ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.6
Committed: Thu Jul 30 04:19:41 2009 UTC (14 years, 10 months ago) by jsr166
Branch: MAIN
Changes since 1.5: +16 -1 lines
Log Message:
sync with jsr166y package

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package java.util.concurrent;
8    
9     import java.util.ArrayList;
10     import java.util.Arrays;
11     import java.util.Collection;
12     import java.util.Collections;
13     import java.util.List;
14     import java.util.concurrent.locks.Condition;
15     import java.util.concurrent.locks.LockSupport;
16     import java.util.concurrent.locks.ReentrantLock;
17     import java.util.concurrent.atomic.AtomicInteger;
18     import java.util.concurrent.atomic.AtomicLong;
19    
20     /**
21 jsr166 1.4 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
22     * A ForkJoinPool provides the entry point for submissions from
23 jsr166 1.1 * non-ForkJoinTasks, as well as management and monitoring operations.
24     * Normally a single ForkJoinPool is used for a large number of
25     * submitted tasks. Otherwise, use would not usually outweigh the
26     * construction and bookkeeping overhead of creating a large set of
27     * threads.
28     *
29     * <p>ForkJoinPools differ from other kinds of Executors mainly in
30     * that they provide <em>work-stealing</em>: all threads in the pool
31     * attempt to find and execute subtasks created by other active tasks
32     * (eventually blocking if none exist). This makes them efficient when
33     * most tasks spawn other subtasks (as do most ForkJoinTasks), as well
34     * as the mixed execution of some plain Runnable- or Callable- based
35 jsr166 1.4 * activities along with ForkJoinTasks. When setting {@linkplain
36     * #setAsyncMode async mode}, a ForkJoinPool may also be appropriate
37     * for use with fine-grained tasks that are never joined. Otherwise,
38     * other ExecutorService implementations are typically more
39     * appropriate choices.
40 jsr166 1.1 *
41     * <p>A ForkJoinPool may be constructed with a given parallelism level
42     * (target pool size), which it attempts to maintain by dynamically
43     * adding, suspending, or resuming threads, even if some tasks are
44     * waiting to join others. However, no such adjustments are performed
45     * in the face of blocked IO or other unmanaged synchronization. The
46 jsr166 1.4 * nested {@link ManagedBlocker} interface enables extension of
47 jsr166 1.1 * the kinds of synchronization accommodated. The target parallelism
48 jsr166 1.4 * level may also be changed dynamically ({@link #setParallelism})
49 jsr166 1.1 * and thread construction can be limited using methods
50 jsr166 1.4 * {@link #setMaximumPoolSize} and/or
51     * {@link #setMaintainsParallelism}.
52 jsr166 1.1 *
53     * <p>In addition to execution and lifecycle control methods, this
54     * class provides status check methods (for example
55 jsr166 1.4 * {@link #getStealCount}) that are intended to aid in developing,
56 jsr166 1.1 * tuning, and monitoring fork/join applications. Also, method
57 jsr166 1.4 * {@link #toString} returns indications of pool state in a
58 jsr166 1.1 * convenient form for informal monitoring.
59     *
60     * <p><b>Implementation notes</b>: This implementation restricts the
61     * maximum number of running threads to 32767. Attempts to create
62     * pools with greater than the maximum result in
63     * IllegalArgumentExceptions.
64     *
65     * @since 1.7
66     * @author Doug Lea
67     */
68     public class ForkJoinPool extends AbstractExecutorService {
69    
70     /*
71     * See the extended comments interspersed below for design,
72     * rationale, and walkthroughs.
73     */
74    
75     /** Mask for packing and unpacking shorts */
76     private static final int shortMask = 0xffff;
77    
78     /** Max pool size -- must be a power of two minus 1 */
79     private static final int MAX_THREADS = 0x7FFF;
80    
81     /**
82     * Factory for creating new ForkJoinWorkerThreads. A
83     * ForkJoinWorkerThreadFactory must be defined and used for
84     * ForkJoinWorkerThread subclasses that extend base functionality
85     * or initialize threads with different contexts.
86     */
87     public static interface ForkJoinWorkerThreadFactory {
88     /**
89     * Returns a new worker thread operating in the given pool.
90     *
91     * @param pool the pool this thread works in
92     * @throws NullPointerException if pool is null
93     */
94     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
95     }
96    
97     /**
98     * Default ForkJoinWorkerThreadFactory implementation; creates a
99     * new ForkJoinWorkerThread.
100     */
101     static class DefaultForkJoinWorkerThreadFactory
102     implements ForkJoinWorkerThreadFactory {
103     public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
104     try {
105     return new ForkJoinWorkerThread(pool);
106     } catch (OutOfMemoryError oom) {
107     return null;
108     }
109     }
110     }
111    
112     /**
113     * Creates a new ForkJoinWorkerThread. This factory is used unless
114     * overridden in ForkJoinPool constructors.
115     */
116     public static final ForkJoinWorkerThreadFactory
117     defaultForkJoinWorkerThreadFactory =
118     new DefaultForkJoinWorkerThreadFactory();
119    
120     /**
121     * Permission required for callers of methods that may start or
122     * kill threads.
123     */
124     private static final RuntimePermission modifyThreadPermission =
125     new RuntimePermission("modifyThread");
126    
127     /**
128     * If there is a security manager, makes sure caller has
129     * permission to modify threads.
130     */
131     private static void checkPermission() {
132     SecurityManager security = System.getSecurityManager();
133     if (security != null)
134     security.checkPermission(modifyThreadPermission);
135     }
136    
137     /**
138     * Generator for assigning sequence numbers as pool names.
139     */
140     private static final AtomicInteger poolNumberGenerator =
141     new AtomicInteger();
142    
143     /**
144     * Array holding all worker threads in the pool. Initialized upon
145     * first use. Array size must be a power of two. Updates and
146     * replacements are protected by workerLock, but it is always kept
147     * in a consistent enough state to be randomly accessed without
148     * locking by workers performing work-stealing.
149     */
150     volatile ForkJoinWorkerThread[] workers;
151    
152     /**
153     * Lock protecting access to workers.
154     */
155     private final ReentrantLock workerLock;
156    
157     /**
158     * Condition for awaitTermination.
159     */
160     private final Condition termination;
161    
162     /**
163     * The uncaught exception handler used when any worker
164     * abruptly terminates
165     */
166     private Thread.UncaughtExceptionHandler ueh;
167    
168     /**
169     * Creation factory for worker threads.
170     */
171     private final ForkJoinWorkerThreadFactory factory;
172    
173     /**
174     * Head of stack of threads that were created to maintain
175     * parallelism when other threads blocked, but have since
176     * suspended when the parallelism level rose.
177     */
178     private volatile WaitQueueNode spareStack;
179    
180     /**
181     * Sum of per-thread steal counts, updated only when threads are
182     * idle or terminating.
183     */
184     private final AtomicLong stealCount;
185    
186     /**
187     * Queue for external submissions.
188     */
189     private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
190    
191     /**
192     * Head of Treiber stack for barrier sync. See below for explanation.
193     */
194     private volatile WaitQueueNode syncStack;
195    
196     /**
197     * The count for event barrier
198     */
199     private volatile long eventCount;
200    
201     /**
202     * Pool number, just for assigning useful names to worker threads
203     */
204     private final int poolNumber;
205    
206     /**
207     * The maximum allowed pool size
208     */
209     private volatile int maxPoolSize;
210    
211     /**
212     * The desired parallelism level, updated only under workerLock.
213     */
214     private volatile int parallelism;
215    
216     /**
217     * True if use local fifo, not default lifo, for local polling
218     */
219     private volatile boolean locallyFifo;
220    
221     /**
222     * Holds number of total (i.e., created and not yet terminated)
223     * and running (i.e., not blocked on joins or other managed sync)
224     * threads, packed into one int to ensure consistent snapshot when
225     * making decisions about creating and suspending spare
226     * threads. Updated only by CAS. Note: CASes in
227     * updateRunningCount and preJoin assume that running active count
228     * is in low word, so need to be modified if this changes.
