ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.75
Committed: Tue Dec 20 01:03:46 2011 UTC (12 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.74: +2 -4 lines
Log Message:
s/lastTime/deadline/g

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.58 * http://creativecommons.org/publicdomain/zero/1.0/
5 jsr166 1.1 */
6    
7     package java.util.concurrent;
8    
9     import java.util.ArrayList;
10     import java.util.Arrays;
11     import java.util.Collection;
12     import java.util.Collections;
13     import java.util.List;
14 dl 1.52 import java.util.Random;
15 dl 1.36 import java.util.concurrent.AbstractExecutorService;
16     import java.util.concurrent.Callable;
17     import java.util.concurrent.ExecutorService;
18     import java.util.concurrent.Future;
19     import java.util.concurrent.RejectedExecutionException;
20     import java.util.concurrent.RunnableFuture;
21     import java.util.concurrent.TimeUnit;
22     import java.util.concurrent.atomic.AtomicInteger;
23 jsr166 1.1 import java.util.concurrent.locks.LockSupport;
24     import java.util.concurrent.locks.ReentrantLock;
25 dl 1.52 import java.util.concurrent.locks.Condition;
26 jsr166 1.1
27     /**
28 jsr166 1.4 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
29 jsr166 1.8 * A {@code ForkJoinPool} provides the entry point for submissions
30 dl 1.18 * from non-{@code ForkJoinTask} clients, as well as management and
31 jsr166 1.11 * monitoring operations.
32 jsr166 1.1 *
33 jsr166 1.9 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
34     * ExecutorService} mainly by virtue of employing
35     * <em>work-stealing</em>: all threads in the pool attempt to find and
36     * execute subtasks created by other active tasks (eventually blocking
37     * waiting for work if none exist). This enables efficient processing
38     * when most tasks spawn other subtasks (as do most {@code
39 dl 1.18 * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
40     * constructors, {@code ForkJoinPool}s may also be appropriate for use
41     * with event-style tasks that are never joined.
42 jsr166 1.1 *
43 jsr166 1.9 * <p>A {@code ForkJoinPool} is constructed with a given target
44     * parallelism level; by default, equal to the number of available
45 dl 1.18 * processors. The pool attempts to maintain enough active (or
46     * available) threads by dynamically adding, suspending, or resuming
47     * internal worker threads, even if some tasks are stalled waiting to
48     * join others. However, no such adjustments are guaranteed in the
49     * face of blocked IO or other unmanaged synchronization. The nested
50     * {@link ManagedBlocker} interface enables extension of the kinds of
51     * synchronization accommodated.
52 jsr166 1.1 *
53     * <p>In addition to execution and lifecycle control methods, this
54     * class provides status check methods (for example
55 jsr166 1.4 * {@link #getStealCount}) that are intended to aid in developing,
56 jsr166 1.1 * tuning, and monitoring fork/join applications. Also, method
57 jsr166 1.4 * {@link #toString} returns indications of pool state in a
58 jsr166 1.1 * convenient form for informal monitoring.
59     *
60 dl 1.18 * <p> As is the case with other ExecutorServices, there are three
61 dl 1.19 * main task execution methods summarized in the following
62 dl 1.18 * table. These are designed to be used by clients not already engaged
63     * in fork/join computations in the current pool. The main forms of
64     * these methods accept instances of {@code ForkJoinTask}, but
65     * overloaded forms also allow mixed execution of plain {@code
66     * Runnable}- or {@code Callable}- based activities as well. However,
67     * tasks that are already executing in a pool should normally
68     * <em>NOT</em> use these pool execution methods, but instead use the
69 dl 1.19 * within-computation forms listed in the table.
70 dl 1.18 *
71     * <table BORDER CELLPADDING=3 CELLSPACING=1>
72     * <tr>
73     * <td></td>
74     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
75     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
76     * </tr>
77     * <tr>
78 jsr166 1.25 * <td> <b>Arrange async execution</td>
79 dl 1.18 * <td> {@link #execute(ForkJoinTask)}</td>
80     * <td> {@link ForkJoinTask#fork}</td>
81     * </tr>
82     * <tr>
83     * <td> <b>Await and obtain result</td>
84     * <td> {@link #invoke(ForkJoinTask)}</td>
85     * <td> {@link ForkJoinTask#invoke}</td>
86     * </tr>
87     * <tr>
88     * <td> <b>Arrange exec and obtain Future</td>
89     * <td> {@link #submit(ForkJoinTask)}</td>
90     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
91     * </tr>
92     * </table>
93 dl 1.19 *
94 jsr166 1.9 * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
95     * used for all parallel task execution in a program or subsystem.
96     * Otherwise, use would not usually outweigh the construction and
97     * bookkeeping overhead of creating a large set of threads. For
98     * example, a common pool could be used for the {@code SortTasks}
99     * illustrated in {@link RecursiveAction}. Because {@code
100     * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
101     * daemon} mode, there is typically no need to explicitly {@link
102     * #shutdown} such a pool upon program exit.
103     *
104 jsr166 1.70 * <pre> {@code
105 jsr166 1.9 * static final ForkJoinPool mainPool = new ForkJoinPool();
106     * ...
107     * public void sort(long[] array) {
108     * mainPool.invoke(new SortTask(array, 0, array.length));
109 jsr166 1.70 * }}</pre>
110 jsr166 1.9 *
111 jsr166 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
112     * maximum number of running threads to 32767. Attempts to create
113 jsr166 1.11 * pools with greater than the maximum number result in
114 jsr166 1.8 * {@code IllegalArgumentException}.
115 jsr166 1.1 *
116 jsr166 1.11 * <p>This implementation rejects submitted tasks (that is, by throwing
117 dl 1.19 * {@link RejectedExecutionException}) only when the pool is shut down
118 dl 1.20 * or internal resources have been exhausted.
119 jsr166 1.11 *
120 jsr166 1.1 * @since 1.7
121     * @author Doug Lea
122     */
123     public class ForkJoinPool extends AbstractExecutorService {
124    
125     /*
126 dl 1.14 * Implementation Overview
127     *
128     * This class provides the central bookkeeping and control for a
129     * set of worker threads: Submissions from non-FJ threads enter
130     * into a submission queue. Workers take these tasks and typically
131     * split them into subtasks that may be stolen by other workers.
132 dl 1.52 * Preference rules give first priority to processing tasks from
133     * their own queues (LIFO or FIFO, depending on mode), then to
134     * randomized FIFO steals of tasks in other worker queues, and
135     * lastly to new submissions.
136     *
137     * The main throughput advantages of work-stealing stem from
138     * decentralized control -- workers mostly take tasks from
139     * themselves or each other. We cannot negate this in the
140     * implementation of other management responsibilities. The main
141     * tactic for avoiding bottlenecks is packing nearly all
142     * essentially atomic control state into a single 64bit volatile
143     * variable ("ctl"). This variable is read on the order of 10-100
144     * times as often as it is modified (always via CAS). (There is
145     * some additional control state, for example variable "shutdown"
146     * for which we can cope with uncoordinated updates.) This
147     * streamlines synchronization and control at the expense of messy
148     * constructions needed to repack status bits upon updates.
149     * Updates tend not to contend with each other except during
150     * bursts while submitted tasks begin or end. In some cases when
151     * they do contend, threads can instead do something else
152 dl 1.56 * (usually, scan for tasks) until contention subsides.
153 dl 1.52 *
154     * To enable packing, we restrict maximum parallelism to (1<<15)-1
155     * (which is far in excess of normal operating range) to allow
156     * ids, counts, and their negations (used for thresholding) to fit
157     * into 16bit fields.
158     *
159     * Recording Workers. Workers are recorded in the "workers" array
160     * that is created upon pool construction and expanded if (rarely)
161     * necessary. This is an array as opposed to some other data
162     * structure to support index-based random steals by workers.
163     * Updates to the array recording new workers and unrecording
164     * terminated ones are protected from each other by a seqLock
165     * (scanGuard) but the array is otherwise concurrently readable,
166     * and accessed directly by workers. To simplify index-based
167     * operations, the array size is always a power of two, and all
168     * readers must tolerate null slots. To avoid flailing during
169     * start-up, the array is presized to hold twice #parallelism
170     * workers (which is unlikely to need further resizing during
171     * execution). But to avoid dealing with so many null slots,
172     * variable scanGuard includes a mask for the nearest power of two
173     * that contains all current workers. All worker thread creation
174     * is on-demand, triggered by task submissions, replacement of
175     * terminated workers, and/or compensation for blocked
176     * workers. However, all other support code is set up to work with
177     * other policies. To ensure that we do not hold on to worker
178     * references that would prevent GC, ALL accesses to workers are
179     * via indices into the workers array (which is one source of some
180     * of the messy code constructions here). In essence, the workers
181     * array serves as a weak reference mechanism. Thus for example
182     * the wait queue field of ctl stores worker indices, not worker
183     * references. Access to the workers in associated methods (for
184     * example signalWork) must both index-check and null-check the
185     * IDs. All such accesses ignore bad IDs by returning out early
186     * from what they are doing, since this can only be associated
187     * with termination, in which case it is OK to give up.
188     *
189     * All uses of the workers array, as well as queue arrays, check
190     * that the array is non-null (even if previously non-null). This
191     * allows nulling during termination, which is currently not
192     * necessary, but remains an option for resource-revocation-based
193     * shutdown schemes.
194     *
195     * Wait Queuing. Unlike HPC work-stealing frameworks, we cannot
196 dl 1.56 * let workers spin indefinitely scanning for tasks when none can
197     * be found immediately, and we cannot start/resume workers unless
198     * there appear to be tasks available. On the other hand, we must
199     * quickly prod them into action when new tasks are submitted or
200     * generated. We park/unpark workers after placing in an event
201     * wait queue when they cannot find work. This "queue" is actually
202     * a simple Treiber stack, headed by the "id" field of ctl, plus a
203     * 15bit counter value to both wake up waiters (by advancing their
204     * count) and avoid ABA effects. Successors are held in worker
205     * field "nextWait". Queuing deals with several intrinsic races,
206     * mainly that a task-producing thread can miss seeing (and
207     * signalling) another thread that gave up looking for work but
208     * has not yet entered the wait queue. We solve this by requiring
209     * a full sweep of all workers both before (in scan()) and after
210     * (in tryAwaitWork()) a newly waiting worker is added to the wait
211     * queue. During a rescan, the worker might release some other
212     * queued worker rather than itself, which has the same net
213     * effect. Because enqueued workers may actually be rescanning
214     * rather than waiting, we set and clear the "parked" field of
215     * ForkJoinWorkerThread to reduce unnecessary calls to unpark.
216     * (Use of the parked field requires a secondary recheck to avoid
217     * missed signals.)
218 dl 1.52 *
219     * Signalling. We create or wake up workers only when there
220     * appears to be at least one task they might be able to find and
221     * execute. When a submission is added or another worker adds a
222     * task to a queue that previously had two or fewer tasks, they
223     * signal waiting workers (or trigger creation of new ones if
224     * fewer than the given parallelism level -- see signalWork).
225     * These primary signals are buttressed by signals during rescans
226     * as well as those performed when a worker steals a task and
227     * notices that there are more tasks too; together these cover the
228     * signals needed in cases when more than two tasks are pushed
229     * but untaken.
