2481     }
2482    
2483     /**
2484     * Returns the factory used for constructing new workers.
2485     *
2486     * @return the factory used for constructing new workers
2487     */
2488     public ForkJoinWorkerThreadFactory getFactory() {
2489     return factory;
2490     }
2491    
2492     /**
2493     * Returns the handler for internal worker threads that terminate
2494     * due to unrecoverable errors encountered while executing tasks.
2495     *
2496 jsr166 1.4 * @return the handler, or {@code null} if none
2497 jsr166 1.1 */
2498 jsr166 1.156 public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2499 dl 1.14 return ueh;
2500 jsr166 1.1 }
2501    
2502     /**
2503 jsr166 1.9 * Returns the targeted parallelism level of this pool.
2504 jsr166 1.1 *
2505 jsr166 1.9 * @return the targeted parallelism level of this pool
2506 jsr166 1.1 */
2507     public int getParallelism() {
2508 dl 1.310 int par = mode & SMASK;
2509     return (par > 0) ? par : 1;
2510 jsr166 1.1 }
2511    
2512     /**
2513 dl 1.100 * Returns the targeted parallelism level of the common pool.
2514     *
2515     * @return the targeted parallelism level of the common pool
2516 jsr166 1.138 * @since 1.8
2517 dl 1.100 */
2518     public static int getCommonPoolParallelism() {
2519 jsr166 1.274 return COMMON_PARALLELISM;
2520 dl 1.100 }
2521    
2522     /**
2523 jsr166 1.1 * Returns the number of worker threads that have started but not
2524 jsr166 1.34 * yet terminated. The result returned by this method may differ
2525 jsr166 1.4 * from {@link #getParallelism} when threads are created to
2526 jsr166 1.1 * maintain parallelism when others are cooperatively blocked.
2527     *
2528     * @return the number of worker threads
2529     */
2530     public int getPoolSize() {
2531 dl 1.300 return ((mode & SMASK) + (short)(ctl >>> TC_SHIFT));
2532 jsr166 1.1 }
2533    
2534     /**
2535 jsr166 1.4 * Returns {@code true} if this pool uses local first-in-first-out
2536 jsr166 1.1 * scheduling mode for forked tasks that are never joined.
2537     *
2538 jsr166 1.4 * @return {@code true} if this pool uses async mode
2539 jsr166 1.1 */
2540     public boolean getAsyncMode() {
2541 dl 1.300 return (mode & FIFO) != 0;
2542 jsr166 1.1 }
2543    
2544     /**
2545     * Returns an estimate of the number of worker threads that are
2546     * not blocked waiting to join tasks or for other managed
2547 dl 1.14 * synchronization. This method may overestimate the
2548     * number of running threads.
2549 jsr166 1.1 *
2550     * @return the number of worker threads
2551     */
2552     public int getRunningThreadCount() {
2553 dl 1.339 WorkQueue[] ws; WorkQueue w;
2554     VarHandle.acquireFence();
2555 dl 1.78 int rc = 0;
2556     if ((ws = workQueues) != null) {
2557 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2558     if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2559 dl 1.78 ++rc;
2560     }
2561     }
2562     return rc;
2563 jsr166 1.1 }
2564    
2565     /**
2566     * Returns an estimate of the number of threads that are currently
2567     * stealing or executing tasks. This method may overestimate the
2568     * number of active threads.
2569     *
2570     * @return the number of active threads
2571     */
2572     public int getActiveThreadCount() {
2573 dl 1.300 int r = (mode & SMASK) + (int)(ctl >> RC_SHIFT);
2574 jsr166 1.63 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2575 jsr166 1.1 }
2576    
2577     /**
2578 jsr166 1.4 * Returns {@code true} if all worker threads are currently idle.
2579     * An idle worker is one that cannot obtain a task to execute
2580     * because none are available to steal from other threads, and
2581     * there are no pending submissions to the pool. This method is
2582     * conservative; it might not return {@code true} immediately upon
2583     * idleness of all threads, but will eventually become true if
2584     * threads remain inactive.