229     */
230     private volatile int workerCounts;
231    
232     private static int totalCountOf(int s) { return s >>> 16; }
233     private static int runningCountOf(int s) { return s & shortMask; }
234     private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
235    
236     /**
237     * Adds delta (which may be negative) to running count. This must
238     * be called before (with negative arg) and after (with positive)
239     * any managed synchronization (i.e., mainly, joins).
240     *
241     * @param delta the number to add
242     */
243     final void updateRunningCount(int delta) {
244     int s;
245     do {} while (!casWorkerCounts(s = workerCounts, s + delta));
246     }
247    
248     /**
249     * Adds delta (which may be negative) to both total and running
250     * count. This must be called upon creation and termination of
251     * worker threads.
252     *
253     * @param delta the number to add
254     */
255     private void updateWorkerCount(int delta) {
256     int d = delta + (delta << 16); // add to both lo and hi parts
257     int s;
258     do {} while (!casWorkerCounts(s = workerCounts, s + d));
259     }
260    
261     /**
262     * Lifecycle control. High word contains runState, low word
263     * contains the number of workers that are (probably) executing
264     * tasks. This value is atomically incremented before a worker
265     * gets a task to run, and decremented when worker has no tasks
266     * and cannot find any. These two fields are bundled together to
267     * support correct termination triggering. Note: activeCount
268     * CAS'es cheat by assuming active count is in low word, so need
269     * to be modified if this changes
270     */
271     private volatile int runControl;
272    
273     // RunState values. Order among values matters
274     private static final int RUNNING = 0;
275     private static final int SHUTDOWN = 1;
276     private static final int TERMINATING = 2;
277     private static final int TERMINATED = 3;
278    
279     private static int runStateOf(int c) { return c >>> 16; }
280     private static int activeCountOf(int c) { return c & shortMask; }
281     private static int runControlFor(int r, int a) { return (r << 16) + a; }
282    
283     /**
284     * Tries incrementing active count; fails on contention.
285     * Called by workers before/during executing tasks.
286     *
287     * @return true on success
288     */
289     final boolean tryIncrementActiveCount() {
290     int c = runControl;
291     return casRunControl(c, c+1);
292     }
293    
294     /**
295     * Tries decrementing active count; fails on contention.
296     * Possibly triggers termination on success.
297     * Called by workers when they can't find tasks.
298     *
299     * @return true on success
300     */
301     final boolean tryDecrementActiveCount() {
302     int c = runControl;
303     int nextc = c - 1;
304     if (!casRunControl(c, nextc))
305     return false;
306     if (canTerminateOnShutdown(nextc))
307     terminateOnShutdown();
308     return true;
309     }
310    
311     /**
312 jsr166 1.4 * Returns {@code true} if argument represents zero active count
313     * and nonzero runstate, which is the triggering condition for
314 jsr166 1.1 * terminating on shutdown.
315     */
316     private static boolean canTerminateOnShutdown(int c) {
317     // i.e. least bit is nonzero runState bit
318     return ((c & -c) >>> 16) != 0;
319     }
320    
321     /**
322     * Transition run state to at least the given state. Return true
323     * if not already at least given state.
324     */
325     private boolean transitionRunStateTo(int state) {
326     for (;;) {
327     int c = runControl;
328     if (runStateOf(c) >= state)
329     return false;
330     if (casRunControl(c, runControlFor(state, activeCountOf(c))))
331     return true;
332     }
333     }
334    
335     /**
336     * Controls whether to add spares to maintain parallelism
337     */
338     private volatile boolean maintainsParallelism;
339    
340     // Constructors
341    
342     /**
343     * Creates a ForkJoinPool with a pool size equal to the number of
344     * processors available on the system, using the default
345     * ForkJoinWorkerThreadFactory.
346     *
347     * @throws SecurityException if a security manager exists and
348     * the caller is not permitted to modify threads
349     * because it does not hold {@link
350     * java.lang.RuntimePermission}{@code ("modifyThread")}
351     */
352     public ForkJoinPool() {
353     this(Runtime.getRuntime().availableProcessors(),
354     defaultForkJoinWorkerThreadFactory);
355     }
356    
357     /**
358     * Creates a ForkJoinPool with the indicated parallelism level
359     * threads and using the default ForkJoinWorkerThreadFactory.
360     *
361     * @param parallelism the number of worker threads
362     * @throws IllegalArgumentException if parallelism less than or
363     * equal to zero
364     * @throws SecurityException if a security manager exists and
365     * the caller is not permitted to modify threads
366     * because it does not hold {@link
367     * java.lang.RuntimePermission}{@code ("modifyThread")}
368     */
369     public ForkJoinPool(int parallelism) {
370     this(parallelism, defaultForkJoinWorkerThreadFactory);
371     }
372    
373     /**
374     * Creates a ForkJoinPool with parallelism equal to the number of
375     * processors available on the system and using the given
376     * ForkJoinWorkerThreadFactory.
377     *
378     * @param factory the factory for creating new threads
379     * @throws NullPointerException if factory is null
380     * @throws SecurityException if a security manager exists and
381     * the caller is not permitted to modify threads
382     * because it does not hold {@link
383     * java.lang.RuntimePermission}{@code ("modifyThread")}
384     */
385     public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
386     this(Runtime.getRuntime().availableProcessors(), factory);
387     }
388    
389     /**
390     * Creates a ForkJoinPool with the given parallelism and factory.
391     *
392     * @param parallelism the targeted number of worker threads
393     * @param factory the factory for creating new threads
394     * @throws IllegalArgumentException if parallelism less than or
395     * equal to zero, or greater than implementation limit
396     * @throws NullPointerException if factory is null
397     * @throws SecurityException if a security manager exists and
398     * the caller is not permitted to modify threads
399     * because it does not hold {@link
400     * java.lang.RuntimePermission}{@code ("modifyThread")}
401     */
402     public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
403     if (parallelism <= 0 || parallelism > MAX_THREADS)
404     throw new IllegalArgumentException();
405     if (factory == null)
406     throw new NullPointerException();
407     checkPermission();
408     this.factory = factory;
409     this.parallelism = parallelism;
410     this.maxPoolSize = MAX_THREADS;
411     this.maintainsParallelism = true;
412     this.poolNumber = poolNumberGenerator.incrementAndGet();
413     this.workerLock = new ReentrantLock();
414     this.termination = workerLock.newCondition();
415     this.stealCount = new AtomicLong();
416     this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
417     // worker array and workers are lazily constructed
418     }
419    
420     /**
421     * Creates a new worker thread using factory.
422     *
423     * @param index the index to assign worker
424     * @return new worker, or null of factory failed
425     */
426     private ForkJoinWorkerThread createWorker(int index) {
427     Thread.UncaughtExceptionHandler h = ueh;
428     ForkJoinWorkerThread w = factory.newThread(this);
429     if (w != null) {
430     w.poolIndex = index;
431     w.setDaemon(true);
432     w.setAsyncMode(locallyFifo);
433     w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
434     if (h != null)
435     w.setUncaughtExceptionHandler(h);
436     }
437     return w;
438     }
439    
440     /**
441     * Returns a good size for worker array given pool size.
442     * Currently requires size to be a power of two.
443     */
444     private static int arraySizeFor(int poolSize) {
445     return (poolSize <= 1) ? 1 :
446     (1 << (32 - Integer.numberOfLeadingZeros(poolSize-1)));
447     }
448    
449     /**
450     * Creates or resizes array if necessary to hold newLength.
451     * Call only under exclusion.
452     *
453     * @return the array
454     */
455     private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
456     ForkJoinWorkerThread[] ws = workers;
457     if (ws == null)
458     return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
459     else if (newLength > ws.length)
460     return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
461     else
462     return ws;
463     }
464    
465     /**
466     * Tries to shrink workers into smaller array after one or more terminate.
467     */
468     private void tryShrinkWorkerArray() {
469     ForkJoinWorkerThread[] ws = workers;
470     if (ws != null) {
471     int len = ws.length;
472     int last = len - 1;
473     while (last >= 0 && ws[last] == null)
474     --last;
475     int newLength = arraySizeFor(last+1);
476     if (newLength < len)
477     workers = Arrays.copyOf(ws, newLength);
478     }
479     }
480    
481     /**
482     * Initializes workers if necessary.
