ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.399
Committed: Sat Feb 20 14:01:18 2021 UTC (3 years, 3 months ago) by dl
Branch: MAIN
Changes since 1.398: +14 -4 lines
Log Message:
Document changes

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.58 * http://creativecommons.org/publicdomain/zero/1.0/
5 jsr166 1.1 */
6 jsr166 1.301
7 jsr166 1.1 package java.util.concurrent;
8    
9 jsr166 1.156 import java.lang.Thread.UncaughtExceptionHandler;
10 dl 1.314 import java.lang.invoke.MethodHandles;
11     import java.lang.invoke.VarHandle;
12 jsr166 1.329 import java.security.AccessController;
13 jsr166 1.228 import java.security.AccessControlContext;
14 jsr166 1.331 import java.security.Permission;
15 jsr166 1.228 import java.security.Permissions;
16 jsr166 1.329 import java.security.PrivilegedAction;
17 jsr166 1.228 import java.security.ProtectionDomain;
18 jsr166 1.1 import java.util.ArrayList;
19     import java.util.Collection;
20     import java.util.Collections;
21     import java.util.List;
22 dl 1.307 import java.util.function.Predicate;
23 dl 1.367 import java.util.concurrent.atomic.AtomicInteger;
24 dl 1.243 import java.util.concurrent.locks.LockSupport;
25 dl 1.355 import java.util.concurrent.locks.ReentrantLock;
26     import java.util.concurrent.locks.Condition;
27 jsr166 1.1
28     /**
29 jsr166 1.4 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
30 jsr166 1.8 * A {@code ForkJoinPool} provides the entry point for submissions
31 dl 1.18 * from non-{@code ForkJoinTask} clients, as well as management and
32 jsr166 1.11 * monitoring operations.
33 jsr166 1.1 *
34 jsr166 1.9 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
35     * ExecutorService} mainly by virtue of employing
36     * <em>work-stealing</em>: all threads in the pool attempt to find and
37 dl 1.78 * execute tasks submitted to the pool and/or created by other active
38     * tasks (eventually blocking waiting for work if none exist). This
39     * enables efficient processing when most tasks spawn other subtasks
40     * (as do most {@code ForkJoinTask}s), as well as when many small
41     * tasks are submitted to the pool from external clients. Especially
42     * when setting <em>asyncMode</em> to true in constructors, {@code
43     * ForkJoinPool}s may also be appropriate for use with event-style
44 dl 1.330 * tasks that are never joined. All worker threads are initialized
45     * with {@link Thread#isDaemon} set {@code true}.
46 jsr166 1.1 *
47 dl 1.112 * <p>A static {@link #commonPool()} is available and appropriate for
48 dl 1.101 * most applications. The common pool is used by any ForkJoinTask that
49     * is not explicitly submitted to a specified pool. Using the common
50     * pool normally reduces resource usage (its threads are slowly
51     * reclaimed during periods of non-use, and reinstated upon subsequent
52 dl 1.105 * use).
53 dl 1.100 *
54     * <p>For applications that require separate or custom pools, a {@code
55     * ForkJoinPool} may be constructed with a given target parallelism
56 jsr166 1.214 * level; by default, equal to the number of available processors.
57     * The pool attempts to maintain enough active (or available) threads
58     * by dynamically adding, suspending, or resuming internal worker
59 jsr166 1.187 * threads, even if some tasks are stalled waiting to join others.
60     * However, no such adjustments are guaranteed in the face of blocked
61     * I/O or other unmanaged synchronization. The nested {@link
62 dl 1.100 * ManagedBlocker} interface enables extension of the kinds of
63 dl 1.300 * synchronization accommodated. The default policies may be
64     * overridden using a constructor with parameters corresponding to
65     * those documented in class {@link ThreadPoolExecutor}.
66 jsr166 1.1 *
67     * <p>In addition to execution and lifecycle control methods, this
68     * class provides status check methods (for example
69 jsr166 1.4 * {@link #getStealCount}) that are intended to aid in developing,
70 jsr166 1.1 * tuning, and monitoring fork/join applications. Also, method
71 jsr166 1.4 * {@link #toString} returns indications of pool state in a
72 jsr166 1.1 * convenient form for informal monitoring.
73     *
74 jsr166 1.109 * <p>As is the case with other ExecutorServices, there are three
75 jsr166 1.84 * main task execution methods summarized in the following table.
76     * These are designed to be used primarily by clients not already
77     * engaged in fork/join computations in the current pool. The main
78     * forms of these methods accept instances of {@code ForkJoinTask},
79     * but overloaded forms also allow mixed execution of plain {@code
80     * Runnable}- or {@code Callable}- based activities as well. However,
81     * tasks that are already executing in a pool should normally instead
82     * use the within-computation forms listed in the table unless using
83     * async event-style tasks that are not usually joined, in which case
84     * there is little difference among choice of methods.
85 dl 1.18 *
86 jsr166 1.337 * <table class="plain">
87 jsr166 1.159 * <caption>Summary of task execution methods</caption>
88 dl 1.18 * <tr>
89     * <td></td>
90 jsr166 1.338 * <th scope="col"> Call from non-fork/join clients</th>
91     * <th scope="col"> Call from within fork/join computations</th>
92 dl 1.18 * </tr>
93     * <tr>
94 jsr166 1.338 * <th scope="row" style="text-align:left"> Arrange async execution</th>
95 dl 1.18 * <td> {@link #execute(ForkJoinTask)}</td>
96     * <td> {@link ForkJoinTask#fork}</td>
97     * </tr>
98     * <tr>
99 jsr166 1.338 * <th scope="row" style="text-align:left"> Await and obtain result</th>
100 dl 1.18 * <td> {@link #invoke(ForkJoinTask)}</td>
101     * <td> {@link ForkJoinTask#invoke}</td>
102     * </tr>
103     * <tr>
104 jsr166 1.338 * <th scope="row" style="text-align:left"> Arrange exec and obtain Future</th>
105 dl 1.18 * <td> {@link #submit(ForkJoinTask)}</td>
106     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
107     * </tr>
108     * </table>
109 dl 1.19 *
110 jsr166 1.333 * <p>The parameters used to construct the common pool may be controlled by
111     * setting the following {@linkplain System#getProperty system properties}:
112 jsr166 1.162 * <ul>
113 jsr166 1.350 * <li>{@systemProperty java.util.concurrent.ForkJoinPool.common.parallelism}
114 jsr166 1.162 * - the parallelism level, a non-negative integer
115 jsr166 1.350 * <li>{@systemProperty java.util.concurrent.ForkJoinPool.common.threadFactory}
116 jsr166 1.331 * - the class name of a {@link ForkJoinWorkerThreadFactory}.
117     * The {@linkplain ClassLoader#getSystemClassLoader() system class loader}
118     * is used to load this class.
119 jsr166 1.350 * <li>{@systemProperty java.util.concurrent.ForkJoinPool.common.exceptionHandler}
120 jsr166 1.331 * - the class name of a {@link UncaughtExceptionHandler}.
121     * The {@linkplain ClassLoader#getSystemClassLoader() system class loader}
122     * is used to load this class.
123 jsr166 1.350 * <li>{@systemProperty java.util.concurrent.ForkJoinPool.common.maximumSpares}
124 dl 1.223 * - the maximum number of allowed extra threads to maintain target
125 dl 1.208 * parallelism (default 256).
126 jsr166 1.162 * </ul>
127 jsr166 1.333 * If no thread factory is supplied via a system property, then the
128     * common pool uses a factory that uses the system class loader as the
129 jsr166 1.331 * {@linkplain Thread#getContextClassLoader() thread context class loader}.
130 jsr166 1.333 * In addition, if a {@link SecurityManager} is present, then
131     * the common pool uses a factory supplying threads that have no
132     * {@link Permissions} enabled.
133 jsr166 1.331 *
134 jsr166 1.156 * Upon any error in establishing these settings, default parameters
135 dl 1.160 * are used. It is possible to disable or limit the use of threads in
136     * the common pool by setting the parallelism property to zero, and/or
137 dl 1.193 * using a factory that may return {@code null}. However doing so may
138     * cause unjoined tasks to never be executed.
139 dl 1.105 *
140 dl 1.387 * <p><b>Implementation notes:</b> This implementation restricts the
141 jsr166 1.1 * maximum number of running threads to 32767. Attempts to create
142 jsr166 1.11 * pools with greater than the maximum number result in
143 jsr166 1.8 * {@code IllegalArgumentException}.
144 jsr166 1.1 *
145 jsr166 1.11 * <p>This implementation rejects submitted tasks (that is, by throwing
146 dl 1.19 * {@link RejectedExecutionException}) only when the pool is shut down
147 dl 1.20 * or internal resources have been exhausted.
148 jsr166 1.11 *
149 jsr166 1.1 * @since 1.7
150     * @author Doug Lea
151     */
152     public class ForkJoinPool extends AbstractExecutorService {
153    
154     /*
155 dl 1.14 * Implementation Overview
156     *
157 dl 1.78 * This class and its nested classes provide the main
158     * functionality and control for a set of worker threads:
159 jsr166 1.84 * Submissions from non-FJ threads enter into submission queues.
160     * Workers take these tasks and typically split them into subtasks
161 dl 1.345 * that may be stolen by other workers. Work-stealing based on
162     * randomized scans generally leads to better throughput than
163     * "work dealing" in which producers assign tasks to idle threads,
164     * in part because threads that have finished other tasks before
165     * the signalled thread wakes up (which can be a long time) can
166     * take the task instead. Preference rules give first priority to
167     * processing tasks from their own queues (LIFO or FIFO, depending
168     * on mode), then to randomized FIFO steals of tasks in other
169     * queues. This framework began as vehicle for supporting
170     * tree-structured parallelism using work-stealing. Over time,
171     * its scalability advantages led to extensions and changes to
172     * better support more diverse usage contexts. Because most
173     * internal methods and nested classes are interrelated, their
174     * main rationale and descriptions are presented here; individual
175     * methods and nested classes contain only brief comments about
176     * details.
177 dl 1.78 *
178 jsr166 1.84 * WorkQueues
179 dl 1.78 * ==========
180     *
181     * Most operations occur within work-stealing queues (in nested
182     * class WorkQueue). These are special forms of Deques that
183     * support only three of the four possible end-operations -- push,
184     * pop, and poll (aka steal), under the further constraints that
185     * push and pop are called only from the owning thread (or, as
186     * extended here, under a lock), while poll may be called from
187     * other threads. (If you are unfamiliar with them, you probably
188     * want to read Herlihy and Shavit's book "The Art of
189     * Multiprocessor programming", chapter 16 describing these in
190     * more detail before proceeding.) The main work-stealing queue
191     * design is roughly similar to those in the papers "Dynamic
192     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
193     * (http://research.sun.com/scalable/pubs/index.html) and
194     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
195     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
196 dl 1.200 * The main differences ultimately stem from GC requirements that
197     * we null out taken slots as soon as we can, to maintain as small
198     * a footprint as possible even in programs generating huge
199     * numbers of tasks. To accomplish this, we shift the CAS
200     * arbitrating pop vs poll (steal) from being on the indices
201     * ("base" and "top") to the slots themselves.
202     *
203 dl 1.243 * Adding tasks then takes the form of a classic array push(task)
204     * in a circular buffer:
205     * q.array[q.top++ % length] = task;
206 dl 1.200 *
207 dl 1.355 * The actual code needs to null-check and size-check the array,
208 jsr166 1.247 * uses masking, not mod, for indexing a power-of-two-sized array,
209 dl 1.355 * enforces memory ordering, supports resizing, and possibly
210     * signals waiting workers to start scanning -- see below.
211     *
212     * The pop operation (always performed by owner) is of the form:
213     * if ((task = getAndSet(q.array, (q.top-1) % length, null)) != null)
214     * decrement top and return task;
215     * If this fails, the queue is empty.
216     *
217     * The poll operation by another stealer thread is, basically:
218     * if (CAS nonnull task at q.array[q.base % length] to null)
219     * increment base and return task;
220     *
221     * This may fail due to contention, and may be retried.
222     * Implementations must ensure a consistent snapshot of the base
223     * index and the task (by looping or trying elsewhere) before
224     * trying CAS. There isn't actually a method of this form,
225     * because failure due to inconsistency or contention is handled
226     * in different ways in different contexts, normally by first
227     * trying other queues. (For the most straightforward example, see
228     * method pollScan.) There are further variants for cases
229     * requiring inspection of elements before extracting them, so
230     * must interleave these with variants of this code. Also, a more
231     * efficient version (nextLocalTask) is used for polls by owners.
232     * It avoids some overhead because the queue cannot be growing
233     * during call.
234 dl 1.243 *
235     * Memory ordering. See "Correct and Efficient Work-Stealing for
236     * Weak Memory Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
237     * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
238     * analysis of memory ordering requirements in work-stealing
239 dl 1.355 * algorithms similar to the one used here. Inserting and
240     * extracting tasks in array slots via volatile or atomic accesses
241     * or explicit fences provides primary synchronization.
242     *
243     * Operations on deque elements require reads and writes of both
244     * indices and slots. When possible, we allow these to occur in
245     * any order. Because the base and top indices (along with other
246     * pool or array fields accessed in many methods) only imprecisely
247     * guide where to extract from, we let accesses other than the
248     * element getAndSet/CAS/setVolatile appear in any order, using
249     * plain mode. But we must still preface some methods (mainly
250     * those that may be accessed externally) with an acquireFence to
251 dl 1.364 * avoid unbounded staleness. This is equivalent to acting as if
252     * callers use an acquiring read of the reference to the pool or
253     * queue when invoking the method, even when they do not. We use
254     * explicit acquiring reads (getSlot) rather than plain array
255     * access when acquire mode is required but not otherwise ensured
256     * by context. To reduce stalls by other stealers, we encourage
257     * timely writes to the base index by immediately following
258     * updates with a write of a volatile field that must be updated
259     * anyway, or an Opaque-mode write if there is no such
260     * opportunity.
261 dl 1.345 *
262     * Because indices and slot contents cannot always be consistent,
263 dl 1.355 * the emptiness check base == top is only quiescently accurate
264     * (and so used where this suffices). Otherwise, it may err on the
265     * side of possibly making the queue appear nonempty when a push,
266     * pop, or poll have not fully committed, or making it appear
267     * empty when an update of top or base has not yet been seen.
268 dl 1.371 * Similarly, the check in push for the queue array being full may
269     * trigger when not completely full, causing a resize earlier than
270     * required.
271 dl 1.355 *
272     * Mainly because of these potential inconsistencies among slots
273     * vs indices, the poll operation, considered individually, is not
274     * wait-free. One thief cannot successfully continue until another
275     * in-progress one (or, if previously empty, a push) visibly
276     * completes. This can stall threads when required to consume
277     * from a given queue (which may spin). However, in the
278     * aggregate, we ensure probabilistic non-blockingness at least
279 jsr166 1.359 * until checking quiescence (which is intrinsically blocking):
280 dl 1.355 * If an attempted steal fails, a scanning thief chooses a
281     * different victim target to try next. So, in order for one thief
282     * to progress, it suffices for any in-progress poll or new push
283     * on any empty queue to complete. The worst cases occur when many
284     * threads are looking for tasks being produced by a stalled
285     * producer.
286 dl 1.200 *
287     * This approach also enables support of a user mode in which
288     * local task processing is in FIFO, not LIFO order, simply by
289     * using poll rather than pop. This can be useful in
290 dl 1.355 * message-passing frameworks in which tasks are never joined,
291 jsr166 1.359 * although with increased contention among task producers and
292 dl 1.355 * consumers.
293 dl 1.78 *
294     * WorkQueues are also used in a similar way for tasks submitted
295     * to the pool. We cannot mix these tasks in the same queues used
296 dl 1.200 * by workers. Instead, we randomly associate submission queues
297 dl 1.83 * with submitting threads, using a form of hashing. The
298 dl 1.139 * ThreadLocalRandom probe value serves as a hash code for
299     * choosing existing queues, and may be randomly repositioned upon
300     * contention with other submitters. In essence, submitters act
301     * like workers except that they are restricted to executing local
302 dl 1.355 * tasks that they submitted (or when known, subtasks thereof).
303     * Insertion of tasks in shared mode requires a lock. We use only
304     * a simple spinlock (using field "source"), because submitters
305     * encountering a busy queue move to a different position to use
306     * or create other queues. They block only when registering new
307     * queues.
308 dl 1.78 *
309 jsr166 1.84 * Management
310 dl 1.78 * ==========
311 dl 1.52 *
312     * The main throughput advantages of work-stealing stem from
313     * decentralized control -- workers mostly take tasks from
314 dl 1.200 * themselves or each other, at rates that can exceed a billion
315 dl 1.355 * per second. Most non-atomic control is performed by some form
316     * of scanning across or within queues. The pool itself creates,
317     * activates (enables scanning for and running tasks),
318     * deactivates, blocks, and terminates threads, all with minimal
319     * central information. There are only a few properties that we
320     * can globally track or maintain, so we pack them into a small
321     * number of variables, often maintaining atomicity without
322     * blocking or locking. Nearly all essentially atomic control
323     * state is held in a few volatile variables that are by far most
324     * often read (not written) as status and consistency checks. We
325     * pack as much information into them as we can.
326 dl 1.78 *
327 dl 1.200 * Field "ctl" contains 64 bits holding information needed to
328 dl 1.300 * atomically decide to add, enqueue (on an event queue), and
329 dl 1.345 * dequeue and release workers. To enable this packing, we
330     * restrict maximum parallelism to (1<<15)-1 (which is far in
331     * excess of normal operating range) to allow ids, counts, and
332     * their negations (used for thresholding) to fit into 16bit
333 dl 1.215 * subfields.
334     *
335 dl 1.300 * Field "mode" holds configuration parameters as well as lifetime
336     * status, atomically and monotonically setting SHUTDOWN, STOP,
337 dl 1.355 * and finally TERMINATED bits. It is updated only via bitwise
338     * atomics (getAndBitwiseOr).
339 dl 1.258 *
340 dl 1.355 * Array "queues" holds references to WorkQueues. It is updated
341     * (only during worker creation and termination) under the
342     * registrationLock, but is otherwise concurrently readable, and
343     * accessed directly (although always prefaced by acquireFences or
344     * other acquiring reads). To simplify index-based operations, the
345     * array size is always a power of two, and all readers must
346     * tolerate null slots. Worker queues are at odd indices. Worker
347     * ids masked with SMASK match their index. Shared (submission)
348     * queues are at even indices. Grouping them together in this way
349     * simplifies and speeds up task scanning.
350 dl 1.86 *
351     * All worker thread creation is on-demand, triggered by task
352     * submissions, replacement of terminated workers, and/or
353 dl 1.78 * compensation for blocked workers. However, all other support
354     * code is set up to work with other policies. To ensure that we
355 dl 1.355 * do not hold on to worker or task references that would prevent
356     * GC, all accesses to workQueues are via indices into the
357     * queues array (which is one source of some of the messy code
358     * constructions here). In essence, the queues array serves as
359 dl 1.200 * a weak reference mechanism. Thus for example the stack top
360     * subfield of ctl stores indices, not references.
361     *
362     * Queuing Idle Workers. Unlike HPC work-stealing frameworks, we
363     * cannot let workers spin indefinitely scanning for tasks when
364     * none can be found immediately, and we cannot start/resume
365     * workers unless there appear to be tasks available. On the
366     * other hand, we must quickly prod them into action when new
367 dl 1.355 * tasks are submitted or generated. These latencies are mainly a
368     * function of JVM park/unpark (and underlying OS) performance,
369     * which can be slow and variable. In many usages, ramp-up time
370 dl 1.300 * is the main limiting factor in overall performance, which is
371     * compounded at program start-up by JIT compilation and
372 dl 1.355 * allocation. On the other hand, throughput degrades when too
373     * many threads poll for too few tasks.
