ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.351
Committed: Wed Dec 5 11:03:24 2018 UTC (5 years, 5 months ago) by dl
Branch: MAIN
Changes since 1.350: +61 -52 lines
Log Message:
Reduce unnecessary signals

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.58 * http://creativecommons.org/publicdomain/zero/1.0/
5 jsr166 1.1 */
6 jsr166 1.301
7 jsr166 1.1 package java.util.concurrent;
8    
9 jsr166 1.156 import java.lang.Thread.UncaughtExceptionHandler;
10 dl 1.314 import java.lang.invoke.MethodHandles;
11     import java.lang.invoke.VarHandle;
12 jsr166 1.329 import java.security.AccessController;
13 jsr166 1.228 import java.security.AccessControlContext;
14 jsr166 1.331 import java.security.Permission;
15 jsr166 1.228 import java.security.Permissions;
16 jsr166 1.329 import java.security.PrivilegedAction;
17 jsr166 1.228 import java.security.ProtectionDomain;
18 jsr166 1.1 import java.util.ArrayList;
19     import java.util.Collection;
20     import java.util.Collections;
21     import java.util.List;
22 dl 1.307 import java.util.function.Predicate;
23 dl 1.243 import java.util.concurrent.locks.LockSupport;
24 jsr166 1.1
25     /**
26 jsr166 1.4 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
27 jsr166 1.8 * A {@code ForkJoinPool} provides the entry point for submissions
28 dl 1.18 * from non-{@code ForkJoinTask} clients, as well as management and
29 jsr166 1.11 * monitoring operations.
30 jsr166 1.1 *
31 jsr166 1.9 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
32     * ExecutorService} mainly by virtue of employing
33     * <em>work-stealing</em>: all threads in the pool attempt to find and
34 dl 1.78 * execute tasks submitted to the pool and/or created by other active
35     * tasks (eventually blocking waiting for work if none exist). This
36     * enables efficient processing when most tasks spawn other subtasks
37     * (as do most {@code ForkJoinTask}s), as well as when many small
38     * tasks are submitted to the pool from external clients. Especially
39     * when setting <em>asyncMode</em> to true in constructors, {@code
40     * ForkJoinPool}s may also be appropriate for use with event-style
41 dl 1.330 * tasks that are never joined. All worker threads are initialized
42     * with {@link Thread#isDaemon} set {@code true}.
43 jsr166 1.1 *
44 dl 1.112 * <p>A static {@link #commonPool()} is available and appropriate for
45 dl 1.101 * most applications. The common pool is used by any ForkJoinTask that
46     * is not explicitly submitted to a specified pool. Using the common
47     * pool normally reduces resource usage (its threads are slowly
48     * reclaimed during periods of non-use, and reinstated upon subsequent
49 dl 1.105 * use).
50 dl 1.100 *
51     * <p>For applications that require separate or custom pools, a {@code
52     * ForkJoinPool} may be constructed with a given target parallelism
53 jsr166 1.214 * level; by default, equal to the number of available processors.
54     * The pool attempts to maintain enough active (or available) threads
55     * by dynamically adding, suspending, or resuming internal worker
56 jsr166 1.187 * threads, even if some tasks are stalled waiting to join others.
57     * However, no such adjustments are guaranteed in the face of blocked
58     * I/O or other unmanaged synchronization. The nested {@link
59 dl 1.100 * ManagedBlocker} interface enables extension of the kinds of
60 dl 1.300 * synchronization accommodated. The default policies may be
61     * overridden using a constructor with parameters corresponding to
62     * those documented in class {@link ThreadPoolExecutor}.
63 jsr166 1.1 *
64     * <p>In addition to execution and lifecycle control methods, this
65     * class provides status check methods (for example
66 jsr166 1.4 * {@link #getStealCount}) that are intended to aid in developing,
67 jsr166 1.1 * tuning, and monitoring fork/join applications. Also, method
68 jsr166 1.4 * {@link #toString} returns indications of pool state in a
69 jsr166 1.1 * convenient form for informal monitoring.
70     *
71 jsr166 1.109 * <p>As is the case with other ExecutorServices, there are three
72 jsr166 1.84 * main task execution methods summarized in the following table.
73     * These are designed to be used primarily by clients not already
74     * engaged in fork/join computations in the current pool. The main
75     * forms of these methods accept instances of {@code ForkJoinTask},
76     * but overloaded forms also allow mixed execution of plain {@code
77     * Runnable}- or {@code Callable}- based activities as well. However,
78     * tasks that are already executing in a pool should normally instead
79     * use the within-computation forms listed in the table unless using
80     * async event-style tasks that are not usually joined, in which case
81     * there is little difference among choice of methods.
82 dl 1.18 *
83 jsr166 1.337 * <table class="plain">
84 jsr166 1.159 * <caption>Summary of task execution methods</caption>
85 dl 1.18 * <tr>
86     * <td></td>
87 jsr166 1.338 * <th scope="col"> Call from non-fork/join clients</th>
88     * <th scope="col"> Call from within fork/join computations</th>
89 dl 1.18 * </tr>
90     * <tr>
91 jsr166 1.338 * <th scope="row" style="text-align:left"> Arrange async execution</th>
92 dl 1.18 * <td> {@link #execute(ForkJoinTask)}</td>
93     * <td> {@link ForkJoinTask#fork}</td>
94     * </tr>
95     * <tr>
96 jsr166 1.338 * <th scope="row" style="text-align:left"> Await and obtain result</th>
97 dl 1.18 * <td> {@link #invoke(ForkJoinTask)}</td>
98     * <td> {@link ForkJoinTask#invoke}</td>
99     * </tr>
100     * <tr>
101 jsr166 1.338 * <th scope="row" style="text-align:left"> Arrange exec and obtain Future</th>
102 dl 1.18 * <td> {@link #submit(ForkJoinTask)}</td>
103     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
104     * </tr>
105     * </table>
106 dl 1.19 *
107 jsr166 1.333 * <p>The parameters used to construct the common pool may be controlled by
108     * setting the following {@linkplain System#getProperty system properties}:
109 jsr166 1.162 * <ul>
110 jsr166 1.350 * <li>{@systemProperty java.util.concurrent.ForkJoinPool.common.parallelism}
111 jsr166 1.162 * - the parallelism level, a non-negative integer
112 jsr166 1.350 * <li>{@systemProperty java.util.concurrent.ForkJoinPool.common.threadFactory}
113 jsr166 1.331 * - the class name of a {@link ForkJoinWorkerThreadFactory}.
114     * The {@linkplain ClassLoader#getSystemClassLoader() system class loader}
115     * is used to load this class.
116 jsr166 1.350 * <li>{@systemProperty java.util.concurrent.ForkJoinPool.common.exceptionHandler}
117 jsr166 1.331 * - the class name of a {@link UncaughtExceptionHandler}.
118     * The {@linkplain ClassLoader#getSystemClassLoader() system class loader}
119     * is used to load this class.
120 jsr166 1.350 * <li>{@systemProperty java.util.concurrent.ForkJoinPool.common.maximumSpares}
121 dl 1.223 * - the maximum number of allowed extra threads to maintain target
122 dl 1.208 * parallelism (default 256).
123 jsr166 1.162 * </ul>
124 jsr166 1.333 * If no thread factory is supplied via a system property, then the
125     * common pool uses a factory that uses the system class loader as the
126 jsr166 1.331 * {@linkplain Thread#getContextClassLoader() thread context class loader}.
127 jsr166 1.333 * In addition, if a {@link SecurityManager} is present, then
128     * the common pool uses a factory supplying threads that have no
129     * {@link Permissions} enabled.
130 jsr166 1.331 *
131 jsr166 1.156 * Upon any error in establishing these settings, default parameters
132 dl 1.160 * are used. It is possible to disable or limit the use of threads in
133     * the common pool by setting the parallelism property to zero, and/or
134 dl 1.193 * using a factory that may return {@code null}. However doing so may
135     * cause unjoined tasks to never be executed.
136 dl 1.105 *
137 jsr166 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
138     * maximum number of running threads to 32767. Attempts to create
139 jsr166 1.11 * pools with greater than the maximum number result in
140 jsr166 1.8 * {@code IllegalArgumentException}.
141 jsr166 1.1 *
142 jsr166 1.11 * <p>This implementation rejects submitted tasks (that is, by throwing
143 dl 1.19 * {@link RejectedExecutionException}) only when the pool is shut down
144 dl 1.20 * or internal resources have been exhausted.
145 jsr166 1.11 *
146 jsr166 1.1 * @since 1.7
147     * @author Doug Lea
148     */
149     public class ForkJoinPool extends AbstractExecutorService {
150    
151     /*
152 dl 1.14 * Implementation Overview
153     *
154 dl 1.78 * This class and its nested classes provide the main
155     * functionality and control for a set of worker threads:
156 jsr166 1.84 * Submissions from non-FJ threads enter into submission queues.
157     * Workers take these tasks and typically split them into subtasks
158 dl 1.345 * that may be stolen by other workers. Work-stealing based on
159     * randomized scans generally leads to better throughput than
160     * "work dealing" in which producers assign tasks to idle threads,
161     * in part because threads that have finished other tasks before
162     * the signalled thread wakes up (which can be a long time) can
163     * take the task instead. Preference rules give first priority to
164     * processing tasks from their own queues (LIFO or FIFO, depending
165     * on mode), then to randomized FIFO steals of tasks in other
166     * queues. This framework began as vehicle for supporting
167     * tree-structured parallelism using work-stealing. Over time,
168     * its scalability advantages led to extensions and changes to
169     * better support more diverse usage contexts. Because most
170     * internal methods and nested classes are interrelated, their
171     * main rationale and descriptions are presented here; individual
172     * methods and nested classes contain only brief comments about
173     * details.
174 dl 1.78 *
175 jsr166 1.84 * WorkQueues
176 dl 1.78 * ==========
177     *
178     * Most operations occur within work-stealing queues (in nested
179     * class WorkQueue). These are special forms of Deques that
180     * support only three of the four possible end-operations -- push,
181     * pop, and poll (aka steal), under the further constraints that
182     * push and pop are called only from the owning thread (or, as
183     * extended here, under a lock), while poll may be called from
184     * other threads. (If you are unfamiliar with them, you probably
185     * want to read Herlihy and Shavit's book "The Art of
186     * Multiprocessor programming", chapter 16 describing these in
187     * more detail before proceeding.) The main work-stealing queue
188     * design is roughly similar to those in the papers "Dynamic
189     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
190     * (http://research.sun.com/scalable/pubs/index.html) and
191     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
192     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
193 dl 1.200 * The main differences ultimately stem from GC requirements that
194     * we null out taken slots as soon as we can, to maintain as small
195     * a footprint as possible even in programs generating huge
196     * numbers of tasks. To accomplish this, we shift the CAS
197     * arbitrating pop vs poll (steal) from being on the indices
198     * ("base" and "top") to the slots themselves.
199     *
200 dl 1.243 * Adding tasks then takes the form of a classic array push(task)
201     * in a circular buffer:
202     * q.array[q.top++ % length] = task;
203 dl 1.200 *
204     * (The actual code needs to null-check and size-check the array,
205 jsr166 1.247 * uses masking, not mod, for indexing a power-of-two-sized array,
206 dl 1.345 * adds a release fence for publication, and possibly signals
207     * waiting workers to start scanning -- see below.) Both a
208     * successful pop and poll mainly entail a CAS of a slot from
209     * non-null to null.
210 dl 1.200 *
211 jsr166 1.202 * The pop operation (always performed by owner) is:
212 dl 1.243 * if ((the task at top slot is not null) and
213 dl 1.200 * (CAS slot to null))
214     * decrement top and return task;
215     *
216     * And the poll operation (usually by a stealer) is
217 dl 1.243 * if ((the task at base slot is not null) and
218 dl 1.200 * (CAS slot to null))
219     * increment base and return task;
220     *
221 dl 1.345 * There are several variants of each of these. Most uses occur
222     * within operations that also interleave contention or emptiness
223     * tracking or inspection of elements before extracting them, so
224     * must interleave these with the above code. When performed by
225     * owner, getAndSet is used instead of CAS (see for example method
226     * nextLocalTask) which is usually more efficient, and possible
227     * because the top index cannot independently change during the
228     * operation.
229 dl 1.243 *
230     * Memory ordering. See "Correct and Efficient Work-Stealing for
231     * Weak Memory Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
232     * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
233     * analysis of memory ordering requirements in work-stealing
234     * algorithms similar to (but different than) the one used here.
235     * Extracting tasks in array slots via (fully fenced) CAS provides
236     * primary synchronization. The base and top indices imprecisely
237 dl 1.345 * guide where to extract from. We do not usually require strict
238     * orderings of array and index updates. Many index accesses use
239     * plain mode, with ordering constrained by surrounding context
240     * (usually with respect to element CASes or the two WorkQueue
241     * volatile fields source and phase). When not otherwise already
242     * constrained, reads of "base" by queue owners use acquire-mode,
243     * and some externally callable methods preface accesses with
244     * acquire fences. Additionally, to ensure that index update
245     * writes are not coalesced or postponed in loops etc, "opaque"
246     * mode is used in a few cases where timely writes are not
247     * otherwise ensured. The "locked" versions of push- and pop-
248     * based methods for shared queues differ from owned versions
249     * because locking already forces some of the ordering.
250     *
251     * Because indices and slot contents cannot always be consistent,
252     * a check that base == top indicates (momentary) emptiness, but
253     * otherwise may err on the side of possibly making the queue
254     * appear nonempty when a push, pop, or poll have not fully
255     * committed, or making it appear empty when an update of top has
256     * not yet been visibly written. (Method isEmpty() checks the
257     * case of a partially completed removal of the last element.)
258     * Because of this, the poll operation, considered individually,
259     * is not wait-free. One thief cannot successfully continue until
260     * another in-progress one (or, if previously empty, a push)
261     * visibly completes. This can stall threads when required to
262     * consume from a given queue (see method poll()). However, in
263     * the aggregate, we ensure at least probabilistic
264 dl 1.243 * non-blockingness. If an attempted steal fails, a scanning
265     * thief chooses a different random victim target to try next. So,
266     * in order for one thief to progress, it suffices for any
267 dl 1.345 * in-progress poll or new push on any empty queue to complete.
268 dl 1.200 *
269     * This approach also enables support of a user mode in which
270     * local task processing is in FIFO, not LIFO order, simply by
271     * using poll rather than pop. This can be useful in
272     * message-passing frameworks in which tasks are never joined.
273 dl 1.78 *
274     * WorkQueues are also used in a similar way for tasks submitted
275     * to the pool. We cannot mix these tasks in the same queues used
276 dl 1.200 * by workers. Instead, we randomly associate submission queues
277 dl 1.83 * with submitting threads, using a form of hashing. The
278 dl 1.139 * ThreadLocalRandom probe value serves as a hash code for
279     * choosing existing queues, and may be randomly repositioned upon
280     * contention with other submitters. In essence, submitters act
281     * like workers except that they are restricted to executing local
282 dl 1.300 * tasks that they submitted. Insertion of tasks in shared mode
283     * requires a lock but we use only a simple spinlock (using field
284 jsr166 1.304 * phase), because submitters encountering a busy queue move to a
285     * different position to use or create other queues -- they block
286     * only when creating and registering new queues. Because it is
287     * used only as a spinlock, unlocking requires only a "releasing"
288 dl 1.345 * store (using setRelease) unless otherwise signalling.
289 dl 1.78 *
290 jsr166 1.84 * Management
291 dl 1.78 * ==========
292 dl 1.52 *
293     * The main throughput advantages of work-stealing stem from
294     * decentralized control -- workers mostly take tasks from
295 dl 1.200 * themselves or each other, at rates that can exceed a billion
296     * per second. The pool itself creates, activates (enables
297     * scanning for and running tasks), deactivates, blocks, and
298     * terminates threads, all with minimal central information.
299     * There are only a few properties that we can globally track or
300     * maintain, so we pack them into a small number of variables,
301     * often maintaining atomicity without blocking or locking.
302 dl 1.300 * Nearly all essentially atomic control state is held in a few
303 dl 1.200 * volatile variables that are by far most often read (not
304 dl 1.300 * written) as status and consistency checks. We pack as much
305     * information into them as we can.
306 dl 1.78 *
307 dl 1.200 * Field "ctl" contains 64 bits holding information needed to
308 dl 1.300 * atomically decide to add, enqueue (on an event queue), and
309 dl 1.345 * dequeue and release workers. To enable this packing, we
310     * restrict maximum parallelism to (1<<15)-1 (which is far in
311     * excess of normal operating range) to allow ids, counts, and
312     * their negations (used for thresholding) to fit into 16bit
313 dl 1.215 * subfields.
314     *
315 dl 1.300 * Field "mode" holds configuration parameters as well as lifetime
316     * status, atomically and monotonically setting SHUTDOWN, STOP,
317     * and finally TERMINATED bits.
318 dl 1.258 *
319     * Field "workQueues" holds references to WorkQueues. It is
320 dl 1.300 * updated (only during worker creation and termination) under
321     * lock (using field workerNamePrefix as lock), but is otherwise
322     * concurrently readable, and accessed directly. We also ensure
323     * that uses of the array reference itself never become too stale
324 dl 1.345 * in case of resizing, by arranging that (re-)reads are separated
325     * by at least one acquiring read access. To simplify index-based
326     * operations, the array size is always a power of two, and all
327     * readers must tolerate null slots. Worker queues are at odd
328     * indices. Shared (submission) queues are at even indices, up to
329 jsr166 1.349 * a maximum of 64 slots, to limit growth even if the array needs
330     * to expand to add more workers. Grouping them together in this
331     * way simplifies and speeds up task scanning.
332 dl 1.86 *
333     * All worker thread creation is on-demand, triggered by task
334     * submissions, replacement of terminated workers, and/or
335 dl 1.78 * compensation for blocked workers. However, all other support
336     * code is set up to work with other policies. To ensure that we
337 jsr166 1.264 * do not hold on to worker references that would prevent GC, all
338 dl 1.78 * accesses to workQueues are via indices into the workQueues
339     * array (which is one source of some of the messy code
340     * constructions here). In essence, the workQueues array serves as
341 dl 1.200 * a weak reference mechanism. Thus for example the stack top
342     * subfield of ctl stores indices, not references.
