ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.8
Committed: Mon Aug 3 01:18:07 2009 UTC (14 years, 10 months ago) by jsr166
Branch: MAIN
Changes since 1.7: +70 -63 lines
Log Message:
sync with jsr166 package

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package java.util.concurrent;
8    
9     import java.util.ArrayList;
10     import java.util.Arrays;
11     import java.util.Collection;
12     import java.util.Collections;
13     import java.util.List;
14     import java.util.concurrent.locks.Condition;
15     import java.util.concurrent.locks.LockSupport;
16     import java.util.concurrent.locks.ReentrantLock;
17     import java.util.concurrent.atomic.AtomicInteger;
18     import java.util.concurrent.atomic.AtomicLong;
19    
20     /**
21 jsr166 1.4 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
22 jsr166 1.8 * A {@code ForkJoinPool} provides the entry point for submissions
23     * from non-{@code ForkJoinTask}s, as well as management and
24     * monitoring operations. Normally a single {@code ForkJoinPool} is
25     * used for a large number of submitted tasks. Otherwise, use would
26     * not usually outweigh the construction and bookkeeping overhead of
27     * creating a large set of threads.
28 jsr166 1.1 *
29 jsr166 1.8 * <p>{@code ForkJoinPool}s differ from other kinds of {@link
30     * Executor}s mainly in that they provide <em>work-stealing</em>: all
31     * threads in the pool attempt to find and execute subtasks created by
32     * other active tasks (eventually blocking if none exist). This makes
33     * them efficient when most tasks spawn other subtasks (as do most
34     * {@code ForkJoinTask}s), as well as the mixed execution of some
35     * plain {@code Runnable}- or {@code Callable}- based activities along
36     * with {@code ForkJoinTask}s. When setting {@linkplain #setAsyncMode
37     * async mode}, a {@code ForkJoinPool} may also be appropriate for use
38     * with fine-grained tasks that are never joined. Otherwise, other
39     * {@code ExecutorService} implementations are typically more
40 jsr166 1.4 * appropriate choices.
41 jsr166 1.1 *
42 jsr166 1.8 * <p>A {@code ForkJoinPool} may be constructed with a given
43     * parallelism level (target pool size), which it attempts to maintain
44     * by dynamically adding, suspending, or resuming threads, even if
45     * some tasks are waiting to join others. However, no such adjustments
46     * are performed in the face of blocked IO or other unmanaged
47     * synchronization. The nested {@link ManagedBlocker} interface
48     * enables extension of the kinds of synchronization accommodated.
49     * The target parallelism level may also be changed dynamically
50     * ({@link #setParallelism}) and thread construction can be limited
51     * using methods {@link #setMaximumPoolSize} and/or {@link
52     * #setMaintainsParallelism}.
53 jsr166 1.1 *
54     * <p>In addition to execution and lifecycle control methods, this
55     * class provides status check methods (for example
56 jsr166 1.4 * {@link #getStealCount}) that are intended to aid in developing,
57 jsr166 1.1 * tuning, and monitoring fork/join applications. Also, method
58 jsr166 1.4 * {@link #toString} returns indications of pool state in a
59 jsr166 1.1 * convenient form for informal monitoring.
60     *
61     * <p><b>Implementation notes</b>: This implementation restricts the
62     * maximum number of running threads to 32767. Attempts to create
63     * pools with greater than the maximum result in
64 jsr166 1.8 * {@code IllegalArgumentException}.
65 jsr166 1.1 *
66     * @since 1.7
67     * @author Doug Lea
68     */
69     public class ForkJoinPool extends AbstractExecutorService {
70    
71     /*
72     * See the extended comments interspersed below for design,
73     * rationale, and walkthroughs.
74     */
75    
76     /** Mask for packing and unpacking shorts */
77     private static final int shortMask = 0xffff;
78    
79     /** Max pool size -- must be a power of two minus 1 */
80     private static final int MAX_THREADS = 0x7FFF;
81    
82     /**
83 jsr166 1.8 * Factory for creating new {@link ForkJoinWorkerThread}s.
84     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
85     * for {@code ForkJoinWorkerThread} subclasses that extend base
86     * functionality or initialize threads with different contexts.
87 jsr166 1.1 */
88     public static interface ForkJoinWorkerThreadFactory {
89     /**
90     * Returns a new worker thread operating in the given pool.
91     *
92     * @param pool the pool this thread works in
93     * @throws NullPointerException if pool is null
94     */
95     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
96     }
97    
98     /**
99     * Default ForkJoinWorkerThreadFactory implementation; creates a
100     * new ForkJoinWorkerThread.
101     */
102     static class DefaultForkJoinWorkerThreadFactory
103     implements ForkJoinWorkerThreadFactory {
104     public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
105     try {
106     return new ForkJoinWorkerThread(pool);
107     } catch (OutOfMemoryError oom) {
108     return null;
109     }
110     }
111     }
112    
113     /**
114     * Creates a new ForkJoinWorkerThread. This factory is used unless
115     * overridden in ForkJoinPool constructors.
116     */
117     public static final ForkJoinWorkerThreadFactory
118     defaultForkJoinWorkerThreadFactory =
119     new DefaultForkJoinWorkerThreadFactory();
120    
121     /**
122     * Permission required for callers of methods that may start or
123     * kill threads.
124     */
125     private static final RuntimePermission modifyThreadPermission =
126     new RuntimePermission("modifyThread");
127    
128     /**
129     * If there is a security manager, makes sure caller has
130     * permission to modify threads.
131     */
132     private static void checkPermission() {
133     SecurityManager security = System.getSecurityManager();
134     if (security != null)
135     security.checkPermission(modifyThreadPermission);
136     }
137    
138     /**
139     * Generator for assigning sequence numbers as pool names.
140     */
141     private static final AtomicInteger poolNumberGenerator =
142     new AtomicInteger();
143    
144     /**
145     * Array holding all worker threads in the pool. Initialized upon
146     * first use. Array size must be a power of two. Updates and
147     * replacements are protected by workerLock, but it is always kept
148     * in a consistent enough state to be randomly accessed without
149     * locking by workers performing work-stealing.
150     */
151     volatile ForkJoinWorkerThread[] workers;
152    
153     /**
154     * Lock protecting access to workers.
155     */
156     private final ReentrantLock workerLock;
157    
158     /**
159     * Condition for awaitTermination.
160     */
161     private final Condition termination;
162    
163     /**
164     * The uncaught exception handler used when any worker
165     * abruptly terminates
166     */
167     private Thread.UncaughtExceptionHandler ueh;
168    
169     /**
170     * Creation factory for worker threads.
171     */
172     private final ForkJoinWorkerThreadFactory factory;
173    
174     /**
175     * Head of stack of threads that were created to maintain
176     * parallelism when other threads blocked, but have since
177     * suspended when the parallelism level rose.
178     */
179     private volatile WaitQueueNode spareStack;
180    
181     /**
182     * Sum of per-thread steal counts, updated only when threads are
183     * idle or terminating.
184     */
185     private final AtomicLong stealCount;
186    
187     /**
188     * Queue for external submissions.
189     */
190     private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
191    
192     /**
193     * Head of Treiber stack for barrier sync. See below for explanation.
194     */
195     private volatile WaitQueueNode syncStack;
196    
197     /**
198     * The count for event barrier
199     */
200     private volatile long eventCount;
201    
202     /**
203     * Pool number, just for assigning useful names to worker threads
204     */
205     private final int poolNumber;
206    
207     /**
208     * The maximum allowed pool size
209     */
210     private volatile int maxPoolSize;
211    
212     /**
213     * The desired parallelism level, updated only under workerLock.
214     */
215     private volatile int parallelism;
216    
217     /**
218     * True if use local fifo, not default lifo, for local polling
219     */
220     private volatile boolean locallyFifo;
221    
222     /**
223     * Holds number of total (i.e., created and not yet terminated)
224     * and running (i.e., not blocked on joins or other managed sync)
225     * threads, packed into one int to ensure consistent snapshot when
226     * making decisions about creating and suspending spare
227     * threads. Updated only by CAS. Note: CASes in
228     * updateRunningCount and preJoin assume that running active count
229     * is in low word, so need to be modified if this changes.