374 dl 1.300 *
375 dl 1.355 * The "ctl" field atomically maintains total and "released"
376     * worker counts, plus the head of the available worker queue
377     * (actually stack, represented by the lower 32bit subfield of
378     * ctl). Released workers are those known to be scanning for
379 dl 1.300 * and/or running tasks. Unreleased ("available") workers are
380     * recorded in the ctl stack. These workers are made available for
381 dl 1.355 * signalling by enqueuing in ctl (see method awaitWork). The
382 dl 1.300 * "queue" is a form of Treiber stack. This is ideal for
383     * activating threads in most-recently used order, and improves
384 dl 1.200 * performance and locality, outweighing the disadvantages of
385     * being prone to contention and inability to release a worker
386 dl 1.355 * unless it is topmost on stack. The top stack state holds the
387 dl 1.300 * value of the "phase" field of the worker: its index and status,
388     * plus a version counter that, in addition to the count subfields
389     * (also serving as version stamps) provide protection against
390     * Treiber stack ABA effects.
391 dl 1.200 *
392 dl 1.300 * Creating workers. To create a worker, we pre-increment counts
393     * (serving as a reservation), and attempt to construct a
394 dl 1.355 * ForkJoinWorkerThread via its factory. On starting, the new
395     * thread first invokes registerWorker, where it constructs a
396     * WorkQueue and is assigned an index in the queues array
397     * (expanding the array if necessary). Upon any exception across
398     * these steps, or null return from factory, deregisterWorker
399     * adjusts counts and records accordingly. If a null return, the
400     * pool continues running with fewer than the target number
401     * workers. If exceptional, the exception is propagated, generally
402     * to some external caller.
403 dl 1.243 *
404 dl 1.300 * WorkQueue field "phase" is used by both workers and the pool to
405     * manage and track whether a worker is UNSIGNALLED (possibly
406     * blocked waiting for a signal). When a worker is enqueued its
407 dl 1.355 * phase field is set negative. Note that phase field updates lag
408     * queue CAS releases; seeing a negative phase does not guarantee
409     * that the worker is available. When queued, the lower 16 bits of
410     * its phase must hold its pool index. So we place the index there
411     * upon initialization and never modify these bits.
412 dl 1.243 *
413     * The ctl field also serves as the basis for memory
414     * synchronization surrounding activation. This uses a more
415     * efficient version of a Dekker-like rule that task producers and
416     * consumers sync with each other by both writing/CASing ctl (even
417 dl 1.355 * if to its current value). However, rather than CASing ctl to
418     * its current value in the common case where no action is
419     * required, we reduce write contention by ensuring that
420     * signalWork invocations are prefaced with a full-volatile memory
421     * access (which is usually needed anyway).
422     *
423     * Signalling. Signals (in signalWork) cause new or reactivated
424     * workers to scan for tasks. Method signalWork and its callers
425     * try to approximate the unattainable goal of having the right
426     * number of workers activated for the tasks at hand, but must err
427     * on the side of too many workers vs too few to avoid stalls. If
428     * computations are purely tree structured, it suffices for every
429     * worker to activate another when it pushes a task into an empty
430     * queue, resulting in O(log(#threads)) steps to full activation.
431     * If instead, tasks come in serially from only a single producer,
432     * each worker taking its first (since the last quiescence) task
433     * from a queue should signal another if there are more tasks in
434     * that queue. This is equivalent to, but generally faster than,
435     * arranging the stealer take two tasks, re-pushing one on its own
436     * queue, and signalling (because its queue is empty), also
437     * resulting in logarithmic full activation time. Because we don't
438     * know about usage patterns (or most commonly, mixtures), we use
439     * both approaches. We approximate the second rule by arranging
440     * that workers in scan() do not repeat signals when repeatedly
441     * taking tasks from any given queue, by remembering the previous
442     * one. There are narrow windows in which both rules may apply,
443     * leading to duplicate or unnecessary signals. Despite such
444     * limitations, these rules usually avoid slowdowns that otherwise
445     * occur when too many workers contend to take too few tasks, or
446     * when producers waste most of their time resignalling. However,
447     * contention and overhead effects may still occur during ramp-up,
448 dl 1.346 * ramp-down, and small computations involving only a few workers.
449 dl 1.243 *
450 dl 1.355 * Scanning. Method scan performs top-level scanning for (and
451     * execution of) tasks. Scans by different workers and/or at
452     * different times are unlikely to poll queues in the same
453     * order. Each scan traverses and tries to poll from each queue in
454     * a pseudorandom permutation order by starting at a random index,
455     * and using a constant cyclically exhaustive stride; restarting
456     * upon contention. (Non-top-level scans; for example in
457     * helpJoin, use simpler linear probes because they do not
458     * systematically contend with top-level scans.) The pseudorandom
459     * generator need not have high-quality statistical properties in
460     * the long term. We use Marsaglia XorShifts, seeded with the Weyl
461     * sequence from ThreadLocalRandom probes, which are cheap and
462     * suffice. Scans do not otherwise explicitly take into account
463     * core affinities, loads, cache localities, etc, However, they do
464 dl 1.345 * exploit temporal locality (which usually approximates these) by
465     * preferring to re-poll from the same queue after a successful
466 dl 1.355 * poll before trying others (see method topLevelExec). This
467     * reduces fairness, which is partially counteracted by using a
468     * one-shot form of poll (tryPoll) that may lose to other workers.
469     *
470     * Deactivation. Method scan returns a sentinel when no tasks are
471     * found, leading to deactivation (see awaitWork). The count
472     * fields in ctl allow accurate discovery of quiescent states
473     * (i.e., when all workers are idle) after deactivation. However,
474     * this may also race with new (external) submissions, so a
475     * recheck is also needed to determine quiescence. Upon apparently
476     * triggering quiescence, awaitWork re-scans and self-signals if
477     * it may have missed a signal. In other cases, a missed signal
478     * may transiently lower parallelism because deactivation does not
479     * necessarily mean that there is no more work, only that that
480     * there were no tasks not taken by other workers. But more
481     * signals are generated (see above) to eventually reactivate if
482     * needed.
483 dl 1.52 *
484     * Trimming workers. To release resources after periods of lack of
485     * use, a worker starting to wait when the pool is quiescent will
486 dl 1.355 * time out and terminate if the pool has remained quiescent for
487     * period given by field keepAlive.
488 dl 1.52 *
489 dl 1.210 * Shutdown and Termination. A call to shutdownNow invokes
490 dl 1.355 * tryTerminate to atomically set a mode bit. The calling thread,
491     * as well as every other worker thereafter terminating, helps
492     * terminate others by cancelling their unprocessed tasks, and
493     * waking them up. Calls to non-abrupt shutdown() preface this by
494     * checking isQuiescent before triggering the "STOP" phase of
495 dl 1.399 * termination. To conform to ExecutorService invoke, invokeAll,
496     * and invokeAny specs, we must track pool status while waiting,
497     * and interrupt interruptable callers on termination (see
498     * ForkJoinTask.joinForPoolInvoke etc).
499 dl 1.211 *
500 jsr166 1.84 * Joining Tasks
501     * =============
502 dl 1.78 *
503 dl 1.355 * Normally, the first option when joining a task that is not done
504     * is to try to unfork it from local queue and run it. Otherwise,
505     * any of several actions may be taken when one worker is waiting
506 jsr166 1.84 * to join a task stolen (or always held) by another. Because we
507 dl 1.78 * are multiplexing many tasks on to a pool of workers, we can't
508 dl 1.300 * always just let them block (as in Thread.join). We also cannot
509     * just reassign the joiner's run-time stack with another and
510     * replace it later, which would be a form of "continuation", that
511     * even if possible is not necessarily a good idea since we may
512     * need both an unblocked task and its continuation to progress.
513     * Instead we combine two tactics:
514 dl 1.19 *
515     * Helping: Arranging for the joiner to execute some task that it
516 dl 1.355 * could be running if the steal had not occurred.
517 dl 1.19 *
518     * Compensating: Unless there are already enough live threads,
519 dl 1.78 * method tryCompensate() may create or re-activate a spare
520     * thread to compensate for blocked joiners until they unblock.
521     *
522 dl 1.355 * A third form (implemented via tryRemove) amounts to helping a
523     * hypothetical compensator: If we can readily tell that a
524     * possible action of a compensator is to steal and execute the
525 dl 1.105 * task being joined, the joining thread can do so directly,
526 dl 1.355 * without the need for a compensation thread; although with a
527     * (rare) possibility of reduced parallelism because of a
528     * transient gap in the queue array.
529     *
530     * Other intermediate forms available for specific task types (for
531     * example helpAsyncBlocker) often avoid or postpone the need for
532     * blocking or compensation.
533 dl 1.52 *
534     * The ManagedBlocker extension API can't use helping so relies
535     * only on compensation in method awaitBlocker.
536 dl 1.19 *
537 dl 1.355 * The algorithm in helpJoin entails a form of "linear helping".
538     * Each worker records (in field "source") the id of the queue
539     * from which it last stole a task. The scan in method helpJoin
540     * uses these markers to try to find a worker to help (i.e., steal
541     * back a task from and execute it) that could hasten completion
542     * of the actively joined task. Thus, the joiner executes a task
543     * that would be on its own local deque if the to-be-joined task
544     * had not been stolen. This is a conservative variant of the
545     * approach described in Wagner & Calder "Leapfrogging: a portable
546 dl 1.300 * technique for implementing efficient futures" SIGPLAN Notices,
547     * 1993 (http://portal.acm.org/citation.cfm?id=155354). It differs
548     * mainly in that we only record queue ids, not full dependency
549 dl 1.355 * links. This requires a linear scan of the queues array to
550 dl 1.300 * locate stealers, but isolates cost to when it is needed, rather
551 dl 1.355 * than adding to per-task overhead. Also, searches are limited to
552     * direct and at most two levels of indirect stealers, after which
553     * there are rapidly diminishing returns on increased overhead.
554     * Searches can fail to locate stealers when stalls delay
555     * recording sources. Further, even when accurately identified,
556     * stealers might not ever produce a task that the joiner can in
557     * turn help with. So, compensation is tried upon failure to find
558     * tasks to run.
559     *
560     * Joining CountedCompleters (see helpComplete) differs from (and
561     * is generally more efficient than) other cases because task
562     * eligibility is determined by checking completion chains rather
563     * than tracking stealers.
564 dl 1.105 *
565 dl 1.366 * Joining under timeouts (ForkJoinTask timed get) uses a
566     * constrained mixture of helping and compensating in part because
567     * pools (actually, only the common pool) may not have any
568     * available threads: If the pool is saturated (all available
569     * workers are busy), the caller tries to remove and otherwise
570     * help; else it blocks under compensation so that it may time out
571     * independently of any tasks.
572     *
573 dl 1.300 * Compensation does not by default aim to keep exactly the target
574 dl 1.200 * parallelism number of unblocked threads running at any given
575     * time. Some previous versions of this class employed immediate
576     * compensations for any blocked join. However, in practice, the
577     * vast majority of blockages are transient byproducts of GC and
578 dl 1.345 * other JVM or OS activities that are made worse by replacement
579     * when they cause longer-term oversubscription. Rather than
580     * impose arbitrary policies, we allow users to override the
581     * default of only adding threads upon apparent starvation. The
582     * compensation mechanism may also be bounded. Bounds for the
583     * commonPool (see COMMON_MAX_SPARES) better enable JVMs to cope
584     * with programming errors and abuse before running out of
585     * resources to do so.
586 jsr166 1.301 *
587 dl 1.105 * Common Pool
588     * ===========
589     *
590 jsr166 1.175 * The static common pool always exists after static
591 dl 1.105 * initialization. Since it (or any other created pool) need
592     * never be used, we minimize initial construction overhead and
593 dl 1.300 * footprint to the setup of about a dozen fields.
594 dl 1.105 *
595     * When external threads submit to the common pool, they can
596 dl 1.355 * perform subtask processing (see helpComplete and related
597     * methods) upon joins. This caller-helps policy makes it
598 dl 1.200 * sensible to set common pool parallelism level to one (or more)
599     * less than the total number of available cores, or even zero for
600     * pure caller-runs. We do not need to record whether external
601     * submissions are to the common pool -- if not, external help
602     * methods return quickly. These submitters would otherwise be
603     * blocked waiting for completion, so the extra effort (with
604     * liberally sprinkled task status checks) in inapplicable cases
605     * amounts to an odd form of limited spin-wait before blocking in
606     * ForkJoinTask.join.
607 dl 1.105 *
608 dl 1.399 * Guarantees for common pool parallelism zero are limited to
609     * tasks that are joined by their callers in a tree-structured
610     * fashion or use CountedCompleters (as is true for jdk
611     * parallelStreams). Support infiltrates several methods,
612     * including those that retry helping steps until we are sure that
613     * none apply if there are no workers.
614     *
615 dl 1.197 * As a more appropriate default in managed environments, unless
616     * overridden by system properties, we use workers of subclass
617     * InnocuousForkJoinWorkerThread when there is a SecurityManager
618     * present. These workers have no permissions set, do not belong
619     * to any user-defined ThreadGroup, and erase all ThreadLocals
620 dl 1.355 * after executing any top-level task. The associated mechanics
621 dl 1.364 * may be JVM-dependent and must access particular Thread class
622     * fields to achieve this effect.
623 jsr166 1.198 *
624 dl 1.372 * Interrupt handling
625     * ==================
626     *
627     * The framework is designed to manage task cancellation
628     * (ForkJoinTask.cancel) independently from the interrupt status
629     * of threads running tasks. (See the public ForkJoinTask
630     * documentation for rationale.) Interrupts are issued only in
631     * tryTerminate, when workers should be terminating and tasks
632     * should be cancelled anyway. Interrupts are cleared only when
633     * necessary to ensure that calls to LockSupport.park do not loop
634     * indefinitely (park returns immediately if the current thread is
635     * interrupted). If so, interruption is reinstated after blocking
636     * if status could be visible during the scope of any task. For
637     * cases in which task bodies are specified or desired to
638     * interrupt upon cancellation, ForkJoinTask.cancel can be
639     * overridden to do so (as is done for invoke{Any,All}).
640     *
641 dl 1.345 * Memory placement
642     * ================
643     *
644     * Performance can be very sensitive to placement of instances of
645     * ForkJoinPool and WorkQueues and their queue arrays. To reduce
646 dl 1.355 * false-sharing impact, the @Contended annotation isolates the
647     * ForkJoinPool.ctl field as well as the most heavily written
648 jsr166 1.357 * WorkQueue fields. These mainly reduce cache traffic by scanners.
649 dl 1.355 * WorkQueue arrays are presized large enough to avoid resizing
650     * (which transiently reduces throughput) in most tree-like
651     * computations, although not in some streaming usages. Initial
652     * sizes are not large enough to avoid secondary contention
653     * effects (especially for GC cardmarks) when queues are placed
654     * near each other in memory. This is common, but has different
655     * impact in different collectors and remains incompletely
656     * addressed.
657 dl 1.345 *
658 dl 1.105 * Style notes
659     * ===========
660     *
661 dl 1.355 * Memory ordering relies mainly on atomic operations (CAS,
662     * getAndSet, getAndAdd) along with explicit fences. This can be
663 jsr166 1.315 * awkward and ugly, but also reflects the need to control
664     * outcomes across the unusual cases that arise in very racy code
665 dl 1.319 * with very few invariants. All fields are read into locals
666 dl 1.355 * before use, and null-checked if they are references, even if
667     * they can never be null under current usages. Array accesses
668     * using masked indices include checks (that are always true) that
669     * the array length is non-zero to avoid compilers inserting more
670     * expensive traps. This is usually done in a "C"-like style of
671     * listing declarations at the heads of methods or blocks, and
672     * using inline assignments on first encounter. Nearly all
673     * explicit checks lead to bypass/return, not exception throws,
674     * because they may legitimately arise during shutdown.
675 dl 1.200 *
676 dl 1.105 * There is a lot of representation-level coupling among classes
677     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
678     * fields of WorkQueue maintain data structures managed by
679     * ForkJoinPool, so are directly accessed. There is little point
680     * trying to reduce this, since any associated future changes in
681     * representations will need to be accompanied by algorithmic
682     * changes anyway. Several methods intrinsically sprawl because
683 dl 1.200 * they must accumulate sets of consistent reads of fields held in
684 dl 1.345 * local variables. Some others are artificially broken up to
685     * reduce producer/consumer imbalances due to dynamic compilation.
686     * There are also other coding oddities (including several
687     * unnecessary-looking hoisted null checks) that help some methods
688     * perform reasonably even when interpreted (not compiled).
689 dl 1.52 *
690 dl 1.208 * The order of declarations in this file is (with a few exceptions):
691 dl 1.86 * (1) Static utility functions
692     * (2) Nested (static) classes
693     * (3) Static fields
694     * (4) Fields, along with constants used when unpacking some of them
695     * (5) Internal control methods
696     * (6) Callbacks and other support for ForkJoinTask methods
697     * (7) Exported methods
698     * (8) Static block initializing statics in minimally dependent order
699 dl 1.355 *
700     * Revision notes
701     * ==============
702     *
703     * The main sources of differences of January 2020 ForkJoin
704     * classes from previous version are:
705     *
706     * * ForkJoinTask now uses field "aux" to support blocking joins
707     * and/or record exceptions, replacing reliance on builtin
708     * monitors and side tables.
709 jsr166 1.357 * * Scans probe slots (vs compare indices), along with related
710 dl 1.355 * changes that reduce performance differences across most
711 dl 1.364 * garbage collectors, and reduce contention.
712 dl 1.355 * * Refactoring for better integration of special task types and
713     * other capabilities that had been incrementally tacked on. Plus
714     * many minor reworkings to improve consistency.
715 dl 1.86 */
716    
717     // Static utilities
718    
719     /**
720     * If there is a security manager, makes sure caller has
721     * permission to modify threads.
722 jsr166 1.1 */
723 dl 1.86 private static void checkPermission() {
724     SecurityManager security = System.getSecurityManager();
725     if (security != null)
726     security.checkPermission(modifyThreadPermission);
727     }
728    
729 dl 1.355 static AccessControlContext contextWithPermissions(Permission ... perms) {
730     Permissions permissions = new Permissions();
731     for (Permission perm : perms)
732     permissions.add(perm);
733     return new AccessControlContext(
734     new ProtectionDomain[] { new ProtectionDomain(null, permissions) });
735     }
736    
737 dl 1.86 // Nested classes
738 jsr166 1.1
739     /**
740 jsr166 1.8 * Factory for creating new {@link ForkJoinWorkerThread}s.
741     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
742     * for {@code ForkJoinWorkerThread} subclasses that extend base
743     * functionality or initialize threads with different contexts.
744 jsr166 1.1 */
745     public static interface ForkJoinWorkerThreadFactory {
746     /**
747     * Returns a new worker thread operating in the given pool.
748 dl 1.300 * Returning null or throwing an exception may result in tasks
749     * never being executed. If this method throws an exception,
750     * it is relayed to the caller of the method (for example
751     * {@code execute}) causing attempted thread creation. If this
752     * method returns null or throws an exception, it is not
753     * retried until the next attempted creation (for example
754     * another call to {@code execute}).
755 jsr166 1.1 *
756     * @param pool the pool this thread works in
757 jsr166 1.296 * @return the new worker thread, or {@code null} if the request
758 jsr166 1.331 * to create a thread is rejected
759 jsr166 1.11 * @throws NullPointerException if the pool is null
760 jsr166 1.1 */
761     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
762     }
763    
764     /**
765     * Default ForkJoinWorkerThreadFactory implementation; creates a
766 jsr166 1.331 * new ForkJoinWorkerThread using the system class loader as the
767     * thread context class loader.
768 jsr166 1.1 */
769 dl 1.355 static final class DefaultForkJoinWorkerThreadFactory
770     implements ForkJoinWorkerThreadFactory {
771     // ACC for access to the factory
772     private static final AccessControlContext ACC = contextWithPermissions(
773     new RuntimePermission("getClassLoader"),
774     new RuntimePermission("setContextClassLoader"));
775     public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
776     return AccessController.doPrivileged(
777     new PrivilegedAction<>() {
778     public ForkJoinWorkerThread run() {
779 dl 1.382 return new ForkJoinWorkerThread(null, pool, true, false);
780 dl 1.355 }},
781     ACC);
782     }
783     }
784    
785     /**
786 jsr166 1.388 * Factory for CommonPool unless overridden by System property.
787     * Creates InnocuousForkJoinWorkerThreads if a security manager is
788     * present at time of invocation. Support requires that we break
789     * quite a lot of encapsulation (some via helper methods in
790     * ThreadLocalRandom) to access and set Thread fields.