230     *
231     * Trimming workers. To release resources after periods of lack of
232     * use, a worker starting to wait when the pool is quiescent will
233     * time out and terminate if the pool has remained quiescent for
234 dl 1.56 * SHRINK_RATE nanosecs. This will slowly propagate, eventually
235     * terminating all workers after long periods of non-use.
236 dl 1.52 *
237     * Submissions. External submissions are maintained in an
238     * array-based queue that is structured identically to
239 dl 1.56 * ForkJoinWorkerThread queues except for the use of
240     * submissionLock in method addSubmission. Unlike the case for
241     * worker queues, multiple external threads can add new
242     * submissions, so adding requires a lock.
243 dl 1.52 *
244     * Compensation. Beyond work-stealing support and lifecycle
245     * control, the main responsibility of this framework is to take
246     * actions when one worker is waiting to join a task stolen (or
247     * always held by) another. Because we are multiplexing many
248     * tasks on to a pool of workers, we can't just let them block (as
249     * in Thread.join). We also cannot just reassign the joiner's
250     * run-time stack with another and replace it later, which would
251     * be a form of "continuation", that even if possible is not
252     * necessarily a good idea since we sometimes need both an
253     * unblocked task and its continuation to progress. Instead we
254 dl 1.19 * combine two tactics:
255     *
256     * Helping: Arranging for the joiner to execute some task that it
257     * would be running if the steal had not occurred. Method
258 dl 1.52 * ForkJoinWorkerThread.joinTask tracks joining->stealing
259 dl 1.19 * links to try to find such a task.
260     *
261     * Compensating: Unless there are already enough live threads,
262 dl 1.52 * method tryPreBlock() may create or re-activate a spare
263     * thread to compensate for blocked joiners until they
264     * unblock.
265     *
266     * The ManagedBlocker extension API can't use helping so relies
267     * only on compensation in method awaitBlocker.
268 dl 1.19 *
269 dl 1.52 * It is impossible to keep exactly the target parallelism number
270     * of threads running at any given time. Determining the
271 dl 1.24 * existence of conservatively safe helping targets, the
272     * availability of already-created spares, and the apparent need
273     * to create new spares are all racy and require heuristic
274 dl 1.52 * guidance, so we rely on multiple retries of each. Currently,
275     * in keeping with on-demand signalling policy, we compensate only
276     * if blocking would leave less than one active (non-waiting,
277     * non-blocked) worker. Additionally, to avoid some false alarms
278     * due to GC, lagging counters, system activity, etc, compensated
279 dl 1.56 * blocking for joins is only attempted after rechecks stabilize
280     * (retries are interspersed with Thread.yield, for good
281     * citizenship). The variable blockedCount, incremented before
282     * blocking and decremented after, is sometimes needed to
283     * distinguish cases of waiting for work vs blocking on joins or
284     * other managed sync. Both cases are equivalent for most pool
285     * control, so we can update non-atomically. (Additionally,
286     * contention on blockedCount alleviates some contention on ctl).
287 dl 1.52 *
288     * Shutdown and Termination. A call to shutdownNow atomically sets
289     * the ctl stop bit and then (non-atomically) sets each workers
290     * "terminate" status, cancels all unprocessed tasks, and wakes up
291     * all waiting workers. Detecting whether termination should
292     * commence after a non-abrupt shutdown() call requires more work
293 jsr166 1.69 * and bookkeeping. We need consensus about quiescence (i.e., that
294 dl 1.52 * there is no more work) which is reflected in active counts so
295     * long as there are no current blockers, as well as possible
296     * re-evaluations during independent changes in blocking or
297     * quiescing workers.
298 dl 1.19 *
299 dl 1.52 * Style notes: There is a lot of representation-level coupling
300 dl 1.14 * among classes ForkJoinPool, ForkJoinWorkerThread, and
301 dl 1.52 * ForkJoinTask. Most fields of ForkJoinWorkerThread maintain
302     * data structures managed by ForkJoinPool, so are directly
303     * accessed. Conversely we allow access to "workers" array by
304 dl 1.14 * workers, and direct access to ForkJoinTask.status by both
305     * ForkJoinPool and ForkJoinWorkerThread. There is little point
306     * trying to reduce this, since any associated future changes in
307     * representations will need to be accompanied by algorithmic
308 dl 1.52 * changes anyway. All together, these low-level implementation
309     * choices produce as much as a factor of 4 performance
310     * improvement compared to naive implementations, and enable the
311     * processing of billions of tasks per second, at the expense of
312     * some ugliness.
313     *
314     * Methods signalWork() and scan() are the main bottlenecks so are
315     * especially heavily micro-optimized/mangled. There are lots of
316     * inline assignments (of form "while ((local = field) != 0)")
317     * which are usually the simplest way to ensure the required read
318     * orderings (which are sometimes critical). This leads to a
319     * "C"-like style of listing declarations of these locals at the
320     * heads of methods or blocks. There are several occurrences of
321     * the unusual "do {} while (!cas...)" which is the simplest way
322     * to force an update of a CAS'ed variable. There are also other
323     * coding oddities that help some methods perform reasonably even
324     * when interpreted (not compiled).
325     *
326     * The order of declarations in this file is: (1) declarations of
327     * statics (2) fields (along with constants used when unpacking
328     * some of them), listed in an order that tends to reduce
329     * contention among them a bit under most JVMs. (3) internal
330     * control methods (4) callbacks and other support for
331     * ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
332     * methods (plus a few little helpers). (6) static block
333     * initializing all statics in a minimally dependent order.
334 jsr166 1.1 */
335    
336     /**
337 jsr166 1.8 * Factory for creating new {@link ForkJoinWorkerThread}s.
338     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
339     * for {@code ForkJoinWorkerThread} subclasses that extend base
340     * functionality or initialize threads with different contexts.
341 jsr166 1.1 */
342     public static interface ForkJoinWorkerThreadFactory {
343     /**
344     * Returns a new worker thread operating in the given pool.
345     *
346     * @param pool the pool this thread works in
347 jsr166 1.11 * @throws NullPointerException if the pool is null
348 jsr166 1.1 */
349     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
350     }
351    
352     /**
353     * Default ForkJoinWorkerThreadFactory implementation; creates a
354     * new ForkJoinWorkerThread.
355     */
356 dl 1.18 static class DefaultForkJoinWorkerThreadFactory
357 jsr166 1.1 implements ForkJoinWorkerThreadFactory {
358     public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
359 dl 1.14 return new ForkJoinWorkerThread(pool);
360 jsr166 1.1 }
361     }
362    
363     /**
364     * Creates a new ForkJoinWorkerThread. This factory is used unless
365     * overridden in ForkJoinPool constructors.
366     */
367     public static final ForkJoinWorkerThreadFactory
368 dl 1.52 defaultForkJoinWorkerThreadFactory;
369 jsr166 1.1
370     /**
371     * Permission required for callers of methods that may start or
372     * kill threads.
373     */
374 dl 1.52 private static final RuntimePermission modifyThreadPermission;
375 jsr166 1.1
376     /**
377     * If there is a security manager, makes sure caller has
378     * permission to modify threads.
379     */
380     private static void checkPermission() {
381     SecurityManager security = System.getSecurityManager();
382     if (security != null)
383     security.checkPermission(modifyThreadPermission);
384     }
385    
386     /**
387     * Generator for assigning sequence numbers as pool names.
388     */
389 dl 1.52 private static final AtomicInteger poolNumberGenerator;
390 jsr166 1.1
391     /**
392 dl 1.52 * Generator for initial random seeds for worker victim
393     * selection. This is used only to create initial seeds. Random
394     * steals use a cheaper xorshift generator per steal attempt. We
395     * don't expect much contention on seedGenerator, so just use a
396     * plain Random.
397 dl 1.24 */
398 dl 1.52 static final Random workerSeedGenerator;
399 dl 1.24
400     /**
401 dl 1.52 * Array holding all worker threads in the pool. Initialized upon
402     * construction. Array size must be a power of two. Updates and
403     * replacements are protected by scanGuard, but the array is
404     * always kept in a consistent enough state to be randomly
405     * accessed without locking by workers performing work-stealing,
406     * as well as other traversal-based methods in this class, so long
407     * as reads memory-acquire by first reading ctl. All readers must
408     * tolerate that some array slots may be null.
409 dl 1.22 */
410 dl 1.52 ForkJoinWorkerThread[] workers;
411 dl 1.22
412     /**
413 dl 1.52 * Initial size for submission queue array. Must be a power of
414     * two. In many applications, these always stay small so we use a
415     * small initial cap.
416 dl 1.14 */
417 dl 1.52 private static final int INITIAL_QUEUE_CAPACITY = 8;
418 dl 1.14
419     /**
420 dl 1.52 * Maximum size for submission queue array. Must be a power of two
421     * less than or equal to 1 << (31 - width of array entry) to
422     * ensure lack of index wraparound, but is capped at a lower
423     * value to help users trap runaway computations.
424 jsr166 1.1 */
425 dl 1.52 private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 24; // 16M
426 jsr166 1.1
427     /**
428 dl 1.52 * Array serving as submission queue. Initialized upon construction.
429 jsr166 1.1 */
430 dl 1.52 private ForkJoinTask<?>[] submissionQueue;
431 jsr166 1.1
432     /**
433 dl 1.52 * Lock protecting submissions array for addSubmission
434 jsr166 1.1 */
435 dl 1.52 private final ReentrantLock submissionLock;
436 jsr166 1.1
437     /**
438 dl 1.52 * Condition for awaitTermination, using submissionLock for
439     * convenience.
440 jsr166 1.1 */
441 dl 1.52 private final Condition termination;
442 jsr166 1.1
443     /**
444     * Creation factory for worker threads.
445     */
446     private final ForkJoinWorkerThreadFactory factory;
447    
448     /**
449 dl 1.52 * The uncaught exception handler used when any worker abruptly
450     * terminates.
451 jsr166 1.1 */
452 dl 1.52 final Thread.UncaughtExceptionHandler ueh;
453 jsr166 1.1
454     /**
455 dl 1.52 * Prefix for assigning names to worker threads
456 jsr166 1.1 */
457 dl 1.52 private final String workerNamePrefix;
458 dl 1.14
459 dl 1.52 /**
460     * Sum of per-thread steal counts, updated only when threads are
461     * idle or terminating.
462     */
463     private volatile long stealCount;
464 jsr166 1.1
465     /**
466 dl 1.52 * Main pool control -- a long packed with:
467     * AC: Number of active running workers minus target parallelism (16 bits)
468 jsr166 1.71 * TC: Number of total workers minus target parallelism (16 bits)
469 dl 1.52 * ST: true if pool is terminating (1 bit)
470     * EC: the wait count of top waiting thread (15 bits)
471     * ID: ~poolIndex of top of Treiber stack of waiting threads (16 bits)
472     *
473     * When convenient, we can extract the upper 32 bits of counts and
474     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
475     * (int)ctl. The ec field is never accessed alone, but always
476     * together with id and st. The offsets of counts by the target
477     * parallelism and the positionings of fields makes it possible to
478     * perform the most common checks via sign tests of fields: When
479     * ac is negative, there are not enough active workers, when tc is
480     * negative, there are not enough total workers, when id is
481     * negative, there is at least one waiting worker, and when e is
482     * negative, the pool is terminating. To deal with these possibly
483     * negative fields, we use casts in and out of "short" and/or
484 dl 1.55 * signed shifts to maintain signedness.