483     */
484     final void ensureWorkerInitialization() {
485     ForkJoinWorkerThread[] ws = workers;
486     if (ws == null) {
487     final ReentrantLock lock = this.workerLock;
488     lock.lock();
489     try {
490     ws = workers;
491     if (ws == null) {
492     int ps = parallelism;
493     ws = ensureWorkerArrayCapacity(ps);
494     for (int i = 0; i < ps; ++i) {
495     ForkJoinWorkerThread w = createWorker(i);
496     if (w != null) {
497     ws[i] = w;
498     w.start();
499     updateWorkerCount(1);
500     }
501     }
502     }
503     } finally {
504     lock.unlock();
505     }
506     }
507     }
508    
509     /**
510     * Worker creation and startup for threads added via setParallelism.
511     */
512     private void createAndStartAddedWorkers() {
513     resumeAllSpares(); // Allow spares to convert to nonspare
514     int ps = parallelism;
515     ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
516     int len = ws.length;
517     // Sweep through slots, to keep lowest indices most populated
518     int k = 0;
519     while (k < len) {
520     if (ws[k] != null) {
521     ++k;
522     continue;
523     }
524     int s = workerCounts;
525     int tc = totalCountOf(s);
526     int rc = runningCountOf(s);
527     if (rc >= ps || tc >= ps)
528     break;
529     if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
530     ForkJoinWorkerThread w = createWorker(k);
531     if (w != null) {
532     ws[k++] = w;
533     w.start();
534     }
535     else {
536     updateWorkerCount(-1); // back out on failed creation
537     break;
538     }
539     }
540     }
541     }
542    
543     // Execution methods
544    
545     /**
546     * Common code for execute, invoke and submit
547     */
548     private <T> void doSubmit(ForkJoinTask<T> task) {
549 jsr166 1.2 if (task == null)
550     throw new NullPointerException();
551 jsr166 1.1 if (isShutdown())
552     throw new RejectedExecutionException();
553     if (workers == null)
554     ensureWorkerInitialization();
555     submissionQueue.offer(task);
556     signalIdleWorkers();
557     }
558    
559     /**
560     * Performs the given task, returning its result upon completion.
561     *
562     * @param task the task
563     * @return the task's result
564     * @throws NullPointerException if task is null
565     * @throws RejectedExecutionException if pool is shut down
566     */
567     public <T> T invoke(ForkJoinTask<T> task) {
568     doSubmit(task);
569     return task.join();
570     }
571    
572     /**
573     * Arranges for (asynchronous) execution of the given task.
574     *
575     * @param task the task
576     * @throws NullPointerException if task is null
577     * @throws RejectedExecutionException if pool is shut down
578     */
579     public <T> void execute(ForkJoinTask<T> task) {
580     doSubmit(task);
581     }
582    
583     // AbstractExecutorService methods
584    
585     public void execute(Runnable task) {
586 jsr166 1.2 ForkJoinTask<?> job;
587 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
588     job = (ForkJoinTask<?>) task;
589 jsr166 1.2 else
590     job = new AdaptedRunnable<Void>(task, null);
591     doSubmit(job);
592 jsr166 1.1 }
593    
594     public <T> ForkJoinTask<T> submit(Callable<T> task) {
595     ForkJoinTask<T> job = new AdaptedCallable<T>(task);
596     doSubmit(job);
597     return job;
598     }
599    
600     public <T> ForkJoinTask<T> submit(Runnable task, T result) {
601     ForkJoinTask<T> job = new AdaptedRunnable<T>(task, result);
602     doSubmit(job);
603     return job;
604     }
605    
606     public ForkJoinTask<?> submit(Runnable task) {
607 jsr166 1.2 ForkJoinTask<?> job;
608 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
609     job = (ForkJoinTask<?>) task;
610 jsr166 1.2 else
611     job = new AdaptedRunnable<Void>(task, null);
612 jsr166 1.1 doSubmit(job);
613     return job;
614     }
615    
616     /**
617 jsr166 1.2 * Submits a ForkJoinTask for execution.
618     *
619     * @param task the task to submit
620     * @return the task
621     * @throws RejectedExecutionException if the task cannot be
622     * scheduled for execution
623     * @throws NullPointerException if the task is null
624     */
625     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
626     doSubmit(task);
627     return task;
628     }
629    
630     /**
631 jsr166 1.1 * Adaptor for Runnables. This implements RunnableFuture
632     * to be compliant with AbstractExecutorService constraints.
633     */
634     static final class AdaptedRunnable<T> extends ForkJoinTask<T>
635     implements RunnableFuture<T> {
636     final Runnable runnable;
637     final T resultOnCompletion;
638     T result;
639     AdaptedRunnable(Runnable runnable, T result) {
640     if (runnable == null) throw new NullPointerException();
641     this.runnable = runnable;
642     this.resultOnCompletion = result;
643     }
644     public T getRawResult() { return result; }
645     public void setRawResult(T v) { result = v; }
646     public boolean exec() {
647     runnable.run();
648     result = resultOnCompletion;
649     return true;
650     }
651     public void run() { invoke(); }
652     private static final long serialVersionUID = 5232453952276885070L;
653     }
654    
655     /**
656     * Adaptor for Callables
657     */
658     static final class AdaptedCallable<T> extends ForkJoinTask<T>
659     implements RunnableFuture<T> {
660     final Callable<T> callable;
661     T result;
662     AdaptedCallable(Callable<T> callable) {
663     if (callable == null) throw new NullPointerException();
664     this.callable = callable;
665     }
666     public T getRawResult() { return result; }
667     public void setRawResult(T v) { result = v; }
668     public boolean exec() {
669     try {
670     result = callable.call();
671     return true;
672     } catch (Error err) {
673     throw err;
674     } catch (RuntimeException rex) {
675     throw rex;
676     } catch (Exception ex) {
677     throw new RuntimeException(ex);
678     }
679     }
680     public void run() { invoke(); }
681     private static final long serialVersionUID = 2838392045355241008L;
682     }
683    
684     public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
685     ArrayList<ForkJoinTask<T>> forkJoinTasks =
686     new ArrayList<ForkJoinTask<T>>(tasks.size());
687     for (Callable<T> task : tasks)
688     forkJoinTasks.add(new AdaptedCallable<T>(task));
689     invoke(new InvokeAll<T>(forkJoinTasks));
690    
691     @SuppressWarnings({"unchecked", "rawtypes"})
692     List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
693     return futures;
694     }
695    
696     static final class InvokeAll<T> extends RecursiveAction {
697     final ArrayList<ForkJoinTask<T>> tasks;
698     InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
699     public void compute() {
700     try { invokeAll(tasks); }
701     catch (Exception ignore) {}
702     }
703     private static final long serialVersionUID = -7914297376763021607L;
704     }
705    
706     // Configuration and status settings and queries
707    
708     /**
709     * Returns the factory used for constructing new workers.
710     *
711     * @return the factory used for constructing new workers
712     */
713     public ForkJoinWorkerThreadFactory getFactory() {
714     return factory;
715     }
716    
717     /**
718     * Returns the handler for internal worker threads that terminate
719     * due to unrecoverable errors encountered while executing tasks.
720     *
721 jsr166 1.4 * @return the handler, or {@code null} if none
722 jsr166 1.1 */
723     public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
724     Thread.UncaughtExceptionHandler h;
725     final ReentrantLock lock = this.workerLock;
726     lock.lock();
727     try {
728     h = ueh;
729     } finally {
730     lock.unlock();
731     }
732     return h;
733     }
734    
735     /**
736     * Sets the handler for internal worker threads that terminate due
737     * to unrecoverable errors encountered while executing tasks.
738     * Unless set, the current default or ThreadGroup handler is used
739     * as handler.
740     *
741     * @param h the new handler
742 jsr166 1.4 * @return the old handler, or {@code null} if none
743 jsr166 1.1 * @throws SecurityException if a security manager exists and
744     * the caller is not permitted to modify threads
745     * because it does not hold {@link
746     * java.lang.RuntimePermission}{@code ("modifyThread")}
747     */
748     public Thread.UncaughtExceptionHandler
749     setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
750     checkPermission();
751     Thread.UncaughtExceptionHandler old = null;
752     final ReentrantLock lock = this.workerLock;
753     lock.lock();
754     try {
755     old = ueh;
756     ueh = h;
757     ForkJoinWorkerThread[] ws = workers;
758     if (ws != null) {
759     for (int i = 0; i < ws.length; ++i) {
760     ForkJoinWorkerThread w = ws[i];
761     if (w != null)
762     w.setUncaughtExceptionHandler(h);
763     }
764     }
765     } finally {
766     lock.unlock();
767     }
768     return old;
769     }
770    
771    
772     /**
773     * Sets the target parallelism level of this pool.