791 dl 1.355 */
792 dl 1.382 static final class DefaultCommonPoolForkJoinWorkerThreadFactory
793 jsr166 1.1 implements ForkJoinWorkerThreadFactory {
794 jsr166 1.331 private static final AccessControlContext ACC = contextWithPermissions(
795 dl 1.355 modifyThreadPermission,
796     new RuntimePermission("enableContextClassLoaderOverride"),
797     new RuntimePermission("modifyThreadGroup"),
798 jsr166 1.331 new RuntimePermission("getClassLoader"),
799     new RuntimePermission("setContextClassLoader"));
800    
801 dl 1.112 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
802 jsr166 1.331 return AccessController.doPrivileged(
803 jsr166 1.384 new PrivilegedAction<>() {
804     public ForkJoinWorkerThread run() {
805     return System.getSecurityManager() == null ?
806     new ForkJoinWorkerThread(null, pool, true, true):
807     new ForkJoinWorkerThread.
808     InnocuousForkJoinWorkerThread(pool); }},
809     ACC);
810 jsr166 1.1 }
811     }
812    
813 dl 1.200 // Constants shared across ForkJoinPool and WorkQueue
814    
815     // Bounds
816 dl 1.300 static final int SWIDTH = 16; // width of short
817 dl 1.200 static final int SMASK = 0xffff; // short bits == max index
818     static final int MAX_CAP = 0x7fff; // max #workers - 1
819    
820 dl 1.300 // Masks and units for WorkQueue.phase and ctl sp subfield
821 dl 1.243 static final int UNSIGNALLED = 1 << 31; // must be negative
822 dl 1.211 static final int SS_SEQ = 1 << 16; // version count
823 dl 1.200
824 dl 1.355 // Mode bits and sentinels, some also used in WorkQueue fields
825 dl 1.300 static final int FIFO = 1 << 16; // fifo queue or access mode
826 dl 1.355 static final int SRC = 1 << 17; // set for valid queue ids
827     static final int INNOCUOUS = 1 << 18; // set for Innocuous workers
828     static final int QUIET = 1 << 19; // quiescing phase or source
829     static final int SHUTDOWN = 1 << 24;
830     static final int TERMINATED = 1 << 25;
831 dl 1.300 static final int STOP = 1 << 31; // must be negative
832 dl 1.373 static final int UNCOMPENSATE = 1 << 16; // tryCompensate return
833 dl 1.300
834     /**
835 dl 1.355 * Initial capacity of work-stealing queue array. Must be a power
836     * of two, at least 2. See above.
837 dl 1.253 */
838 dl 1.355 static final int INITIAL_QUEUE_CAPACITY = 1 << 8;
839 dl 1.253
840     /**
841 dl 1.78 * Queues supporting work-stealing as well as external task
842 jsr166 1.202 * submission. See above for descriptions and algorithms.
843 dl 1.78 */
844     static final class WorkQueue {
845 dl 1.355 volatile int phase; // versioned, negative if inactive
846     int stackPred; // pool stack (ctl) predecessor link
847     int config; // index, mode, ORed with SRC after init
848 dl 1.345 int base; // index of next slot for poll
849     ForkJoinTask<?>[] array; // the queued tasks; power of 2 size
850 dl 1.78 final ForkJoinWorkerThread owner; // owning thread or null if shared
851 dl 1.112
852 dl 1.355 // segregate fields frequently updated but not read by scans or steals
853     @jdk.internal.vm.annotation.Contended("w")
854     int top; // index of next slot for push
855     @jdk.internal.vm.annotation.Contended("w")
856     volatile int source; // source queue id, lock, or sentinel
857     @jdk.internal.vm.annotation.Contended("w")
858     int nsteals; // number of steals from other queues
859    
860     // Support for atomic operations
861     private static final VarHandle QA; // for array slots
862     private static final VarHandle SOURCE;
863     private static final VarHandle BASE;
864     static final ForkJoinTask<?> getSlot(ForkJoinTask<?>[] a, int i) {
865     return (ForkJoinTask<?>)QA.getAcquire(a, i);
866     }
867     static final ForkJoinTask<?> getAndClearSlot(ForkJoinTask<?>[] a,
868     int i) {
869     return (ForkJoinTask<?>)QA.getAndSet(a, i, null);
870     }
871     static final void setSlotVolatile(ForkJoinTask<?>[] a, int i,
872     ForkJoinTask<?> v) {
873     QA.setVolatile(a, i, v);
874     }
875     static final boolean casSlotToNull(ForkJoinTask<?>[] a, int i,
876     ForkJoinTask<?> c) {
877 dl 1.398 return QA.compareAndSet(a, i, c, null);
878 dl 1.355 }
879     final boolean tryLock() {
880     return SOURCE.compareAndSet(this, 0, 1);
881     }
882     final void setBaseOpaque(int b) {
883     BASE.setOpaque(this, b);
884 dl 1.78 }
885    
886     /**
887 dl 1.355 * Constructor used by ForkJoinWorkerThreads. Most fields
888     * are initialized upon thread start, in pool.registerWorker.
889 dl 1.345 */
890 dl 1.355 WorkQueue(ForkJoinWorkerThread owner, boolean isInnocuous) {
891     this.config = (isInnocuous) ? INNOCUOUS : 0;
892     this.owner = owner;
893 dl 1.345 }
894    
895 dl 1.355 /**
896     * Constructor used for external queues.
897     */
898     WorkQueue(int config) {
899     array = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
900     this.config = config;
901     owner = null;
902     phase = -1;
903 dl 1.345 }
904    
905     /**
906 jsr166 1.220 * Returns an exportable index (used by ForkJoinWorkerThread).
907 dl 1.200 */
908     final int getPoolIndex() {
909 dl 1.355 return (config & 0xffff) >>> 1; // ignore odd/even tag bit
910 dl 1.200 }
911    
912     /**
913 dl 1.115 * Returns the approximate number of tasks in the queue.
914     */
915     final int queueSize() {
916 dl 1.355 VarHandle.acquireFence(); // ensure fresh reads by external callers
917     int n = top - base;
918     return (n < 0) ? 0 : n; // ignore transient negative
919 dl 1.115 }
920    
921 jsr166 1.180 /**
922 dl 1.366 * Provides a more conservative estimate of whether this queue
923     * has any tasks than does queueSize.
924 dl 1.115 */
925     final boolean isEmpty() {
926 dl 1.366 return !((source != 0 && owner == null) || top - base > 0);
927 dl 1.115 }
928    
929     /**
930 dl 1.256 * Pushes a task. Call only by owner in unshared queues.
931 dl 1.78 *
932     * @param task the task. Caller must ensure non-null.
933 dl 1.355 * @param pool (no-op if null)
934 jsr166 1.146 * @throws RejectedExecutionException if array cannot be resized
935 dl 1.78 */
936 dl 1.355 final void push(ForkJoinTask<?> task, ForkJoinPool pool) {
937     ForkJoinTask<?>[] a = array;
938     int s = top++, d = s - base, cap, m; // skip insert if disabled
939     if (a != null && pool != null && (cap = a.length) > 0) {
940     setSlotVolatile(a, (m = cap - 1) & s, task);
941 dl 1.353 if (d == m)
942 dl 1.355 growArray();
943     if (d == m || a[m & (s - 1)] == null)
944     pool.signalWork(); // signal if was empty or resized
945 dl 1.78 }
946     }
947    
948 dl 1.178 /**
949 dl 1.355 * Pushes task to a shared queue with lock already held, and unlocks.
950     *
951     * @return true if caller should signal work
952 dl 1.112 */
953 dl 1.345 final boolean lockedPush(ForkJoinTask<?> task) {
954 dl 1.355 ForkJoinTask<?>[] a = array;
955     int s = top++, d = s - base, cap, m;
956     if (a != null && (cap = a.length) > 0) {
957     a[(m = cap - 1) & s] = task;
958 dl 1.353 if (d == m)
959 dl 1.355 growArray();
960     source = 0; // unlock
961     if (d == m || a[m & (s - 1)] == null)
962     return true;
963 dl 1.345 }
964 dl 1.355 return false;
965 dl 1.78 }
966    
967     /**
968 dl 1.355 * Doubles the capacity of array. Called by owner or with lock
969     * held after pre-incrementing top, which is reverted on
970     * allocation failure.
971     */
972     final void growArray() {
973     ForkJoinTask<?>[] oldArray = array, newArray;
974     int s = top - 1, oldCap, newCap;
975     if (oldArray != null && (oldCap = oldArray.length) > 0 &&
976     (newCap = oldCap << 1) > 0) { // skip if disabled
977     try {
978     newArray = new ForkJoinTask<?>[newCap];
979     } catch (Throwable ex) {
980     top = s;
981     if (owner == null)
982     source = 0; // unlock
983     throw new RejectedExecutionException(
984     "Queue capacity exceeded");
985     }
986     int newMask = newCap - 1, oldMask = oldCap - 1;
987     for (int k = oldCap; k > 0; --k, --s) {
988     ForkJoinTask<?> x; // poll old, push to new
989     if ((x = getAndClearSlot(oldArray, s & oldMask)) == null)
990     break; // others already taken
991     newArray[s & newMask] = x;
992 dl 1.78 }
993 dl 1.355 VarHandle.releaseFence(); // fill before publish
994     array = newArray;
995 dl 1.78 }
996     }
997    
998 dl 1.355 // Variants of pop
999 dl 1.78
1000     /**
1001 dl 1.355 * Pops and returns task, or null if empty. Called only by owner.
1002 dl 1.78 */
1003 dl 1.355 private ForkJoinTask<?> pop() {
1004 dl 1.345 ForkJoinTask<?> t = null;
1005 dl 1.355 int s = top, cap; ForkJoinTask<?>[] a;
1006     if ((a = array) != null && (cap = a.length) > 0 && base != s-- &&
1007     (t = getAndClearSlot(a, (cap - 1) & s)) != null)
1008     top = s;
1009 dl 1.345 return t;
1010 dl 1.78 }
1011    
1012     /**
1013 dl 1.355 * Pops the given task for owner only if it is at the current top.
1014 dl 1.78 */
1015 dl 1.373 final boolean tryUnpush(ForkJoinTask<?> task) {
1016 dl 1.381 int s = top, cap; ForkJoinTask<?>[] a;
1017 dl 1.373 if ((a = array) != null && (cap = a.length) > 0 && base != s-- &&
1018     casSlotToNull(a, (cap - 1) & s, task)) {
1019     top = s;
1020     return true;
1021     }
1022     return false;
1023     }
1024    
1025     /**
1026     * Locking version of tryUnpush.
1027     */
1028     final boolean externalTryUnpush(ForkJoinTask<?> task) {
1029 dl 1.355 boolean taken = false;
1030 dl 1.392 for (;;) {
1031     int s = top, cap, k; ForkJoinTask<?>[] a;
1032     if ((a = array) == null || (cap = a.length) <= 0 ||
1033     a[k = (cap - 1) & (s - 1)] != task)
1034     break;
1035     if (tryLock()) {
1036 dl 1.394 if (top == s && array == a) {
1037     if (taken = casSlotToNull(a, k, task)) {
1038     top = s - 1;
1039     source = 0;
1040     break;
1041     }
1042     }
1043     source = 0; // release lock for retry
1044 dl 1.392 }
1045     Thread.yield(); // trylock failure
1046 dl 1.355 }
1047     return taken;
1048 dl 1.345 }
1049    
1050     /**
1051 dl 1.365 * Deep form of tryUnpush: Traverses from top and removes task if
1052 dl 1.355 * present, shifting others to fill gap.
1053     */
1054 dl 1.365 final boolean tryRemove(ForkJoinTask<?> task, boolean owned) {
1055     boolean taken = false;
1056     int p = top, cap; ForkJoinTask<?>[] a; ForkJoinTask<?> t;
1057 dl 1.355 if ((a = array) != null && task != null && (cap = a.length) > 0) {
1058 dl 1.365 int m = cap - 1, s = p - 1, d = p - base;
1059     for (int i = s, k; d > 0; --i, --d) {
1060 dl 1.355 if ((t = a[k = i & m]) == task) {
1061 dl 1.365 if (owned || tryLock()) {
1062     if ((owned || (array == a && top == p)) &&
1063     (taken = casSlotToNull(a, k, t))) {
1064     for (int j = i; j != s; ) // shift down
1065     a[j & m] = getAndClearSlot(a, ++j & m);
1066     top = s;
1067     }
1068     if (!owned)
1069     source = 0;
1070     }
1071     break;
1072 dl 1.355 }
1073     }
1074 dl 1.78 }
1075 dl 1.365 return taken;
1076 dl 1.78 }
1077    
1078 dl 1.355 // variants of poll
1079    
1080 dl 1.78 /**
1081 dl 1.355 * Tries once to poll next task in FIFO order, failing on
1082     * inconsistency or contention.
1083 dl 1.78 */
1084 dl 1.355 final ForkJoinTask<?> tryPoll() {
1085     int cap, b, k; ForkJoinTask<?>[] a;
1086     if ((a = array) != null && (cap = a.length) > 0) {
1087     ForkJoinTask<?> t = getSlot(a, k = (cap - 1) & (b = base));
1088     if (base == b++ && t != null && casSlotToNull(a, k, t)) {
1089     setBaseOpaque(b);
1090     return t;
1091     }
1092     }
1093     return null;
1094 dl 1.78 }
1095    
1096     /**
1097 dl 1.355 * Takes next task, if one exists, in order specified by mode.
1098 dl 1.345 */
1099 dl 1.355 final ForkJoinTask<?> nextLocalTask(int cfg) {
1100     ForkJoinTask<?> t = null;
1101     int s = top, cap; ForkJoinTask<?>[] a;
1102     if ((a = array) != null && (cap = a.length) > 0) {
1103     for (int b, d;;) {
1104     if ((d = s - (b = base)) <= 0)
1105     break;
1106     if (d == 1 || (cfg & FIFO) == 0) {
1107     if ((t = getAndClearSlot(a, --s & (cap - 1))) != null)
1108     top = s;
1109     break;
1110 dl 1.353 }
1111 dl 1.355 if ((t = getAndClearSlot(a, b++ & (cap - 1))) != null) {
1112     setBaseOpaque(b);
1113 jsr166 1.352 break;
1114 dl 1.355 }
1115 jsr166 1.344 }
1116 dl 1.253 }
1117 dl 1.355 return t;
1118     }
1119    
1120     /**
1121     * Takes next task, if one exists, using configured mode.
1122     */
1123     final ForkJoinTask<?> nextLocalTask() {
1124     return nextLocalTask(config);
1125     }
1126    
1127     /**
1128     * Returns next task, if one exists, in order specified by mode.
1129     */
1130     final ForkJoinTask<?> peek() {
1131     VarHandle.acquireFence();
1132     int cap; ForkJoinTask<?>[] a;
1133     return ((a = array) != null && (cap = a.length) > 0) ?
1134     a[(cap - 1) & ((config & FIFO) != 0 ? base : top - 1)] : null;
1135 dl 1.253 }
1136    
1137 dl 1.355 // specialized execution methods
1138    
1139 dl 1.253 /**
1140 dl 1.355 * Runs the given (stolen) task if nonnull, as well as
1141     * remaining local tasks and/or others available from the
1142     * given queue.
1143 dl 1.94 */
1144 dl 1.355 final void topLevelExec(ForkJoinTask<?> task, WorkQueue q) {
1145     int cfg = config, nstolen = 1;
1146     while (task != null) {
1147     task.doExec();
1148     if ((task = nextLocalTask(cfg)) == null &&
1149     q != null && (task = q.tryPoll()) != null)
1150     ++nstolen;
1151 dl 1.215 }
1152 dl 1.355 nsteals += nstolen;
1153     source = 0;
1154     if ((cfg & INNOCUOUS) != 0)
1155     ThreadLocalRandom.eraseThreadLocals(Thread.currentThread());
1156 dl 1.215 }
1157    
1158     /**
1159 dl 1.345 * Tries to pop and run tasks within the target's computation
1160     * until done, not found, or limit exceeded.
1161 dl 1.94 *
1162 dl 1.300 * @param task root of CountedCompleter computation
1163 dl 1.355 * @param owned true if owned by a ForkJoinWorkerThread
1164 dl 1.300 * @param limit max runs, or zero for no limit
1165 jsr166 1.363 * @return task status on exit
1166 dl 1.300 */
1167 dl 1.365 final int helpComplete(ForkJoinTask<?> task, boolean owned, int limit) {
1168 dl 1.355 int status = 0, cap, k, p, s; ForkJoinTask<?>[] a; ForkJoinTask<?> t;
1169     while (task != null && (status = task.status) >= 0 &&
1170     (a = array) != null && (cap = a.length) > 0 &&
1171     (t = a[k = (cap - 1) & (s = (p = top) - 1)])
1172     instanceof CountedCompleter) {
1173     CountedCompleter<?> f = (CountedCompleter<?>)t;
1174     boolean taken = false;
1175     for (;;) { // exec if root task is a completer of t
1176     if (f == task) {
1177     if (owned) {
1178     if ((taken = casSlotToNull(a, k, t)))
1179     top = s;
1180     }
1181     else if (tryLock()) {
1182     if (top == p && array == a &&
1183     (taken = casSlotToNull(a, k, t)))
1184     top = s;
1185     source = 0;
1186 dl 1.243 }
1187 dl 1.394 if (taken)
1188     t.doExec();
1189     else if (!owned)
1190     Thread.yield(); // tryLock failure
1191 dl 1.355 break;
1192 dl 1.104 }
1193 dl 1.355 else if ((f = f.completer) == null)
1194 dl 1.300 break;
1195 dl 1.104 }
1196 dl 1.394 if (taken && limit != 0 && --limit == 0)
1197 dl 1.355 break;
1198 dl 1.104 }
1199 dl 1.300 return status;
1200     }
1201    
1202 jsr166 1.344 /**
1203 dl 1.345 * Tries to poll and run AsynchronousCompletionTasks until
1204 dl 1.355 * none found or blocker is released.
1205 dl 1.345 *
1206     * @param blocker the blocker
1207 jsr166 1.344 */
1208 dl 1.345 final void helpAsyncBlocker(ManagedBlocker blocker) {
1209 dl 1.355 int cap, b, d, k; ForkJoinTask<?>[] a; ForkJoinTask<?> t;
1210     while (blocker != null && (d = top - (b = base)) > 0 &&
1211     (a = array) != null && (cap = a.length) > 0 &&
1212     (((t = getSlot(a, k = (cap - 1) & b)) == null && d > 1) ||
1213     t instanceof
1214     CompletableFuture.AsynchronousCompletionTask) &&
1215     !blocker.isReleasable()) {
1216     if (t != null && base == b++ && casSlotToNull(a, k, t)) {
1217     setBaseOpaque(b);
1218     t.doExec();
1219 dl 1.178 }
1220 dl 1.78 }
1221     }
1222    
1223 dl 1.355 // misc
1224    
1225     /** AccessControlContext for innocuous workers, created on 1st use. */
1226     private static AccessControlContext INNOCUOUS_ACC;
1227    
1228     /**
1229     * Initializes (upon registration) InnocuousForkJoinWorkerThreads.
1230     */
1231     final void initializeInnocuousWorker() {
1232     AccessControlContext acc; // racy construction OK
1233     if ((acc = INNOCUOUS_ACC) == null)
1234     INNOCUOUS_ACC = acc = new AccessControlContext(
1235     new ProtectionDomain[] { new ProtectionDomain(null, null) });
1236     Thread t = Thread.currentThread();
1237     ThreadLocalRandom.setInheritedAccessControlContext(t, acc);
1238     ThreadLocalRandom.eraseThreadLocals(t);
1239     }
1240    
1241 dl 1.78 /**
1242 dl 1.373 * Returns true if owned by a worker thread and not known to be blocked.