485 dl 1.52 */
486     volatile long ctl;
487    
488     // bit positions/shifts for fields
489     private static final int AC_SHIFT = 48;
490     private static final int TC_SHIFT = 32;
491     private static final int ST_SHIFT = 31;
492     private static final int EC_SHIFT = 16;
493    
494     // bounds
495     private static final int MAX_ID = 0x7fff; // max poolIndex
496     private static final int SMASK = 0xffff; // mask short bits
497     private static final int SHORT_SIGN = 1 << 15;
498     private static final int INT_SIGN = 1 << 31;
499    
500     // masks
501     private static final long STOP_BIT = 0x0001L << ST_SHIFT;
502     private static final long AC_MASK = ((long)SMASK) << AC_SHIFT;
503     private static final long TC_MASK = ((long)SMASK) << TC_SHIFT;
504    
505     // units for incrementing and decrementing
506     private static final long TC_UNIT = 1L << TC_SHIFT;
507     private static final long AC_UNIT = 1L << AC_SHIFT;
508    
509     // masks and units for dealing with u = (int)(ctl >>> 32)
510     private static final int UAC_SHIFT = AC_SHIFT - 32;
511     private static final int UTC_SHIFT = TC_SHIFT - 32;
512     private static final int UAC_MASK = SMASK << UAC_SHIFT;
513     private static final int UTC_MASK = SMASK << UTC_SHIFT;
514     private static final int UAC_UNIT = 1 << UAC_SHIFT;
515     private static final int UTC_UNIT = 1 << UTC_SHIFT;
516    
517     // masks and units for dealing with e = (int)ctl
518     private static final int E_MASK = 0x7fffffff; // no STOP_BIT
519     private static final int EC_UNIT = 1 << EC_SHIFT;
520 dl 1.14
521     /**
522 dl 1.52 * The target parallelism level.
523 dl 1.19 */
524 dl 1.52 final int parallelism;
525 dl 1.19
526     /**
527 dl 1.52 * Index (mod submission queue length) of next element to take
528 dl 1.56 * from submission queue. Usage is identical to that for
529     * per-worker queues -- see ForkJoinWorkerThread internal
530     * documentation.
531 dl 1.14 */
532 dl 1.52 volatile int queueBase;
533 jsr166 1.1
534     /**
535 dl 1.52 * Index (mod submission queue length) of next element to add
536 dl 1.56 * in submission queue. Usage is identical to that for
537     * per-worker queues -- see ForkJoinWorkerThread internal
538     * documentation.
539 dl 1.14 */
540 dl 1.52 int queueTop;
541 dl 1.14
542 jsr166 1.1 /**
543 dl 1.52 * True when shutdown() has been called.
544 jsr166 1.1 */
545 dl 1.52 volatile boolean shutdown;
546 jsr166 1.1
547     /**
548 jsr166 1.72 * True if use local fifo, not default lifo, for local polling.
549     * Read by, and replicated by ForkJoinWorkerThreads.
550 jsr166 1.1 */
551 dl 1.18 final boolean locallyFifo;
552 jsr166 1.1
553     /**
554 dl 1.52 * The number of threads in ForkJoinWorkerThreads.helpQuiescePool.
555     * When non-zero, suppresses automatic shutdown when active
556     * counts become zero.
557 jsr166 1.1 */
558 dl 1.52 volatile int quiescerCount;
559 jsr166 1.1
560     /**
561 dl 1.52 * The number of threads blocked in join.
562 jsr166 1.1 */
563 dl 1.52 volatile int blockedCount;
564 jsr166 1.1
565 dl 1.52 /**
566     * Counter for worker Thread names (unrelated to their poolIndex)
567     */
568     private volatile int nextWorkerNumber;
569 jsr166 1.1
570     /**
571 dl 1.52 * The index for the next created worker. Accessed under scanGuard.
572 jsr166 1.1 */
573 dl 1.52 private int nextWorkerIndex;
574 dl 1.19
575 jsr166 1.1 /**
576 dl 1.56 * SeqLock and index masking for updates to workers array. Locked
577     * when SG_UNIT is set. Unlocking clears bit by adding
578 dl 1.52 * SG_UNIT. Staleness of read-only operations can be checked by
579     * comparing scanGuard to value before the reads. The low 16 bits
580     * (i.e, anding with SMASK) hold (the smallest power of two
581     * covering all worker indices, minus one, and is used to avoid
582     * dealing with large numbers of null slots when the workers array
583     * is overallocated.
584 dl 1.45 */
585 dl 1.52 volatile int scanGuard;
586    
587     private static final int SG_UNIT = 1 << 16;
588 dl 1.45
589     /**
590 dl 1.52 * The wakeup interval (in nanoseconds) for a worker waiting for a
591     * task when the pool is quiescent to instead try to shrink the
592     * number of workers. The exact value does not matter too
593     * much. It must be short enough to release resources during
594     * sustained periods of idleness, but not so short that threads
595     * are continually re-created.
596 dl 1.17 */
597 dl 1.52 private static final long SHRINK_RATE =
598     4L * 1000L * 1000L * 1000L; // 4 seconds
599 dl 1.17
600     /**
601 dl 1.52 * Top-level loop for worker threads: On each step: if the
602     * previous step swept through all queues and found no tasks, or
603     * there are excess threads, then possibly blocks. Otherwise,
604     * scans for and, if found, executes a task. Returns when pool
605     * and/or worker terminate.
606 dl 1.19 *
607 dl 1.52 * @param w the worker
608 dl 1.19 */
609 dl 1.52 final void work(ForkJoinWorkerThread w) {
610     boolean swept = false; // true on empty scans
611     long c;
612     while (!w.terminate && (int)(c = ctl) >= 0) {
613     int a; // active count
614     if (!swept && (a = (int)(c >> AC_SHIFT)) <= 0)
615     swept = scan(w, a);
616     else if (tryAwaitWork(w, c))
617     swept = false;
618 dl 1.19 }
619     }
620    
621 dl 1.52 // Signalling
622    
623 dl 1.19 /**
624 dl 1.52 * Wakes up or creates a worker.
625 dl 1.14 */
626 dl 1.52 final void signalWork() {
627     /*
628     * The while condition is true if: (there is are too few total
629     * workers OR there is at least one waiter) AND (there are too
630     * few active workers OR the pool is terminating). The value
631     * of e distinguishes the remaining cases: zero (no waiters)
632     * for create, negative if terminating (in which case do
633     * nothing), else release a waiter. The secondary checks for
634     * release (non-null array etc) can fail if the pool begins
635     * terminating after the test, and don't impose any added cost
636     * because JVMs must perform null and bounds checks anyway.
637     */
638     long c; int e, u;
639     while ((((e = (int)(c = ctl)) | (u = (int)(c >>> 32))) &
640     (INT_SIGN|SHORT_SIGN)) == (INT_SIGN|SHORT_SIGN) && e >= 0) {
641     if (e > 0) { // release a waiting worker
642     int i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
643     if ((ws = workers) == null ||
644     (i = ~e & SMASK) >= ws.length ||
645     (w = ws[i]) == null)
646     break;
647     long nc = (((long)(w.nextWait & E_MASK)) |
648     ((long)(u + UAC_UNIT) << 32));
649     if (w.eventCount == e &&
650     UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
651     w.eventCount = (e + EC_UNIT) & E_MASK;
652     if (w.parked)
653     UNSAFE.unpark(w);
654     break;
655     }
656     }
657     else if (UNSAFE.compareAndSwapLong
658     (this, ctlOffset, c,
659     (long)(((u + UTC_UNIT) & UTC_MASK) |
660     ((u + UAC_UNIT) & UAC_MASK)) << 32)) {
661     addWorker();
662     break;
663     }
664     }
665 dl 1.14 }
666    
667     /**
668 dl 1.52 * Variant of signalWork to help release waiters on rescans.
669     * Tries once to release a waiter if active count < 0.
670     *
671     * @return false if failed due to contention, else true
672 dl 1.14 */
673 dl 1.52 private boolean tryReleaseWaiter() {
674     long c; int e, i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
675     if ((e = (int)(c = ctl)) > 0 &&
676     (int)(c >> AC_SHIFT) < 0 &&
677     (ws = workers) != null &&
678     (i = ~e & SMASK) < ws.length &&
679     (w = ws[i]) != null) {
680     long nc = ((long)(w.nextWait & E_MASK) |
681     ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
682     if (w.eventCount != e ||
683     !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
684 dl 1.14 return false;
685 dl 1.52 w.eventCount = (e + EC_UNIT) & E_MASK;
686     if (w.parked)
687     UNSAFE.unpark(w);
688 dl 1.14 }
689 dl 1.52 return true;
690 dl 1.14 }
691    
692 dl 1.52 // Scanning for tasks
693 dl 1.14
694     /**
695 dl 1.52 * Scans for and, if found, executes one task. Scans start at a
696     * random index of workers array, and randomly select the first
697     * (2*#workers)-1 probes, and then, if all empty, resort to 2
698     * circular sweeps, which is necessary to check quiescence. and
699     * taking a submission only if no stealable tasks were found. The
700     * steal code inside the loop is a specialized form of
701     * ForkJoinWorkerThread.deqTask, followed bookkeeping to support
702     * helpJoinTask and signal propagation. The code for submission
703     * queues is almost identical. On each steal, the worker completes
704     * not only the task, but also all local tasks that this task may
705     * have generated. On detecting staleness or contention when
706     * trying to take a task, this method returns without finishing
707     * sweep, which allows global state rechecks before retry.
708     *
709     * @param w the worker
710     * @param a the number of active workers
711     * @return true if swept all queues without finding a task
712 dl 1.14 */
713 dl 1.52 private boolean scan(ForkJoinWorkerThread w, int a) {
714     int g = scanGuard; // mask 0 avoids useless scans if only one active
715 dl 1.57 int m = (parallelism == 1 - a && blockedCount == 0) ? 0 : g & SMASK;
716 dl 1.52 ForkJoinWorkerThread[] ws = workers;
717     if (ws == null || ws.length <= m) // staleness check
718     return false;
719     for (int r = w.seed, k = r, j = -(m + m); j <= m + m; ++j) {
720     ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
721     ForkJoinWorkerThread v = ws[k & m];
722     if (v != null && (b = v.queueBase) != v.queueTop &&
723     (q = v.queue) != null && (i = (q.length - 1) & b) >= 0) {
724     long u = (i << ASHIFT) + ABASE;
725     if ((t = q[i]) != null && v.queueBase == b &&
726     UNSAFE.compareAndSwapObject(q, u, t, null)) {
727     int d = (v.queueBase = b + 1) - v.queueTop;
728     v.stealHint = w.poolIndex;
729     if (d != 0)
730     signalWork(); // propagate if nonempty
731     w.execTask(t);
732     }
733     r ^= r << 13; r ^= r >>> 17; w.seed = r ^ (r << 5);
734     return false; // store next seed
735     }
736     else if (j < 0) { // xorshift
737     r ^= r << 13; r ^= r >>> 17; k = r ^= r << 5;
738     }
739     else
740     ++k;
741     }
742     if (scanGuard != g) // staleness check
743     return false;
744     else { // try to take submission
745     ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
746     if ((b = queueBase) != queueTop &&
747     (q = submissionQueue) != null &&
748     (i = (q.length - 1) & b) >= 0) {
749     long u = (i << ASHIFT) + ABASE;
750     if ((t = q[i]) != null && queueBase == b &&
751     UNSAFE.compareAndSwapObject(q, u, t, null)) {
752     queueBase = b + 1;
753     w.execTask(t);
754     }
755     return false;
756     }
757     return true; // all queues empty
758 dl 1.14 }
759     }
760    
761     /**
762 dl 1.54 * Tries to enqueue worker w in wait queue and await change in
763 dl 1.61 * worker's eventCount. If the pool is quiescent and there is
764     * more than one worker, possibly terminates worker upon exit.