2585 jsr166 1.1 *
2586 jsr166 1.4 * @return {@code true} if all threads are currently idle
2587 jsr166 1.1 */
2588     public boolean isQuiescent() {
2589 dl 1.300 for (;;) {
2590     long c = ctl;
2591     int md = mode, pc = md & SMASK;
2592 dl 1.310 int tc = pc + (short)(c >>> TC_SHIFT);
2593 dl 1.300 int rc = pc + (int)(c >> RC_SHIFT);
2594     if ((md & (STOP | TERMINATED)) != 0)
2595     return true;
2596     else if (rc > 0)
2597     return false;
2598     else {
2599     WorkQueue[] ws; WorkQueue v;
2600     if ((ws = workQueues) != null) {
2601     for (int i = 1; i < ws.length; i += 2) {
2602     if ((v = ws[i]) != null) {
2603 dl 1.339 if (v.source > 0)
2604 dl 1.300 return false;
2605     --tc;
2606     }
2607     }
2608     }
2609     if (tc == 0 && ctl == c)
2610     return true;
2611     }
2612     }
2613 jsr166 1.1 }
2614    
2615     /**
2616     * Returns an estimate of the total number of tasks stolen from
2617     * one thread's work queue by another. The reported value
2618     * underestimates the actual total number of steals when the pool
2619     * is not quiescent. This value may be useful for monitoring and
2620     * tuning fork/join programs: in general, steal counts should be
2621     * high enough to keep threads busy, but low enough to avoid
2622     * overhead and contention across threads.
2623     *
2624     * @return the number of steals
2625     */
2626     public long getStealCount() {
2627 dl 1.300 long count = stealCount;
2628 dl 1.78 WorkQueue[] ws; WorkQueue w;
2629     if ((ws = workQueues) != null) {
2630 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2631 dl 1.78 if ((w = ws[i]) != null)
2632 dl 1.300 count += (long)w.nsteals & 0xffffffffL;
2633 dl 1.78 }
2634     }
2635     return count;
2636 jsr166 1.1 }
2637    
2638     /**
2639     * Returns an estimate of the total number of tasks currently held
2640     * in queues by worker threads (but not including tasks submitted
2641     * to the pool that have not begun executing). This value is only
2642     * an approximation, obtained by iterating across all threads in
2643     * the pool. This method may be useful for tuning task
2644     * granularities.
2645     *
2646     * @return the number of queued tasks
2647     */
2648     public long getQueuedTaskCount() {
2649 dl 1.78 WorkQueue[] ws; WorkQueue w;
2650 dl 1.339 VarHandle.acquireFence();
2651     int count = 0;
2652 dl 1.78 if ((ws = workQueues) != null) {
2653 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2654 dl 1.78 if ((w = ws[i]) != null)
2655     count += w.queueSize();
2656     }
2657 dl 1.52 }
2658 jsr166 1.1 return count;
2659     }
2660    
2661     /**
2662 jsr166 1.8 * Returns an estimate of the number of tasks submitted to this
2663 dl 1.55 * pool that have not yet begun executing. This method may take
2664 dl 1.52 * time proportional to the number of submissions.
2665 jsr166 1.1 *
2666     * @return the number of queued submissions
2667     */
2668     public int getQueuedSubmissionCount() {
2669 dl 1.339 WorkQueue[] ws; WorkQueue w;
2670     VarHandle.acquireFence();
2671 dl 1.78 int count = 0;
2672     if ((ws = workQueues) != null) {
2673 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2674 dl 1.78 if ((w = ws[i]) != null)
2675     count += w.queueSize();
2676     }
2677     }
2678     return count;
2679 jsr166 1.1 }
2680    
2681     /**
2682 jsr166 1.4 * Returns {@code true} if there are any tasks submitted to this
2683     * pool that have not yet begun executing.
2684 jsr166 1.1 *
2685     * @return {@code true} if there are any queued submissions
2686     */
2687     public boolean hasQueuedSubmissions() {
2688 dl 1.78 WorkQueue[] ws; WorkQueue w;
2689 dl 1.339 VarHandle.acquireFence();
2690 dl 1.78 if ((ws = workQueues) != null) {
2691 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2692 dl 1.115 if ((w = ws[i]) != null && !w.isEmpty())
2693 dl 1.78 return true;
2694     }
2695     }
2696     return false;
2697 jsr166 1.1 }
2698    
2699     /**
2700     * Removes and returns the next unexecuted submission if one is
2701     * available. This method may be useful in extensions to this
2702     * class that re-assign work in systems with multiple pools.