1243 dl 1.86 */
1244     final boolean isApparentlyUnblocked() {
1245     Thread wt; Thread.State s;
1246 dl 1.300 return ((wt = owner) != null &&
1247 dl 1.86 (s = wt.getState()) != Thread.State.BLOCKED &&
1248     s != Thread.State.WAITING &&
1249     s != Thread.State.TIMED_WAITING);
1250     }
1251    
1252 dl 1.78 static {
1253     try {
1254 dl 1.355 QA = MethodHandles.arrayElementVarHandle(ForkJoinTask[].class);
1255 dl 1.314 MethodHandles.Lookup l = MethodHandles.lookup();
1256 dl 1.355 SOURCE = l.findVarHandle(WorkQueue.class, "source", int.class);
1257 dl 1.345 BASE = l.findVarHandle(WorkQueue.class, "base", int.class);
1258 jsr166 1.231 } catch (ReflectiveOperationException e) {
1259 jsr166 1.347 throw new ExceptionInInitializerError(e);
1260 dl 1.78 }
1261     }
1262     }
1263 dl 1.14
1264 dl 1.112 // static fields (initialized in static initializer below)
1265    
1266     /**
1267     * Creates a new ForkJoinWorkerThread. This factory is used unless
1268     * overridden in ForkJoinPool constructors.
1269     */
1270     public static final ForkJoinWorkerThreadFactory
1271     defaultForkJoinWorkerThreadFactory;
1272    
1273 jsr166 1.1 /**
1274 dl 1.115 * Permission required for callers of methods that may start or
1275 dl 1.300 * kill threads.
1276 dl 1.115 */
1277 jsr166 1.276 static final RuntimePermission modifyThreadPermission;
1278 dl 1.115
1279     /**
1280 dl 1.101 * Common (static) pool. Non-null for public use unless a static
1281 dl 1.105 * construction exception, but internal usages null-check on use
1282     * to paranoically avoid potential initialization circularities
1283     * as well as to simplify generated code.
1284 dl 1.101 */
1285 dl 1.134 static final ForkJoinPool common;
1286 dl 1.101
1287     /**
1288 dl 1.160 * Common pool parallelism. To allow simpler use and management
1289     * when common pool threads are disabled, we allow the underlying
1290 dl 1.185 * common.parallelism field to be zero, but in that case still report
1291 dl 1.160 * parallelism as 1 to reflect resulting caller-runs mechanics.
1292 dl 1.90 */
1293 jsr166 1.274 static final int COMMON_PARALLELISM;
1294 dl 1.90
1295     /**
1296 dl 1.208 * Limit on spare thread construction in tryCompensate.
1297     */
1298 jsr166 1.273 private static final int COMMON_MAX_SPARES;
1299 dl 1.208
1300     /**
1301 dl 1.355 * Sequence number for creating worker names
1302 dl 1.83 */
1303 dl 1.355 private static volatile int poolIds;
1304 dl 1.86
1305 dl 1.200 // static configuration constants
1306 dl 1.86
1307     /**
1308 dl 1.300 * Default idle timeout value (in milliseconds) for the thread
1309     * triggering quiescence to park waiting for new work
1310 dl 1.86 */
1311 jsr166 1.326 private static final long DEFAULT_KEEPALIVE = 60_000L;
1312 dl 1.86
1313     /**
1314 dl 1.300 * Undershoot tolerance for idle timeouts
1315 dl 1.120 */
1316 dl 1.300 private static final long TIMEOUT_SLOP = 20L;
1317 dl 1.200
1318     /**
1319 jsr166 1.273 * The default value for COMMON_MAX_SPARES. Overridable using the
1320     * "java.util.concurrent.ForkJoinPool.common.maximumSpares" system
1321     * property. The default value is far in excess of normal
1322     * requirements, but also far short of MAX_CAP and typical OS
1323     * thread limits, so allows JVMs to catch misuse/abuse before
1324     * running out of resources needed to do so.
1325 dl 1.200 */
1326 dl 1.208 private static final int DEFAULT_COMMON_MAX_SPARES = 256;
1327 dl 1.120
1328 jsr166 1.163 /*
1329 dl 1.200 * Bits and masks for field ctl, packed with 4 16 bit subfields:
1330 dl 1.300 * RC: Number of released (unqueued) workers minus target parallelism
1331 dl 1.200 * TC: Number of total workers minus target parallelism
1332     * SS: version count and status of top waiting thread
1333     * ID: poolIndex of top of Treiber stack of waiters
1334     *
1335     * When convenient, we can extract the lower 32 stack top bits
1336     * (including version bits) as sp=(int)ctl. The offsets of counts
1337     * by the target parallelism and the positionings of fields makes
1338     * it possible to perform the most common checks via sign tests of
1339 dl 1.300 * fields: When ac is negative, there are not enough unqueued
1340 dl 1.200 * workers, when tc is negative, there are not enough total
1341     * workers. When sp is non-zero, there are waiting workers. To
1342     * deal with possibly negative fields, we use casts in and out of
1343     * "short" and/or signed shifts to maintain signedness.
1344     *
1345 dl 1.355 * Because it occupies uppermost bits, we can add one release
1346     * count using getAndAdd of RC_UNIT, rather than CAS, when
1347     * returning from a blocked join. Other updates entail multiple
1348     * subfields and masking, requiring CAS.
1349 dl 1.300 *
1350     * The limits packed in field "bounds" are also offset by the
1351     * parallelism level to make them comparable to the ctl rc and tc
1352     * fields.
1353 dl 1.200 */
1354    
1355     // Lower and upper word masks
1356     private static final long SP_MASK = 0xffffffffL;
1357     private static final long UC_MASK = ~SP_MASK;
1358 dl 1.86
1359 dl 1.300 // Release counts
1360     private static final int RC_SHIFT = 48;
1361     private static final long RC_UNIT = 0x0001L << RC_SHIFT;
1362     private static final long RC_MASK = 0xffffL << RC_SHIFT;
1363 dl 1.200
1364     // Total counts
1365 dl 1.86 private static final int TC_SHIFT = 32;
1366 dl 1.200 private static final long TC_UNIT = 0x0001L << TC_SHIFT;
1367     private static final long TC_MASK = 0xffffL << TC_SHIFT;
1368     private static final long ADD_WORKER = 0x0001L << (TC_SHIFT + 15); // sign
1369    
1370 dl 1.300 // Instance fields
1371 dl 1.86
1372 dl 1.355 final long keepAlive; // milliseconds before dropping if idle
1373 dl 1.300 volatile long stealCount; // collects worker nsteals
1374 dl 1.355 int scanRover; // advances across pollScan calls
1375     volatile int threadIds; // for worker thread names
1376 dl 1.300 final int bounds; // min, max threads packed as shorts
1377     volatile int mode; // parallelism, runstate, queue mode
1378 dl 1.355 WorkQueue[] queues; // main registry
1379     final ReentrantLock registrationLock;
1380     Condition termination; // lazily constructed
1381     final String workerNamePrefix; // null for common pool
1382 dl 1.112 final ForkJoinWorkerThreadFactory factory;
1383 dl 1.200 final UncaughtExceptionHandler ueh; // per-worker UEH
1384 dl 1.307 final Predicate<? super ForkJoinPool> saturate;
1385 dl 1.101
1386 dl 1.308 @jdk.internal.vm.annotation.Contended("fjpctl") // segregate
1387     volatile long ctl; // main pool control
1388 jsr166 1.309
1389 dl 1.355 // Support for atomic operations
1390     private static final VarHandle CTL;
1391     private static final VarHandle MODE;
1392     private static final VarHandle THREADIDS;
1393     private static final VarHandle POOLIDS;
1394     private boolean compareAndSetCtl(long c, long v) {
1395     return CTL.compareAndSet(this, c, v);
1396     }
1397     private long compareAndExchangeCtl(long c, long v) {
1398     return (long)CTL.compareAndExchange(this, c, v);
1399     }
1400     private long getAndAddCtl(long v) {
1401     return (long)CTL.getAndAdd(this, v);
1402     }
1403     private int getAndBitwiseOrMode(int v) {
1404     return (int)MODE.getAndBitwiseOr(this, v);
1405     }
1406     private int getAndAddThreadIds(int x) {
1407     return (int)THREADIDS.getAndAdd(this, x);
1408     }
1409     private static int getAndAddPoolIds(int x) {
1410     return (int)POOLIDS.getAndAdd(x);
1411     }
1412    
1413 dl 1.200 // Creating, registering and deregistering workers
1414    
1415 dl 1.112 /**
1416 dl 1.200 * Tries to construct and start one worker. Assumes that total
1417     * count has already been incremented as a reservation. Invokes
1418     * deregisterWorker on any failure.
1419     *
1420     * @return true if successful
1421 dl 1.115 */
1422 dl 1.300 private boolean createWorker() {
1423 dl 1.200 ForkJoinWorkerThreadFactory fac = factory;
1424     Throwable ex = null;
1425     ForkJoinWorkerThread wt = null;
1426     try {
1427 dl 1.367 if (fac != null && (wt = fac.newThread(this)) != null) {
1428 dl 1.200 wt.start();
1429     return true;
1430 dl 1.115 }
1431 dl 1.200 } catch (Throwable rex) {
1432     ex = rex;
1433 dl 1.112 }
1434 dl 1.200 deregisterWorker(wt, ex);
1435     return false;
1436 dl 1.112 }
1437    
1438 dl 1.200 /**
1439 jsr166 1.360 * Provides a name for ForkJoinWorkerThread constructor.
1440 dl 1.200 */
1441 dl 1.355 final String nextWorkerThreadName() {
1442     String prefix = workerNamePrefix;
1443     int tid = getAndAddThreadIds(1) + 1;
1444     if (prefix == null) // commonPool has no prefix
1445     prefix = "ForkJoinPool.commonPool-worker-";
1446     return prefix.concat(Integer.toString(tid));
1447 dl 1.200 }
1448 dl 1.112
1449     /**
1450 dl 1.355 * Finishes initializing and records owned queue.
1451     *
1452     * @param w caller's WorkQueue
1453     */
1454     final void registerWorker(WorkQueue w) {
1455     ReentrantLock lock = registrationLock;
1456     ThreadLocalRandom.localInit();
1457     int seed = ThreadLocalRandom.getProbe();
1458     if (w != null && lock != null) {
1459     int modebits = (mode & FIFO) | w.config;
1460     w.array = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
1461     w.stackPred = seed; // stash for runWorker
1462     if ((modebits & INNOCUOUS) != 0)
1463     w.initializeInnocuousWorker();
1464     int id = (seed << 1) | 1; // initial index guess
1465     lock.lock();
1466     try {
1467     WorkQueue[] qs; int n; // find queue index
1468     if ((qs = queues) != null && (n = qs.length) > 0) {
1469     int k = n, m = n - 1;
1470     for (; qs[id &= m] != null && k > 0; id -= 2, k -= 2);
1471     if (k == 0)
1472     id = n | 1; // resize below
1473     w.phase = w.config = id | modebits; // now publishable
1474 dl 1.300
1475 dl 1.355 if (id < n)
1476     qs[id] = w;
1477 dl 1.300 else { // expand array
1478 dl 1.355 int an = n << 1, am = an - 1;
1479 dl 1.300 WorkQueue[] as = new WorkQueue[an];
1480 dl 1.355 as[id & am] = w;
1481     for (int j = 1; j < n; j += 2)
1482     as[j] = qs[j];
1483     for (int j = 0; j < n; j += 2) {
1484     WorkQueue q;
1485     if ((q = qs[j]) != null) // shared queues may move
1486     as[q.config & am] = q;
1487 dl 1.94 }
1488 dl 1.355 VarHandle.releaseFence(); // fill before publish
1489     queues = as;
1490 dl 1.94 }
1491     }
1492 dl 1.355 } finally {
1493     lock.unlock();
1494 dl 1.78 }
1495     }
1496     }
1497 dl 1.19
1498 jsr166 1.1 /**
1499 dl 1.86 * Final callback from terminating worker, as well as upon failure
1500 dl 1.105 * to construct or start a worker. Removes record of worker from
1501     * array, and adjusts counts. If pool is shutting down, tries to
1502     * complete termination.
1503 dl 1.78 *
1504 jsr166 1.151 * @param wt the worker thread, or null if construction failed
1505 dl 1.78 * @param ex the exception causing failure, or null if none
1506 dl 1.45 */
1507 dl 1.78 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1508 dl 1.355 ReentrantLock lock = registrationLock;
1509 dl 1.78 WorkQueue w = null;
1510 dl 1.355 int cfg = 0;
1511     if (wt != null && (w = wt.workQueue) != null && lock != null) {
1512     WorkQueue[] qs; int n, i;
1513     cfg = w.config;
1514     long ns = w.nsteals & 0xffffffffL;
1515     lock.lock(); // remove index from array
1516     if ((qs = queues) != null && (n = qs.length) > 0 &&
1517     qs[i = cfg & (n - 1)] == w)
1518     qs[i] = null;
1519     stealCount += ns; // accumulate steals
1520     lock.unlock();
1521     long c = ctl;
1522 dl 1.386 if ((cfg & QUIET) == 0) // unless self-signalled, decrement counts
1523 dl 1.355 do {} while (c != (c = compareAndExchangeCtl(
1524     c, ((RC_MASK & (c - RC_UNIT)) |
1525     (TC_MASK & (c - TC_UNIT)) |
1526     (SP_MASK & c)))));
1527     else if ((int)c == 0) // was dropped on timeout
1528     cfg = 0; // suppress signal if last
1529     for (ForkJoinTask<?> t; (t = w.pop()) != null; )
1530     ForkJoinTask.cancelIgnoringExceptions(t); // cancel tasks
1531 dl 1.243 }
1532 dl 1.300
1533 dl 1.355 if (!tryTerminate(false, false) && w != null && (cfg & SRC) != 0)
1534     signalWork(); // possibly replace worker
1535     if (ex != null)
1536 dl 1.104 ForkJoinTask.rethrow(ex);
1537 dl 1.78 }
1538 dl 1.52
1539 dl 1.355 /*
1540 dl 1.300 * Tries to create or release a worker if too few are running.
1541 dl 1.105 */
1542 dl 1.355 final void signalWork() {
1543     for (long c = ctl; c < 0L;) {
1544     int sp, i; WorkQueue[] qs; WorkQueue v;
1545     if ((sp = (int)c & ~UNSIGNALLED) == 0) { // no idle workers
1546     if ((c & ADD_WORKER) == 0L) // enough total workers
1547     break;
1548     if (c == (c = compareAndExchangeCtl(
1549     c, ((RC_MASK & (c + RC_UNIT)) |
1550     (TC_MASK & (c + TC_UNIT)))))) {
1551     createWorker();
1552     break;
1553     }
1554 dl 1.200 }
1555 dl 1.355 else if ((qs = queues) == null)
1556 dl 1.243 break; // unstarted/terminated
1557 dl 1.355 else if (qs.length <= (i = sp & SMASK))
1558 dl 1.243 break; // terminated
1559 dl 1.355 else if ((v = qs[i]) == null)
1560 dl 1.243 break; // terminating
1561     else {
1562 dl 1.300 long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + RC_UNIT));
1563     Thread vt = v.owner;
1564 dl 1.355 if (c == (c = compareAndExchangeCtl(c, nc))) {
1565     v.phase = sp;
1566     LockSupport.unpark(vt); // release idle worker
1567 dl 1.243 break;
1568     }
1569 dl 1.174 }
1570 dl 1.52 }
1571 dl 1.14 }
1572    
1573 dl 1.200 /**
1574 dl 1.355 * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1575     * See above for explanation.
1576 dl 1.243 *
1577 dl 1.355 * @param w caller's WorkQueue (may be null on failed initialization)
1578 dl 1.243 */
1579 dl 1.355 final void runWorker(WorkQueue w) {
1580 dl 1.394 if (mode >= 0 && w != null) { // skip on failed init
1581 dl 1.355 w.config |= SRC; // mark as valid source
1582     int r = w.stackPred, src = 0; // use seed from registerWorker
1583     do {
1584     r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
1585     } while ((src = scan(w, src, r)) >= 0 ||
1586     (src = awaitWork(w)) == 0);
1587     }
1588     }
1589    
1590     /**
1591     * Scans for and if found executes top-level tasks: Tries to poll
1592     * each queue starting at a random index with random stride,
1593     * returning source id or retry indicator if contended or
1594     * inconsistent.
1595     *
1596     * @param w caller's WorkQueue
1597     * @param prevSrc the previous queue stolen from in current phase, or 0
1598     * @param r random seed
1599     * @return id of queue if taken, negative if none found, prevSrc for retry
1600     */
1601     private int scan(WorkQueue w, int prevSrc, int r) {
1602     WorkQueue[] qs = queues;
1603     int n = (w == null || qs == null) ? 0 : qs.length;
1604     for (int step = (r >>> 16) | 1, i = n; i > 0; --i, r += step) {
1605     int j, cap, b; WorkQueue q; ForkJoinTask<?>[] a;
1606     if ((q = qs[j = r & (n - 1)]) != null && // poll at qs[j].array[k]
1607     (a = q.array) != null && (cap = a.length) > 0) {
1608     int k = (cap - 1) & (b = q.base), nextBase = b + 1;
1609     int nextIndex = (cap - 1) & nextBase, src = j | SRC;
1610     ForkJoinTask<?> t = WorkQueue.getSlot(a, k);
1611     if (q.base != b) // inconsistent
1612     return prevSrc;
1613     else if (t != null && WorkQueue.casSlotToNull(a, k, t)) {
1614     q.base = nextBase;
1615     ForkJoinTask<?> next = a[nextIndex];
1616     if ((w.source = src) != prevSrc && next != null)
1617     signalWork(); // propagate
1618     w.topLevelExec(t, q);
1619     return src;
1620     }
1621     else if (a[nextIndex] != null) // revisit
1622     return prevSrc;
1623     }
1624     }
1625     return (queues != qs) ? prevSrc: -1; // possibly resized
1626     }
1627    
1628     /**
1629     * Advances worker phase, pushes onto ctl stack, and awaits signal
1630     * or reports termination.