343     *
344     * Queuing Idle Workers. Unlike HPC work-stealing frameworks, we
345     * cannot let workers spin indefinitely scanning for tasks when
346     * none can be found immediately, and we cannot start/resume
347     * workers unless there appear to be tasks available. On the
348     * other hand, we must quickly prod them into action when new
349     * tasks are submitted or generated. In many usages, ramp-up time
350 dl 1.300 * is the main limiting factor in overall performance, which is
351     * compounded at program start-up by JIT compilation and
352     * allocation. So we streamline this as much as possible.
353     *
354     * The "ctl" field atomically maintains total worker and
355     * "released" worker counts, plus the head of the available worker
356     * queue (actually stack, represented by the lower 32bit subfield
357     * of ctl). Released workers are those known to be scanning for
358     * and/or running tasks. Unreleased ("available") workers are
359     * recorded in the ctl stack. These workers are made available for
360     * signalling by enqueuing in ctl (see method runWorker). The
361     * "queue" is a form of Treiber stack. This is ideal for
362     * activating threads in most-recently used order, and improves
363 dl 1.200 * performance and locality, outweighing the disadvantages of
364     * being prone to contention and inability to release a worker
365 dl 1.300 * unless it is topmost on stack. To avoid missed signal problems
366     * inherent in any wait/signal design, available workers rescan
367     * for (and if found run) tasks after enqueuing. Normally their
368     * release status will be updated while doing so, but the released
369     * worker ctl count may underestimate the number of active
370     * threads. (However, it is still possible to determine quiescence
371     * via a validation traversal -- see isQuiescent). After an
372     * unsuccessful rescan, available workers are blocked until
373     * signalled (see signalWork). The top stack state holds the
374     * value of the "phase" field of the worker: its index and status,
375     * plus a version counter that, in addition to the count subfields
376     * (also serving as version stamps) provide protection against
377     * Treiber stack ABA effects.
378 dl 1.200 *
379 dl 1.300 * Creating workers. To create a worker, we pre-increment counts
380     * (serving as a reservation), and attempt to construct a
381 dl 1.200 * ForkJoinWorkerThread via its factory. Upon construction, the
382     * new thread invokes registerWorker, where it constructs a
383     * WorkQueue and is assigned an index in the workQueues array
384 jsr166 1.266 * (expanding the array if necessary). The thread is then started.
385     * Upon any exception across these steps, or null return from
386     * factory, deregisterWorker adjusts counts and records
387 dl 1.200 * accordingly. If a null return, the pool continues running with
388     * fewer than the target number workers. If exceptional, the
389     * exception is propagated, generally to some external caller.
390     * Worker index assignment avoids the bias in scanning that would
391     * occur if entries were sequentially packed starting at the front
392     * of the workQueues array. We treat the array as a simple
393     * power-of-two hash table, expanding as needed. The seedIndex
394     * increment ensures no collisions until a resize is needed or a
395     * worker is deregistered and replaced, and thereafter keeps
396 jsr166 1.202 * probability of collision low. We cannot use
397 dl 1.200 * ThreadLocalRandom.getProbe() for similar purposes here because
398     * the thread has not started yet, but do so for creating
399 dl 1.243 * submission queues for existing external threads (see
400     * externalPush).
401     *
402 dl 1.300 * WorkQueue field "phase" is used by both workers and the pool to
403     * manage and track whether a worker is UNSIGNALLED (possibly
404     * blocked waiting for a signal). When a worker is enqueued its
405     * phase field is set. Note that phase field updates lag queue CAS
406     * releases so usage requires care -- seeing a negative phase does
407     * not guarantee that the worker is available. When queued, the
408     * lower 16 bits of scanState must hold its pool index. So we
409 dl 1.345 * place the index there upon initialization and otherwise keep it
410     * there or restore it when necessary.
411 dl 1.243 *
412     * The ctl field also serves as the basis for memory
413     * synchronization surrounding activation. This uses a more
414     * efficient version of a Dekker-like rule that task producers and
415     * consumers sync with each other by both writing/CASing ctl (even
416 dl 1.253 * if to its current value). This would be extremely costly. So
417     * we relax it in several ways: (1) Producers only signal when
418 dl 1.345 * their queue is possibly empty at some point during a push
419 dl 1.351 * operation. (2) Other workers propagate this signal
420 dl 1.346 * when they find tasks in a queue with size greater than one. (3)
421     * Workers only enqueue after scanning (see below) and not finding
422     * any tasks. (4) Rather than CASing ctl to its current value in
423     * the common case where no action is required, we reduce write
424     * contention by equivalently prefacing signalWork when called by
425     * an external task producer using a memory access with
426     * full-volatile semantics or a "fullFence".
427     *
428     * Almost always, too many signals are issued, in part because a
429     * task producer cannot tell if some existing worker is in the
430     * midst of finishing one task (or already scanning) and ready to
431     * take another without being signalled. So the producer might
432     * instead activate a different worker that does not find any
433     * work, and then inactivates. This scarcely matters in
434     * steady-state computations involving all workers, but can create
435     * contention and bookkeeping bottlenecks during ramp-up,
436     * ramp-down, and small computations involving only a few workers.
437 dl 1.243 *
438 dl 1.345 * Scanning. Method scan (from runWorker) performs top-level
439     * scanning for tasks. (Similar scans appear in helpQuiesce and
440     * pollScan.) Each scan traverses and tries to poll from each
441     * queue starting at a random index. Scans are not performed in
442     * ideal random permutation order, to reduce cacheline
443     * contention. The pseudorandom generator need not have
444 dl 1.300 * high-quality statistical properties in the long term, but just
445     * within computations; We use Marsaglia XorShifts (often via
446     * ThreadLocalRandom.nextSecondarySeed), which are cheap and
447 dl 1.345 * suffice. Scanning also includes contention reduction: When
448 dl 1.300 * scanning workers fail to extract an apparently existing task,
449 dl 1.345 * they soon restart at a different pseudorandom index. This form
450     * of backoff improves throughput when many threads are trying to
451     * take tasks from few queues, which can be common in some usages.
452     * Scans do not otherwise explicitly take into account core
453     * affinities, loads, cache localities, etc, However, they do
454     * exploit temporal locality (which usually approximates these) by
455     * preferring to re-poll from the same queue after a successful
456     * poll before trying others (see method topLevelExec). However
457     * this preference is bounded (see TOP_BOUND_SHIFT) as a safeguard
458     * against infinitely unfair looping under unbounded user task
459     * recursion, and also to reduce long-term contention when many
460     * threads poll few queues holding many small tasks. The bound is
461     * high enough to avoid much impact on locality and scheduling
462     * overhead.
463 dl 1.52 *
464     * Trimming workers. To release resources after periods of lack of
465     * use, a worker starting to wait when the pool is quiescent will
466 dl 1.345 * time out and terminate (see method runWorker) if the pool has
467 dl 1.300 * remained quiescent for period given by field keepAlive.
468 dl 1.52 *
469 dl 1.210 * Shutdown and Termination. A call to shutdownNow invokes
470     * tryTerminate to atomically set a runState bit. The calling
471     * thread, as well as every other worker thereafter terminating,
472 dl 1.300 * helps terminate others by cancelling their unprocessed tasks,
473     * and waking them up, doing so repeatedly until stable. Calls to
474     * non-abrupt shutdown() preface this by checking whether
475     * termination should commence by sweeping through queues (until
476     * stable) to ensure lack of in-flight submissions and workers
477     * about to process them before triggering the "STOP" phase of
478     * termination.
479 dl 1.211 *
480 jsr166 1.84 * Joining Tasks
481     * =============
482 dl 1.78 *
483     * Any of several actions may be taken when one worker is waiting
484 jsr166 1.84 * to join a task stolen (or always held) by another. Because we
485 dl 1.78 * are multiplexing many tasks on to a pool of workers, we can't
486 dl 1.300 * always just let them block (as in Thread.join). We also cannot
487     * just reassign the joiner's run-time stack with another and
488     * replace it later, which would be a form of "continuation", that
489     * even if possible is not necessarily a good idea since we may
490     * need both an unblocked task and its continuation to progress.
491     * Instead we combine two tactics:
492 dl 1.19 *
493     * Helping: Arranging for the joiner to execute some task that it
494 dl 1.78 * would be running if the steal had not occurred.
495 dl 1.19 *
496     * Compensating: Unless there are already enough live threads,
497 dl 1.78 * method tryCompensate() may create or re-activate a spare
498     * thread to compensate for blocked joiners until they unblock.
499     *
500 dl 1.105 * A third form (implemented in tryRemoveAndExec) amounts to
501     * helping a hypothetical compensator: If we can readily tell that
502     * a possible action of a compensator is to steal and execute the
503     * task being joined, the joining thread can do so directly,
504 dl 1.300 * without the need for a compensation thread.
505 dl 1.52 *
506     * The ManagedBlocker extension API can't use helping so relies
507     * only on compensation in method awaitBlocker.
508 dl 1.19 *
509 dl 1.300 * The algorithm in awaitJoin entails a form of "linear helping".
510     * Each worker records (in field source) the id of the queue from
511     * which it last stole a task. The scan in method awaitJoin uses
512     * these markers to try to find a worker to help (i.e., steal back
513     * a task from and execute it) that could hasten completion of the
514     * actively joined task. Thus, the joiner executes a task that
515     * would be on its own local deque if the to-be-joined task had
516     * not been stolen. This is a conservative variant of the approach
517     * described in Wagner & Calder "Leapfrogging: a portable
518     * technique for implementing efficient futures" SIGPLAN Notices,
519     * 1993 (http://portal.acm.org/citation.cfm?id=155354). It differs
520     * mainly in that we only record queue ids, not full dependency
521     * links. This requires a linear scan of the workQueues array to
522     * locate stealers, but isolates cost to when it is needed, rather
523     * than adding to per-task overhead. Searches can fail to locate
524     * stealers GC stalls and the like delay recording sources.
525     * Further, even when accurately identified, stealers might not
526     * ever produce a task that the joiner can in turn help with. So,
527     * compensation is tried upon failure to find tasks to run.
528 dl 1.105 *
529 dl 1.300 * Compensation does not by default aim to keep exactly the target
530 dl 1.200 * parallelism number of unblocked threads running at any given
531     * time. Some previous versions of this class employed immediate
532     * compensations for any blocked join. However, in practice, the
533     * vast majority of blockages are transient byproducts of GC and
534 dl 1.345 * other JVM or OS activities that are made worse by replacement
535     * when they cause longer-term oversubscription. Rather than
536     * impose arbitrary policies, we allow users to override the
537     * default of only adding threads upon apparent starvation. The
538     * compensation mechanism may also be bounded. Bounds for the
539     * commonPool (see COMMON_MAX_SPARES) better enable JVMs to cope
540     * with programming errors and abuse before running out of
541     * resources to do so.
542 jsr166 1.301 *
543 dl 1.105 * Common Pool
544     * ===========
545     *
546 jsr166 1.175 * The static common pool always exists after static
547 dl 1.105 * initialization. Since it (or any other created pool) need
548     * never be used, we minimize initial construction overhead and
549 dl 1.300 * footprint to the setup of about a dozen fields.
550 dl 1.105 *
551     * When external threads submit to the common pool, they can
552 dl 1.200 * perform subtask processing (see externalHelpComplete and
553     * related methods) upon joins. This caller-helps policy makes it
554     * sensible to set common pool parallelism level to one (or more)
555     * less than the total number of available cores, or even zero for
556     * pure caller-runs. We do not need to record whether external
557     * submissions are to the common pool -- if not, external help
558     * methods return quickly. These submitters would otherwise be
559     * blocked waiting for completion, so the extra effort (with
560     * liberally sprinkled task status checks) in inapplicable cases
561     * amounts to an odd form of limited spin-wait before blocking in
562     * ForkJoinTask.join.
563 dl 1.105 *
564 dl 1.197 * As a more appropriate default in managed environments, unless
565     * overridden by system properties, we use workers of subclass
566     * InnocuousForkJoinWorkerThread when there is a SecurityManager
567     * present. These workers have no permissions set, do not belong
568     * to any user-defined ThreadGroup, and erase all ThreadLocals
569 dl 1.300 * after executing any top-level task (see
570     * WorkQueue.afterTopLevelExec). The associated mechanics (mainly
571     * in ForkJoinWorkerThread) may be JVM-dependent and must access
572     * particular Thread class fields to achieve this effect.
573 jsr166 1.198 *
574 dl 1.345 * Memory placement
575     * ================
576     *
577     * Performance can be very sensitive to placement of instances of
578     * ForkJoinPool and WorkQueues and their queue arrays. To reduce
579     * false-sharing impact, the @Contended annotation isolates
580     * adjacent WorkQueue instances, as well as the ForkJoinPool.ctl
581     * field. WorkQueue arrays are allocated (by their threads) with
582     * larger initial sizes than most ever need, mostly to reduce
583     * false sharing with current garbage collectors that use cardmark
584     * tables.
585     *
586 dl 1.105 * Style notes
587     * ===========
588     *
589 jsr166 1.315 * Memory ordering relies mainly on VarHandles. This can be
590     * awkward and ugly, but also reflects the need to control
591     * outcomes across the unusual cases that arise in very racy code
592 dl 1.319 * with very few invariants. All fields are read into locals
593 dl 1.345 * before use, and null-checked if they are references. Array
594     * accesses using masked indices include checks (that are always
595     * true) that the array length is non-zero to avoid compilers
596     * inserting more expensive traps. This is usually done in a
597     * "C"-like style of listing declarations at the heads of methods
598     * or blocks, and using inline assignments on first encounter.
599     * Nearly all explicit checks lead to bypass/return, not exception
600     * throws, because they may legitimately arise due to
601     * cancellation/revocation during shutdown.
602 dl 1.200 *
603 dl 1.105 * There is a lot of representation-level coupling among classes
604     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
605     * fields of WorkQueue maintain data structures managed by
606     * ForkJoinPool, so are directly accessed. There is little point
607     * trying to reduce this, since any associated future changes in
608     * representations will need to be accompanied by algorithmic
609     * changes anyway. Several methods intrinsically sprawl because
610 dl 1.200 * they must accumulate sets of consistent reads of fields held in
611 dl 1.345 * local variables. Some others are artificially broken up to
612     * reduce producer/consumer imbalances due to dynamic compilation.
613     * There are also other coding oddities (including several
614     * unnecessary-looking hoisted null checks) that help some methods
615     * perform reasonably even when interpreted (not compiled).
616 dl 1.52 *
617 dl 1.208 * The order of declarations in this file is (with a few exceptions):
618 dl 1.86 * (1) Static utility functions
619     * (2) Nested (static) classes
620     * (3) Static fields
621     * (4) Fields, along with constants used when unpacking some of them
622     * (5) Internal control methods
623     * (6) Callbacks and other support for ForkJoinTask methods
624     * (7) Exported methods
625     * (8) Static block initializing statics in minimally dependent order
626     */
627    
628     // Static utilities
629    
630     /**
631     * If there is a security manager, makes sure caller has
632     * permission to modify threads.
633 jsr166 1.1 */
634 dl 1.86 private static void checkPermission() {
635     SecurityManager security = System.getSecurityManager();
636     if (security != null)
637     security.checkPermission(modifyThreadPermission);
638     }
639    
640     // Nested classes
641 jsr166 1.1
642     /**
643 jsr166 1.8 * Factory for creating new {@link ForkJoinWorkerThread}s.
644     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
645     * for {@code ForkJoinWorkerThread} subclasses that extend base
646     * functionality or initialize threads with different contexts.
647 jsr166 1.1 */
648     public static interface ForkJoinWorkerThreadFactory {
649     /**
650     * Returns a new worker thread operating in the given pool.
651 dl 1.300 * Returning null or throwing an exception may result in tasks
652     * never being executed. If this method throws an exception,
653     * it is relayed to the caller of the method (for example
654     * {@code execute}) causing attempted thread creation. If this
655     * method returns null or throws an exception, it is not
656     * retried until the next attempted creation (for example
657     * another call to {@code execute}).
658 jsr166 1.1 *
659     * @param pool the pool this thread works in
660 jsr166 1.296 * @return the new worker thread, or {@code null} if the request
661 jsr166 1.331 * to create a thread is rejected
662 jsr166 1.11 * @throws NullPointerException if the pool is null
663 jsr166 1.1 */
664     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
665     }
666    
667 jsr166 1.331 static AccessControlContext contextWithPermissions(Permission ... perms) {
668     Permissions permissions = new Permissions();
669     for (Permission perm : perms)
670     permissions.add(perm);
671     return new AccessControlContext(
672     new ProtectionDomain[] { new ProtectionDomain(null, permissions) });
673     }
674    
675 jsr166 1.1 /**
676     * Default ForkJoinWorkerThreadFactory implementation; creates a
677 jsr166 1.331 * new ForkJoinWorkerThread using the system class loader as the
678     * thread context class loader.
679 jsr166 1.1 */
680 jsr166 1.278 private static final class DefaultForkJoinWorkerThreadFactory
681 jsr166 1.1 implements ForkJoinWorkerThreadFactory {
682 jsr166 1.331 private static final AccessControlContext ACC = contextWithPermissions(
683     new RuntimePermission("getClassLoader"),
684     new RuntimePermission("setContextClassLoader"));
685    
686 dl 1.112 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
687 jsr166 1.331 return AccessController.doPrivileged(
688     new PrivilegedAction<>() {
689     public ForkJoinWorkerThread run() {
690     return new ForkJoinWorkerThread(
691     pool, ClassLoader.getSystemClassLoader()); }},
692     ACC);
693 jsr166 1.1 }
694     }
695    
696 dl 1.200 // Constants shared across ForkJoinPool and WorkQueue
697    
698     // Bounds
699 dl 1.300 static final int SWIDTH = 16; // width of short
700 dl 1.200 static final int SMASK = 0xffff; // short bits == max index
701     static final int MAX_CAP = 0x7fff; // max #workers - 1
702     static final int SQMASK = 0x007e; // max 64 (even) slots
703    
704 dl 1.300 // Masks and units for WorkQueue.phase and ctl sp subfield
705 dl 1.243 static final int UNSIGNALLED = 1 << 31; // must be negative
706 dl 1.211 static final int SS_SEQ = 1 << 16; // version count
707 dl 1.300 static final int QLOCK = 1; // must be 1
708 dl 1.200
709 dl 1.300 // Mode bits and sentinels, some also used in WorkQueue id and.source fields
710     static final int OWNED = 1; // queue has owner thread
711     static final int FIFO = 1 << 16; // fifo queue or access mode
712     static final int SHUTDOWN = 1 << 18;
713     static final int TERMINATED = 1 << 19;
714     static final int STOP = 1 << 31; // must be negative
715     static final int QUIET = 1 << 30; // not scanning or working
716     static final int DORMANT = QUIET | UNSIGNALLED;
717    
718     /**
719 dl 1.345 * Initial capacity of work-stealing queue array.