2703     *
2704 jsr166 1.4 * @return the next submission, or {@code null} if none
2705 jsr166 1.1 */
2706     protected ForkJoinTask<?> pollSubmission() {
2707 dl 1.300 return pollScan(true);
2708 jsr166 1.1 }
2709    
2710     /**
2711     * Removes all available unexecuted submitted and forked tasks
2712     * from scheduling queues and adds them to the given collection,
2713     * without altering their execution status. These may include
2714 jsr166 1.8 * artificially generated or wrapped tasks. This method is
2715     * designed to be invoked only when the pool is known to be
2716 jsr166 1.1 * quiescent. Invocations at other times may not remove all
2717     * tasks. A failure encountered while attempting to add elements
2718     * to collection {@code c} may result in elements being in
2719     * neither, either or both collections when the associated
2720     * exception is thrown. The behavior of this operation is
2721     * undefined if the specified collection is modified while the
2722     * operation is in progress.
2723     *
2724     * @param c the collection to transfer elements into
2725     * @return the number of elements transferred
2726     */
2727 jsr166 1.5 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2728 dl 1.339 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2729     VarHandle.acquireFence();
2730 dl 1.52 int count = 0;
2731 dl 1.78 if ((ws = workQueues) != null) {
2732 dl 1.86 for (int i = 0; i < ws.length; ++i) {
2733 dl 1.78 if ((w = ws[i]) != null) {
2734     while ((t = w.poll()) != null) {
2735     c.add(t);
2736     ++count;
2737     }
2738     }
2739 dl 1.52 }
2740     }
2741 dl 1.18 return count;
2742     }
2743    
2744     /**
2745 jsr166 1.1 * Returns a string identifying this pool, as well as its state,
2746     * including indications of run state, parallelism level, and
2747     * worker and task counts.
2748     *
2749     * @return a string identifying this pool, as well as its state
2750     */
2751     public String toString() {
2752 dl 1.86 // Use a single pass through workQueues to collect counts
2753 dl 1.339 int md = mode; // read volatile fields first
2754     long c = ctl;
2755     long st = stealCount;
2756 dl 1.86 long qt = 0L, qs = 0L; int rc = 0;
2757     WorkQueue[] ws; WorkQueue w;
2758     if ((ws = workQueues) != null) {
2759     for (int i = 0; i < ws.length; ++i) {
2760     if ((w = ws[i]) != null) {
2761     int size = w.queueSize();
2762     if ((i & 1) == 0)
2763     qs += size;
2764     else {
2765     qt += size;
2766 dl 1.300 st += (long)w.nsteals & 0xffffffffL;
2767 dl 1.86 if (w.isApparentlyUnblocked())
2768     ++rc;
2769     }
2770     }
2771     }
2772     }
2773 dl 1.300
2774     int pc = (md & SMASK);
2775 dl 1.52 int tc = pc + (short)(c >>> TC_SHIFT);
2776 dl 1.300 int ac = pc + (int)(c >> RC_SHIFT);
2777 dl 1.78 if (ac < 0) // ignore transient negative
2778     ac = 0;
2779 dl 1.300 String level = ((md & TERMINATED) != 0 ? "Terminated" :
2780     (md & STOP) != 0 ? "Terminating" :
2781     (md & SHUTDOWN) != 0 ? "Shutting down" :
2782 dl 1.200 "Running");
2783 jsr166 1.1 return super.toString() +
2784 dl 1.52 "[" + level +
2785 dl 1.14 ", parallelism = " + pc +
2786     ", size = " + tc +
2787     ", active = " + ac +
2788     ", running = " + rc +
2789 jsr166 1.1 ", steals = " + st +
2790     ", tasks = " + qt +
2791     ", submissions = " + qs +
2792     "]";
2793     }
2794    
2795     /**
2796 dl 1.100 * Possibly initiates an orderly shutdown in which previously
2797     * submitted tasks are executed, but no new tasks will be
2798     * accepted. Invocation has no effect on execution state if this
2799 jsr166 1.137 * is the {@link #commonPool()}, and no additional effect if
2800 dl 1.100 * already shut down. Tasks that are in the process of being
2801     * submitted concurrently during the course of this method may or
2802     * may not be rejected.