774     *
775     * @param parallelism the target parallelism
776     * @throws IllegalArgumentException if parallelism less than or
777     * equal to zero or greater than maximum size bounds
778     * @throws SecurityException if a security manager exists and
779     * the caller is not permitted to modify threads
780     * because it does not hold {@link
781     * java.lang.RuntimePermission}{@code ("modifyThread")}
782     */
783     public void setParallelism(int parallelism) {
784     checkPermission();
785     if (parallelism <= 0 || parallelism > maxPoolSize)
786     throw new IllegalArgumentException();
787     final ReentrantLock lock = this.workerLock;
788     lock.lock();
789     try {
790     if (!isTerminating()) {
791     int p = this.parallelism;
792     this.parallelism = parallelism;
793     if (parallelism > p)
794     createAndStartAddedWorkers();
795     else
796     trimSpares();
797     }
798     } finally {
799     lock.unlock();
800     }
801     signalIdleWorkers();
802     }
803    
804     /**
805     * Returns the targeted number of worker threads in this pool.
806     *
807     * @return the targeted number of worker threads in this pool
808     */
809     public int getParallelism() {
810     return parallelism;
811     }
812    
813     /**
814     * Returns the number of worker threads that have started but not
815     * yet terminated. This result returned by this method may differ
816 jsr166 1.4 * from {@link #getParallelism} when threads are created to
817 jsr166 1.1 * maintain parallelism when others are cooperatively blocked.
818     *
819     * @return the number of worker threads
820     */
821     public int getPoolSize() {
822     return totalCountOf(workerCounts);
823     }
824    
825     /**
826     * Returns the maximum number of threads allowed to exist in the
827     * pool, even if there are insufficient unblocked running threads.
828     *
829     * @return the maximum
830     */
831     public int getMaximumPoolSize() {
832     return maxPoolSize;
833     }
834    
835     /**
836     * Sets the maximum number of threads allowed to exist in the
837     * pool, even if there are insufficient unblocked running threads.
838     * Setting this value has no effect on current pool size. It
839     * controls construction of new threads.
840     *
841     * @throws IllegalArgumentException if negative or greater then
842     * internal implementation limit
843     */
844     public void setMaximumPoolSize(int newMax) {
845     if (newMax < 0 || newMax > MAX_THREADS)
846     throw new IllegalArgumentException();
847     maxPoolSize = newMax;
848     }
849    
850    
851     /**
852 jsr166 1.4 * Returns {@code true} if this pool dynamically maintains its
853     * target parallelism level. If false, new threads are added only
854     * to avoid possible starvation. This setting is by default true.
855 jsr166 1.1 *
856 jsr166 1.4 * @return {@code true} if maintains parallelism
857 jsr166 1.1 */
858     public boolean getMaintainsParallelism() {
859     return maintainsParallelism;
860     }
861    
862     /**
863     * Sets whether this pool dynamically maintains its target
864     * parallelism level. If false, new threads are added only to
865     * avoid possible starvation.
866     *
867 jsr166 1.4 * @param enable {@code true} to maintain parallelism
868 jsr166 1.1 */
869     public void setMaintainsParallelism(boolean enable) {
870     maintainsParallelism = enable;
871     }
872    
873     /**
874     * Establishes local first-in-first-out scheduling mode for forked
875     * tasks that are never joined. This mode may be more appropriate
876     * than default locally stack-based mode in applications in which
877     * worker threads only process asynchronous tasks. This method is
878 jsr166 1.4 * designed to be invoked only when the pool is quiescent, and
879 jsr166 1.1 * typically only before any tasks are submitted. The effects of
880     * invocations at other times may be unpredictable.
881     *
882 jsr166 1.4 * @param async if {@code true}, use locally FIFO scheduling
883 jsr166 1.1 * @return the previous mode
884 jsr166 1.4 * @see #getAsyncMode
885 jsr166 1.1 */
886     public boolean setAsyncMode(boolean async) {
887     boolean oldMode = locallyFifo;
888     locallyFifo = async;
889     ForkJoinWorkerThread[] ws = workers;
890     if (ws != null) {
891     for (int i = 0; i < ws.length; ++i) {
892     ForkJoinWorkerThread t = ws[i];
893     if (t != null)
894     t.setAsyncMode(async);
895     }
896     }
897     return oldMode;
898     }
899    
900     /**
901 jsr166 1.4 * Returns {@code true} if this pool uses local first-in-first-out
902 jsr166 1.1 * scheduling mode for forked tasks that are never joined.
903     *
904 jsr166 1.4 * @return {@code true} if this pool uses async mode
905     * @see #setAsyncMode
906 jsr166 1.1 */
907     public boolean getAsyncMode() {
908     return locallyFifo;
909     }
910    
911     /**
912     * Returns an estimate of the number of worker threads that are
913     * not blocked waiting to join tasks or for other managed
914     * synchronization.
915     *
916     * @return the number of worker threads
917     */
918     public int getRunningThreadCount() {
919     return runningCountOf(workerCounts);
920     }
921    
922     /**
923     * Returns an estimate of the number of threads that are currently
924     * stealing or executing tasks. This method may overestimate the
925     * number of active threads.
926     *
927     * @return the number of active threads
928     */
929     public int getActiveThreadCount() {
930     return activeCountOf(runControl);
931     }
932    
933     /**
934     * Returns an estimate of the number of threads that are currently
935     * idle waiting for tasks. This method may underestimate the
936     * number of idle threads.
937     *
938     * @return the number of idle threads
939     */
940     final int getIdleThreadCount() {
941     int c = runningCountOf(workerCounts) - activeCountOf(runControl);
942     return (c <= 0) ? 0 : c;
943     }
944    
945     /**
946 jsr166 1.4 * Returns {@code true} if all worker threads are currently idle.
947     * An idle worker is one that cannot obtain a task to execute
948     * because none are available to steal from other threads, and
949     * there are no pending submissions to the pool. This method is
950     * conservative; it might not return {@code true} immediately upon
951     * idleness of all threads, but will eventually become true if
952     * threads remain inactive.
953 jsr166 1.1 *
954 jsr166 1.4 * @return {@code true} if all threads are currently idle
955 jsr166 1.1 */
956     public boolean isQuiescent() {
957     return activeCountOf(runControl) == 0;
958     }
959    
960     /**
961     * Returns an estimate of the total number of tasks stolen from
962     * one thread's work queue by another. The reported value
963     * underestimates the actual total number of steals when the pool
964     * is not quiescent. This value may be useful for monitoring and
965     * tuning fork/join programs: in general, steal counts should be
966     * high enough to keep threads busy, but low enough to avoid
967     * overhead and contention across threads.
968     *
969     * @return the number of steals
970     */
971     public long getStealCount() {
972     return stealCount.get();
973     }
974    
975     /**
976     * Accumulates steal count from a worker.
977     * Call only when worker known to be idle.
978     */
979     private void updateStealCount(ForkJoinWorkerThread w) {
980     int sc = w.getAndClearStealCount();
981     if (sc != 0)
982     stealCount.addAndGet(sc);
983     }
984    
985     /**
986     * Returns an estimate of the total number of tasks currently held
987     * in queues by worker threads (but not including tasks submitted
988     * to the pool that have not begun executing). This value is only
989     * an approximation, obtained by iterating across all threads in
990     * the pool. This method may be useful for tuning task
991     * granularities.
992     *
993     * @return the number of queued tasks
994     */
995     public long getQueuedTaskCount() {
996     long count = 0;
997     ForkJoinWorkerThread[] ws = workers;
998     if (ws != null) {
999     for (int i = 0; i < ws.length; ++i) {
1000     ForkJoinWorkerThread t = ws[i];
1001     if (t != null)
1002     count += t.getQueueSize();
1003     }
1004     }
1005     return count;
1006     }
1007    
1008     /**
1009     * Returns an estimate of the number tasks submitted to this pool
1010     * that have not yet begun executing. This method takes time
1011     * proportional to the number of submissions.