230     */
231     private volatile int workerCounts;
232    
233     private static int totalCountOf(int s) { return s >>> 16; }
234     private static int runningCountOf(int s) { return s & shortMask; }
235     private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
236    
237     /**
238     * Adds delta (which may be negative) to running count. This must
239     * be called before (with negative arg) and after (with positive)
240     * any managed synchronization (i.e., mainly, joins).
241     *
242     * @param delta the number to add
243     */
244     final void updateRunningCount(int delta) {
245     int s;
246     do {} while (!casWorkerCounts(s = workerCounts, s + delta));
247     }
248    
249     /**
250     * Adds delta (which may be negative) to both total and running
251     * count. This must be called upon creation and termination of
252     * worker threads.
253     *
254     * @param delta the number to add
255     */
256     private void updateWorkerCount(int delta) {
257     int d = delta + (delta << 16); // add to both lo and hi parts
258     int s;
259     do {} while (!casWorkerCounts(s = workerCounts, s + d));
260     }
261    
262     /**
263     * Lifecycle control. High word contains runState, low word
264     * contains the number of workers that are (probably) executing
265     * tasks. This value is atomically incremented before a worker
266     * gets a task to run, and decremented when worker has no tasks
267     * and cannot find any. These two fields are bundled together to
268     * support correct termination triggering. Note: activeCount
269     * CAS'es cheat by assuming active count is in low word, so need
270     * to be modified if this changes
271     */
272     private volatile int runControl;
273    
274     // RunState values. Order among values matters
275     private static final int RUNNING = 0;
276     private static final int SHUTDOWN = 1;
277     private static final int TERMINATING = 2;
278     private static final int TERMINATED = 3;
279    
280     private static int runStateOf(int c) { return c >>> 16; }
281     private static int activeCountOf(int c) { return c & shortMask; }
282     private static int runControlFor(int r, int a) { return (r << 16) + a; }
283    
284     /**
285     * Tries incrementing active count; fails on contention.
286     * Called by workers before/during executing tasks.
287     *
288     * @return true on success
289     */
290     final boolean tryIncrementActiveCount() {
291     int c = runControl;
292     return casRunControl(c, c+1);
293     }
294    
295     /**
296     * Tries decrementing active count; fails on contention.
297     * Possibly triggers termination on success.
298     * Called by workers when they can't find tasks.
299     *
300     * @return true on success
301     */
302     final boolean tryDecrementActiveCount() {
303     int c = runControl;
304     int nextc = c - 1;
305     if (!casRunControl(c, nextc))
306     return false;
307     if (canTerminateOnShutdown(nextc))
308     terminateOnShutdown();
309     return true;
310     }
311    
312     /**
313 jsr166 1.4 * Returns {@code true} if argument represents zero active count
314     * and nonzero runstate, which is the triggering condition for
315 jsr166 1.1 * terminating on shutdown.
316     */
317     private static boolean canTerminateOnShutdown(int c) {
318     // i.e. least bit is nonzero runState bit
319     return ((c & -c) >>> 16) != 0;
320     }
321    
322     /**
323     * Transition run state to at least the given state. Return true
324     * if not already at least given state.
325     */
326     private boolean transitionRunStateTo(int state) {
327     for (;;) {
328     int c = runControl;
329     if (runStateOf(c) >= state)
330     return false;
331     if (casRunControl(c, runControlFor(state, activeCountOf(c))))
332     return true;
333     }
334     }
335    
336     /**
337     * Controls whether to add spares to maintain parallelism
338     */
339     private volatile boolean maintainsParallelism;
340    
341     // Constructors
342    
343     /**
344 jsr166 1.8 * Creates a {@code ForkJoinPool} with a pool size equal to the
345     * number of processors available on the system, using the
346     * {@linkplain #defaultForkJoinWorkerThreadFactory default thread factory}.
347 jsr166 1.1 *
348     * @throws SecurityException if a security manager exists and
349     * the caller is not permitted to modify threads
350     * because it does not hold {@link
351     * java.lang.RuntimePermission}{@code ("modifyThread")}
352     */
353     public ForkJoinPool() {
354     this(Runtime.getRuntime().availableProcessors(),
355     defaultForkJoinWorkerThreadFactory);
356     }
357    
358     /**
359 jsr166 1.8 * Creates a {@code ForkJoinPool} with the indicated parallelism level
360     * threads and using the
361     * {@linkplain #defaultForkJoinWorkerThreadFactory default thread factory}.
362 jsr166 1.1 *
363     * @param parallelism the number of worker threads
364     * @throws IllegalArgumentException if parallelism less than or
365     * equal to zero
366     * @throws SecurityException if a security manager exists and
367     * the caller is not permitted to modify threads
368     * because it does not hold {@link
369     * java.lang.RuntimePermission}{@code ("modifyThread")}
370     */
371     public ForkJoinPool(int parallelism) {
372     this(parallelism, defaultForkJoinWorkerThreadFactory);
373     }
374    
375     /**
376 jsr166 1.8 * Creates a {@code ForkJoinPool} with parallelism equal to the
377     * number of processors available on the system and using the
378     * given thread factory.
379 jsr166 1.1 *
380     * @param factory the factory for creating new threads
381     * @throws NullPointerException if factory is null
382     * @throws SecurityException if a security manager exists and
383     * the caller is not permitted to modify threads
384     * because it does not hold {@link
385     * java.lang.RuntimePermission}{@code ("modifyThread")}
386     */
387     public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
388     this(Runtime.getRuntime().availableProcessors(), factory);
389     }
390    
391     /**
392 jsr166 1.8 * Creates a {@code ForkJoinPool} with the given parallelism and
393     * thread factory.
394 jsr166 1.1 *
395     * @param parallelism the targeted number of worker threads
396     * @param factory the factory for creating new threads
397     * @throws IllegalArgumentException if parallelism less than or
398     * equal to zero, or greater than implementation limit
399     * @throws NullPointerException if factory is null
400     * @throws SecurityException if a security manager exists and
401     * the caller is not permitted to modify threads
402     * because it does not hold {@link
403     * java.lang.RuntimePermission}{@code ("modifyThread")}
404     */
405     public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
406     if (parallelism <= 0 || parallelism > MAX_THREADS)
407     throw new IllegalArgumentException();
408     if (factory == null)
409     throw new NullPointerException();
410     checkPermission();
411     this.factory = factory;
412     this.parallelism = parallelism;
413     this.maxPoolSize = MAX_THREADS;
414     this.maintainsParallelism = true;
415     this.poolNumber = poolNumberGenerator.incrementAndGet();
416     this.workerLock = new ReentrantLock();
417     this.termination = workerLock.newCondition();
418     this.stealCount = new AtomicLong();
419     this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
420     // worker array and workers are lazily constructed
421     }
422    
423     /**
424     * Creates a new worker thread using factory.
425     *
426     * @param index the index to assign worker
427 jsr166 1.8 * @return new worker, or null if factory failed
428 jsr166 1.1 */
429     private ForkJoinWorkerThread createWorker(int index) {
430     Thread.UncaughtExceptionHandler h = ueh;
431     ForkJoinWorkerThread w = factory.newThread(this);
432     if (w != null) {
433     w.poolIndex = index;
434     w.setDaemon(true);
435     w.setAsyncMode(locallyFifo);
436     w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
437     if (h != null)
438     w.setUncaughtExceptionHandler(h);
439     }
440     return w;
441     }
442    
443     /**
444     * Returns a good size for worker array given pool size.
445     * Currently requires size to be a power of two.
446     */
447     private static int arraySizeFor(int poolSize) {
448     return (poolSize <= 1) ? 1 :
449     (1 << (32 - Integer.numberOfLeadingZeros(poolSize-1)));
450     }
451    
452     /**
453     * Creates or resizes array if necessary to hold newLength.
454     * Call only under exclusion.
455     *
456     * @return the array
457     */
458     private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
459     ForkJoinWorkerThread[] ws = workers;
460     if (ws == null)
461     return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
462     else if (newLength > ws.length)
463     return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
464     else
465     return ws;
466     }
467    
468     /**
469     * Tries to shrink workers into smaller array after one or more terminate.