720     * Must be a power of two, at least 2.
721 dl 1.253 */
722 dl 1.345 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
723    
724     /**
725     * Maximum capacity for queue arrays. Must be a power of two less
726     * than or equal to 1 << (31 - width of array entry) to ensure
727     * lack of wraparound of index calculations, but defined to a
728     * value a bit less than this to help users trap runaway programs
729     * before saturating systems.
730     */
731     static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
732    
733     /**
734     * The maximum number of top-level polls per worker before
735 dl 1.351 * checking other queues, expressed as a bit shift. See above for
736     * rationale.
737 dl 1.345 */
738     static final int TOP_BOUND_SHIFT = 10;
739 dl 1.253
740     /**
741 dl 1.78 * Queues supporting work-stealing as well as external task
742 jsr166 1.202 * submission. See above for descriptions and algorithms.
743 dl 1.78 */
744 dl 1.308 @jdk.internal.vm.annotation.Contended
745 dl 1.78 static final class WorkQueue {
746 dl 1.345 volatile int source; // source queue id, or sentinel
747     int id; // pool index, mode, tag
748     int base; // index of next slot for poll
749     int top; // index of next slot for push
750 dl 1.300 volatile int phase; // versioned, negative: queued, 1: locked
751     int stackPred; // pool stack (ctl) predecessor link
752 dl 1.178 int nsteals; // number of steals
753 dl 1.345 ForkJoinTask<?>[] array; // the queued tasks; power of 2 size
754 dl 1.90 final ForkJoinPool pool; // the containing pool (may be null)
755 dl 1.78 final ForkJoinWorkerThread owner; // owning thread or null if shared
756 dl 1.112
757 dl 1.200 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner) {
758 dl 1.90 this.pool = pool;
759 dl 1.78 this.owner = owner;
760 dl 1.115 // Place indices in the center of array (that is not yet allocated)
761 dl 1.78 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
762     }
763    
764     /**
765 dl 1.345 * Tries to lock shared queue by CASing phase field.
766     */
767     final boolean tryLockPhase() {
768     return PHASE.compareAndSet(this, 0, 1);
769     }
770    
771     final void releasePhaseLock() {
772     PHASE.setRelease(this, 0);
773     }
774    
775     /**
776 jsr166 1.220 * Returns an exportable index (used by ForkJoinWorkerThread).
777 dl 1.200 */
778     final int getPoolIndex() {
779 dl 1.300 return (id & 0xffff) >>> 1; // ignore odd/even tag bit
780 dl 1.200 }
781    
782     /**
783 dl 1.115 * Returns the approximate number of tasks in the queue.
784     */
785     final int queueSize() {
786 dl 1.345 int n = (int)BASE.getAcquire(this) - top;
787 dl 1.115 return (n >= 0) ? 0 : -n; // ignore transient negative
788     }
789    
790 jsr166 1.180 /**
791 dl 1.115 * Provides a more accurate estimate of whether this queue has
792     * any tasks than does queueSize, by checking whether a
793     * near-empty queue has at least one unclaimed task.
794     */
795     final boolean isEmpty() {
796 dl 1.345 ForkJoinTask<?>[] a; int n, cap, b;
797     VarHandle.acquireFence(); // needed by external callers
798 dl 1.300 return ((n = (b = base) - top) >= 0 || // possibly one task
799 dl 1.243 (n == -1 && ((a = array) == null ||
800 dl 1.345 (cap = a.length) == 0 ||
801     a[(cap - 1) & b] == null)));
802 dl 1.115 }
803    
804     /**
805 dl 1.256 * Pushes a task. Call only by owner in unshared queues.
806 dl 1.78 *
807     * @param task the task. Caller must ensure non-null.
808 jsr166 1.146 * @throws RejectedExecutionException if array cannot be resized
809 dl 1.78 */
810 dl 1.90 final void push(ForkJoinTask<?> task) {
811 dl 1.345 ForkJoinTask<?>[] a;
812 dl 1.351 int s = top, d = s - base, cap, m;
813 dl 1.345 ForkJoinPool p = pool;
814     if ((a = array) != null && (cap = a.length) > 0) {
815 dl 1.346 QA.setRelease(a, (m = cap - 1) & s, task);
816 dl 1.243 top = s + 1;
817 dl 1.351 if (d == m)
818     growArray(false);
819     else if (QA.getAcquire(a, m & (s - 1)) == null && p != null) {
820     VarHandle.fullFence(); // was empty
821     p.signalWork(null);
822 dl 1.284 }
823 dl 1.78 }
824     }
825    
826 dl 1.178 /**
827 dl 1.345 * Version of push for shared queues. Call only with phase lock held.
828     * @return true if should signal work
829 dl 1.112 */
830 dl 1.345 final boolean lockedPush(ForkJoinTask<?> task) {
831     ForkJoinTask<?>[] a;
832     boolean signal = false;
833 dl 1.351 int s = top, d = s - base, cap, m;
834 dl 1.345 if ((a = array) != null && (cap = a.length) > 0) {
835 dl 1.351 a[(m = (cap - 1)) & s] = task;
836 dl 1.345 top = s + 1;
837 dl 1.351 if (d == m)
838 dl 1.345 growArray(true);
839     else {
840     phase = 0; // full volatile unlock
841 dl 1.351 if (a[m & (s - 1)] == null)
842     signal = true; // was empty
843 dl 1.345 }
844     }
845     return signal;
846 dl 1.78 }
847    
848     /**
849 dl 1.345 * Doubles the capacity of array. Call either by owner or with
850     * lock held -- it is OK for base, but not top, to move while
851     * resizings are in progress.
852     */
853     final void growArray(boolean locked) {
854     ForkJoinTask<?>[] newA = null;
855     try {
856     ForkJoinTask<?>[] oldA; int oldSize, newSize;
857     if ((oldA = array) != null && (oldSize = oldA.length) > 0 &&
858     (newSize = oldSize << 1) <= MAXIMUM_QUEUE_CAPACITY &&
859     newSize > 0) {
860     try {
861     newA = new ForkJoinTask<?>[newSize];
862     } catch (OutOfMemoryError ex) {
863     }
864     if (newA != null) { // poll from old array, push to new
865     int oldMask = oldSize - 1, newMask = newSize - 1;
866     for (int s = top - 1, k = oldMask; k >= 0; --k) {
867     ForkJoinTask<?> x = (ForkJoinTask<?>)
868     QA.getAndSet(oldA, s & oldMask, null);
869     if (x != null)
870     newA[s-- & newMask] = x;
871     else
872     break;
873     }
874     array = newA;
875     VarHandle.releaseFence();
876     }
877 dl 1.78 }
878 dl 1.345 } finally {
879     if (locked)
880     phase = 0;
881 dl 1.78 }
882 dl 1.345 if (newA == null)
883     throw new RejectedExecutionException("Queue capacity exceeded");
884 dl 1.78 }
885    
886     /**
887 dl 1.90 * Takes next task, if one exists, in FIFO order.
888 dl 1.78 */
889 dl 1.90 final ForkJoinTask<?> poll() {
890 dl 1.345 int b, k, cap; ForkJoinTask<?>[] a;
891     while ((a = array) != null && (cap = a.length) > 0 &&
892 dl 1.346 top - (b = base) > 0) {
893 dl 1.345 ForkJoinTask<?> t = (ForkJoinTask<?>)
894     QA.getAcquire(a, k = (cap - 1) & b);
895     if (base == b++) {
896     if (t == null)
897     Thread.yield(); // await index advance
898     else if (QA.compareAndSet(a, k, t, null)) {
899     BASE.setOpaque(this, b);
900     return t;
901 dl 1.78 }
902 dl 1.90 }
903 dl 1.78 }
904     return null;
905     }
906    
907     /**
908     * Takes next task, if one exists, in order specified by mode.
909     */
910     final ForkJoinTask<?> nextLocalTask() {
911 dl 1.345 ForkJoinTask<?> t = null;
912     int md = id, b, s, d, cap; ForkJoinTask<?>[] a;
913     if ((a = array) != null && (cap = a.length) > 0 &&
914     (d = (s = top) - (b = base)) > 0) {
915     if ((md & FIFO) == 0 || d == 1) {
916     if ((t = (ForkJoinTask<?>)
917     QA.getAndSet(a, (cap - 1) & --s, null)) != null)
918     TOP.setOpaque(this, s);
919     }
920     else if ((t = (ForkJoinTask<?>)
921     QA.getAndSet(a, (cap - 1) & b++, null)) != null) {
922     BASE.setOpaque(this, b);
923     }
924     else // on contention in FIFO mode, use regular poll
925     t = poll();
926     }
927     return t;
928 dl 1.78 }
929    
930     /**
931     * Returns next task, if one exists, in order specified by mode.
932     */
933     final ForkJoinTask<?> peek() {
934 dl 1.345 int cap; ForkJoinTask<?>[] a;
935     return ((a = array) != null && (cap = a.length) > 0) ?
936     a[(cap - 1) & ((id & FIFO) != 0 ? base : top - 1)] : null;
937 dl 1.78 }
938    
939     /**
940     * Pops the given task only if it is at the current top.
941 jsr166 1.251 */
942 dl 1.243 final boolean tryUnpush(ForkJoinTask<?> task) {
943 dl 1.345 boolean popped = false;
944     int s, cap; ForkJoinTask<?>[] a;
945     if ((a = array) != null && (cap = a.length) > 0 &&
946     (s = top) != base &&
947     (popped = QA.compareAndSet(a, (cap - 1) & --s, task, null)))
948     TOP.setOpaque(this, s);
949     return popped;
950     }
951    
952     /**
953     * Shared version of tryUnpush.
954     */
955     final boolean tryLockedUnpush(ForkJoinTask<?> task) {
956     boolean popped = false;
957     int s = top - 1, k, cap; ForkJoinTask<?>[] a;
958     if ((a = array) != null && (cap = a.length) > 0 &&
959     a[k = (cap - 1) & s] == task && tryLockPhase()) {
960     if (top == s + 1 && array == a &&
961     (popped = QA.compareAndSet(a, k, task, null)))
962 dl 1.243 top = s;
963 dl 1.345 releasePhaseLock();
964 dl 1.78 }
965 dl 1.345 return popped;
966 dl 1.78 }
967    
968     /**
969 jsr166 1.84 * Removes and cancels all known tasks, ignoring any exceptions.
970 dl 1.78 */
971     final void cancelAll() {
972 dl 1.300 for (ForkJoinTask<?> t; (t = poll()) != null; )
973 dl 1.78 ForkJoinTask.cancelIgnoringExceptions(t);
974     }
975    
976 dl 1.104 // Specialized execution methods
977 dl 1.78
978     /**
979 dl 1.345 * Runs the given (stolen) task if nonnull, as well as
980     * remaining local tasks and others available from the given
981     * queue, up to bound n (to avoid infinite unfairness).
982     */
983     final void topLevelExec(ForkJoinTask<?> t, WorkQueue q, int n) {
984 dl 1.351 int nstolen = 1;
985     for (int j = 0;;) {
986     if (t != null)
987 dl 1.345 t.doExec();
988 dl 1.351 if (j++ <= n)
989     t = nextLocalTask();
990     else {
991     j = 0;
992     t = null;
993     }
994     if (t == null) {
995     if (q != null && (t = q.poll()) != null) {
996     ++nstolen;
997     j = 0;
998     }
999     else if (j != 0)
1000 jsr166 1.344 break;
1001     }
1002 dl 1.253 }
1003 dl 1.351 ForkJoinWorkerThread thread = owner;
1004     nsteals += nstolen;
1005     source = 0;
1006     if (thread != null)
1007     thread.afterTopLevelExec();
1008 dl 1.253 }
1009    
1010     /**
1011 jsr166 1.302 * If present, removes task from queue and executes it.
1012 dl 1.94 */
1013 dl 1.300 final void tryRemoveAndExec(ForkJoinTask<?> task) {
1014 dl 1.345 ForkJoinTask<?>[] a; int s, cap;
1015     if ((a = array) != null && (cap = a.length) > 0 &&
1016 dl 1.346 (s = top) - base > 0) { // traverse from top
1017 dl 1.345 for (int m = cap - 1, ns = s - 1, i = ns; ; --i) {
1018 dl 1.300 int index = i & m;
1019 dl 1.345 ForkJoinTask<?> t = (ForkJoinTask<?>)QA.get(a, index);
1020 dl 1.300 if (t == null)
1021     break;
1022     else if (t == task) {
1023 dl 1.345 if (QA.compareAndSet(a, index, t, null)) {
1024 dl 1.300 top = ns; // safely shift down
1025     for (int j = i; j != ns; ++j) {
1026     ForkJoinTask<?> f;
1027     int pindex = (j + 1) & m;
1028 dl 1.345 f = (ForkJoinTask<?>)QA.get(a, pindex);
1029     QA.setVolatile(a, pindex, null);
1030 dl 1.300 int jindex = j & m;
1031 dl 1.345 QA.setRelease(a, jindex, f);
1032 dl 1.300 }
1033 dl 1.314 VarHandle.releaseFence();
1034 dl 1.300 t.doExec();
1035     }
1036     break;
1037     }
1038 dl 1.262 }
1039 dl 1.215 }
1040     }
1041    
1042     /**
1043 dl 1.345 * Tries to pop and run tasks within the target's computation
1044     * until done, not found, or limit exceeded.
1045 dl 1.94 *
1046 dl 1.300 * @param task root of CountedCompleter computation
1047     * @param limit max runs, or zero for no limit
1048 dl 1.345 * @param shared true if must lock to extract task
1049 dl 1.300 * @return task status on exit
1050     */
1051 dl 1.345 final int helpCC(CountedCompleter<?> task, int limit, boolean shared) {
1052 dl 1.300 int status = 0;
1053     if (task != null && (status = task.status) >= 0) {
1054 dl 1.345 int s, k, cap; ForkJoinTask<?>[] a;
1055     while ((a = array) != null && (cap = a.length) > 0 &&
1056 dl 1.346 (s = top) - base > 0) {
1057 dl 1.345 CountedCompleter<?> v = null;
1058     ForkJoinTask<?> o = a[k = (cap - 1) & (s - 1)];
1059     if (o instanceof CountedCompleter) {
1060     CountedCompleter<?> t = (CountedCompleter<?>)o;
1061     for (CountedCompleter<?> f = t;;) {
1062     if (f != task) {
1063     if ((f = f.completer) == null)
1064     break;
1065     }
1066     else if (shared) {
1067     if (tryLockPhase()) {
1068     if (top == s && array == a &&
1069     QA.compareAndSet(a, k, t, null)) {
1070 dl 1.300 top = s - 1;
1071 dl 1.345 v = t;
1072 dl 1.300 }
1073 dl 1.345 releasePhaseLock();
1074     }
1075     break;
1076     }
1077     else {
1078     if (QA.compareAndSet(a, k, t, null)) {
1079     top = s - 1;
1080     v = t;
1081 dl 1.339 }
1082 dl 1.345 break;
1083 dl 1.200 }
1084 dl 1.243 }
1085 dl 1.104 }
1086 dl 1.345 if (v != null)
1087     v.doExec();
1088     if ((status = task.status) < 0 || v == null ||
1089 dl 1.300 (limit != 0 && --limit == 0))
1090     break;
1091 dl 1.104 }
1092     }
1093 dl 1.300 return status;
1094     }
1095    
1096 jsr166 1.344 /**
1097 dl 1.345 * Tries to poll and run AsynchronousCompletionTasks until
1098     * none found or blocker is released
1099     *
1100     * @param blocker the blocker
1101 jsr166 1.344 */
1102 dl 1.345 final void helpAsyncBlocker(ManagedBlocker blocker) {
1103     if (blocker != null) {
1104     int b, k, cap; ForkJoinTask<?>[] a; ForkJoinTask<?> t;
1105     while ((a = array) != null && (cap = a.length) > 0 &&
1106 dl 1.346 top - (b = base) > 0) {
1107 dl 1.345 t = (ForkJoinTask<?>)QA.getAcquire(a, k = (cap - 1) & b);
1108     if (blocker.isReleasable())
1109     break;
1110     else if (base == b++ && t != null) {
1111     if (!(t instanceof CompletableFuture.
1112     AsynchronousCompletionTask))
1113     break;
1114     else if (QA.compareAndSet(a, k, t, null)) {
1115     BASE.setOpaque(this, b);
1116     t.doExec();
1117 dl 1.200 }
1118 dl 1.178 }
1119     }
1120 dl 1.78 }
1121     }
1122    
1123     /**
1124 dl 1.86 * Returns true if owned and not known to be blocked.
1125     */
1126     final boolean isApparentlyUnblocked() {
1127     Thread wt; Thread.State s;
1128 dl 1.300 return ((wt = owner) != null &&
1129 dl 1.86 (s = wt.getState()) != Thread.State.BLOCKED &&
1130     s != Thread.State.WAITING &&
1131     s != Thread.State.TIMED_WAITING);
1132     }
1133    
1134 dl 1.314 // VarHandle mechanics.
1135 dl 1.345 static final VarHandle PHASE;
1136     static final VarHandle BASE;
1137     static final VarHandle TOP;
1138 dl 1.78 static {
1139     try {
1140 dl 1.314 MethodHandles.Lookup l = MethodHandles.lookup();
1141     PHASE = l.findVarHandle(WorkQueue.class, "phase", int.class);
1142 dl 1.345 BASE = l.findVarHandle(WorkQueue.class, "base", int.class);
1143     TOP = l.findVarHandle(WorkQueue.class, "top", int.class);
1144 jsr166 1.231 } catch (ReflectiveOperationException e) {
1145 jsr166 1.347 throw new ExceptionInInitializerError(e);
1146 dl 1.78 }
1147     }
1148     }
1149 dl 1.14
1150 dl 1.112 // static fields (initialized in static initializer below)
1151    
1152     /**
1153     * Creates a new ForkJoinWorkerThread. This factory is used unless
1154     * overridden in ForkJoinPool constructors.
1155     */
1156     public static final ForkJoinWorkerThreadFactory
1157     defaultForkJoinWorkerThreadFactory;
1158    
1159 jsr166 1.1 /**
1160 dl 1.115 * Permission required for callers of methods that may start or
1161 dl 1.300 * kill threads.