1012     *
1013     * @return the number of queued submissions
1014     */
1015     public int getQueuedSubmissionCount() {
1016     return submissionQueue.size();
1017     }
1018    
1019     /**
1020 jsr166 1.4 * Returns {@code true} if there are any tasks submitted to this
1021     * pool that have not yet begun executing.
1022 jsr166 1.1 *
1023     * @return {@code true} if there are any queued submissions
1024     */
1025     public boolean hasQueuedSubmissions() {
1026     return !submissionQueue.isEmpty();
1027     }
1028    
1029     /**
1030     * Removes and returns the next unexecuted submission if one is
1031     * available. This method may be useful in extensions to this
1032     * class that re-assign work in systems with multiple pools.
1033     *
1034 jsr166 1.4 * @return the next submission, or {@code null} if none
1035 jsr166 1.1 */
1036     protected ForkJoinTask<?> pollSubmission() {
1037     return submissionQueue.poll();
1038     }
1039    
1040     /**
1041     * Removes all available unexecuted submitted and forked tasks
1042     * from scheduling queues and adds them to the given collection,
1043     * without altering their execution status. These may include
1044     * artificially generated or wrapped tasks. This method is designed
1045     * to be invoked only when the pool is known to be
1046     * quiescent. Invocations at other times may not remove all
1047     * tasks. A failure encountered while attempting to add elements
1048     * to collection {@code c} may result in elements being in
1049     * neither, either or both collections when the associated
1050     * exception is thrown. The behavior of this operation is
1051     * undefined if the specified collection is modified while the
1052     * operation is in progress.
1053     *
1054     * @param c the collection to transfer elements into
1055     * @return the number of elements transferred
1056     */
1057 jsr166 1.5 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1058 jsr166 1.1 int n = submissionQueue.drainTo(c);
1059     ForkJoinWorkerThread[] ws = workers;
1060     if (ws != null) {
1061     for (int i = 0; i < ws.length; ++i) {
1062     ForkJoinWorkerThread w = ws[i];
1063     if (w != null)
1064     n += w.drainTasksTo(c);
1065     }
1066     }
1067     return n;
1068     }
1069    
1070     /**
1071     * Returns a string identifying this pool, as well as its state,
1072     * including indications of run state, parallelism level, and
1073     * worker and task counts.
1074     *
1075     * @return a string identifying this pool, as well as its state
1076     */
1077     public String toString() {
1078     int ps = parallelism;
1079     int wc = workerCounts;
1080     int rc = runControl;
1081     long st = getStealCount();
1082     long qt = getQueuedTaskCount();
1083     long qs = getQueuedSubmissionCount();
1084     return super.toString() +
1085     "[" + runStateToString(runStateOf(rc)) +
1086     ", parallelism = " + ps +
1087     ", size = " + totalCountOf(wc) +
1088     ", active = " + activeCountOf(rc) +
1089     ", running = " + runningCountOf(wc) +
1090     ", steals = " + st +
1091     ", tasks = " + qt +
1092     ", submissions = " + qs +
1093     "]";
1094     }
1095    
1096     private static String runStateToString(int rs) {
1097     switch(rs) {
1098     case RUNNING: return "Running";
1099     case SHUTDOWN: return "Shutting down";
1100     case TERMINATING: return "Terminating";
1101     case TERMINATED: return "Terminated";
1102     default: throw new Error("Unknown run state");
1103     }
1104     }
1105    
1106     // lifecycle control
1107    
1108     /**
1109     * Initiates an orderly shutdown in which previously submitted
1110     * tasks are executed, but no new tasks will be accepted.
1111     * Invocation has no additional effect if already shut down.
1112     * Tasks that are in the process of being submitted concurrently
1113     * during the course of this method may or may not be rejected.
1114     *
1115     * @throws SecurityException if a security manager exists and
1116     * the caller is not permitted to modify threads
1117     * because it does not hold {@link
1118     * java.lang.RuntimePermission}{@code ("modifyThread")}
1119     */
1120     public void shutdown() {
1121     checkPermission();
1122     transitionRunStateTo(SHUTDOWN);
1123 jsr166 1.6 if (canTerminateOnShutdown(runControl)) {
1124     if (workers == null) { // shutting down before workers created
1125     final ReentrantLock lock = this.workerLock;
1126     lock.lock();
1127     try {
1128     if (workers == null) {
1129     terminate();
1130     transitionRunStateTo(TERMINATED);
1131     termination.signalAll();
1132     }
1133    
1134     } finally {
1135     lock.unlock();
1136     }
1137     }
1138 jsr166 1.1 terminateOnShutdown();
1139 jsr166 1.6 }
1140 jsr166 1.1 }
1141    
1142     /**
1143     * Attempts to stop all actively executing tasks, and cancels all
1144     * waiting tasks. Tasks that are in the process of being
1145     * submitted or executed concurrently during the course of this
1146     * method may or may not be rejected. Unlike some other executors,
1147     * this method cancels rather than collects non-executed tasks
1148     * upon termination, so always returns an empty list. However, you
1149 jsr166 1.4 * can use method {@link #drainTasksTo} before invoking this
1150 jsr166 1.1 * method to transfer unexecuted tasks to another collection.
1151     *
1152     * @return an empty list
1153     * @throws SecurityException if a security manager exists and
1154     * the caller is not permitted to modify threads
1155     * because it does not hold {@link
1156     * java.lang.RuntimePermission}{@code ("modifyThread")}
1157     */
1158     public List<Runnable> shutdownNow() {
1159     checkPermission();
1160     terminate();
1161     return Collections.emptyList();
1162     }
1163    
1164     /**
1165     * Returns {@code true} if all tasks have completed following shut down.
1166     *
1167     * @return {@code true} if all tasks have completed following shut down
1168     */
1169     public boolean isTerminated() {
1170     return runStateOf(runControl) == TERMINATED;
1171     }
1172    
1173     /**
1174     * Returns {@code true} if the process of termination has
1175     * commenced but possibly not yet completed.
1176     *
1177     * @return {@code true} if terminating
1178     */
1179     public boolean isTerminating() {
1180     return runStateOf(runControl) >= TERMINATING;
1181     }
1182    
1183     /**
1184     * Returns {@code true} if this pool has been shut down.
1185     *
1186     * @return {@code true} if this pool has been shut down
1187     */
1188     public boolean isShutdown() {
1189     return runStateOf(runControl) >= SHUTDOWN;
1190     }
1191    
1192     /**
1193     * Blocks until all tasks have completed execution after a shutdown
1194     * request, or the timeout occurs, or the current thread is
1195     * interrupted, whichever happens first.
1196     *
1197     * @param timeout the maximum time to wait
1198     * @param unit the time unit of the timeout argument
1199     * @return {@code true} if this executor terminated and
1200     * {@code false} if the timeout elapsed before termination
1201     * @throws InterruptedException if interrupted while waiting
1202     */
1203     public boolean awaitTermination(long timeout, TimeUnit unit)
1204     throws InterruptedException {
1205     long nanos = unit.toNanos(timeout);
1206     final ReentrantLock lock = this.workerLock;
1207     lock.lock();
1208     try {
1209     for (;;) {
1210     if (isTerminated())
1211     return true;
1212     if (nanos <= 0)
1213     return false;
1214     nanos = termination.awaitNanos(nanos);
1215     }
1216     } finally {
1217     lock.unlock();
1218     }
1219     }
1220    
1221     // Shutdown and termination support
1222    
1223     /**
1224     * Callback from terminating worker. Nulls out the corresponding
1225     * workers slot, and if terminating, tries to terminate; else
1226     * tries to shrink workers array.