470     */
471     private void tryShrinkWorkerArray() {
472     ForkJoinWorkerThread[] ws = workers;
473     if (ws != null) {
474     int len = ws.length;
475     int last = len - 1;
476     while (last >= 0 && ws[last] == null)
477     --last;
478     int newLength = arraySizeFor(last+1);
479     if (newLength < len)
480     workers = Arrays.copyOf(ws, newLength);
481     }
482     }
483    
484     /**
485     * Initializes workers if necessary.
486     */
487     final void ensureWorkerInitialization() {
488     ForkJoinWorkerThread[] ws = workers;
489     if (ws == null) {
490     final ReentrantLock lock = this.workerLock;
491     lock.lock();
492     try {
493     ws = workers;
494     if (ws == null) {
495     int ps = parallelism;
496     ws = ensureWorkerArrayCapacity(ps);
497     for (int i = 0; i < ps; ++i) {
498     ForkJoinWorkerThread w = createWorker(i);
499     if (w != null) {
500     ws[i] = w;
501     w.start();
502     updateWorkerCount(1);
503     }
504     }
505     }
506     } finally {
507     lock.unlock();
508     }
509     }
510     }
511    
512     /**
513     * Worker creation and startup for threads added via setParallelism.
514     */
515     private void createAndStartAddedWorkers() {
516     resumeAllSpares(); // Allow spares to convert to nonspare
517     int ps = parallelism;
518     ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
519     int len = ws.length;
520     // Sweep through slots, to keep lowest indices most populated
521     int k = 0;
522     while (k < len) {
523     if (ws[k] != null) {
524     ++k;
525     continue;
526     }
527     int s = workerCounts;
528     int tc = totalCountOf(s);
529     int rc = runningCountOf(s);
530     if (rc >= ps || tc >= ps)
531     break;
532     if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
533     ForkJoinWorkerThread w = createWorker(k);
534     if (w != null) {
535     ws[k++] = w;
536     w.start();
537     }
538     else {
539     updateWorkerCount(-1); // back out on failed creation
540     break;
541     }
542     }
543     }
544     }
545    
546     // Execution methods
547    
548     /**
549     * Common code for execute, invoke and submit
550     */
551     private <T> void doSubmit(ForkJoinTask<T> task) {
552 jsr166 1.2 if (task == null)
553     throw new NullPointerException();
554 jsr166 1.1 if (isShutdown())
555     throw new RejectedExecutionException();
556     if (workers == null)
557     ensureWorkerInitialization();
558     submissionQueue.offer(task);
559     signalIdleWorkers();
560     }
561    
562     /**
563     * Performs the given task, returning its result upon completion.
564     *
565     * @param task the task
566     * @return the task's result
567     * @throws NullPointerException if task is null
568     * @throws RejectedExecutionException if pool is shut down
569     */
570     public <T> T invoke(ForkJoinTask<T> task) {
571     doSubmit(task);
572     return task.join();
573     }
574    
575     /**
576     * Arranges for (asynchronous) execution of the given task.
577     *
578     * @param task the task
579     * @throws NullPointerException if task is null
580     * @throws RejectedExecutionException if pool is shut down
581     */
582 jsr166 1.8 public void execute(ForkJoinTask<?> task) {
583 jsr166 1.1 doSubmit(task);
584     }
585    
586     // AbstractExecutorService methods
587    
588     public void execute(Runnable task) {
589 jsr166 1.2 ForkJoinTask<?> job;
590 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
591     job = (ForkJoinTask<?>) task;
592 jsr166 1.2 else
593 jsr166 1.7 job = ForkJoinTask.adapt(task, null);
594 jsr166 1.2 doSubmit(job);
595 jsr166 1.1 }
596    
597     public <T> ForkJoinTask<T> submit(Callable<T> task) {
598 jsr166 1.7 ForkJoinTask<T> job = ForkJoinTask.adapt(task);
599 jsr166 1.1 doSubmit(job);
600     return job;
601     }
602    
603     public <T> ForkJoinTask<T> submit(Runnable task, T result) {
604 jsr166 1.7 ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
605 jsr166 1.1 doSubmit(job);
606     return job;
607     }
608    
609     public ForkJoinTask<?> submit(Runnable task) {
610 jsr166 1.2 ForkJoinTask<?> job;
611 jsr166 1.3 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
612     job = (ForkJoinTask<?>) task;
613 jsr166 1.2 else
614 jsr166 1.7 job = ForkJoinTask.adapt(task, null);
615 jsr166 1.1 doSubmit(job);
616     return job;
617     }
618    
619     /**
620 jsr166 1.2 * Submits a ForkJoinTask for execution.
621     *
622     * @param task the task to submit
623     * @return the task
624     * @throws RejectedExecutionException if the task cannot be
625     * scheduled for execution
626     * @throws NullPointerException if the task is null
627     */
628     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
629     doSubmit(task);
630     return task;
631     }
632    
633 jsr166 1.1
634     public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
635     ArrayList<ForkJoinTask<T>> forkJoinTasks =
636     new ArrayList<ForkJoinTask<T>>(tasks.size());
637     for (Callable<T> task : tasks)
638 jsr166 1.7 forkJoinTasks.add(ForkJoinTask.adapt(task));
639 jsr166 1.1 invoke(new InvokeAll<T>(forkJoinTasks));
640    
641     @SuppressWarnings({"unchecked", "rawtypes"})
642     List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
643     return futures;
644     }
645    
646     static final class InvokeAll<T> extends RecursiveAction {
647     final ArrayList<ForkJoinTask<T>> tasks;
648     InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
649     public void compute() {
650     try { invokeAll(tasks); }
651     catch (Exception ignore) {}
652     }
653     private static final long serialVersionUID = -7914297376763021607L;
654     }
655    
656     // Configuration and status settings and queries
657    
658     /**
659     * Returns the factory used for constructing new workers.
660     *
661     * @return the factory used for constructing new workers
662     */
663     public ForkJoinWorkerThreadFactory getFactory() {
664     return factory;
665     }
666    
667     /**
668     * Returns the handler for internal worker threads that terminate
669     * due to unrecoverable errors encountered while executing tasks.
670     *
671 jsr166 1.4 * @return the handler, or {@code null} if none
672 jsr166 1.1 */
673     public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
674     Thread.UncaughtExceptionHandler h;
675     final ReentrantLock lock = this.workerLock;
676     lock.lock();
677     try {
678     h = ueh;
679     } finally {
680     lock.unlock();
681     }
682     return h;
683     }
684    
685     /**
686     * Sets the handler for internal worker threads that terminate due
687     * to unrecoverable errors encountered while executing tasks.
688     * Unless set, the current default or ThreadGroup handler is used
689     * as handler.
690     *
691     * @param h the new handler
692 jsr166 1.4 * @return the old handler, or {@code null} if none
693 jsr166 1.1 * @throws SecurityException if a security manager exists and
694     * the caller is not permitted to modify threads
695     * because it does not hold {@link
696     * java.lang.RuntimePermission}{@code ("modifyThread")}
697     */
698     public Thread.UncaughtExceptionHandler
699     setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
700     checkPermission();
701     Thread.UncaughtExceptionHandler old = null;
702     final ReentrantLock lock = this.workerLock;
703     lock.lock();
704     try {
705     old = ueh;
706     ueh = h;
707     ForkJoinWorkerThread[] ws = workers;
708     if (ws != null) {
709     for (int i = 0; i < ws.length; ++i) {
710     ForkJoinWorkerThread w = ws[i];
711     if (w != null)
712     w.setUncaughtExceptionHandler(h);
713     }
714     }
715     } finally {
716     lock.unlock();
717     }
718     return old;
719     }
720    
721    
722     /**
723     * Sets the target parallelism level of this pool.