2803 jsr166 1.1 *
2804     * @throws SecurityException if a security manager exists and
2805     * the caller is not permitted to modify threads
2806     * because it does not hold {@link
2807     * java.lang.RuntimePermission}{@code ("modifyThread")}
2808     */
2809     public void shutdown() {
2810     checkPermission();
2811 dl 1.105 tryTerminate(false, true);
2812 jsr166 1.1 }
2813    
2814     /**
2815 dl 1.100 * Possibly attempts to cancel and/or stop all tasks, and reject
2816     * all subsequently submitted tasks. Invocation has no effect on
2817 jsr166 1.137 * execution state if this is the {@link #commonPool()}, and no
2818 dl 1.100 * additional effect if already shut down. Otherwise, tasks that
2819     * are in the process of being submitted or executed concurrently
2820     * during the course of this method may or may not be
2821     * rejected. This method cancels both existing and unexecuted
2822     * tasks, in order to permit termination in the presence of task
2823     * dependencies. So the method always returns an empty list
2824     * (unlike the case for some other Executors).
2825 jsr166 1.1 *
2826     * @return an empty list
2827     * @throws SecurityException if a security manager exists and
2828     * the caller is not permitted to modify threads
2829     * because it does not hold {@link
2830     * java.lang.RuntimePermission}{@code ("modifyThread")}
2831     */
2832     public List<Runnable> shutdownNow() {
2833     checkPermission();
2834 dl 1.105 tryTerminate(true, true);
2835 jsr166 1.1 return Collections.emptyList();
2836     }
2837    
2838     /**
2839     * Returns {@code true} if all tasks have completed following shut down.
2840     *
2841     * @return {@code true} if all tasks have completed following shut down
2842     */
2843     public boolean isTerminated() {
2844 dl 1.300 return (mode & TERMINATED) != 0;
2845 jsr166 1.1 }
2846    
2847     /**
2848     * Returns {@code true} if the process of termination has
2849 jsr166 1.9 * commenced but not yet completed. This method may be useful for
2850     * debugging. A return of {@code true} reported a sufficient
2851     * period after shutdown may indicate that submitted tasks have
2852 jsr166 1.119 * ignored or suppressed interruption, or are waiting for I/O,
2853 dl 1.49 * causing this executor not to properly terminate. (See the
2854     * advisory notes for class {@link ForkJoinTask} stating that
2855     * tasks should not normally entail blocking operations. But if
2856     * they do, they must abort them on interrupt.)
2857 jsr166 1.1 *
2858 jsr166 1.9 * @return {@code true} if terminating but not yet terminated
2859 jsr166 1.1 */
2860     public boolean isTerminating() {
2861 dl 1.300 int md = mode;
2862     return (md & STOP) != 0 && (md & TERMINATED) == 0;
2863 jsr166 1.1 }
2864    
2865     /**
2866     * Returns {@code true} if this pool has been shut down.
2867     *
2868     * @return {@code true} if this pool has been shut down
2869     */
2870     public boolean isShutdown() {
2871 dl 1.300 return (mode & SHUTDOWN) != 0;
2872 jsr166 1.9 }
2873    
2874     /**
2875 dl 1.105 * Blocks until all tasks have completed execution after a
2876     * shutdown request, or the timeout occurs, or the current thread
2877 dl 1.134 * is interrupted, whichever happens first. Because the {@link
2878     * #commonPool()} never terminates until program shutdown, when
2879     * applied to the common pool, this method is equivalent to {@link
2880 jsr166 1.158 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
2881 jsr166 1.1 *
2882     * @param timeout the maximum time to wait
2883     * @param unit the time unit of the timeout argument
2884     * @return {@code true} if this executor terminated and
2885     * {@code false} if the timeout elapsed before termination
2886     * @throws InterruptedException if interrupted while waiting
2887     */
2888     public boolean awaitTermination(long timeout, TimeUnit unit)
2889     throws InterruptedException {
2890 dl 1.134 if (Thread.interrupted())
2891     throw new InterruptedException();
2892     if (this == common) {
2893     awaitQuiescence(timeout, unit);
2894     return false;
2895     }
2896 dl 1.52 long nanos = unit.toNanos(timeout);
2897 dl 1.101 if (isTerminated())
2898     return true;
2899 dl 1.183 if (nanos <= 0L)
2900     return false;
2901     long deadline = System.nanoTime() + nanos;
2902 jsr166 1.103 synchronized (this) {
2903 jsr166 1.184 for (;;) {
2904 dl 1.183 if (isTerminated())
2905     return true;
2906     if (nanos <= 0L)
2907     return false;
2908     long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
2909     wait(millis > 0L ? millis : 1L);
2910     nanos = deadline - System.nanoTime();
2911 dl 1.52 }
2912 dl 1.18 }
2913 jsr166 1.1 }
2914    
2915     /**
2916 dl 1.134 * If called by a ForkJoinTask operating in this pool, equivalent
2917     * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
2918     * waits and/or attempts to assist performing tasks until this
2919     * pool {@link #isQuiescent} or the indicated timeout elapses.