1631     *
1632     * @return negative if terminated, else 0
1633     */
1634     private int awaitWork(WorkQueue w) {
1635     if (w == null)
1636     return -1; // already terminated
1637 dl 1.371 int phase = (w.phase + SS_SEQ) & ~UNSIGNALLED;
1638     w.phase = phase | UNSIGNALLED; // advance phase
1639 dl 1.355 long prevCtl = ctl, c; // enqueue
1640     do {
1641     w.stackPred = (int)prevCtl;
1642     c = ((prevCtl - RC_UNIT) & UC_MASK) | (phase & SP_MASK);
1643     } while (prevCtl != (prevCtl = compareAndExchangeCtl(prevCtl, c)));
1644    
1645 dl 1.373 Thread.interrupted(); // clear status
1646 dl 1.355 LockSupport.setCurrentBlocker(this); // prepare to block (exit also OK)
1647 dl 1.371 long deadline = 0L; // nonzero if possibly quiescent
1648 dl 1.372 int ac = (int)(c >> RC_SHIFT), md;
1649     if ((md = mode) < 0) // pool is terminating
1650     return -1;
1651     else if ((md & SMASK) + ac <= 0) {
1652     boolean checkTermination = (md & SHUTDOWN) != 0;
1653 dl 1.355 if ((deadline = System.currentTimeMillis() + keepAlive) == 0L)
1654     deadline = 1L; // avoid zero
1655     WorkQueue[] qs = queues; // check for racing submission
1656 dl 1.372 int n = (qs == null) ? 0 : qs.length;
1657 dl 1.355 for (int i = 0; i < n; i += 2) {
1658 dl 1.372 WorkQueue q; ForkJoinTask<?>[] a; int cap, b;
1659     if (ctl != c) { // already signalled
1660     checkTermination = false;
1661     break;
1662     }
1663     else if ((q = qs[i]) != null &&
1664     (a = q.array) != null && (cap = a.length) > 0 &&
1665     ((b = q.base) != q.top || a[(cap - 1) & b] != null ||
1666     q.source != 0)) {
1667     if (compareAndSetCtl(c, prevCtl))
1668     w.phase = phase; // self-signal
1669     checkTermination = false;
1670 dl 1.366 break;
1671 dl 1.300 }
1672     }
1673 dl 1.372 if (checkTermination && tryTerminate(false, false))
1674     return -1; // trigger quiescent termination
1675 dl 1.355 }
1676 dl 1.372
1677 dl 1.373 for (boolean alt = false;;) { // await activation or termination
1678     if (w.phase >= 0)
1679     break;
1680 dl 1.372 else if (mode < 0)
1681     return -1;
1682 dl 1.386 else if ((c = ctl) == prevCtl)
1683 jsr166 1.376 Thread.onSpinWait(); // signal in progress
1684 dl 1.385 else if (!(alt = !alt)) // check between park calls
1685     Thread.interrupted();
1686 dl 1.386 else if (deadline == 0L)
1687     LockSupport.park();
1688     else if (deadline - System.currentTimeMillis() > TIMEOUT_SLOP)
1689 dl 1.373 LockSupport.parkUntil(deadline);
1690 dl 1.386 else if (((int)c & SMASK) == (w.config & SMASK) &&
1691     compareAndSetCtl(c, ((UC_MASK & (c - TC_UNIT)) |
1692     (prevCtl & SP_MASK)))) {
1693     w.config |= QUIET; // sentinel for deregisterWorker
1694     return -1; // drop on timeout
1695     }
1696     else if ((deadline += keepAlive) == 0L)
1697     deadline = 1L; // not at head; restart timer
1698 dl 1.243 }
1699 dl 1.373 return 0;
1700 dl 1.355 }
1701 dl 1.300
1702 dl 1.366 // Utilities used by ForkJoinTask
1703    
1704     /**
1705     * Returns true if can start terminating if enabled, or already terminated
1706     */
1707     final boolean canStop() {
1708     outer: for (long oldSum = 0L;;) { // repeat until stable
1709 dl 1.373 int md; WorkQueue[] qs; long c;
1710     if ((qs = queues) == null || ((md = mode) & STOP) != 0)
1711 dl 1.366 return true;
1712 dl 1.373 if ((md & SMASK) + (int)((c = ctl) >> RC_SHIFT) > 0)
1713 dl 1.366 break;
1714 dl 1.373 long checkSum = c;
1715 dl 1.372 for (int i = 1; i < qs.length; i += 2) { // scan submitters
1716 dl 1.373 WorkQueue q; ForkJoinTask<?>[] a; int s = 0, cap;
1717     if ((q = qs[i]) != null && (a = q.array) != null &&
1718     (cap = a.length) > 0 &&
1719     ((s = q.top) != q.base || a[(cap - 1) & s] != null ||
1720     q.source != 0))
1721 dl 1.366 break outer;
1722 dl 1.373 checkSum += (((long)i) << 32) ^ s;
1723 dl 1.366 }
1724 dl 1.367 if (oldSum == (oldSum = checkSum) && queues == qs)
1725 dl 1.366 return true;
1726     }
1727     return (mode & STOP) != 0; // recheck mode on false return
1728     }
1729    
1730 dl 1.355 /**
1731     * Tries to decrement counts (sometimes implicitly) and possibly
1732     * arrange for a compensating worker in preparation for
1733     * blocking. May fail due to interference, in which case -1 is
1734     * returned so caller may retry. A zero return value indicates
1735     * that the caller doesn't need to re-adjust counts when later
1736     * unblocked.
1737     *
1738     * @param c incoming ctl value
1739 dl 1.373 * @return UNCOMPENSATE: block then adjust, 0: block, -1 : retry
1740 dl 1.355 */
1741     private int tryCompensate(long c) {
1742     Predicate<? super ForkJoinPool> sat;
1743 dl 1.393 int md = mode, b = bounds;
1744     // counts are signed; centered at parallelism level == 0
1745 dl 1.355 int minActive = (short)(b & SMASK),
1746     maxTotal = b >>> SWIDTH,
1747     active = (int)(c >> RC_SHIFT),
1748 dl 1.366 total = (short)(c >>> TC_SHIFT),
1749     sp = (int)c & ~UNSIGNALLED;
1750 dl 1.393 if ((md & SMASK) == 0)
1751     return 0; // cannot compensate if parallelism zero
1752     else if (total >= 0) {
1753 dl 1.366 if (sp != 0) { // activate idle worker
1754     WorkQueue[] qs; int n; WorkQueue v;
1755     if ((qs = queues) != null && (n = qs.length) > 0 &&
1756     (v = qs[sp & (n - 1)]) != null) {
1757     Thread vt = v.owner;
1758     long nc = ((long)v.stackPred & SP_MASK) | (UC_MASK & c);
1759     if (compareAndSetCtl(c, nc)) {
1760     v.phase = sp;
1761     LockSupport.unpark(vt);
1762 dl 1.373 return UNCOMPENSATE;
1763 dl 1.366 }
1764 dl 1.355 }
1765 dl 1.366 return -1; // retry
1766     }
1767 dl 1.383 else if (active > minActive) { // reduce parallelism
1768 dl 1.366 long nc = ((RC_MASK & (c - RC_UNIT)) | (~RC_MASK & c));
1769 dl 1.373 return compareAndSetCtl(c, nc) ? UNCOMPENSATE : -1;
1770 dl 1.355 }
1771     }
1772 dl 1.366 if (total < maxTotal) { // expand pool
1773 dl 1.355 long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1774 dl 1.373 return (!compareAndSetCtl(c, nc) ? -1 :
1775     !createWorker() ? 0 : UNCOMPENSATE);
1776 dl 1.355 }
1777 dl 1.366 else if (!compareAndSetCtl(c, c)) // validate
1778 dl 1.355 return -1;
1779     else if ((sat = saturate) != null && sat.test(this))
1780     return 0;
1781     else
1782     throw new RejectedExecutionException(
1783     "Thread limit exceeded replacing blocked worker");
1784     }
1785    
1786     /**
1787     * Readjusts RC count; called from ForkJoinTask after blocking.
1788     */
1789     final void uncompensate() {
1790     getAndAddCtl(RC_UNIT);
1791 dl 1.243 }
1792    
1793     /**
1794 dl 1.355 * Helps if possible until the given task is done. Scans other
1795     * queues for a task produced by one of w's stealers; returning
1796     * compensated blocking sentinel if none are found.
1797 dl 1.345 *
1798 dl 1.355 * @param task the task
1799     * @param w caller's WorkQueue
1800 dl 1.396 * @param canHelp if false, compensate only
1801 dl 1.373 * @return task status on exit, or UNCOMPENSATE for compensated blocking
1802 dl 1.355 */
1803 dl 1.396 final int helpJoin(ForkJoinTask<?> task, WorkQueue w, boolean canHelp) {
1804 dl 1.355 int s = 0;
1805     if (task != null && w != null) {
1806     int wsrc = w.source, wid = w.config & SMASK, r = wid + 2;
1807     boolean scan = true;
1808     long c = 0L; // track ctl stability
1809     outer: for (;;) {
1810     if ((s = task.status) < 0)
1811     break;
1812 dl 1.375 else if (scan = !scan) { // previous scan was empty
1813 dl 1.372 if (mode < 0)
1814     ForkJoinTask.cancelIgnoringExceptions(task);
1815 dl 1.375 else if (c == (c = ctl) && (s = tryCompensate(c)) >= 0)
1816 dl 1.355 break; // block
1817     }
1818 dl 1.396 else if (canHelp) { // scan for subtasks
1819 dl 1.355 WorkQueue[] qs = queues;
1820     int n = (qs == null) ? 0 : qs.length, m = n - 1;
1821     for (int i = n; i > 0; i -= 2, r += 2) {
1822     int j; WorkQueue q, x, y; ForkJoinTask<?>[] a;
1823     if ((q = qs[j = r & m]) != null) {
1824     int sq = q.source & SMASK, cap, b;
1825     if ((a = q.array) != null && (cap = a.length) > 0) {
1826     int k = (cap - 1) & (b = q.base);
1827     int nextBase = b + 1, src = j | SRC, sx;
1828     ForkJoinTask<?> t = WorkQueue.getSlot(a, k);
1829     boolean eligible = sq == wid ||
1830     ((x = qs[sq & m]) != null && // indirect
1831     ((sx = (x.source & SMASK)) == wid ||
1832     ((y = qs[sx & m]) != null && // 2-indirect
1833     (y.source & SMASK) == wid)));
1834     if ((s = task.status) < 0)
1835     break outer;
1836     else if ((q.source & SMASK) != sq ||
1837     q.base != b)
1838     scan = true; // inconsistent
1839     else if (t == null)
1840     scan |= (a[nextBase & (cap - 1)] != null ||
1841     q.top != b); // lagging
1842     else if (eligible) {
1843     if (WorkQueue.casSlotToNull(a, k, t)) {
1844     q.base = nextBase;
1845     w.source = src;
1846     t.doExec();
1847     w.source = wsrc;
1848     }
1849     scan = true;
1850     break;
1851     }
1852     }
1853 dl 1.300 }
1854     }
1855     }
1856     }
1857     }
1858 dl 1.355 return s;
1859 dl 1.300 }
1860 dl 1.200
1861 dl 1.305 /**
1862 dl 1.366 * Extra helpJoin steps for CountedCompleters. Scans for and runs
1863     * subtasks of the given root task, returning if none are found.
1864 jsr166 1.356 *
1865 dl 1.355 * @param task root of CountedCompleter computation
1866     * @param w caller's WorkQueue
1867 dl 1.365 * @param owned true if owned by a ForkJoinWorkerThread
1868 dl 1.366 * @return task status on exit
1869 dl 1.305 */
1870 dl 1.365 final int helpComplete(ForkJoinTask<?> task, WorkQueue w, boolean owned) {
1871 dl 1.300 int s = 0;
1872 dl 1.355 if (task != null && w != null) {
1873     int r = w.config;
1874 dl 1.365 boolean scan = true, locals = true;
1875 dl 1.355 long c = 0L;
1876     outer: for (;;) {
1877     if (locals) { // try locals before scanning
1878     if ((s = w.helpComplete(task, owned, 0)) < 0)
1879 dl 1.345 break;
1880 dl 1.355 locals = false;
1881 dl 1.300 }
1882 dl 1.355 else if ((s = task.status) < 0)
1883 dl 1.300 break;
1884 dl 1.375 else if (scan = !scan) {
1885     if (c == (c = ctl))
1886     break;
1887     }
1888 dl 1.355 else { // scan for subtasks
1889     WorkQueue[] qs = queues;
1890     int n = (qs == null) ? 0 : qs.length;
1891     for (int i = n; i > 0; --i, ++r) {
1892     int j, cap, b; WorkQueue q; ForkJoinTask<?>[] a;
1893     boolean eligible = false;
1894     if ((q = qs[j = r & (n - 1)]) != null &&
1895     (a = q.array) != null && (cap = a.length) > 0) {
1896     int k = (cap - 1) & (b = q.base), nextBase = b + 1;
1897     ForkJoinTask<?> t = WorkQueue.getSlot(a, k);
1898     if (t instanceof CountedCompleter) {
1899     CountedCompleter<?> f = (CountedCompleter<?>)t;
1900     do {} while (!(eligible = (f == task)) &&
1901     (f = f.completer) != null);
1902     }
1903     if ((s = task.status) < 0)
1904     break outer;
1905     else if (q.base != b)
1906     scan = true; // inconsistent
1907     else if (t == null)
1908     scan |= (a[nextBase & (cap - 1)] != null ||
1909     q.top != b);
1910     else if (eligible) {
1911     if (WorkQueue.casSlotToNull(a, k, t)) {
1912     q.setBaseOpaque(nextBase);
1913     t.doExec();
1914     locals = true;
1915     }
1916     scan = true;
1917     break;
1918     }
1919     }
1920 dl 1.200 }
1921     }
1922 dl 1.178 }
1923     }
1924 dl 1.200 return s;
1925 dl 1.120 }
1926    
1927     /**
1928 dl 1.355 * Scans for and returns a polled task, if available. Used only
1929     * for untracked polls. Begins scan at an index (scanRover)
1930     * advanced on each call, to avoid systematic unfairness.
1931 dl 1.105 *
1932 dl 1.300 * @param submissionsOnly if true, only scan submission queues
1933 dl 1.19 */
1934 dl 1.300 private ForkJoinTask<?> pollScan(boolean submissionsOnly) {
1935 dl 1.355 VarHandle.acquireFence();
1936     int r = scanRover += 0x61c88647; // Weyl increment; raciness OK
1937     if (submissionsOnly) // even indices only
1938     r &= ~1;
1939     int step = (submissionsOnly) ? 2 : 1;
1940     WorkQueue[] qs; int n;
1941     while ((qs = queues) != null && (n = qs.length) > 0) {
1942     boolean scan = false;
1943     for (int i = 0; i < n; i += step) {
1944     int j, cap, b; WorkQueue q; ForkJoinTask<?>[] a;
1945     if ((q = qs[j = (n - 1) & (r + i)]) != null &&
1946     (a = q.array) != null && (cap = a.length) > 0) {
1947     int k = (cap - 1) & (b = q.base), nextBase = b + 1;
1948     ForkJoinTask<?> t = WorkQueue.getSlot(a, k);
1949     if (q.base != b)
1950     scan = true;
1951     else if (t == null)
1952     scan |= (q.top != b || a[nextBase & (cap - 1)] != null);
1953     else if (!WorkQueue.casSlotToNull(a, k, t))
1954     scan = true;
1955     else {
1956     q.setBaseOpaque(nextBase);
1957     return t;
1958 dl 1.300 }
1959 dl 1.178 }
1960 dl 1.52 }
1961 dl 1.355 if (!scan && queues == qs)
1962     break;
1963 dl 1.90 }
1964 dl 1.300 return null;
1965     }
1966    
1967     /**
1968 dl 1.366 * Runs tasks until {@code isQuiescent()}. Rather than blocking
1969     * when tasks cannot be found, rescans until all others cannot
1970     * find tasks either.
1971     *
1972     * @param nanos max wait time (Long.MAX_VALUE if effectively untimed)
1973     * @param interruptible true if return on interrupt
1974     * @return positive if quiescent, negative if interrupted, else 0
1975     */
1976     final int helpQuiescePool(WorkQueue w, long nanos, boolean interruptible) {
1977     if (w == null)
1978     return 0;
1979     long startTime = System.nanoTime(), parkTime = 0L;
1980     int prevSrc = w.source, wsrc = prevSrc, cfg = w.config, r = cfg + 1;
1981     for (boolean active = true, locals = true;;) {
1982     boolean busy = false, scan = false;
1983     if (locals) { // run local tasks before (re)polling
1984     locals = false;
1985     for (ForkJoinTask<?> u; (u = w.nextLocalTask(cfg)) != null;)
1986     u.doExec();
1987     }
1988     WorkQueue[] qs = queues;
1989     int n = (qs == null) ? 0 : qs.length;
1990     for (int i = n; i > 0; --i, ++r) {
1991     int j, b, cap; WorkQueue q; ForkJoinTask<?>[] a;
1992     if ((q = qs[j = (n - 1) & r]) != null && q != w &&
1993     (a = q.array) != null && (cap = a.length) > 0) {
1994     int k = (cap - 1) & (b = q.base);
1995     int nextBase = b + 1, src = j | SRC;
1996     ForkJoinTask<?> t = WorkQueue.getSlot(a, k);
1997     if (q.base != b)
1998     busy = scan = true;
1999     else if (t != null) {
2000     busy = scan = true;
2001     if (!active) { // increment before taking
2002     active = true;
2003     getAndAddCtl(RC_UNIT);
2004     }
2005     if (WorkQueue.casSlotToNull(a, k, t)) {
2006     q.base = nextBase;
2007     w.source = src;
2008     t.doExec();
2009     w.source = wsrc = prevSrc;
2010     locals = true;
2011     }
2012     break;
2013     }
2014     else if (!busy) {
2015     if (q.top != b || a[nextBase & (cap - 1)] != null)
2016     busy = scan = true;
2017     else if (q.source != QUIET && q.phase >= 0)
2018     busy = true;
2019     }
2020     }
2021     }
2022     VarHandle.acquireFence();
2023     if (!scan && queues == qs) {
2024     boolean interrupted;
2025     if (!busy) {
2026     w.source = prevSrc;
2027     if (!active)
2028     getAndAddCtl(RC_UNIT);
2029     return 1;
2030     }
2031     if (wsrc != QUIET)
2032     w.source = wsrc = QUIET;
2033     if (active) { // decrement
2034     active = false;
2035     parkTime = 0L;
2036     getAndAddCtl(RC_MASK & -RC_UNIT);
2037     }
2038     else if (parkTime == 0L) {
2039     parkTime = 1L << 10; // initially about 1 usec
2040     Thread.yield();
2041     }
2042     else if ((interrupted = interruptible && Thread.interrupted()) ||
2043     System.nanoTime() - startTime > nanos) {
2044     getAndAddCtl(RC_UNIT);
2045     return interrupted ? -1 : 0;
2046     }
2047     else {
2048     LockSupport.parkNanos(this, parkTime);
2049     if (parkTime < nanos >>> 8 && parkTime < 1L << 20)
2050     parkTime <<= 1; // max sleep approx 1 sec or 1% nanos
2051     }
2052     }
2053     }
2054     }
2055    
2056     /**
2057     * Helps quiesce from external caller until done, interrupted, or timeout
2058     *
2059     * @param nanos max wait time (Long.MAX_VALUE if effectively untimed)
2060     * @param interruptible true if return on interrupt
2061     * @return positive if quiescent, negative if interrupted, else 0
2062     */
2063     final int externalHelpQuiescePool(long nanos, boolean interruptible) {
2064     for (long startTime = System.nanoTime(), parkTime = 0L;;) {
2065     ForkJoinTask<?> t;
2066     if ((t = pollScan(false)) != null) {
2067     t.doExec();
2068     parkTime = 0L;
2069     }
2070     else if (canStop())
2071     return 1;
2072     else if (parkTime == 0L) {
2073     parkTime = 1L << 10;
2074     Thread.yield();
2075     }
2076     else if ((System.nanoTime() - startTime) > nanos)
2077     return 0;
2078     else if (interruptible && Thread.interrupted())
2079     return -1;
2080     else {
2081     LockSupport.parkNanos(this, parkTime);
2082     if (parkTime < nanos >>> 8 && parkTime < 1L << 20)
2083     parkTime <<= 1;
2084     }
2085     }
2086     }
2087    
2088     /**
2089 dl 1.300 * Gets and removes a local or stolen task for the given worker.
2090     *
2091     * @return a task, if available
2092     */
2093     final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2094     ForkJoinTask<?> t;
2095 dl 1.355 if (w == null || (t = w.nextLocalTask(w.config)) == null)
2096 dl 1.345 t = pollScan(false);
2097     return t;
2098 dl 1.90 }
2099    
2100 dl 1.300 // External operations
2101    
2102 dl 1.90 /**
2103 dl 1.355 * Finds and locks a WorkQueue for an external submitter, or
2104     * returns null if shutdown or terminating.
2105 dl 1.90 */
2106 dl 1.355 final WorkQueue submissionQueue() {
2107     int r;
2108 dl 1.300 if ((r = ThreadLocalRandom.getProbe()) == 0) {
2109 dl 1.355 ThreadLocalRandom.localInit(); // initialize caller's probe
2110 dl 1.300 r = ThreadLocalRandom.getProbe();
2111     }
2112 dl 1.355 for (int id = r << 1;;) { // even indices only
2113     int md = mode, n, i; WorkQueue q; ReentrantLock lock;
2114     WorkQueue[] qs = queues;
2115     if ((md & SHUTDOWN) != 0 || qs == null || (n = qs.length) <= 0)
2116     return null;
2117     else if ((q = qs[i = (n - 1) & id]) == null) {
2118     if ((lock = registrationLock) != null) {
2119     WorkQueue w = new WorkQueue(id | SRC);
2120     lock.lock(); // install under lock
2121     if (qs[i] == null)
2122     qs[i] = w; // else lost race; discard
2123     lock.unlock();
2124 dl 1.300 }
2125 dl 1.345 }
2126 dl 1.399 else if (!q.tryLock()) // move and restart
2127     id = (r = ThreadLocalRandom.advanceProbe(r)) << 1;
2128     else
2129 dl 1.397 return q;
2130 dl 1.90 }
2131     }
2132    
2133 dl 1.300 /**
2134 dl 1.355 * Adds the given task to an external submission queue, or throws
2135 jsr166 1.361 * exception if shutdown or terminating.
2136 dl 1.355 *
2137     * @param task the task. Caller must ensure non-null.