724     *
725     * @param parallelism the target parallelism
726     * @throws IllegalArgumentException if parallelism less than or
727     * equal to zero or greater than maximum size bounds
728     * @throws SecurityException if a security manager exists and
729     * the caller is not permitted to modify threads
730     * because it does not hold {@link
731     * java.lang.RuntimePermission}{@code ("modifyThread")}
732     */
733     public void setParallelism(int parallelism) {
734     checkPermission();
735     if (parallelism <= 0 || parallelism > maxPoolSize)
736     throw new IllegalArgumentException();
737     final ReentrantLock lock = this.workerLock;
738     lock.lock();
739     try {
740     if (!isTerminating()) {
741     int p = this.parallelism;
742     this.parallelism = parallelism;
743     if (parallelism > p)
744     createAndStartAddedWorkers();
745     else
746     trimSpares();
747     }
748     } finally {
749     lock.unlock();
750     }
751     signalIdleWorkers();
752     }
753    
754     /**
755     * Returns the targeted number of worker threads in this pool.
756     *
757     * @return the targeted number of worker threads in this pool
758     */
759     public int getParallelism() {
760     return parallelism;
761     }
762    
763     /**
764     * Returns the number of worker threads that have started but not
765     * yet terminated. This result returned by this method may differ
766 jsr166 1.4 * from {@link #getParallelism} when threads are created to
767 jsr166 1.1 * maintain parallelism when others are cooperatively blocked.
768     *
769     * @return the number of worker threads
770     */
771     public int getPoolSize() {
772     return totalCountOf(workerCounts);
773     }
774    
775     /**
776     * Returns the maximum number of threads allowed to exist in the
777     * pool, even if there are insufficient unblocked running threads.
778     *
779     * @return the maximum
780     */
781     public int getMaximumPoolSize() {
782     return maxPoolSize;
783     }
784    
785     /**
786     * Sets the maximum number of threads allowed to exist in the
787     * pool, even if there are insufficient unblocked running threads.
788     * Setting this value has no effect on current pool size. It
789     * controls construction of new threads.
790     *
791 jsr166 1.8 * @throws IllegalArgumentException if negative or greater than
792 jsr166 1.1 * internal implementation limit
793     */
794     public void setMaximumPoolSize(int newMax) {
795     if (newMax < 0 || newMax > MAX_THREADS)
796     throw new IllegalArgumentException();
797     maxPoolSize = newMax;
798     }
799    
800    
801     /**
802 jsr166 1.4 * Returns {@code true} if this pool dynamically maintains its
803     * target parallelism level. If false, new threads are added only
804     * to avoid possible starvation. This setting is by default true.
805 jsr166 1.1 *
806 jsr166 1.4 * @return {@code true} if maintains parallelism
807 jsr166 1.1 */
808     public boolean getMaintainsParallelism() {
809     return maintainsParallelism;
810     }
811    
812     /**
813     * Sets whether this pool dynamically maintains its target
814     * parallelism level. If false, new threads are added only to
815     * avoid possible starvation.
816     *
817 jsr166 1.4 * @param enable {@code true} to maintain parallelism
818 jsr166 1.1 */
819     public void setMaintainsParallelism(boolean enable) {
820     maintainsParallelism = enable;
821     }
822    
823     /**
824     * Establishes local first-in-first-out scheduling mode for forked
825     * tasks that are never joined. This mode may be more appropriate
826     * than default locally stack-based mode in applications in which
827     * worker threads only process asynchronous tasks. This method is
828 jsr166 1.4 * designed to be invoked only when the pool is quiescent, and
829 jsr166 1.1 * typically only before any tasks are submitted. The effects of
830     * invocations at other times may be unpredictable.
831     *
832 jsr166 1.4 * @param async if {@code true}, use locally FIFO scheduling
833 jsr166 1.1 * @return the previous mode
834 jsr166 1.4 * @see #getAsyncMode
835 jsr166 1.1 */
836     public boolean setAsyncMode(boolean async) {
837     boolean oldMode = locallyFifo;
838     locallyFifo = async;
839     ForkJoinWorkerThread[] ws = workers;
840     if (ws != null) {
841     for (int i = 0; i < ws.length; ++i) {
842     ForkJoinWorkerThread t = ws[i];
843     if (t != null)
844     t.setAsyncMode(async);
845     }
846     }
847     return oldMode;
848     }
849    
850     /**
851 jsr166 1.4 * Returns {@code true} if this pool uses local first-in-first-out
852 jsr166 1.1 * scheduling mode for forked tasks that are never joined.
853     *
854 jsr166 1.4 * @return {@code true} if this pool uses async mode
855     * @see #setAsyncMode
856 jsr166 1.1 */
857     public boolean getAsyncMode() {
858     return locallyFifo;
859     }
860    
861     /**
862     * Returns an estimate of the number of worker threads that are
863     * not blocked waiting to join tasks or for other managed
864     * synchronization.
865     *
866     * @return the number of worker threads
867     */
868     public int getRunningThreadCount() {
869     return runningCountOf(workerCounts);
870     }
871    
872     /**
873     * Returns an estimate of the number of threads that are currently
874     * stealing or executing tasks. This method may overestimate the
875     * number of active threads.
876     *
877     * @return the number of active threads
878     */
879     public int getActiveThreadCount() {
880     return activeCountOf(runControl);
881     }
882    
883     /**
884     * Returns an estimate of the number of threads that are currently
885     * idle waiting for tasks. This method may underestimate the
886     * number of idle threads.
887     *
888     * @return the number of idle threads
889     */
890     final int getIdleThreadCount() {
891     int c = runningCountOf(workerCounts) - activeCountOf(runControl);
892     return (c <= 0) ? 0 : c;
893     }
894    
895     /**
896 jsr166 1.4 * Returns {@code true} if all worker threads are currently idle.
897     * An idle worker is one that cannot obtain a task to execute
898     * because none are available to steal from other threads, and
899     * there are no pending submissions to the pool. This method is
900     * conservative; it might not return {@code true} immediately upon
901     * idleness of all threads, but will eventually become true if
902     * threads remain inactive.
903 jsr166 1.1 *
904 jsr166 1.4 * @return {@code true} if all threads are currently idle
905 jsr166 1.1 */
906     public boolean isQuiescent() {
907     return activeCountOf(runControl) == 0;
908     }
909    
910     /**
911     * Returns an estimate of the total number of tasks stolen from
912     * one thread's work queue by another. The reported value
913     * underestimates the actual total number of steals when the pool
914     * is not quiescent. This value may be useful for monitoring and
915     * tuning fork/join programs: in general, steal counts should be
916     * high enough to keep threads busy, but low enough to avoid
917     * overhead and contention across threads.
918     *
919     * @return the number of steals
920     */
921     public long getStealCount() {
922     return stealCount.get();
923     }
924    
925     /**
926     * Accumulates steal count from a worker.
927     * Call only when worker known to be idle.
928     */
929     private void updateStealCount(ForkJoinWorkerThread w) {
930     int sc = w.getAndClearStealCount();
931     if (sc != 0)
932     stealCount.addAndGet(sc);
933     }
934    
935     /**
936     * Returns an estimate of the total number of tasks currently held
937     * in queues by worker threads (but not including tasks submitted
938     * to the pool that have not begun executing). This value is only
939     * an approximation, obtained by iterating across all threads in
940     * the pool. This method may be useful for tuning task
941     * granularities.
942     *
943     * @return the number of queued tasks
944     */
945     public long getQueuedTaskCount() {
946     long count = 0;
947     ForkJoinWorkerThread[] ws = workers;
948     if (ws != null) {
949     for (int i = 0; i < ws.length; ++i) {
950     ForkJoinWorkerThread t = ws[i];
951     if (t != null)
952     count += t.getQueueSize();
953     }
954     }
955     return count;
956     }
957    
958     /**
959 jsr166 1.8 * Returns an estimate of the number of tasks submitted to this
960     * pool that have not yet begun executing. This method takes time
961 jsr166 1.1 * proportional to the number of submissions.
962     *
963     * @return the number of queued submissions
964     */
965     public int getQueuedSubmissionCount() {
966     return submissionQueue.size();
967     }
968    
969     /**
970 jsr166 1.4 * Returns {@code true} if there are any tasks submitted to this
971     * pool that have not yet begun executing.