2920     *
2921     * @param timeout the maximum time to wait
2922     * @param unit the time unit of the timeout argument
2923     * @return {@code true} if quiescent; {@code false} if the
2924     * timeout elapsed.
2925     */
2926     public boolean awaitQuiescence(long timeout, TimeUnit unit) {
2927     long nanos = unit.toNanos(timeout);
2928     ForkJoinWorkerThread wt;
2929     Thread thread = Thread.currentThread();
2930     if ((thread instanceof ForkJoinWorkerThread) &&
2931     (wt = (ForkJoinWorkerThread)thread).pool == this) {
2932     helpQuiescePool(wt.workQueue);
2933     return true;
2934     }
2935 dl 1.300 else {
2936     for (long startTime = System.nanoTime();;) {
2937     ForkJoinTask<?> t;
2938     if ((t = pollScan(false)) != null)
2939     t.doExec();
2940     else if (isQuiescent())
2941     return true;
2942     else if ((System.nanoTime() - startTime) > nanos)
2943 dl 1.134 return false;
2944 dl 1.300 else
2945     Thread.yield(); // cannot block
2946 dl 1.134 }
2947     }
2948     }
2949    
2950     /**
2951     * Waits and/or attempts to assist performing tasks indefinitely
2952 jsr166 1.141 * until the {@link #commonPool()} {@link #isQuiescent}.
2953 dl 1.134 */
2954 dl 1.136 static void quiesceCommonPool() {
2955 dl 1.134 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
2956     }
2957    
2958     /**
2959 jsr166 1.1 * Interface for extending managed parallelism for tasks running
2960 jsr166 1.8 * in {@link ForkJoinPool}s.
2961     *
2962 dl 1.19 * <p>A {@code ManagedBlocker} provides two methods. Method
2963 jsr166 1.218 * {@link #isReleasable} must return {@code true} if blocking is
2964     * not necessary. Method {@link #block} blocks the current thread
2965 dl 1.19 * if necessary (perhaps internally invoking {@code isReleasable}
2966 dl 1.54 * before actually blocking). These actions are performed by any
2967 jsr166 1.157 * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
2968     * The unusual methods in this API accommodate synchronizers that
2969     * may, but don't usually, block for long periods. Similarly, they
2970 dl 1.54 * allow more efficient internal handling of cases in which
2971     * additional workers may be, but usually are not, needed to
2972     * ensure sufficient parallelism. Toward this end,
2973     * implementations of method {@code isReleasable} must be amenable
2974     * to repeated invocation.
2975 jsr166 1.1 *
2976     * <p>For example, here is a ManagedBlocker based on a
2977     * ReentrantLock:
2978 jsr166 1.239 * <pre> {@code
2979 jsr166 1.1 * class ManagedLocker implements ManagedBlocker {
2980     * final ReentrantLock lock;
2981     * boolean hasLock = false;
2982     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
2983     * public boolean block() {
2984     * if (!hasLock)
2985     * lock.lock();
2986     * return true;
2987     * }
2988     * public boolean isReleasable() {
2989     * return hasLock || (hasLock = lock.tryLock());
2990     * }
2991     * }}</pre>
2992 dl 1.19 *
2993     * <p>Here is a class that possibly blocks waiting for an
2994     * item on a given queue:
2995 jsr166 1.239 * <pre> {@code
2996 dl 1.19 * class QueueTaker<E> implements ManagedBlocker {
2997     * final BlockingQueue<E> queue;
2998     * volatile E item = null;
2999     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3000     * public boolean block() throws InterruptedException {
3001     * if (item == null)
3002 dl 1.23 * item = queue.take();
3003 dl 1.19 * return true;
3004     * }
3005     * public boolean isReleasable() {
3006 dl 1.23 * return item != null || (item = queue.poll()) != null;
3007 dl 1.19 * }
3008     * public E getItem() { // call after pool.managedBlock completes
3009     * return item;
3010     * }
3011     * }}</pre>
3012 jsr166 1.1 */
3013     public static interface ManagedBlocker {
3014     /**
3015     * Possibly blocks the current thread, for example waiting for
3016     * a lock or condition.