765     * Otherwise, before blocking, rescans queues to avoid missed
766     * signals. Upon finding work, releases at least one worker
767     * (which may be the current worker). Rescans restart upon
768     * detected staleness or failure to release due to
769     * contention. Note the unusual conventions about Thread.interrupt
770     * here and elsewhere: Because interrupts are used solely to alert
771     * threads to check termination, which is checked here anyway, we
772     * clear status (using Thread.interrupted) before any call to
773     * park, so that park does not immediately return due to status
774     * being set via some other unrelated call to interrupt in user
775     * code.
776 dl 1.52 *
777     * @param w the calling worker
778     * @param c the ctl value on entry
779     * @return true if waited or another thread was released upon enq
780 dl 1.14 */
781 dl 1.52 private boolean tryAwaitWork(ForkJoinWorkerThread w, long c) {
782     int v = w.eventCount;
783 dl 1.54 w.nextWait = (int)c; // w's successor record
784 dl 1.52 long nc = (long)(v & E_MASK) | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
785     if (ctl != c || !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
786 dl 1.54 long d = ctl; // return true if lost to a deq, to force scan
787 jsr166 1.74 return (int)d != (int)c && (d & AC_MASK) >= (c & AC_MASK);
788 dl 1.52 }
789 dl 1.54 for (int sc = w.stealCount; sc != 0;) { // accumulate stealCount
790     long s = stealCount;
791     if (UNSAFE.compareAndSwapLong(this, stealCountOffset, s, s + sc))
792     sc = w.stealCount = 0;
793     else if (w.eventCount != v)
794     return true; // update next time
795     }
796 dl 1.62 if ((!shutdown || !tryTerminate(false)) &&
797     (int)c != 0 && parallelism + (int)(nc >> AC_SHIFT) == 0 &&
798 dl 1.53 blockedCount == 0 && quiescerCount == 0)
799 dl 1.54 idleAwaitWork(w, nc, c, v); // quiescent
800     for (boolean rescanned = false;;) {
801 dl 1.52 if (w.eventCount != v)
802     return true;
803 dl 1.54 if (!rescanned) {
804 dl 1.52 int g = scanGuard, m = g & SMASK;
805     ForkJoinWorkerThread[] ws = workers;
806     if (ws != null && m < ws.length) {
807     rescanned = true;
808     for (int i = 0; i <= m; ++i) {
809     ForkJoinWorkerThread u = ws[i];
810     if (u != null) {
811     if (u.queueBase != u.queueTop &&
812     !tryReleaseWaiter())
813     rescanned = false; // contended
814     if (w.eventCount != v)
815     return true;
816     }
817     }
818     }
819     if (scanGuard != g || // stale
820     (queueBase != queueTop && !tryReleaseWaiter()))
821     rescanned = false;
822     if (!rescanned)
823     Thread.yield(); // reduce contention
824     else
825     Thread.interrupted(); // clear before park
826     }
827     else {
828     w.parked = true; // must recheck
829     if (w.eventCount != v) {
830     w.parked = false;
831     return true;
832     }
833     LockSupport.park(this);
834     rescanned = w.parked = false;
835     }
836 dl 1.14 }
837     }
838    
839     /**
840 dl 1.54 * If inactivating worker w has caused pool to become
841     * quiescent, check for pool termination, and wait for event
842     * for up to SHRINK_RATE nanosecs (rescans are unnecessary in
843     * this case because quiescence reflects consensus about lack
844     * of work). On timeout, if ctl has not changed, terminate the
845     * worker. Upon its termination (see deregisterWorker), it may
846     * wake up another worker to possibly repeat this process.
847 dl 1.52 *
848     * @param w the calling worker
849 dl 1.54 * @param currentCtl the ctl value after enqueuing w
850     * @param prevCtl the ctl value if w terminated
851     * @param v the eventCount w awaits change
852     */
853     private void idleAwaitWork(ForkJoinWorkerThread w, long currentCtl,
854     long prevCtl, int v) {
855     if (w.eventCount == v) {
856     if (shutdown)
857     tryTerminate(false);
858     ForkJoinTask.helpExpungeStaleExceptions(); // help clean weak refs
859     while (ctl == currentCtl) {
860     long startTime = System.nanoTime();
861 dl 1.52 w.parked = true;
862 dl 1.54 if (w.eventCount == v) // must recheck
863 dl 1.52 LockSupport.parkNanos(this, SHRINK_RATE);
864     w.parked = false;
865 dl 1.54 if (w.eventCount != v)
866     break;
867 jsr166 1.63 else if (System.nanoTime() - startTime <
868 dl 1.60 SHRINK_RATE - (SHRINK_RATE / 10)) // timing slop
869 dl 1.54 Thread.interrupted(); // spurious wakeup
870     else if (UNSAFE.compareAndSwapLong(this, ctlOffset,
871     currentCtl, prevCtl)) {
872     w.terminate = true; // restore previous
873     w.eventCount = ((int)currentCtl + EC_UNIT) & E_MASK;
874     break;
875 dl 1.52 }
876     }
877     }
878 dl 1.14 }
879    
880 dl 1.52 // Submissions
881 dl 1.14
882     /**
883 dl 1.52 * Enqueues the given task in the submissionQueue. Same idea as
884     * ForkJoinWorkerThread.pushTask except for use of submissionLock.
885     *
886     * @param t the task
887 dl 1.14 */
888 dl 1.52 private void addSubmission(ForkJoinTask<?> t) {
889     final ReentrantLock lock = this.submissionLock;
890     lock.lock();
891     try {
892     ForkJoinTask<?>[] q; int s, m;
893     if ((q = submissionQueue) != null) { // ignore if queue removed
894     long u = (((s = queueTop) & (m = q.length-1)) << ASHIFT)+ABASE;
895     UNSAFE.putOrderedObject(q, u, t);
896     queueTop = s + 1;
897     if (s - queueBase == m)
898     growSubmissionQueue();
899 dl 1.24 }
900 dl 1.52 } finally {
901     lock.unlock();
902 dl 1.14 }
903 dl 1.52 signalWork();
904 dl 1.14 }
905    
906 dl 1.52 // (pollSubmission is defined below with exported methods)
907    
908 dl 1.14 /**
909 dl 1.52 * Creates or doubles submissionQueue array.
910 dl 1.56 * Basically identical to ForkJoinWorkerThread version.
911 dl 1.18 */
912 dl 1.52 private void growSubmissionQueue() {
913     ForkJoinTask<?>[] oldQ = submissionQueue;
914     int size = oldQ != null ? oldQ.length << 1 : INITIAL_QUEUE_CAPACITY;
915     if (size > MAXIMUM_QUEUE_CAPACITY)
916     throw new RejectedExecutionException("Queue capacity exceeded");
917     if (size < INITIAL_QUEUE_CAPACITY)
918     size = INITIAL_QUEUE_CAPACITY;
919     ForkJoinTask<?>[] q = submissionQueue = new ForkJoinTask<?>[size];
920     int mask = size - 1;
921     int top = queueTop;
922     int oldMask;
923     if (oldQ != null && (oldMask = oldQ.length - 1) >= 0) {
924     for (int b = queueBase; b != top; ++b) {
925     long u = ((b & oldMask) << ASHIFT) + ABASE;
926     Object x = UNSAFE.getObjectVolatile(oldQ, u);
927     if (x != null && UNSAFE.compareAndSwapObject(oldQ, u, x, null))
928     UNSAFE.putObjectVolatile
929     (q, ((b & mask) << ASHIFT) + ABASE, x);
930 dl 1.22 }
931     }
932     }
933    
934 dl 1.52 // Blocking support
935    
936 dl 1.22 /**
937 dl 1.52 * Tries to increment blockedCount, decrement active count
938     * (sometimes implicitly) and possibly release or create a
939     * compensating worker in preparation for blocking. Fails
940     * on contention or termination.
941     *
942     * @return true if the caller can block, else should recheck and retry
943     */
944     private boolean tryPreBlock() {
945     int b = blockedCount;
946     if (UNSAFE.compareAndSwapInt(this, blockedCountOffset, b, b + 1)) {
947     int pc = parallelism;
948     do {
949     ForkJoinWorkerThread[] ws; ForkJoinWorkerThread w;
950 jsr166 1.67 int e, ac, tc, i;
951 dl 1.52 long c = ctl;
952     int u = (int)(c >>> 32);
953     if ((e = (int)c) < 0) {
954     // skip -- terminating
955     }
956     else if ((ac = (u >> UAC_SHIFT)) <= 0 && e != 0 &&
957     (ws = workers) != null &&
958     (i = ~e & SMASK) < ws.length &&
959     (w = ws[i]) != null) {
960     long nc = ((long)(w.nextWait & E_MASK) |
961     (c & (AC_MASK|TC_MASK)));
962     if (w.eventCount == e &&
963     UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
964     w.eventCount = (e + EC_UNIT) & E_MASK;
965     if (w.parked)
966     UNSAFE.unpark(w);
967     return true; // release an idle worker
968     }
969     }
970     else if ((tc = (short)(u >>> UTC_SHIFT)) >= 0 && ac + pc > 1) {
971     long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
972     if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
973     return true; // no compensation needed
974     }
975     else if (tc + pc < MAX_ID) {
976     long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
977     if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
978     addWorker();
979     return true; // create a replacement
980     }
981 dl 1.19 }
982 dl 1.52 // try to back out on any failure and let caller retry
983     } while (!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
984     b = blockedCount, b - 1));
985 dl 1.14 }
986 dl 1.52 return false;
987 dl 1.22 }
988    
989 dl 1.52 /**
990 jsr166 1.66 * Decrements blockedCount and increments active count.
991 dl 1.52 */
992     private void postBlock() {
993     long c;
994     do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset, // no mask
995     c = ctl, c + AC_UNIT));
996     int b;
997 jsr166 1.63 do {} while (!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
998     b = blockedCount, b - 1));
999 dl 1.52 }
1000 dl 1.19
1001     /**
1002 dl 1.52 * Possibly blocks waiting for the given task to complete, or
1003     * cancels the task if terminating. Fails to wait if contended.
1004     *
1005     * @param joinMe the task
1006 dl 1.19 */
1007 dl 1.52 final void tryAwaitJoin(ForkJoinTask<?> joinMe) {
1008     Thread.interrupted(); // clear interrupts before checking termination
1009     if (joinMe.status >= 0) {
1010     if (tryPreBlock()) {
1011     joinMe.tryAwaitDone(0L);
1012     postBlock();
1013     }
1014 dl 1.56 else if ((ctl & STOP_BIT) != 0L)
1015 dl 1.52 joinMe.cancelIgnoringExceptions();
1016     }
1017 dl 1.14 }
1018    
1019     /**
1020 dl 1.52 * Possibly blocks the given worker waiting for joinMe to
1021 jsr166 1.66 * complete or timeout.