1162 dl 1.115 */
1163 jsr166 1.276 static final RuntimePermission modifyThreadPermission;
1164 dl 1.115
1165     /**
1166 dl 1.101 * Common (static) pool. Non-null for public use unless a static
1167 dl 1.105 * construction exception, but internal usages null-check on use
1168     * to paranoically avoid potential initialization circularities
1169     * as well as to simplify generated code.
1170 dl 1.101 */
1171 dl 1.134 static final ForkJoinPool common;
1172 dl 1.101
1173     /**
1174 dl 1.160 * Common pool parallelism. To allow simpler use and management
1175     * when common pool threads are disabled, we allow the underlying
1176 dl 1.185 * common.parallelism field to be zero, but in that case still report
1177 dl 1.160 * parallelism as 1 to reflect resulting caller-runs mechanics.
1178 dl 1.90 */
1179 jsr166 1.274 static final int COMMON_PARALLELISM;
1180 dl 1.90
1181     /**
1182 dl 1.208 * Limit on spare thread construction in tryCompensate.
1183     */
1184 jsr166 1.273 private static final int COMMON_MAX_SPARES;
1185 dl 1.208
1186     /**
1187 dl 1.105 * Sequence number for creating workerNamePrefix.
1188 dl 1.86 */
1189 dl 1.105 private static int poolNumberSequence;
1190 dl 1.86
1191 jsr166 1.1 /**
1192 jsr166 1.132 * Returns the next sequence number. We don't expect this to
1193     * ever contend, so use simple builtin sync.
1194 dl 1.83 */
1195 dl 1.105 private static final synchronized int nextPoolId() {
1196     return ++poolNumberSequence;
1197     }
1198 dl 1.86
1199 dl 1.200 // static configuration constants
1200 dl 1.86
1201     /**
1202 dl 1.300 * Default idle timeout value (in milliseconds) for the thread
1203     * triggering quiescence to park waiting for new work
1204 dl 1.86 */
1205 jsr166 1.326 private static final long DEFAULT_KEEPALIVE = 60_000L;
1206 dl 1.86
1207     /**
1208 dl 1.300 * Undershoot tolerance for idle timeouts
1209 dl 1.120 */
1210 dl 1.300 private static final long TIMEOUT_SLOP = 20L;
1211 dl 1.200
1212     /**
1213 jsr166 1.273 * The default value for COMMON_MAX_SPARES. Overridable using the
1214     * "java.util.concurrent.ForkJoinPool.common.maximumSpares" system
1215     * property. The default value is far in excess of normal
1216     * requirements, but also far short of MAX_CAP and typical OS
1217     * thread limits, so allows JVMs to catch misuse/abuse before
1218     * running out of resources needed to do so.
1219 dl 1.200 */
1220 dl 1.208 private static final int DEFAULT_COMMON_MAX_SPARES = 256;
1221 dl 1.120
1222     /**
1223 dl 1.90 * Increment for seed generators. See class ThreadLocal for
1224     * explanation.
1225     */
1226 dl 1.193 private static final int SEED_INCREMENT = 0x9e3779b9;
1227 dl 1.83
1228 jsr166 1.163 /*
1229 dl 1.200 * Bits and masks for field ctl, packed with 4 16 bit subfields:
1230 dl 1.300 * RC: Number of released (unqueued) workers minus target parallelism
1231 dl 1.200 * TC: Number of total workers minus target parallelism
1232     * SS: version count and status of top waiting thread
1233     * ID: poolIndex of top of Treiber stack of waiters
1234     *
1235     * When convenient, we can extract the lower 32 stack top bits
1236     * (including version bits) as sp=(int)ctl. The offsets of counts
1237     * by the target parallelism and the positionings of fields makes
1238     * it possible to perform the most common checks via sign tests of
1239 dl 1.300 * fields: When ac is negative, there are not enough unqueued
1240 dl 1.200 * workers, when tc is negative, there are not enough total
1241     * workers. When sp is non-zero, there are waiting workers. To
1242     * deal with possibly negative fields, we use casts in and out of
1243     * "short" and/or signed shifts to maintain signedness.
1244     *
1245 dl 1.300 * Because it occupies uppermost bits, we can add one release count
1246     * using getAndAddLong of RC_UNIT, rather than CAS, when returning
1247 dl 1.200 * from a blocked join. Other updates entail multiple subfields
1248     * and masking, requiring CAS.
1249 dl 1.300 *
1250     * The limits packed in field "bounds" are also offset by the
1251     * parallelism level to make them comparable to the ctl rc and tc
1252     * fields.
1253 dl 1.200 */
1254    
1255     // Lower and upper word masks
1256     private static final long SP_MASK = 0xffffffffL;
1257     private static final long UC_MASK = ~SP_MASK;
1258 dl 1.86
1259 dl 1.300 // Release counts
1260     private static final int RC_SHIFT = 48;
1261     private static final long RC_UNIT = 0x0001L << RC_SHIFT;
1262     private static final long RC_MASK = 0xffffL << RC_SHIFT;
1263 dl 1.200
1264     // Total counts
1265 dl 1.86 private static final int TC_SHIFT = 32;
1266 dl 1.200 private static final long TC_UNIT = 0x0001L << TC_SHIFT;
1267     private static final long TC_MASK = 0xffffL << TC_SHIFT;
1268     private static final long ADD_WORKER = 0x0001L << (TC_SHIFT + 15); // sign
1269    
1270 dl 1.300 // Instance fields
1271 dl 1.86
1272 dl 1.300 volatile long stealCount; // collects worker nsteals
1273     final long keepAlive; // milliseconds before dropping if idle
1274     int indexSeed; // next worker index
1275     final int bounds; // min, max threads packed as shorts
1276     volatile int mode; // parallelism, runstate, queue mode
1277     WorkQueue[] workQueues; // main registry
1278     final String workerNamePrefix; // for worker thread string; sync lock
1279 dl 1.112 final ForkJoinWorkerThreadFactory factory;
1280 dl 1.200 final UncaughtExceptionHandler ueh; // per-worker UEH
1281 dl 1.307 final Predicate<? super ForkJoinPool> saturate;
1282 dl 1.101
1283 dl 1.308 @jdk.internal.vm.annotation.Contended("fjpctl") // segregate
1284     volatile long ctl; // main pool control
1285 jsr166 1.309
1286 dl 1.200 // Creating, registering and deregistering workers
1287    
1288 dl 1.112 /**
1289 dl 1.200 * Tries to construct and start one worker. Assumes that total
1290     * count has already been incremented as a reservation. Invokes
1291     * deregisterWorker on any failure.
1292     *
1293     * @return true if successful
1294 dl 1.115 */
1295 dl 1.300 private boolean createWorker() {
1296 dl 1.200 ForkJoinWorkerThreadFactory fac = factory;
1297     Throwable ex = null;
1298     ForkJoinWorkerThread wt = null;
1299     try {
1300     if (fac != null && (wt = fac.newThread(this)) != null) {
1301     wt.start();
1302     return true;
1303 dl 1.115 }
1304 dl 1.200 } catch (Throwable rex) {
1305     ex = rex;
1306 dl 1.112 }
1307 dl 1.200 deregisterWorker(wt, ex);
1308     return false;
1309 dl 1.112 }
1310    
1311 dl 1.200 /**
1312     * Tries to add one worker, incrementing ctl counts before doing
1313     * so, relying on createWorker to back out on failure.
1314     *
1315     * @param c incoming ctl value, with total count negative and no
1316     * idle workers. On CAS failure, c is refreshed and retried if
1317 jsr166 1.202 * this holds (otherwise, a new worker is not needed).
1318 dl 1.200 */
1319     private void tryAddWorker(long c) {
1320     do {
1321 dl 1.300 long nc = ((RC_MASK & (c + RC_UNIT)) |
1322 dl 1.200 (TC_MASK & (c + TC_UNIT)));
1323 dl 1.314 if (ctl == c && CTL.compareAndSet(this, c, nc)) {
1324 dl 1.300 createWorker();
1325 dl 1.243 break;
1326 dl 1.200 }
1327     } while (((c = ctl) & ADD_WORKER) != 0L && (int)c == 0);
1328     }
1329 dl 1.112
1330     /**
1331 dl 1.200 * Callback from ForkJoinWorkerThread constructor to establish and
1332     * record its WorkQueue.
1333 dl 1.112 *
1334     * @param wt the worker thread
1335 dl 1.115 * @return the worker's queue
1336 dl 1.112 */
1337 dl 1.115 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1338 dl 1.200 UncaughtExceptionHandler handler;
1339 dl 1.300 wt.setDaemon(true); // configure thread
1340 dl 1.115 if ((handler = ueh) != null)
1341     wt.setUncaughtExceptionHandler(handler);
1342 dl 1.300 int tid = 0; // for thread name
1343 dl 1.345 int idbits = mode & FIFO;
1344 dl 1.300 String prefix = workerNamePrefix;
1345 dl 1.345 WorkQueue w = new WorkQueue(this, wt);
1346 dl 1.300 if (prefix != null) {
1347 jsr166 1.301 synchronized (prefix) {
1348 dl 1.300 WorkQueue[] ws = workQueues; int n;
1349     int s = indexSeed += SEED_INCREMENT;
1350 dl 1.345 idbits |= (s & ~(SMASK | FIFO | DORMANT));
1351 dl 1.300 if (ws != null && (n = ws.length) > 1) {
1352     int m = n - 1;
1353 dl 1.345 tid = m & ((s << 1) | 1); // odd-numbered indices
1354 dl 1.300 for (int probes = n >>> 1;;) { // find empty slot
1355     WorkQueue q;
1356 dl 1.345 if ((q = ws[tid]) == null || q.phase == QUIET)
1357 dl 1.300 break;
1358     else if (--probes == 0) {
1359 dl 1.345 tid = n | 1; // resize below
1360 dl 1.300 break;
1361     }
1362     else
1363 dl 1.345 tid = (tid + 2) & m;
1364 dl 1.300 }
1365 dl 1.345 w.phase = w.id = tid | idbits; // now publishable
1366 dl 1.300
1367 dl 1.345 if (tid < n)
1368     ws[tid] = w;
1369 dl 1.300 else { // expand array
1370     int an = n << 1;
1371     WorkQueue[] as = new WorkQueue[an];
1372 dl 1.345 as[tid] = w;
1373 dl 1.300 int am = an - 1;
1374     for (int j = 0; j < n; ++j) {
1375     WorkQueue v; // copy external queue
1376     if ((v = ws[j]) != null) // position may change
1377     as[v.id & am & SQMASK] = v;
1378     if (++j >= n)
1379     break;
1380     as[j] = ws[j]; // copy worker
1381 dl 1.94 }
1382 dl 1.300 workQueues = as;
1383 dl 1.94 }
1384     }
1385 dl 1.78 }
1386 dl 1.300 wt.setName(prefix.concat(Integer.toString(tid)));
1387 dl 1.78 }
1388 dl 1.115 return w;
1389 dl 1.78 }
1390 dl 1.19
1391 jsr166 1.1 /**
1392 dl 1.86 * Final callback from terminating worker, as well as upon failure
1393 dl 1.105 * to construct or start a worker. Removes record of worker from
1394     * array, and adjusts counts. If pool is shutting down, tries to
1395     * complete termination.
1396 dl 1.78 *
1397 jsr166 1.151 * @param wt the worker thread, or null if construction failed
1398 dl 1.78 * @param ex the exception causing failure, or null if none
1399 dl 1.45 */
1400 dl 1.78 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1401     WorkQueue w = null;
1402 dl 1.300 int phase = 0;
1403 dl 1.78 if (wt != null && (w = wt.workQueue) != null) {
1404 dl 1.300 Object lock = workerNamePrefix;
1405 dl 1.345 int wid = w.id;
1406 dl 1.300 long ns = (long)w.nsteals & 0xffffffffL;
1407     if (lock != null) {
1408 jsr166 1.301 synchronized (lock) {
1409 dl 1.345 WorkQueue[] ws; int n, i; // remove index from array
1410     if ((ws = workQueues) != null && (n = ws.length) > 0 &&
1411     ws[i = wid & (n - 1)] == w)
1412     ws[i] = null;
1413 dl 1.300 stealCount += ns;
1414 dl 1.243 }
1415     }
1416 dl 1.300 phase = w.phase;
1417 dl 1.243 }
1418 dl 1.300 if (phase != QUIET) { // else pre-adjusted
1419 dl 1.243 long c; // decrement counts
1420 jsr166 1.325 do {} while (!CTL.weakCompareAndSet
1421 dl 1.314 (this, c = ctl, ((RC_MASK & (c - RC_UNIT)) |
1422     (TC_MASK & (c - TC_UNIT)) |
1423     (SP_MASK & c))));
1424 dl 1.243 }
1425 dl 1.300 if (w != null)
1426 dl 1.200 w.cancelAll(); // cancel remaining tasks
1427 dl 1.300
1428     if (!tryTerminate(false, false) && // possibly replace worker
1429     w != null && w.array != null) // avoid repeated failures
1430 dl 1.351 signalWork(null);
1431 dl 1.300
1432 dl 1.200 if (ex == null) // help clean on way out
1433 dl 1.120 ForkJoinTask.helpExpungeStaleExceptions();
1434 dl 1.200 else // rethrow
1435 dl 1.104 ForkJoinTask.rethrow(ex);
1436 dl 1.78 }
1437 dl 1.52
1438 dl 1.19 /**
1439 dl 1.300 * Tries to create or release a worker if too few are running.
1440 dl 1.351 * @param q if non-null recheck if empty on CAS failure
1441 dl 1.105 */
1442 dl 1.351 final void signalWork(WorkQueue q) {
1443 dl 1.243 for (;;) {
1444 dl 1.300 long c; int sp; WorkQueue[] ws; int i; WorkQueue v;
1445 dl 1.243 if ((c = ctl) >= 0L) // enough workers
1446     break;
1447     else if ((sp = (int)c) == 0) { // no idle workers
1448     if ((c & ADD_WORKER) != 0L) // too few workers
1449 dl 1.200 tryAddWorker(c);
1450     break;
1451     }
1452 dl 1.243 else if ((ws = workQueues) == null)
1453     break; // unstarted/terminated
1454     else if (ws.length <= (i = sp & SMASK))
1455     break; // terminated
1456     else if ((v = ws[i]) == null)
1457     break; // terminating
1458     else {
1459 dl 1.300 int np = sp & ~UNSIGNALLED;
1460     int vp = v.phase;
1461     long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + RC_UNIT));
1462     Thread vt = v.owner;
1463 dl 1.314 if (sp == vp && CTL.compareAndSet(this, c, nc)) {
1464 dl 1.300 v.phase = np;
1465 dl 1.345 if (vt != null && v.source < 0)
1466 dl 1.300 LockSupport.unpark(vt);
1467 dl 1.243 break;
1468     }
1469 dl 1.351 else if (q != null && q.isEmpty()) // no need to retry
1470     break;
1471 dl 1.174 }
1472 dl 1.52 }
1473 dl 1.14 }
1474    
1475 dl 1.200 /**
1476 dl 1.300 * Tries to decrement counts (sometimes implicitly) and possibly
1477     * arrange for a compensating worker in preparation for blocking:
1478     * If not all core workers yet exist, creates one, else if any are
1479     * unreleased (possibly including caller) releases one, else if
1480     * fewer than the minimum allowed number of workers running,
1481     * checks to see that they are all active, and if so creates an
1482     * extra worker unless over maximum limit and policy is to
1483     * saturate. Most of these steps can fail due to interference, in
1484     * which case 0 is returned so caller will retry. A negative
1485     * return value indicates that the caller doesn't need to
1486     * re-adjust counts when later unblocked.
1487 dl 1.243 *
1488 dl 1.300 * @return 1: block then adjust, -1: block without adjust, 0 : retry
1489 dl 1.243 */
1490 dl 1.300 private int tryCompensate(WorkQueue w) {
1491     int t, n, sp;
1492     long c = ctl;
1493     WorkQueue[] ws = workQueues;
1494 dl 1.310 if ((t = (short)(c >>> TC_SHIFT)) >= 0) {
1495 dl 1.300 if (ws == null || (n = ws.length) <= 0 || w == null)
1496     return 0; // disabled
1497     else if ((sp = (int)c) != 0) { // replace or release
1498     WorkQueue v = ws[sp & (n - 1)];
1499     int wp = w.phase;
1500     long uc = UC_MASK & ((wp < 0) ? c + RC_UNIT : c);
1501     int np = sp & ~UNSIGNALLED;
1502     if (v != null) {
1503     int vp = v.phase;
1504     Thread vt = v.owner;
1505     long nc = ((long)v.stackPred & SP_MASK) | uc;
1506 dl 1.314 if (vp == sp && CTL.compareAndSet(this, c, nc)) {
1507 dl 1.300 v.phase = np;
1508 dl 1.345 if (vt != null && v.source < 0)
1509 dl 1.300 LockSupport.unpark(vt);
1510     return (wp < 0) ? -1 : 1;
1511     }
1512     }
1513     return 0;
1514     }
1515     else if ((int)(c >> RC_SHIFT) - // reduce parallelism
1516     (short)(bounds & SMASK) > 0) {
1517     long nc = ((RC_MASK & (c - RC_UNIT)) | (~RC_MASK & c));
1518 dl 1.314 return CTL.compareAndSet(this, c, nc) ? 1 : 0;
1519 dl 1.300 }
1520     else { // validate
1521     int md = mode, pc = md & SMASK, tc = pc + t, bc = 0;
1522     boolean unstable = false;
1523     for (int i = 1; i < n; i += 2) {
1524     WorkQueue q; Thread wt; Thread.State ts;
1525     if ((q = ws[i]) != null) {
1526     if (q.source == 0) {
1527     unstable = true;
1528     break;
1529     }
1530     else {
1531     --tc;
1532     if ((wt = q.owner) != null &&
1533     ((ts = wt.getState()) == Thread.State.BLOCKED ||
1534     ts == Thread.State.WAITING))
1535     ++bc; // worker is blocking
1536     }
1537 dl 1.243 }
1538     }
1539 dl 1.300 if (unstable || tc != 0 || ctl != c)
1540     return 0; // inconsistent
1541     else if (t + pc >= MAX_CAP || t >= (bounds >>> SWIDTH)) {
1542 dl 1.307 Predicate<? super ForkJoinPool> sat;
1543     if ((sat = saturate) != null && sat.test(this))
1544 dl 1.300 return -1;
1545     else if (bc < pc) { // lagging
1546     Thread.yield(); // for retry spins
1547     return 0;
1548 dl 1.243 }
1549     else
1550 dl 1.300 throw new RejectedExecutionException(
1551     "Thread limit exceeded replacing blocked worker");
1552 dl 1.200 }
1553 dl 1.177 }
1554 dl 1.243 }
1555 dl 1.300
1556     long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK); // expand pool
1557 dl 1.314 return CTL.compareAndSet(this, c, nc) && createWorker() ? 1 : 0;
1558 dl 1.243 }
1559    
1560     /**
1561     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1562 dl 1.300 * See above for explanation.