3017     *
3018 jsr166 1.4 * @return {@code true} if no additional blocking is necessary
3019     * (i.e., if isReleasable would return true)
3020 jsr166 1.1 * @throws InterruptedException if interrupted while waiting
3021     * (the method is not required to do so, but is allowed to)
3022     */
3023     boolean block() throws InterruptedException;
3024    
3025     /**
3026 jsr166 1.4 * Returns {@code true} if blocking is unnecessary.
3027 jsr166 1.154 * @return {@code true} if blocking is unnecessary
3028 jsr166 1.1 */
3029     boolean isReleasable();
3030     }
3031    
3032     /**
3033 jsr166 1.217 * Runs the given possibly blocking task. When {@linkplain
3034     * ForkJoinTask#inForkJoinPool() running in a ForkJoinPool}, this
3035     * method possibly arranges for a spare thread to be activated if
3036     * necessary to ensure sufficient parallelism while the current
3037     * thread is blocked in {@link ManagedBlocker#block blocker.block()}.
3038 jsr166 1.1 *
3039 jsr166 1.217 * <p>This method repeatedly calls {@code blocker.isReleasable()} and
3040     * {@code blocker.block()} until either method returns {@code true}.
3041     * Every call to {@code blocker.block()} is preceded by a call to
3042     * {@code blocker.isReleasable()} that returned {@code false}.
3043     *
3044     * <p>If not running in a ForkJoinPool, this method is
3045 jsr166 1.8 * behaviorally equivalent to
3046 jsr166 1.239 * <pre> {@code
3047 jsr166 1.1 * while (!blocker.isReleasable())
3048     * if (blocker.block())
3049 jsr166 1.217 * break;}</pre>
3050 jsr166 1.8 *
3051 jsr166 1.217 * If running in a ForkJoinPool, the pool may first be expanded to
3052     * ensure sufficient parallelism available during the call to
3053     * {@code blocker.block()}.
3054 jsr166 1.1 *
3055 jsr166 1.217 * @param blocker the blocker task
3056     * @throws InterruptedException if {@code blocker.block()} did so
3057 jsr166 1.1 */
3058 dl 1.18 public static void managedBlock(ManagedBlocker blocker)
3059 jsr166 1.1 throws InterruptedException {
3060 dl 1.339 if (blocker == null) throw new NullPointerException();
3061 dl 1.200 ForkJoinPool p;
3062     ForkJoinWorkerThread wt;
3063 dl 1.300 WorkQueue w;
3064 jsr166 1.1 Thread t = Thread.currentThread();
3065 dl 1.200 if ((t instanceof ForkJoinWorkerThread) &&
3066 dl 1.300 (p = (wt = (ForkJoinWorkerThread)t).pool) != null &&
3067     (w = wt.workQueue) != null) {
3068     int block;
3069 dl 1.172 while (!blocker.isReleasable()) {
3070 dl 1.300 if ((block = p.tryCompensate(w)) != 0) {
3071 dl 1.105 try {
3072     do {} while (!blocker.isReleasable() &&
3073     !blocker.block());
3074     } finally {
3075 dl 1.314 CTL.getAndAdd(p, (block > 0) ? RC_UNIT : 0L);
3076 dl 1.105 }
3077     break;
3078 dl 1.78 }
3079     }
3080 dl 1.18 }
3081 dl 1.105 else {
3082     do {} while (!blocker.isReleasable() &&
3083     !blocker.block());
3084     }
3085 jsr166 1.1 }
3086    
3087 dl 1.310 /**
3088     * If the given executor is a ForkJoinPool, poll and execute
3089     * AsynchronousCompletionTasks from worker's queue until none are
3090     * available or blocker is released.