1022 dl 1.52 *
1023     * @param joinMe the task
1024     * @param millis the wait time for underlying Object.wait
1025 dl 1.14 */
1026 dl 1.52 final void timedAwaitJoin(ForkJoinTask<?> joinMe, long nanos) {
1027     while (joinMe.status >= 0) {
1028     Thread.interrupted();
1029     if ((ctl & STOP_BIT) != 0L) {
1030     joinMe.cancelIgnoringExceptions();
1031     break;
1032     }
1033     if (tryPreBlock()) {
1034 jsr166 1.75 final long deadline = System.nanoTime() + nanos;
1035 dl 1.52 while (joinMe.status >= 0) {
1036     long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
1037     if (millis <= 0)
1038     break;
1039     joinMe.tryAwaitDone(millis);
1040     if (joinMe.status < 0)
1041     break;
1042     if ((ctl & STOP_BIT) != 0L) {
1043     joinMe.cancelIgnoringExceptions();
1044     break;
1045     }
1046 jsr166 1.75 nanos = deadline - System.nanoTime();
1047 dl 1.52 }
1048     postBlock();
1049     break;
1050     }
1051 dl 1.22 }
1052     }
1053    
1054     /**
1055 jsr166 1.66 * If necessary, compensates for blocker, and blocks.
1056 dl 1.22 */
1057 dl 1.52 private void awaitBlocker(ManagedBlocker blocker)
1058     throws InterruptedException {
1059     while (!blocker.isReleasable()) {
1060     if (tryPreBlock()) {
1061 dl 1.24 try {
1062 dl 1.52 do {} while (!blocker.isReleasable() && !blocker.block());
1063     } finally {
1064     postBlock();
1065 dl 1.24 }
1066 dl 1.52 break;
1067 dl 1.22 }
1068     }
1069     }
1070    
1071 dl 1.52 // Creating, registering and deregistring workers
1072    
1073 dl 1.22 /**
1074 dl 1.52 * Tries to create and start a worker; minimally rolls back counts
1075     * on failure.
1076 dl 1.22 */
1077 dl 1.52 private void addWorker() {
1078     Throwable ex = null;
1079     ForkJoinWorkerThread t = null;
1080     try {
1081     t = factory.newThread(this);
1082     } catch (Throwable e) {
1083     ex = e;
1084     }
1085     if (t == null) { // null or exceptional factory return
1086     long c; // adjust counts
1087     do {} while (!UNSAFE.compareAndSwapLong
1088     (this, ctlOffset, c = ctl,
1089     (((c - AC_UNIT) & AC_MASK) |
1090     ((c - TC_UNIT) & TC_MASK) |
1091     (c & ~(AC_MASK|TC_MASK)))));
1092     // Propagate exception if originating from an external caller
1093     if (!tryTerminate(false) && ex != null &&
1094     !(Thread.currentThread() instanceof ForkJoinWorkerThread))
1095     UNSAFE.throwException(ex);
1096     }
1097     else
1098     t.start();
1099 dl 1.14 }
1100    
1101     /**
1102 dl 1.52 * Callback from ForkJoinWorkerThread constructor to assign a
1103     * public name
1104 dl 1.14 */
1105 dl 1.52 final String nextWorkerName() {
1106     for (int n;;) {
1107     if (UNSAFE.compareAndSwapInt(this, nextWorkerNumberOffset,
1108     n = nextWorkerNumber, ++n))
1109     return workerNamePrefix + n;
1110 dl 1.14 }
1111     }
1112    
1113     /**
1114 dl 1.52 * Callback from ForkJoinWorkerThread constructor to
1115     * determine its poolIndex and record in workers array.
1116 dl 1.17 *
1117 dl 1.52 * @param w the worker
1118     * @return the worker's pool index
1119 dl 1.14 */
1120 dl 1.52 final int registerWorker(ForkJoinWorkerThread w) {
1121     /*
1122     * In the typical case, a new worker acquires the lock, uses
1123     * next available index and returns quickly. Since we should
1124     * not block callers (ultimately from signalWork or
1125     * tryPreBlock) waiting for the lock needed to do this, we
1126     * instead help release other workers while waiting for the
1127     * lock.
1128     */
1129     for (int g;;) {
1130     ForkJoinWorkerThread[] ws;
1131     if (((g = scanGuard) & SG_UNIT) == 0 &&
1132     UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1133     g, g | SG_UNIT)) {
1134     int k = nextWorkerIndex;
1135     try {
1136     if ((ws = workers) != null) { // ignore on shutdown
1137     int n = ws.length;
1138     if (k < 0 || k >= n || ws[k] != null) {
1139     for (k = 0; k < n && ws[k] != null; ++k)
1140     ;
1141     if (k == n)
1142     ws = workers = Arrays.copyOf(ws, n << 1);
1143     }
1144     ws[k] = w;
1145     nextWorkerIndex = k + 1;
1146     int m = g & SMASK;
1147 jsr166 1.63 g = (k > m) ? ((m << 1) + 1) & SMASK : g + (SG_UNIT<<1);
1148 dl 1.52 }
1149     } finally {
1150     scanGuard = g;
1151     }
1152     return k;
1153 dl 1.41 }
1154 dl 1.52 else if ((ws = workers) != null) { // help release others
1155     for (ForkJoinWorkerThread u : ws) {
1156     if (u != null && u.queueBase != u.queueTop) {
1157     if (tryReleaseWaiter())
1158 dl 1.45 break;
1159 dl 1.43 }
1160     }
1161 dl 1.14 }
1162     }
1163     }
1164    
1165     /**
1166 dl 1.52 * Final callback from terminating worker. Removes record of
1167     * worker from array, and adjusts counts. If pool is shutting
1168     * down, tries to complete termination.
1169     *
1170     * @param w the worker
1171 dl 1.14 */
1172 dl 1.52 final void deregisterWorker(ForkJoinWorkerThread w, Throwable ex) {
1173     int idx = w.poolIndex;
1174     int sc = w.stealCount;
1175     int steps = 0;
1176     // Remove from array, adjust worker counts and collect steal count.
1177     // We can intermix failed removes or adjusts with steal updates
1178     do {
1179     long s, c;
1180     int g;
1181     if (steps == 0 && ((g = scanGuard) & SG_UNIT) == 0 &&
1182     UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1183     g, g |= SG_UNIT)) {
1184     ForkJoinWorkerThread[] ws = workers;
1185     if (ws != null && idx >= 0 &&
1186     idx < ws.length && ws[idx] == w)
1187     ws[idx] = null; // verify
1188     nextWorkerIndex = idx;
1189     scanGuard = g + SG_UNIT;
1190     steps = 1;
1191 dl 1.18 }
1192 dl 1.52 if (steps == 1 &&
1193     UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
1194     (((c - AC_UNIT) & AC_MASK) |
1195     ((c - TC_UNIT) & TC_MASK) |
1196     (c & ~(AC_MASK|TC_MASK)))))
1197     steps = 2;
1198     if (sc != 0 &&
1199     UNSAFE.compareAndSwapLong(this, stealCountOffset,
1200     s = stealCount, s + sc))
1201     sc = 0;
1202     } while (steps != 2 || sc != 0);
1203     if (!tryTerminate(false)) {
1204     if (ex != null) // possibly replace if died abnormally
1205     signalWork();
1206     else
1207     tryReleaseWaiter();
1208 dl 1.14 }
1209 dl 1.19 }
1210 dl 1.15
1211 dl 1.52 // Shutdown and termination
1212    
1213 dl 1.15 /**
1214 dl 1.14 * Possibly initiates and/or completes termination.
1215     *
1216     * @param now if true, unconditionally terminate, else only
1217     * if shutdown and empty queue and no active workers
1218     * @return true if now terminating or terminated
1219 jsr166 1.1 */
1220 dl 1.14 private boolean tryTerminate(boolean now) {
1221 dl 1.52 long c;
1222     while (((c = ctl) & STOP_BIT) == 0) {
1223     if (!now) {
1224     if ((int)(c >> AC_SHIFT) != -parallelism)
1225     return false;
1226     if (!shutdown || blockedCount != 0 || quiescerCount != 0 ||
1227 dl 1.56 queueBase != queueTop) {
1228 dl 1.52 if (ctl == c) // staleness check
1229     return false;
1230     continue;
1231     }
1232     }
1233     if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, c | STOP_BIT))
1234     startTerminating();
1235     }
1236 dl 1.56 if ((short)(c >>> TC_SHIFT) == -parallelism) { // signal when 0 workers
1237     final ReentrantLock lock = this.submissionLock;
1238     lock.lock();
1239     try {
1240     termination.signalAll();
1241     } finally {
1242     lock.unlock();
1243     }
1244 dl 1.14 }
1245 jsr166 1.1 return true;
1246     }
1247    
1248     /**
1249 dl 1.52 * Runs up to three passes through workers: (0) Setting
1250 dl 1.56 * termination status for each worker, followed by wakeups up to
1251     * queued workers; (1) helping cancel tasks; (2) interrupting
1252 dl 1.52 * lagging threads (likely in external tasks, but possibly also
1253     * blocked in joins). Each pass repeats previous steps because of
1254     * potential lagging thread creation.
1255 dl 1.14 */
1256     private void startTerminating() {
1257 dl 1.19 cancelSubmissions();
1258 dl 1.52 for (int pass = 0; pass < 3; ++pass) {
1259     ForkJoinWorkerThread[] ws = workers;
1260     if (ws != null) {
1261     for (ForkJoinWorkerThread w : ws) {
1262     if (w != null) {
1263     w.terminate = true;
1264     if (pass > 0) {
1265     w.cancelTasks();
1266     if (pass > 1 && !w.isInterrupted()) {
1267     try {
1268     w.interrupt();
1269     } catch (SecurityException ignore) {
1270     }
1271 dl 1.19 }
1272     }
1273     }
1274     }
1275 dl 1.52 terminateWaiters();
1276 dl 1.19 }
1277 dl 1.17 }
1278     }
1279    
1280     /**
1281 dl 1.52 * Polls and cancels all submissions. Called only during termination.
1282 dl 1.17 */
1283     private void cancelSubmissions() {
1284 dl 1.52 while (queueBase != queueTop) {
1285     ForkJoinTask<?> task = pollSubmission();
1286     if (task != null) {
1287     try {
1288     task.cancel(false);
1289     } catch (Throwable ignore) {
1290     }
1291 dl 1.14 }
1292     }
1293 dl 1.17 }
1294    
1295 dl 1.52 /**
1296     * Tries to set the termination status of waiting workers, and
1297 dl 1.56 * then wakes them up (after which they will terminate).
1298 dl 1.52 */
1299     private void terminateWaiters() {
1300     ForkJoinWorkerThread[] ws = workers;
1301     if (ws != null) {
1302     ForkJoinWorkerThread w; long c; int i, e;
1303     int n = ws.length;
1304     while ((i = ~(e = (int)(c = ctl)) & SMASK) < n &&
1305     (w = ws[i]) != null && w.eventCount == (e & E_MASK)) {
1306     if (UNSAFE.compareAndSwapLong(this, ctlOffset, c,
1307     (long)(w.nextWait & E_MASK) |
1308     ((c + AC_UNIT) & AC_MASK) |
1309     (c & (TC_MASK|STOP_BIT)))) {
1310     w.terminate = true;
1311     w.eventCount = e + EC_UNIT;
1312     if (w.parked)
1313     UNSAFE.unpark(w);
1314     }
1315     }
1316     }
1317     }
1318    
1319     // misc ForkJoinWorkerThread support
1320 dl 1.14
1321     /**
1322 jsr166 1.72 * Increments or decrements quiescerCount. Needed only to prevent
1323 dl 1.52 * triggering shutdown if a worker is transiently inactive while
1324     * checking quiescence.