2138     */
2139     final void externalPush(ForkJoinTask<?> task) {
2140     WorkQueue q;
2141     if ((q = submissionQueue()) == null)
2142     throw new RejectedExecutionException(); // shutdown or disabled
2143     else if (q.lockedPush(task))
2144     signalWork();
2145     }
2146    
2147     /**
2148 dl 1.300 * Pushes a possibly-external submission.
2149     */
2150     private <T> ForkJoinTask<T> externalSubmit(ForkJoinTask<T> task) {
2151 dl 1.355 Thread t; ForkJoinWorkerThread wt; WorkQueue q;
2152 dl 1.300 if (task == null)
2153     throw new NullPointerException();
2154     if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) &&
2155 dl 1.355 (q = (wt = (ForkJoinWorkerThread)t).workQueue) != null &&
2156     wt.pool == this)
2157     q.push(task, this);
2158 dl 1.300 else
2159     externalPush(task);
2160     return task;
2161     }
2162    
2163     /**
2164 dl 1.355 * Returns common pool queue for an external thread that has
2165     * possibly ever submitted a common pool task (nonzero probe), or
2166     * null if none.
2167     */
2168     static WorkQueue commonQueue() {
2169     ForkJoinPool p; WorkQueue[] qs;
2170     int r = ThreadLocalRandom.getProbe(), n;
2171     return ((p = common) != null && (qs = p.queues) != null &&
2172     (n = qs.length) > 0 && r != 0) ?
2173     qs[(n - 1) & (r << 1)] : null;
2174 dl 1.300 }
2175 dl 1.90
2176     /**
2177 dl 1.396 * Returns queue for an external thread, if one exists
2178     */
2179     final WorkQueue externalQueue() {
2180     WorkQueue[] qs;
2181     int r = ThreadLocalRandom.getProbe(), n;
2182     return ((qs = queues) != null && (n = qs.length) > 0 && r != 0) ?
2183     qs[(n - 1) & (r << 1)] : null;
2184     }
2185    
2186     /**
2187 dl 1.355 * If the given executor is a ForkJoinPool, poll and execute
2188     * AsynchronousCompletionTasks from worker's queue until none are
2189     * available or blocker is released.
2190 dl 1.300 */
2191 dl 1.355 static void helpAsyncBlocker(Executor e, ManagedBlocker blocker) {
2192     WorkQueue w = null; Thread t; ForkJoinWorkerThread wt;
2193     if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) {
2194     if ((wt = (ForkJoinWorkerThread)t).pool == e)
2195     w = wt.workQueue;
2196     }
2197 dl 1.396 else if (e instanceof ForkJoinPool)
2198     w = ((ForkJoinPool)e).externalQueue();
2199 dl 1.355 if (w != null)
2200     w.helpAsyncBlocker(blocker);
2201 dl 1.14 }
2202    
2203     /**
2204 dl 1.105 * Returns a cheap heuristic guide for task partitioning when
2205     * programmers, frameworks, tools, or languages have little or no
2206 jsr166 1.222 * idea about task granularity. In essence, by offering this
2207 dl 1.105 * method, we ask users only about tradeoffs in overhead vs
2208     * expected throughput and its variance, rather than how finely to
2209     * partition tasks.
2210     *
2211     * In a steady state strict (tree-structured) computation, each
2212     * thread makes available for stealing enough tasks for other
2213     * threads to remain active. Inductively, if all threads play by
2214     * the same rules, each thread should make available only a
2215     * constant number of tasks.
2216     *
2217     * The minimum useful constant is just 1. But using a value of 1
2218     * would require immediate replenishment upon each steal to
2219     * maintain enough tasks, which is infeasible. Further,
2220     * partitionings/granularities of offered tasks should minimize
2221     * steal rates, which in general means that threads nearer the top
2222     * of computation tree should generate more than those nearer the
2223     * bottom. In perfect steady state, each thread is at
2224     * approximately the same level of computation tree. However,
2225     * producing extra tasks amortizes the uncertainty of progress and
2226     * diffusion assumptions.
2227     *
2228 jsr166 1.161 * So, users will want to use values larger (but not much larger)
2229 dl 1.105 * than 1 to both smooth over transient shortages and hedge
2230     * against uneven progress; as traded off against the cost of
2231     * extra task overhead. We leave the user to pick a threshold
2232     * value to compare with the results of this call to guide
2233     * decisions, but recommend values such as 3.
2234     *
2235     * When all threads are active, it is on average OK to estimate
2236     * surplus strictly locally. In steady-state, if one thread is
2237     * maintaining say 2 surplus tasks, then so are others. So we can
2238     * just use estimated queue length. However, this strategy alone
2239     * leads to serious mis-estimates in some non-steady-state
2240     * conditions (ramp-up, ramp-down, other stalls). We can detect
2241     * many of these by further considering the number of "idle"
2242     * threads, that are known to have zero queued tasks, so
2243     * compensate by a factor of (#idle/#active) threads.
2244     */
2245     static int getSurplusQueuedTaskCount() {
2246     Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2247 dl 1.300 if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) &&
2248     (pool = (wt = (ForkJoinWorkerThread)t).pool) != null &&
2249     (q = wt.workQueue) != null) {
2250     int p = pool.mode & SMASK;
2251     int a = p + (int)(pool.ctl >> RC_SHIFT);
2252     int n = q.top - q.base;
2253 dl 1.112 return n - (a > (p >>>= 1) ? 0 :
2254     a > (p >>>= 1) ? 1 :
2255     a > (p >>>= 1) ? 2 :
2256     a > (p >>>= 1) ? 4 :
2257     8);
2258 dl 1.105 }
2259     return 0;
2260 dl 1.100 }
2261    
2262 dl 1.300 // Termination
2263 dl 1.14
2264     /**
2265 dl 1.210 * Possibly initiates and/or completes termination.
2266 dl 1.14 *
2267     * @param now if true, unconditionally terminate, else only
2268 dl 1.78 * if no work and no active workers
2269 dl 1.243 * @param enable if true, terminate when next possible
2270 dl 1.300 * @return true if terminating or terminated
2271 jsr166 1.1 */
2272 dl 1.300 private boolean tryTerminate(boolean now, boolean enable) {
2273 dl 1.355 int md; // try to set SHUTDOWN, then STOP, then help terminate
2274     if (((md = mode) & SHUTDOWN) == 0) {
2275     if (!enable)
2276     return false;
2277     md = getAndBitwiseOrMode(SHUTDOWN);
2278     }
2279     if ((md & STOP) == 0) {
2280 dl 1.366 if (!now && !canStop())
2281 dl 1.300 return false;
2282 dl 1.355 md = getAndBitwiseOrMode(STOP);
2283 dl 1.289 }
2284 dl 1.394 for (boolean rescan = true;;) { // repeat until no changes
2285     boolean changed = false;
2286     for (ForkJoinTask<?> t; (t = pollScan(false)) != null; ) {
2287     changed = true;
2288 dl 1.389 ForkJoinTask.cancelIgnoringExceptions(t); // help cancel
2289 dl 1.394 }
2290 dl 1.366 WorkQueue[] qs; int n; WorkQueue q; Thread thread;
2291     if ((qs = queues) != null && (n = qs.length) > 0) {
2292     for (int j = 1; j < n; j += 2) { // unblock other workers
2293     if ((q = qs[j]) != null && (thread = q.owner) != null &&
2294     !thread.isInterrupted()) {
2295 dl 1.394 changed = true;
2296 dl 1.366 try {
2297     thread.interrupt();
2298     } catch (Throwable ignore) {
2299     }
2300 dl 1.203 }
2301     }
2302     }
2303 dl 1.366 ReentrantLock lock; Condition cond; // signal when no workers
2304 dl 1.389 if (((md = mode) & TERMINATED) == 0 &&
2305     (md & SMASK) + (short)(ctl >>> TC_SHIFT) <= 0 &&
2306 dl 1.355 (getAndBitwiseOrMode(TERMINATED) & TERMINATED) == 0 &&
2307     (lock = registrationLock) != null) {
2308     lock.lock();
2309     if ((cond = termination) != null)
2310     cond.signalAll();
2311     lock.unlock();
2312 dl 1.200 }
2313 dl 1.394 if (changed)
2314     rescan = true;
2315     else if (rescan)
2316     rescan = false;
2317     else
2318     break;
2319 dl 1.52 }
2320 dl 1.300 return true;
2321 dl 1.105 }
2322    
2323 dl 1.52 // Exported methods
2324 jsr166 1.1
2325     // Constructors
2326    
2327     /**
2328 jsr166 1.9 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2329 dl 1.300 * java.lang.Runtime#availableProcessors}, using defaults for all
2330 dl 1.319 * other parameters (see {@link #ForkJoinPool(int,
2331     * ForkJoinWorkerThreadFactory, UncaughtExceptionHandler, boolean,
2332     * int, int, int, Predicate, long, TimeUnit)}).
2333 jsr166 1.1 *
2334     * @throws SecurityException if a security manager exists and
2335     * the caller is not permitted to modify threads
2336     * because it does not hold {@link
2337     * java.lang.RuntimePermission}{@code ("modifyThread")}
2338     */
2339     public ForkJoinPool() {
2340 jsr166 1.148 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2341 dl 1.300 defaultForkJoinWorkerThreadFactory, null, false,
2342 dl 1.307 0, MAX_CAP, 1, null, DEFAULT_KEEPALIVE, TimeUnit.MILLISECONDS);
2343 jsr166 1.1 }
2344    
2345     /**
2346 jsr166 1.9 * Creates a {@code ForkJoinPool} with the indicated parallelism
2347 dl 1.319 * level, using defaults for all other parameters (see {@link
2348     * #ForkJoinPool(int, ForkJoinWorkerThreadFactory,
2349     * UncaughtExceptionHandler, boolean, int, int, int, Predicate,
2350     * long, TimeUnit)}).
2351 jsr166 1.1 *
2352 jsr166 1.9 * @param parallelism the parallelism level
2353 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
2354 jsr166 1.11 * equal to zero, or greater than implementation limit
2355 jsr166 1.1 * @throws SecurityException if a security manager exists and
2356     * the caller is not permitted to modify threads
2357     * because it does not hold {@link
2358     * java.lang.RuntimePermission}{@code ("modifyThread")}
2359     */
2360     public ForkJoinPool(int parallelism) {
2361 dl 1.300 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false,
2362 dl 1.307 0, MAX_CAP, 1, null, DEFAULT_KEEPALIVE, TimeUnit.MILLISECONDS);
2363 jsr166 1.1 }
2364    
2365     /**
2366 dl 1.300 * Creates a {@code ForkJoinPool} with the given parameters (using
2367 dl 1.319 * defaults for others -- see {@link #ForkJoinPool(int,
2368     * ForkJoinWorkerThreadFactory, UncaughtExceptionHandler, boolean,
2369     * int, int, int, Predicate, long, TimeUnit)}).
2370 jsr166 1.1 *
2371 dl 1.18 * @param parallelism the parallelism level. For default value,
2372     * use {@link java.lang.Runtime#availableProcessors}.
2373     * @param factory the factory for creating new threads. For default value,
2374     * use {@link #defaultForkJoinWorkerThreadFactory}.
2375 dl 1.19 * @param handler the handler for internal worker threads that
2376     * terminate due to unrecoverable errors encountered while executing
2377 jsr166 1.31 * tasks. For default value, use {@code null}.
2378 dl 1.19 * @param asyncMode if true,
2379 dl 1.18 * establishes local first-in-first-out scheduling mode for forked
2380     * tasks that are never joined. This mode may be more appropriate
2381     * than default locally stack-based mode in applications in which
2382     * worker threads only process event-style asynchronous tasks.
2383 jsr166 1.31 * For default value, use {@code false}.
2384 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
2385 jsr166 1.11 * equal to zero, or greater than implementation limit
2386     * @throws NullPointerException if the factory is null
2387 jsr166 1.1 * @throws SecurityException if a security manager exists and
2388     * the caller is not permitted to modify threads
2389     * because it does not hold {@link
2390     * java.lang.RuntimePermission}{@code ("modifyThread")}
2391     */
2392 dl 1.19 public ForkJoinPool(int parallelism,
2393 dl 1.18 ForkJoinWorkerThreadFactory factory,
2394 jsr166 1.156 UncaughtExceptionHandler handler,
2395 dl 1.18 boolean asyncMode) {
2396 dl 1.300 this(parallelism, factory, handler, asyncMode,
2397 dl 1.307 0, MAX_CAP, 1, null, DEFAULT_KEEPALIVE, TimeUnit.MILLISECONDS);
2398 dl 1.152 }
2399    
2400 dl 1.300 /**
2401     * Creates a {@code ForkJoinPool} with the given parameters.
2402     *
2403     * @param parallelism the parallelism level. For default value,
2404     * use {@link java.lang.Runtime#availableProcessors}.
2405     *
2406     * @param factory the factory for creating new threads. For
2407     * default value, use {@link #defaultForkJoinWorkerThreadFactory}.
2408     *
2409     * @param handler the handler for internal worker threads that
2410     * terminate due to unrecoverable errors encountered while
2411     * executing tasks. For default value, use {@code null}.
2412     *
2413     * @param asyncMode if true, establishes local first-in-first-out
2414     * scheduling mode for forked tasks that are never joined. This
2415     * mode may be more appropriate than default locally stack-based
2416     * mode in applications in which worker threads only process
2417     * event-style asynchronous tasks. For default value, use {@code
2418     * false}.
2419     *
2420     * @param corePoolSize the number of threads to keep in the pool
2421     * (unless timed out after an elapsed keep-alive). Normally (and
2422     * by default) this is the same value as the parallelism level,
2423     * but may be set to a larger value to reduce dynamic overhead if
2424     * tasks regularly block. Using a smaller value (for example
2425     * {@code 0}) has the same effect as the default.
2426     *
2427     * @param maximumPoolSize the maximum number of threads allowed.
2428     * When the maximum is reached, attempts to replace blocked
2429     * threads fail. (However, because creation and termination of
2430     * different threads may overlap, and may be managed by the given
2431 dl 1.307 * thread factory, this value may be transiently exceeded.) To
2432     * arrange the same value as is used by default for the common
2433 dl 1.319 * pool, use {@code 256} plus the {@code parallelism} level. (By
2434     * default, the common pool allows a maximum of 256 spare
2435     * threads.) Using a value (for example {@code
2436     * Integer.MAX_VALUE}) larger than the implementation's total
2437     * thread limit has the same effect as using this limit (which is
2438     * the default).
2439 dl 1.300 *
2440     * @param minimumRunnable the minimum allowed number of core
2441     * threads not blocked by a join or {@link ManagedBlocker}. To
2442     * ensure progress, when too few unblocked threads exist and
2443     * unexecuted tasks may exist, new threads are constructed, up to
2444     * the given maximumPoolSize. For the default value, use {@code
2445     * 1}, that ensures liveness. A larger value might improve
2446     * throughput in the presence of blocked activities, but might
2447     * not, due to increased overhead. A value of zero may be
2448     * acceptable when submitted tasks cannot have dependencies
2449     * requiring additional threads.
2450     *
2451 jsr166 1.318 * @param saturate if non-null, a predicate invoked upon attempts
2452 dl 1.307 * to create more than the maximum total allowed threads. By
2453     * default, when a thread is about to block on a join or {@link
2454     * ManagedBlocker}, but cannot be replaced because the
2455     * maximumPoolSize would be exceeded, a {@link
2456     * RejectedExecutionException} is thrown. But if this predicate
2457     * returns {@code true}, then no exception is thrown, so the pool
2458     * continues to operate with fewer than the target number of
2459     * runnable threads, which might not ensure progress.
2460 dl 1.300 *
2461     * @param keepAliveTime the elapsed time since last use before
2462     * a thread is terminated (and then later replaced if needed).
2463     * For the default value, use {@code 60, TimeUnit.SECONDS}.
2464     *
2465     * @param unit the time unit for the {@code keepAliveTime} argument
2466     *
2467     * @throws IllegalArgumentException if parallelism is less than or
2468     * equal to zero, or is greater than implementation limit,
2469     * or if maximumPoolSize is less than parallelism,
2470     * of if the keepAliveTime is less than or equal to zero.
2471     * @throws NullPointerException if the factory is null
2472     * @throws SecurityException if a security manager exists and
2473     * the caller is not permitted to modify threads
2474     * because it does not hold {@link
2475     * java.lang.RuntimePermission}{@code ("modifyThread")}
2476 jsr166 1.306 * @since 9
2477 dl 1.300 */
2478     public ForkJoinPool(int parallelism,
2479     ForkJoinWorkerThreadFactory factory,
2480     UncaughtExceptionHandler handler,
2481     boolean asyncMode,
2482     int corePoolSize,
2483     int maximumPoolSize,
2484     int minimumRunnable,
2485 dl 1.307 Predicate<? super ForkJoinPool> saturate,
2486 dl 1.300 long keepAliveTime,
2487     TimeUnit unit) {
2488 dl 1.355 checkPermission();
2489     int p = parallelism;
2490     if (p <= 0 || p > MAX_CAP || p > maximumPoolSize || keepAliveTime <= 0L)
2491 dl 1.152 throw new IllegalArgumentException();
2492 dl 1.355 if (factory == null || unit == null)
2493 dl 1.14 throw new NullPointerException();
2494 dl 1.300 this.factory = factory;
2495     this.ueh = handler;
2496 dl 1.307 this.saturate = saturate;
2497 dl 1.355 this.keepAlive = Math.max(unit.toMillis(keepAliveTime), TIMEOUT_SLOP);
2498     int size = 1 << (33 - Integer.numberOfLeadingZeros(p - 1));
2499     int corep = Math.min(Math.max(corePoolSize, p), MAX_CAP);
2500     int maxSpares = Math.min(maximumPoolSize, MAX_CAP) - p;
2501     int minAvail = Math.min(Math.max(minimumRunnable, 0), MAX_CAP);
2502     this.bounds = ((minAvail - p) & SMASK) | (maxSpares << SWIDTH);
2503     this.mode = p | (asyncMode ? FIFO : 0);
2504     this.ctl = ((((long)(-corep) << TC_SHIFT) & TC_MASK) |
2505     (((long)(-p) << RC_SHIFT) & RC_MASK));
2506     this.registrationLock = new ReentrantLock();
2507     this.queues = new WorkQueue[size];
2508     String pid = Integer.toString(getAndAddPoolIds(1) + 1);
2509     this.workerNamePrefix = "ForkJoinPool-" + pid + "-worker-";
2510 dl 1.152 }
2511    
2512 dl 1.355 // helper method for commonPool constructor
2513 jsr166 1.334 private static Object newInstanceFromSystemProperty(String property)
2514 jsr166 1.327 throws ReflectiveOperationException {
2515     String className = System.getProperty(property);
2516     return (className == null)
2517     ? null
2518     : ClassLoader.getSystemClassLoader().loadClass(className)
2519     .getConstructor().newInstance();
2520     }
2521    
2522 dl 1.152 /**
2523 dl 1.300 * Constructor for common pool using parameters possibly
2524     * overridden by system properties
2525     */
2526     private ForkJoinPool(byte forCommonPoolOnly) {
2527 dl 1.355 int parallelism = Runtime.getRuntime().availableProcessors() - 1;
2528 dl 1.300 ForkJoinWorkerThreadFactory fac = null;
2529     UncaughtExceptionHandler handler = null;
2530     try { // ignore exceptions in accessing/parsing properties
2531 dl 1.355 fac = (ForkJoinWorkerThreadFactory) newInstanceFromSystemProperty(
2532     "java.util.concurrent.ForkJoinPool.common.threadFactory");
2533     handler = (UncaughtExceptionHandler) newInstanceFromSystemProperty(
2534     "java.util.concurrent.ForkJoinPool.common.exceptionHandler");
2535 dl 1.300 String pp = System.getProperty
2536     ("java.util.concurrent.ForkJoinPool.common.parallelism");
2537     if (pp != null)
2538     parallelism = Integer.parseInt(pp);
2539     } catch (Exception ignore) {
2540     }
2541 dl 1.18 this.ueh = handler;
2542 dl 1.355 this.keepAlive = DEFAULT_KEEPALIVE;
2543 dl 1.307 this.saturate = null;
2544 dl 1.355 this.workerNamePrefix = null;
2545 dl 1.397 int p = Math.min(Math.max(parallelism, 0), MAX_CAP), size;
2546     if (p > 0) {
2547     size = 1 << (33 - Integer.numberOfLeadingZeros(p - 1));
2548     this.bounds = ((1 - p) & SMASK) | (COMMON_MAX_SPARES << SWIDTH);
2549     this.ctl = ((((long)(-p) << TC_SHIFT) & TC_MASK) |
2550     (((long)(-p) << RC_SHIFT) & RC_MASK));
2551     } else { // zero min, max, spare counts, 1 slot
2552     size = 1;
2553     this.bounds = 0;
2554     this.ctl = 0L;
2555     }
2556     this.factory = (fac != null) ? fac :
2557     new DefaultCommonPoolForkJoinWorkerThreadFactory();
2558 dl 1.355 this.queues = new WorkQueue[size];
2559     this.registrationLock = new ReentrantLock();
2560 dl 1.101 }
2561    
2562     /**
2563 dl 1.128 * Returns the common pool instance. This pool is statically
2564 dl 1.134 * constructed; its run state is unaffected by attempts to {@link
2565     * #shutdown} or {@link #shutdownNow}. However this pool and any
2566     * ongoing processing are automatically terminated upon program
2567     * {@link System#exit}. Any program that relies on asynchronous
2568     * task processing to complete before program termination should
2569 jsr166 1.158 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2570     * before exit.