1227     *
1228     * @param w the worker
1229     */
1230     final void workerTerminated(ForkJoinWorkerThread w) {
1231     updateStealCount(w);
1232     updateWorkerCount(-1);
1233     final ReentrantLock lock = this.workerLock;
1234     lock.lock();
1235     try {
1236     ForkJoinWorkerThread[] ws = workers;
1237     if (ws != null) {
1238     int idx = w.poolIndex;
1239     if (idx >= 0 && idx < ws.length && ws[idx] == w)
1240     ws[idx] = null;
1241     if (totalCountOf(workerCounts) == 0) {
1242     terminate(); // no-op if already terminating
1243     transitionRunStateTo(TERMINATED);
1244     termination.signalAll();
1245     }
1246     else if (!isTerminating()) {
1247     tryShrinkWorkerArray();
1248     tryResumeSpare(true); // allow replacement
1249     }
1250     }
1251     } finally {
1252     lock.unlock();
1253     }
1254     signalIdleWorkers();
1255     }
1256    
1257     /**
1258     * Initiates termination.
1259     */
1260     private void terminate() {
1261     if (transitionRunStateTo(TERMINATING)) {
1262     stopAllWorkers();
1263     resumeAllSpares();
1264     signalIdleWorkers();
1265     cancelQueuedSubmissions();
1266     cancelQueuedWorkerTasks();
1267     interruptUnterminatedWorkers();
1268     signalIdleWorkers(); // resignal after interrupt
1269     }
1270     }
1271    
1272     /**
1273     * Possibly terminates when on shutdown state.
1274     */
1275     private void terminateOnShutdown() {
1276     if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1277     terminate();
1278     }
1279    
1280     /**
1281     * Clears out and cancels submissions.
1282     */
1283     private void cancelQueuedSubmissions() {
1284     ForkJoinTask<?> task;
1285     while ((task = pollSubmission()) != null)
1286     task.cancel(false);
1287     }
1288    
1289     /**
1290     * Cleans out worker queues.
1291     */
1292     private void cancelQueuedWorkerTasks() {
1293     final ReentrantLock lock = this.workerLock;
1294     lock.lock();
1295     try {
1296     ForkJoinWorkerThread[] ws = workers;
1297     if (ws != null) {
1298     for (int i = 0; i < ws.length; ++i) {
1299     ForkJoinWorkerThread t = ws[i];
1300     if (t != null)
1301     t.cancelTasks();
1302     }
1303     }
1304     } finally {
1305     lock.unlock();
1306     }
1307     }
1308    
1309     /**
1310     * Sets each worker's status to terminating. Requires lock to avoid
1311     * conflicts with add/remove.
1312     */
1313     private void stopAllWorkers() {
1314     final ReentrantLock lock = this.workerLock;
1315     lock.lock();
1316     try {
1317     ForkJoinWorkerThread[] ws = workers;
1318     if (ws != null) {
1319     for (int i = 0; i < ws.length; ++i) {
1320     ForkJoinWorkerThread t = ws[i];
1321     if (t != null)
1322     t.shutdownNow();
1323     }
1324     }
1325     } finally {
1326     lock.unlock();
1327     }
1328     }
1329    
1330     /**
1331     * Interrupts all unterminated workers. This is not required for
1332     * sake of internal control, but may help unstick user code during
1333     * shutdown.
1334     */
1335     private void interruptUnterminatedWorkers() {
1336     final ReentrantLock lock = this.workerLock;
1337     lock.lock();
1338     try {
1339     ForkJoinWorkerThread[] ws = workers;
1340     if (ws != null) {
1341     for (int i = 0; i < ws.length; ++i) {
1342     ForkJoinWorkerThread t = ws[i];
1343     if (t != null && !t.isTerminated()) {
1344     try {
1345     t.interrupt();
1346     } catch (SecurityException ignore) {
1347     }
1348     }
1349     }
1350     }
1351     } finally {
1352     lock.unlock();
1353     }
1354     }
1355    
1356    
1357     /*
1358     * Nodes for event barrier to manage idle threads. Queue nodes
1359     * are basic Treiber stack nodes, also used for spare stack.
1360     *
1361     * The event barrier has an event count and a wait queue (actually
1362     * a Treiber stack). Workers are enabled to look for work when
1363     * the eventCount is incremented. If they fail to find work, they
1364     * may wait for next count. Upon release, threads help others wake
1365     * up.
1366     *
1367     * Synchronization events occur only in enough contexts to
1368     * maintain overall liveness:
1369     *
1370     * - Submission of a new task to the pool
1371     * - Resizes or other changes to the workers array
1372     * - pool termination
1373     * - A worker pushing a task on an empty queue
1374     *
1375     * The case of pushing a task occurs often enough, and is heavy
1376     * enough compared to simple stack pushes, to require special
1377     * handling: Method signalWork returns without advancing count if
1378     * the queue appears to be empty. This would ordinarily result in
1379     * races causing some queued waiters not to be woken up. To avoid
1380     * this, the first worker enqueued in method sync (see
1381     * syncIsReleasable) rescans for tasks after being enqueued, and
1382     * helps signal if any are found. This works well because the
1383     * worker has nothing better to do, and so might as well help
1384     * alleviate the overhead and contention on the threads actually
1385     * doing work. Also, since event counts increments on task
1386     * availability exist to maintain liveness (rather than to force
1387     * refreshes etc), it is OK for callers to exit early if
1388     * contending with another signaller.
1389     */
1390     static final class WaitQueueNode {
1391     WaitQueueNode next; // only written before enqueued
1392     volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1393     final long count; // unused for spare stack
1394    
1395     WaitQueueNode(long c, ForkJoinWorkerThread w) {
1396     count = c;
1397     thread = w;
1398     }
1399    
1400     /**
1401     * Wakes up waiter, returning false if known to already
1402     */
1403     boolean signal() {
1404     ForkJoinWorkerThread t = thread;
1405     if (t == null)
1406     return false;
1407     thread = null;
1408     LockSupport.unpark(t);
1409     return true;
1410     }
1411    
1412     /**
1413     * Awaits release on sync.
1414     */
1415     void awaitSyncRelease(ForkJoinPool p) {
1416     while (thread != null && !p.syncIsReleasable(this))
1417     LockSupport.park(this);
1418     }
1419    
1420     /**
1421     * Awaits resumption as spare.
1422     */
1423     void awaitSpareRelease() {
1424     while (thread != null) {
1425     if (!Thread.interrupted())
1426     LockSupport.park(this);
1427     }
1428     }
1429     }
1430    
1431     /**
1432     * Ensures that no thread is waiting for count to advance from the
1433     * current value of eventCount read on entry to this method, by
1434     * releasing waiting threads if necessary.
1435     *
1436     * @return the count
1437     */
1438     final long ensureSync() {
1439     long c = eventCount;
1440     WaitQueueNode q;
1441     while ((q = syncStack) != null && q.count < c) {
1442     if (casBarrierStack(q, null)) {
1443     do {
1444     q.signal();
1445     } while ((q = q.next) != null);
1446     break;
1447     }
1448     }
1449     return c;
1450     }
1451    
1452     /**
1453     * Increments event count and releases waiting threads.
1454     */
1455     private void signalIdleWorkers() {
1456     long c;
1457     do {} while (!casEventCount(c = eventCount, c+1));
1458     ensureSync();
1459     }
1460    
1461     /**
1462     * Signals threads waiting to poll a task. Because method sync
1463     * rechecks availability, it is OK to only proceed if queue
1464     * appears to be non-empty, and OK to skip under contention to
1465     * increment count (since some other thread succeeded).
1466     */
1467     final void signalWork() {
1468     long c;
1469     WaitQueueNode q;
1470     if (syncStack != null &&
1471     casEventCount(c = eventCount, c+1) &&
1472     (((q = syncStack) != null && q.count <= c) &&
1473     (!casBarrierStack(q, q.next) || !q.signal())))
1474     ensureSync();
1475     }
1476    
1477     /**
1478     * Waits until event count advances from last value held by
1479     * caller, or if excess threads, caller is resumed as spare, or
1480     * caller or pool is terminating. Updates caller's event on exit.