972 jsr166 1.1 *
973     * @return {@code true} if there are any queued submissions
974     */
975     public boolean hasQueuedSubmissions() {
976     return !submissionQueue.isEmpty();
977     }
978    
979     /**
980     * Removes and returns the next unexecuted submission if one is
981     * available. This method may be useful in extensions to this
982     * class that re-assign work in systems with multiple pools.
983     *
984 jsr166 1.4 * @return the next submission, or {@code null} if none
985 jsr166 1.1 */
986     protected ForkJoinTask<?> pollSubmission() {
987     return submissionQueue.poll();
988     }
989    
990     /**
991     * Removes all available unexecuted submitted and forked tasks
992     * from scheduling queues and adds them to the given collection,
993     * without altering their execution status. These may include
994 jsr166 1.8 * artificially generated or wrapped tasks. This method is
995     * designed to be invoked only when the pool is known to be
996 jsr166 1.1 * quiescent. Invocations at other times may not remove all
997     * tasks. A failure encountered while attempting to add elements
998     * to collection {@code c} may result in elements being in
999     * neither, either or both collections when the associated
1000     * exception is thrown. The behavior of this operation is
1001     * undefined if the specified collection is modified while the
1002     * operation is in progress.
1003     *
1004     * @param c the collection to transfer elements into
1005     * @return the number of elements transferred
1006     */
1007 jsr166 1.5 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1008 jsr166 1.1 int n = submissionQueue.drainTo(c);
1009     ForkJoinWorkerThread[] ws = workers;
1010     if (ws != null) {
1011     for (int i = 0; i < ws.length; ++i) {
1012     ForkJoinWorkerThread w = ws[i];
1013     if (w != null)
1014     n += w.drainTasksTo(c);
1015     }
1016     }
1017     return n;
1018     }
1019    
1020     /**
1021     * Returns a string identifying this pool, as well as its state,
1022     * including indications of run state, parallelism level, and
1023     * worker and task counts.
1024     *
1025     * @return a string identifying this pool, as well as its state
1026     */
1027     public String toString() {
1028     int ps = parallelism;
1029     int wc = workerCounts;
1030     int rc = runControl;
1031     long st = getStealCount();
1032     long qt = getQueuedTaskCount();
1033     long qs = getQueuedSubmissionCount();
1034     return super.toString() +
1035     "[" + runStateToString(runStateOf(rc)) +
1036     ", parallelism = " + ps +
1037     ", size = " + totalCountOf(wc) +
1038     ", active = " + activeCountOf(rc) +
1039     ", running = " + runningCountOf(wc) +
1040     ", steals = " + st +
1041     ", tasks = " + qt +
1042     ", submissions = " + qs +
1043     "]";
1044     }
1045    
1046     private static String runStateToString(int rs) {
1047     switch(rs) {
1048     case RUNNING: return "Running";
1049     case SHUTDOWN: return "Shutting down";
1050     case TERMINATING: return "Terminating";
1051     case TERMINATED: return "Terminated";
1052     default: throw new Error("Unknown run state");
1053     }
1054     }
1055    
1056     // lifecycle control
1057    
1058     /**
1059     * Initiates an orderly shutdown in which previously submitted
1060     * tasks are executed, but no new tasks will be accepted.
1061     * Invocation has no additional effect if already shut down.
1062     * Tasks that are in the process of being submitted concurrently
1063     * during the course of this method may or may not be rejected.
1064     *
1065     * @throws SecurityException if a security manager exists and
1066     * the caller is not permitted to modify threads
1067     * because it does not hold {@link
1068     * java.lang.RuntimePermission}{@code ("modifyThread")}
1069     */
1070     public void shutdown() {
1071     checkPermission();
1072     transitionRunStateTo(SHUTDOWN);
1073 jsr166 1.6 if (canTerminateOnShutdown(runControl)) {
1074     if (workers == null) { // shutting down before workers created
1075     final ReentrantLock lock = this.workerLock;
1076     lock.lock();
1077     try {
1078     if (workers == null) {
1079     terminate();
1080     transitionRunStateTo(TERMINATED);
1081     termination.signalAll();
1082     }
1083     } finally {
1084     lock.unlock();
1085     }
1086     }
1087 jsr166 1.1 terminateOnShutdown();
1088 jsr166 1.6 }
1089 jsr166 1.1 }
1090    
1091     /**
1092     * Attempts to stop all actively executing tasks, and cancels all
1093     * waiting tasks. Tasks that are in the process of being
1094     * submitted or executed concurrently during the course of this
1095     * method may or may not be rejected. Unlike some other executors,
1096     * this method cancels rather than collects non-executed tasks
1097     * upon termination, so always returns an empty list. However, you
1098 jsr166 1.4 * can use method {@link #drainTasksTo} before invoking this
1099 jsr166 1.1 * method to transfer unexecuted tasks to another collection.
1100     *
1101     * @return an empty list
1102     * @throws SecurityException if a security manager exists and
1103     * the caller is not permitted to modify threads
1104     * because it does not hold {@link
1105     * java.lang.RuntimePermission}{@code ("modifyThread")}
1106     */
1107     public List<Runnable> shutdownNow() {
1108     checkPermission();
1109     terminate();
1110     return Collections.emptyList();
1111     }
1112    
1113     /**
1114     * Returns {@code true} if all tasks have completed following shut down.
1115     *
1116     * @return {@code true} if all tasks have completed following shut down
1117     */
1118     public boolean isTerminated() {
1119     return runStateOf(runControl) == TERMINATED;
1120     }
1121    
1122     /**
1123     * Returns {@code true} if the process of termination has
1124     * commenced but possibly not yet completed.
1125     *
1126     * @return {@code true} if terminating
1127     */
1128     public boolean isTerminating() {
1129     return runStateOf(runControl) >= TERMINATING;
1130     }
1131    
1132     /**
1133     * Returns {@code true} if this pool has been shut down.
1134     *
1135     * @return {@code true} if this pool has been shut down
1136     */
1137     public boolean isShutdown() {
1138     return runStateOf(runControl) >= SHUTDOWN;
1139     }
1140    
1141     /**
1142     * Blocks until all tasks have completed execution after a shutdown
1143     * request, or the timeout occurs, or the current thread is
1144     * interrupted, whichever happens first.
1145     *
1146     * @param timeout the maximum time to wait
1147     * @param unit the time unit of the timeout argument
1148     * @return {@code true} if this executor terminated and
1149     * {@code false} if the timeout elapsed before termination
1150     * @throws InterruptedException if interrupted while waiting
1151     */
1152     public boolean awaitTermination(long timeout, TimeUnit unit)
1153     throws InterruptedException {
1154     long nanos = unit.toNanos(timeout);
1155     final ReentrantLock lock = this.workerLock;
1156     lock.lock();
1157     try {
1158     for (;;) {
1159     if (isTerminated())
1160     return true;
1161     if (nanos <= 0)
1162     return false;
1163     nanos = termination.awaitNanos(nanos);
1164     }
1165     } finally {
1166     lock.unlock();
1167     }
1168     }
1169    
1170     // Shutdown and termination support
1171    
1172     /**
1173     * Callback from terminating worker. Nulls out the corresponding
1174     * workers slot, and if terminating, tries to terminate; else
1175     * tries to shrink workers array.
1176     *
1177     * @param w the worker
1178     */
1179     final void workerTerminated(ForkJoinWorkerThread w) {
1180     updateStealCount(w);
1181     updateWorkerCount(-1);
1182     final ReentrantLock lock = this.workerLock;
1183     lock.lock();
1184     try {
1185     ForkJoinWorkerThread[] ws = workers;
1186     if (ws != null) {
1187     int idx = w.poolIndex;
1188     if (idx >= 0 && idx < ws.length && ws[idx] == w)
1189     ws[idx] = null;
1190     if (totalCountOf(workerCounts) == 0) {
1191     terminate(); // no-op if already terminating
1192     transitionRunStateTo(TERMINATED);
1193     termination.signalAll();
1194     }
1195     else if (!isTerminating()) {
1196     tryShrinkWorkerArray();
1197     tryResumeSpare(true); // allow replacement
1198     }
1199     }
1200     } finally {
1201     lock.unlock();
1202     }
1203     signalIdleWorkers();
1204     }
1205    
1206     /**
1207     * Initiates termination.