1563 dl 1.243 */
1564     final void runWorker(WorkQueue w) {
1565 dl 1.345 int r = (w.id ^ ThreadLocalRandom.nextSecondarySeed()) | FIFO; // rng
1566     w.array = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY]; // initialize
1567     for (;;) {
1568     int phase;
1569     if (scan(w, r)) { // scan until apparently empty
1570     r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // move (xorshift)
1571     }
1572     else if ((phase = w.phase) >= 0) { // enqueue, then rescan
1573     long np = (w.phase = (phase + SS_SEQ) | UNSIGNALLED) & SP_MASK;
1574     long c, nc;
1575     do {
1576     w.stackPred = (int)(c = ctl);
1577     nc = ((c - RC_UNIT) & UC_MASK) | np;
1578     } while (!CTL.weakCompareAndSet(this, c, nc));
1579     }
1580     else { // already queued
1581     int pred = w.stackPred;
1582     Thread.interrupted(); // clear before park
1583     w.source = DORMANT; // enable signal
1584     long c = ctl;
1585     int md = mode, rc = (md & SMASK) + (int)(c >> RC_SHIFT);
1586     if (md < 0) // terminating
1587     break;
1588     else if (rc <= 0 && (md & SHUTDOWN) != 0 &&
1589     tryTerminate(false, false))
1590     break; // quiescent shutdown
1591 dl 1.351 else if (w.phase < 0) {
1592     if (rc <= 0 && pred != 0 && phase == (int)c) {
1593     long nc = (UC_MASK & (c - TC_UNIT)) | (SP_MASK & pred);
1594     long d = keepAlive + System.currentTimeMillis();
1595     LockSupport.parkUntil(this, d);
1596     if (ctl == c && // drop on timeout if all idle
1597     d - System.currentTimeMillis() <= TIMEOUT_SLOP &&
1598     CTL.compareAndSet(this, c, nc)) {
1599     w.phase = QUIET;
1600     break;
1601     }
1602     }
1603     else {
1604     LockSupport.park(this);
1605     if (w.phase < 0) // one spurious wakeup check
1606     LockSupport.park(this);
1607 dl 1.243 }
1608 dl 1.178 }
1609 dl 1.345 w.source = 0; // disable signal
1610 dl 1.120 }
1611 dl 1.345 }
1612     }
1613 dl 1.178
1614 dl 1.345 /**
1615     * Scans for and if found executes one or more top-level tasks from a queue.
1616     *
1617     * @return true if found an apparently non-empty queue, and
1618     * possibly ran task(s).
1619     */
1620     private boolean scan(WorkQueue w, int r) {
1621     WorkQueue[] ws; int n;
1622     if ((ws = workQueues) != null && (n = ws.length) > 0 && w != null) {
1623     for (int m = n - 1, j = r & m;;) {
1624 dl 1.351 WorkQueue q; int b, s;
1625     if ((q = ws[j]) != null && (s = q.top) != (b = q.base)) {
1626 dl 1.345 int qid = q.id;
1627     ForkJoinTask<?>[] a; int cap, k; ForkJoinTask<?> t;
1628     if ((a = q.array) != null && (cap = a.length) > 0) {
1629     t = (ForkJoinTask<?>)QA.getAcquire(a, k = (cap - 1) & b);
1630     if (q.base == b++ && t != null &&
1631     QA.compareAndSet(a, k, t, null)) {
1632     q.base = b;
1633     w.source = qid;
1634 dl 1.351 if (s != b && a[(cap - 1) & b] != null)
1635     signalWork(q); // help signal if more tasks
1636 dl 1.345 w.topLevelExec(t, q, // random fairness bound
1637 dl 1.351 (r | (1 << TOP_BOUND_SHIFT)) & SMASK);
1638 dl 1.300 }
1639     }
1640 dl 1.345 return true;
1641 dl 1.300 }
1642 dl 1.345 else if (--n > 0)
1643     j = (j + 1) & m;
1644     else
1645     break;
1646 dl 1.300 }
1647     }
1648 dl 1.345 return false;
1649 dl 1.300 }
1650 dl 1.200
1651 dl 1.305 /**
1652     * Helps and/or blocks until the given task is done or timeout.
1653     * First tries locally helping, then scans other queues for a task
1654     * produced by one of w's stealers; compensating and blocking if
1655     * none are found (rescanning if tryCompensate fails).
1656     *
1657     * @param w caller
1658     * @param task the task
1659     * @param deadline for timed waits, if nonzero
1660     * @return task status on exit
1661     */
1662 dl 1.300 final int awaitJoin(WorkQueue w, ForkJoinTask<?> task, long deadline) {
1663     int s = 0;
1664 dl 1.345 int seed = ThreadLocalRandom.nextSecondarySeed();
1665 dl 1.300 if (w != null && task != null &&
1666     (!(task instanceof CountedCompleter) ||
1667 dl 1.345 (s = w.helpCC((CountedCompleter<?>)task, 0, false)) >= 0)) {
1668 dl 1.300 w.tryRemoveAndExec(task);
1669     int src = w.source, id = w.id;
1670 dl 1.345 int r = (seed >>> 16) | 1, step = (seed & ~1) | 2;
1671 dl 1.300 s = task.status;
1672     while (s >= 0) {
1673     WorkQueue[] ws;
1674 dl 1.345 int n = (ws = workQueues) == null ? 0 : ws.length, m = n - 1;
1675     while (n > 0) {
1676     WorkQueue q; int b;
1677     if ((q = ws[r & m]) != null && q.source == id &&
1678 dl 1.346 q.top != (b = q.base)) {
1679 dl 1.345 ForkJoinTask<?>[] a; int cap, k;
1680     int qid = q.id;
1681     if ((a = q.array) != null && (cap = a.length) > 0) {
1682 dl 1.300 ForkJoinTask<?> t = (ForkJoinTask<?>)
1683 dl 1.345 QA.getAcquire(a, k = (cap - 1) & b);
1684     if (q.source == id && q.base == b++ &&
1685     t != null && QA.compareAndSet(a, k, t, null)) {
1686 dl 1.300 q.base = b;
1687     w.source = qid;
1688     t.doExec();
1689     w.source = src;
1690     }
1691     }
1692 dl 1.345 break;
1693     }
1694     else {
1695     r += step;
1696     --n;
1697 dl 1.200 }
1698 dl 1.300 }
1699     if ((s = task.status) < 0)
1700     break;
1701 dl 1.345 else if (n == 0) { // empty scan
1702 dl 1.300 long ms, ns; int block;
1703     if (deadline == 0L)
1704     ms = 0L; // untimed
1705     else if ((ns = deadline - System.nanoTime()) <= 0L)
1706     break; // timeout
1707     else if ((ms = TimeUnit.NANOSECONDS.toMillis(ns)) <= 0L)
1708     ms = 1L; // avoid 0 for timed wait
1709     if ((block = tryCompensate(w)) != 0) {
1710     task.internalWait(ms);
1711 dl 1.314 CTL.getAndAdd(this, (block > 0) ? RC_UNIT : 0L);
1712 dl 1.200 }
1713 dl 1.300 s = task.status;
1714 dl 1.200 }
1715 dl 1.178 }
1716     }
1717 dl 1.200 return s;
1718 dl 1.120 }
1719    
1720     /**
1721 dl 1.300 * Runs tasks until {@code isQuiescent()}. Rather than blocking
1722     * when tasks cannot be found, rescans until all others cannot
1723     * find tasks either.
1724 dl 1.78 */
1725 dl 1.300 final void helpQuiescePool(WorkQueue w) {
1726 dl 1.345 int prevSrc = w.source;
1727     int seed = ThreadLocalRandom.nextSecondarySeed();
1728     int r = seed >>> 16, step = r | 1;
1729 dl 1.300 for (int source = prevSrc, released = -1;;) { // -1 until known
1730 dl 1.345 ForkJoinTask<?> localTask; WorkQueue[] ws;
1731     while ((localTask = w.nextLocalTask()) != null)
1732     localTask.doExec();
1733     if (w.phase >= 0 && released == -1)
1734 dl 1.300 released = 1;
1735     boolean quiet = true, empty = true;
1736 dl 1.345 int n = (ws = workQueues) == null ? 0 : ws.length;
1737     for (int m = n - 1; n > 0; r += step, --n) {
1738     WorkQueue q; int b;
1739     if ((q = ws[r & m]) != null) {
1740     int qs = q.source;
1741 dl 1.346 if (q.top != (b = q.base)) {
1742 dl 1.345 quiet = empty = false;
1743     ForkJoinTask<?>[] a; int cap, k;
1744     int qid = q.id;
1745     if ((a = q.array) != null && (cap = a.length) > 0) {
1746 dl 1.300 if (released == 0) { // increment
1747     released = 1;
1748 dl 1.314 CTL.getAndAdd(this, RC_UNIT);
1749 dl 1.95 }
1750 dl 1.300 ForkJoinTask<?> t = (ForkJoinTask<?>)
1751 dl 1.345 QA.getAcquire(a, k = (cap - 1) & b);
1752     if (q.base == b++ && t != null &&
1753     QA.compareAndSet(a, k, t, null)) {
1754 dl 1.300 q.base = b;
1755 dl 1.345 w.source = qid;
1756 dl 1.300 t.doExec();
1757     w.source = source = prevSrc;
1758 dl 1.243 }
1759 dl 1.95 }
1760 dl 1.345 break;
1761 dl 1.52 }
1762 dl 1.345 else if ((qs & QUIET) == 0)
1763     quiet = false;
1764 dl 1.19 }
1765 dl 1.243 }
1766 dl 1.300 if (quiet) {
1767     if (released == 0)
1768 dl 1.314 CTL.getAndAdd(this, RC_UNIT);
1769 dl 1.300 w.source = prevSrc;
1770     break;
1771     }
1772     else if (empty) {
1773     if (source != QUIET)
1774     w.source = source = QUIET;
1775     if (released == 1) { // decrement
1776     released = 0;
1777 dl 1.314 CTL.getAndAdd(this, RC_MASK & -RC_UNIT);
1778 dl 1.300 }
1779     }
1780 dl 1.14 }
1781 dl 1.22 }
1782    
1783 dl 1.52 /**
1784 dl 1.300 * Scans for and returns a polled task, if available.
1785     * Used only for untracked polls.
1786 dl 1.105 *
1787 dl 1.300 * @param submissionsOnly if true, only scan submission queues
1788 dl 1.19 */
1789 dl 1.300 private ForkJoinTask<?> pollScan(boolean submissionsOnly) {
1790     WorkQueue[] ws; int n;
1791     rescan: while ((mode & STOP) == 0 && (ws = workQueues) != null &&
1792     (n = ws.length) > 0) {
1793     int m = n - 1;
1794     int r = ThreadLocalRandom.nextSecondarySeed();
1795     int h = r >>> 16;
1796     int origin, step;
1797     if (submissionsOnly) {
1798     origin = (r & ~1) & m; // even indices and steps
1799     step = (h & ~1) | 2;
1800     }
1801     else {
1802     origin = r & m;
1803     step = h | 1;
1804     }
1805 dl 1.345 boolean nonempty = false;
1806     for (int i = origin, oldSum = 0, checkSum = 0;;) {
1807     WorkQueue q;
1808     if ((q = ws[i]) != null) {
1809     int b; ForkJoinTask<?> t;
1810 dl 1.346 if (q.top - (b = q.base) > 0) {
1811 dl 1.345 nonempty = true;
1812     if ((t = q.poll()) != null)
1813 dl 1.300 return t;
1814     }
1815 dl 1.345 else
1816     checkSum += b + q.id;
1817 dl 1.300 }
1818 dl 1.345 if ((i = (i + step) & m) == origin) {
1819     if (!nonempty && oldSum == (oldSum = checkSum))
1820 dl 1.300 break rescan;
1821     checkSum = 0;
1822 dl 1.345 nonempty = false;
1823 dl 1.178 }
1824 dl 1.52 }
1825 dl 1.90 }
1826 dl 1.300 return null;
1827     }
1828    
1829     /**
1830     * Gets and removes a local or stolen task for the given worker.
1831     *
1832     * @return a task, if available
1833     */
1834     final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
1835     ForkJoinTask<?> t;
1836 dl 1.345 if (w == null || (t = w.nextLocalTask()) == null)
1837     t = pollScan(false);
1838     return t;
1839 dl 1.90 }
1840    
1841 dl 1.300 // External operations
1842    
1843 dl 1.90 /**
1844 dl 1.300 * Adds the given task to a submission queue at submitter's
1845     * current queue, creating one if null or contended.
1846 dl 1.90 *
1847 dl 1.300 * @param task the task. Caller must ensure non-null.
1848 dl 1.90 */
1849 dl 1.300 final void externalPush(ForkJoinTask<?> task) {
1850     int r; // initialize caller's probe
1851     if ((r = ThreadLocalRandom.getProbe()) == 0) {
1852     ThreadLocalRandom.localInit();
1853     r = ThreadLocalRandom.getProbe();
1854     }
1855     for (;;) {
1856 dl 1.345 WorkQueue q;
1857 dl 1.300 int md = mode, n;
1858     WorkQueue[] ws = workQueues;
1859     if ((md & SHUTDOWN) != 0 || ws == null || (n = ws.length) <= 0)
1860     throw new RejectedExecutionException();
1861 dl 1.345 else if ((q = ws[(n - 1) & r & SQMASK]) == null) { // add queue
1862     int qid = (r | QUIET) & ~(FIFO | OWNED);
1863     Object lock = workerNamePrefix;
1864     ForkJoinTask<?>[] qa =
1865     new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
1866     q = new WorkQueue(this, null);
1867     q.array = qa;
1868     q.id = qid;
1869     q.source = QUIET;
1870     if (lock != null) { // unless disabled, lock pool to install
1871     synchronized (lock) {
1872     WorkQueue[] vs; int i, vn;
1873     if ((vs = workQueues) != null && (vn = vs.length) > 0 &&
1874     vs[i = qid & (vn - 1) & SQMASK] == null)
1875     vs[i] = q; // else another thread already installed
1876 dl 1.300 }
1877     }
1878 dl 1.345 }
1879     else if (!q.tryLockPhase()) // move if busy
1880     r = ThreadLocalRandom.advanceProbe(r);
1881     else {
1882     if (q.lockedPush(task))
1883 dl 1.351 signalWork(null);
1884 dl 1.345 return;
1885 dl 1.90 }
1886     }
1887     }
1888    
1889 dl 1.300 /**
1890     * Pushes a possibly-external submission.
1891     */
1892     private <T> ForkJoinTask<T> externalSubmit(ForkJoinTask<T> task) {
1893     Thread t; ForkJoinWorkerThread w; WorkQueue q;
1894     if (task == null)
1895     throw new NullPointerException();
1896     if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) &&
1897     (w = (ForkJoinWorkerThread)t).pool == this &&
1898     (q = w.workQueue) != null)
1899     q.push(task);
1900     else
1901     externalPush(task);
1902     return task;
1903     }
1904    
1905     /**
1906     * Returns common pool queue for an external thread.
1907     */
1908     static WorkQueue commonSubmitterQueue() {
1909     ForkJoinPool p = common;
1910     int r = ThreadLocalRandom.getProbe();
1911     WorkQueue[] ws; int n;
1912     return (p != null && (ws = p.workQueues) != null &&
1913     (n = ws.length) > 0) ?
1914     ws[(n - 1) & r & SQMASK] : null;
1915     }
1916 dl 1.90
1917     /**
1918 dl 1.300 * Performs tryUnpush for an external submitter.
1919     */
1920     final boolean tryExternalUnpush(ForkJoinTask<?> task) {
1921     int r = ThreadLocalRandom.getProbe();
1922     WorkQueue[] ws; WorkQueue w; int n;
1923     return ((ws = workQueues) != null &&
1924     (n = ws.length) > 0 &&
1925     (w = ws[(n - 1) & r & SQMASK]) != null &&
1926 dl 1.345 w.tryLockedUnpush(task));
1927 dl 1.22 }
1928    
1929     /**
1930 dl 1.300 * Performs helpComplete for an external submitter.
1931 dl 1.78 */
1932 dl 1.300 final int externalHelpComplete(CountedCompleter<?> task, int maxTasks) {
1933     int r = ThreadLocalRandom.getProbe();
1934     WorkQueue[] ws; WorkQueue w; int n;
1935     return ((ws = workQueues) != null && (n = ws.length) > 0 &&
1936     (w = ws[(n - 1) & r & SQMASK]) != null) ?
1937 dl 1.345 w.helpCC(task, maxTasks, true) : 0;
1938 dl 1.22 }
1939    
1940     /**
1941 dl 1.300 * Tries to steal and run tasks within the target's computation.
1942     * The maxTasks argument supports external usages; internal calls
1943     * use zero, allowing unbounded steps (external calls trap
1944     * non-positive values).
1945 dl 1.78 *
1946 dl 1.300 * @param w caller
1947     * @param maxTasks if non-zero, the maximum number of other tasks to run
1948     * @return task status on exit
1949 dl 1.22 */
1950 dl 1.300 final int helpComplete(WorkQueue w, CountedCompleter<?> task,
1951     int maxTasks) {
1952 dl 1.345 return (w == null) ? 0 : w.helpCC(task, maxTasks, false);
1953 dl 1.14 }
1954    
1955     /**
1956 dl 1.105 * Returns a cheap heuristic guide for task partitioning when
1957     * programmers, frameworks, tools, or languages have little or no
1958 jsr166 1.222 * idea about task granularity. In essence, by offering this
1959 dl 1.105 * method, we ask users only about tradeoffs in overhead vs
1960     * expected throughput and its variance, rather than how finely to
1961     * partition tasks.
1962     *
1963     * In a steady state strict (tree-structured) computation, each
1964     * thread makes available for stealing enough tasks for other
1965     * threads to remain active. Inductively, if all threads play by
1966     * the same rules, each thread should make available only a
1967     * constant number of tasks.