3091     */
3092     static void helpAsyncBlocker(Executor e, ManagedBlocker blocker) {
3093 dl 1.339 if (e instanceof ForkJoinPool) {
3094 dl 1.310 WorkQueue w; ForkJoinWorkerThread wt; WorkQueue[] ws; int r, n;
3095     ForkJoinPool p = (ForkJoinPool)e;
3096     Thread thread = Thread.currentThread();
3097     if (thread instanceof ForkJoinWorkerThread &&
3098     (wt = (ForkJoinWorkerThread)thread).pool == p)
3099     w = wt.workQueue;
3100     else if ((r = ThreadLocalRandom.getProbe()) != 0 &&
3101     (ws = p.workQueues) != null && (n = ws.length) > 0)
3102     w = ws[(n - 1) & r & SQMASK];
3103     else
3104     w = null;
3105 dl 1.339 if (w != null)
3106     w.helpAsyncBlocker(blocker);
3107 dl 1.310 }
3108     }
3109    
3110 jsr166 1.7 // AbstractExecutorService overrides. These rely on undocumented
3111     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3112     // implement RunnableFuture.
3113 jsr166 1.1
3114     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3115 dl 1.90 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3116 jsr166 1.1 }
3117    
3118     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3119 dl 1.90 return new ForkJoinTask.AdaptedCallable<T>(callable);
3120 jsr166 1.1 }
3121    
3122 dl 1.314 // VarHandle mechanics
3123     private static final VarHandle CTL;
3124     private static final VarHandle MODE;
3125 dl 1.339 static final VarHandle QA;
3126 dl 1.52
3127     static {
3128 jsr166 1.3 try {
3129 dl 1.314 MethodHandles.Lookup l = MethodHandles.lookup();
3130     CTL = l.findVarHandle(ForkJoinPool.class, "ctl", long.class);
3131     MODE = l.findVarHandle(ForkJoinPool.class, "mode", int.class);
3132     QA = MethodHandles.arrayElementVarHandle(ForkJoinTask[].class);
3133 jsr166 1.231 } catch (ReflectiveOperationException e) {
3134 dl 1.52 throw new Error(e);
3135     }
3136 dl 1.105
3137 dl 1.243 // Reduce the risk of rare disastrous classloading in first call to
3138     // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
3139     Class<?> ensureLoaded = LockSupport.class;
3140    
3141 jsr166 1.273 int commonMaxSpares = DEFAULT_COMMON_MAX_SPARES;
3142     try {
3143     String p = System.getProperty
3144     ("java.util.concurrent.ForkJoinPool.common.maximumSpares");
3145     if (p != null)
3146     commonMaxSpares = Integer.parseInt(p);
3147     } catch (Exception ignore) {}
3148     COMMON_MAX_SPARES = commonMaxSpares;
3149    
3150 dl 1.152 defaultForkJoinWorkerThreadFactory =
3151 dl 1.112 new DefaultForkJoinWorkerThreadFactory();
3152 dl 1.115 modifyThreadPermission = new RuntimePermission("modifyThread");
3153    
3154 jsr166 1.329 common = AccessController.doPrivileged(new PrivilegedAction<>() {
3155     public ForkJoinPool run() {
3156     return new ForkJoinPool((byte)0); }});
3157 jsr166 1.275
3158 dl 1.310 COMMON_PARALLELISM = Math.max(common.mode & SMASK, 1);
3159 jsr166 1.3 }
3160 dl 1.52
3161 dl 1.197 /**
3162 jsr166 1.279 * Factory for innocuous worker threads.
3163 dl 1.197 */
3164 jsr166 1.278 private static final class InnocuousForkJoinWorkerThreadFactory
3165 dl 1.197 implements ForkJoinWorkerThreadFactory {
3166    
3167     /**
3168     * An ACC to restrict permissions for the factory itself.
3169     * The constructed workers have no permissions set.
3170     */
3171 jsr166 1.331 private static final AccessControlContext ACC = contextWithPermissions(
3172     modifyThreadPermission,
3173     new RuntimePermission("enableContextClassLoaderOverride"),
3174     new RuntimePermission("modifyThreadGroup"),
3175 jsr166 1.332 new RuntimePermission("getClassLoader"),
3176 jsr166 1.331 new RuntimePermission("setContextClassLoader"));
3177 dl 1.197
3178     public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
3179 jsr166 1.331 return AccessController.doPrivileged(
3180     new PrivilegedAction<>() {
3181     public ForkJoinWorkerThread run() {
3182     return new ForkJoinWorkerThread.
3183     InnocuousForkJoinWorkerThread(pool); }},
3184     ACC);
3185 dl 1.197 }
3186     }
3187 jsr166 1.1 }