1208     */
1209     private void terminate() {
1210     if (transitionRunStateTo(TERMINATING)) {
1211     stopAllWorkers();
1212     resumeAllSpares();
1213     signalIdleWorkers();
1214     cancelQueuedSubmissions();
1215     cancelQueuedWorkerTasks();
1216     interruptUnterminatedWorkers();
1217     signalIdleWorkers(); // resignal after interrupt
1218     }
1219     }
1220    
1221     /**
1222     * Possibly terminates when on shutdown state.
1223     */
1224     private void terminateOnShutdown() {
1225     if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1226     terminate();
1227     }
1228    
1229     /**
1230     * Clears out and cancels submissions.
1231     */
1232     private void cancelQueuedSubmissions() {
1233     ForkJoinTask<?> task;
1234     while ((task = pollSubmission()) != null)
1235     task.cancel(false);
1236     }
1237    
1238     /**
1239     * Cleans out worker queues.
1240     */
1241     private void cancelQueuedWorkerTasks() {
1242     final ReentrantLock lock = this.workerLock;
1243     lock.lock();
1244     try {
1245     ForkJoinWorkerThread[] ws = workers;
1246     if (ws != null) {
1247     for (int i = 0; i < ws.length; ++i) {
1248     ForkJoinWorkerThread t = ws[i];
1249     if (t != null)
1250     t.cancelTasks();
1251     }
1252     }
1253     } finally {
1254     lock.unlock();
1255     }
1256     }
1257    
1258     /**
1259     * Sets each worker's status to terminating. Requires lock to avoid
1260     * conflicts with add/remove.
1261     */
1262     private void stopAllWorkers() {
1263     final ReentrantLock lock = this.workerLock;
1264     lock.lock();
1265     try {
1266     ForkJoinWorkerThread[] ws = workers;
1267     if (ws != null) {
1268     for (int i = 0; i < ws.length; ++i) {
1269     ForkJoinWorkerThread t = ws[i];
1270     if (t != null)
1271     t.shutdownNow();
1272     }
1273     }
1274     } finally {
1275     lock.unlock();
1276     }
1277     }
1278    
1279     /**
1280     * Interrupts all unterminated workers. This is not required for
1281     * sake of internal control, but may help unstick user code during
1282     * shutdown.
1283     */
1284     private void interruptUnterminatedWorkers() {
1285     final ReentrantLock lock = this.workerLock;
1286     lock.lock();
1287     try {
1288     ForkJoinWorkerThread[] ws = workers;
1289     if (ws != null) {
1290     for (int i = 0; i < ws.length; ++i) {
1291     ForkJoinWorkerThread t = ws[i];
1292     if (t != null && !t.isTerminated()) {
1293     try {
1294     t.interrupt();
1295     } catch (SecurityException ignore) {
1296     }
1297     }
1298     }
1299     }
1300     } finally {
1301     lock.unlock();
1302     }
1303     }
1304    
1305    
1306     /*
1307     * Nodes for event barrier to manage idle threads. Queue nodes
1308     * are basic Treiber stack nodes, also used for spare stack.
1309     *
1310     * The event barrier has an event count and a wait queue (actually
1311     * a Treiber stack). Workers are enabled to look for work when
1312     * the eventCount is incremented. If they fail to find work, they
1313     * may wait for next count. Upon release, threads help others wake
1314     * up.
1315     *
1316     * Synchronization events occur only in enough contexts to
1317     * maintain overall liveness:
1318     *
1319     * - Submission of a new task to the pool
1320     * - Resizes or other changes to the workers array
1321     * - pool termination
1322     * - A worker pushing a task on an empty queue
1323     *
1324     * The case of pushing a task occurs often enough, and is heavy
1325     * enough compared to simple stack pushes, to require special
1326     * handling: Method signalWork returns without advancing count if
1327     * the queue appears to be empty. This would ordinarily result in
1328     * races causing some queued waiters not to be woken up. To avoid
1329     * this, the first worker enqueued in method sync (see
1330     * syncIsReleasable) rescans for tasks after being enqueued, and
1331     * helps signal if any are found. This works well because the
1332     * worker has nothing better to do, and so might as well help
1333     * alleviate the overhead and contention on the threads actually
1334     * doing work. Also, since event counts increments on task
1335     * availability exist to maintain liveness (rather than to force
1336     * refreshes etc), it is OK for callers to exit early if
1337     * contending with another signaller.
1338     */
1339     static final class WaitQueueNode {
1340     WaitQueueNode next; // only written before enqueued
1341     volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1342     final long count; // unused for spare stack
1343    
1344     WaitQueueNode(long c, ForkJoinWorkerThread w) {
1345     count = c;
1346     thread = w;
1347     }
1348    
1349     /**
1350     * Wakes up waiter, returning false if known to already
1351     */
1352     boolean signal() {
1353     ForkJoinWorkerThread t = thread;
1354     if (t == null)
1355     return false;
1356     thread = null;
1357     LockSupport.unpark(t);
1358     return true;
1359     }
1360    
1361     /**
1362     * Awaits release on sync.
1363     */
1364     void awaitSyncRelease(ForkJoinPool p) {
1365     while (thread != null && !p.syncIsReleasable(this))
1366     LockSupport.park(this);
1367     }
1368    
1369     /**
1370     * Awaits resumption as spare.
1371     */
1372     void awaitSpareRelease() {
1373     while (thread != null) {
1374     if (!Thread.interrupted())
1375     LockSupport.park(this);
1376     }
1377     }
1378     }
1379    
1380     /**
1381     * Ensures that no thread is waiting for count to advance from the
1382     * current value of eventCount read on entry to this method, by
1383     * releasing waiting threads if necessary.
1384     *
1385     * @return the count
1386     */
1387     final long ensureSync() {
1388     long c = eventCount;
1389     WaitQueueNode q;
1390     while ((q = syncStack) != null && q.count < c) {
1391     if (casBarrierStack(q, null)) {
1392     do {
1393     q.signal();
1394     } while ((q = q.next) != null);
1395     break;
1396     }
1397     }
1398     return c;
1399     }
1400    
1401     /**
1402     * Increments event count and releases waiting threads.
1403     */
1404     private void signalIdleWorkers() {
1405     long c;
1406     do {} while (!casEventCount(c = eventCount, c+1));
1407     ensureSync();
1408     }
1409    
1410     /**
1411     * Signals threads waiting to poll a task. Because method sync
1412     * rechecks availability, it is OK to only proceed if queue
1413     * appears to be non-empty, and OK to skip under contention to
1414     * increment count (since some other thread succeeded).
1415     */
1416     final void signalWork() {
1417     long c;
1418     WaitQueueNode q;
1419     if (syncStack != null &&
1420     casEventCount(c = eventCount, c+1) &&
1421     (((q = syncStack) != null && q.count <= c) &&
1422     (!casBarrierStack(q, q.next) || !q.signal())))
1423     ensureSync();
1424     }
1425    
1426     /**
1427     * Waits until event count advances from last value held by
1428     * caller, or if excess threads, caller is resumed as spare, or
1429     * caller or pool is terminating. Updates caller's event on exit.
1430     *
1431     * @param w the calling worker thread
1432     */
1433     final void sync(ForkJoinWorkerThread w) {
1434     updateStealCount(w); // Transfer w's count while it is idle
1435    
1436     while (!w.isShutdown() && !isTerminating() && !suspendIfSpare(w)) {
1437     long prev = w.lastEventCount;
1438     WaitQueueNode node = null;
1439     WaitQueueNode h;
1440     while (eventCount == prev &&
1441     ((h = syncStack) == null || h.count == prev)) {
1442     if (node == null)
1443     node = new WaitQueueNode(prev, w);
1444     if (casBarrierStack(node.next = h, node)) {
1445     node.awaitSyncRelease(this);
1446     break;
1447     }
1448     }
1449     long ec = ensureSync();
1450     if (ec != prev) {
1451     w.lastEventCount = ec;
1452     break;
1453     }
1454     }
1455     }
1456    
1457     /**
1458 jsr166 1.4 * Returns {@code true} if worker waiting on sync can proceed:
1459 jsr166 1.1 * - on signal (thread == null)
1460     * - on event count advance (winning race to notify vs signaller)
1461     * - on interrupt
1462     * - if the first queued node, we find work available
1463     * If node was not signalled and event count not advanced on exit,
1464     * then we also help advance event count.