1325     *
1326     * @param delta 1 for increment, -1 for decrement
1327 jsr166 1.1 */
1328 dl 1.52 final void addQuiescerCount(int delta) {
1329     int c;
1330 jsr166 1.63 do {} while (!UNSAFE.compareAndSwapInt(this, quiescerCountOffset,
1331     c = quiescerCount, c + delta));
1332 jsr166 1.1 }
1333    
1334     /**
1335 jsr166 1.72 * Directly increments or decrements active count without queuing.
1336     * This method is used to transiently assert inactivation while
1337     * checking quiescence.
1338 dl 1.19 *
1339 dl 1.52 * @param delta 1 for increment, -1 for decrement
1340 jsr166 1.1 */
1341 dl 1.52 final void addActiveCount(int delta) {
1342 jsr166 1.73 long d = (long)delta << AC_SHIFT;
1343 dl 1.52 long c;
1344 jsr166 1.73 do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset,
1345     c = ctl, c + d));
1346 jsr166 1.1 }
1347    
1348     /**
1349 dl 1.14 * Returns the approximate (non-atomic) number of idle threads per
1350     * active thread.
1351     */
1352     final int idlePerActive() {
1353 dl 1.52 // Approximate at powers of two for small values, saturate past 4
1354     int p = parallelism;
1355 jsr166 1.63 int a = p + (int)(ctl >> AC_SHIFT);
1356     return (a > (p >>>= 1) ? 0 :
1357     a > (p >>>= 1) ? 1 :
1358     a > (p >>>= 1) ? 2 :
1359     a > (p >>>= 1) ? 4 :
1360     8);
1361 dl 1.14 }
1362    
1363 dl 1.52 // Exported methods
1364 jsr166 1.1
1365     // Constructors
1366    
1367     /**
1368 jsr166 1.9 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1369 dl 1.18 * java.lang.Runtime#availableProcessors}, using the {@linkplain
1370     * #defaultForkJoinWorkerThreadFactory default thread factory},
1371     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1372 jsr166 1.1 *
1373     * @throws SecurityException if a security manager exists and
1374     * the caller is not permitted to modify threads
1375     * because it does not hold {@link
1376     * java.lang.RuntimePermission}{@code ("modifyThread")}
1377     */
1378     public ForkJoinPool() {
1379     this(Runtime.getRuntime().availableProcessors(),
1380 dl 1.18 defaultForkJoinWorkerThreadFactory, null, false);
1381 jsr166 1.1 }
1382    
1383     /**
1384 jsr166 1.9 * Creates a {@code ForkJoinPool} with the indicated parallelism
1385 dl 1.18 * level, the {@linkplain
1386     * #defaultForkJoinWorkerThreadFactory default thread factory},
1387     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1388 jsr166 1.1 *
1389 jsr166 1.9 * @param parallelism the parallelism level
1390 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
1391 jsr166 1.11 * equal to zero, or greater than implementation limit
1392 jsr166 1.1 * @throws SecurityException if a security manager exists and
1393     * the caller is not permitted to modify threads
1394     * because it does not hold {@link
1395     * java.lang.RuntimePermission}{@code ("modifyThread")}
1396     */
1397     public ForkJoinPool(int parallelism) {
1398 dl 1.18 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
1399 jsr166 1.1 }
1400    
1401     /**
1402 dl 1.18 * Creates a {@code ForkJoinPool} with the given parameters.
1403 jsr166 1.1 *
1404 dl 1.18 * @param parallelism the parallelism level. For default value,
1405     * use {@link java.lang.Runtime#availableProcessors}.
1406     * @param factory the factory for creating new threads. For default value,
1407     * use {@link #defaultForkJoinWorkerThreadFactory}.
1408 dl 1.19 * @param handler the handler for internal worker threads that
1409     * terminate due to unrecoverable errors encountered while executing
1410 jsr166 1.31 * tasks. For default value, use {@code null}.
1411 dl 1.19 * @param asyncMode if true,
1412 dl 1.18 * establishes local first-in-first-out scheduling mode for forked
1413     * tasks that are never joined. This mode may be more appropriate
1414     * than default locally stack-based mode in applications in which
1415     * worker threads only process event-style asynchronous tasks.
1416 jsr166 1.31 * For default value, use {@code false}.
1417 jsr166 1.1 * @throws IllegalArgumentException if parallelism less than or
1418 jsr166 1.11 * equal to zero, or greater than implementation limit
1419     * @throws NullPointerException if the factory is null
1420 jsr166 1.1 * @throws SecurityException if a security manager exists and
1421     * the caller is not permitted to modify threads
1422     * because it does not hold {@link
1423     * java.lang.RuntimePermission}{@code ("modifyThread")}
1424     */
1425 dl 1.19 public ForkJoinPool(int parallelism,
1426 dl 1.18 ForkJoinWorkerThreadFactory factory,
1427     Thread.UncaughtExceptionHandler handler,
1428     boolean asyncMode) {
1429 dl 1.14 checkPermission();
1430     if (factory == null)
1431     throw new NullPointerException();
1432 dl 1.52 if (parallelism <= 0 || parallelism > MAX_ID)
1433 jsr166 1.1 throw new IllegalArgumentException();
1434 dl 1.14 this.parallelism = parallelism;
1435 jsr166 1.1 this.factory = factory;
1436 dl 1.18 this.ueh = handler;
1437     this.locallyFifo = asyncMode;
1438 dl 1.52 long np = (long)(-parallelism); // offset ctl counts
1439     this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
1440     this.submissionQueue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
1441     // initialize workers array with room for 2*parallelism if possible
1442     int n = parallelism << 1;
1443     if (n >= MAX_ID)
1444     n = MAX_ID;
1445     else { // See Hackers Delight, sec 3.2, where n < (1 << 16)
1446     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8;
1447     }
1448     workers = new ForkJoinWorkerThread[n + 1];
1449     this.submissionLock = new ReentrantLock();
1450     this.termination = submissionLock.newCondition();
1451     StringBuilder sb = new StringBuilder("ForkJoinPool-");
1452     sb.append(poolNumberGenerator.incrementAndGet());
1453     sb.append("-worker-");
1454     this.workerNamePrefix = sb.toString();
1455 jsr166 1.1 }
1456    
1457     // Execution methods
1458    
1459     /**
1460     * Performs the given task, returning its result upon completion.
1461 dl 1.52 * If the computation encounters an unchecked Exception or Error,
1462     * it is rethrown as the outcome of this invocation. Rethrown
1463     * exceptions behave in the same way as regular exceptions, but,
1464     * when possible, contain stack traces (as displayed for example
1465     * using {@code ex.printStackTrace()}) of both the current thread
1466     * as well as the thread actually encountering the exception;
1467     * minimally only the latter.
1468 jsr166 1.1 *
1469     * @param task the task
1470     * @return the task's result
1471 jsr166 1.11 * @throws NullPointerException if the task is null
1472     * @throws RejectedExecutionException if the task cannot be
1473     * scheduled for execution
1474 jsr166 1.1 */
1475     public <T> T invoke(ForkJoinTask<T> task) {
1476 dl 1.52 Thread t = Thread.currentThread();
1477 dl 1.41 if (task == null)
1478     throw new NullPointerException();
1479 dl 1.52 if (shutdown)
1480 dl 1.41 throw new RejectedExecutionException();
1481     if ((t instanceof ForkJoinWorkerThread) &&
1482     ((ForkJoinWorkerThread)t).pool == this)
1483     return task.invoke(); // bypass submit if in same pool
1484     else {
1485 dl 1.52 addSubmission(task);
1486 dl 1.41 return task.join();
1487     }
1488     }
1489    
1490     /**
1491     * Unless terminating, forks task if within an ongoing FJ
1492     * computation in the current pool, else submits as external task.
1493     */
1494     private <T> void forkOrSubmit(ForkJoinTask<T> task) {
1495 dl 1.52 ForkJoinWorkerThread w;
1496     Thread t = Thread.currentThread();
1497     if (shutdown)
1498 dl 1.41 throw new RejectedExecutionException();
1499     if ((t instanceof ForkJoinWorkerThread) &&
1500 dl 1.52 (w = (ForkJoinWorkerThread)t).pool == this)
1501     w.pushTask(task);
1502 dl 1.41 else
1503 dl 1.52 addSubmission(task);
1504 jsr166 1.1 }
1505    
1506     /**
1507     * Arranges for (asynchronous) execution of the given task.
1508     *
1509     * @param task the task
1510 jsr166 1.11 * @throws NullPointerException if the task is null
1511     * @throws RejectedExecutionException if the task cannot be
1512     * scheduled for execution
1513 jsr166 1.1 */
1514 jsr166 1.8 public void execute(ForkJoinTask<?> task) {
1515 dl 1.41 if (task == null)
1516     throw new NullPointerException();
1517     forkOrSubmit(task);
1518 jsr166 1.1 }
1519    
1520     // AbstractExecutorService methods
1521    
1522 jsr166 1.11 /**
1523     * @throws NullPointerException if the task is null
1524     * @throws RejectedExecutionException if the task cannot be
1525     * scheduled for execution
1526     */
1527 jsr166 1.1 public void execute(Runnable task) {
1528 dl 1.41 if (task == null)
1529     throw new NullPointerException();
1530 jsr166 1.2 ForkJoinTask<?> job;
1531 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1532     job = (ForkJoinTask<?>) task;
1533 jsr166 1.2 else
1534 jsr166 1.7 job = ForkJoinTask.adapt(task, null);
1535 dl 1.41 forkOrSubmit(job);
1536 jsr166 1.1 }
1537    
1538 jsr166 1.11 /**
1539 dl 1.18 * Submits a ForkJoinTask for execution.