1968     *
1969     * The minimum useful constant is just 1. But using a value of 1
1970     * would require immediate replenishment upon each steal to
1971     * maintain enough tasks, which is infeasible. Further,
1972     * partitionings/granularities of offered tasks should minimize
1973     * steal rates, which in general means that threads nearer the top
1974     * of computation tree should generate more than those nearer the
1975     * bottom. In perfect steady state, each thread is at
1976     * approximately the same level of computation tree. However,
1977     * producing extra tasks amortizes the uncertainty of progress and
1978     * diffusion assumptions.
1979     *
1980 jsr166 1.161 * So, users will want to use values larger (but not much larger)
1981 dl 1.105 * than 1 to both smooth over transient shortages and hedge
1982     * against uneven progress; as traded off against the cost of
1983     * extra task overhead. We leave the user to pick a threshold
1984     * value to compare with the results of this call to guide
1985     * decisions, but recommend values such as 3.
1986     *
1987     * When all threads are active, it is on average OK to estimate
1988     * surplus strictly locally. In steady-state, if one thread is
1989     * maintaining say 2 surplus tasks, then so are others. So we can
1990     * just use estimated queue length. However, this strategy alone
1991     * leads to serious mis-estimates in some non-steady-state
1992     * conditions (ramp-up, ramp-down, other stalls). We can detect
1993     * many of these by further considering the number of "idle"
1994     * threads, that are known to have zero queued tasks, so
1995     * compensate by a factor of (#idle/#active) threads.
1996     */
1997     static int getSurplusQueuedTaskCount() {
1998     Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
1999 dl 1.300 if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) &&
2000     (pool = (wt = (ForkJoinWorkerThread)t).pool) != null &&
2001     (q = wt.workQueue) != null) {
2002     int p = pool.mode & SMASK;
2003     int a = p + (int)(pool.ctl >> RC_SHIFT);
2004     int n = q.top - q.base;
2005 dl 1.112 return n - (a > (p >>>= 1) ? 0 :
2006     a > (p >>>= 1) ? 1 :
2007     a > (p >>>= 1) ? 2 :
2008     a > (p >>>= 1) ? 4 :
2009     8);
2010 dl 1.105 }
2011     return 0;
2012 dl 1.100 }
2013    
2014 dl 1.300 // Termination
2015 dl 1.14
2016     /**
2017 dl 1.210 * Possibly initiates and/or completes termination.
2018 dl 1.14 *
2019     * @param now if true, unconditionally terminate, else only
2020 dl 1.78 * if no work and no active workers
2021 dl 1.243 * @param enable if true, terminate when next possible
2022 dl 1.300 * @return true if terminating or terminated
2023 jsr166 1.1 */
2024 dl 1.300 private boolean tryTerminate(boolean now, boolean enable) {
2025     int md; // 3 phases: try to set SHUTDOWN, then STOP, then TERMINATED
2026 dl 1.289
2027 dl 1.300 while (((md = mode) & SHUTDOWN) == 0) {
2028 dl 1.294 if (!enable || this == common) // cannot shutdown
2029 dl 1.300 return false;
2030 dl 1.294 else
2031 dl 1.314 MODE.compareAndSet(this, md, md | SHUTDOWN);
2032 dl 1.289 }
2033    
2034 dl 1.300 while (((md = mode) & STOP) == 0) { // try to initiate termination
2035     if (!now) { // check if quiescent & empty
2036 dl 1.211 for (long oldSum = 0L;;) { // repeat until stable
2037 dl 1.300 boolean running = false;
2038 dl 1.210 long checkSum = ctl;
2039 dl 1.300 WorkQueue[] ws = workQueues;
2040     if ((md & SMASK) + (int)(checkSum >> RC_SHIFT) > 0)
2041     running = true;
2042     else if (ws != null) {
2043 dl 1.348 WorkQueue w;
2044 dl 1.289 for (int i = 0; i < ws.length; ++i) {
2045     if ((w = ws[i]) != null) {
2046 dl 1.348 int s = w.source, p = w.phase;
2047     int d = w.id, b = w.base;
2048 dl 1.300 if (b != w.top ||
2049 dl 1.348 ((d & 1) == 1 && (s >= 0 || p >= 0))) {
2050 dl 1.300 running = true;
2051 dl 1.348 break; // working, scanning, or have work
2052 dl 1.300 }
2053 dl 1.348 checkSum += (((long)s << 48) + ((long)p << 32) +
2054     ((long)b << 16) + (long)d);
2055 dl 1.289 }
2056 dl 1.206 }
2057 dl 1.203 }
2058 dl 1.300 if (((md = mode) & STOP) != 0)
2059     break; // already triggered
2060     else if (running)
2061     return false;
2062     else if (workQueues == ws && oldSum == (oldSum = checkSum))
2063 dl 1.210 break;
2064 dl 1.203 }
2065     }
2066 dl 1.300 if ((md & STOP) == 0)
2067 dl 1.314 MODE.compareAndSet(this, md, md | STOP);
2068 dl 1.200 }
2069 dl 1.210
2070 dl 1.300 while (((md = mode) & TERMINATED) == 0) { // help terminate others
2071     for (long oldSum = 0L;;) { // repeat until stable
2072     WorkQueue[] ws; WorkQueue w;
2073     long checkSum = ctl;
2074     if ((ws = workQueues) != null) {
2075     for (int i = 0; i < ws.length; ++i) {
2076     if ((w = ws[i]) != null) {
2077     ForkJoinWorkerThread wt = w.owner;
2078     w.cancelAll(); // clear queues
2079     if (wt != null) {
2080 dl 1.289 try { // unblock join or park
2081 dl 1.210 wt.interrupt();
2082     } catch (Throwable ignore) {
2083 dl 1.200 }
2084     }
2085 dl 1.348 checkSum += ((long)w.phase << 32) + w.base;
2086 dl 1.200 }
2087 dl 1.101 }
2088 dl 1.78 }
2089 dl 1.300 if (((md = mode) & TERMINATED) != 0 ||
2090     (workQueues == ws && oldSum == (oldSum = checkSum)))
2091     break;
2092 dl 1.78 }
2093 dl 1.300 if ((md & TERMINATED) != 0)
2094     break;
2095     else if ((md & SMASK) + (short)(ctl >>> TC_SHIFT) > 0)
2096 dl 1.210 break;
2097 dl 1.314 else if (MODE.compareAndSet(this, md, md | TERMINATED)) {
2098 dl 1.300 synchronized (this) {
2099     notifyAll(); // for awaitTermination
2100 dl 1.243 }
2101 dl 1.256 break;
2102 dl 1.200 }
2103 dl 1.52 }
2104 dl 1.300 return true;
2105 dl 1.105 }
2106    
2107 dl 1.52 // Exported methods
2108 jsr166 1.1
2109     // Constructors
2110    
2111     /**
2112 jsr166 1.9 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2113 dl 1.300 * java.lang.Runtime#availableProcessors}, using defaults for all
2114 dl 1.319 * other parameters (see {@link #ForkJoinPool(int,
2115     * ForkJoinWorkerThreadFactory, UncaughtExceptionHandler, boolean,
2116     * int, int, int, Predicate, long, TimeUnit)}).
2117 jsr166 1.1 *
2118     * @throws SecurityException if a security manager exists and
2119     * the caller is not permitted to modify threads
2120     * because it does not hold {@link
2121     * java.lang.RuntimePermission}{@code ("modifyThread")}
2122     */
2123     public ForkJoinPool() {
2124 jsr166 1.148 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2125 dl 1.300 defaultForkJoinWorkerThreadFactory, null, false,
2126 dl 1.307 0, MAX_CAP, 1, null, DEFAULT_KEEPALIVE, TimeUnit.MILLISECONDS);
2127 jsr166 1.1 }
2128    
2129     /**
2130 jsr166 1.9 * Creates a {@code ForkJoinPool} with the indicated parallelism
2131 dl 1.319 * level, using defaults for all other parameters (see {@link
2132     * #ForkJoinPool(int, ForkJoinWorkerThreadFactory,
2133     * UncaughtExceptionHandler, boolean, int, int, int, Predicate,
2134     * long, TimeUnit)}).
2135 jsr166 1.1 *
2136 jsr166 1.9 * @param parallelism the parallelism level
2137 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
2138 jsr166 1.11 * equal to zero, or greater than implementation limit
2139 jsr166 1.1 * @throws SecurityException if a security manager exists and
2140     * the caller is not permitted to modify threads
2141     * because it does not hold {@link
2142     * java.lang.RuntimePermission}{@code ("modifyThread")}
2143     */
2144     public ForkJoinPool(int parallelism) {
2145 dl 1.300 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false,
2146 dl 1.307 0, MAX_CAP, 1, null, DEFAULT_KEEPALIVE, TimeUnit.MILLISECONDS);
2147 jsr166 1.1 }
2148    
2149     /**
2150 dl 1.300 * Creates a {@code ForkJoinPool} with the given parameters (using
2151 dl 1.319 * defaults for others -- see {@link #ForkJoinPool(int,
2152     * ForkJoinWorkerThreadFactory, UncaughtExceptionHandler, boolean,
2153     * int, int, int, Predicate, long, TimeUnit)}).
2154 jsr166 1.1 *
2155 dl 1.18 * @param parallelism the parallelism level. For default value,
2156     * use {@link java.lang.Runtime#availableProcessors}.
2157     * @param factory the factory for creating new threads. For default value,
2158     * use {@link #defaultForkJoinWorkerThreadFactory}.
2159 dl 1.19 * @param handler the handler for internal worker threads that
2160     * terminate due to unrecoverable errors encountered while executing
2161 jsr166 1.31 * tasks. For default value, use {@code null}.
2162 dl 1.19 * @param asyncMode if true,
2163 dl 1.18 * establishes local first-in-first-out scheduling mode for forked
2164     * tasks that are never joined. This mode may be more appropriate
2165     * than default locally stack-based mode in applications in which
2166     * worker threads only process event-style asynchronous tasks.
2167 jsr166 1.31 * For default value, use {@code false}.
2168 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
2169 jsr166 1.11 * equal to zero, or greater than implementation limit
2170     * @throws NullPointerException if the factory is null
2171 jsr166 1.1 * @throws SecurityException if a security manager exists and
2172     * the caller is not permitted to modify threads
2173     * because it does not hold {@link
2174     * java.lang.RuntimePermission}{@code ("modifyThread")}
2175     */
2176 dl 1.19 public ForkJoinPool(int parallelism,
2177 dl 1.18 ForkJoinWorkerThreadFactory factory,
2178 jsr166 1.156 UncaughtExceptionHandler handler,
2179 dl 1.18 boolean asyncMode) {
2180 dl 1.300 this(parallelism, factory, handler, asyncMode,
2181 dl 1.307 0, MAX_CAP, 1, null, DEFAULT_KEEPALIVE, TimeUnit.MILLISECONDS);
2182 dl 1.152 }
2183    
2184 dl 1.300 /**
2185     * Creates a {@code ForkJoinPool} with the given parameters.
2186     *
2187     * @param parallelism the parallelism level. For default value,
2188     * use {@link java.lang.Runtime#availableProcessors}.
2189     *
2190     * @param factory the factory for creating new threads. For
2191     * default value, use {@link #defaultForkJoinWorkerThreadFactory}.
2192     *
2193     * @param handler the handler for internal worker threads that
2194     * terminate due to unrecoverable errors encountered while
2195     * executing tasks. For default value, use {@code null}.
2196     *
2197     * @param asyncMode if true, establishes local first-in-first-out
2198     * scheduling mode for forked tasks that are never joined. This
2199     * mode may be more appropriate than default locally stack-based
2200     * mode in applications in which worker threads only process
2201     * event-style asynchronous tasks. For default value, use {@code
2202     * false}.
2203     *
2204     * @param corePoolSize the number of threads to keep in the pool
2205     * (unless timed out after an elapsed keep-alive). Normally (and
2206     * by default) this is the same value as the parallelism level,
2207     * but may be set to a larger value to reduce dynamic overhead if
2208     * tasks regularly block. Using a smaller value (for example
2209     * {@code 0}) has the same effect as the default.
2210     *
2211     * @param maximumPoolSize the maximum number of threads allowed.
2212     * When the maximum is reached, attempts to replace blocked
2213     * threads fail. (However, because creation and termination of
2214     * different threads may overlap, and may be managed by the given
2215 dl 1.307 * thread factory, this value may be transiently exceeded.) To
2216     * arrange the same value as is used by default for the common
2217 dl 1.319 * pool, use {@code 256} plus the {@code parallelism} level. (By
2218     * default, the common pool allows a maximum of 256 spare
2219     * threads.) Using a value (for example {@code
2220     * Integer.MAX_VALUE}) larger than the implementation's total
2221     * thread limit has the same effect as using this limit (which is
2222     * the default).
2223 dl 1.300 *
2224     * @param minimumRunnable the minimum allowed number of core
2225     * threads not blocked by a join or {@link ManagedBlocker}. To
2226     * ensure progress, when too few unblocked threads exist and
2227     * unexecuted tasks may exist, new threads are constructed, up to
2228     * the given maximumPoolSize. For the default value, use {@code
2229     * 1}, that ensures liveness. A larger value might improve
2230     * throughput in the presence of blocked activities, but might
2231     * not, due to increased overhead. A value of zero may be
2232     * acceptable when submitted tasks cannot have dependencies
2233     * requiring additional threads.
2234     *
2235 jsr166 1.318 * @param saturate if non-null, a predicate invoked upon attempts
2236 dl 1.307 * to create more than the maximum total allowed threads. By
2237     * default, when a thread is about to block on a join or {@link
2238     * ManagedBlocker}, but cannot be replaced because the
2239     * maximumPoolSize would be exceeded, a {@link
2240     * RejectedExecutionException} is thrown. But if this predicate
2241     * returns {@code true}, then no exception is thrown, so the pool
2242     * continues to operate with fewer than the target number of
2243     * runnable threads, which might not ensure progress.
2244 dl 1.300 *
2245     * @param keepAliveTime the elapsed time since last use before
2246     * a thread is terminated (and then later replaced if needed).
2247     * For the default value, use {@code 60, TimeUnit.SECONDS}.
2248     *
2249     * @param unit the time unit for the {@code keepAliveTime} argument
2250     *
2251     * @throws IllegalArgumentException if parallelism is less than or
2252     * equal to zero, or is greater than implementation limit,
2253     * or if maximumPoolSize is less than parallelism,
2254     * of if the keepAliveTime is less than or equal to zero.
2255     * @throws NullPointerException if the factory is null
2256     * @throws SecurityException if a security manager exists and
2257     * the caller is not permitted to modify threads
2258     * because it does not hold {@link
2259     * java.lang.RuntimePermission}{@code ("modifyThread")}
2260 jsr166 1.306 * @since 9
2261 dl 1.300 */
2262     public ForkJoinPool(int parallelism,
2263     ForkJoinWorkerThreadFactory factory,
2264     UncaughtExceptionHandler handler,
2265     boolean asyncMode,
2266     int corePoolSize,
2267     int maximumPoolSize,
2268     int minimumRunnable,
2269 dl 1.307 Predicate<? super ForkJoinPool> saturate,
2270 dl 1.300 long keepAliveTime,
2271     TimeUnit unit) {
2272     // check, encode, pack parameters
2273     if (parallelism <= 0 || parallelism > MAX_CAP ||
2274     maximumPoolSize < parallelism || keepAliveTime <= 0L)
2275 dl 1.152 throw new IllegalArgumentException();
2276 dl 1.14 if (factory == null)
2277     throw new NullPointerException();
2278 dl 1.300 long ms = Math.max(unit.toMillis(keepAliveTime), TIMEOUT_SLOP);
2279    
2280     int corep = Math.min(Math.max(corePoolSize, parallelism), MAX_CAP);
2281     long c = ((((long)(-corep) << TC_SHIFT) & TC_MASK) |
2282     (((long)(-parallelism) << RC_SHIFT) & RC_MASK));
2283 dl 1.307 int m = parallelism | (asyncMode ? FIFO : 0);
2284 dl 1.300 int maxSpares = Math.min(maximumPoolSize, MAX_CAP) - parallelism;
2285     int minAvail = Math.min(Math.max(minimumRunnable, 0), MAX_CAP);
2286     int b = ((minAvail - parallelism) & SMASK) | (maxSpares << SWIDTH);
2287     int n = (parallelism > 1) ? parallelism - 1 : 1; // at least 2 slots
2288     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
2289     n = (n + 1) << 1; // power of two, including space for submission queues
2290    
2291 jsr166 1.328 this.workerNamePrefix = "ForkJoinPool-" + nextPoolId() + "-worker-";
2292 dl 1.300 this.workQueues = new WorkQueue[n];
2293     this.factory = factory;
2294     this.ueh = handler;
2295 dl 1.307 this.saturate = saturate;
2296 dl 1.300 this.keepAlive = ms;
2297     this.bounds = b;
2298     this.mode = m;
2299     this.ctl = c;
2300     checkPermission();
2301 dl 1.152 }
2302    
2303 jsr166 1.334 private static Object newInstanceFromSystemProperty(String property)
2304 jsr166 1.327 throws ReflectiveOperationException {
2305     String className = System.getProperty(property);
2306     return (className == null)
2307     ? null
2308     : ClassLoader.getSystemClassLoader().loadClass(className)
2309     .getConstructor().newInstance();
2310     }
2311    
2312 dl 1.152 /**
2313 dl 1.300 * Constructor for common pool using parameters possibly
2314     * overridden by system properties
2315     */
2316     private ForkJoinPool(byte forCommonPoolOnly) {
2317     int parallelism = -1;
2318     ForkJoinWorkerThreadFactory fac = null;
2319     UncaughtExceptionHandler handler = null;
2320     try { // ignore exceptions in accessing/parsing properties
2321     String pp = System.getProperty
2322     ("java.util.concurrent.ForkJoinPool.common.parallelism");
2323     if (pp != null)
2324     parallelism = Integer.parseInt(pp);
2325 jsr166 1.327 fac = (ForkJoinWorkerThreadFactory) newInstanceFromSystemProperty(
2326     "java.util.concurrent.ForkJoinPool.common.threadFactory");
2327     handler = (UncaughtExceptionHandler) newInstanceFromSystemProperty(
2328     "java.util.concurrent.ForkJoinPool.common.exceptionHandler");
2329 dl 1.300 } catch (Exception ignore) {
2330     }
2331    
2332     if (fac == null) {
2333     if (System.getSecurityManager() == null)
2334     fac = defaultForkJoinWorkerThreadFactory;
2335     else // use security-managed default
2336     fac = new InnocuousForkJoinWorkerThreadFactory();
2337     }
2338     if (parallelism < 0 && // default 1 less than #cores
2339     (parallelism = Runtime.getRuntime().availableProcessors() - 1) <= 0)
2340     parallelism = 1;
2341     if (parallelism > MAX_CAP)
2342     parallelism = MAX_CAP;
2343    
2344     long c = ((((long)(-parallelism) << TC_SHIFT) & TC_MASK) |
2345     (((long)(-parallelism) << RC_SHIFT) & RC_MASK));
2346     int b = ((1 - parallelism) & SMASK) | (COMMON_MAX_SPARES << SWIDTH);
2347     int n = (parallelism > 1) ? parallelism - 1 : 1;
2348     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
2349     n = (n + 1) << 1;
2350    
2351 jsr166 1.328 this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2352 dl 1.300 this.workQueues = new WorkQueue[n];
2353     this.factory = fac;
2354 dl 1.18 this.ueh = handler;
2355 dl 1.307 this.saturate = null;
2356 dl 1.300 this.keepAlive = DEFAULT_KEEPALIVE;
2357     this.bounds = b;
2358 dl 1.310 this.mode = parallelism;
2359 dl 1.300 this.ctl = c;
2360 dl 1.101 }
2361    
2362     /**
2363 dl 1.128 * Returns the common pool instance. This pool is statically
2364 dl 1.134 * constructed; its run state is unaffected by attempts to {@link
2365     * #shutdown} or {@link #shutdownNow}. However this pool and any
2366     * ongoing processing are automatically terminated upon program
2367     * {@link System#exit}. Any program that relies on asynchronous
2368     * task processing to complete before program termination should
2369 jsr166 1.158 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2370     * before exit.