1465     *
1466 jsr166 1.4 * @return {@code true} if node can be released
1467 jsr166 1.1 */
1468     final boolean syncIsReleasable(WaitQueueNode node) {
1469     long prev = node.count;
1470     if (!Thread.interrupted() && node.thread != null &&
1471     (node.next != null ||
1472     !ForkJoinWorkerThread.hasQueuedTasks(workers)) &&
1473     eventCount == prev)
1474     return false;
1475     if (node.thread != null) {
1476     node.thread = null;
1477     long ec = eventCount;
1478     if (prev <= ec) // help signal
1479     casEventCount(ec, ec+1);
1480     }
1481     return true;
1482     }
1483    
1484     /**
1485 jsr166 1.4 * Returns {@code true} if a new sync event occurred since last
1486     * call to sync or this method, if so, updating caller's count.
1487 jsr166 1.1 */
1488     final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
1489     long lc = w.lastEventCount;
1490     long ec = ensureSync();
1491     if (ec == lc)
1492     return false;
1493     w.lastEventCount = ec;
1494     return true;
1495     }
1496    
1497     // Parallelism maintenance
1498    
1499     /**
1500     * Decrements running count; if too low, adds spare.
1501     *
1502     * Conceptually, all we need to do here is add or resume a
1503     * spare thread when one is about to block (and remove or
1504     * suspend it later when unblocked -- see suspendIfSpare).
1505     * However, implementing this idea requires coping with
1506     * several problems: we have imperfect information about the
1507     * states of threads. Some count updates can and usually do
1508     * lag run state changes, despite arrangements to keep them
1509     * accurate (for example, when possible, updating counts
1510     * before signalling or resuming), especially when running on
1511     * dynamic JVMs that don't optimize the infrequent paths that
1512     * update counts. Generating too many threads can make these
1513     * problems become worse, because excess threads are more
1514     * likely to be context-switched with others, slowing them all
1515     * down, especially if there is no work available, so all are
1516     * busy scanning or idling. Also, excess spare threads can
1517     * only be suspended or removed when they are idle, not
1518     * immediately when they aren't needed. So adding threads will
1519     * raise parallelism level for longer than necessary. Also,
1520     * FJ applications often encounter highly transient peaks when
1521     * many threads are blocked joining, but for less time than it
1522     * takes to create or resume spares.
1523     *
1524     * @param joinMe if non-null, return early if done
1525     * @param maintainParallelism if true, try to stay within
1526     * target counts, else create only to avoid starvation
1527     * @return true if joinMe known to be done
1528     */
1529     final boolean preJoin(ForkJoinTask<?> joinMe,
1530     boolean maintainParallelism) {
1531     maintainParallelism &= maintainsParallelism; // overrride
1532     boolean dec = false; // true when running count decremented
1533     while (spareStack == null || !tryResumeSpare(dec)) {
1534     int counts = workerCounts;
1535     if (dec || (dec = casWorkerCounts(counts, --counts))) {
1536     // CAS cheat
1537     if (!needSpare(counts, maintainParallelism))
1538     break;
1539     if (joinMe.status < 0)
1540     return true;
1541     if (tryAddSpare(counts))
1542     break;
1543     }
1544     }
1545     return false;
1546     }
1547    
1548     /**
1549     * Same idea as preJoin
1550     */
1551     final boolean preBlock(ManagedBlocker blocker,
1552     boolean maintainParallelism) {
1553     maintainParallelism &= maintainsParallelism;
1554     boolean dec = false;
1555     while (spareStack == null || !tryResumeSpare(dec)) {
1556     int counts = workerCounts;
1557     if (dec || (dec = casWorkerCounts(counts, --counts))) {
1558     if (!needSpare(counts, maintainParallelism))
1559     break;
1560     if (blocker.isReleasable())
1561     return true;
1562     if (tryAddSpare(counts))
1563     break;
1564     }
1565     }
1566     return false;
1567     }
1568    
1569     /**
1570 jsr166 1.4 * Returns {@code true} if a spare thread appears to be needed.
1571     * If maintaining parallelism, returns true when the deficit in
1572 jsr166 1.1 * running threads is more than the surplus of total threads, and
1573     * there is apparently some work to do. This self-limiting rule
1574     * means that the more threads that have already been added, the
1575     * less parallelism we will tolerate before adding another.
1576     *
1577     * @param counts current worker counts
1578     * @param maintainParallelism try to maintain parallelism
1579     */
1580     private boolean needSpare(int counts, boolean maintainParallelism) {
1581     int ps = parallelism;
1582     int rc = runningCountOf(counts);
1583     int tc = totalCountOf(counts);
1584     int runningDeficit = ps - rc;
1585     int totalSurplus = tc - ps;
1586     return (tc < maxPoolSize &&
1587     (rc == 0 || totalSurplus < 0 ||
1588     (maintainParallelism &&
1589     runningDeficit > totalSurplus &&
1590     ForkJoinWorkerThread.hasQueuedTasks(workers))));
1591     }
1592    
1593     /**
1594     * Adds a spare worker if lock available and no more than the
1595     * expected numbers of threads exist.
1596     *
1597     * @return true if successful
1598     */
1599     private boolean tryAddSpare(int expectedCounts) {
1600     final ReentrantLock lock = this.workerLock;
1601     int expectedRunning = runningCountOf(expectedCounts);
1602     int expectedTotal = totalCountOf(expectedCounts);
1603     boolean success = false;
1604     boolean locked = false;
1605     // confirm counts while locking; CAS after obtaining lock
1606     try {
1607     for (;;) {
1608     int s = workerCounts;
1609     int tc = totalCountOf(s);
1610     int rc = runningCountOf(s);
1611     if (rc > expectedRunning || tc > expectedTotal)
1612     break;
1613     if (!locked && !(locked = lock.tryLock()))
1614     break;
1615     if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1616     createAndStartSpare(tc);
1617     success = true;
1618     break;
1619     }
1620     }
1621     } finally {
1622     if (locked)
1623     lock.unlock();
1624     }
1625     return success;
1626     }
1627    
1628     /**
1629     * Adds the kth spare worker. On entry, pool counts are already
1630     * adjusted to reflect addition.
1631     */
1632     private void createAndStartSpare(int k) {
1633     ForkJoinWorkerThread w = null;
1634     ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1635     int len = ws.length;
1636     // Probably, we can place at slot k. If not, find empty slot
1637     if (k < len && ws[k] != null) {
1638     for (k = 0; k < len && ws[k] != null; ++k)
1639     ;
1640     }
1641     if (k < len && !isTerminating() && (w = createWorker(k)) != null) {
1642     ws[k] = w;
1643     w.start();
1644     }
1645     else
1646     updateWorkerCount(-1); // adjust on failure
1647     signalIdleWorkers();
1648     }
1649    
1650     /**
1651     * Suspends calling thread w if there are excess threads. Called
1652     * only from sync. Spares are enqueued in a Treiber stack using
1653     * the same WaitQueueNodes as barriers. They are resumed mainly
1654     * in preJoin, but are also woken on pool events that require all
1655     * threads to check run state.
1656     *
1657     * @param w the caller
1658     */
1659     private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1660     WaitQueueNode node = null;
1661     int s;
1662     while (parallelism < runningCountOf(s = workerCounts)) {
1663     if (node == null)
1664     node = new WaitQueueNode(0, w);
1665     if (casWorkerCounts(s, s-1)) { // representation-dependent
1666     // push onto stack
1667     do {} while (!casSpareStack(node.next = spareStack, node));
1668     // block until released by resumeSpare
1669     node.awaitSpareRelease();
1670     return true;
1671     }
1672     }
1673     return false;
1674     }
1675    
1676     /**
1677     * Tries to pop and resume a spare thread.