1540     *
1541     * @param task the task to submit
1542     * @return the task
1543     * @throws NullPointerException if the task is null
1544     * @throws RejectedExecutionException if the task cannot be
1545     * scheduled for execution
1546     */
1547     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1548 dl 1.41 if (task == null)
1549     throw new NullPointerException();
1550     forkOrSubmit(task);
1551 dl 1.18 return task;
1552     }
1553    
1554     /**
1555 jsr166 1.11 * @throws NullPointerException if the task is null
1556     * @throws RejectedExecutionException if the task cannot be
1557     * scheduled for execution
1558     */
1559 jsr166 1.1 public <T> ForkJoinTask<T> submit(Callable<T> task) {
1560 dl 1.41 if (task == null)
1561     throw new NullPointerException();
1562 jsr166 1.7 ForkJoinTask<T> job = ForkJoinTask.adapt(task);
1563 dl 1.41 forkOrSubmit(job);
1564 jsr166 1.1 return job;
1565     }
1566    
1567 jsr166 1.11 /**
1568     * @throws NullPointerException if the task is null
1569     * @throws RejectedExecutionException if the task cannot be
1570     * scheduled for execution
1571     */
1572 jsr166 1.1 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
1573 dl 1.41 if (task == null)
1574     throw new NullPointerException();
1575 jsr166 1.7 ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
1576 dl 1.41 forkOrSubmit(job);
1577 jsr166 1.1 return job;
1578     }
1579    
1580 jsr166 1.11 /**
1581     * @throws NullPointerException if the task is null
1582     * @throws RejectedExecutionException if the task cannot be
1583     * scheduled for execution
1584     */
1585 jsr166 1.1 public ForkJoinTask<?> submit(Runnable task) {
1586 dl 1.41 if (task == null)
1587     throw new NullPointerException();
1588 jsr166 1.2 ForkJoinTask<?> job;
1589 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1590     job = (ForkJoinTask<?>) task;
1591 jsr166 1.2 else
1592 jsr166 1.7 job = ForkJoinTask.adapt(task, null);
1593 dl 1.41 forkOrSubmit(job);
1594 jsr166 1.1 return job;
1595     }
1596    
1597     /**
1598 jsr166 1.11 * @throws NullPointerException {@inheritDoc}
1599     * @throws RejectedExecutionException {@inheritDoc}
1600     */
1601 jsr166 1.1 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
1602     ArrayList<ForkJoinTask<T>> forkJoinTasks =
1603     new ArrayList<ForkJoinTask<T>>(tasks.size());
1604     for (Callable<T> task : tasks)
1605 jsr166 1.7 forkJoinTasks.add(ForkJoinTask.adapt(task));
1606 jsr166 1.1 invoke(new InvokeAll<T>(forkJoinTasks));
1607    
1608     @SuppressWarnings({"unchecked", "rawtypes"})
1609 dl 1.15 List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1610 jsr166 1.1 return futures;
1611     }
1612    
1613     static final class InvokeAll<T> extends RecursiveAction {
1614     final ArrayList<ForkJoinTask<T>> tasks;
1615     InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
1616     public void compute() {
1617     try { invokeAll(tasks); }
1618     catch (Exception ignore) {}
1619     }
1620     private static final long serialVersionUID = -7914297376763021607L;
1621     }
1622    
1623     /**
1624     * Returns the factory used for constructing new workers.
1625     *
1626     * @return the factory used for constructing new workers
1627     */
1628     public ForkJoinWorkerThreadFactory getFactory() {
1629     return factory;
1630     }
1631    
1632     /**
1633     * Returns the handler for internal worker threads that terminate
1634     * due to unrecoverable errors encountered while executing tasks.
1635     *
1636 jsr166 1.4 * @return the handler, or {@code null} if none
1637 jsr166 1.1 */
1638     public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1639 dl 1.14 return ueh;
1640 jsr166 1.1 }
1641    
1642     /**
1643 jsr166 1.9 * Returns the targeted parallelism level of this pool.
1644 jsr166 1.1 *
1645 jsr166 1.9 * @return the targeted parallelism level of this pool
1646 jsr166 1.1 */
1647     public int getParallelism() {
1648     return parallelism;
1649     }
1650    
1651     /**
1652     * Returns the number of worker threads that have started but not
1653 jsr166 1.34 * yet terminated. The result returned by this method may differ
1654 jsr166 1.4 * from {@link #getParallelism} when threads are created to
1655 jsr166 1.1 * maintain parallelism when others are cooperatively blocked.
1656     *
1657     * @return the number of worker threads
1658     */
1659     public int getPoolSize() {
1660 dl 1.52 return parallelism + (short)(ctl >>> TC_SHIFT);
1661 jsr166 1.1 }
1662    
1663     /**
1664 jsr166 1.4 * Returns {@code true} if this pool uses local first-in-first-out
1665 jsr166 1.1 * scheduling mode for forked tasks that are never joined.
1666     *
1667 jsr166 1.4 * @return {@code true} if this pool uses async mode
1668 jsr166 1.1 */
1669     public boolean getAsyncMode() {
1670     return locallyFifo;
1671     }
1672    
1673     /**
1674     * Returns an estimate of the number of worker threads that are
1675     * not blocked waiting to join tasks or for other managed
1676 dl 1.14 * synchronization. This method may overestimate the
1677     * number of running threads.
1678 jsr166 1.1 *
1679     * @return the number of worker threads
1680     */
1681     public int getRunningThreadCount() {
1682 dl 1.52 int r = parallelism + (int)(ctl >> AC_SHIFT);
1683 jsr166 1.63 return (r <= 0) ? 0 : r; // suppress momentarily negative values
1684 jsr166 1.1 }
1685    
1686     /**
1687     * Returns an estimate of the number of threads that are currently
1688     * stealing or executing tasks. This method may overestimate the
1689     * number of active threads.
1690     *
1691     * @return the number of active threads
1692     */
1693     public int getActiveThreadCount() {
1694 dl 1.52 int r = parallelism + (int)(ctl >> AC_SHIFT) + blockedCount;
1695 jsr166 1.63 return (r <= 0) ? 0 : r; // suppress momentarily negative values
1696 jsr166 1.1 }
1697    
1698     /**
1699 jsr166 1.4 * Returns {@code true} if all worker threads are currently idle.
1700     * An idle worker is one that cannot obtain a task to execute
1701     * because none are available to steal from other threads, and
1702     * there are no pending submissions to the pool. This method is
1703     * conservative; it might not return {@code true} immediately upon
1704     * idleness of all threads, but will eventually become true if
1705     * threads remain inactive.
1706 jsr166 1.1 *
1707 jsr166 1.4 * @return {@code true} if all threads are currently idle
1708 jsr166 1.1 */
1709     public boolean isQuiescent() {
1710 dl 1.52 return parallelism + (int)(ctl >> AC_SHIFT) + blockedCount == 0;
1711 jsr166 1.1 }
1712    
1713     /**
1714     * Returns an estimate of the total number of tasks stolen from
1715     * one thread's work queue by another. The reported value
1716     * underestimates the actual total number of steals when the pool
1717     * is not quiescent. This value may be useful for monitoring and
1718     * tuning fork/join programs: in general, steal counts should be
1719     * high enough to keep threads busy, but low enough to avoid
1720     * overhead and contention across threads.
1721     *
1722     * @return the number of steals
1723     */
1724     public long getStealCount() {
1725 dl 1.14 return stealCount;
1726 jsr166 1.1 }
1727    
1728     /**
1729     * Returns an estimate of the total number of tasks currently held
1730     * in queues by worker threads (but not including tasks submitted
1731     * to the pool that have not begun executing). This value is only
1732     * an approximation, obtained by iterating across all threads in
1733     * the pool. This method may be useful for tuning task
1734     * granularities.
1735     *
1736     * @return the number of queued tasks
1737     */
1738     public long getQueuedTaskCount() {
1739     long count = 0;
1740 dl 1.52 ForkJoinWorkerThread[] ws;
1741     if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
1742     (ws = workers) != null) {
1743     for (ForkJoinWorkerThread w : ws)
1744     if (w != null)
1745     count -= w.queueBase - w.queueTop; // must read base first
1746     }
1747 jsr166 1.1 return count;
1748     }
1749    
1750     /**
1751 jsr166 1.8 * Returns an estimate of the number of tasks submitted to this
1752 dl 1.55 * pool that have not yet begun executing. This method may take
1753 dl 1.52 * time proportional to the number of submissions.
1754 jsr166 1.1 *
1755     * @return the number of queued submissions
1756     */
1757     public int getQueuedSubmissionCount() {
1758 dl 1.52 return -queueBase + queueTop;
1759 jsr166 1.1 }
1760    
1761     /**
1762 jsr166 1.4 * Returns {@code true} if there are any tasks submitted to this
1763     * pool that have not yet begun executing.
1764 jsr166 1.1 *
1765     * @return {@code true} if there are any queued submissions
1766     */
1767     public boolean hasQueuedSubmissions() {
1768 dl 1.52 return queueBase != queueTop;
1769 jsr166 1.1 }
1770    
1771     /**
1772     * Removes and returns the next unexecuted submission if one is
1773     * available. This method may be useful in extensions to this
1774     * class that re-assign work in systems with multiple pools.
1775     *
1776 jsr166 1.4 * @return the next submission, or {@code null} if none
1777 jsr166 1.1 */
1778     protected ForkJoinTask<?> pollSubmission() {
1779 dl 1.52 ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
1780     while ((b = queueBase) != queueTop &&
1781     (q = submissionQueue) != null &&
1782     (i = (q.length - 1) & b) >= 0) {
1783     long u = (i << ASHIFT) + ABASE;
1784     if ((t = q[i]) != null &&
1785     queueBase == b &&
1786     UNSAFE.compareAndSwapObject(q, u, t, null)) {
1787     queueBase = b + 1;
1788     return t;
1789     }
1790     }
1791     return null;
1792 jsr166 1.1 }
1793    
1794     /**
1795     * Removes all available unexecuted submitted and forked tasks
1796     * from scheduling queues and adds them to the given collection,
1797     * without altering their execution status. These may include
1798 jsr166 1.8 * artificially generated or wrapped tasks. This method is
1799     * designed to be invoked only when the pool is known to be
1800 jsr166 1.1 * quiescent. Invocations at other times may not remove all
1801     * tasks. A failure encountered while attempting to add elements
1802     * to collection {@code c} may result in elements being in
1803     * neither, either or both collections when the associated
1804     * exception is thrown. The behavior of this operation is
1805     * undefined if the specified collection is modified while the
1806     * operation is in progress.
1807     *
1808     * @param c the collection to transfer elements into
1809     * @return the number of elements transferred
1810     */
1811 jsr166 1.5 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1812 dl 1.52 int count = 0;
1813     while (queueBase != queueTop) {
1814     ForkJoinTask<?> t = pollSubmission();
1815     if (t != null) {
1816     c.add(t);
1817     ++count;
1818     }
1819     }
1820     ForkJoinWorkerThread[] ws;
1821     if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
1822     (ws = workers) != null) {
1823     for (ForkJoinWorkerThread w : ws)
1824     if (w != null)
1825     count += w.drainTasksTo(c);
1826     }
1827 dl 1.18 return count;
1828     }
1829    
1830     /**
1831 jsr166 1.1 * Returns a string identifying this pool, as well as its state,
1832     * including indications of run state, parallelism level, and
1833     * worker and task counts.
1834     *
1835     * @return a string identifying this pool, as well as its state
1836     */
1837     public String toString() {
1838     long st = getStealCount();
1839     long qt = getQueuedTaskCount();
1840     long qs = getQueuedSubmissionCount();
1841 dl 1.14 int pc = parallelism;
1842 dl 1.52 long c = ctl;
1843     int tc = pc + (short)(c >>> TC_SHIFT);
1844     int rc = pc + (int)(c >> AC_SHIFT);
1845     if (rc < 0) // ignore transient negative
1846     rc = 0;
1847     int ac = rc + blockedCount;
1848     String level;
1849     if ((c & STOP_BIT) != 0)
1850 jsr166 1.63 level = (tc == 0) ? "Terminated" : "Terminating";
1851 dl 1.52 else
1852 jsr166 1.63 level = shutdown ? "Shutting down" : "Running";
1853 jsr166 1.1 return super.toString() +
1854 dl 1.52 "[" + level +
1855 dl 1.14 ", parallelism = " + pc +
1856     ", size = " + tc +
1857     ", active = " + ac +
1858     ", running = " + rc +
1859 jsr166 1.1 ", steals = " + st +
1860     ", tasks = " + qt +
1861     ", submissions = " + qs +
1862     "]";
1863     }
1864    
1865     /**
1866     * Initiates an orderly shutdown in which previously submitted
1867     * tasks are executed, but no new tasks will be accepted.
1868     * Invocation has no additional effect if already shut down.
1869     * Tasks that are in the process of being submitted concurrently
1870     * during the course of this method may or may not be rejected.