1481     *
1482     * @param w the calling worker thread
1483     */
1484     final void sync(ForkJoinWorkerThread w) {
1485     updateStealCount(w); // Transfer w's count while it is idle
1486    
1487     while (!w.isShutdown() && !isTerminating() && !suspendIfSpare(w)) {
1488     long prev = w.lastEventCount;
1489     WaitQueueNode node = null;
1490     WaitQueueNode h;
1491     while (eventCount == prev &&
1492     ((h = syncStack) == null || h.count == prev)) {
1493     if (node == null)
1494     node = new WaitQueueNode(prev, w);
1495     if (casBarrierStack(node.next = h, node)) {
1496     node.awaitSyncRelease(this);
1497     break;
1498     }
1499     }
1500     long ec = ensureSync();
1501     if (ec != prev) {
1502     w.lastEventCount = ec;
1503     break;
1504     }
1505     }
1506     }
1507    
1508     /**
1509 jsr166 1.4 * Returns {@code true} if worker waiting on sync can proceed:
1510 jsr166 1.1 * - on signal (thread == null)
1511     * - on event count advance (winning race to notify vs signaller)
1512     * - on interrupt
1513     * - if the first queued node, we find work available
1514     * If node was not signalled and event count not advanced on exit,
1515     * then we also help advance event count.
1516     *
1517 jsr166 1.4 * @return {@code true} if node can be released
1518 jsr166 1.1 */
1519     final boolean syncIsReleasable(WaitQueueNode node) {
1520     long prev = node.count;
1521     if (!Thread.interrupted() && node.thread != null &&
1522     (node.next != null ||
1523     !ForkJoinWorkerThread.hasQueuedTasks(workers)) &&
1524     eventCount == prev)
1525     return false;
1526     if (node.thread != null) {
1527     node.thread = null;
1528     long ec = eventCount;
1529     if (prev <= ec) // help signal
1530     casEventCount(ec, ec+1);
1531     }
1532     return true;
1533     }
1534    
1535     /**
1536 jsr166 1.4 * Returns {@code true} if a new sync event occurred since last
1537     * call to sync or this method, if so, updating caller's count.
1538 jsr166 1.1 */
1539     final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
1540     long lc = w.lastEventCount;
1541     long ec = ensureSync();
1542     if (ec == lc)
1543     return false;
1544     w.lastEventCount = ec;
1545     return true;
1546     }
1547    
1548     // Parallelism maintenance
1549    
1550     /**
1551     * Decrements running count; if too low, adds spare.
1552     *
1553     * Conceptually, all we need to do here is add or resume a
1554     * spare thread when one is about to block (and remove or
1555     * suspend it later when unblocked -- see suspendIfSpare).
1556     * However, implementing this idea requires coping with
1557     * several problems: we have imperfect information about the
1558     * states of threads. Some count updates can and usually do
1559     * lag run state changes, despite arrangements to keep them
1560     * accurate (for example, when possible, updating counts
1561     * before signalling or resuming), especially when running on
1562     * dynamic JVMs that don't optimize the infrequent paths that
1563     * update counts. Generating too many threads can make these
1564     * problems become worse, because excess threads are more
1565     * likely to be context-switched with others, slowing them all
1566     * down, especially if there is no work available, so all are
1567     * busy scanning or idling. Also, excess spare threads can
1568     * only be suspended or removed when they are idle, not
1569     * immediately when they aren't needed. So adding threads will
1570     * raise parallelism level for longer than necessary. Also,
1571     * FJ applications often encounter highly transient peaks when
1572     * many threads are blocked joining, but for less time than it
1573     * takes to create or resume spares.
1574     *
1575     * @param joinMe if non-null, return early if done
1576     * @param maintainParallelism if true, try to stay within
1577     * target counts, else create only to avoid starvation
1578     * @return true if joinMe known to be done
1579     */
1580     final boolean preJoin(ForkJoinTask<?> joinMe,
1581     boolean maintainParallelism) {
1582     maintainParallelism &= maintainsParallelism; // overrride
1583     boolean dec = false; // true when running count decremented
1584     while (spareStack == null || !tryResumeSpare(dec)) {
1585     int counts = workerCounts;
1586     if (dec || (dec = casWorkerCounts(counts, --counts))) {
1587     // CAS cheat
1588     if (!needSpare(counts, maintainParallelism))
1589     break;
1590     if (joinMe.status < 0)
1591     return true;
1592     if (tryAddSpare(counts))
1593     break;
1594     }
1595     }
1596     return false;
1597     }
1598    
1599     /**
1600     * Same idea as preJoin
1601     */
1602     final boolean preBlock(ManagedBlocker blocker,
1603     boolean maintainParallelism) {
1604     maintainParallelism &= maintainsParallelism;
1605     boolean dec = false;
1606     while (spareStack == null || !tryResumeSpare(dec)) {
1607     int counts = workerCounts;
1608     if (dec || (dec = casWorkerCounts(counts, --counts))) {
1609     if (!needSpare(counts, maintainParallelism))
1610     break;
1611     if (blocker.isReleasable())
1612     return true;
1613     if (tryAddSpare(counts))
1614     break;
1615     }
1616     }
1617     return false;
1618     }
1619    
1620     /**
1621 jsr166 1.4 * Returns {@code true} if a spare thread appears to be needed.
1622     * If maintaining parallelism, returns true when the deficit in
1623 jsr166 1.1 * running threads is more than the surplus of total threads, and
1624     * there is apparently some work to do. This self-limiting rule
1625     * means that the more threads that have already been added, the
1626     * less parallelism we will tolerate before adding another.
1627     *
1628     * @param counts current worker counts
1629     * @param maintainParallelism try to maintain parallelism
1630     */
1631     private boolean needSpare(int counts, boolean maintainParallelism) {
1632     int ps = parallelism;
1633     int rc = runningCountOf(counts);
1634     int tc = totalCountOf(counts);
1635     int runningDeficit = ps - rc;
1636     int totalSurplus = tc - ps;
1637     return (tc < maxPoolSize &&
1638     (rc == 0 || totalSurplus < 0 ||
1639     (maintainParallelism &&
1640     runningDeficit > totalSurplus &&
1641     ForkJoinWorkerThread.hasQueuedTasks(workers))));
1642     }
1643    
1644     /**
1645     * Adds a spare worker if lock available and no more than the
1646     * expected numbers of threads exist.
1647     *
1648     * @return true if successful
1649     */
1650     private boolean tryAddSpare(int expectedCounts) {
1651     final ReentrantLock lock = this.workerLock;
1652     int expectedRunning = runningCountOf(expectedCounts);
1653     int expectedTotal = totalCountOf(expectedCounts);
1654     boolean success = false;
1655     boolean locked = false;
1656     // confirm counts while locking; CAS after obtaining lock
1657     try {
1658     for (;;) {
1659     int s = workerCounts;
1660     int tc = totalCountOf(s);
1661     int rc = runningCountOf(s);
1662     if (rc > expectedRunning || tc > expectedTotal)
1663     break;
1664     if (!locked && !(locked = lock.tryLock()))
1665     break;
1666     if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1667     createAndStartSpare(tc);
1668     success = true;
1669     break;
1670     }
1671     }
1672     } finally {
1673     if (locked)
1674     lock.unlock();
1675     }
1676     return success;
1677     }
1678    
1679     /**
1680     * Adds the kth spare worker. On entry, pool counts are already
1681     * adjusted to reflect addition.
1682     */
1683     private void createAndStartSpare(int k) {
1684     ForkJoinWorkerThread w = null;
1685     ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1686     int len = ws.length;
1687     // Probably, we can place at slot k. If not, find empty slot
1688     if (k < len && ws[k] != null) {
1689     for (k = 0; k < len && ws[k] != null; ++k)
1690     ;
1691     }
1692     if (k < len && !isTerminating() && (w = createWorker(k)) != null) {
1693     ws[k] = w;
1694     w.start();
1695     }
1696     else
1697     updateWorkerCount(-1); // adjust on failure
1698     signalIdleWorkers();
1699     }
1700    
1701     /**
1702     * Suspends calling thread w if there are excess threads. Called
1703     * only from sync. Spares are enqueued in a Treiber stack using
1704     * the same WaitQueueNodes as barriers. They are resumed mainly
1705     * in preJoin, but are also woken on pool events that require all
1706     * threads to check run state.
1707     *
1708     * @param w the caller
1709     */
1710     private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1711     WaitQueueNode node = null;
1712     int s;
1713     while (parallelism < runningCountOf(s = workerCounts)) {
1714     if (node == null)
1715     node = new WaitQueueNode(0, w);
1716     if (casWorkerCounts(s, s-1)) { // representation-dependent
1717     // push onto stack
1718     do {} while (!casSpareStack(node.next = spareStack, node));
1719     // block until released by resumeSpare
1720     node.awaitSpareRelease();
1721     return true;
1722     }
1723     }
1724     return false;
1725     }
1726    
1727     /**
1728     * Tries to pop and resume a spare thread.