1678     *
1679     * @param updateCount if true, increment running count on success
1680     * @return true if successful
1681     */
1682     private boolean tryResumeSpare(boolean updateCount) {
1683     WaitQueueNode q;
1684     while ((q = spareStack) != null) {
1685     if (casSpareStack(q, q.next)) {
1686     if (updateCount)
1687     updateRunningCount(1);
1688     q.signal();
1689     return true;
1690     }
1691     }
1692     return false;
1693     }
1694    
1695     /**
1696     * Pops and resumes all spare threads. Same idea as ensureSync.
1697     *
1698     * @return true if any spares released
1699     */
1700     private boolean resumeAllSpares() {
1701     WaitQueueNode q;
1702     while ( (q = spareStack) != null) {
1703     if (casSpareStack(q, null)) {
1704     do {
1705     updateRunningCount(1);
1706     q.signal();
1707     } while ((q = q.next) != null);
1708     return true;
1709     }
1710     }
1711     return false;
1712     }
1713    
1714     /**
1715     * Pops and shuts down excessive spare threads. Call only while
1716     * holding lock. This is not guaranteed to eliminate all excess
1717     * threads, only those suspended as spares, which are the ones
1718     * unlikely to be needed in the future.
1719     */
1720     private void trimSpares() {
1721     int surplus = totalCountOf(workerCounts) - parallelism;
1722     WaitQueueNode q;
1723     while (surplus > 0 && (q = spareStack) != null) {
1724     if (casSpareStack(q, null)) {
1725     do {
1726     updateRunningCount(1);
1727     ForkJoinWorkerThread w = q.thread;
1728     if (w != null && surplus > 0 &&
1729     runningCountOf(workerCounts) > 0 && w.shutdown())
1730     --surplus;
1731     q.signal();
1732     } while ((q = q.next) != null);
1733     }
1734     }
1735     }
1736    
1737     /**
1738     * Interface for extending managed parallelism for tasks running
1739 jsr166 1.8 * in {@link ForkJoinPool}s.
1740     *
1741     * <p>A {@code ManagedBlocker} provides two methods.
1742 jsr166 1.4 * Method {@code isReleasable} must return {@code true} if
1743     * blocking is not necessary. Method {@code block} blocks the
1744     * current thread if necessary (perhaps internally invoking
1745 jsr166 1.8 * {@code isReleasable} before actually blocking).
1746 jsr166 1.1 *
1747     * <p>For example, here is a ManagedBlocker based on a
1748     * ReentrantLock:
1749     * <pre> {@code
1750     * class ManagedLocker implements ManagedBlocker {
1751     * final ReentrantLock lock;
1752     * boolean hasLock = false;
1753     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
1754     * public boolean block() {
1755     * if (!hasLock)
1756     * lock.lock();
1757     * return true;
1758     * }
1759     * public boolean isReleasable() {
1760     * return hasLock || (hasLock = lock.tryLock());
1761     * }
1762     * }}</pre>
1763     */
1764     public static interface ManagedBlocker {
1765     /**
1766     * Possibly blocks the current thread, for example waiting for
1767     * a lock or condition.
1768     *
1769 jsr166 1.4 * @return {@code true} if no additional blocking is necessary
1770     * (i.e., if isReleasable would return true)
1771 jsr166 1.1 * @throws InterruptedException if interrupted while waiting
1772     * (the method is not required to do so, but is allowed to)
1773     */
1774     boolean block() throws InterruptedException;
1775    
1776     /**
1777 jsr166 1.4 * Returns {@code true} if blocking is unnecessary.
1778 jsr166 1.1 */
1779     boolean isReleasable();
1780     }
1781    
1782     /**
1783     * Blocks in accord with the given blocker. If the current thread
1784 jsr166 1.8 * is a {@link ForkJoinWorkerThread}, this method possibly
1785     * arranges for a spare thread to be activated if necessary to
1786     * ensure parallelism while the current thread is blocked.
1787     *
1788     * <p>If {@code maintainParallelism} is {@code true} and the pool
1789     * supports it ({@link #getMaintainsParallelism}), this method
1790     * attempts to maintain the pool's nominal parallelism. Otherwise
1791     * it activates a thread only if necessary to avoid complete
1792     * starvation. This option may be preferable when blockages use
1793     * timeouts, or are almost always brief.
1794 jsr166 1.1 *
1795 jsr166 1.8 * <p>If the caller is not a {@link ForkJoinTask}, this method is
1796     * behaviorally equivalent to
1797 jsr166 1.1 * <pre> {@code
1798     * while (!blocker.isReleasable())
1799     * if (blocker.block())
1800     * return;
1801     * }</pre>
1802 jsr166 1.8 *
1803     * If the caller is a {@code ForkJoinTask}, then the pool may
1804     * first be expanded to ensure parallelism, and later adjusted.
1805 jsr166 1.1 *
1806     * @param blocker the blocker
1807 jsr166 1.4 * @param maintainParallelism if {@code true} and supported by
1808     * this pool, attempt to maintain the pool's nominal parallelism;
1809     * otherwise activate a thread only if necessary to avoid
1810     * complete starvation.
1811 jsr166 1.1 * @throws InterruptedException if blocker.block did so
1812     */
1813     public static void managedBlock(ManagedBlocker blocker,
1814     boolean maintainParallelism)
1815     throws InterruptedException {
1816     Thread t = Thread.currentThread();
1817     ForkJoinPool pool = ((t instanceof ForkJoinWorkerThread) ?
1818     ((ForkJoinWorkerThread) t).pool : null);
1819     if (!blocker.isReleasable()) {
1820     try {
1821     if (pool == null ||
1822     !pool.preBlock(blocker, maintainParallelism))
1823     awaitBlocker(blocker);
1824     } finally {
1825     if (pool != null)
1826     pool.updateRunningCount(1);
1827     }
1828     }
1829     }
1830    
1831     private static void awaitBlocker(ManagedBlocker blocker)
1832     throws InterruptedException {
1833     do {} while (!blocker.isReleasable() && !blocker.block());
1834     }
1835    
1836 jsr166 1.7 // AbstractExecutorService overrides. These rely on undocumented
1837     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
1838     // implement RunnableFuture.
1839 jsr166 1.1
1840     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
1841 jsr166 1.7 return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
1842 jsr166 1.1 }
1843    
1844     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
1845 jsr166 1.7 return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
1846 jsr166 1.1 }
1847    
1848     // Unsafe mechanics
1849    
1850     private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
1851 jsr166 1.2 private static final long eventCountOffset =
1852 jsr166 1.3 objectFieldOffset("eventCount", ForkJoinPool.class);
1853 jsr166 1.2 private static final long workerCountsOffset =
1854 jsr166 1.3 objectFieldOffset("workerCounts", ForkJoinPool.class);
1855 jsr166 1.2 private static final long runControlOffset =
1856 jsr166 1.3 objectFieldOffset("runControl", ForkJoinPool.class);
1857 jsr166 1.2 private static final long syncStackOffset =
1858 jsr166 1.3 objectFieldOffset("syncStack",ForkJoinPool.class);
1859 jsr166 1.2 private static final long spareStackOffset =
1860 jsr166 1.3 objectFieldOffset("spareStack", ForkJoinPool.class);
1861 jsr166 1.1
1862     private boolean casEventCount(long cmp, long val) {
1863     return UNSAFE.compareAndSwapLong(this, eventCountOffset, cmp, val);
1864     }
1865     private boolean casWorkerCounts(int cmp, int val) {
1866     return UNSAFE.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1867     }
1868     private boolean casRunControl(int cmp, int val) {
1869     return UNSAFE.compareAndSwapInt(this, runControlOffset, cmp, val);
1870     }
1871     private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1872     return UNSAFE.compareAndSwapObject(this, spareStackOffset, cmp, val);
1873     }
1874     private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1875     return UNSAFE.compareAndSwapObject(this, syncStackOffset, cmp, val);
1876     }
1877 jsr166 1.3
1878     private static long objectFieldOffset(String field, Class<?> klazz) {
1879     try {
1880     return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1881     } catch (NoSuchFieldException e) {
1882     // Convert Exception to corresponding Error
1883     NoSuchFieldError error = new NoSuchFieldError(field);
1884     error.initCause(e);
1885     throw error;
1886     }
1887     }
1888 jsr166 1.1 }