2371 dl 1.100 *
2372     * @return the common pool instance
2373 jsr166 1.138 * @since 1.8
2374 dl 1.100 */
2375     public static ForkJoinPool commonPool() {
2376 dl 1.134 // assert common != null : "static init error";
2377     return common;
2378 dl 1.100 }
2379    
2380 jsr166 1.1 // Execution methods
2381    
2382     /**
2383     * Performs the given task, returning its result upon completion.
2384 dl 1.52 * If the computation encounters an unchecked Exception or Error,
2385     * it is rethrown as the outcome of this invocation. Rethrown
2386     * exceptions behave in the same way as regular exceptions, but,
2387     * when possible, contain stack traces (as displayed for example
2388     * using {@code ex.printStackTrace()}) of both the current thread
2389     * as well as the thread actually encountering the exception;
2390     * minimally only the latter.
2391 jsr166 1.1 *
2392     * @param task the task
2393 jsr166 1.191 * @param <T> the type of the task's result
2394 jsr166 1.1 * @return the task's result
2395 jsr166 1.11 * @throws NullPointerException if the task is null
2396     * @throws RejectedExecutionException if the task cannot be
2397     * scheduled for execution
2398 jsr166 1.1 */
2399     public <T> T invoke(ForkJoinTask<T> task) {
2400 dl 1.90 if (task == null)
2401     throw new NullPointerException();
2402 dl 1.243 externalSubmit(task);
2403 dl 1.78 return task.join();
2404 jsr166 1.1 }
2405    
2406     /**
2407     * Arranges for (asynchronous) execution of the given task.
2408     *
2409     * @param task the task
2410 jsr166 1.11 * @throws NullPointerException if the task is null
2411     * @throws RejectedExecutionException if the task cannot be
2412     * scheduled for execution
2413 jsr166 1.1 */
2414 jsr166 1.8 public void execute(ForkJoinTask<?> task) {
2415 dl 1.243 externalSubmit(task);
2416 jsr166 1.1 }
2417    
2418     // AbstractExecutorService methods
2419    
2420 jsr166 1.11 /**
2421     * @throws NullPointerException if the task is null
2422     * @throws RejectedExecutionException if the task cannot be
2423     * scheduled for execution
2424     */
2425 jsr166 1.1 public void execute(Runnable task) {
2426 dl 1.41 if (task == null)
2427     throw new NullPointerException();
2428 jsr166 1.2 ForkJoinTask<?> job;
2429 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2430     job = (ForkJoinTask<?>) task;
2431 jsr166 1.2 else
2432 dl 1.152 job = new ForkJoinTask.RunnableExecuteAction(task);
2433 dl 1.243 externalSubmit(job);
2434 jsr166 1.1 }
2435    
2436 jsr166 1.11 /**
2437 dl 1.18 * Submits a ForkJoinTask for execution.
2438     *
2439     * @param task the task to submit
2440 jsr166 1.191 * @param <T> the type of the task's result
2441 dl 1.18 * @return the task
2442     * @throws NullPointerException if the task is null
2443     * @throws RejectedExecutionException if the task cannot be
2444     * scheduled for execution
2445     */
2446     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2447 dl 1.243 return externalSubmit(task);
2448 dl 1.18 }
2449    
2450     /**
2451 jsr166 1.11 * @throws NullPointerException if the task is null
2452     * @throws RejectedExecutionException if the task cannot be
2453     * scheduled for execution
2454     */
2455 jsr166 1.1 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2456 dl 1.243 return externalSubmit(new ForkJoinTask.AdaptedCallable<T>(task));
2457 jsr166 1.1 }
2458    
2459 jsr166 1.11 /**
2460     * @throws NullPointerException if the task is null
2461     * @throws RejectedExecutionException if the task cannot be
2462     * scheduled for execution
2463     */
2464 jsr166 1.1 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2465 dl 1.243 return externalSubmit(new ForkJoinTask.AdaptedRunnable<T>(task, result));
2466 jsr166 1.1 }
2467    
2468 jsr166 1.11 /**
2469     * @throws NullPointerException if the task is null
2470     * @throws RejectedExecutionException if the task cannot be
2471     * scheduled for execution
2472     */
2473 jsr166 1.335 @SuppressWarnings("unchecked")
2474 jsr166 1.1 public ForkJoinTask<?> submit(Runnable task) {
2475 dl 1.41 if (task == null)
2476     throw new NullPointerException();
2477 jsr166 1.335 return externalSubmit((task instanceof ForkJoinTask<?>)
2478     ? (ForkJoinTask<Void>) task // avoid re-wrap
2479     : new ForkJoinTask.AdaptedRunnableAction(task));
2480 jsr166 1.1 }
2481    
2482     /**
2483 jsr166 1.11 * @throws NullPointerException {@inheritDoc}
2484     * @throws RejectedExecutionException {@inheritDoc}
2485     */
2486 jsr166 1.1 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2487 dl 1.86 // In previous versions of this class, this method constructed
2488     // a task to run ForkJoinTask.invokeAll, but now external
2489     // invocation of multiple tasks is at least as efficient.
2490 jsr166 1.199 ArrayList<Future<T>> futures = new ArrayList<>(tasks.size());
2491 jsr166 1.1
2492 dl 1.86 try {
2493     for (Callable<T> t : tasks) {
2494 dl 1.90 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2495 jsr166 1.144 futures.add(f);
2496 dl 1.243 externalSubmit(f);
2497 dl 1.86 }
2498 jsr166 1.143 for (int i = 0, size = futures.size(); i < size; i++)
2499     ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2500 dl 1.86 return futures;
2501 jsr166 1.226 } catch (Throwable t) {
2502     for (int i = 0, size = futures.size(); i < size; i++)
2503     futures.get(i).cancel(false);
2504     throw t;
2505 jsr166 1.1 }
2506     }
2507    
2508     /**
2509     * Returns the factory used for constructing new workers.
2510     *
2511     * @return the factory used for constructing new workers
2512     */
2513     public ForkJoinWorkerThreadFactory getFactory() {
2514     return factory;
2515     }
2516    
2517     /**
2518     * Returns the handler for internal worker threads that terminate
2519     * due to unrecoverable errors encountered while executing tasks.
2520     *
2521 jsr166 1.4 * @return the handler, or {@code null} if none
2522 jsr166 1.1 */
2523 jsr166 1.156 public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2524 dl 1.14 return ueh;
2525 jsr166 1.1 }
2526    
2527     /**
2528 jsr166 1.9 * Returns the targeted parallelism level of this pool.
2529 jsr166 1.1 *
2530 jsr166 1.9 * @return the targeted parallelism level of this pool
2531 jsr166 1.1 */
2532     public int getParallelism() {
2533 dl 1.310 int par = mode & SMASK;
2534     return (par > 0) ? par : 1;
2535 jsr166 1.1 }
2536    
2537     /**
2538 dl 1.100 * Returns the targeted parallelism level of the common pool.
2539     *
2540     * @return the targeted parallelism level of the common pool
2541 jsr166 1.138 * @since 1.8
2542 dl 1.100 */
2543     public static int getCommonPoolParallelism() {
2544 jsr166 1.274 return COMMON_PARALLELISM;
2545 dl 1.100 }
2546    
2547     /**
2548 jsr166 1.1 * Returns the number of worker threads that have started but not
2549 jsr166 1.34 * yet terminated. The result returned by this method may differ
2550 jsr166 1.4 * from {@link #getParallelism} when threads are created to
2551 jsr166 1.1 * maintain parallelism when others are cooperatively blocked.
2552     *
2553     * @return the number of worker threads
2554     */
2555     public int getPoolSize() {
2556 dl 1.300 return ((mode & SMASK) + (short)(ctl >>> TC_SHIFT));
2557 jsr166 1.1 }
2558    
2559     /**
2560 jsr166 1.4 * Returns {@code true} if this pool uses local first-in-first-out
2561 jsr166 1.1 * scheduling mode for forked tasks that are never joined.
2562     *
2563 jsr166 1.4 * @return {@code true} if this pool uses async mode
2564 jsr166 1.1 */
2565     public boolean getAsyncMode() {
2566 dl 1.300 return (mode & FIFO) != 0;
2567 jsr166 1.1 }
2568    
2569     /**
2570     * Returns an estimate of the number of worker threads that are
2571     * not blocked waiting to join tasks or for other managed
2572 dl 1.14 * synchronization. This method may overestimate the
2573     * number of running threads.
2574 jsr166 1.1 *
2575     * @return the number of worker threads
2576     */
2577     public int getRunningThreadCount() {
2578 dl 1.345 WorkQueue[] ws; WorkQueue w;
2579     VarHandle.acquireFence();
2580 jsr166 1.344 int rc = 0;
2581 dl 1.78 if ((ws = workQueues) != null) {
2582 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2583     if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2584 dl 1.78 ++rc;
2585     }
2586     }
2587     return rc;
2588 jsr166 1.1 }
2589    
2590     /**
2591     * Returns an estimate of the number of threads that are currently
2592     * stealing or executing tasks. This method may overestimate the
2593     * number of active threads.
2594     *
2595     * @return the number of active threads
2596     */
2597     public int getActiveThreadCount() {
2598 dl 1.300 int r = (mode & SMASK) + (int)(ctl >> RC_SHIFT);
2599 jsr166 1.63 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2600 jsr166 1.1 }
2601    
2602     /**
2603 jsr166 1.4 * Returns {@code true} if all worker threads are currently idle.
2604     * An idle worker is one that cannot obtain a task to execute
2605     * because none are available to steal from other threads, and
2606     * there are no pending submissions to the pool. This method is
2607     * conservative; it might not return {@code true} immediately upon
2608     * idleness of all threads, but will eventually become true if
2609     * threads remain inactive.
2610 jsr166 1.1 *
2611 jsr166 1.4 * @return {@code true} if all threads are currently idle
2612 jsr166 1.1 */
2613     public boolean isQuiescent() {
2614 dl 1.300 for (;;) {
2615     long c = ctl;
2616     int md = mode, pc = md & SMASK;
2617 dl 1.310 int tc = pc + (short)(c >>> TC_SHIFT);
2618 dl 1.300 int rc = pc + (int)(c >> RC_SHIFT);
2619     if ((md & (STOP | TERMINATED)) != 0)
2620     return true;
2621     else if (rc > 0)
2622     return false;
2623     else {
2624     WorkQueue[] ws; WorkQueue v;
2625     if ((ws = workQueues) != null) {
2626     for (int i = 1; i < ws.length; i += 2) {
2627     if ((v = ws[i]) != null) {
2628 dl 1.345 if (v.source > 0)
2629 dl 1.300 return false;
2630     --tc;
2631     }
2632     }
2633     }
2634     if (tc == 0 && ctl == c)
2635     return true;
2636     }
2637     }
2638 jsr166 1.1 }
2639    
2640     /**
2641     * Returns an estimate of the total number of tasks stolen from
2642     * one thread's work queue by another. The reported value
2643     * underestimates the actual total number of steals when the pool
2644     * is not quiescent. This value may be useful for monitoring and
2645     * tuning fork/join programs: in general, steal counts should be
2646     * high enough to keep threads busy, but low enough to avoid
2647     * overhead and contention across threads.
2648     *
2649     * @return the number of steals
2650     */
2651     public long getStealCount() {
2652 dl 1.300 long count = stealCount;
2653 dl 1.78 WorkQueue[] ws; WorkQueue w;
2654     if ((ws = workQueues) != null) {
2655 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2656 dl 1.78 if ((w = ws[i]) != null)
2657 dl 1.300 count += (long)w.nsteals & 0xffffffffL;
2658 dl 1.78 }
2659     }
2660     return count;
2661 jsr166 1.1 }
2662    
2663     /**
2664     * Returns an estimate of the total number of tasks currently held
2665     * in queues by worker threads (but not including tasks submitted
2666     * to the pool that have not begun executing). This value is only
2667     * an approximation, obtained by iterating across all threads in
2668     * the pool. This method may be useful for tuning task
2669     * granularities.
2670     *
2671     * @return the number of queued tasks
2672     */
2673     public long getQueuedTaskCount() {
2674 dl 1.78 WorkQueue[] ws; WorkQueue w;
2675 dl 1.345 VarHandle.acquireFence();
2676     int count = 0;
2677 dl 1.78 if ((ws = workQueues) != null) {
2678 dl 1.86 for (int i = 1; i < ws.length; i += 2) {
2679 dl 1.78 if ((w = ws[i]) != null)
2680     count += w.queueSize();
2681     }
2682 dl 1.52 }
2683 jsr166 1.1 return count;
2684     }
2685    
2686     /**
2687 jsr166 1.8 * Returns an estimate of the number of tasks submitted to this
2688 dl 1.55 * pool that have not yet begun executing. This method may take
2689 dl 1.52 * time proportional to the number of submissions.
2690 jsr166 1.1 *
2691     * @return the number of queued submissions
2692     */
2693     public int getQueuedSubmissionCount() {
2694 dl 1.345 WorkQueue[] ws; WorkQueue w;
2695     VarHandle.acquireFence();
2696 jsr166 1.344 int count = 0;
2697 dl 1.78 if ((ws = workQueues) != null) {
2698 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2699 dl 1.78 if ((w = ws[i]) != null)
2700     count += w.queueSize();
2701     }
2702     }
2703     return count;
2704 jsr166 1.1 }
2705    
2706     /**
2707 jsr166 1.4 * Returns {@code true} if there are any tasks submitted to this
2708     * pool that have not yet begun executing.
2709 jsr166 1.1 *
2710     * @return {@code true} if there are any queued submissions
2711     */
2712     public boolean hasQueuedSubmissions() {
2713 dl 1.78 WorkQueue[] ws; WorkQueue w;
2714 dl 1.345 VarHandle.acquireFence();
2715 dl 1.78 if ((ws = workQueues) != null) {
2716 dl 1.86 for (int i = 0; i < ws.length; i += 2) {
2717 dl 1.115 if ((w = ws[i]) != null && !w.isEmpty())
2718 dl 1.78 return true;
2719     }
2720     }
2721     return false;
2722 jsr166 1.1 }
2723    
2724     /**
2725     * Removes and returns the next unexecuted submission if one is
2726     * available. This method may be useful in extensions to this
2727     * class that re-assign work in systems with multiple pools.
2728     *
2729 jsr166 1.4 * @return the next submission, or {@code null} if none
2730 jsr166 1.1 */
2731     protected ForkJoinTask<?> pollSubmission() {
2732 dl 1.300 return pollScan(true);
2733 jsr166 1.1 }
2734    
2735     /**
2736     * Removes all available unexecuted submitted and forked tasks
2737     * from scheduling queues and adds them to the given collection,
2738     * without altering their execution status. These may include
2739 jsr166 1.8 * artificially generated or wrapped tasks. This method is
2740     * designed to be invoked only when the pool is known to be
2741 jsr166 1.1 * quiescent. Invocations at other times may not remove all
2742     * tasks. A failure encountered while attempting to add elements
2743     * to collection {@code c} may result in elements being in
2744     * neither, either or both collections when the associated
2745     * exception is thrown. The behavior of this operation is
2746     * undefined if the specified collection is modified while the
2747     * operation is in progress.
2748     *
2749     * @param c the collection to transfer elements into
2750     * @return the number of elements transferred
2751     */
2752 jsr166 1.5 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2753 dl 1.345 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2754     VarHandle.acquireFence();
2755 jsr166 1.344 int count = 0;
2756 dl 1.78 if ((ws = workQueues) != null) {
2757 dl 1.86 for (int i = 0; i < ws.length; ++i) {
2758 dl 1.78 if ((w = ws[i]) != null) {
2759     while ((t = w.poll()) != null) {
2760     c.add(t);
2761     ++count;
2762     }
2763     }
2764 dl 1.52 }
2765     }
2766 dl 1.18 return count;
2767     }
2768    
2769     /**
2770 jsr166 1.1 * Returns a string identifying this pool, as well as its state,
2771     * including indications of run state, parallelism level, and
2772     * worker and task counts.