1871     *
1872     * @throws SecurityException if a security manager exists and
1873     * the caller is not permitted to modify threads
1874     * because it does not hold {@link
1875     * java.lang.RuntimePermission}{@code ("modifyThread")}
1876     */
1877     public void shutdown() {
1878     checkPermission();
1879 dl 1.52 shutdown = true;
1880 dl 1.14 tryTerminate(false);
1881 jsr166 1.1 }
1882    
1883     /**
1884 jsr166 1.9 * Attempts to cancel and/or stop all tasks, and reject all
1885     * subsequently submitted tasks. Tasks that are in the process of
1886     * being submitted or executed concurrently during the course of
1887     * this method may or may not be rejected. This method cancels
1888     * both existing and unexecuted tasks, in order to permit
1889     * termination in the presence of task dependencies. So the method
1890     * always returns an empty list (unlike the case for some other
1891     * Executors).
1892 jsr166 1.1 *
1893     * @return an empty list
1894     * @throws SecurityException if a security manager exists and
1895     * the caller is not permitted to modify threads
1896     * because it does not hold {@link
1897     * java.lang.RuntimePermission}{@code ("modifyThread")}
1898     */
1899     public List<Runnable> shutdownNow() {
1900     checkPermission();
1901 dl 1.52 shutdown = true;
1902 dl 1.14 tryTerminate(true);
1903 jsr166 1.1 return Collections.emptyList();
1904     }
1905    
1906     /**
1907     * Returns {@code true} if all tasks have completed following shut down.
1908     *
1909     * @return {@code true} if all tasks have completed following shut down
1910     */
1911     public boolean isTerminated() {
1912 dl 1.52 long c = ctl;
1913     return ((c & STOP_BIT) != 0L &&
1914     (short)(c >>> TC_SHIFT) == -parallelism);
1915 jsr166 1.1 }
1916    
1917     /**
1918     * Returns {@code true} if the process of termination has
1919 jsr166 1.9 * commenced but not yet completed. This method may be useful for
1920     * debugging. A return of {@code true} reported a sufficient
1921     * period after shutdown may indicate that submitted tasks have
1922 dl 1.49 * ignored or suppressed interruption, or are waiting for IO,
1923     * causing this executor not to properly terminate. (See the
1924     * advisory notes for class {@link ForkJoinTask} stating that
1925     * tasks should not normally entail blocking operations. But if
1926     * they do, they must abort them on interrupt.)
1927 jsr166 1.1 *
1928 jsr166 1.9 * @return {@code true} if terminating but not yet terminated
1929 jsr166 1.1 */
1930     public boolean isTerminating() {
1931 dl 1.52 long c = ctl;
1932     return ((c & STOP_BIT) != 0L &&
1933     (short)(c >>> TC_SHIFT) != -parallelism);
1934 jsr166 1.1 }
1935    
1936     /**
1937 dl 1.39 * Returns true if terminating or terminated. Used by ForkJoinWorkerThread.
1938     */
1939     final boolean isAtLeastTerminating() {
1940 dl 1.52 return (ctl & STOP_BIT) != 0L;
1941 dl 1.39 }
1942 jsr166 1.40
1943 dl 1.39 /**
1944 jsr166 1.1 * Returns {@code true} if this pool has been shut down.
1945     *
1946     * @return {@code true} if this pool has been shut down
1947     */
1948     public boolean isShutdown() {
1949 dl 1.52 return shutdown;
1950 jsr166 1.9 }
1951    
1952     /**
1953 jsr166 1.1 * Blocks until all tasks have completed execution after a shutdown
1954     * request, or the timeout occurs, or the current thread is
1955     * interrupted, whichever happens first.
1956     *
1957     * @param timeout the maximum time to wait
1958     * @param unit the time unit of the timeout argument
1959     * @return {@code true} if this executor terminated and
1960     * {@code false} if the timeout elapsed before termination
1961     * @throws InterruptedException if interrupted while waiting
1962     */
1963     public boolean awaitTermination(long timeout, TimeUnit unit)
1964     throws InterruptedException {
1965 dl 1.52 long nanos = unit.toNanos(timeout);
1966     final ReentrantLock lock = this.submissionLock;
1967     lock.lock();
1968 dl 1.18 try {
1969 dl 1.52 for (;;) {
1970     if (isTerminated())
1971     return true;
1972     if (nanos <= 0)
1973     return false;
1974     nanos = termination.awaitNanos(nanos);
1975     }
1976     } finally {
1977     lock.unlock();
1978 dl 1.18 }
1979 jsr166 1.1 }
1980    
1981     /**
1982     * Interface for extending managed parallelism for tasks running
1983 jsr166 1.8 * in {@link ForkJoinPool}s.
1984     *
1985 dl 1.19 * <p>A {@code ManagedBlocker} provides two methods. Method
1986     * {@code isReleasable} must return {@code true} if blocking is
1987     * not necessary. Method {@code block} blocks the current thread
1988     * if necessary (perhaps internally invoking {@code isReleasable}
1989 dl 1.54 * before actually blocking). These actions are performed by any
1990     * thread invoking {@link ForkJoinPool#managedBlock}. The
1991     * unusual methods in this API accommodate synchronizers that may,
1992     * but don't usually, block for long periods. Similarly, they
1993     * allow more efficient internal handling of cases in which
1994     * additional workers may be, but usually are not, needed to
1995     * ensure sufficient parallelism. Toward this end,
1996     * implementations of method {@code isReleasable} must be amenable
1997     * to repeated invocation.
1998 jsr166 1.1 *
1999     * <p>For example, here is a ManagedBlocker based on a
2000     * ReentrantLock:
2001     * <pre> {@code
2002     * class ManagedLocker implements ManagedBlocker {
2003     * final ReentrantLock lock;
2004     * boolean hasLock = false;
2005     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
2006     * public boolean block() {
2007     * if (!hasLock)
2008     * lock.lock();
2009     * return true;
2010     * }
2011     * public boolean isReleasable() {
2012     * return hasLock || (hasLock = lock.tryLock());
2013     * }
2014     * }}</pre>
2015 dl 1.19 *
2016     * <p>Here is a class that possibly blocks waiting for an
2017     * item on a given queue:
2018     * <pre> {@code
2019     * class QueueTaker<E> implements ManagedBlocker {
2020     * final BlockingQueue<E> queue;
2021     * volatile E item = null;
2022     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
2023     * public boolean block() throws InterruptedException {
2024     * if (item == null)
2025 dl 1.23 * item = queue.take();
2026 dl 1.19 * return true;
2027     * }
2028     * public boolean isReleasable() {
2029 dl 1.23 * return item != null || (item = queue.poll()) != null;
2030 dl 1.19 * }
2031     * public E getItem() { // call after pool.managedBlock completes
2032     * return item;
2033     * }
2034     * }}</pre>
2035 jsr166 1.1 */
2036     public static interface ManagedBlocker {
2037     /**
2038     * Possibly blocks the current thread, for example waiting for
2039     * a lock or condition.
2040     *
2041 jsr166 1.4 * @return {@code true} if no additional blocking is necessary
2042     * (i.e., if isReleasable would return true)
2043 jsr166 1.1 * @throws InterruptedException if interrupted while waiting
2044     * (the method is not required to do so, but is allowed to)
2045     */
2046     boolean block() throws InterruptedException;
2047    
2048     /**
2049 jsr166 1.4 * Returns {@code true} if blocking is unnecessary.
2050 jsr166 1.1 */
2051     boolean isReleasable();
2052     }
2053    
2054     /**
2055     * Blocks in accord with the given blocker. If the current thread
2056 jsr166 1.8 * is a {@link ForkJoinWorkerThread}, this method possibly
2057     * arranges for a spare thread to be activated if necessary to
2058 dl 1.18 * ensure sufficient parallelism while the current thread is blocked.
2059 jsr166 1.1 *
2060 jsr166 1.8 * <p>If the caller is not a {@link ForkJoinTask}, this method is
2061     * behaviorally equivalent to
2062 jsr166 1.1 * <pre> {@code
2063     * while (!blocker.isReleasable())
2064     * if (blocker.block())
2065     * return;
2066     * }</pre>
2067 jsr166 1.8 *
2068     * If the caller is a {@code ForkJoinTask}, then the pool may
2069     * first be expanded to ensure parallelism, and later adjusted.
2070 jsr166 1.1 *
2071     * @param blocker the blocker
2072     * @throws InterruptedException if blocker.block did so
2073     */
2074 dl 1.18 public static void managedBlock(ManagedBlocker blocker)
2075 jsr166 1.1 throws InterruptedException {
2076     Thread t = Thread.currentThread();
2077 dl 1.19 if (t instanceof ForkJoinWorkerThread) {
2078     ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
2079     w.pool.awaitBlocker(blocker);
2080     }
2081 dl 1.18 else {
2082     do {} while (!blocker.isReleasable() && !blocker.block());
2083     }
2084 jsr166 1.1 }
2085    
2086 jsr166 1.7 // AbstractExecutorService overrides. These rely on undocumented
2087     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
2088     // implement RunnableFuture.
2089 jsr166 1.1
2090     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
2091 jsr166 1.7 return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
2092 jsr166 1.1 }
2093    
2094     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
2095 jsr166 1.7 return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
2096 jsr166 1.1 }
2097    
2098     // Unsafe mechanics
2099 dl 1.52 private static final sun.misc.Unsafe UNSAFE;
2100     private static final long ctlOffset;
2101     private static final long stealCountOffset;
2102     private static final long blockedCountOffset;
2103     private static final long quiescerCountOffset;
2104     private static final long scanGuardOffset;
2105     private static final long nextWorkerNumberOffset;
2106     private static final long ABASE;
2107     private static final int ASHIFT;
2108    
2109     static {
2110     poolNumberGenerator = new AtomicInteger();
2111     workerSeedGenerator = new Random();
2112     modifyThreadPermission = new RuntimePermission("modifyThread");
2113     defaultForkJoinWorkerThreadFactory =
2114     new DefaultForkJoinWorkerThreadFactory();
2115 jsr166 1.3 try {
2116 dl 1.52 UNSAFE = sun.misc.Unsafe.getUnsafe();
2117 jsr166 1.64 Class<?> k = ForkJoinPool.class;
2118 dl 1.52 ctlOffset = UNSAFE.objectFieldOffset
2119     (k.getDeclaredField("ctl"));
2120     stealCountOffset = UNSAFE.objectFieldOffset
2121     (k.getDeclaredField("stealCount"));
2122     blockedCountOffset = UNSAFE.objectFieldOffset
2123     (k.getDeclaredField("blockedCount"));
2124     quiescerCountOffset = UNSAFE.objectFieldOffset
2125     (k.getDeclaredField("quiescerCount"));
2126     scanGuardOffset = UNSAFE.objectFieldOffset
2127     (k.getDeclaredField("scanGuard"));
2128     nextWorkerNumberOffset = UNSAFE.objectFieldOffset
2129     (k.getDeclaredField("nextWorkerNumber"));
2130     } catch (Exception e) {
2131     throw new Error(e);
2132     }
2133 jsr166 1.68 Class<?> a = ForkJoinTask[].class;
2134     ABASE = UNSAFE.arrayBaseOffset(a);
2135     int s = UNSAFE.arrayIndexScale(a);
2136 dl 1.52 if ((s & (s-1)) != 0)
2137     throw new Error("data type scale not a power of two");
2138     ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
2139 jsr166 1.3 }
2140 dl 1.52
2141 jsr166 1.1 }