2571 dl 1.100 *
2572     * @return the common pool instance
2573 jsr166 1.138 * @since 1.8
2574 dl 1.100 */
2575     public static ForkJoinPool commonPool() {
2576 dl 1.134 // assert common != null : "static init error";
2577     return common;
2578 dl 1.100 }
2579    
2580 jsr166 1.1 // Execution methods
2581    
2582     /**
2583     * Performs the given task, returning its result upon completion.
2584 dl 1.52 * If the computation encounters an unchecked Exception or Error,
2585     * it is rethrown as the outcome of this invocation. Rethrown
2586     * exceptions behave in the same way as regular exceptions, but,
2587     * when possible, contain stack traces (as displayed for example
2588     * using {@code ex.printStackTrace()}) of both the current thread
2589     * as well as the thread actually encountering the exception;
2590     * minimally only the latter.
2591 jsr166 1.1 *
2592     * @param task the task
2593 jsr166 1.191 * @param <T> the type of the task's result
2594 jsr166 1.1 * @return the task's result
2595 jsr166 1.11 * @throws NullPointerException if the task is null
2596     * @throws RejectedExecutionException if the task cannot be
2597     * scheduled for execution
2598 jsr166 1.1 */
2599     public <T> T invoke(ForkJoinTask<T> task) {
2600 dl 1.243 externalSubmit(task);
2601 dl 1.395 return task.joinForPoolInvoke(this);
2602 jsr166 1.1 }
2603    
2604     /**
2605     * Arranges for (asynchronous) execution of the given task.
2606     *
2607     * @param task the task
2608 jsr166 1.11 * @throws NullPointerException if the task is null
2609     * @throws RejectedExecutionException if the task cannot be
2610     * scheduled for execution
2611 jsr166 1.1 */
2612 jsr166 1.8 public void execute(ForkJoinTask<?> task) {
2613 dl 1.243 externalSubmit(task);
2614 jsr166 1.1 }
2615    
2616     // AbstractExecutorService methods
2617    
2618 jsr166 1.11 /**
2619     * @throws NullPointerException if the task is null
2620     * @throws RejectedExecutionException if the task cannot be
2621     * scheduled for execution
2622     */
2623 dl 1.355 @Override
2624     @SuppressWarnings("unchecked")
2625 jsr166 1.1 public void execute(Runnable task) {
2626 dl 1.355 externalSubmit((task instanceof ForkJoinTask<?>)
2627     ? (ForkJoinTask<Void>) task // avoid re-wrap
2628     : new ForkJoinTask.RunnableExecuteAction(task));
2629 jsr166 1.1 }
2630    
2631 jsr166 1.11 /**
2632 dl 1.18 * Submits a ForkJoinTask for execution.
2633     *
2634     * @param task the task to submit
2635 jsr166 1.191 * @param <T> the type of the task's result
2636 dl 1.18 * @return the task
2637     * @throws NullPointerException if the task is null
2638     * @throws RejectedExecutionException if the task cannot be
2639     * scheduled for execution
2640     */
2641     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2642 dl 1.243 return externalSubmit(task);
2643 dl 1.18 }
2644    
2645     /**
2646 jsr166 1.11 * @throws NullPointerException if the task is null
2647     * @throws RejectedExecutionException if the task cannot be
2648     * scheduled for execution
2649     */
2650 dl 1.355 @Override
2651 jsr166 1.1 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2652 dl 1.243 return externalSubmit(new ForkJoinTask.AdaptedCallable<T>(task));
2653 jsr166 1.1 }
2654    
2655 jsr166 1.11 /**
2656     * @throws NullPointerException if the task is null
2657     * @throws RejectedExecutionException if the task cannot be
2658     * scheduled for execution
2659     */
2660 dl 1.355 @Override
2661 jsr166 1.1 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2662 dl 1.243 return externalSubmit(new ForkJoinTask.AdaptedRunnable<T>(task, result));
2663 jsr166 1.1 }
2664    
2665 jsr166 1.11 /**
2666     * @throws NullPointerException if the task is null
2667     * @throws RejectedExecutionException if the task cannot be
2668     * scheduled for execution
2669     */
2670 dl 1.355 @Override
2671 jsr166 1.335 @SuppressWarnings("unchecked")
2672 jsr166 1.1 public ForkJoinTask<?> submit(Runnable task) {
2673 jsr166 1.335 return externalSubmit((task instanceof ForkJoinTask<?>)
2674     ? (ForkJoinTask<Void>) task // avoid re-wrap
2675     : new ForkJoinTask.AdaptedRunnableAction(task));
2676 jsr166 1.1 }
2677    
2678     /**
2679 jsr166 1.11 * @throws NullPointerException {@inheritDoc}
2680     * @throws RejectedExecutionException {@inheritDoc}
2681     */
2682 dl 1.355 @Override
2683 jsr166 1.1 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2684 dl 1.366 ArrayList<Future<T>> futures = new ArrayList<>(tasks.size());
2685     try {
2686     for (Callable<T> t : tasks) {
2687 dl 1.367 ForkJoinTask<T> f =
2688     new ForkJoinTask.AdaptedInterruptibleCallable<T>(t);
2689 dl 1.366 futures.add(f);
2690 dl 1.391 externalSubmit(f);
2691 dl 1.366 }
2692     for (int i = futures.size() - 1; i >= 0; --i)
2693 dl 1.396 ((ForkJoinTask<?>)futures.get(i)).awaitPoolInvoke(this);
2694 dl 1.366 return futures;
2695     } catch (Throwable t) {
2696     for (Future<T> e : futures)
2697     ForkJoinTask.cancelIgnoringExceptions(e);
2698     throw t;
2699     }
2700 dl 1.355 }
2701    
2702     @Override
2703     public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks,
2704     long timeout, TimeUnit unit)
2705     throws InterruptedException {
2706 dl 1.366 long nanos = unit.toNanos(timeout);
2707     ArrayList<Future<T>> futures = new ArrayList<>(tasks.size());
2708     try {
2709     for (Callable<T> t : tasks) {
2710 dl 1.367 ForkJoinTask<T> f =
2711     new ForkJoinTask.AdaptedInterruptibleCallable<T>(t);
2712 dl 1.366 futures.add(f);
2713 dl 1.391 externalSubmit(f);
2714 dl 1.366 }
2715     long startTime = System.nanoTime(), ns = nanos;
2716     boolean timedOut = (ns < 0L);
2717     for (int i = futures.size() - 1; i >= 0; --i) {
2718     Future<T> f = futures.get(i);
2719     if (!f.isDone()) {
2720     if (timedOut)
2721     ForkJoinTask.cancelIgnoringExceptions(f);
2722     else {
2723 dl 1.396 ((ForkJoinTask<T>)f).awaitPoolInvoke(this, ns);
2724 dl 1.366 if ((ns = nanos - (System.nanoTime() - startTime)) < 0L)
2725     timedOut = true;
2726     }
2727     }
2728 dl 1.355 }
2729 dl 1.366 return futures;
2730     } catch (Throwable t) {
2731     for (Future<T> e : futures)
2732     ForkJoinTask.cancelIgnoringExceptions(e);
2733     throw t;
2734 dl 1.355 }
2735 jsr166 1.1 }
2736    
2737 dl 1.367 // Task to hold results from InvokeAnyTasks
2738     static final class InvokeAnyRoot<E> extends ForkJoinTask<E> {
2739     private static final long serialVersionUID = 2838392045355241008L;
2740     @SuppressWarnings("serial") // Conditionally serializable
2741     volatile E result;
2742 dl 1.391 final AtomicInteger count; // in case all throw
2743     final ForkJoinPool pool; // to check shutdown while collecting
2744     InvokeAnyRoot(int n, ForkJoinPool p) {
2745     pool = p;
2746     count = new AtomicInteger(n);
2747     }
2748 dl 1.367 final void tryComplete(Callable<E> c) { // called by InvokeAnyTasks
2749 jsr166 1.384 Throwable ex = null;
2750 dl 1.394 boolean failed;
2751     if (c == null || Thread.interrupted() ||
2752     (pool != null && pool.mode < 0))
2753     failed = true;
2754     else if (isDone())
2755     failed = false;
2756     else {
2757 dl 1.390 try {
2758     complete(c.call());
2759 dl 1.394 failed = false;
2760 dl 1.390 } catch (Throwable tx) {
2761     ex = tx;
2762 jsr166 1.384 failed = true;
2763     }
2764     }
2765 dl 1.391 if ((pool != null && pool.mode < 0) ||
2766     (failed && count.getAndDecrement() <= 1))
2767 jsr166 1.384 trySetThrown(ex != null ? ex : new CancellationException());
2768 dl 1.367 }
2769     public final boolean exec() { return false; } // never forked
2770     public final E getRawResult() { return result; }
2771     public final void setRawResult(E v) { result = v; }
2772     }
2773    
2774     // Variant of AdaptedInterruptibleCallable with results in InvokeAnyRoot
2775     static final class InvokeAnyTask<E> extends ForkJoinTask<E> {
2776     private static final long serialVersionUID = 2838392045355241008L;
2777     final InvokeAnyRoot<E> root;
2778     @SuppressWarnings("serial") // Conditionally serializable
2779     final Callable<E> callable;
2780     transient volatile Thread runner;
2781     InvokeAnyTask(InvokeAnyRoot<E> root, Callable<E> callable) {
2782     this.root = root;
2783     this.callable = callable;
2784     }
2785     public final boolean exec() {
2786     Thread.interrupted();
2787     runner = Thread.currentThread();
2788     root.tryComplete(callable);
2789     runner = null;
2790     Thread.interrupted();
2791     return true;
2792     }
2793     public final boolean cancel(boolean mayInterruptIfRunning) {
2794     Thread t;
2795     boolean stat = super.cancel(false);
2796     if (mayInterruptIfRunning && (t = runner) != null) {
2797     try {
2798     t.interrupt();
2799     } catch (Throwable ignore) {
2800     }
2801     }
2802     return stat;
2803     }
2804     public final void setRawResult(E v) {} // unused
2805     public final E getRawResult() { return null; }
2806     }
2807    
2808     @Override
2809     public <T> T invokeAny(Collection<? extends Callable<T>> tasks)
2810     throws InterruptedException, ExecutionException {
2811     int n = tasks.size();
2812     if (n <= 0)
2813     throw new IllegalArgumentException();
2814 dl 1.390 InvokeAnyRoot<T> root = new InvokeAnyRoot<T>(n, this);
2815 dl 1.367 ArrayList<InvokeAnyTask<T>> fs = new ArrayList<>(n);
2816     try {
2817 dl 1.390 for (Callable<T> c : tasks) {
2818     if (c == null)
2819     throw new NullPointerException();
2820     InvokeAnyTask<T> f = new InvokeAnyTask<T>(root, c);
2821     fs.add(f);
2822 dl 1.391 externalSubmit(f);
2823 dl 1.390 if (root.isDone())
2824     break;
2825     }
2826 dl 1.395 return root.getForPoolInvoke(this);
2827 dl 1.367 } finally {
2828     for (InvokeAnyTask<T> f : fs)
2829 dl 1.369 ForkJoinTask.cancelIgnoringExceptions(f);
2830 dl 1.367 }
2831     }
2832    
2833     @Override
2834     public <T> T invokeAny(Collection<? extends Callable<T>> tasks,
2835     long timeout, TimeUnit unit)
2836     throws InterruptedException, ExecutionException, TimeoutException {
2837     long nanos = unit.toNanos(timeout);
2838     int n = tasks.size();
2839     if (n <= 0)
2840     throw new IllegalArgumentException();
2841 dl 1.390 InvokeAnyRoot<T> root = new InvokeAnyRoot<T>(n, this);
2842 dl 1.367 ArrayList<InvokeAnyTask<T>> fs = new ArrayList<>(n);
2843     try {
2844 dl 1.390 for (Callable<T> c : tasks) {
2845     if (c == null)
2846     throw new NullPointerException();
2847     InvokeAnyTask<T> f = new InvokeAnyTask<T>(root, c);
2848     fs.add(f);
2849 dl 1.391 externalSubmit(f);
2850 dl 1.390 if (root.isDone())
2851     break;
2852     }
2853 dl 1.395 return root.getForPoolInvoke(this, nanos);
2854 dl 1.367 } finally {
2855     for (InvokeAnyTask<T> f : fs)
2856 dl 1.369 ForkJoinTask.cancelIgnoringExceptions(f);
2857 dl 1.367 }
2858     }
2859    
2860 jsr166 1.1 /**
2861     * Returns the factory used for constructing new workers.
2862     *
2863     * @return the factory used for constructing new workers
2864     */
2865     public ForkJoinWorkerThreadFactory getFactory() {
2866     return factory;
2867     }
2868    
2869     /**
2870     * Returns the handler for internal worker threads that terminate
2871     * due to unrecoverable errors encountered while executing tasks.
2872     *
2873 jsr166 1.4 * @return the handler, or {@code null} if none
2874 jsr166 1.1 */
2875 jsr166 1.156 public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2876 dl 1.14 return ueh;
2877 jsr166 1.1 }
2878    
2879     /**
2880 jsr166 1.9 * Returns the targeted parallelism level of this pool.
2881 jsr166 1.1 *
2882 jsr166 1.9 * @return the targeted parallelism level of this pool
2883 jsr166 1.1 */
2884     public int getParallelism() {
2885 dl 1.310 int par = mode & SMASK;
2886     return (par > 0) ? par : 1;
2887 jsr166 1.1 }
2888    
2889     /**
2890 dl 1.100 * Returns the targeted parallelism level of the common pool.
2891     *
2892     * @return the targeted parallelism level of the common pool
2893 jsr166 1.138 * @since 1.8
2894 dl 1.100 */
2895     public static int getCommonPoolParallelism() {
2896 jsr166 1.274 return COMMON_PARALLELISM;
2897 dl 1.100 }
2898    
2899     /**
2900 jsr166 1.1 * Returns the number of worker threads that have started but not
2901 jsr166 1.34 * yet terminated. The result returned by this method may differ
2902 jsr166 1.4 * from {@link #getParallelism} when threads are created to
2903 jsr166 1.1 * maintain parallelism when others are cooperatively blocked.
2904     *
2905     * @return the number of worker threads
2906     */
2907     public int getPoolSize() {
2908 dl 1.300 return ((mode & SMASK) + (short)(ctl >>> TC_SHIFT));
2909 jsr166 1.1 }
2910    
2911     /**
2912 jsr166 1.4 * Returns {@code true} if this pool uses local first-in-first-out
2913 jsr166 1.1 * scheduling mode for forked tasks that are never joined.
2914     *
2915 jsr166 1.4 * @return {@code true} if this pool uses async mode
2916 jsr166 1.1 */
2917     public boolean getAsyncMode() {
2918 dl 1.300 return (mode & FIFO) != 0;
2919 jsr166 1.1 }
2920    
2921     /**
2922     * Returns an estimate of the number of worker threads that are
2923     * not blocked waiting to join tasks or for other managed
2924 dl 1.14 * synchronization. This method may overestimate the
2925     * number of running threads.
2926 jsr166 1.1 *
2927     * @return the number of worker threads
2928     */
2929     public int getRunningThreadCount() {
2930 dl 1.345 VarHandle.acquireFence();
2931 dl 1.355 WorkQueue[] qs; WorkQueue q;
2932 jsr166 1.344 int rc = 0;
2933 dl 1.355 if ((qs = queues) != null) {
2934     for (int i = 1; i < qs.length; i += 2) {
2935     if ((q = qs[i]) != null && q.isApparentlyUnblocked())
2936 dl 1.78 ++rc;
2937     }
2938     }
2939     return rc;
2940 jsr166 1.1 }
2941    
2942     /**
2943     * Returns an estimate of the number of threads that are currently
2944     * stealing or executing tasks. This method may overestimate the
2945     * number of active threads.
2946     *
2947     * @return the number of active threads
2948     */
2949     public int getActiveThreadCount() {
2950 dl 1.300 int r = (mode & SMASK) + (int)(ctl >> RC_SHIFT);
2951 jsr166 1.63 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2952 jsr166 1.1 }
2953    
2954     /**
2955 jsr166 1.4 * Returns {@code true} if all worker threads are currently idle.
2956     * An idle worker is one that cannot obtain a task to execute
2957     * because none are available to steal from other threads, and
2958     * there are no pending submissions to the pool. This method is
2959     * conservative; it might not return {@code true} immediately upon
2960     * idleness of all threads, but will eventually become true if
2961     * threads remain inactive.
2962 jsr166 1.1 *
2963 jsr166 1.4 * @return {@code true} if all threads are currently idle
2964 jsr166 1.1 */
2965     public boolean isQuiescent() {
2966 dl 1.366 return canStop();
2967 jsr166 1.1 }
2968    
2969     /**
2970 dl 1.354 * Returns an estimate of the total number of completed tasks that
2971     * were executed by a thread other than their submitter. The
2972     * reported value underestimates the actual total number of steals
2973     * when the pool is not quiescent. This value may be useful for
2974     * monitoring and tuning fork/join programs: in general, steal
2975     * counts should be high enough to keep threads busy, but low
2976     * enough to avoid overhead and contention across threads.
2977 jsr166 1.1 *
2978     * @return the number of steals
2979     */
2980     public long getStealCount() {
2981 dl 1.300 long count = stealCount;
2982 dl 1.355 WorkQueue[] qs; WorkQueue q;
2983     if ((qs = queues) != null) {
2984     for (int i = 1; i < qs.length; i += 2) {
2985     if ((q = qs[i]) != null)
2986     count += (long)q.nsteals & 0xffffffffL;
2987 dl 1.78 }
2988     }
2989     return count;
2990 jsr166 1.1 }
2991    
2992     /**
2993     * Returns an estimate of the total number of tasks currently held
2994     * in queues by worker threads (but not including tasks submitted
2995     * to the pool that have not begun executing). This value is only
2996     * an approximation, obtained by iterating across all threads in
2997     * the pool. This method may be useful for tuning task
2998     * granularities.
2999     *
3000     * @return the number of queued tasks
3001     */
3002     public long getQueuedTaskCount() {
3003 dl 1.345 VarHandle.acquireFence();
3004 dl 1.355 WorkQueue[] qs; WorkQueue q;
3005 dl 1.345 int count = 0;
3006 dl 1.355 if ((qs = queues) != null) {
3007     for (int i = 1; i < qs.length; i += 2) {
3008     if ((q = qs[i]) != null)
3009     count += q.queueSize();
3010 dl 1.78 }
3011 dl 1.52 }
3012 jsr166 1.1 return count;
3013     }
3014    
3015     /**
3016 jsr166 1.8 * Returns an estimate of the number of tasks submitted to this
3017 dl 1.55 * pool that have not yet begun executing. This method may take
3018 dl 1.52 * time proportional to the number of submissions.