1729     *
1730     * @param updateCount if true, increment running count on success
1731     * @return true if successful
1732     */
1733     private boolean tryResumeSpare(boolean updateCount) {
1734     WaitQueueNode q;
1735     while ((q = spareStack) != null) {
1736     if (casSpareStack(q, q.next)) {
1737     if (updateCount)
1738     updateRunningCount(1);
1739     q.signal();
1740     return true;
1741     }
1742     }
1743     return false;
1744     }
1745    
1746     /**
1747     * Pops and resumes all spare threads. Same idea as ensureSync.
1748     *
1749     * @return true if any spares released
1750     */
1751     private boolean resumeAllSpares() {
1752     WaitQueueNode q;
1753     while ( (q = spareStack) != null) {
1754     if (casSpareStack(q, null)) {
1755     do {
1756     updateRunningCount(1);
1757     q.signal();
1758     } while ((q = q.next) != null);
1759     return true;
1760     }
1761     }
1762     return false;
1763     }
1764    
1765     /**
1766     * Pops and shuts down excessive spare threads. Call only while
1767     * holding lock. This is not guaranteed to eliminate all excess
1768     * threads, only those suspended as spares, which are the ones
1769     * unlikely to be needed in the future.
1770     */
1771     private void trimSpares() {
1772     int surplus = totalCountOf(workerCounts) - parallelism;
1773     WaitQueueNode q;
1774     while (surplus > 0 && (q = spareStack) != null) {
1775     if (casSpareStack(q, null)) {
1776     do {
1777     updateRunningCount(1);
1778     ForkJoinWorkerThread w = q.thread;
1779     if (w != null && surplus > 0 &&
1780     runningCountOf(workerCounts) > 0 && w.shutdown())
1781     --surplus;
1782     q.signal();
1783     } while ((q = q.next) != null);
1784     }
1785     }
1786     }
1787    
1788     /**
1789     * Interface for extending managed parallelism for tasks running
1790     * in ForkJoinPools. A ManagedBlocker provides two methods.
1791 jsr166 1.4 * Method {@code isReleasable} must return {@code true} if
1792     * blocking is not necessary. Method {@code block} blocks the
1793     * current thread if necessary (perhaps internally invoking
1794     * {@code isReleasable} before actually blocking.).
1795 jsr166 1.1 *
1796     * <p>For example, here is a ManagedBlocker based on a
1797     * ReentrantLock:
1798     * <pre> {@code
1799     * class ManagedLocker implements ManagedBlocker {
1800     * final ReentrantLock lock;
1801     * boolean hasLock = false;
1802     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
1803     * public boolean block() {
1804     * if (!hasLock)
1805     * lock.lock();
1806     * return true;
1807     * }
1808     * public boolean isReleasable() {
1809     * return hasLock || (hasLock = lock.tryLock());
1810     * }
1811     * }}</pre>
1812     */
1813     public static interface ManagedBlocker {
1814     /**
1815     * Possibly blocks the current thread, for example waiting for
1816     * a lock or condition.
1817     *
1818 jsr166 1.4 * @return {@code true} if no additional blocking is necessary
1819     * (i.e., if isReleasable would return true)
1820 jsr166 1.1 * @throws InterruptedException if interrupted while waiting
1821     * (the method is not required to do so, but is allowed to)
1822     */
1823     boolean block() throws InterruptedException;
1824    
1825     /**
1826 jsr166 1.4 * Returns {@code true} if blocking is unnecessary.
1827 jsr166 1.1 */
1828     boolean isReleasable();
1829     }
1830    
1831     /**
1832     * Blocks in accord with the given blocker. If the current thread
1833     * is a ForkJoinWorkerThread, this method possibly arranges for a
1834     * spare thread to be activated if necessary to ensure parallelism
1835     * while the current thread is blocked. If
1836 jsr166 1.4 * {@code maintainParallelism} is {@code true} and the pool supports
1837 jsr166 1.1 * it ({@link #getMaintainsParallelism}), this method attempts to
1838     * maintain the pool's nominal parallelism. Otherwise it activates
1839     * a thread only if necessary to avoid complete starvation. This
1840     * option may be preferable when blockages use timeouts, or are
1841     * almost always brief.
1842     *
1843     * <p> If the caller is not a ForkJoinTask, this method is behaviorally
1844     * equivalent to
1845     * <pre> {@code
1846     * while (!blocker.isReleasable())
1847     * if (blocker.block())
1848     * return;
1849     * }</pre>
1850     * If the caller is a ForkJoinTask, then the pool may first
1851     * be expanded to ensure parallelism, and later adjusted.
1852     *
1853     * @param blocker the blocker
1854 jsr166 1.4 * @param maintainParallelism if {@code true} and supported by
1855     * this pool, attempt to maintain the pool's nominal parallelism;
1856     * otherwise activate a thread only if necessary to avoid
1857     * complete starvation.
1858 jsr166 1.1 * @throws InterruptedException if blocker.block did so
1859     */
1860     public static void managedBlock(ManagedBlocker blocker,
1861     boolean maintainParallelism)
1862     throws InterruptedException {
1863     Thread t = Thread.currentThread();
1864     ForkJoinPool pool = ((t instanceof ForkJoinWorkerThread) ?
1865     ((ForkJoinWorkerThread) t).pool : null);
1866     if (!blocker.isReleasable()) {
1867     try {
1868     if (pool == null ||
1869     !pool.preBlock(blocker, maintainParallelism))
1870     awaitBlocker(blocker);
1871     } finally {
1872     if (pool != null)
1873     pool.updateRunningCount(1);
1874     }
1875     }
1876     }
1877    
1878     private static void awaitBlocker(ManagedBlocker blocker)
1879     throws InterruptedException {
1880     do {} while (!blocker.isReleasable() && !blocker.block());
1881     }
1882    
1883     // AbstractExecutorService overrides
1884    
1885     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
1886     return new AdaptedRunnable<T>(runnable, value);
1887     }
1888    
1889     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
1890     return new AdaptedCallable<T>(callable);
1891     }
1892    
1893     // Unsafe mechanics
1894    
1895     private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
1896 jsr166 1.2 private static final long eventCountOffset =
1897 jsr166 1.3 objectFieldOffset("eventCount", ForkJoinPool.class);
1898 jsr166 1.2 private static final long workerCountsOffset =
1899 jsr166 1.3 objectFieldOffset("workerCounts", ForkJoinPool.class);
1900 jsr166 1.2 private static final long runControlOffset =
1901 jsr166 1.3 objectFieldOffset("runControl", ForkJoinPool.class);
1902 jsr166 1.2 private static final long syncStackOffset =
1903 jsr166 1.3 objectFieldOffset("syncStack",ForkJoinPool.class);
1904 jsr166 1.2 private static final long spareStackOffset =
1905 jsr166 1.3 objectFieldOffset("spareStack", ForkJoinPool.class);
1906 jsr166 1.1
1907     private boolean casEventCount(long cmp, long val) {
1908     return UNSAFE.compareAndSwapLong(this, eventCountOffset, cmp, val);
1909     }
1910     private boolean casWorkerCounts(int cmp, int val) {
1911     return UNSAFE.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1912     }
1913     private boolean casRunControl(int cmp, int val) {
1914     return UNSAFE.compareAndSwapInt(this, runControlOffset, cmp, val);
1915     }
1916     private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1917     return UNSAFE.compareAndSwapObject(this, spareStackOffset, cmp, val);
1918     }
1919     private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1920     return UNSAFE.compareAndSwapObject(this, syncStackOffset, cmp, val);
1921     }
1922 jsr166 1.3
1923     private static long objectFieldOffset(String field, Class<?> klazz) {
1924     try {
1925     return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1926     } catch (NoSuchFieldException e) {
1927     // Convert Exception to corresponding Error
1928     NoSuchFieldError error = new NoSuchFieldError(field);
1929     error.initCause(e);
1930     throw error;
1931     }
1932     }
1933 jsr166 1.1 }