2773     *
2774     * @return a string identifying this pool, as well as its state
2775     */
2776     public String toString() {
2777 dl 1.86 // Use a single pass through workQueues to collect counts
2778 dl 1.345 int md = mode; // read volatile fields first
2779     long c = ctl;
2780     long st = stealCount;
2781 jsr166 1.344 long qt = 0L, qs = 0L; int rc = 0;
2782 dl 1.86 WorkQueue[] ws; WorkQueue w;
2783     if ((ws = workQueues) != null) {
2784     for (int i = 0; i < ws.length; ++i) {
2785     if ((w = ws[i]) != null) {
2786     int size = w.queueSize();
2787     if ((i & 1) == 0)
2788     qs += size;
2789     else {
2790     qt += size;
2791 dl 1.300 st += (long)w.nsteals & 0xffffffffL;
2792 dl 1.86 if (w.isApparentlyUnblocked())
2793     ++rc;
2794     }
2795     }
2796     }
2797     }
2798 dl 1.300
2799     int pc = (md & SMASK);
2800 dl 1.52 int tc = pc + (short)(c >>> TC_SHIFT);
2801 dl 1.300 int ac = pc + (int)(c >> RC_SHIFT);
2802 dl 1.78 if (ac < 0) // ignore transient negative
2803     ac = 0;
2804 dl 1.300 String level = ((md & TERMINATED) != 0 ? "Terminated" :
2805     (md & STOP) != 0 ? "Terminating" :
2806     (md & SHUTDOWN) != 0 ? "Shutting down" :
2807 dl 1.200 "Running");
2808 jsr166 1.1 return super.toString() +
2809 dl 1.52 "[" + level +
2810 dl 1.14 ", parallelism = " + pc +
2811     ", size = " + tc +
2812     ", active = " + ac +
2813     ", running = " + rc +
2814 jsr166 1.1 ", steals = " + st +
2815     ", tasks = " + qt +
2816     ", submissions = " + qs +
2817     "]";
2818     }
2819    
2820     /**
2821 dl 1.100 * Possibly initiates an orderly shutdown in which previously
2822     * submitted tasks are executed, but no new tasks will be
2823     * accepted. Invocation has no effect on execution state if this
2824 jsr166 1.137 * is the {@link #commonPool()}, and no additional effect if
2825 dl 1.100 * already shut down. Tasks that are in the process of being
2826     * submitted concurrently during the course of this method may or
2827     * may not be rejected.
2828 jsr166 1.1 *
2829     * @throws SecurityException if a security manager exists and
2830     * the caller is not permitted to modify threads
2831     * because it does not hold {@link
2832     * java.lang.RuntimePermission}{@code ("modifyThread")}
2833     */
2834     public void shutdown() {
2835     checkPermission();
2836 dl 1.105 tryTerminate(false, true);
2837 jsr166 1.1 }
2838    
2839     /**
2840 dl 1.100 * Possibly attempts to cancel and/or stop all tasks, and reject
2841     * all subsequently submitted tasks. Invocation has no effect on
2842 jsr166 1.137 * execution state if this is the {@link #commonPool()}, and no
2843 dl 1.100 * additional effect if already shut down. Otherwise, tasks that
2844     * are in the process of being submitted or executed concurrently
2845     * during the course of this method may or may not be
2846     * rejected. This method cancels both existing and unexecuted
2847     * tasks, in order to permit termination in the presence of task
2848     * dependencies. So the method always returns an empty list
2849     * (unlike the case for some other Executors).
2850 jsr166 1.1 *
2851     * @return an empty list
2852     * @throws SecurityException if a security manager exists and
2853     * the caller is not permitted to modify threads
2854     * because it does not hold {@link
2855     * java.lang.RuntimePermission}{@code ("modifyThread")}
2856     */
2857     public List<Runnable> shutdownNow() {
2858     checkPermission();
2859 dl 1.105 tryTerminate(true, true);
2860 jsr166 1.1 return Collections.emptyList();
2861     }
2862    
2863     /**
2864     * Returns {@code true} if all tasks have completed following shut down.
2865     *
2866     * @return {@code true} if all tasks have completed following shut down
2867     */
2868     public boolean isTerminated() {
2869 dl 1.300 return (mode & TERMINATED) != 0;
2870 jsr166 1.1 }
2871    
2872     /**
2873     * Returns {@code true} if the process of termination has
2874 jsr166 1.9 * commenced but not yet completed. This method may be useful for
2875     * debugging. A return of {@code true} reported a sufficient
2876     * period after shutdown may indicate that submitted tasks have
2877 jsr166 1.119 * ignored or suppressed interruption, or are waiting for I/O,
2878 dl 1.49 * causing this executor not to properly terminate. (See the
2879     * advisory notes for class {@link ForkJoinTask} stating that
2880     * tasks should not normally entail blocking operations. But if
2881     * they do, they must abort them on interrupt.)
2882 jsr166 1.1 *
2883 jsr166 1.9 * @return {@code true} if terminating but not yet terminated
2884 jsr166 1.1 */
2885     public boolean isTerminating() {
2886 dl 1.300 int md = mode;
2887     return (md & STOP) != 0 && (md & TERMINATED) == 0;
2888 jsr166 1.1 }
2889    
2890     /**
2891     * Returns {@code true} if this pool has been shut down.
2892     *
2893     * @return {@code true} if this pool has been shut down
2894     */
2895     public boolean isShutdown() {
2896 dl 1.300 return (mode & SHUTDOWN) != 0;
2897 jsr166 1.9 }
2898    
2899     /**
2900 dl 1.105 * Blocks until all tasks have completed execution after a
2901     * shutdown request, or the timeout occurs, or the current thread
2902 dl 1.134 * is interrupted, whichever happens first. Because the {@link
2903     * #commonPool()} never terminates until program shutdown, when
2904     * applied to the common pool, this method is equivalent to {@link
2905 jsr166 1.158 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
2906 jsr166 1.1 *
2907     * @param timeout the maximum time to wait
2908     * @param unit the time unit of the timeout argument
2909     * @return {@code true} if this executor terminated and
2910     * {@code false} if the timeout elapsed before termination
2911     * @throws InterruptedException if interrupted while waiting
2912     */
2913     public boolean awaitTermination(long timeout, TimeUnit unit)
2914     throws InterruptedException {
2915 dl 1.134 if (Thread.interrupted())
2916     throw new InterruptedException();
2917     if (this == common) {
2918     awaitQuiescence(timeout, unit);
2919     return false;
2920     }
2921 dl 1.52 long nanos = unit.toNanos(timeout);
2922 dl 1.101 if (isTerminated())
2923     return true;
2924 dl 1.183 if (nanos <= 0L)
2925     return false;
2926     long deadline = System.nanoTime() + nanos;
2927 jsr166 1.103 synchronized (this) {
2928 jsr166 1.184 for (;;) {
2929 dl 1.183 if (isTerminated())
2930     return true;
2931     if (nanos <= 0L)
2932     return false;
2933     long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
2934     wait(millis > 0L ? millis : 1L);
2935     nanos = deadline - System.nanoTime();
2936 dl 1.52 }
2937 dl 1.18 }
2938 jsr166 1.1 }
2939    
2940     /**
2941 dl 1.134 * If called by a ForkJoinTask operating in this pool, equivalent
2942     * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
2943     * waits and/or attempts to assist performing tasks until this
2944     * pool {@link #isQuiescent} or the indicated timeout elapses.
2945     *
2946     * @param timeout the maximum time to wait
2947     * @param unit the time unit of the timeout argument
2948     * @return {@code true} if quiescent; {@code false} if the
2949     * timeout elapsed.
2950     */
2951     public boolean awaitQuiescence(long timeout, TimeUnit unit) {
2952     long nanos = unit.toNanos(timeout);
2953     ForkJoinWorkerThread wt;
2954     Thread thread = Thread.currentThread();
2955     if ((thread instanceof ForkJoinWorkerThread) &&
2956     (wt = (ForkJoinWorkerThread)thread).pool == this) {
2957     helpQuiescePool(wt.workQueue);
2958     return true;
2959     }
2960 dl 1.300 else {
2961     for (long startTime = System.nanoTime();;) {
2962     ForkJoinTask<?> t;
2963     if ((t = pollScan(false)) != null)
2964     t.doExec();
2965     else if (isQuiescent())
2966     return true;
2967     else if ((System.nanoTime() - startTime) > nanos)
2968 dl 1.134 return false;
2969 dl 1.300 else
2970     Thread.yield(); // cannot block
2971 dl 1.134 }
2972     }
2973     }
2974    
2975     /**
2976     * Waits and/or attempts to assist performing tasks indefinitely
2977 jsr166 1.141 * until the {@link #commonPool()} {@link #isQuiescent}.
2978 dl 1.134 */
2979 dl 1.136 static void quiesceCommonPool() {
2980 dl 1.134 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
2981     }
2982    
2983     /**
2984 jsr166 1.1 * Interface for extending managed parallelism for tasks running
2985 jsr166 1.8 * in {@link ForkJoinPool}s.
2986     *
2987 dl 1.19 * <p>A {@code ManagedBlocker} provides two methods. Method
2988 jsr166 1.218 * {@link #isReleasable} must return {@code true} if blocking is
2989     * not necessary. Method {@link #block} blocks the current thread
2990 dl 1.19 * if necessary (perhaps internally invoking {@code isReleasable}
2991 dl 1.54 * before actually blocking). These actions are performed by any
2992 jsr166 1.157 * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
2993     * The unusual methods in this API accommodate synchronizers that
2994     * may, but don't usually, block for long periods. Similarly, they
2995 dl 1.54 * allow more efficient internal handling of cases in which
2996     * additional workers may be, but usually are not, needed to
2997     * ensure sufficient parallelism. Toward this end,
2998     * implementations of method {@code isReleasable} must be amenable
2999     * to repeated invocation.
3000 jsr166 1.1 *
3001     * <p>For example, here is a ManagedBlocker based on a
3002     * ReentrantLock:
3003 jsr166 1.239 * <pre> {@code
3004 jsr166 1.1 * class ManagedLocker implements ManagedBlocker {
3005     * final ReentrantLock lock;
3006     * boolean hasLock = false;
3007     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3008     * public boolean block() {
3009     * if (!hasLock)
3010     * lock.lock();
3011     * return true;
3012     * }
3013     * public boolean isReleasable() {
3014     * return hasLock || (hasLock = lock.tryLock());
3015     * }
3016     * }}</pre>
3017 dl 1.19 *
3018     * <p>Here is a class that possibly blocks waiting for an
3019     * item on a given queue:
3020 jsr166 1.239 * <pre> {@code
3021 dl 1.19 * class QueueTaker<E> implements ManagedBlocker {
3022     * final BlockingQueue<E> queue;
3023     * volatile E item = null;
3024     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3025     * public boolean block() throws InterruptedException {
3026     * if (item == null)
3027 dl 1.23 * item = queue.take();
3028 dl 1.19 * return true;
3029     * }
3030     * public boolean isReleasable() {
3031 dl 1.23 * return item != null || (item = queue.poll()) != null;
3032 dl 1.19 * }
3033     * public E getItem() { // call after pool.managedBlock completes
3034     * return item;
3035     * }
3036     * }}</pre>
3037 jsr166 1.1 */
3038     public static interface ManagedBlocker {
3039     /**
3040     * Possibly blocks the current thread, for example waiting for
3041     * a lock or condition.
3042     *
3043 jsr166 1.4 * @return {@code true} if no additional blocking is necessary
3044     * (i.e., if isReleasable would return true)
3045 jsr166 1.1 * @throws InterruptedException if interrupted while waiting
3046     * (the method is not required to do so, but is allowed to)
3047     */
3048     boolean block() throws InterruptedException;
3049    
3050     /**
3051 jsr166 1.4 * Returns {@code true} if blocking is unnecessary.
3052 jsr166 1.154 * @return {@code true} if blocking is unnecessary
3053 jsr166 1.1 */
3054     boolean isReleasable();
3055     }
3056    
3057     /**
3058 jsr166 1.217 * Runs the given possibly blocking task. When {@linkplain
3059     * ForkJoinTask#inForkJoinPool() running in a ForkJoinPool}, this
3060     * method possibly arranges for a spare thread to be activated if
3061     * necessary to ensure sufficient parallelism while the current
3062     * thread is blocked in {@link ManagedBlocker#block blocker.block()}.
3063 jsr166 1.1 *
3064 jsr166 1.217 * <p>This method repeatedly calls {@code blocker.isReleasable()} and
3065     * {@code blocker.block()} until either method returns {@code true}.
3066     * Every call to {@code blocker.block()} is preceded by a call to
3067     * {@code blocker.isReleasable()} that returned {@code false}.
3068     *
3069     * <p>If not running in a ForkJoinPool, this method is
3070 jsr166 1.8 * behaviorally equivalent to
3071 jsr166 1.239 * <pre> {@code
3072 jsr166 1.1 * while (!blocker.isReleasable())
3073     * if (blocker.block())
3074 jsr166 1.217 * break;}</pre>
3075 jsr166 1.8 *
3076 jsr166 1.217 * If running in a ForkJoinPool, the pool may first be expanded to
3077     * ensure sufficient parallelism available during the call to
3078     * {@code blocker.block()}.
3079 jsr166 1.1 *
3080 jsr166 1.217 * @param blocker the blocker task
3081     * @throws InterruptedException if {@code blocker.block()} did so
3082 jsr166 1.1 */
3083 dl 1.18 public static void managedBlock(ManagedBlocker blocker)
3084 jsr166 1.1 throws InterruptedException {
3085 dl 1.345 if (blocker == null) throw new NullPointerException();
3086 dl 1.200 ForkJoinPool p;
3087     ForkJoinWorkerThread wt;
3088 dl 1.300 WorkQueue w;
3089 jsr166 1.1 Thread t = Thread.currentThread();
3090 dl 1.200 if ((t instanceof ForkJoinWorkerThread) &&
3091 dl 1.300 (p = (wt = (ForkJoinWorkerThread)t).pool) != null &&
3092     (w = wt.workQueue) != null) {
3093     int block;
3094 dl 1.172 while (!blocker.isReleasable()) {
3095 dl 1.300 if ((block = p.tryCompensate(w)) != 0) {
3096 dl 1.105 try {
3097     do {} while (!blocker.isReleasable() &&
3098     !blocker.block());
3099     } finally {
3100 dl 1.314 CTL.getAndAdd(p, (block > 0) ? RC_UNIT : 0L);
3101 dl 1.105 }
3102     break;
3103 dl 1.78 }
3104     }
3105 dl 1.18 }
3106 dl 1.105 else {
3107     do {} while (!blocker.isReleasable() &&
3108     !blocker.block());
3109     }
3110 jsr166 1.1 }
3111    
3112 dl 1.310 /**
3113     * If the given executor is a ForkJoinPool, poll and execute
3114     * AsynchronousCompletionTasks from worker's queue until none are
3115     * available or blocker is released.
3116     */
3117     static void helpAsyncBlocker(Executor e, ManagedBlocker blocker) {
3118 dl 1.345 if (e instanceof ForkJoinPool) {
3119 dl 1.310 WorkQueue w; ForkJoinWorkerThread wt; WorkQueue[] ws; int r, n;
3120     ForkJoinPool p = (ForkJoinPool)e;
3121     Thread thread = Thread.currentThread();
3122     if (thread instanceof ForkJoinWorkerThread &&
3123     (wt = (ForkJoinWorkerThread)thread).pool == p)
3124     w = wt.workQueue;
3125     else if ((r = ThreadLocalRandom.getProbe()) != 0 &&
3126     (ws = p.workQueues) != null && (n = ws.length) > 0)
3127     w = ws[(n - 1) & r & SQMASK];
3128     else
3129     w = null;
3130 dl 1.345 if (w != null)
3131     w.helpAsyncBlocker(blocker);
3132 dl 1.310 }
3133     }
3134    
3135 jsr166 1.7 // AbstractExecutorService overrides. These rely on undocumented
3136     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3137     // implement RunnableFuture.
3138 jsr166 1.1
3139     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3140 dl 1.90 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3141 jsr166 1.1 }
3142    
3143     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3144 dl 1.90 return new ForkJoinTask.AdaptedCallable<T>(callable);
3145 jsr166 1.1 }
3146    
3147 dl 1.314 // VarHandle mechanics
3148     private static final VarHandle CTL;
3149     private static final VarHandle MODE;
3150 dl 1.345 static final VarHandle QA;
3151 dl 1.52
3152     static {
3153 jsr166 1.3 try {
3154 dl 1.314 MethodHandles.Lookup l = MethodHandles.lookup();
3155     CTL = l.findVarHandle(ForkJoinPool.class, "ctl", long.class);
3156     MODE = l.findVarHandle(ForkJoinPool.class, "mode", int.class);
3157     QA = MethodHandles.arrayElementVarHandle(ForkJoinTask[].class);
3158 jsr166 1.231 } catch (ReflectiveOperationException e) {
3159 jsr166 1.347 throw new ExceptionInInitializerError(e);
3160 dl 1.52 }
3161 dl 1.105
3162 dl 1.243 // Reduce the risk of rare disastrous classloading in first call to
3163     // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
3164     Class<?> ensureLoaded = LockSupport.class;
3165    
3166 jsr166 1.273 int commonMaxSpares = DEFAULT_COMMON_MAX_SPARES;
3167     try {
3168     String p = System.getProperty
3169     ("java.util.concurrent.ForkJoinPool.common.maximumSpares");
3170     if (p != null)
3171     commonMaxSpares = Integer.parseInt(p);
3172     } catch (Exception ignore) {}
3173     COMMON_MAX_SPARES = commonMaxSpares;
3174    
3175 dl 1.152 defaultForkJoinWorkerThreadFactory =
3176 dl 1.112 new DefaultForkJoinWorkerThreadFactory();
3177 dl 1.115 modifyThreadPermission = new RuntimePermission("modifyThread");
3178    
3179 jsr166 1.329 common = AccessController.doPrivileged(new PrivilegedAction<>() {
3180     public ForkJoinPool run() {
3181     return new ForkJoinPool((byte)0); }});
3182 jsr166 1.275
3183 dl 1.310 COMMON_PARALLELISM = Math.max(common.mode & SMASK, 1);
3184 jsr166 1.3 }
3185 dl 1.52
3186 dl 1.197 /**
3187 jsr166 1.279 * Factory for innocuous worker threads.
3188 dl 1.197 */
3189 jsr166 1.278 private static final class InnocuousForkJoinWorkerThreadFactory
3190 dl 1.197 implements ForkJoinWorkerThreadFactory {
3191    
3192     /**
3193     * An ACC to restrict permissions for the factory itself.
3194     * The constructed workers have no permissions set.
3195     */
3196 jsr166 1.331 private static final AccessControlContext ACC = contextWithPermissions(
3197     modifyThreadPermission,
3198     new RuntimePermission("enableContextClassLoaderOverride"),
3199     new RuntimePermission("modifyThreadGroup"),
3200 jsr166 1.332 new RuntimePermission("getClassLoader"),
3201 jsr166 1.331 new RuntimePermission("setContextClassLoader"));
3202 dl 1.197
3203     public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
3204 jsr166 1.331 return AccessController.doPrivileged(
3205     new PrivilegedAction<>() {
3206     public ForkJoinWorkerThread run() {
3207     return new ForkJoinWorkerThread.
3208     InnocuousForkJoinWorkerThread(pool); }},
3209     ACC);
3210 dl 1.197 }
3211     }
3212 jsr166 1.1 }