3019 jsr166 1.1 *
3020     * @return the number of queued submissions
3021     */
3022     public int getQueuedSubmissionCount() {
3023 dl 1.345 VarHandle.acquireFence();
3024 dl 1.355 WorkQueue[] qs; WorkQueue q;
3025 jsr166 1.344 int count = 0;
3026 dl 1.355 if ((qs = queues) != null) {
3027     for (int i = 0; i < qs.length; i += 2) {
3028     if ((q = qs[i]) != null)
3029     count += q.queueSize();
3030 dl 1.78 }
3031     }
3032     return count;
3033 jsr166 1.1 }
3034    
3035     /**
3036 jsr166 1.4 * Returns {@code true} if there are any tasks submitted to this
3037     * pool that have not yet begun executing.
3038 jsr166 1.1 *
3039     * @return {@code true} if there are any queued submissions
3040     */
3041     public boolean hasQueuedSubmissions() {
3042 dl 1.345 VarHandle.acquireFence();
3043 dl 1.355 WorkQueue[] qs; WorkQueue q;
3044     if ((qs = queues) != null) {
3045     for (int i = 0; i < qs.length; i += 2) {
3046     if ((q = qs[i]) != null && !q.isEmpty())
3047 dl 1.78 return true;
3048     }
3049     }
3050     return false;
3051 jsr166 1.1 }
3052    
3053     /**
3054     * Removes and returns the next unexecuted submission if one is
3055     * available. This method may be useful in extensions to this
3056     * class that re-assign work in systems with multiple pools.
3057     *
3058 jsr166 1.4 * @return the next submission, or {@code null} if none
3059 jsr166 1.1 */
3060     protected ForkJoinTask<?> pollSubmission() {
3061 dl 1.300 return pollScan(true);
3062 jsr166 1.1 }
3063    
3064     /**
3065     * Removes all available unexecuted submitted and forked tasks
3066     * from scheduling queues and adds them to the given collection,
3067     * without altering their execution status. These may include
3068 jsr166 1.8 * artificially generated or wrapped tasks. This method is
3069     * designed to be invoked only when the pool is known to be
3070 jsr166 1.1 * quiescent. Invocations at other times may not remove all
3071     * tasks. A failure encountered while attempting to add elements
3072     * to collection {@code c} may result in elements being in
3073     * neither, either or both collections when the associated
3074     * exception is thrown. The behavior of this operation is
3075     * undefined if the specified collection is modified while the
3076     * operation is in progress.
3077     *
3078     * @param c the collection to transfer elements into
3079     * @return the number of elements transferred
3080     */
3081 jsr166 1.5 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
3082 jsr166 1.344 int count = 0;
3083 dl 1.355 for (ForkJoinTask<?> t; (t = pollScan(false)) != null; ) {
3084     c.add(t);
3085     ++count;
3086 dl 1.52 }
3087 dl 1.18 return count;
3088     }
3089    
3090     /**
3091 jsr166 1.1 * Returns a string identifying this pool, as well as its state,
3092     * including indications of run state, parallelism level, and
3093     * worker and task counts.
3094     *
3095     * @return a string identifying this pool, as well as its state
3096     */
3097     public String toString() {
3098 dl 1.355 // Use a single pass through queues to collect counts
3099 dl 1.345 int md = mode; // read volatile fields first
3100     long c = ctl;
3101     long st = stealCount;
3102 dl 1.355 long qt = 0L, ss = 0L; int rc = 0;
3103     WorkQueue[] qs; WorkQueue q;
3104     if ((qs = queues) != null) {
3105     for (int i = 0; i < qs.length; ++i) {
3106     if ((q = qs[i]) != null) {
3107     int size = q.queueSize();
3108 dl 1.86 if ((i & 1) == 0)
3109 dl 1.355 ss += size;
3110 dl 1.86 else {
3111     qt += size;
3112 dl 1.355 st += (long)q.nsteals & 0xffffffffL;
3113     if (q.isApparentlyUnblocked())
3114 dl 1.86 ++rc;
3115     }
3116     }
3117     }
3118     }
3119 dl 1.300
3120     int pc = (md & SMASK);
3121 dl 1.52 int tc = pc + (short)(c >>> TC_SHIFT);
3122 dl 1.300 int ac = pc + (int)(c >> RC_SHIFT);
3123 dl 1.78 if (ac < 0) // ignore transient negative
3124     ac = 0;
3125 dl 1.300 String level = ((md & TERMINATED) != 0 ? "Terminated" :
3126     (md & STOP) != 0 ? "Terminating" :
3127     (md & SHUTDOWN) != 0 ? "Shutting down" :
3128 dl 1.200 "Running");
3129 jsr166 1.1 return super.toString() +
3130 dl 1.52 "[" + level +
3131 dl 1.14 ", parallelism = " + pc +
3132     ", size = " + tc +
3133     ", active = " + ac +
3134     ", running = " + rc +
3135 jsr166 1.1 ", steals = " + st +
3136     ", tasks = " + qt +
3137 dl 1.355 ", submissions = " + ss +
3138 jsr166 1.1 "]";
3139     }
3140    
3141     /**
3142 dl 1.100 * Possibly initiates an orderly shutdown in which previously
3143     * submitted tasks are executed, but no new tasks will be
3144     * accepted. Invocation has no effect on execution state if this
3145 jsr166 1.137 * is the {@link #commonPool()}, and no additional effect if
3146 dl 1.100 * already shut down. Tasks that are in the process of being
3147     * submitted concurrently during the course of this method may or
3148     * may not be rejected.
3149 jsr166 1.1 *
3150     * @throws SecurityException if a security manager exists and
3151     * the caller is not permitted to modify threads
3152     * because it does not hold {@link
3153     * java.lang.RuntimePermission}{@code ("modifyThread")}
3154     */
3155     public void shutdown() {
3156     checkPermission();
3157 dl 1.355 if (this != common)
3158     tryTerminate(false, true);
3159 jsr166 1.1 }
3160    
3161     /**
3162 dl 1.100 * Possibly attempts to cancel and/or stop all tasks, and reject
3163     * all subsequently submitted tasks. Invocation has no effect on
3164 jsr166 1.137 * execution state if this is the {@link #commonPool()}, and no
3165 dl 1.100 * additional effect if already shut down. Otherwise, tasks that
3166     * are in the process of being submitted or executed concurrently
3167     * during the course of this method may or may not be
3168     * rejected. This method cancels both existing and unexecuted
3169     * tasks, in order to permit termination in the presence of task
3170     * dependencies. So the method always returns an empty list
3171     * (unlike the case for some other Executors).
3172 jsr166 1.1 *
3173     * @return an empty list
3174     * @throws SecurityException if a security manager exists and
3175     * the caller is not permitted to modify threads
3176     * because it does not hold {@link
3177     * java.lang.RuntimePermission}{@code ("modifyThread")}
3178     */
3179     public List<Runnable> shutdownNow() {
3180     checkPermission();
3181 dl 1.355 if (this != common)
3182     tryTerminate(true, true);
3183 jsr166 1.1 return Collections.emptyList();
3184     }
3185    
3186     /**
3187     * Returns {@code true} if all tasks have completed following shut down.
3188     *
3189     * @return {@code true} if all tasks have completed following shut down
3190     */
3191     public boolean isTerminated() {
3192 dl 1.300 return (mode & TERMINATED) != 0;
3193 jsr166 1.1 }
3194    
3195     /**
3196     * Returns {@code true} if the process of termination has
3197 jsr166 1.9 * commenced but not yet completed. This method may be useful for
3198     * debugging. A return of {@code true} reported a sufficient
3199     * period after shutdown may indicate that submitted tasks have
3200 jsr166 1.119 * ignored or suppressed interruption, or are waiting for I/O,
3201 dl 1.49 * causing this executor not to properly terminate. (See the
3202     * advisory notes for class {@link ForkJoinTask} stating that
3203     * tasks should not normally entail blocking operations. But if
3204     * they do, they must abort them on interrupt.)
3205 jsr166 1.1 *
3206 jsr166 1.9 * @return {@code true} if terminating but not yet terminated
3207 jsr166 1.1 */
3208     public boolean isTerminating() {
3209 dl 1.355 return (mode & (STOP | TERMINATED)) == STOP;
3210 jsr166 1.1 }
3211    
3212     /**
3213     * Returns {@code true} if this pool has been shut down.
3214     *
3215     * @return {@code true} if this pool has been shut down
3216     */
3217     public boolean isShutdown() {
3218 dl 1.300 return (mode & SHUTDOWN) != 0;
3219 jsr166 1.9 }
3220    
3221     /**
3222 dl 1.105 * Blocks until all tasks have completed execution after a
3223     * shutdown request, or the timeout occurs, or the current thread
3224 dl 1.134 * is interrupted, whichever happens first. Because the {@link
3225     * #commonPool()} never terminates until program shutdown, when
3226     * applied to the common pool, this method is equivalent to {@link
3227 jsr166 1.158 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
3228 jsr166 1.1 *
3229     * @param timeout the maximum time to wait
3230     * @param unit the time unit of the timeout argument
3231     * @return {@code true} if this executor terminated and
3232     * {@code false} if the timeout elapsed before termination
3233     * @throws InterruptedException if interrupted while waiting
3234     */
3235     public boolean awaitTermination(long timeout, TimeUnit unit)
3236     throws InterruptedException {
3237 dl 1.366 ReentrantLock lock; Condition cond;
3238 dl 1.355 long nanos = unit.toNanos(timeout);
3239 dl 1.366 boolean terminated = false;
3240 dl 1.134 if (this == common) {
3241 dl 1.366 Thread t; ForkJoinWorkerThread wt; int q;
3242     if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread &&
3243     (wt = (ForkJoinWorkerThread)t).pool == this)
3244     q = helpQuiescePool(wt.workQueue, nanos, true);
3245     else
3246     q = externalHelpQuiescePool(nanos, true);
3247     if (q < 0)
3248     throw new InterruptedException();
3249 dl 1.134 }
3250 dl 1.375 else if (!(terminated = ((mode & TERMINATED) != 0)) &&
3251 dl 1.366 (lock = registrationLock) != null) {
3252     lock.lock();
3253     try {
3254     if ((cond = termination) == null)
3255     termination = cond = lock.newCondition();
3256 dl 1.374 while (!(terminated = ((mode & TERMINATED) != 0)) && nanos > 0L)
3257 dl 1.366 nanos = cond.awaitNanos(nanos);
3258     } finally {
3259     lock.unlock();
3260     }
3261 dl 1.18 }
3262 dl 1.366 return terminated;
3263 jsr166 1.1 }
3264    
3265     /**
3266 dl 1.134 * If called by a ForkJoinTask operating in this pool, equivalent
3267     * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3268     * waits and/or attempts to assist performing tasks until this
3269     * pool {@link #isQuiescent} or the indicated timeout elapses.
3270     *
3271     * @param timeout the maximum time to wait
3272     * @param unit the time unit of the timeout argument
3273     * @return {@code true} if quiescent; {@code false} if the
3274     * timeout elapsed.
3275     */
3276     public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3277 dl 1.366 Thread t; ForkJoinWorkerThread wt; int q;
3278 dl 1.134 long nanos = unit.toNanos(timeout);
3279 dl 1.366 if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread &&
3280     (wt = (ForkJoinWorkerThread)t).pool == this)
3281     q = helpQuiescePool(wt.workQueue, nanos, false);
3282     else
3283     q = externalHelpQuiescePool(nanos, false);
3284     return (q > 0);
3285 dl 1.134 }
3286    
3287     /**
3288 jsr166 1.1 * Interface for extending managed parallelism for tasks running
3289 jsr166 1.8 * in {@link ForkJoinPool}s.
3290     *
3291 dl 1.19 * <p>A {@code ManagedBlocker} provides two methods. Method
3292 jsr166 1.218 * {@link #isReleasable} must return {@code true} if blocking is
3293     * not necessary. Method {@link #block} blocks the current thread
3294 dl 1.19 * if necessary (perhaps internally invoking {@code isReleasable}
3295 dl 1.54 * before actually blocking). These actions are performed by any
3296 dl 1.355 * thread invoking {@link
3297     * ForkJoinPool#managedBlock(ManagedBlocker)}. The unusual
3298     * methods in this API accommodate synchronizers that may, but
3299     * don't usually, block for long periods. Similarly, they allow
3300     * more efficient internal handling of cases in which additional
3301     * workers may be, but usually are not, needed to ensure
3302     * sufficient parallelism. Toward this end, implementations of
3303     * method {@code isReleasable} must be amenable to repeated
3304     * invocation. Neither method is invoked after a prior invocation
3305     * of {@code isReleasable} or {@code block} returns {@code true}.
3306 jsr166 1.1 *
3307     * <p>For example, here is a ManagedBlocker based on a
3308     * ReentrantLock:
3309 jsr166 1.239 * <pre> {@code
3310 jsr166 1.1 * class ManagedLocker implements ManagedBlocker {
3311     * final ReentrantLock lock;
3312     * boolean hasLock = false;
3313     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3314     * public boolean block() {
3315     * if (!hasLock)
3316     * lock.lock();
3317     * return true;
3318     * }
3319     * public boolean isReleasable() {
3320     * return hasLock || (hasLock = lock.tryLock());
3321     * }
3322     * }}</pre>
3323 dl 1.19 *
3324     * <p>Here is a class that possibly blocks waiting for an
3325     * item on a given queue:
3326 jsr166 1.239 * <pre> {@code
3327 dl 1.19 * class QueueTaker<E> implements ManagedBlocker {
3328     * final BlockingQueue<E> queue;
3329     * volatile E item = null;
3330     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3331     * public boolean block() throws InterruptedException {
3332     * if (item == null)
3333 dl 1.23 * item = queue.take();
3334 dl 1.19 * return true;
3335     * }
3336     * public boolean isReleasable() {
3337 dl 1.23 * return item != null || (item = queue.poll()) != null;
3338 dl 1.19 * }
3339     * public E getItem() { // call after pool.managedBlock completes
3340     * return item;
3341     * }
3342     * }}</pre>
3343 jsr166 1.1 */
3344     public static interface ManagedBlocker {
3345     /**
3346     * Possibly blocks the current thread, for example waiting for
3347     * a lock or condition.
3348     *
3349 jsr166 1.4 * @return {@code true} if no additional blocking is necessary
3350     * (i.e., if isReleasable would return true)
3351 jsr166 1.1 * @throws InterruptedException if interrupted while waiting
3352     * (the method is not required to do so, but is allowed to)
3353     */
3354     boolean block() throws InterruptedException;
3355    
3356     /**
3357 jsr166 1.4 * Returns {@code true} if blocking is unnecessary.
3358 jsr166 1.154 * @return {@code true} if blocking is unnecessary
3359 jsr166 1.1 */
3360     boolean isReleasable();
3361     }
3362    
3363     /**
3364 jsr166 1.217 * Runs the given possibly blocking task. When {@linkplain
3365     * ForkJoinTask#inForkJoinPool() running in a ForkJoinPool}, this
3366     * method possibly arranges for a spare thread to be activated if
3367     * necessary to ensure sufficient parallelism while the current
3368     * thread is blocked in {@link ManagedBlocker#block blocker.block()}.
3369 jsr166 1.1 *
3370 jsr166 1.217 * <p>This method repeatedly calls {@code blocker.isReleasable()} and
3371     * {@code blocker.block()} until either method returns {@code true}.
3372     * Every call to {@code blocker.block()} is preceded by a call to
3373     * {@code blocker.isReleasable()} that returned {@code false}.
3374     *
3375     * <p>If not running in a ForkJoinPool, this method is
3376 jsr166 1.8 * behaviorally equivalent to
3377 jsr166 1.239 * <pre> {@code
3378 jsr166 1.1 * while (!blocker.isReleasable())
3379     * if (blocker.block())
3380 jsr166 1.217 * break;}</pre>
3381 jsr166 1.8 *
3382 jsr166 1.217 * If running in a ForkJoinPool, the pool may first be expanded to
3383     * ensure sufficient parallelism available during the call to
3384     * {@code blocker.block()}.
3385 jsr166 1.1 *
3386 jsr166 1.217 * @param blocker the blocker task
3387     * @throws InterruptedException if {@code blocker.block()} did so
3388 jsr166 1.1 */
3389 dl 1.18 public static void managedBlock(ManagedBlocker blocker)
3390 jsr166 1.1 throws InterruptedException {
3391 dl 1.355 Thread t; ForkJoinPool p;
3392     if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread &&
3393     (p = ((ForkJoinWorkerThread)t).pool) != null)
3394     p.compensatedBlock(blocker);
3395     else
3396     unmanagedBlock(blocker);
3397     }
3398    
3399     /** ManagedBlock for ForkJoinWorkerThreads */
3400     private void compensatedBlock(ManagedBlocker blocker)
3401     throws InterruptedException {
3402 dl 1.345 if (blocker == null) throw new NullPointerException();
3403 dl 1.355 for (;;) {
3404     int comp; boolean done;
3405     long c = ctl;
3406     if (blocker.isReleasable())
3407     break;
3408     if ((comp = tryCompensate(c)) >= 0) {
3409     long post = (comp == 0) ? 0L : RC_UNIT;
3410     try {
3411     done = blocker.block();
3412     } finally {
3413     getAndAddCtl(post);
3414     }
3415     if (done)
3416 dl 1.105 break;
3417 dl 1.78 }
3418 dl 1.18 }
3419 jsr166 1.1 }
3420    
3421 dl 1.355 /** ManagedBlock for external threads */
3422     private static void unmanagedBlock(ManagedBlocker blocker)
3423     throws InterruptedException {
3424     if (blocker == null) throw new NullPointerException();
3425     do {} while (!blocker.isReleasable() && !blocker.block());
3426 dl 1.310 }
3427    
3428 dl 1.355 // AbstractExecutorService.newTaskFor overrides rely on
3429     // undocumented fact that ForkJoinTask.adapt returns ForkJoinTasks
3430     // that also implement RunnableFuture.
3431 jsr166 1.1
3432 dl 1.355 @Override
3433 jsr166 1.1 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3434 dl 1.90 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3435 jsr166 1.1 }
3436    
3437 dl 1.355 @Override
3438 jsr166 1.1 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3439 dl 1.90 return new ForkJoinTask.AdaptedCallable<T>(callable);
3440 jsr166 1.1 }
3441    
3442 dl 1.52 static {
3443 jsr166 1.3 try {
3444 dl 1.314 MethodHandles.Lookup l = MethodHandles.lookup();
3445     CTL = l.findVarHandle(ForkJoinPool.class, "ctl", long.class);
3446     MODE = l.findVarHandle(ForkJoinPool.class, "mode", int.class);
3447 dl 1.355 THREADIDS = l.findVarHandle(ForkJoinPool.class, "threadIds", int.class);
3448     POOLIDS = l.findStaticVarHandle(ForkJoinPool.class, "poolIds", int.class);
3449 jsr166 1.231 } catch (ReflectiveOperationException e) {
3450 jsr166 1.347 throw new ExceptionInInitializerError(e);
3451 dl 1.52 }
3452 dl 1.105
3453 dl 1.243 // Reduce the risk of rare disastrous classloading in first call to
3454     // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
3455     Class<?> ensureLoaded = LockSupport.class;
3456    
3457 jsr166 1.273 int commonMaxSpares = DEFAULT_COMMON_MAX_SPARES;
3458     try {
3459     String p = System.getProperty
3460     ("java.util.concurrent.ForkJoinPool.common.maximumSpares");
3461     if (p != null)
3462     commonMaxSpares = Integer.parseInt(p);
3463     } catch (Exception ignore) {}
3464     COMMON_MAX_SPARES = commonMaxSpares;
3465    
3466 dl 1.152 defaultForkJoinWorkerThreadFactory =
3467 dl 1.112 new DefaultForkJoinWorkerThreadFactory();
3468 dl 1.115 modifyThreadPermission = new RuntimePermission("modifyThread");
3469 jsr166 1.329 common = AccessController.doPrivileged(new PrivilegedAction<>() {
3470     public ForkJoinPool run() {
3471     return new ForkJoinPool((byte)0); }});
3472 jsr166 1.275
3473 dl 1.310 COMMON_PARALLELISM = Math.max(common.mode & SMASK, 1);
3474 jsr166 1.3 }
3475 jsr166 1.1 }